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ABSTRACT

The goal of this thesis work was to study the characteristics of the
EEG signal and then, based on the insights gained from these studies, pursue
an initial investigation into a processing method that would extract useful
event related information from single trial EEG. The fundamental tool used
to study the EEG signal characteristics was autoregressive modeling. Early
investigations pointed to the need to employ robust techniques in both model
parameter estimation and signal estimation applications. Pursuing robust
techniques ultimately led to the development of a single trial processing
method which was based on a simple neurological model that assumed an
additive outlier nature of event related potentials to the ongoing EEG
process, When event related potentials, such as motor related potentials,
are generated by a wunique additional process they are "added" into the
ongoing process and hence, will appear as additive outlier content when
cdnsidered from the point of view of the ongoing process. By modeling the
EEG with AR models with robustly estimated (GM-estimates) parameters and by
using those models in a robust signal estimator, a "cleaned" EEG signal is
obtained. The outlier content, data that is extracted from the EEG during

cleaning, is then processed to yield event related information.
The EEG from four subjects formed the basis of the initial investigation

into the viability of this single trial processing scheme. The EEG was

collected under two conditions: an active task in which subjects performed a
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skilled thumb movement and an idle task in which subjects remaihed alert but
did not carry out any motor activity. The outlier content was processed
which provided single trial outlier waveforms. In the active case these
waveforms possessed consistent features which were found to be related to
events in the individual thumb movements. In the idle case the waveforms did
not contain consistent features. Bayesian classification of active trials
versus idle trials was carried out using a cost statistic resulting from the
application of dynamic time warping to the outlier waveforms. Across the
four subjects, when the decision boundary was set with the cost of
misclassification equal, 93% of the active trials were classified correctly
and 18% of the idle trials were incorrectly classified as active., When the
cost of misclassifying an idle trial was set to be five times greater, 80% of
the active trials were classified correctly and only 1.7% of the idle trials

were incorrectly classified as active.
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CHAPTER 1

INTRODUCTION

1.1 Problem Statement

Most often the greatest failing of technical aids for severely dis-
abled persons is the inadequacy of the man/machine interface. With a univer-
sal effective and efficient interface, current technology has the capability
of providing substantial independence and hence, a greatly improved quality
§f life for even the most severely disabled persons. In pursuit of such an
ideal interface, researchers have been studying the feasibility of utilizing
electrical brain potentials to directly communicate to peripheral devices.
Two important example applications would be the supervisory control of a
robotic arm and the method of input to a personal computer system. Such an
interfacing capability would also prove to be very useful in many man/machine
interface problems in the able-bodied population. The ultimate goal of this
researcher is to provide a direct communication system between man and
external devices using electrical brain activity.

Brain potentials are comprised of continuous randém electrical
activity which when recorded are referred to as electroencephalographic (EEG)
signals. Embedded within the EEG  are event related potentials (ERP) and
typically, there is a -6 db to a -9 db signal-to-noise ratio between the ERP
and the EEG. This activity is usually recorded using surface electrodes on
the séalp, since the current risk versus benefit situation does not justify
electrode implantation. The EEG signals as measured from the scalp surface

are in the order of 5-50 micro-volts and are easily contaminated by other



bio-electrical signals such as electroocular (EOG) potentials and muscle
(EMG) potentials, especially those of the scalp and face. To date, the study
of ERP's has mostly been confined to the averaging of EEG recorded during a
specific event, such as a flash of light, over many trials. With averaging,
the random signal not related to the event tends to average out to zero at a
rate generally proportion;l to the square root of the number of trials
averaged. The signal related to the event is assumed to remain constant and
hence becomes more recognizable as the background random signal decreases.
This approach has many drawbacks. In the context of this work, two of the
greatest drawbacks are firstly, that it is not amenable to real-time process-
ing of event related potentials for use in closed loop control applications
and, secondly, there is a significant loss of unique single trial informa-
tion. However, it is a useful tool for obtaining a general idea of the
underlying waveform of an event related response.

One of the most significant obstaclesb that must be overcome in
pursuing the ultimate goal is the establishment of a signal processing method
that can extract event related information from single trial EEG. There have
been some single trial processing schemes, proposed by various researchers
(see for example [1,2,3]), that were designed to detect features in the EEG
that are related to specific external events. The usefulness of their
results has been generally limited because their schemes have often been
partly dependent on fundamental assumptions about the statistical character-
istics of the EEG which at the present time are not well understood and, more
importantly, have been critically dependent on complex external visual
stimuli.

