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ABSTRACT 

A numerical procedure based upon a boundary i n t e g r a l 

method f or gra v i t y wave making problems i s studied i n the 

time domain. The free-surface boundary conditions are 

combined and expressed i n a Lagrangian notation to follow the 

free-surface p a r t i c l e ' s motion i n time. The corresponding 

material d e r i v a t i v e term i s approximated by a f i n i t e 

d i f f e r e n c e expression, and the v e l o c i t y terms are 

extrapolated i n time f o r the completion of the formulations. 

The fluid-body i n t e r s e c t i o n p o s i t i o n at the free surface i s 

predicted by an i n t e r p o l a t i o n function that requires 

information from both the free surface and the submerged 

surface conditions. Solutions corresponding to a l i n e a r 

free-surface condition and to a non-linear free-surface 

c o n d i t i o n are obtained at small time increment values. 

Numerical modelling of surface wave problems i s studied i n 

two dimensions and i n three dimensions. Comparisons are made 

to l i n e a r a n a l y t i c a l solutions as well as to published 

experimental r e s u l t s . Good agreement between the numerical 

solutions and measured values i s found. For the modelling of 

a three dimensional wave d i f f r a c t i o n problem, r e s u l t s at high 

wave amplitude are r e s t r i c t e d because of the use of 

q u a d r i l a t e r a l elements. The near cy l i n d e r region of the free 

surface i s not considered to be well represented because of 

the coarse element s i z e . Wave forces c a l c u l a t e d on the 
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v e r t i c a l c y l i n d e r are found to be af f e c t e d by the modelled 

tank length. When the simulated wave length i s comparable to 

the wave tank's dimension, numerical r e s u l t s are found to be 

less than the experimental measurements. However, when the 

wave length i s shorter than the tank's length, solutions are 

obtained with very good p r e c i s i o n . 
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I. INTRODUCTION 

In recent years, ocean engineers have become more and 

more interes t e d i n the development of numerical procedures 

that p r e d i c t free-surface wave phenomena. This i s 

understandable since today's computer technology i s advancing 

at such a tremendous rate, the need for engineering software 

to be developed so as to u t i l i z e the computer power has 

become very strong. Moreover, a well developed numerical 

procedure can reduce the cost of conducting numerous 

exp ens ive exp e r iment s. 

Although wave making problems have been studied for 

almost a century, achievement i n t h i s area i s s t i l l quite 

l i m i t e d . The involved numerical s o l u t i o n procedure i s 

considered d i f f i c u l t because of the moving boundaries. 

Numerical models that simulate t h i s transient, non-linear 

problem i n the time domain seem to be unstable. This 

numerical i n s t a b i l i t y remained as an obstruction to the 

progress of ocean engineering technology for years. I t was 

not u n t i l 1976 that Longuet-Higgins and Cokelet s u c c e s s f u l l y 

simulated the deformation of high amplitude waves, and 

proposed a s o l u t i o n to the i n s t a b i l i t y problem. 

Numerical i n s t a b i l i t y associated with free-surface 

p o t e n t i a l flow problems i s believed to be i n i t i a t e d by the 
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formation of l o c a l short gravity waves when the long wave 

crest i s compressed i n the h o r i z o n t a l d i r e c t i o n . In r e a l 

l i f e , these l o c a l short gravity waves are damped by the 

f l u i d ' s v i s c o s i t y as well as the surface tension e f f e c t . 

However, i n the numerical model, the presence of these short 

gr a v i t y waves exaggerates the computation of the free 

surface, and leads to an unstable s o l u t i o n . In order to 

suppress the numerical i n s t a b l i t y i n the sol u t i o n , 

Longuet-Higgins and Cokelet have proposed the use of a 

smoothing function to correct the r e s u l t every few time step 

i n t e r v a l s . Solutions obtained with such a smoothing procedure 

then become very stable. 

Another e x i s t i n g problem that causes d i f f i c u l t i e s i n the 

numerical model i s the determination of the p o s i t i o n where 

the free-surface i n t e r s e c t s an impermeable body's surface, 

such as the wave paddle. This point was in d e n t i f e d by L i n 

(1984) as a s i n g u l a r i t y , and an a n a l y t i c s o l u t i o n could not 

be obtained. However, i t can be accommodated by applying both 

the v e l o c i t y p o t e n t i a l and the streamline function as 

prescribed conditions to reinf o r c e a s o l u t i o n numerically. 

Results obtained by following t h i s approach are very 

promising. Unfortunately, formulations are accomplished by 

using complex va r i a b l e s which are applicable for two 

dimensional problems only. Since i t i s more desirable to 

e s t a b l i s h a three dimensional numerical procedure for r e a l 
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l i f e a p p l ications, a free-surface formulation that contains 

only r e a l v a r i a b l e s i s , therefore, introduced and-

investigated. 

In the following chapters, a s o l u t i o n method based upon 

the Boundary Integral Equation i s studied. The presented 

method d i f f e r s from Longuet-Higgins' approach by coupling a 

f i n i t e difference formulation onto the free-surface boundary 

conditions. A d d i t i o n a l assumptions are made to obtain a more 

appropriate form to march the s o l u t i o n i n time. The 

s i n g u l a r i t y problem at the fluid-body i n t e r s e c t i o n point i s 

handled by a simple i n t e r p o l a t i o n function. Four d i f f e r e n t 

kinds of wave making problems are examined, and comparisons 

are made between numerical solutions and published 

experimental r e s u l t s . 

The s o l u t i o n procedure i s f i r s t applied to simulate a 

two dimensional wave tank. A p i s t o n type wave maker i s 

modelled for the wave generating process, and numerical 

solutions are compared with l i n e a r wave theory. The next 

a p p l i c a t i o n i s on the modelling of a two dimensional, 

s p a t i a l l y p e r i o d i c wave problem. Deformation of high 

amplitude waves at a f i n i t e water depth i s considered. 

Results s i m i l a r to those by Longuet-Higgins and Cokelet 

(1976) are obtained. Then, ship's bow waves which are 

generated by a wedge-shaped model at d i f f e r e n t d r a f t s are 
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investigated. Predictions using a slender ship assumption are 

compared with measurements by O g i l v i e (1972). F i n a l l y , the 

three dimensional a p p l i c a b i l i t y of the free-surface 

formulations i s i l l u s t r a t e d by modelling a simple wave 

d i f f r a c t i o n problem. Forces experienced by a surface-piercing 

c y l i n d e r located i n a wave tank are ca l c u l a t e d and compared 

to published experimental works. 

Numerical r e s u l t s obtained i n the following chapters do 

not require any smoothing procedure. The free-surface 

formations with a small time step assumption are considered 

to be adequate to y i e l d a numerically stable s o l u t i o n . I t i s 

believed that the presented procedure provides a subsequent 

way to model wave making problems other than the 

Longuet-Higgins' approach. Moreover, the introduced 

free-surface formulations enable p r a c t i c a l problems to be 

solved i n three dimensions. 
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II. BASIC THEORY 

When an object i s moving at or near the water surface, 

the air-water i n t e r f a c e i s disturbed from i t s equilibrium, 

and the free surface i s set into motion. However, since a 

g r a v i t a t i o n a l force i s acting on the f l u i d , there i s a 

tendency f o r the air-water interface to return to i t s 

equilibrium p o s i t i o n . As a r e s u l t , gravity waves are formed 

at the free surface as a balance of the k i n e t i c and the 

p o t e n t i a l energy. These waves which are commonly known as 

grav i t y waves, propagate away from the source of disturbances 

i n the r a d i a l d i r e c t i o n . In general, c e r t a i n parameters such 

as water depth, and v e l o c i t y of disturbance are considered 

important for wave formation, while some other f l u i d 

properties l i k e surface tension, v i s c o s i t y , and 

compre s s i b i l i t y of the f l u i d medium are considered less 

important for the study of gravity waves. In the following 

chapters, wave making problems are formulated by assuming the 

f l u i d as incompressible and i n v i s c i d . Surface tension e f f e c t 

i s considered as n e g l i g i b l e compared to gravity e f f e c t and 

f l u i d i n e r t i a l forces. These assumptions are generally 

accepted when there i s no flow separation. For gravity wave 

problems, flow separation w i l l occur when the c h a r a c t e r i s t i c 

dimension of the structure i s not large r e l a t i v e to the 

o r b i t a l path length of f l u i d p a r t i c l e s . That i s , the i n v i s c i d 

assumption i s acceptable when the dimension of the structure 
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to the wave length r a t i o i s at about the order of unity. 

With these assumptions, the problem can be treated as a 

p o t e n t i a l flow problem. A v e l o c i t y p o t e n t i a l function, <j>, i s 

defined within the flow f i e l d . This p o t e n t i a l function, whose 

gradients are the f l u i d v e l o c i t y components, s a t i s f i e s the 

Laplace Equation : 

V 2 <(> = 0 

or 

<j> + <j> + <f> = 0 (1) . ,xx ^,yy r , z z 

In the following chapters, a right-hand Cartesian 

coordinate system with y pointing up as the p o s i t i v e 

d i r e c t i o n i s used ( Figure 1 ). The o r i g i n of the coordinate 

axis i s located at the undisturbed free-surface, and the wave 

ele v a t i o n i s designated by the symbol r\. 

Equation (1) , which i s the governing equation for the 

flow f i e l d , can be solved by many well established numerical 

or a n a l y t i c a l methods. Although the Boundary Integral Method 

i s used i n the following studies, there i s no reason that 

other numerical methods cannot be used to solve the problem. 

In the next chapter, the Boundary Integral Method f o r so l v i n g 
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p o t e n t i a l flow problems w i l l be discussed. However, boundary 

conditions must f i r s t be arranged i n an appropiate form for 

the use of the selected numerical method. 

II.1 Boundary Conditions 

Although the Laplace Equation i s a l i n e a r , second order 

d i f f e r e n t i a l equation, the associated problem can be a 

non-linear one, depending on the kind of boundary conditions 

involved. In f a c t , there e x i s t d i f f e r e n t kinds of boundary 

conditions f o r free-surface wave problems. In order to derive 

the boundary conditions i n forms suitable f o r the d i f f e r e n t 

applications investigated i n l a t e r chapters, they are 

discussed under two main categories : 

i . The Wetted Surface Condition 

i i . The Free-surface Condition 

The following formulations are arranged s p e c i f i c a l l y f o r 

the use with the Boundary Integral Method. For some other 

numerical methods, c e r t a i n rearrangements should be 

considered. 

I l . l . i . The Wetted Surface Conditions 

The wetted surface i s defined as the submerged 

impermeable surface of s o l i d bodies that i s e i t h e r moving or 
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stationary. In wave making problems, the wave maker, the tank 

wall, and the submerged surfaces of any f l o a t i n g or standing 

structures belong to t h i s category. This type of boundary 

condition can be formulated as follows : 

4> n = v - Von (2) . , n n 

4> ̂  i s the f l u i d v e l o c i t y component i n the normal d i r e c t i o n 

to the considered surface, and i s equal to the dot product of 

V and n. V i s the v e l o c i t y vector at any point on the moving 

surface, and n i s the normal u n i t vector pointing outward 

from the considered domain ( Figure 1 ). 

In equation (2) , f l u i d p a r t i c l e s at the wetted surface 

are forced to have a v e l o c i t y component, normal to the 

surface, equal to the normal v e l o c i t y component of the 

surface because of the impermeable boundary requirement. As 

for the tangential v e l o c i t y component of f l u i d p a r t i c l e s on 

th i s surface, there i s no r e s t r i c t i o n because of the i n v i s c i d 

f l u i d assumption. The no-slip boundary condition f o r viscous 

f l u i d s does not apply here. 

When equation (2) i s applied to the submerged surface of 

stationary objects, such as the wall of a wave tank, v i s 

i d e n t i c a l l y equal to zero. Therefore, <f> i s also equal to 

zero, which means f l u i d p a r t i c l e s on t h i s surface have a zero 
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normal v e l o c i t y component, and penetration of f l u i d p a r t i c l e s 

into the surface i s not allowed. I f the surface under 

consideration i s on the wave piston, then v i s a known 

function of time. F l u i d p a r t i c l e s on any point of t h i s 

surface are moving at a v e l o c i t y equal to that of the surface 

i n the normal d i r e c t i o n . However, i f the submerged surface i s 

on a f l o a t i n g object and the object's motion ( v ) i s the 

unknown to be solved as part of the solut i o n , the boundary 

condition, <j> , cannot be defined by following the form as 
i n 

i n equation (2). A d d i t i o n a l arrangements or assumptions have 

to be made to avoid s o l v i n g f o r V d i r e c t l y . This can be done 

by a pr e d i c t o r - c o r r e c t o r kind of procedure f o r the value of V 

i n the time domain. Since f l o a t i n g objects are not included 

i n the following studies, the formulation of t h i s kind of 

boundary condition i s , therefore, excluded from the 

discussions. 

In Figure 1, a phys i c a l wave tank problem i s i l l u s t r a t e d 

by a schematic diagram. A pi s t o n type wave maker i s located 

on the left-hand side of the tank. A displacement function, 

x , which i s p e r i o d i c i n time, i s assigned to t h i s p i s t o n f o r 
m 

wave generation. Further down the other end, the considered 

domain i s completed by a v e r t i c a l wall. In frequency domain 

problems, an a r t i f i c a l boundary that simulates a r a d i a t i o n 

condition i s necessary. However, the r a d i a t i o n boundary 

condition i s not required f o r a time stepping s o l u t i o n 
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scheme. Although a non- r e f l e c t i n g boundary condition can be 

used to reduce the computational e f f o r t , no such attempt was 

made i n t h i s study. Instead of using a no n - r e f l e c t i n g 

boundary, a standard wave tank was considered as a ph y s i c a l 

model. In order to ensure that the s o l u t i o n i s free from the 

interference of r e f l e c t e d waves, a reasonable tank siz e i s 

necessary, and the simulation time i s l i m i t e d . A discussion 

of the r a d i a t i o n boundary condition can be found i n Sarpkaya 

and Isaacson (1981) as well as i n Newman (1977). 

I l . l . i i . The Free-Surface Condition 

The free surface i s i d e n t i f i e d as the a i r - f l u i d 

i n t e r f a c e which i s free to move under any disturbance. One of 

the d i f f i c u l t i e s involved i n solving the problem i s to 

pre d i c t the p o s i t i o n of the free surface before the s o l u t i o n 

i s obtained. At the free surface, the flow has to s a t i s f y two 

conditions, namely the kinematic and the dynamic boundary 

conditions. Kinematically, f l u i d p a r t i c l e s on the free 

surface must remain there. That i s , at the free surface, 

f l u i d p a r t i c l e s are moving with a v e l o c i t y component equal to 

the normal v e l o c i t y component of the free surface i n a 

d i r e c t i o n normal to the free surface. Dynamically, the flow 

condition must obey the B e r n o u l l i Equation. These two 

conditions are defined as i n equations (3) and (6) 

res p e c t i v e l y i n Lagrangian notation. 
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Dx 
Dt 

Dy 
Dt = 4> on y=r? (3) 

Dz 
Dt 

and 

<t>r + i(<l>l + <f>l + <t> I ) + ^ + g y = 0 at y=r? (4), 

where ^ i s the material de r i v a t i v e given as : 

D T " a t + *,* a*. + +,y ay" + +,z a l ( 5 ) -

, <f> , and ^ are the f l u i d v e l o c i t y components i n the 
• x > y i z 

x , y , and z d i r e c t i o n s , ry i s the free-surface e l e v a t i o n 

measured i n the y d i r e c t i o n , P i s the pressure taken as zero 

at rj, p i s the f l u i d density, and g i s the g r a v i t a t i o n a l 

constant. 