The goal of this thesis work was to study the characteristics of the



EEG signai and then, based on the insights gained from these studies, pursue
an initial investigation into a processing method that would extract useful
event related information from single trial EEG. The funaamental tool used
to study the EEG signal characteristics was autoregressive modeling. Early
investigations pointed to the need to employ robust techniques in both model
parameter estimation and signal estimation applications. Pursuing robust
techniques ultimately lead to the development of a single trial processing
method which was based on a simple neurological model that assumed an addi-
tive outlier nature of event related potentials to the ongoing EEG process.
The EEG from four subjects formed the basis of the initial investigation into
the viability of this single trial processing scheme. The EEG was collected
under two conditions: -an active task in which subjects performed a skilled
thumb movement and an idle task in which subjects remained alert but did not

carry out any motor activity.
1.2 Motor Potentials

Brain signals that are related to movement are a type of event related
potential and were first reporféd by Kornhuber and Deecke [4]. These poten-
tials are produced by the sensory-motor cortex prior to and during voluntary
movements of the body. Figure 1.1 [5] shows a cross-section of the motor
cortex which illustrates how various parts of the body are functionally
mapped onto the motor cortex.

The use of ERP's related to movement have many advantages over other
ERP's in the context of an interface system. Motor potentials are produced

as a result of a self-initiated cognitive process. This is unlike the
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perhaps better known subset of ERP's, called evoked potentials, where an
external stimulus is required to elicit a response. (for example: visual,
somatosensory or auditory evoked potentials.) Motor potentials that are
associated with parts of the body over which a disabled person does not have
cognitive control, could be utilized to obtain unique control of a given
peripheral device and thereby minimizing the 1likelihood of unintentional
activation of that device. As suggested by Figure 1.1, there is in fact some
capability to discern what part of the body is being moved by utilizing
spatial information from across the motor cortex with the use of surface
electrodes. Some of the recent work in this area has been carried out by
Brunia and Van den Bosch [6] in which they exploit the ipsilateral and
contralateral properties of the motor potentials to demonstrate an ability to
discriminate between hand and foot movements as well ‘as right versus left
body movements. The extent to which this discrimination capability can be
refined needs to be pursed further but at the very least it can provide some
diversity in the control functions that could be derived from the motor
potentials, It has also been demonstrated [7] that, in the averaged motor
potentials, there is a sustained response (in the order of one second)
throughout a prolonged task requiring substantial cognitive involvement.
This property could be particularly exploited in an interface system that
requires a continuous control function such as in the task of guiding a
robotic arm.
A specific issue that will need to be addressed in future work, in

terms of an interface systems for thé disabled, is the role of peripheral
afferent feedback in the generation of motor responses. Due to the early

work of Vaughan [8] it was thought that the positive components after onset



of the movement were due to afferent feedback. However, Vaughan et al. [9]
four years later unexpectedly found a similar positivity in deafferented
monkeys while they where carrying out a self paced task. Papakostopoulos
[10] postulated that as long as there are elements of skill required in the
task, the positivity will be developed despite the absence of afferent feed-
back. The uncertainty surrounding this issue remains in relatively recent
work (see Grunewald et al. [7]) and to resolve it completely will require the
ability to analyze the motor potentials on a single trial basis because a
disabled person can not provide a movement trigger for conventional averaging
techniques. The single trial analysis method described in this thesis
provides this required ability and therefore, Qill ultimately facilitate the

study of motor potentials from persons who lack peripheral afferent feedback.



CHAPTER 2

MODELING THE EEG SIGNAL
2,1 Need for Statistical Understanding of EEG

A prerequisite to the mathematical modeling of a given signal is an
adequate understanding of its fundamental characteristics. Previous investi-
gations (see Persson [11] or McEwen and Anderson [12]) have noted that the
random character of EEG makes the theory of random processes applicable to
EEG signals. Therefore, if the approach to the signal analysis of EEG is to
be based on random process signal theory then basic statistical character-
istics of the EEG signal should be well understood.

Statistical properties, particularly assumptions about Gaussianity,
are often key factors in the resulting performance of many of the signal
processing methods that have been conventionally applied to EEG. For
instance, applications of Wiener filfering, Kalman filtering and AR parameter
estimatioﬁ to EEG have met with mixed and inconsistent results (see McGillem
et al. [(13]1). This could very well be explained if in fact the signal
characteristics were at different times ranging approximations to the
required Gaussian assumptions. On occasions when the signal processing was
carried out while the EEG was relatively close to Gaussian, the result would
have been close to optimal and relatively good performance would be expected.
However, as will be demonstrated in Section 3.4, if estimation had been
carried out on EEG that was relatively non-Gaussian the performance would
have likely been very poor.

Hence, to utilize signal processing methods which make certain statis-



tical assumptions, requires both a statistical knowledge about the target
signal as well as knowledge about the ramifications of using a given method
when those assumptions are not to some extent met. In the type of statis-
tical modeling employed in this study, details of which are provided in
subsequent sections, a satisfactory understanding of these issues is very
important. The fbllowing section begins this process of understanding by

reviewing previous investigations into the statistical character of EEG.
2.2 Previous Stochastic Studies on EEG

There have been relatively few investigations into the statistical
characteristics of spontaneous EEG activity. The resulting conclusions from
these few investigations have been largely contradictory and indecisive. 1In
general, most investigators were attempting to measure the degree of wide-
sense stationarity and to estimate the amplitude probability distribution.

McEwen and Anderson [12] did some early extensive work in this area.
To test for wide-sense stationarity they divided a given EEG segment into two
halves and then carried out a two-sample Kolmogorov-Smirnov (K-S) test on
both the sample amplitude and spectral distribution functions. This test
requifed that both the amplitude and spectral distributions from each half
could not be significantly different for the whole EEG segment to be con-
sidered as wide-sense stationary. They tested for the Gaussianity of a given
EEG segment by using its amplitude distribution in a K-S goodness of fit test
with unknown mean and variance using a 0.05 level of significance. They
rejected their null hypothesis that EEG from awake resting subjects with eyes

closed was Gaussian and wide-sense stationary approximately 15% of the time



over two second epochs and approximately - 60% of the time over 8 second
epochs. Persson [14] in commenting on their results, pointed out that the
statistical tests that they used assume independent samples (observations)
but the digitization rates used resulted in samples that were highly
correlated. In fact, McEwen and Anderson noted that too high a sample rate
would cause the efficacy of the statistical tests to be adversely affected
and they consequently recommended sampling at a rate as little above the
Nyquist rate as possible.

Persson [l14] went on to argug that the maximum tolerable correlation
coefficient between adjacent samples is about 0.5 and in previous work he
showed, based on an estimated autocorrelation function from real EEG, that to
meet this requirement the sample rates should not be much greater than 10 Hz.
The obvious resulting conundrum is that if only approximately two second
epochs can be considered stationary and a sample rate in the order of 10 Hz
is used then the resulting number of samples would be so small that a reason-
able inference cannot be made about the amplitude distribution.

Weiss [15] approached this problem by developing a correction factor,
based on the second and fourth spectral moments, for the Kolmogorov-Smirnov
goodness of fit test which is designed to compensate for correlation in the
data two sample points back in time. He tested this method on simulated EEG
data which was generated by a second order autoregressive processes.
Although he reports good results on this simulated data, its usefulness is
still generally limited by its ability to compensate for the correlation over
only two sample points., In addition, its effectiveness, if applied to actual
EEG, will be further limited by the accuracy of the estimated spectral

moments. In Section 2.4 a different approach is discussed which would be
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potentially more flexible and ultimately provide more information about the

EEG signal characteristics.
2.3 Neural Basis for the Gaussian Nature of EEG

R. Elul was responsible for the initial work devoted to the stochastic
aspects of EEG based on neuronal activity. He first suggested [16,17,18]
that each individual neuron generator was independent of the summed contribu-
tions from all the neuron generators. Therefore, this resultant sum, the
EEG, could be thought of as the sum of statistically independent or nearly
independent neﬁronal contributions and since the contribution from each
neuron is very small felative to the resulting EEG there must be a very large
number of neurons contributing at any given time. Based on these arguments
the application of the Central Limit Theorem (CLT) is justified; that is,
the sum of neuronal activity will ‘tend toward Gaussianity. However, Elul
[19] later carried out an experiment in which he administered tetrodotoxin
(TTX) into the brain of cats. . The amount of TTX that was given to the cats
should have caused about a 10% drop in neural activity. The resulting EEG
activity was reduced way below the level that could be accounted for based on
his concept of independent or nearly independent neural activity.

A, Siegel [20] followed up on Elul's work and he proposed the idea
that a substantial proportion of the neurons belong to synchronized groups.
These groups, however, would be necessarily restricted in size due to the
existence of many competing inputs to a given neuron which would result in
attenuation of the synchronizing effect as one moves along a chain of inter-

acting neurons. He further postulated that because of this restricted size
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there wouldlstill be a very large number of "internally synchronized but
mutually unsynchronized groups of neurons”. This explanation of neuronal
activity was able to predict the dramatic reduction of EEG activity which
occurred in the TTX experiment. It also allows for Elul's basic idea of the
summed activity being independent of the activity of the individual
generators., Elul [18] also suggested that different degrees of independence
between neurons, as was alluded to earlier when the terms "independent" and
"nearly independent" were used, would be the major influence on the degree of
Gaussianity: as the dependence becomes greater the resulting distribution
becomes less Gaussian,