In order to trace the motion of f l u i d p a r t i c l e s at the 

free surface, equation (4) i s rearranged as : 

T>6 1 , , 2 , 2 , 2 , 
Dt " 2 , x + , y + , z + g y = 0 at y=„ 

When t h i s above equation i s combined with equation (3), the 
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following equation can be obtained : 

2 

Equation (6) which i s a combined form of the kinematic and 

dynamic free-surface conditions, has to be s a t i s f i e d at y=r?. 

A d e t a i l e d discussion of the free-surface boundary conditions 

i s given i n Newman (1977). 

Although, the kinematic and dynamic conditions are 

combined as i n equation (6), most of the terms are not known 

before the problem i s solved. In order to proceed and 

rearrange equation (6) into a useable form, two a d d i t i o n a l 

assumptions must be made. A f i n i t e difference expression i s 

coupled into the equation to approximate the material 

d e r i v a t i v e term, and a second order extrapolation function i s 

used i n time to p r e d i c t unknown v e l o c i t y terms. They are 

discussed i n sections II.2 and III.2 r e s p e c t i v e l y . 

II.2 Time Stepping Formulation 

Upon applying the Boundary Integral Method, e i t h e r <j> , 

d> , or t h e i r combinations must be defined at the c o n t r o l 

surface as boundary conditions. Therefore, the following 

rearrangements of equation (6) are made. 
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On y=r/ , <j> i s defined by the dot product of V(j> and n. 

I f n^, n^, n^ are the components of the normal u n i t vector, 

n, located at the free- surface, then, 

4> = < f > T l + < f > T \ + ( j ) T l (7), 
,n x r , y y \ z z 

where <j> can be obtained from equation (6). Upon the 
> y 

s u b s t i t u t i o n of 4> from equation (6) into (7) , the following 
> y 

form i s obtained. 

<f> = d> n + <j> n ,n , x x , z z 
2 

1 , 1 D / J 2 . 2 , 2 . D i i , , n K 

+ I { 2 bT ( ^ ) X

 + ^ ,y + ^ , z > " ^ 1 ) n y a t ^ ( 8 >-

Two a d d i t i o n a l assumptions are made here to approximate the 

unknown values f o r computing the time stepping s o l u t i o n . 

These assumptions are considered as follows : 

i . In time stepping s o l u t i o n problems, a time increment 

value ( time step ), St, must be chosen. This time 

increment value has to be small f o r the s o l u t i o n to be 

accurate. I f St i s small enough, unknown v e l o c i t y terms 

on the right-hand-side of equation (8) can be 

extrapolated i n time ( from t h e i r previous known values) 

without introducing large errors into the so l u t i o n . In 

general, the smaller the time step, the more precise the 

extrapolated values w i l l be. The order of t h i s 

extrapolation function can be chosen a r b i t r a r i l y . In the 
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following studies, a second order extrapolation function 

i s used. The dicussion of the extrapolation procedure 

can be found i n section I I I . 2. A prime notation i s used 

to i d e n t i f y the extrapolated terms i n equation (10). 

i l . A f i n i t e difference form i s used to approximate the 

second material d e r i v a t i v e term i n equation (8). A four 

points function with constant time i n t e r v a l , fit , i s 

written as : 

where the p o t e n t i a l functions with a negative superscipt 

represent solutions from previous time steps, and <f>° i s 

the unknown value to be solved at the current time step. 

There i s no r e s t r i c t i o n on the number of terms used i n 

the expression. 

With these two assumptions, equation (8) can be 

D2<f> 2<t>° - 5(f)'1 + kfZ - <{> 
- 3 

(9), 
Dt 2 ( fit ) 2 

rewritten as 

1 J l 
-1 - 2 - 3 

(St)2 

+ 4>' n + </>' n + 
,X X , z z 2g 

at y=r? (10), 
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where <f> i s now the only unknown v a r i a b l e on the 

right-hand side of equation (10). 

The l i n e a r i z e d form of equation (6) applied at the 

undisturbed free surface and used to obtain the l i n e a r 

numerical s o l u t i o n (see Newman, 1977), i s given as : 

<t> r r + g<f> v = 0 at y=0 (11) 

where a l l the non-linear terms are dropped. Moreover, since 

the l i n e a r i t y assumption i s made, the following expressions 

can be accepted when formulating the l i n e a r free-surface 

boundary condition : 

n = 1 ( n = 0 , ii « 0 ) y x z 

Dt 2 

Therefore, equation (11) can be rearranged i n a form s i m i l a r 

to equation (10) as : 

, 1— ? + ± J £ L I J ± L L £ L a t y = 0 ( 1 2 ) . n 2 2 g (St)2 g (St)2 

F i n a l l y , i t must be emphasized that the non-linear 

free-surface boundary condition i s applied at r), while the 

l i n e a r i z e d condition i s s a t i s f i e d at y=0. Equation (10) and 
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(12), which are now arranged i n an su i t a b l e form, can be 

included i n the Boundary Integral Equation f or d i f f e r e n t 

a p p l i c a t i o n s . 
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I I I . NUMERICAL METHOD 

In t h i s chapter, the Boundary Integral Method i s b r i e f l y 

introduced. This p a r t i c u l a r numerical method i s chosen 

because i t i s considered to be an e f f e c t i v e s o l u t i o n method 

fo r modelling p o t e n t i a l flow problems with a moving boundary. 

The g r i d generation procedure involved with t h i s method i s 

not as complicated as i t i s i n the other numerical methods. 

When applying the Boundary Integral Method, the numerical 

model i s constructed by representing the c o n t r o l surface 

using small facets ( elements ). Only values at the control 

surface are stored and calculated, whereas i n other methods 

such as the F i n i t e Element Method, d i s c r e t i z a t i o n of the 

e n t i r e control volume i s necessary, and a l l the unknowns 

inside the c o n t r o l volume must be calculated. 

This surface g r i d generation requirement of the Boundary 

Integral Method o f f e r s a r e l a t i v e l y easy management of the 

r e s u l t s for the moving boundary i n comparison with other 

numerical methods e s p e c i a l l y i n three dimensional 

a p p l i c a t i o n s . With a boundary i n t e g r a l equation derived from 

Green's Theorem, a system of l i n e a r equations can be written 

with the p o t e n t i a l function and t h e i r d e rivatives at d i s c r e t e 

points on the control surface as unknowns. Upon so l v i n g t h i s 

set of equations, the p o t e n t i a l d i s t r i b u t i o n on the c o n t r o l 

surface i s obtained, and values at any point in s i d e the 
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control volume can be calculated. 

Although the Boundary Integral Method may not be the 

most e f f i c i e n t numerical method, i t i s considered to be a 

very e f f e c t i v e numerical approach for moving boundary 

problems. One of the disadvantages associated with the 

Boundary Integral Method, c r i t i c i z e d by most F i n i t e Element 

Method users, i s on i t s generated matrix. This matrix, which 

i s neither 'band' nor 'sparse', must be solved by the very 

time consuming Gaussian Elimination Method.Therefore, not 

only more computer storage w i l l be required, but the 

computational e f f i c i e n c y w i l l be poor. However, since 

problems solved i n t h i s thesis are used as an i l l u s t r a t i o n of 

the formulation's v a l i d i t y , the comparison between d i f f e r e n t 

numerical methods i s of no concern here and i s l e f t to 

someone with the i n t e r e s t and adequate knowledge i n numerical 

an a l y s i s . 

I l l . 1 Boundary Integral Method 

The Boundary Integral Method was f i r s t introduced by 

Fredholm (1903) who proved the uniqueness of a s o l u t i o n by 

using a f i n i t e number of elements on the boundary of the 

considered domain. I t was not u n t i l 1963 when Jawson and 

Ponter confirmed the use of Green's function i n the Boundary 

Integral Equation that the method became popular. With the 
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continuous developments of the computer's capacity and 

performance i n the l a s t two decades, the method has become an 

e f f e c t i v e numerical t o o l , and i s now broadly applied on a 

great v a r i e t y of engineering problems ( see Banerjee and 

B u t t e r f i e l d , 1981). 

The Boundary Integral Equation which can be derived 

through the Weighted Residual Method for so l v i n g the Laplace 

Equation has a general form given as : 

0(P) + I <f>(Q) G dS = <f>(Q) G dS (13), ,n 

where G i s the Green's function defined between two points, P 

and Q. Point P i s the point of i n t e r e s t inside the flow 

f i e l d , and Q i s a control point on S ( Figure 2 ). 

The above Green's function has a d i f f e r e n t form for two 

dimensional and three dimensional problems. I t i s given as : 

G = - \ - ln( \ ) ( 2D ) 

( 3D ) (14), 

where r i s the distance measured between P and Q. 
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• / ( x ~ - x . ) 2 + ( y « - y . ) 2 ( 2 D ) 
Q P Q P 

/ 2 2 2 
( x - x ) + ( y - y ) + ( z - z ) (3D) 

Q P Q P Q P 

The term G ̂  can be cal c u l a t e d by taking the dot product of 

VG and n , where n i s the normal u n i t vector defined 

according to the l o c a t i o n of Q. 

In some conditions, when the problem involves a f l a t 

impermeable surface ( such as the bottom of the wave tank ), 

the Green's function can have an a d d i t i o n a l image term to 

represent the image of the source point. This permits a 

reduction on the number of elements or unknowns involved i n 

the problem ( Figure 2 ). The Green's function then has the 

following form : 

G = { ln( i ) + l n ( p ) } (2D) 
(3D) (15), 47rr 47rr' 

where r remains the same as i n equation (14), and 

r ' = /( X - X ) 2 + ( y + y + 2d )2 (2D) 
/ Q p o p 

2 2 2 ( x - x ) + ( y + y + 2d ) + ( z - z ) (3D) 
Q P Q P Q P 

d i s the mean water depth measured from the undisturbed 

free-surface ( y=0 ). 
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A physical i n t e r p r e t a t i o n of equation (13) i s that, i f 

the v e l o c i t y p o t e n t i a l and i t s normal d e r i v a t i v e ( i e . normal 

v e l o c i t y component ) are known on the control boundary, S, 

the p o t e n t i a l value at any point, P, inside the control 

domain can be evaluated. Therefore, i f S i s represented by N 

elements, where on each of these elements, e i t h e r the 

p o t e n t i a l value or i t s normal d e r i v a t i v e i s known, a single 

equation of N unknowns can be written with point P on one of 

the elements. Since there are N elements, N equations of N 

unknowns can be written, and the unknown p o t e n t i a l values on 

each element can then be solved. 

I t must be emphasized that i n such a case, P i s a point 

on S, a s p e c i a l consideration should be made i n the 

c a l c u l a t i o n of the i n t e g r a l when P i s at Q. A d e t a i l e d 

discussion on the d e r i v a t i o n of equation (13) and i t s 

applications can be found i n Brebbia (1978). 

There i s also a choice on the order of the boundary 

element being used. When zeroth order elements are adopted, 

the p o t e n t i a l value as well as i t s normal d e r i v a t i v e are 

assumed as constant along each element. Solutions are 

c a l c u l a t e d at elements' mid points. For f i r s t order elements, 

p o t e n t i a l values are assumed to vary l i n e a r l y within each 

element. Results are computed at the node points between 

adjacent elements. In general, i t i s true that the higher the 
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order of the elements, the better the r e s o l u t i o n and accuracy 

of the r e s u l t s w i l l be, and more complicated numerical 

i n t e g r a t i o n procedures w i l l be involved. Therefore, zeroth 

order elements are used here to s i m p l i f y the programming 

procedure of the studied problems. The c a l c u l a t i o n s of matrix 

entries based on zeroth order elements by equation (13) i s 

b r i e f l y discussed i n Appendix I. A d e t a i l e d discussion on the 

choice of element orders as well as the involved numerical 

integrations can be found i n Banerjee and B u t t e r f i e l d (1981) . 

In the following chapters, most of the two dimensional 

applications are based on a Gaussian 5 t h order numerical 

i n t e g r a t i o n procedure. Whereas the three dimensional problem 

i s solved by considering the Green's function at the 

geometric node point of the q u a d r i l a t e r a l elements rather 

than a complicated numerical i n t e g r a t i o n procedure. 

I l l . 2 E x t r a p o l a t i o n i n Time 

As mentioned i n section II.2, extrapolation of v e l o c i t y 

terms i n equation (10) i s required to e s t a b l i s h the time 

stepping s o l u t i o n scheme. These v e l o c i t y terms are 

approximated by a second order function of time. I t must be 

emphasized that t h i s order i s a r b i t r a r i l y chosen, and 

solutions should not be affected by using higher order 

functions provided the time increment value i s reasonably 

small. The extrapolation function being used here i s 
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9 = a t 2 + bt + c (17) 

where ? i s the function of i n t e r e s t , t i s the time v a r i a b l e , 

and a, b, and c are unknowns d i f f e r e n t at each element. 

I f the value of 5 i s known at time t-5t, t-25t, and 

t-35t, a, b, and c can be obtained from the s o l u t i o n of a 3x3 

matrix. 9 can then be approximated at time t, and — i s given 

as 2at+b. Equation (17) i s used i n the following chapters to 

approximate the v e l o c i t y of f l u i d p a r t i c l e s on free-surface 

elements before the s o l u t i o n i s achieved at each time step. 

These extrapolated values are found to be good approximations 

to the computed solutions except at the zero s t a r t up stage. 

However, once the s o l u t i o n proceeds f o r some time steps, the 

extrapolated values follow the trend of the solutions and 

pr e d i c t the numerical r e s u l t s quite accurately. Extrapolation 

using a higer order function than equation (17) has never 

been used, and whether i t can r e s u l t i n a better s o l u t i o n 

cannot be t o l d . 
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IV. APPLICATIONS 

In t h i s chapter, the non-linear free-surface 

formulations and the s o l u t i o n procedure defined i n previous 

chapters are tested by modelling four d i f f e r e n t problems. 

They are : i ) Wave Tank Modelling 

i i ) Deformation of High Amplitude Wave 

i i i ) P r e d i c t i o n of Ship's Bow Wave 

iv) Wave D i f f r a c t i o n by C i r c u l a r Cylinder 

Comparisons are made to a v a i l a b l e experimental and a n a l y t i c a l 

r e s u l t s i n each case to evaluate the s o l u t i o n procedure. The 

developed s o l u t i o n procedure i s f i r s t applied to simulate a 

two dimensional wave tank of f i n i t e water depth. A p i s t o n 

type wave paddle i s assigned a sinusoidal motion for wave 

generation. The numerical r e s u l t i s compared to l i n e a r wave 

theory to c a l i b r a t e the procedure. Then, the deformation of 

high amplitude waves i s studied by a two dimensional, 

s p a t i a l l y p e r i o d i c wave model. D i f f e r e n t breaking waves are 

obtained as solutions to confirm the introduced free-surface 

formulations as well as the assumptions. Although the same 

study was reported by Longuet-Higgins i n 1976, modelling of 

such high amplitude waves i s believed to be a good te s t to 

e s t a b l i s h the effectiveness of the free-surface formulations. 

A f t e r the s o l u t i o n scheme i s confirmed, i t i s applied to 

p r e d i c t a ship's bow wave. A wedge-shaped model of constant 
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d r a f t i s used f o r studies. Numerical r e s u l t s are obtained at 

d i f f e r e n t draft-Froude numbers, and are proved to be within 

the acceptable l i m i t s when compared to experimental 

measurements. F i n a l l y , the three dimensional a p p l i c a b i l i t y of 

the s o l u t i o n procedure i s i l l u s t r a t e d by a wave d i f f r a c t i o n 

model. A surface p i e r c i n g c i r c u l a r c y l i n d e r i s considered i n 

a wave tank. Forces experienced by the cy l i n d e r are obtained 

at d i f f e r e n t wave frequencies. Comparisons are made to some 

published experimental r e s u l t s . 

Each of these problems i s reported i n d i v i d u a l l y i n a 

separate section. Solutions obtained i n each case are 

numerically stable. Smoothing of the r e s u l t i s never applied 

and i s considered as unnecessary. 