Siegel [20] elaborates on this concept and in so doing suggests a
mechanism that would produce this result,. He utilizes Bernstein's [21]
theory of applying the CLT to dependent variables. Roughly speaking, it
states that as long as the dependence between variables decreases with
separation then the CLT can be applied. Therefore, Siegel argues that as
long as the dependency of two neuronal generators decreases quickly enough
with increased separation, the application of the CLT can still be justified.
It also follows that, at periods of time when dependency is less, the effec-
tive number of independent contributors increases and the CLT is more closely
approximated. Elul [18] suggested the application of this concept to various
levels of mental activation: performing an active mental task would require
a greater degree of interneuronal coupling than would a mental idle state.
Hence, the degree of Gaussianity would decrease during performance of mental
tasks. He carried out some empirical work with EEG, which showed some
support for this idea, but the statistical analysis suffered from the sample

dependency problem that was described in the previous section as well as
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other methodological problems.

As attractive as the above concept at first seems, it is however,
contradictory to a common assumption about EEG. As Elul states: "low-vol-
tage, fast activity implies 'desynchronized' (active) EEG, and high-voltage
slow activity is indicative of 'synchronization'" (idle EEG). Siegel [20]
resolves this apparent paradox with the following afgument. In the idle
state there are, as stated previously, groups of neurons which are internally
synchronized but mutually independent, which results in summation of activity
that is relatively high-voltage and appears to be in relative synchrony.
During a mental task the relationship between the "within group" neurons
becomes more complicated than simple "in-step" synchrony. As Siegel [20]
states: "Essentially, this is because neurons must be related in configura-
tions which correspond in complexity to that of the task itself." So the
electrical neuronal activity, although more interdependent does not have the
same appearance of synchronicity and hence there will be a greater amount of
neuronal activity canceling each other out resulting in lower voltage EEG.

In some recent work by Anninos, Zenone and Elul [22], they studied
neuronal activity and the resulting EEG based on a rigorous artificial neural
net model. Their principle conclusion was that the main factor in causing
the summed neural activity to deviate from Gaussianity was in fact the level
of interneuronal connectivity: greater connectivity caused greater devia-
tions from Gaussianity. This result occurred independent of the probability
distribution of the meﬁbrane potential in the individual elements. In
addition, they discovered that for a given level of connectivity in their
model, when external input was applied, as would be the case when afferent

signals were applied to the neural net, the resulting distribution became
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less Gaussian. This finding may add:some interesting insight to the possible
differences between the motor related potentials in normal and disabled
persons.

To date, it appears that the idea of relating various levels of mental
activation to various levels of Gaussianity has not been carefully confirmed
or rejected by empirical measurements. This is probably due to the fact, as
noted in Section 2.2, that a satisfactory tool to measure the EEG statistics

does not seem to be available,
2.4 Applying AR Modeling to EEG

A very general linear model for the modeling of stochastic discrete-
time processes is the autoregressive moving average (ARMA) model. It is given

by
P g
x; = L ax, _ t+ 1 bjei—j 2.1
k=1 =0

where X is the discrete signal sequence of length n, i = 1,2...n, e is the
residual error sequence and ay > k=1,2,..p and bj’ j=0,1,2....1 are weighting
parameters on past values of the signal and residuals respectively. The
autoregressive (AR) model is the "all pole™ version of the ARMA model and it
has the following form

X. = a,X. + a.x. + ... F
-1 271i-2

1 1*5 e. 2.2

a_x. +

pi-p i
where again X is the signal sequence, a; are weighting parameters, e is the
white residual error sequence and p is the order of the AR model. The

signal X at a given time i is assumed to be a linearly weighted sum of p
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past values of X, plus a random (white) error term e . Often this last term
is referred to as the predictive error since it is the difference between the
measured value and the predicted value.

The AR model has some significant practical advantages over the more
general ARMA model. Firstly, a closed form solution to the minimization
problem for the estimation of the ARMA model parameters does not exist and
hence iterative numerical optimization approaches must be utilized. Whereas,
in the case of the AR model, the closed form solution of the minimization
problem does exist and computationaily efficient methods have been developed
to estimate the AR model parameter;. Secondly, as noted by Kay and Marple
[23], the Wold decomposition theorem demonstrates that any stationary ARMA
process (in fact, any MA processes as well) of finite variance can be repre-
sented by a unique AR model which may be of infinite order. The implication
is, even if it is argued that for a given signal an ARMA model is the most
appropriate model, a reasonable approximation can still be achieved by
utilizing an AR model with an appropriately chosen model order. Similarly,
in a study by Beamish and Priestly [24] they note that the time series does
not have to exactly conform to a finite AR model but rather assumes it can be
modeled by an infinite AR model. Then by choosing an appropriate order which
will provide in some sense the optimal fit with a finite model, the signal
can be well represented. Selection of this appropriate model order is a very
important issue and it‘is dealt with in detail in Section 4.4.

Previous work has indicated that AR modeling would prove to be a
useful tool in the investigation of the EEG signal. Jansen et al. [25] note

the statistical definition of regression is: "a functional relationship

between two or more correlated variables used to predict values of one vari-
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able when given values of the other;." If these variables are time related,
as would be the case with EEG, the; an autoregressive model can be applied
[26]. In general, it is not clear how to definitively assess whether an AR
model at a given model order is adequately representing a segment of EEG.
For purposes of this study, the appropriateness of AR modeling will be
discussed in terms of its relative performance when it is applied to the
spectral estimation of EEG (see Section 4.4).

The AR model as applied to EEG can be utilized in several ways. The
estimated parameters could possibly bé used as features in a signal detec-
tion/discrimination problem. As indicated above, the parameters can be used
in spectrum estimation. Many researchers [23,25,27] have demonstrated that
there are some distinct advantages of this approach over the conventional FFT
methods of spectrum estimation. Another benefit of applying AR modeling to
EEG is the fact that residuals, ideally, have the correlation of the process
removed (whitened) and since the AR process is linear, the statistical char-
acteristics of the original process are still contained in the residuals.
Although Andrews [28] demonstrates that residuals from a non-Gaussian process
will tend to mask the evidence of non-Gaussianity, Chambers and Heathcote
[29] have developed a method of characterizing the Gaussianity of a process
based on a scale factor which is determined by the characteristic function of
the residual error distribution. The main benefit of this approach is that
it overcomes the problems of correlated data samples, as was discussed in
Section 2.2.

The greatest benefit of appljﬁng the AR model to EEG in terms of this

thesis work lies in the fact that it has a very convenient state-space

representation, which allows for the straight forward use of state-space
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techniques such as Kalman type filtering [30]. These techniques play a major
role in the EEG single trial processing scheme that is discussed in detail in

Chapter 4.
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CHAPTER 3

THEORY OF AR MODELING
3.1 Conventional AR Parameter Estimates

EEG signal characteristics are changing over time and hence, a single
time-invariant model can not be applied. This results in the need to
estimate model parameters from the EEG signal in a manner that will attempt
to account for time varying characteristics. The estimation of the AR model
parameters can generally be carried out either by block mode estimation or by
recursive estimation. Recursive methods sequentially update the paraﬁeters
data point by data point. They have the potential advantage of being set up
such that the estimation of parameters adapts to time varying characteristics
of a signal [31]. This is essentially accomplished by assigning greater
weight to newer information than to older information. It has been demon-
strated for EEG signals, which are slowly time-varying over long epochs, that
adaptive recursive estimation schemes can be effective [32,33]. However,
Jansen [25,32] provides evidence which indicates that the adaptation process
is not rapid enough for short seément analysis of EEG signals that are
expected to be time-varying relativé&y quickly. Short segments in the order
of 1 to 2 seconds .are typical for the work carried out in this thesis.
Hence, a block mode approach, where the AR model parameters are estimated on
the basis of a short data segment, is employed throughout this work.

Various block mode methods have been used to estimate a set of AR
model parameters from a sample signal segment. The following discussion

describes the most common conventional methods for AR parameter estimation.
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In the past, the standard method to estimate AR parameters was often based on
the Yule-Walker equations. These equations provide a relationship between
the autocorrelation function and the AR model parameters (see Ulrych and
Bishop [34]. The derivation of these equations is reviewed by Kay and Marple
[23] and the final result expressed in matrix form is

Rxx(l)

R__(0) R__(-1) . . . R _(1-p)] |a
a R._(2)
XX

1
R (1) R_(0) -+« R_(2-p) 5

3.1

Rxx(p—l) Rxx(p—Z) . . Rxx(O) Eqi L_Rxx(Pz_

Qhere Rxx(k) is the autocorrelation function for lag k, p is the AR model
order, and ay k=1,2...p are the AR ﬁodel parameters. Therefore, by obtaining
estimates of the autocorrelation fun;tion, estimates of the AR parameters can
be obtained by solving the system of Equations 3.1. Kay and Marple

recommend, to achieve low mean-squared error, estimation of the autocorrela-

tion function at specific lags with the following expression

n-m-1

A =1
R _(m) = .Z X oXs 3.2
n i=0

Note also that for a stationary process the conjugate symmetry property of
the autocorrelation function Rxx(m)=Rxx(—m) can also be utilized in solving
3.1, In addition, the Yule-Walker equations yield an expression that allows
the variance of the residuals to be calculated [23]
b ,
R (0) = k§1 a R _ (k) + 682 3.3

where 6; is the variance of the residual sequence. Equation 3.1 can be
augﬁented with 3.3 to yield the following alternative form of the Yule-Walker

equations [23]
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R (0 R_(-1) .. .R_(-p) 1 87