IV.1 Wave Tank Simulation 

The wave tank ( or towing tank ) i s probably the most 

common f a c i l i t y f o r ocean engineers and naval a r c h i t e c t s to 

test the performance of t h e i r designs. Although the main 

purpose of the tank i s to tow ship models i n calm water and 

measure the resistance, i t also has f a c i l i t i e s to generate 

waves to simulate a regular sea state or a random sea state 

during the experiment. This wave making process i s u s u a l l y 

operated by a wave maker located at one end of the tank. 

E l e c t r o n i c signals are usually input to the wave maker to 
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govern i t s motion at a desired frequency and amplitude. Waves 

are then generated and t r a v e l down the tank. 

IV.1.1 Formulation 

In t h i s section, the motion of the wave maker i s 

governed by the following equation : 

x = X ( 1 - e" C t ) sin wt (18), 
m m 

where X i s the piston's motion amplitude, and u> i s the 
m 

- C t 

angular frequency. The term ( 1 - e ) i s a ramp function 

and i s used to ensure that the wave maker s t a r t s i t s motion 

smoothly at time ( t ) equal to zero, c i s chosen as 2.303 to 

recover 99% of the piston's motion within 2.00 seconds. 

The v e l o c i t y of the wave pi s t o n i s , therefore, simply 

given by taking the deri v a t i v e of equation (18) as : 

-ct -ct v = X { ( 1 - e ) w cos u>t + c e s i n wt } (19) . 
X ro 

At time t=0, the wave maker s t a r t s at zero v e l o c i t y . 

In Figure 3, the considered problem i s i l l u s t r a t e d by a 

diagram. The wetted surface of the wave pi s t o n i s designated 

by a symbol . The free-surface i s denoted by , and the 
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v e r t i c a l wall on the r i g h t as S q . Since a mirror image 

assumption i s used as i l l u s t r a t e d , the tank bottom i s not 

included i n the numerical model. 

With the control surface, S, given as : 

S = S + S^ + S m f o 

equation (13) can be rewritten as 

4>(?)+j<f>G^dS + 

S 
o 

I* 
G dS + ' 4> G dS 

I* ,n ' 4> ,n 
S f m 

I* G dS + [• G dS I* n [• n 
s f m 

G dS + 
S 

o 

where the Green's function, G, i s given i n equation (15). 

Then, by su b s t i t u t i n g the corresponding boundary conditions 

into the above equation, the following form i s obtained : 

2 n 
<4(P) + I 4> G d S + [ < £ ( G + — G ) dS + j <f> G dS 

J r ,n J ,n . 2 J Y ,n 
S S^ g ( 5 t ) S o f m 

F G dS + 
2 

f v n G dS (20), J x x 
S_ S f m 

where 
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n 5<f> 1 - k4> 2 + 4> 3 

F ^ 
2 g ( S t ) 2 

n 
+ 0 ' n + -5Z- -£-( </> 2 + <f> 2 ) >x x 2g Dt v r,x r , y (21) 

F i s obtained by dropping the z d e r i v a t i v e terms from 
2 2 n 

equation (10) , and moving [ - — G <f> ] from the 
g ( 6 t ) 2 

right-hand-side to the left-hand-side of equation (20) . <j> 
,n 

on the wave maker, S , i s given by v n 
m " J x x 

For l i n e a r applications, equation (12) i s used instead of 

equation (10) i n equation (13). The corresponding i n t e g r a l 

equation becomes : 

4>(.v) + dS + \ <f> ( G + 
> n g ( f i t ) 2 

G ) dS + 

f ^ G d S + f v n G dS J J x x 
m 

dt G dS .n 

m 

(22), 

where 

54> -1 / .-2 ,-3 

(sty 
(23) 

An e s s e n t i a l difference between equation (20) and 

equation (22) i s on the d e f i n i t i o n of the c o n t r o l surface. In 

equation (20) , S and S,, are considered to be the 
m t 

instantaneous locations of the wave maker and the free 
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surface. However, i n equation (22), and only designate 

the mean p o s i t i o n of the wave pi s t o n and the undisturbed 

free-surface. Boundary conditions are not s a t i s f i e d at the 

exact boundary p o s i t i o n . The control surface i s considered 

moving i n time for the non-linear cases but remains 

stationary i n the l i n e a r numerical model. 

When these two equations are applied for wave tank 

simulations, the ph y s i c a l problem i s represented by a 

numerical model of N elements as i n Figure 3 . Then, 

depending on whether the non-linear or the l i n e a r 

free-surface boundary condition i s used, a set of equations 

obtained by these two equations i s considered with point P on 

each element. The procedure i s very s i m i l a r to the discussion 

i n Appendix I. Upon sol v i n g the r e s u l t i n g set of equations, 

the p o t e n t i a l value on each i n d i v i d u a l element i s obtained, 

and the v e l o c i t y components can be cal c u l a t e d . In non-linear 

problems, the free-surface i s redefined by considering the 

motion of f l u i d p a r t i c l e s with the resolved v e l o c i t y 

components. As for l i n e a r problems, the free-surface 

el e v a t i o n i s computed by the l i n e a r i z e d B e r n o u l l i Equation 

which has the following form : 

<f> + gr, = 0 at y=0 

A s i m i l a r procedure i s used to proceed the s o l u t i o n at the 
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s p e c i f i e d time increment except that the corresponding 

i n t e g r a l equation using a l i n e a r free-surface condition has 

fewer terms. 

IV.1.2 Interpolation 

In t h i s example, the considered problem i s i n two 

dimensions, and the control boundary i s defined by l i n e 

segments as shown i n Figure 3. Although the element siz e can 

be chosen very small to increase the r e s o l u t i o n of the 

p o t e n t i a l value along the control surface, p o t e n t i a l values 

can only be obtained at d i s c r e t e points along the boundary. 

In order to define the free-surface p o s i t i o n at the next time 

step, i n t e r p o l a t i o n s and extrapolations of the p o t e n t i a l 

values between elements are usually required i n the 

c a l c u l a t i o n s . 

In chapter I I I , i t was mentioned that zeroth order 

elements are applied here to model the problems for 

s i m p l i c i t y . Therefore, an i n t e r p o l a t i o n function i s used to 

determine the v e l o c i t y of f l u i d p a r t i c l e s at the free 

surface. I t must be emphasized that when the free surface i s 

considered moving i n time, i t s motion i s simulated by a 

time-step displacement of the free-surface elements. This 

time-step displacement of a surface element i s the resultant 

motion by considering the motions of i t s two ends and not i t s 
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mid point movement. That i s , the element's length i s not a 

constant but changes through each time increment. 

Before v e l o c i t y values are inte r p o l a t e d between 

elements, the normal and tangential v e l o c i t y components at 

the mid point of each element are determined. The normal 

v e l o c i t y component at the free-surface element's mid point i s 

cal c u l a t e d by equation (10) without the z associated terms. 

As f o r the tangential component, i t i s evaluated by the 

change of <f> value along the free surface. Since these two 

v e l o c i t y components are obtained i n d i r e c t i o n s normal and 

tangential to the free- surface, i t s x-y components can be 

resolved by a vector transformation procedure. 

A f t e r the v e l o c i t y components on each element are known, 

t h e i r values between adjacent elements are inte r p o l a t e d by 

the following function : 

v = ax + by + c 
x 

(24), 
v = dx + ey + f 
y 

where and v^ are v e l o c i t y components between elements, x 

and y are the coordinates of elements, and a, b, c,...etc are 

unknown constants ( d i f f e r e n t from those i n equation (17) ). 

With equation (24), values on three successive elements 

are required f o r the inte r p o l a t i o n s ( see Appendix II for 
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d e t a i l s ). The unknown constants, a , b, c,...etc, are found 

i n each case so as to e s t a b l i s h the i n t e r p o l a t i o n functions, 

and the v e l o c i t y components between two elements can then be 

evaluated ( Figure 4 ). 

At the fluid-body i n t e r s e c t i o n point, the same c r i t e r i o n 

i s applied. Three elements are chosen with two of them at the 

free-surface and one located on the wave piston. In t h i s 

case, ( Figure 4 ) the i n t e r s e c t i o n point has a value 

equal to the v e l o c i t y of the piston, and v^ i s the only 

quantity to be determined. When v^ of the i n t e r s e c t i o n point 

i s known, i t s l o c a t i o n at the next time step can be 

predicted. 

Although i t i s very c r u c i a l to evaluate t h i s 

i n t e r s e c t i o n point for a proper representation of the free 

surface near the moving body, i t i s observed from the 

numerical studies that the approximation of the i n t e r s e c t i o n 

point by equation (24) i s quite r e a l i s t i c . A numerical 

problem r e l a t e d to t h i s s i n g u l a r i t y as reported i n L i n (1984) 

was never encountered. I t i s also believed that improvements 

can be achieved by a higher order function than equation 

(24). However, the e f f e c t of using a higher order function as 

well as the l i m i t a t i o n s of such an i n t e r p o l a t i o n scheme are 

not studied here. As long as the element s i z e i s small 

enough, predictions of the fluid-body i n t e r s e c t i o n point by 
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equation (24) seem to be a good approximation f o r the use of 

the zeroth order element. 

I V . 1 . 3 Results and Discussions 

F i r s t order solutions are ca l c u l a t e d by using the 

l i n e a r i z e d free-surface condition : 

where 

> + gf? - 0 at y=0 (25) 

, t Dt 2 fit 

The c a l c u l a t i o n of <j> i s expressed i n a f i n i t e d i f f e r e n c e 

form since d> i s ca l c u l a t e d at a constant time increment, fit. 

Solutions obtained by equation (22) are l a b e l l e d as l i n e a r 

solutions while computations through equation (20) are 

defined as non-linear solutions. In t h i s example, comparisons 

are mainly between numerical solutions and the f i r s t order 

a n a l y t i c a l theory. 

The f i r s t set of r e s u l t s which are presented i n Figure 5 

i s on wave generations by a numerical wave tank. Linear 

free-surface conditions are used, and motion of the wave 

maker i s at 0.50 Hz. A motion amplitude of 0.3 m i s 



considered. The tank i s chosen a r b i t r a r i l y to be 40.00 m i n 

length, and 4.00 m i n depth. Time domain solutions are 

obtained at a 5t increment of 0.05 second. Results are 

i l l u s t r a t e d i n Figure 5. Quantities l i k e wave amplitude, 

phase v e l o c i t y , and wave length can then be obtained d i r e c t l y 

or i n d i r e c t l y from the p l o t s . 

Computations are repeated at d i f f e r e n t frequencies and 

the corresponding wave lengths are measured. In Figure 6, the 

ca l c u l a t e d wave lengths are p l o t t e d against the dispersion 

r e l a t i o n s h i p at d i f f e r e n t frequencies. Agreements between the 

l i n e a r numerical solutions and the dispersion r e l a t i o n s h i p 

are very good over a wide range of frequency. This d i s p e r s i o n 

r e l a t i o n s h i p obtained from l i n e a r theory i s defined by the 

following expressions : 

2 
k tanh kd 

% g 
c 2 = tanh kd (26) , 

2 
k k 

where 

k = (27) 

w i s the angular frequency, k being the wave number, d i s the 

water depth, and A i s the wave length. When w and d are 

chosen, the value of k can be solved by i t e r a t i o n of equation 

(26), and the wave length, A, can be obtained through 
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equation (27). 

Comparisons of the phase v e l o c i t y , c, are also made with 

equation (26). In Figure 7, the computed value i s denoted by 

symbols at d i f f e r e n t frequencies. Similar to the case i n 

Figure 6, the numerical predictions ( which are l i n e a r ) 

agree well with equation (26) . 

In addition to the wavelength and phase v e l o c i t y 

computations, wave amplitudes are also c a l c u l a t e d and 

compared to the wave maker theory by Dean and Dalrymple 

(1984). A deep water s i t u a t i o n ( kd = 4.0 ) i s considered i n 

Figure 8, and r e s u l t s are expressed i n wave amplitude to 

piston's motion amplitude r a t i o s ( Aw/Am ). Small 

discrepancies ( les s than 5% ) are found between the 

numerical solutions and the theory, which i s probably 

explained by a numerical truncation error. ( S i t u a t i o n i s 

considered as deep water when kd > n ) . 

With the above comparisons, r e s u l t s obtained by the 

introduced s o l u t i o n scheme with a l i n e a r free-surface 

condition are considered to be s a t i s f a c t o r y . However, i t was 

observed that numerical r e s u l t s are p a r t i a l l y a f f e c t e d by the 

number of elements per wave length. In Figure 9, a si n u s o i d a l 

curve i s represented by d i f f e r e n t numbers of l i n e segments. 

In order to maintain a smooth p r o f i l e , i t i s found that at 
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l e a s t 24 elements per wave length should be used. This 

observation, unfortunately, can only give some ind i c a t i o n s to 

the r e l a t i o n s h i p between the r e s o l u t i o n of a curve and the 

number of elements per wave length. When the simulated wave 

amplitude to length r a t i o becomes very high, more elements 

should be used. Although i t i s true that the smaller the 

element s i z e , the better the free-surface d e f i n i t i o n w i l l be, 

there i s always a l i m i t a t i o n on how small an element can be 

used. I f the size of elements i s too small, not only does the 

computation become very i n e f f i c i e n t , but numerical problems 

can possibly a r i s e i n the solutions when adjacent elements 

are too close to one another. This can be r e a l i z e d i f the 

v e l o c i t y i s changing r a p i d l y between adjacent free-surface 

elements. Any improper choice of the time step ( too large ) 

can r e s u l t i n elements crossing each other and causing the 

numerical model to f a i l . 

Solutions of wave generation with l i n e a r and non-linear 

free-surface condition are found i n Figure 10. The tank's 

dimensions used i n t h i s case are 80.00 m i n length, and 4.00 

m i n depth. A wave p i s t o n with motion amplitude of 0.15 m i s 

moving at 0.25 Hz. Solutions are computed at a 0.05 second 

increment f o r 20.00 seconds. Free-surface elevations are 

calc u l a t e d f o r both solutions, and presented i n graphical 

form. 
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The non-linear s o l u t i o n which i s p l o t t e d on the r i g h t 

h a l f of Figure 10 i s very s i m i l a r to the l i n e a r s o l u t i o n . 

Non-linearity e f f e c t i s i n s i g n i f i c a n t i n the s o l u t i o n since 

the simulated wave amplitude i s small. However the c a l c u l a t e d 

wave p r o f i l e s i n the l i n e a r s o l u t i o n are not very smooth 

a f t e r computations have been c a r r i e d on for some period of 

time. The same problem i s not observed i n the non-linear 

s o l u t i o n . A possible explanation f o r t h e i r behaving 

d i f f e r e n t l y i s believed to be i n the l i n e a r i z a t i o n assumption 

that the l i n e a r boundary condition i s s a t i s f i e d at the 

undisturbed free surface. This error that i s t o l e r a t e d i n the 

l i n e a r model accumulates as the s o l u t i o n proceeds i n time. As 

for the non-linear s o l u t i o n , though some unce r t a i n t i e s e x i s t 

i n the free-surface predictions, r e s u l t s are generally smooth 

and remain numerically stable i n time. Since i t i s known that 

the difference between l i n e a r and non-linear s o l u t i o n i s 

s i g n i f i c a n t when wave amplitude i s high, and that the 

non-linear wave w i l l break when the wave slope i s steep, the 

comparison can only be c a r r i e d out i n a very narrow range of 

wave height to length r a t i o . However, the main purpose of 

Figure 10 i s to show the reader that the non-linear s o l u t i o n 

i s c a l i b r a t e d and better than the l i n e a r s o l u t i o n . A vigorous 

comparison of the two solutions i s beyond the scope of t h i s 

study 

There e x i s t s a r e l a t i o n s h i p between the wave's breaking 
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mode and the i n i t i a l wave height to wave length r a t i o . When 

the wave amplitude i s very high, i t i s observed i n nature 

that the wave w i l l deform and eventually f a i l at d i f f e r e n t 

breaking modes. This i s the next topic to be discussed i n the 

following section. 