R (1 R_(0) R (~(p-1)) a, 0

: o = |: 3.4
Ro® R . R@ | a0

Least square (LSQ) estimation of the AR parameters is another very
common method. In fact, as will be shown later, all the conventional methods
discussed in this section can be shown to be based on least squares minimiza-
tion criteria. The method that is most commonly referred to as the "LSQ"
method can be derived in the following manner [23]. From Equation 2.2 the

prediction error can be written as

p

e, = X, -~ Y a X. 3.5
k=1 k™i-k

The sum of squared prediction errors is then

n n P
SSE = ) e?2 = ) [x.- ) ax..]2 3.6
i=1 * gm1 2 k= KA

To find the AR parameters that minimize 3.6 the partial derivatives with

respect to each a_ are taken and set equal to zero. That is

k

3a(SSE) _ _

Ta - 0 q=1,2...p 3.7
q

The result of applying 3.7 to 3.6 is

P n n
YL a Yox. . X. = Y X.X. q=1,2...p 3.8
k=1 K ogmp RATa 52 Tiieg

Then by substituting 3.8 into 3.6, the minimum SSE can be shown to be [23]

n

n P
SSE.. = ) x:+ ) a Y x.x. 3.9
min ;01 1 k=1 k i=1 17i-k

Now by expanding 3.8 into matrix form for model order p results in
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T D Y T T NN IR SR L) R DL L)
L) S S - | [2%:%;-,
. . =1- 3.10
{Exi—lxi—p co. in‘Pin‘R_{?E_ {Exixi—gd

By calculating the summations in 3.10, from a data sequence of n points, this
system of equations can be solved to determine the LSQ estimate of the AR
parameters. Note that if the autocgrrelation estimate given in 3.2 is used,
except for the scaling factor, 1/n, which does not effect the solution for
the AR parameters, the above equations reduce to the Yule-Walker method of
parameter estimation. Therefore, the Yule-Walker estimates are equivalent to
the LSQ estimates for sufficiently large n.

An implicit assumption, which is particularly evident in the develop-
ment of the Yule-Walker solution, is that the autocorrelation function is
assumed to be zero outside the data segment of interest., In practice, when
relatively short segment lengths are used, this truncation of the auto-
correlation function can result in relatively poor parameter estimates
[25,23]. Burg [35] addressed this problem by using extrapolation of the
autocorrelation function based on concepts of maximum entropy and he formu-
lated a method of AR parameter estimation, known as the Burg method or the
maximum entropy ﬁethod (MEM). Many authors have noted the superior perform-
ance of this method over the Yule-Walker type methods when applied to
relatively short data segments (for example see [23,25,36,37]). Therefore,
in this thesis work, because typically relatively short epochs of EEG are

utilized, MEM was selected as the conventional AR parameter estimation

method.
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The fundamental idea behind Burg's method is to provide a non-zero
extrapolation of th%hautocorrelation function beyond the known lags (up to
and including the p lag: see Equation 3.1) as opposed to the implied zero
extrapolation as in the Yule-Walker equations. Burg argued that the extrapo-
lation should impose the fewest possible constraints on the extrapolated
autocorrelation function without compromising any information about the known
lags. To achieve this, he required that the hypothetical time series, which
would be represented by the extrapolated autocorrelation function, should
have maximum entropy. This requirement maximizes the randomness of that time
series, given the constraints of the estimate of the function, and hence
produces a minimum bias solution. From a spectral point view, the maximum
entropy estimate is based on choosing a spectral estimate such that the

entropy (E) per sample

1/2£ .
E=/[ In F_(f) df 3.11
-1/2f

where Fx(f) is the spectral estimate’of the data segment and fs is the sample

.

frequency, is maximized subject to

1/2f p .
) F_(f) exp-(j2nk™—) df = R__(k) k=1,2, ...p 3.12
X XX
-1/2f £

s

It can be shown [38] that the spectral estimate which maximizes entropy
subject to the constraint that its first p Fourier coefficients correspond
exactly to the sample autocorrelation function evaluated at the first p lags

is the estimate of the spectral density function of an AR model of order p.