F i n a l l y , the d r i f t motion of f l u i d p a r t i c l e s at the free 

surface i s studied. Figure 11 i s the p l o t of the non-linear 

free surface at time t equal to 5.00 and 6.00 seconds. The 

simulated wave tank's dimensions are 10.00 m i n length and 

6.00 m i n depth. The motion amplitude of the wave maker i s at 

0.10 m, and waves are generated at a frequency of 0.5 Hz. 50 

elements are used at the free surface, and the time step i s 

chosen as 0.05 second. Solutions e x h i b i t a wave length of 

approximately 6.00 m, and a wave height at about 0.36 m. The 

equivalent wave height to length r a t i o (H/A) i s 0.06, which 

i s s t i l l within the 1/7 limit ( t h e o r e t i c a l l i m i t before 

breaking ). A sharper crest and shallower trough are observed 

i n the so l u t i o n . 

F l u i d p a r t i c l e s at the free surface are also traced i n 

time, and t h e i r l o c i are recorded i n Figure 12. P a r t i c l e s at 

three locations inside the tank are chosen at 0.20 m, 2.00 m, 

and 6.00 m from the wave maker. I t can be observed i n Figure 

12 that these p a r t i c l e s a l l experience a non-linear d r i f t 

motion. At 0.2 m from the wave maker, f l u i d p a r t i c l e s , though 
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mainly following the piston's motion, are slowly d r i f t i n g to 

the r i g h t . Whereas at 2.00 m from the piston, f l u i d p a r t i c l e s 

are d r i f t i n g down the tank at a mean d r i f t v e l o c i t y of 0.1 

m/s. According to the p r e d i c t i o n by Newman (1977), a f l u i d 

p a r t i c l e ' s second order motion i s given as : 

dx , , 
- 3 — = oA e ^ cos ( kx-wt ) + cokA e 2 ^ + 0( A 3) dt 

where A i s the wave amplitude, k i s the wave number, and co i s 

the frequency. X q i s given i n the Lagrangian notation, and y 

i s taken at the undisturbed free- surface. In t h i s equation, 

the only term that i s responsible f o r the non-linear d r i f t 
2 2ky 

motion i s the second order term ( wkA e J ) . This second 

order mean d r i f t v e l o c i t y i s c a l c u l a t e d as 0.1066 m/s, which 

indicates that the numerical p r e d i c t i o n has an differ e n c e of 

about 7% . 

At 6.00 m down the tank, f l u i d p a r t i c l e s do not 

experience any d r i f t motion u n t i l a well developed wave cr e s t 

a r r i v e s . The motion due to the f i r s t wave cycle d r i f t s the 

p a r t i c l e s at a greater distance than t h e i r migration i n l a t e r 

wave cycles. Since these p a r t i c l e s are close to the tank 

wall, t h e i r motions i n l a t e r cycles are believed to be 

affec t e d by the r e f l e c t e d waves. 

With the above observations i n the numerical solutions, 
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i t i s believed that the natural d r i f t phenomenon i s obtained 

by the proposed free-surface formulations. However, although 

the numerical solutions are stable within the considered 

simulation time, f a i l u r e of the numerical model i s expected 

for a longer simulation time. This f a i l u r e i s r e l a t e d to the 

improper s i z i n g of free-surface elements near the wave maker, 

and to the use of the i n t e r p o l a t i o n function ( equation (24)) 

at the fluid-body i n t e r s e c t i o n point. Moreover, as the s i z e 

of the elements near the wave maker i s growing i n time ( a 

consequence of elements d r i f t i n g downstream ), r e s o l u t i o n of 

the computed wave p r o f i l e near the p i s t o n w i l l become so poor 

that the s o l u t i o n down stream w i l l be a f f e c t e d and become 

imprecise. Improvement to the s o l u t i o n i s possible by 

breaking an element which becomes too long into two elements 

during the computation. However, t h i s involves not only a 

reconstruction of the matrix, but the i n i t i a l condition and 

the p o s i t i o n h i s t o r y of the newly created elements must be 

defined. This i s considered very d i f f i c u l t and i s not being 

c a r r i e d out i n t h i s study. 

IV.2 Deformation of High Amplitude Waves 

The s o l u t i o n procedure outlined above i s applied to the 

same problem investigated by Longuet-Higgins and Cokelet i n 

1976. This study on the deformation of high amplitude waves 

i s considered a straight-forward way to t e s t how well the 
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introduced free-surface formulations can model a highly 

non-linear s i t u a t i o n . A two dimensional, s p a t i a l l y p e r i o d i c 

wave model i s used to simulate a high amplitude wave u n t i l i t 

becomes unstable. I n i t i a l conditions are obtained from l i n e a r 

wave theory to s t a r t the computation with a well developed 

wave p r o f i l e . Although t h i s numerical model by 

Longuet-Higgins seems a r t i f i c i a l , i t i s s t i l l considered as 

an e f f e c t i v e way to study breaking wave phenomenon. 

In r e a l l i f e , wave breaking i s expected to occur when 

the v e l o c i t y of f l u i d p a r t i c l e s exceeds the phase v e l o c i t y at 

the free surface. In other cases, i t can also happen when the 

p a r t i c l e s ' a c c e l e r a t i o n i s larger than the g r a v i t a t i o n a l 

a c c e l e r a t i o n . I t can be observed l a t e r i n Chapter IV.2.2 that 

p a r t i c l e s at the wave crest are moving at a r e l a t i v e l y higher 

v e l o c i t y than those at the trough. As a r e s u l t , the cr e s t 

t r a v e l s f a s t e r and eventually forms a j e t . This wave form 

cannot be described with l i n e a r theories as the function that 

defined the wave p r o f i l e i s multi-valued. The numerical 

computation stops when p a r t i c l e paths d e f i n i n g the free 

surface i n t e r s e c t each other. This condition i s taken to 

represent numerical wave breaking. 

IV.2.1 Formulation 

In Figure 13, numerical models f or l i n e a r and non-linear 
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applications are i l l u s t r a t e d . These numerical models are at 

exactly one wave length so as to take advantage of the 

s p a t i a l l y p e r i o d i c assumption. F i n i t e water depth i s 

considered, and a mirror image i s assumed about the bottom 

surface i n order to reduce the number of unknowns involved i n 

the problem. The modified Green's function ( equation (15) ) 

i s used i n the Boundary Integral Equation. 

The control surface i s divided into S,. , S , and S' . 
f r r 

S_ represents the free- surface, while S and S' denote two f r r r 

a r t i f i c i a l , v e r t i c a l boundaries f o r the completion of the 

cont r o l domain. According to the s p a t i a l l y p e r i o d i c 

assumption, and Ŝ , are one wave length apart, and the 

p o t e n t i a l d i s t r i b u t i o n as well as v e l o c i t y values should also 

be i d e n t i c a l at corresponding points ( Figure 13 ) . 

Therefore, i f N elements are used on the t o t a l boundary and 

element i i s on , the following conditions should be true: 

1 H + l - l 

v x ' i = V x L + i - i (28), 

where the subscripts are element numbers. These a d d i t i o n a l 

conditions provide an extra set of equations to solve the 

problem. 

With 
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s = s + r S f + 
S' r 

the corresponding i n t e g r a l equation can be written as : 

(f>l?) + \ 4> G dS + ^ ( G + 2 - G ) dS 
J ,n J ,n G ( 5 T ) 2 S + S' r r f 

G dS + 
2 

( v x n x ) G dS (29), 
S_ S + S' f r r 

where F i s as given i n equation (21). However, since v on 
2 X 

and i s s t i l l not known, i t s associated i n t e g r a l terms 

could be moved to the left-hand-side of the equation to give 

the following form : 

2n 
4>{V) + \ 4> G d S + 4> ( G + 2L G ) dS + I v n G dS 

J ,n J Y ,n , . , 2 J x x S + S* Sc

 &K° } S + S' r r f r r 

= | F 2 G dS (30) . 

S f 2 

Now, with the v associated terms as extra unknowns, i t x 

i s evident that there are more than N unknowns to be solved 

though only N equations can be written by equation (30) . 

Fortunately, equation (28) provides an a d d i t i o n a l set of 

conditions to complete the. matrix with the r i g h t number of 

equations. Thus, the v e l o c i t y on both and are solved 

simultaneously with the p o t e n t i a l values. A complete form of 

the established matrix can be found i n C a l i s a l and Chan 
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(1987) . 

For l i n e a r r e s u l t s , the l i n e a r i z e d free-surface 

conditions are applied, and equation (30) i s rewritten as : 

<(><.?) + [ <f> G dS + \ <f> ( G + —-— G ) dS + f v n G dS 
J ,n J ,n ( c r \ 2 J x x 

S + S' S., g^t.; S + S' 
r r f r r 

= J K G dS (31) , 

S f 

where K i s as given i n equation (23). This equation, because 

of l i n e a r i z a t i o n , has a d i f f e r e n t d e f i n i t i o n f o r the con t r o l 

surface. Boundary conditions are applied at the undisturbed 

free surface, while S^and are considered as not moving i n 

time. 

In the non-linear model, , , and are moving 

f r e e l y i n time. Since the two v e r t i c a l boundaries are at the 

same v e l o c i t y , the single wave length r e s t r i c t i o n can always 

be maintained. 

In t h i s problem, since there e x i s t s no external d r i v i n g 

mechanism ( such as the wave maker ) to govern the change of 

the free surface i n time, function and K i n equation (30) 

and (31) are considered as the only d r i v i n g functions f o r the 

solutions to proceed i n time. In fa c t , during the moment of 

s t a r t up, these two functions only contain information of a 
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well developed free-surface wave, and wave theory of any 

order can be used to ca l c u l a t e F and K at time t=0 . For 
2 

s i m p l i c i t y , the l i n e a r wave theory i s chosen here. 

The a n a l y t i c p o t e n t i a l function from l i n e a r theory i s 

given i n Newman (1977) as : 

Ag cosh k(y+d) 
s i n ( fcx-wt ) (32) , 

co cosh kd 

where A i s the wave amplitude, w i s the angular wave 

frequency, d i s the mean water depth, and k i s the wave 

number defined as i n equation (27). 

At time t = 0, wave elevation rj i s ca l c u l a t e d by 

equation (25) as : 

= A cos kx at y=0, t=0 (33). 

The free-surface boundary f or non-linear simulation i s then 

defined by t h i s expression. As for the functions and K, 

they can be evaluated by s u b s t i t u t i n g equation (32) into 

equations (21) and (23). 

IV.2.2 Results and Discussions 

The numerical s o l u t i o n with a l i n e a r free-surface 
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boundary condition i s obtained and i l l u s t r a t e d i n Figure 14. 

The considered wave length i s 10.00 m with a depth at 4.00 m. 

I n i t i a l wave amplitude i s assigned as 0.50 m, and 50 elements 

are used at the free surface. The corresponding wave height 

over length r a t i o ( H/A ) i s 0.10, and the height to depth 

r a t i o ( H/d ) i s 0.25 . The s o l u t i o n i s allowed to proceed 

for 20.00 seconds at a time increment of 0.05 second. Wave 

p r o f i l e s c a l c u l a t e d by equation (25) are i l l u s t r a t e d at 

19.00, 19.50, and 20.00 second. Results are observed to be 

smooth and propagate at constant speed. At 20.00 seconds, the 

wave amplitude has l o s t 2% of i t s o r i g i n a l magnitude, which 

i s believed to be a consequence of numerical truncation 

errors. These numerical r e s u l t s obtained with a l i n e a r 

free-surface condition are, therefore, considered as 

numerically stable and compatible to l i n e a r theory within 2% 

error. 

As f o r non-linear solutions, the change of wave shape i s 

so dramatic that i t eventually f a i l s at d i f f e r e n t breaking 

modes. In the following r e s u l t s ( Figures 15, 16, 17 ), wave 

length i s chosen at 10.00 m, and 1.00 m of water depth i s 

considered. 50 elements are used to represent the free 

surface, and solutions proceed at 0.01 second increments 

u n t i l breaking waves are obtained. 

In Figure 15, the H/A r a t i o i s selected at 0.10 . The 
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corresponding H/d r a t i o i s 1.00 . Wave p r o f i l e s are 

calc u l a t e d u n t i l a s p i l l i n g breaker i s obtained which stops 

the computation at 1.25 second. The breaking time to wave 

period r a t i o ( T /T ) i s therefore c a l c u l a t e d as 0.3686 . The 
b 

numerical model i s found unstable at the wave cr e s t where the 

f l u i d flow condition changed r a p i d l y . Elements i n t h i s region 

become so close to each other that eventually, they cross 

each other and f a i l to represent the free-surface anymore. 

At higher H/A r a t i o , the wave possesses more energy per 

wave length, and formation of a plunging breaker at a much 

shorter time i s expected. This i s i l l u s t r a t e d i n Figures 16 

and 17 . In these two cases, the i n i t i a l H/A r a t i o s are at 

0.125 and 0.150 , and the respective H/d r a t i o s are 1.25 and 

1.50. Plunging breakers are formed at 0.87 and 0.75 second, 

equivalent to T /T r a t i o s of 0.2565 and 0.2212 re s p e c t i v e l y . 

Although a c a r e f u l study of the r e s u l t s i n Figures 15, 

16, and 17 shows that the wave crests are not as smooth as 

those reported by Longuet-Higgins and Cokelet (1976) , they 

behave very s i m i l a r l y , and f a i l at s i m i l a r breaking modes. 

This imperfection i s not sur p r i s i n g , since smoothing i s never 

applied to the cr e s t region where the flow condition i s 

changing so ra p i d l y . 

With the provided r e s u l t s , there i s enough evidence to 
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believe that the introduced free-surface formulations are 

adequate for modelling the free-surface behavior, and the 

s o l u t i o n procedure provides an a l t e r n a t i v e to the method by 

Longuet-Higgins (1976). 

IV.3 Predictions of Ship's Bow Wave 

In t h i s section, a more p r a c t i c a l problem w i l l be used 

to demonstrate the s o l u t i o n procedure, as well as to t e s t the 

body free-surface i n t e r p o l a t i o n function. The p r e d i c t i o n of 

ship's bow waves has been considered as one of the important 

topics f o r Naval A r c h i t e c t s . The understanding of such a 

phenomenon i s considered important because i t greatly a f f e c t s 

a ship's performance. A major portion of the ship's wave 

resistance i s believed to be contributed by the flow 

conditions near the bow. This problem, which i s a high Froude 

number problem ( as indicated by O g i l v i e (1972) ), i s 

formulated within a slender ship assumption. Such an 

assumption not only means a small parameter, e, i s found 

ch a r a c t e r i z i n g the beam/length or draft/length r a t i o , i t also 

implies that the s i z e and shape of the c r o s s - s e c t i o n a l h u l l 

form changes gradually i n the l o n g i t u d i n a l d i r e c t i o n . 

In t h i s section, a wedge-shaped model i s used to 

simulate the ship's bow. A wide range of the draft-Froude 

number i s considered i n the c a l c u l a t i o n s . Solutions are 
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obtained with l i n e a r and non-linear free-surface conditions, 

and comparisons are made to the experimental and a n a l y t i c a l 

work by O g i l v i e (1972). 