In addition, it is shown that the estimates of the parameters and the power
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-~

in the residual sequence, Pp’ can be written as

[~ ~ ] - 7 — A 7]
Ree(®) + o - R @) |1 | By

lo 0 3.13
__XX(P) e RXX(O)_ _aR _0_—

Note that these equations are of the same form as the augmented Yule-Walker
Equations 3.4 where the variance of the residuals for the zero mean residual
sequence is equal to P_, |

The algorithm that was utilized in this thesis work to calculate MEM
parameter estimates is based on a procedure outlined by Anderson .[36]. The
system of Equations 3.13 is solved in a sequential manner. Beginning with
p=0, Po, is estimated by

1 n
P == Z X.2 < 3.14
o] . i
n i=1

Then the model for p=1 is determined as that which minimizes the power in the
forward prediction error sequence averaged together with the power in the

backward prediction error sequence. This average power is given by

SR U W [xgma, (Dx, 7 + (x,_-a, (Dx)7] 3.15
2 n-1 i=1+1 *

For the general case of progressing from order p-1 to order p, it is shown

that
1 1 3 P
== 3 [(x.- )Y a(p)x. ,)?
P2 n-p i=p+l 1 ok=1 k ik
P
- 2
+(xi_p kzl ak(p)xi_p+k) ] 3.16
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and it can be minimized with respect to the single parameter ap(p). Note
that the arguments on the parameters indicate the current maximum model order
at a given stage in this sequential procedure. The dependence of the other

model parameters at the pth stage are given by the Levinson recursion

a, (p) = a, (p-1) - ap(p)ap_k(p—l) 3.17
T
Applying Equation 3.17 to 3.16, taking 522757 = 0 and solving for ap(p)
p
results in
n
2 i=§+i bp_l(l—l)ep_l(l)
ap(p) = o 3.18
Y (b (i-1)12+le_ . (i)]2)
i=p+1 p-1 p-1
P p
where b_(i)= ¥ a_(i)x(i-p+k) and e_(i)= ¥ a_(i)x(i-k) are the backward and
P i=0 P P i=0 P
forward prediction errors. In the above notation it is assumed that
ap(0)=l.0. Hence, the value of ap(p) is calculated via Equation 3.18, with

the remaining parameters being caléulated via Equation 3.17 and then the
backward and forward prediction error sequences are updated. The order is
then increased to p+l and the procedure is repeated until the desired model
order is reached.

van den Bos [38] noted that MEM is equivalent to a least squares
fitting of an AR model. More specifically, Kay and Marple [23] note that MEM
can be viewed as a constrained least squares minimization problem because, as
is indicated by Equation 3.15, the sum of both the forward and backward error

energies (squared error terms), as given below
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n
Iep(i)l2 + Y |b_(i)|2 3.19

n
E= )
i=p+l i=p+1

is the minimization criteria for MEM.

3.2 LSQ Parameter Estimation on Simulated Gaussian Data
LSQ methods, as is shown in S;ction 3.3, are optimal when applied to a
Gaussian random process in terms of maximum likelihood estimation which
provides the best linear unbiased estimates. Simulation studies using LSQ
parameter estimation were carried out on computer generated Gaussian AR data.
The simulated data were generated using a Gaussian sequence, e, with variance
1.0 and mean 0.0, driving an 8th order AR model with the following
parameters:
-0.471  a, = 0.638 a

3
-0.304 a

a; = 0.838 a,

a5 = 0.518 a6

4 -0.429

7 = 0.182 a8

This set of parameters was calculated from EEG data and the set was selected

-0.243

as being typical for an 8th order AR model of actual EEG. The Gaussian
sequence e. was generated from a uniform white sequence via the procedure
given by Box and Muller [39]. The uniform pseudo-random number generator was
based on a "generalized feedback shift register algorithm" which is given by
T.G. Lewis and W.H. Payne [40]. They demonstrate that this generator has
excellent random properties and a sequence period of 2 raised to the jth
power, where j 1is the integer word length which in this case was 31.

Fifty sets of estimations using different random data segments of
lengths n=1000, n=500, n=100, n=64, and n=32 were carried out. The mean

squared error (MSE) between the actual and estimated parameter values were
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calculated for each set. The results are summarized in Figure 3.1. These
results show that the MSE began to increase significantly when the segment
length was decreased to n=100 and they became very large when the segment
length was reduced to n=32, This points to, in terms of parameter estimation
efficacy, a practical lower bound on segment size. Ideally, segment sizes in
the order of n=500 would be preferable, but in the case of actual EEG, there
is a need (see Section 4.5) to make the segment size as small as possible.
The EEG data was sampled at 64 Hz (see Section 4.1), and therefore, a one
second segment contains only 64 data points. Since the MSE and SE became so
large at n=32 and since it was significantly less at n=64, it was decided
that one second (n=64) should be the absolute lower bound on Segment length
for EEG data. Ultimately, a segment size of 1.5 seconds (n=96), moderately
above this lower bound, was utiliZed‘in the single trial analysis method (see
Section 4.4). Further discussion on segment length relating specifically to

the EEG data used in this thesis work is provided in Section 4.5.