IV.3.1 Formulation 

When a ship i s moving at a constant speed, U , a steady 

wave pattern moving with the ship i s formed at the bow. This 

pattern, which i s three dimensional, i s affe c t e d by the 

ship's speed as well as the form of the ship's bow. In order 

to s i m p l i f y the problem, a wedge-shaped bow of constant d r a f t 

i s considered. A r i g h t hand car t e s i a n coordinate system i s 

used with i t s o r i g i n located at the bow. The x axis i s 

pointing i n the l o n g i t u d i n a l d i r e c t i o n of the ship, and y i s 

chosen p o s i t i v e i n the upward d i r e c t i o n . In Figure 18, the 

model i s moving at a constant speed, U , i n the - x d i r e c t i o n . 

Water depth i s considered to be large compared to the model's 

d r a f t . 

With the slender ship assumption, the three dimensional 

wave pattern can be treated as a two dimensional problem and 

solved along the ship length at constant x increments. The 

same argument was made by O g i l v i e (1972), that i f the ship's 

h u l l form i s defined by a function z = ± B ( x , y ) , the slope of 

the waterlines i n the x d i r e c t i o n can be assumed small since 

the change i n the lo n g i t u d i n a l d i r e c t i o n i s gradual. 
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Therefore, 

B - 0 ( e ) 0 < x < L s 

where B i s a geometric function that described the h u l l form, 

L g i s the ship's length, and e i s any small parameter such as 

the beam/length r a t i o . 

Whereas i n the bow near f i e l d , since the rate of change 

of flow condition i n the l o n g i t u d i n a l d i r e c t i o n i s higher 

than that i n the far f i e l d , the order of x should be smaller 

than the usual t h i n ship assumption ( i e . 0(x) = 1 ), but 

remain less than e. Therefore, 

The order of d i f f e r e n t i a l operators i s , therefore, given as : 

The associated order of terms for equation (1), then becomes: 

x = 0( e 
1/2 

) 

and 

R = ( y 2 + z2 ) 1 / 2 - 0 ( « ) 
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+ <k + <t> = o ,xx r,yy r , z z 

This indicates that the x associated terms are much smaller 

than the other terms, and solutions can be obtained by 

t r e a t i n g the problem as i n the y-z plane. The above order of 

magnitude analysis follows the arguments given by O g i l v i e 

(1972). As a consequence, the governing equation becomes : 

Now, since the model i s moving at constant speed, U, the 

t o t a l v e l o c i t y p o t e n t i a l , $ , can be assumed to have the 

following form : 

where <f> i s a function of y and z only. 

When equation (35) i s substituted into equation (4), and 

the pressure P , i s taken as zero at atmospheric pressure, 

the B e r n o u l l i Equation can be rewritten as : 

.yy + 4> zz - 0 (34). 

$ = Ux + 4>(y,z) (35), 

at y=r7 (36) . 
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I t must be c l e a r that, the term $ i s equal to zero since 
* t 

the wave pattern i s steady at the ship's reference. However, 

i t i s also true that at a f i x e d reference, the ship i s moving 

i n the -x d i r e c t i o n at v e l o c i t y -U. Tracing the ship's motion 

i n time at a reference f i x e d i n space i s given by : 

and the change along the ship at the f i x e d reference can be 

written as : 

Equation (36) i s therefore re-expressed at a f i x e d reference 

as : 

where the change of 4> i n the x d i r e c t i o n at the ship's 

reference i s expressed as a change i n time. 

Following the approach i n chapter I I , equation (39) i s 

combined with equation (3) to y i e l d the combined free-surface 

boundary condition at y=r). This i s given as : 

x = Ut (37) 

5x = U St 

(38). 
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2n 
* T, = 

y J o n ,-1 
y 5^ 

4^~2 + <ft~3 

(*t)' 

n 
\ z z 2g Dt v \ y *\z ' at y=r; (40), 

where n i s defined on the y - z plane. 

As for the impermeable boundary that represents the ship 

h u l l , 

</> = U ( f r ^ n + f r ^ n ) on z = B(x,y) ,n 3x y dx z J 

However, since a wedge-shaped model of constant d r a f t i s 
3y 

considered, -J- i s taken as zero on the ship h u l l . Moreover, ox 

i f the wedge h a l f angle i s a , the above condition can be 

written as : 

<f> - U B n >n ,x z 

= U tan a n^ on z = B(x,y) (41). 

A schematic drawing for the y - z plane i s shown i n Figure 19. 

In Figure 19, the i l l u s t r a t i o n i s very s i m i l a r to a wave 

tank problem. The only difference between Figure 19 and 

Figure 3 i s that the wave maker i s now being replaced by the 

cross section of the ship h u l l . This cross section of the 

ship h u l l i s moving i n the z d i r e c t i o n at constant v e l o c i t y 

instead of o s c i l l a t i n g back and f o r t h . A more precise way to 
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explain Figure 19 i s to consider the i l l u s t r a t e d y-z plane 

moving along the ship length, so that the ship's section 

appears on the figure as i f a v e r t i c a l p a r t i t i o n i s moving to 

the r i g h t at constant speed. Therefore, a s i m i l a r approach to 

the modelling of a wave tank can be applied i n t h i s problem, 

except that the time v a r i a b l e , t , i s used instead of x to 

proceed the s o l u t i o n i n the y-z plane along the ship's length 

d i r e c t i o n . 

F i n a l l y , the boundary condition on the v e r t i c a l wall at 

the r i g h t end of the considered domain i s simply defined as 

zero. As i l l u s t r a t e d i n Figure 19, only the r i g h t h a l f of the 

considered problem i s modelled because of symmetry about the 

ship's mid plane. The v e r t i c a l wall i s located very f a r away 

from the ship to reduce any possible interference on the 

r e s u l t by r e f l e c t e d waves. Water depth i s also taken to be 

deep enough to avoid any shallow water e f f e c t i n the 

s o l u t i o n . 

I t must be c l e a r that, because of the slender ship 

assumption, wave ele v a t i o n ahead of the bow i s not formulated 

i n the s o l u t i o n . Since i t i s assumed not a f f e c t i n g the 

s o l u t i o n by a s i g n i f i c a n t amount, the flow condition at the 

bow i s considered as undisturbed to s t a r t the computation. 

With the control surface S, divided into S , S , . , and 
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, as i l l u s t r a t e d i n Figure 19, the associated Boundary 

Integral Equation can be written as : 

c A ( P ) + J c 6 t 7 n d S + 
2n 

* ( G , n + 
G ) dS + 

g(5t) 
"o " f 

I F G dS + [ U tan a n G 
J 2b J Z 

dS 

<l> G dS .n 

(42) 

where 

F 
2b g 

y 5<p - 4c6 + 0 

n 
+ ^' n + -=2_ JL( ^ 2 + ̂  2 )• 

*\z z 2g Dt v r , y r , z (43) 

As for l i n e a r a p plications, the i n t e g r a l equation i s , of 

course, very s i m i l a r except simpler. The l i n e a r i z e d boundary 

conditions are applied at the undisturbed free surface, and 

the ship's thickness i s ignored. This i n t e g r a l equation i s 

written as : 

cA(P) + f 6 G d S + f < 4 ( G + — " — G ) dS + f d> G 
J ,n J ,n , 2 J ,n 
s g ( 5 t ) su 

o f h 

K G dS + | U tan a n^ G dS 

S f S h 

dS 

where K i s defined as i n equation (23). 
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IV.3.2 R e s u l t s and Discussions 

The following r e s u l t s are obtained by considering wedge 

models of 15° and 30°. The model i s at d i f f e r e n t d r a f t s and 

moving at a wide range of v e l o c i t i e s . The chosen tank width 

i s taken as 10.00 feet to reduce the possible interference on 

the r e s u l t s by r e f l e c t e d waves. Water depth i s also taken at 

5.00 feet to avoid any shallow water e f f e c t f o r the 

considered v e l o c i t y range. Linear and non-linear r e s u l t s are 

obtained and compared to the measurements by O g i l v i e (1972). 

An example of the wave elev a t i o n c a l c u l a t e d along the 

model i s shown i n Figure 20. The wedge's h a l f angle ( a ) i s 

7.5°, and the wedge i s moving at 8.00 f t / s e c . The d r a f t i s 

considered to be 8.00 inches. Solutions are ca l c u l a t e d at 

increments of 0.05 feet i n the l o n g i t u d i n a l d i r e c t i o n of a 

5.00 feet model. The obtained non-linear wave c r e s t i s 

observed to be higher than the l i n e a r r e s u l t , and i t i s 

located c l o s e r to the bow. A secondary crest, which i s absent 

i n the l i n e a r s o l u t i o n , i s observed to show a d i f f e r e n t 

c h a r a c t e r i s t i c i n the non-linear s o l u t i o n . 

The peak of the bow wave ( Am ) and the l o n g i t u d i n a l 

p o s i t i o n of i t s occurrence are cal c u l a t e d at d i f f e r e n t d r a f t s 

and v e l o c i t i e s . Both l i n e a r solutions and non-linear 
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solutions are p l o t t e d against the experimental r e s u l t s by 

Og i l v i e (1972), as shown i n Figure 21. In order to avoid 

confusion, Am i s p l o t t e d against v e l o c i t y U, and presented 

separately according to t h e i r d r a f t s ( T ). In Figure 21, 

comparisons are made i n dimensional units to give some 

i n d i c a t ion of the scale range being used. The l i n e a r 

predictions of the wave peak obtained on the wedge model 

behave l i n e a r l y with the model speed. The slope of t h i s 

s t r a i g h t l i n e increases as model d r a f t increases. 

In Figure 21, at T = 4 inches, the non-linear s o l u t i o n 

though over p r e d i c t i n g O g i l v i e ' s measurements, agrees with 

the experimental r e s u l t s much better than the l i n e a r 

solutions. Moreover, the trend of the non-linear predictions 

are s i m i l a r to that of the experimental values. However, the 

hump-hollow behavior of the experimental r e s u l t s i s absent i n 

the non-linear p r e d i c t i o n s . This i s probably due to an 

inadequacy of the slender body assumption that i s made i n the 

formulations. The hump-hollow behavior of the bow wave 

amplitude at increasing speed i s known to be a cont r i b u t i o n 

of the transverse wave. As the problem i s modelled and 

s i m p l i f i e d to be solved i n two dimensions, i t i s expected 

that t h i s hump-hollow behavior w i l l be absent i n the 

sol u t i o n . 

As the model d r a f t increases, the over-prediction of the 
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non-linear s o l u t i o n becomes more and more serious. At T = 16 

inches, the non-linear s o l u t i o n can no longer p r e d i c t the 

measured values p r e c i s e l y . In order to study the differ e n c e 

between the experimental r e s u l t s and the numerical solutions, 

the same figure i s reproduced based on a non-dimensional 

scale. 

In Figure 22, the same r e s u l t s from Figure 21 are 

reproduced i n non-dimensional units. Y i s used instead of 
max 

Am, and a draft-Froude number, F, i s used instead of U. Their 

r e l a t i o n s h i p s are given by the following equations : 

F — (44), 

and 

Y = ̂ y. fJ/T Am (45) , max 2aU / °' 

From Figure 22, the l i n e a r p r e d i c t i o n of Y i s found to be 
° r max 

at a constant value, independent of the draft-Froude number, 

F. This constant Y value from l i n e a r solutions appears to 
max 

be quite i n s e n s i t i v e to the model d r a f t , T. I t va r i e s 

s l i g h t l y from 1.5 at T = 4.00 inches to 1.7 at T = 16.00 

inches. The a n a l y t i c Y value obtained by O e i l v i e has a J max 

constant value at 1.65, and i s shown as a h o r i z o n t a l s t r a i g h t 

l i n e . 
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The non-linear solutions of Y i n Figure 22 agree 
max & ° 

better i n the shallow d r a f t case than i n the deep model d r a f t 

s i t u a t i o n . Although the case where T = 16 inches i s compared 

at a lower draft-Froude number, i t i s obvious that the l i n e a r 

solutions p r e d i c t the experimental r e s u l t s more accurately 

than the non-linear solutions. As one can see i n Figure 22, 

because of the over-prediction i n the non-linear solutions, 

the non-linear s o l u t i o n can no longer be claimed as a better 

p r e d i c t i o n than the l i n e a r s o l u t i o n . However, i r r e s p e c t i v e of 

i t s inaccuracy, the non-linear s o l u t i o n s t i l l e x h i bits a 

trend that i s followed by the experimental data. Such a trend 
on Y i s never shown i n the l i n e a r s o l u t i o n , max 

This discrepancy between the non-linear solutions and 

the experimental r e s u l t s i s believed to a r i s e by d i f f e r e n t 

f a c t o r s . F i r s t l y , although the slender body assumption 

s i m p l i f i e s the problem to be solved i n two dimensions, i t has 

induced some error into the s o l u t i o n . In Figure 22, i t i s 

observed that the hump-hollow behavior does not appear i n the 

solutions, which means that the transverse wave i s not 

included i n the s o l u t i o n . This transverse wave which 

contributes to ship resistance i s expected to counteract and 

a f f e c t the o v e r a l l wave pattern of a ship moving i n a calm 

sea. As a r e s u l t , the f a i l u r e of the non-linear s o l u t i o n at 

deep model d r a f t i s believed to be p a r t i a l l y a f f e c t e d by an 
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inadequacy of the slender body assumption. 

Anothor reason f o r the inaccuracy appearing i n the 

non-linear s o l u t i o n i s believed to be i n the i n v i s c i d 

assumption. For wave generation by moving objects, the 

p o t e n t i a l flow s o l u t i o n i s known as an adequate s o l u t i o n f o r 

the outer flow region. The inner s o l u t i o n ( i e . very near the 

fluid-body i n t e r s e c t i o n ) requires a more rigorous approach. 

Although an i n t e r p o l a t i o n scheme used to take care of the 

s i n g u l a r i t y at the fluid-body i n t e r s e c t i o n point i s derived 

i n chapter IV.1.2, a rigorous v e r i f i c a t i o n of t h i s scheme has 

never been c a r r i e d out. However, i t i s believed e s p e c i a l l y i n 

the bow wave problem, that the bow wave amplitude i s damped 

by the v i s c o s i t y of f l u i d . Since an i n v i s c i d assumption i s 

made i n the formulation, over-prediction i s expected i n the 

so l u t i o n . 

F i n a l l y , the numerical model has a d i f f e r e n t i n i t i a l 

c ondition than i n the r e a l l i f e phenomenon. In the r e a l l i f e 

s i t u a t i o n , there i s a free surface elevation ahead of the 

ship's bow, which i s not a small magnitude. However, i n the 

numerical model, because of s i m p l i c i t y , a zero i n i t i a l 

c ondition i s used at the wedge's leading edge. Therefore, 

with a d i f f e r e n t i n i t i a l condition, a difference i n the 

p r e d i c t i o n of the bow wave amplitude i s expected. Perhaps i t 

i s more sui t a b l e to declare that the assumptions, the 
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formulations, and the slender body approach have r e s t r i c t e d 

the a p p l i c a b i l i t y of the s o l u t i o n to a shallow d r a f t problem. 

When model d r a f t i s deep, some corrections or remedies must 

be made. 

At low draft-Froude numbers, both solutions f a i l to 

pr e d i c t the measured Y values. In f a c t , t h i s i s not 
max 

s u r p r i s i n g since upon the acceptance of the draft-Froude 

number as an independent parameter, i t i s r e a l i z e d that the 

problem under i n v e s t i g a t i o n i s e s s e n t i a l l y a high Froude 

number problem, and the low Froude number solutions may not 

be v a l i d . Therefore, as the draft-Froude number approaches 

zero, predictions w i l l become more and more u n r e l i a b l e . 

Moreover, the slender ship assumption i s also being 

contradicted at the bow, which was explained by O g i l v i e 

(1972) i n d e t a i l . 

From a general point of view, although the non-linear 

solutions always over p r e d i c t the measurements, the 

corrections ( to the l i n e a r r e s u l t s ) with a non-linear 

free-surface condition are i n the r i g h t d i r e c t i o n . Since 

surface tension and viscous e f f e c t s are not included i n the 

formulations, over predictions i n the s o l u t i o n can be 

expected. 

In Figure 23, the same comparisons are made with a 30° 
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wedge model. The numerical predictions are observed to be 

less accurate than the r e s u l t s f o r the 15° wedge. A possible 

explanation f o r t h i s i s the considered wedge angle being too 

large, making the slender ship assumption no longer v a l i d . 

The l o n g i t u d i n a l positions ( X ) where wave peaks ° max r 

occurred are also c a l c u l a t e d i n Figure 24. From most of the 

ca l c u l a t i o n s , the f i r s t peak measured along the wedge model 

i s higher than i t s successive one. I t i s again observed that 

the l i n e a r predictions of X ex h i b i t a l i n e a r r e l a t i o n s h i p r max r 

with the model's v e l o c i t y . The slope of the s t r a i g h t l i n e s 

drawn through the computed X values increases at deeper 

d r a f t . Although the non-linear solutions over p r e d i c t the 

measured values, they have corrected the l i n e a r r e s u l t s i n 

the r i g h t d i r e c t i o n . At T = 16.00 inches, the non-linear 

predictions tend to agree with O g i l v i e ' s measurements quite 

well i n the high Froude number range. 

In order to v i s u a l i z e the computed solutions, some of 

these r e s u l t s are presented i n graphical form. In Figure 25, 

a model at 12.00 inches d r a f t and with a h a l f wedge angle of 

7.5° i s moving at 5.00 f t / s e c . Linear and non-linear r e s u l t 

are computed f or graphical i l l u s t r a t i o n s . The model thickness 

i s ignored i n the l i n e a r numerical s o l u t i o n , and no 

s i g n i f i c a n t differences are found between the two solutions 

since the v e l o c i t y i s considered low. 
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At a shallower d r a f t ( 8.00 inches ) and higher model 

speed ( 8.00 f t / s e c ), the differences observed i n the two 

solutions become quite obvious. As i n Figure 26, the 

non-linear wave generated by the wedge exhibits a higher 

crest and tra v e l s at a higher speed i n the transverse 

d i r e c t i o n . As a consequence, the bow wave angle observed i n 

the non-linear s o l u t i o n i s larger than that i n the l i n e a r 

s o l u t i o n . 

In order to show the formation of a secondary bow wave, 

the computation i s repeated f o r a model with a larger wedge 

angle. In Figure 27, a 30° wedge at 12.00 inches d r a f t i s 

moving at 4.00 f t / s e c . A secondary bow wave i s e a s i l y 

observed i n the so l u t i o n . I t can be seen that i n t h i s case, 

the f i r s t wave decays very f a s t i n the l o n g i t u d i n a l 

d i r e c t i o n . At approximately 2.50 feet down the wedge's 

leading edge, i t becomes almost i n s i g n i f i c a n t . Whereas the 

secondary wave picks up i t s amplitude at about 3.00 feet down 

the wedge's leading edge. 

F i n a l l y , a 15° model at 12.00 inches d r a f t i s considered 

at 14.00 f t / s e c . As the model speed i s very high, spray 

formation along the model may be expected. I t i s remarkable 

that t h i s natural phenomenon i s obtained i n the s o l u t i o n 

without any numerical problem. In Figure 28, the spray 
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formation can be seen c l e a r l y along the model. Although t h i s 

i s not reported by O g i l v i e , such a natural phenomenon i s not 

unexpected when the model speed i s high enough. 

Before entering the next section, i t i s worth while to 

mention the weakness involved i n the use of the slender ship 

assumption. When a ship i s assumed to be slender, not only 

are i t s beam and d r a f t considered as small compared to i t s 

length, i t also c a r r i e s the meaning that the ship's geometry 

i s changing gradually i n the length d i r e c t i o n . Moreover, the 

rate of change of f l u i d flow conditions i s assumed to be very 

large i n the transverse d i r e c t i o n i n comparison with the 

l o n g i t u d i n a l d i r e c t i o n . However, near the bow, because of the 

very sudden change of flow around the bow, the assumption of 

the i n e r t i a force i s comparable to the gravity force can be 

l o c a l l y i n v a l i d . Upon the acceptance of the draft-Froude 

number, i t i s already r e a l i z e d that the bow wave problem i s a 

high Froude number problem, and the low Froude number 

so l u t i o n cannot be expected to be very accurate. 

It i s also true that, at some distance along the wedge, 

the wave peak occurs at a region where model thickness can no 

longer be assumed small. There i s always a question on how 

t h i n the model should be so as to v a l i d a t e the slender ship 

assumption . From the solutions, the wave height predictions 

i n Figure 23 are obviously worse than the p r e d i c t i o n s i n 
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Figure 22, simply because the wedge angle i s larger. 

Therefore, when one considers the factors that cause the 

discrepancies between the c a l c u l a t i o n s and the measurements, 

i t i s more appropriate to include the p o s s i b i l i t y of the 

slender ship assumption being v i o l a t e d by using a model too 

thick. 

Another p o s s i b i l i t y f o r the discrepancies can be due to 

an inadequacy i n the introduced i n t e r p o l a t i o n function 

( Equation (24) ) which over predicts the fluid-body 

i n t e r s e c t i o n p o s i t i o n . This function, which i s l i n e a r i n 

order, probably requires higher order terms to improve the 

sol u t i o n . However, from a general point of view, the proposed 

procedure as well as the free-surface formulations are 

considered as acceptable f o r the applications i n bow wave 

modelling. The corrections to l i n e a r numerical solutions by 

including the non-linear terms i n the free-surface 

formulations, p r e d i c t the trend of the bow wave amplitude at 

increasing draft-Froude number more accurately than the 

an a l y t i c s o l u t i o n provided by O g i l v i e . Moreover, the 

formation of water spray along the model at high speed found 

i n the s o l u t i o n i s very encouraging. I t i s believed that with 

some minor adjustments, t h i s s o l u t i o n approach o r i g i n a t e d by 

Og i l v i e can become a very e f f i c i e n t modelling technique f o r 

studying the performance of a ship. 
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IV.4 Wave D i f f r a c t i o n of a C i r c u l a r Cylinder ( 3D ) 

In t h i s f i n a l example, the three dimensional 

a p p l i c a b i l i t y of the introduced free-surface formulations i s 

tested by modelling a wave d i f f r a c t i o n problem. A surface-

p i e r c i n g c y l i n d e r i s located i n a wave tank of constant water 

depth. Waves are generated by assigning s i n u s o i d a l motions to 

the wave maker. The d i f f r a c t i o n of incident waves by the 

cyl i n d e r i s cal c u l a t e d i n the time domain and presented i n 

graphical form. Both l i n e a r and non-linear r e s u l t s are 

obtained and p l o t t e d at constant time i n t e r v a l s . Forces 

experienced by the cyl i n d e r are compared to published 

experimental r e s u l t s by Hogben and Standing (1974) as well as 

Mogridge and Jamieson (1975). 

IV.4.1 FormulatIon 

A basic difference between sol v i n g a two dimensional 

problem and a three dimensional problem i s purely i n the 

d e f i n i t i o n of the control surface. In equation (13), which i s 

the basic form of the Boundary Integral Equation, the con t r o l 

boundary, S, can no longer be represented by l i n e elements i n 

the following a p p l i c a t i o n . I t i s probably one of the most 

p a i n f u l procedures to define S by using surface patches when 

applying equation (13) i n three dimensions. As one can see i n 

the following d e r i v a t i o n of the s p e c i f i c form of equation 

66 



(13) , the procedure i s very s i m i l a r to those i n previous 

applications except an a d d i t i o n a l mesh generation procedure 

i s required. I t i s therefore considered to be more 

appropriate to discuss the d i s c r e t i z a t i o n of three 

dimensional surfaces under a separate topic heading. In t h i s 

section, discussions are concentrated on the problem's 

formulation. 

An i l l u s t r a t i o n of the problem i s given i n Figure 29 . A 

surface p i e r c i n g c i r c u l a r c y l i n d e r i s considered numerically 

i n a small wave tank. The coordinate axis i s located as shown 

i n the diagram with y pointing up. In order to cut down the 

number of unknowns involved i n the problem, Green's function 

( G ) defined as i n equation (15) i s applied to simulate a 

mirror image e f f e c t about the bottom of the numerical tank. 

Moreover, because of symmetry about z = 0 , modelling of 

ei t h e r h a l f of the tank i s considered adequate. 

As i n previous studies, the c o n t r o l surface that 

encloses the considered domain i s divided into S , S , . , and 
o f 

. S q i s used to represent impermeable surfaces such as the 

tank wall, and the cylinder's submerged surface. The 

free-surface i s designated by , and the wave p i s t o n by S . 

Therefore, equation (13) can be rewritten as : 
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4>(. P > + <l> G dS + f 4> G ,n J ^ ,n dS + ci G dS 

m 

d> G dS + f d> G dS + ,n J r , n ^ G dS ,n (46), 

m 

where G i s defined i n equation (15). 

Since the impermeable surface i s not moving, f l u i d 

p a r t i c l e s on t h i s surface have a zero normal v e l o c i t y , that 

i s , 

* „ = 0 on S (47). o 

As for the free surface, equation (10) i s considered as 

appropriate. 

2n n c , - i ,,-2 , ,-3 

^ z_ / + _i J l -Ja± + * 
' n g ( 5 t ) 2 g ( 6 t ) 2 

n 
+ 0 ' n + ^ ' n + - ^ £ - ( c 6 2 + ^ 2 + ^ 2 ) ' r,x x *\z z 2g Dt v r,x ^,y r , z 

.at y=r? (10) 

For convenience, a function F 3 i s used to represent the known 

terms i n the above expression, and i t i s rewritten as : 

2n 

g(fit) 
<f> + F 

2 r 3 
at y=r? (48) , 

where 
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n r - i " i / i " 2 , - 3 
F 4 * + * + r n + * ' n 
3 g ( g t ) 2 ,X X ,Z Z 

n 
+ _ z D g Dt^ \ x v , y v , z (49) 

I t can be r e c a l l e d from Chapter II.2 that the prime notation 

i s used to i d e n t i f y the terms that are approximated by an 

extrapolation function i n time. 

As for the l i n e a r i z e d free-surface condition, 

4 — + * at y=0 (50) , 
g ( S t ) 2 

where K i s given i n equation (23) 

F i n a l l y , f o r completion of the problem, a displacement 

function should be assigned to the wave maker. Although t h i s 

can be a r b i t r a r i l y chosen, i t i s very desirable to have a 

function that s t a r t s the pi s t o n smoothly at time equal to 

zero. For t h i s reason, the following function i s used. 

x = X ( 1 - cos tot ) on S (51), 
m m m 

where X i s the motion amplitude, and w i s the angular 
m 

frequency. The corresponding v e l o c i t y function i s , therefore, 

given as : 
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v = X co s i n cot 
X m 

on S (52) m 

With equations (47), (48), and (52) substituted into 

equation (46), the corresponding form of the i n t e g r a l 

equation i s obtained as follows : 

2n 
<!>(?) + \ <t> G dS+ <f> ( G + G ) dS + | <f> G dS 

s g ( 6 t ) s 
o f m 

= [ F G dS + [ ( v n ) G dS J 3 J x x (53) 
S 

f m 

This equation i s then used to e s t a b l i s h a system of equations 

and y i e l d solutions at designated time i n t e r v a l s . I f l i n e a r 

solutions are desired, equation (50) should be used instead 

of equation (48) upon the s u b s t i t u t i o n , and r e s u l t s are 

ca l c u l a t e d at the undisturbed free surface. Since there i s 

nothing s p e c i a l about the l i n e a r i z e d form of the i n t e g r a l 

equation, i t s d e r i v a t i o n i s not included here. 

IV.4.2 Mesh Generation 

Before the system of equations can be constructed, the 

control surface must be defined. For three dimensional 

ap p l i c a t i o n s , the boundary surface i s d i s c r e t i z e d and divided 

into small elements. These small patches with t h e i r s i z e , 
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p o s i t i o n , and o r i e n t a t i o n known, enclose the considered 

domain. Certain numeric codes are then developed to keep 

track of the p o t e n t i a l and v e l o c i t y values on p a r t i c u l a r 

elements during the computations. The choice on the shape of 

elements i s a r b i t r a r y . Under normal conditions, t r i a n g u l a r 

patches are the most popular to use. However, i n the case of 

i n s u f f i c i e n t computer memory, q u a d r i l a t e r a l elements can be 

used provided that the leakage problem found between elements 

i s treated c a r e f u l l y . Unfortunately, there i s no general rule 

or guideline for the choice of what kind of elements should 

be used. Therefore, i t i s up to the programmer to fi g u r e out 

the most e f f i c i e n t way to represent the problem numerically. 

At the U n i v e r s i t y of B r i t i s h Columbia ( UBC ), the best 

current computer f a c i l i t y a v a i l a b l e i s the Michigan Terminal 

System ( MTS ). I t i s linked to a FPS-164/MAX array processor 

located i n the computer center. With the main processor rated 

at 11 MFLOPs ( M i l l i o n FLOating point Operations per second), 

and the MAX boards rated at 55 MFLOPs, solutions of large 

matrices can be c a l c u l a t e d at high speed. However, the si z e 

of the computed matrix i s r e s t r i c t e d by i t s accessible 

memory. Its 1 Mwords of main memory with two 135 Mbyte 

drives, can only handle a system of equations up to 

approximately 900 unknowns. For t h i s reason, the following 

problem can only be solved i n the present system with poor 

re s o l u t i o n . In order to maintain solutions at reasonable 
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r e s o l u t i o n with small enough element numbers, q u a d r i l a t e r a l 

elements are r e l u c t a n t l y used. 

A disc u s s i o n on the advantages of using t r i a n g u l a r 

patches over q u a d r i l a t e r a l elements can be found i n Webster 

(1975). In h i s paper, he pointed out that there i s a danger 

of source leakage and d i s c o n t i n u i t y found between elements 

when a three dimensional surface i s represented by 

q u a d r i l a t e r a l elements. Since larger memory computers are 

cur r e n t l y inaccessible, q u a d r i l a t e r a l elements are used under 

the following assumptions : 

i . Wave amplitude i s assumed to be small compared to 

wave length, such that the slope of the free surface i s 

small i n a l l d i r e c t i o n s , and a l l changes are gradual i n 

time. 

i i . In order to ensure that there i s no source leakage 

between elements, each q u a d r i l a t e r a l element i s 

considered to be composed of 4 t r i a n g u l a r planes. In 

Figure 30, the 4 corners of an element are l a b e l l e d as 

P, Q, R, and S. Its geometric center, c, i s ca l c u l a t e d 

by : 

72 



X + X + X + X 
P Q R S 

X = -. 
c 4 

y + y + y + y 

z + z + z + z 
P Q R S 

Z c 4 

There i s no necessity f o r these 4 corners to l i e on the 

same plane. In other words, each q u a d r i l a t e r a l element 

can twist i n space. Its area i s given by the sum of the 

4 t r i a n g u l a r facets' area, and i t s normal unit vector i s 

considered by taking the average of the normal u n i t 

vectors on these t r i a n g l e s . 

When computing the sol u t i o n , the respective 

p o t e n t i a l value and v e l o c i t y on an element are 

cal c u l a t e d at c . Therefore, source leakage and 

di s c o n t i n u i t y problems found between elements are 

considered to be reduced. Provided the small amplitude 

wave assumption i s not v i o l a t e d , the above assumption 

for the q u a d r i l a t e r a l element can be accepted. 

Although these two assumptions have greatly s i m p l i f i e d 

the programming work, there i s no in t e n t i o n to i n s i s t on the 

use of q u a d r i l a t e r a l elements. In fa c t , the reason why they 

are used here i s c l e a r l y explained. When bigger memory 

computers are accessible, t r i a n g u l a r patches should be used. 

Therefore, t h i s example serves mainly as a numerical 

experiment f o r the three dimensional a p p l i c a b i l i t y of the 



free-surface formulations. 

A f t e r the q u a d r i l a t e r a l element i s chosen, the 

dimensions of the considered domain have to be determined. In 

most of the following computations, the wave tank i s chosen 

to be 5 times the cylind e r ' s diameter i n length and 2.5 times 

i n h a l f width. As a r a d i a t i o n condition i s not involved i n 

the formulations, t h i s chosen tank length i s only good enough 

for studying the f i r s t two waves without s u f f e r i n g from the 

disturbance of r e f l e c t e d waves. The simulation time i s 

ca l c u l a t e d by l i n e a r wave theory f o r the f i r s t wave to t r a v e l 

back and f o r t h along the tank. Computations should be 

terminated before the flow near the cy l i n d e r i s disturbed by 

r e f l e c t e d waves. 

It i s also important to maintain a f i n e enough siz e of 

elements on the free-surface i n order to provide good 

r e s u l t s . In most of the following c a l c u l a t i o n s , the free 

surface i s represented by 450 elements. A minimum of 12 

elements are used to define the submerged surface of the h a l f 

c y l i n d e r . They are arranged i n layers of s i x , depending on 

water depth ( see Figure 31 ). The generated mesh of the free 

surface i s i l l u s t r a t e d i n Figure 32. The wave maker i s on the 

left-hand side, while on the other end, a r i g i d wall i s 

placed. 
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IV.4.3. I n t e r p o l a t i o n (3D) 

The material discussed i n t h i s section serves mainly as 

an extension of section IV.1.2 . In the three dimensional 

numerical model, a f t e r the p o t e n t i a l d i s t r i b u t i o n i s known on 

the free surface, v e l o c i t y components can be resolved since 

the free - surface's gradient i s known. These v e l o c i t y 

components are then used to pr e d i c t the free-surface motion 

within the next time increment, so as to advance the s o l u t i o n 

i n time. The motion of an element i s ca l c u l a t e d by 

considering the resultant motions at i t s 4 corners. Its 

geometric center, c, i s always given by equation (54). In 

order to define the v e l o c i t y at an element's corner, a simple 

i n t e r p o l a t i o n function ( equation (55) ) i s used. 

In Figure 33a, point P i s considered as the common point 

surrounded by element I , J , K, and L . Since the v e l o c i t y i s 

known at the center of these element, the following function 

i s used f o r the in t e r p o l a t i o n s of v e l o c i t y at P. 

ax + by + cz + d (55), 

where a, b, c, and d are constants d i f f e r e n t from element to 

element. 
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When t h i s equation i s applied at the centers of 4 

adjacent elements I , J , K, and L , 4 equations with 4 

unknowns can be written. The v e l o c i t y component,for example 

v , on the four elements contributes to the column vector on 
y 

the right-hand-side of the matrix equation, and the constants 

( a, b, c, and d ) are the unknowns to be solved. When these 

unknowns are found, v at point P can be calculated. The 
y 

procedure i s very s i m i l a r to the discussion i n Appendix I I . 

It i s found that equation (55) can be applied to a point 

which i s located at the fluid-body i n t e r s e c t i o n boundary. In 

Figure 33b, element I and J are on the free- surface, while K 

and L are on the cyl i n d e r w a l l . The normal v e l o c i t y component 

on the cylinder wall i s taken as zero to prevent f l u i d 

p a r t i c l e s from penetrating into the surface. Other components 

are computed as discussed i n Appendix I I . 

Although there was a h e s i t a t i o n i n applying equation 

(55) to the fluid-body i n t e r s e c t i o n boundary as i t s 

l i m i t a t i o n i s not quite c l e a r , reasonable r e s u l t s are 

obtained i n most of the studies. I t only happens to f a i l i n 

modelling a high amplitude wave case, where the wave run-up 

on the cy l i n d e r i s improperly represented by coarse elements. 

This computer deficiency s i t u a t i o n can be improved by using 

more free-surface elements near the cy l i n d e r . I t i s , of 

course, possible to use a second order function f o r better 
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i n t e r p o l a t i o n s , except such an idea i s not very p r a c t i c a l f o r 

the following studies. Computer cost i s a prime f a c t o r to be 

considered upon the acceptance of a second order 

i n t e r p o l a t i o n function. 

IV.4.4 Results and Discussion 

In the following r e s u l t s , the diameter of the v e r t i c a l 

c y l i n d e r i s chosen to be 50.00 m. The wave tank i s determined 

to be 250.00 m i n length, and i t s h a l f width i s taken as 

125.00 m. 450 elements are used at the free surface. Water 

depth i s at 10.00 m, and 12 elements, arranged i n two layers, 

are used to represent the cy l i n d e r . Motion amplitude ( X ) 

of the wave maker i s assigned at 1.00 m. Results are obtained 

at two frequencies. 

The f i r s t set of solutions i s c a l c u l a t e d by moving the 

wave maker at 0.061 Hz. The corresponding ka value i s equal 

to 1.0 , where k i s the wave number and a i s the radius of 

the v e r t i c a l c y l i n d e r . Computations proceeded i n time at 0.2 

second r e a l time increments f o r 36.00 seconds. Results are 

pl o t t e d at every 4.00 second i n t e r v a l . In Figure 34, both 

l i n e a r and non-linear solutions are i l l u s t r a t e d i n t h e i r 

graphical form. Results obtained by a l i n e a r free-surface 

condition are on the left-hand-side of the diagram. The 

v e r t i c a l p l o t t i n g scale i s enlarged 50 times f o r better 
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i l l u s t r a t i o n . 

At t=0, the pi s t o n located at the l e f t end of the tank 

s t a r t s i t s motion. Waves are generated and propagate down the 

tank at constant speed. Since the simulated wave amplitude i s 

small, the difference between the two solutions i s not very 

obvious. The second wave crest i s ca l c u l a t e d at 0.20 m by the 

l i n e a r formulation, while i t i s at 0.21 m from the non-linear 

s o l u t i o n . Wave length i s observed at about 157 m which 

corresponds to a height over length r a t i o ( H/A ) of 0.00255 

(l i n e a r ) and 0.00268 (non-linear) r e s p e c t i v e l y . 

The non-linear waves are observed to t r a v e l s l i g h t l y 

f a s t e r than the l i n e a r waves. At 36.00 seconds, the 

non-linear s o l u t i o n exhibits a crest high enough to d i f f e r 

from the l i n e a r r e s u l t . I t i s believed that the solutions at 

t h i s moment are disturbed by r e f l e c t e d waves from the end 

wall. Although at t=36 seconds, these r e f l e c t e d waves are 

almost i n s i g n i f i c a n t , the force c a l c u l a t e d on the c y l i n d e r i s 

thought to be influenced and become u n r e l i a b l e . 

Figure 35 i s a h o r i z o n t a l p r o j e c t i o n of the free-surface 

elements d i s t r i b u t i o n at t=0 and t=36 seconds. B a s i c a l l y , 

there i s no major difference between the two, except at the 

near cylinder region, elements seem to s u f f e r from very great 

d i s t o r t i o n s . I t i s believed that, at the forward and a f t e r 
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stagnation points of the c y l i n d e r , more elements should be 

used to define the wave run-up s i t u a t i o n . Moreover, i t i s 

desirable to model the tank length as long as possible, so as 

to delay the disturbance from r e f l e c t i o n u n t i l l a t e r cycles. 

In order to i l l u s t r a t e how the r e s u l t s are a f f e c t e d by the 

chosen tank length, a shorter length i s used to repeat the 

computations. 

In Figure 36, a tank length of three times the c y l i n d e r 

diameter i s considered ( i e . 150.00 m ). Other parameters 

remain the same as i n Figure 34 . The free surface now 

consists of 270 elements ( see Figure 37 ), and the 

simulation continues for 32.00 seconds. Results are b a s i c a l l y 

s i m i l a r to Figure 34 , except that the generated waves are 

s l i g h t l y higher than i n the previous case. However, when the 

free-surface elements i n Figure 37 are examined at time t=32, 

i t shows that some of these elements have p a r t i a l l y 

penetrated into the c y l i n d e r . This observation indicates that 

the tank length has a very strong influence on the solutions, 

and probably there e x i s t s a numerical weakness i n the 

constructed model. I f the chosen tank dimension i s too short, 

numerical solutions w i l l be exaggerated and consequently a 

f a i l u r e within a very short period of time. This i s observed 

by comparing the c a l c u l a t e d wave amplitude i n Figure 34 and 

Figure 36. As the same p l o t t i n g scale i s used, the wave 

amplitude obtained i n the shorter tank i s obviously higher i n 
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magnitude.Therefore, a tank with a length 5 times the 

cyli n d e r diameter i s taken to be the minimum acceptable l i m i t 

i n t h i s study. 

The motion frequency of the wave maker i s doubled to 

0.122 Hz i n Figure 38 i n order to model a shorter wave 

length. In t h i s case, the v e r t i c a l dimension i s scaled up 

only 25 times f o r p l o t t i n g . Wave length i s 1.5 times the 

cyl i n d e r diameter. Computation i s designed to terminate at 

36.00 seconds. Linear solutions are shown on the left-hand 

side and non-linear solutions are shown on the right-hand 

side of Figure 38. No major difference i s observed between 

the two. The non-linear wave cr e s t i s s l i g h t l y higher and 

tra v e l s s l i g h t l y f a s t e r . 

In order to te s t the l i m i t a t i o n s on the constructed 

model, the piston's motion amplitude i s increased to 2.5 m to 

simulate a high amplitude wave s i t u a t i o n . The frequency 

remains at 0.061 Hz. With a v e r t i c a l p l o t t i n g scale 25 times 

the c a l c u l a t e d dimension, r e s u l t s are shown i n Figure 39. The 

f i r s t wave, which i s highly transient i n nature, has an 

amplitude of about 1.00 m before i t reaches the c y l i n d e r . 

Although the H/A i s equal to 0.0127 ( which i s considered as 

acceptably small ), computations of the non-linear solutions 

f a i l e d at 16.00 seconds. This i s explained by an improper 

modelling of the wave run-up s i t u a t i o n on the c y l i n d e r with 
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the coarse si z e elements. In Figure 39, the free surface 

exhibits a depression at the forward stagnation point of the 

cyl i n d e r . Similar f a i l u r e i s not found i n the l i n e a r 

s o l u t i o n . I t i s believed that the f a i l u r e i s caused by an 

improper modelling of the wave run-up at the c y l i n d e r by 

q u a d r i l a t e r a l elements. A f i n e r g r i d i s probably required to 

represent t h i s region where flow changes r a p i d l y . Moreover, 

as the H/A r a t i o i s higher, the q u a d r i l a t e r a l element w i l l be 

twisted badly at the near c y l i n d e r region. 

However, i r r e s p e c t i v e of t h i s imperfection, the 

constructed numerical model behaves very well at low 

amplitude wave simulations. There i s enough evidence to 

support that the introduced free-surface formulation and 

so l u t i o n procedure are s u f f i c i e n t l y accurate f o r modelling 

transient, non-linear, three dimensional wave making problems 

i n the time domain. 

F i n a l l y , the wave force exerted on the c y l i n d e r i s 

computed and p l o t t e d i n Figure 40. The continuous l i n e 

appears i n the diagram i s the frequency domain s o l u t i o n based 

on Chan (1984). The non-linear time domain c a l c u l a t i o n s are 

compared to measurements made by Hogben and Standing (1974) 

as well as Mogridge and Jamieson (1975). Since the non-linear 

solutions are ca l c u l a t e d i n a time domain wave tank, forces 

due to the f i r s t wave cycle are ignored. The presented 
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r e s u l t s are considered to be the maximum force c a l c u l a t e d 

a f t e r the f i r s t wave has passed by the c y l i n d e r . The 

non-dimensional form was suggested by Sarpkaya and Isaacson 

(1981) as : 

max pgHda [ tanh kd / kd ] 

and 

J 
P dS (57) 

i s the submerged surface of the c y l i n d e r . P i s the 

pressure c a l c u l a t e d i n equation (4). p i s the f l u i d density, 

H i s the incident wave height, d i s the water depth, and a i s 

the radius of the c y l i n d e r . 

F c a l c u l a t e d at d i f f e r e n t ka values i s shown i n max 

Figure 40. At a ka value greater than 1.00, the agreement 

between the time domain solutions ( non-linear ) and the 

experimental r e s u l t s i s excellent. Not only the forces are 

accurately predicted, and the trend of the non-linear 

s o l u t i o n i s observed very s i m i l a r to the measurements by 

Hogben (1974). As for the frequency domain s o l u t i o n , which i s 

l i n e a r , the p r e d i c t i o n i s not as good as the non-linear 

s o l u t i o n . In f a c t , the trend of the experimental r e s u l t s 

cannot be observed i n the l i n e a r s o l u t i o n when ka i s greater 
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than 1.00. 

However, at a ka value less than 1.00, the experimental 

r e s u l t s follow the frequency domain s o l u t i o n while the time 

domain s o l u t i o n diverge from the measured values. The smaller 

the ka value i s , the bigger the discrepancy i s found. Since 

the error i s behaving systematically, there must be an 

explanation f o r i t . 

These discrepancies are believed to be associated with 

the chosen tank dimension. At ka equal to 1.00, the wave 

length i s ca l c u l a t e d to be 157 m, which i s about 0.628 times 

the chosen tank length. Below t h i s value, the wave length 

becomes very long and eventually exceeds the tank's 

dimension. When t h i s happens, since F i s the force 
max 

cal c u l a t e d a f t e r the f i r s t wave cycle, i t i s very possible 

that the f i r s t wave being r e f l e c t e d from the end wall 

i n t e r f e r e s with the second wave before i t reaches the 

cyl i n d e r . Although, the time domain p r e d i c t i o n i s very poor 

at low ka values, the f a c t that t h i s r e s u l t ( which i s 

non-linear ) at ka values greater than 1.0 i s much better 

than the l i n e a r s o l u t i o n that t h i s argument i s strongly 

supported. As for the frequency domain s o l u t i o n , the same 

problem does not e x i s t since a r a d i a t i o n boundary i s used 

( see Chan 1984 ). I t only happens at ka value greater than 

1.00 that the l i n e a r s o l u t i o n becomes not as r e l i a b l e as the 
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non-linear so l u t i o n . 

I f the modelled tank length can be increased to about 10 

times the cylinder's diameter, the time domain s o l u t i o n of 

^max ° a n P o s s i b l y be c a l c u l a t e d more p r e c i s e l y without being 

disturbed by r e f l e c t e d waves. 

From the experience gained i n t h i s study, the 

free-surface representation i s very c r i t i c a l to the numerical 

model's s t a b i l i t y . More elements should be used at the near 

cyl i n d e r region. A longer tank i s thought to be h e l p f u l to 

eliminate the interference from r e f l e c t e d waves i n the time 

doamin so l u t i o n . Moreover, i f i t i s possible, t r i a n g u l a r 

patches should be used to obtain a much better d e f i n i t i o n of 

the wave run-up s i t u a t i o n on the cy l i n d e r . Results obtained 

i n t h i s s ection are regarded as encouraging, and the three 

dimensional a p p l i c a b i l i t y of the proposed free-surface 

formulations i s shown with some r e s t r i c t i o n s . These 

r e s t r i c t i o n s seem to depend on the free-surface element 

d e f i n i t i o n rather than the methodology. 
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V. DISCUSSIONS AND CONCLUSIONS 

In t h i s chapter, discussions are made from a general 

point of view. Although, some of the discussions seem to 

overlap the ideas from previous chapters, conclusions cannot 

be established without an overview of a l l the 

accomplishments. The following discussions are mainly on 

three kinds of topics. They are on the formulation of 

problems, numerical r e s u l t s , and recommendations. Since there 

i s c e r t a i n unavoidable overlapping between the ideas, they 

are discussed simultaneously i n the following section. 

V.1 General Discussions 

The proposed s o l u t i o n procedure i s , i n f a c t , p a r a l l e l to 

Longuet-Higgins' approach, except that the free-surface 

boundary conditions are expressed i n r e a l v a r i a b l e s only. The 

time or material d e r i v a t i v e term i s replaced by a f i n i t e 

difference form based on known values at previous time steps. 

A predictor method i s used to extrapolate future values f o r 

v e l o c i t y terms and used to ca l c u l a t e the free-surface 

boundary condition to advance the computations i n time. As a 

consequence, a very systematic procedure i s established to 

solve gravity wave problems i n the time domain. 
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The f i r s t two problems presented i n chapter IV a c t u a l l y 

serve as t e s t cases for the study of the non-linear 

free-surface boundary conditions. The free-surface condition 

i s emphasized here because i t has remained as the source of 

problems for many years. As mentioned i n the introduction, 

t h i s moving boundary causes d i f f i c u l t i e s , not because of the 

uncertainty involved i n the free-surface d e f i n i t i o n , but 

because of the numerical i n s t a b i l i t y found i n the time domain 

so l u t i o n . 

One of the contributions achieved by Longuet-Higgins was 

h i s i ntroduction of a smoothing procedure during computations 

to i n h i b i t the growth of i n s t a b i l i t y i n the time stepping 

s o l u t i o n . From then on, many transient free-surface problems 

were modelled numerically. 

I t must be admitted by the author that the rearrangement 

of the free-surface boundary conditions presented i n t h i s 

t hesis i s f i n a l i z e d through a series of numerical t r i a l and 

error studies. The idea of extrapolating the unknown v e l o c i t y 

terms and maintaining them i n an unexpanded form are believed 

to be the c r u c i a l assumption made i n these studies. The wave 

tank study and the modelling of breaking waves enabled the 

author to study the d i f f e r e n t algebraic forms of the 

free-surface boundary conditions to r e s u l t i n a numerically 

stable s o l u t i o n without any smoothing requirement. 
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The choice of t h i s unexpanded form given i n equation 

(10) i s based purely on numerical t e s t experience gained by 

the author. Other possible arrangements, a l l based on various 

expansions of the non-linear terms i n equation (10), have 

been t r i e d without any success. One possible explanation f o r 

t h i s chosen form to y i e l d a numerically stable s o l u t i o n i s 

probably r e l a t e d to the nature of the B e r n o u l l i Equation. In 

equation (4) , the v e l o c i t y square terms can be considered 

associated with the k i n e t i c energy of the f l u i d p a r t i c l e . Its 

material d e r i v a t i v e ( as i n equation (6) ) i s thought to be 

re l a t e d to the change of k i n e t i c energy of the same p a r t i c l e 

being traced i n time. I t i s possible that f l u i d p a r t i c l e s ' 

k i n e t i c energy, which i s a scalar quantity, changes gradually 

i n time and can be approximated momentarily by a second order 

function of time. 

As f o r an expanded form of the material d e r i v a t i v e of 

the v e l o c i t y square terms, numerical error t o l e r a t e d i n the 

approximation of the change of k i n e t i c energy could be 

exagerated by increasing the number of unknown terms i n the 

representation. Instead of t r e a t i n g the associated k i n e t i c 

energy terms as a single quantity, each v e l o c i t y component as 

well as i t s material derivative have to be approximated by a 

time extrapolation scheme. As a r e s u l t , the error involved i n 

the free-surface formulation could become i n t o l e r a b l e , and 
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the s o l u t i o n could become unstable. 

I t i s also remarkable how the i n t e r p o l a t i o n function 

works at the fluid-body i n t e r s e c t i o n point. As studied by L i n 

(1984), t h i s point requires s p e c i a l treatment. I t can be 

proved that, when t h i s i n t e r s e c t i o n point i s extrapolated by 

values at the free-surface only, i t behaves reasonably for 

low amplitude wave cases. The idea of including information 

on the wave p i s t o n to interpolate the v e l o c i t y at t h i s 

i n t e r s e c t i o n point i s believed to be an acceptable approach. 

In f a c t , the wave splashing phenomenon obtained i n the bow 

wave simulation at high model speed has proven to a c e r t a i n 

extent that the idea i s correct. However i t i s also a 

disadvantage that t h i s i n t e r p o l a t i o n s k i l l only works on the 

zeroth order elements. For higher order boundary elements, 

since end points are node points and defined the i n t e r s e c t i o n 

point, another i n t e r p o l a t i o n c r i t e r i o n must be developed. 

The d r i f t of free-surface elements, though bringing some 

excitement since the natural phenomenon i s modelled, i s a bad 

i n d i c a t i o n on the s t a b i l i t y of the numerical model. I f a l l 

the elements at the free surface are d r i f t i n g down the tank, 

i t i s only a matter of time for the numerical model to f a i l 

because of the improper si z e d elements representing the free 

surface. Although, there are many remedies to t h i s problem, 

such as breaking an element which i s too long into two, i t i s 
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considered to be more appropriate to leave t h i s study to the 

future. Fortunately, i t takes many wave cycles to worsen the 

problem, and i t can be ignored for the f i r s t few cycles. 

From the studied problems, c e r t a i n l i m i t a t i o n s are 

found. T h e o r e t i c a l l y , better solutions can always be obtained 

by using a f i n e r g r i d , increasing the tank length, adopting 

t r i a n g u l a r patch elements, or even reducing the si z e of the 

time step. Most of these recommendations require more 

computer memory. Since i n r e a l l i f e , there i s always a 

hardware l i m i t a t i o n on computers, i t i s very unwise to r e l y 

on expanding computer memory for better solutions. Some 

actions should be taken to reduce the chances of having a bad 

s o l u t i o n . For time stepping s o l u t i o n problems of t h i s kind, 

i t would be very h e l p f u l to formulate some sort of beach 

condition. As i t was shown i n the three dimensional modelling 

problem, a great obstruction found i n programming the problem 

i s the l i m i t e d accessible computer memory. I f such a boundary 

condition can be formulated for time domain problems, at 

l e a s t the s o l u t i o n can be free from the disturbance of 

r e f l e c t e d waves. However, at t h i s present moment, such a 

boundary condition i s not ready, so upon constructing a 

numerical model, s p e c i a l care must be taken on the d e c i s i o n 

of the dimensions of the control domain, the s i z e of 

elements, as well as the problem's computer simulation time. 
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P r i o r to considering the conclusions, the e f f i c i e n c y of 

the time stepping s o l u t i o n procedure i s worth some 

discussion. Although solutions are obtained f o r various 

problems, the computer cost i s very high. In two dimensional 

problems, solutions can be obtained at quite a low cost since 

the number of unknowns i s usu a l l y small. However, f or three 

dimensional problems, i t i s extremely easy to come up with a 

numerical model with a few thousand unknowns. Access to very 

huge and super computers seems to become a necessity. It is 

very unfortunate that the established matrix i s unsuitable 

for i t e r a t i o n s . Since t h i s huge matrix must be solved by a 

d i r e c t method ( such as the Gaussian Elimination Method ), a 

major p o r t i o n of the computer time i s consumed i n solv i n g the 

matrix. 

Moreover, s t a r t i n g the simulations at the zero i n i t i a l 

stage consumes a large amount of computer time. I t would be 

id e a l i f the i n i t i a l conditions were given at a time j u s t 

p r i o r to the moment of in t e r e s t , and the transient behavior 

were studied from that point on. I f t h i s can be done, 

free-surface problems can be studied very e f f i c i e n t l y . 

However, at t h i s present moment, such an idea i s not very 

p r a c t i c a l . For example, many of the steady state solutions 

are c a l c u l a t e d f o r an i n f i n i t e domain or with a r a d i a t i o n 

condition. In order to apply these a n a l y t i c solutions as 

i n i t i a l conditions, the boundary conditions between the time 
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domain model and the frequency domain model must be 

compatible within some degree. 

V.2 Conclusions 

The presented numerical procedure i s considered as a 

r e l i a b l e approach f o r solving p o t e n t i a l flow problems with a 

free surface. The time domain solutions obtained f o r two and 

three dimensional problems are numerically stable and do not 

require any smoothing procedure. The free-surface boundary 

condition i s rearranged to y i e l d non-linear solutions under a 

small time step assumption. The fluid-body i n t e r s e c t i o n 

s i n g u l a r i t y problem i s handled by an i n t e r p o l a t i o n function 

that requires information from both surfaces. Numerical 

r e s u l t s are comparable to l i n e a r theory as well as published 

experimental work. Limitations are found i n modelling a three 

dimensional d i f f r a c t i o n problem. Solutions f o r high amplitude 

waves are r e s t r i c t e d by the use of q u a d r i l a t e r a l elements and 

coarse g r i d s i z e . Wave forces c a l c u l a t e d on the surface-

p i e r c i n g c y l i n d e r are influenced by the chosen tank length. 

As the simulated wave length becomes comparable to the tank 

length, the cal c u l a t e d force experienced by the cyli n d e r 

diverges from the experimental r e s u l t . When the wave length 

i s short compared to the tank, good r e s u l t s are obtained. 
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Boundary Condition 

Figure 1. A Typical Wave Making Problem 

Figure 2. Numerical Model with Mirror Image at y=-d 
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F i g u r e 3. L i n e a r and N o n - l i n e a r Wave Tank M o d e l s 

F i g u r e 4. I n t e r p o l a t i o n o f V e l o c i t y Between E l e m e n t s 
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Figure 18. Waves Generated by a Wedge-shaped Model 
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Linear Solution 

Non-linear Solution 

Figure 25. Bow Wave Modelling at Low Model Speed ( T = 12" , a = 7.5°, 

U = 5 ft/sec. ) 
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Linear Solution 

Non-linear Solution 

Figure 26. Bow Wave Modelling at Intermediate Model Speed 

( T = 8" , a = 7.5° , U = 8 ft/sec. ) 



Non-linear Solution 

Figure 28. Formation of Water Spray at High Model Speed 
o 

( T = 12" , a = 7.5 , U = 14 ft/sec. ) 



Figure 29. Numerical Modelling of Wave Tank with a Surface-Piercing 

Cylinder ( 3-D ) 

Figure 30. Quadrilateral Element Figure 31. Half-cylinder Modelled 

by Quadrilateral Panels 
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Figure 32. Free-Surface of Numerical Tank Represented by Quadrilateral 

Elements at Time t=0. 

a) at Free-Surface b) at Cylinder Wall and 

Free-Surface Intersection 

Figure 33. Interpolation of Velocity Components Between Elements ( 3-D ) 
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LINEAR SOLUTION NON-LINEAR SOLUTION 

Figure 34.a Numerical Simulations of Diffracted Wave in a Tank 

at Frequency of 0.06105 Hz 115 



LINEAR SOLUTION NON-LINEAR SOLUTION 

Figure 34.b Numerical Simulations of Diffracted Wave in a Tank 

at Frequency of 0.06105 Hz 



LINEAR SOLUTION NON-LINEAR SOLUTION 

Figure 34.c Numerical Simulations of Di f f racted Wave in a Tank 

at Frequency of 0.06105 Hz 
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Figure 35. Deformation of Free-Surface Elements at t = 36 sec. 
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t = 8 sec 

t = 12 sec 

NON-LINEAR SOLUTION 

Figure 36.a Diffracted Waves are Studied in a Short Tank ( 0.06105 Hz ) 
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t = 24 sec 

t = 32 sec 

NON-LINEAR SOLUTION 

Figure 36.b Diffracted Waves are Studied in a Short Tank ( 0.06105 Hz ) 
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t = 0 sec 

Figure 37. Deformation of Free-Surface Elements Affected by 

Shorter Tank Length at Time t = 32 sec. 121 



LINEAR SOLUTION NON-LINEAR SOLUTION 

Figure 38.a Simulations of Diffracted Waves at Higher Frequency ( 0.1221 Hz ) 
122 



LINEAR SOLUTION NON-LINEAR SOLUTION 

Figure 38.b Simulations of Diffracted Waves at Higher Frequency ( 0.1221 Hz ) 
123 



t = 28 sec 

t = 36 sec 

LINEAR SOLUTION NON-LINEAR SOLUTION 

Figure 38.c Simulations of Diffracted Waves at Higher Frequency ( 0.1221 Hz ) 
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I 

4 sec 

125 
Figure 39. Failure of Non-linear Model at High Wave Amplitude 
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APPENDIX I 

CONSTRUCTION OF A SYSTEM OF LINEAR EQUATIONS FROM THE 

BOUNDARY INTEGRAL EQUATION. 

From equation (13) : 

0(P> + I <£(Q) G dS = f ̂ (Q) G dS (13). 
s s 

I f the control boundary, S, i s divided into N elements, and 

4> i s assumed constant on each of these elements, equation 

(13) can be rewritten as : 

N S 

4 + ) <f>. G SS =/~<t>< G 6S. 

where 

N 

0 = 1 

Subscript i and j are element numbers from 1 to N . 

Since there are N elements, N equations of N unknowns 
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can be written. As a consequence, the following matrix can be 

obtained. 

[ A ] <j> = [ c ] <f> 
n 

where <h and d> are column vectors. The associated entries of 

matrix A and C can be computed as : 

A = I + 
i j i j 

+ S 
j 

G dS 
i j , n 

S 
j 

+ S . 

C = f G dS 
i j J i J 

S 
j 

where 

and 

SS = 2s 
j j 

I = 1 when i=j 
i j J 

I = 0 when i * j 
i j 

I i s the i d e n t i t y matrix. 

The above i n t e g r a l terms f o r A and C can be 
6 i j i j 

c a l c u l a t e d by any numerical i n t e g r a t i o n technique. A Gaussian 

5 t h order i n t e g r a t i o n method i s applied here. D e t a i l s of 
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these i n t e g r a l s are found i n Brebbia (1978) as well as 

Banerjee and B u t t e r f i e l d (1981). Although the involved 

i n t e g r a l equation f o r free-surface problems i s usu a l l y more 

complicated than equation (13), the p r i n c i p l e of w r i t i n g down 

the matrix from the i n t e g r a l equation i s very s i m i l a r and 

st r a i g h t forward. 

F i n a l l y , i t i s mentioned i n both Brebbia (1978) and 

Banerjee (1981) that, when carrying out the numerical 

i n t e g r a l f o r A and C , s p e c i a l consideration should be 
ij i j 

made to take care of the s i t u a t i o n when i equals to j . These 

terms, A and C cannot be cal c u l a t e d d i r e c t l y as the other 

i i i i J 

terms. A n a l y t i c solutions are provided by Brebbia and 
Banerjee, and should be used f o r the diagonal terms of both 
matrix A and C. 
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APPENDIX II 

INTERPOLATION OF VELOCITY COMPONENTS BETWEEN ADJACENT 

ELEMENTS BY EQUATION (24). 

From equation (24) : 

= dx + ey +f (24). 

I f three sucessive elements with number i-1 , i , i+1 are 

considered, and t h e i r v^ values are designated r e s p e c t i v e l y 

by V y | ^ i i v y l f ' a n c * V y l i + 1 ' t* i e n> t n e following equations 

can be written : 

d X. + 
1-1 

e 
y i - i + f = V 

y i . . 

d X . + 
1 

e 
y i + f ' V 

y i 

d X. + 
1+1 

e 
y i + i + f = V 

y 

x. 
y i - l 1 " d " V 

y i - l 

X. 
1 y i 1 e = V 

y i 

L 1+1 y i + l 1 
-

f V 
L y i + i -

Upon sol v i n g t h i s set of l i n e a r equations, equation (24) 

becomes a function of x and y only, and can be used to 
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interpolate the v e l o c i t y value between these three elements. 

The same procedure i s applied to interpolate , i n which 

the column vector on the right-hand-side of the above 

equation i s replaced by v 
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