3.3 Deviations from Gaussianity

Several researchers, such as McGillem et al. [13], Jansen et al. [25]
and Smith and Lager [41], employed AR parameter estimation in various appli-
cations involving EEG. 1In this work, the required parameter estimation was
based on estimation methods involving least squares, which are generally
optimal in Gaussian processes. However, it has been shown [42] that the
performance of these methods can, under certain circumstances, significantly
break down under even slight deviations from Gaussianity. Although it was

discussed earlier in Section 2.2 and 2.3 that there was considerable evidence
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to expect EEG to be generally Gaussian, there is certainly no guarantee that
sample segments of EEG will always be strictly Gaussian. This prompts
questions about both the Gaussian nature of sample segments of EEG, in
particular relatively short segments, and the resulting performance of AR
model parameter estimation techniques under conditions of varying degrees of
deviation from Gaussianity.

A considerable amount of work has been carried out on robust estima-
tion of location parameters and linear regression model parameters in the
case of independent and identically distributed (i.i.d.) observations. The
basic goal of a robust procedure, for the purposes of this thesis, is to
provide good estimates when the data has a small number of outliers (in the
order of 5 to 20 percent) causing the assumed, Gaussian in the case of EEG,
distribution function to be contaminated. In addition, the robust procedure
should provide estimation results which are not significantly different from
the conventional LSQ methods when the data is not contaminated with outliers.
Location Case |

There are a number of robust methods but the most satisfying to date
appear to be those given by modifications to maximum likelihood. Hogg [43]
provides a good background tutorial on robust methods and the following brief
description of modified maximum likelihood methods is based on that tutorial.
If X{s X5, cee.. X area random sample from a probability density function
f(x-0) where © is a location parameter, then the logarithm of the likelihood

function is given by

n n
inL(0) = ¥ Inf(x,-0) = - ) p(x,-0) 3.20
i=1 i=1

The maximum likelihood method maximizes 1ln L(©) or in terms of the p function
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minimizes

n
L p(x;-0) = K(O) . 3.21
i=1

Assume that the minimization can be achieved by differentiating and solving

K'(0) = 0. 1In other words, find the value of © that satisfies

n
Y ¢ (x.-0) =0 3.22
i=1 1
where
Y(t) = p'(t) = -£'(£)/£(t) ' 3.23

The value of © that minimizes K(©) is termed the maximum likelihood
estimate of © and is denoted as é. Robust M-estimates are generated via
Equation 3.22 except that different psi functions are used than that
described in Equation 3.23. Each different psi function describes a specific
type of M-estimate. The basis of robust M-estimates is to find psi ()
functions that will protect against outlier data po%nts that cause undue
influence on the estimation result.® An example of such a psi function is
that due to Huber [44]. It is designed to deal with data that is distributed

normally in the middle with double exponential tails ("heavy-tailed”

distribution). The psi function is given by

-C t < -c¢
p(t) = { t [t] s ¢ 3.24
c t > ¢

where ¢ 1is a tuning constant. A scale invariant version of the M-estimator

is given as

n X.—0
¥ow(——) =0 3.25
i=1 s

vhere s is a robust estimate of the process scale. In this case, ¢ = 1.5
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is often selected to allow data from a truly Gaussian distribution to be
uninfluenced by this psi function while still providing the desired
protection from outlying points. The solution to Egn. 3.25 is typically
found by a block mode iteration scheme, such as the iterated-weighted least
squares (IWLS) procedure [45]. Other commonly used psi functions are
Hampel's three part redescending and Tukey's Bi-weight.

It should be noted that, the calculation of the psi function for a
Gaussian distribution demonstrates that the LSQ estimate is the maximum

likelihood estimator. The Gaussian distribution is given by [46]

exp [T]
f(x-0) = 3.26
V2no?
and hence
1 (x-0) 2
p(x-0) = 5 tn(2mo?) + 55— 3.27
and
V(x-0) = %; (x-0) ' 3.28

Applying Eqn. 3.22 it follows that the maximum likelihood estimator is the

value of © that satisfies
1 n
— ¥ (x.-0) =0 3.29
2
0% .3y i

yielding the well known result
o=x ‘ 3.30
which is exactly the LSQ estimate of © [43].
Regression Case
The above methods can be extended to the block mode linear regression

case (see Hogg [43]). Given the linear model
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Y=Xa+e 3.31
where: X is n x p data matrix
a is a parameter vector of order p

e is a residual vector of order n
P is the order of the model
n is the number of data points

It then follows that the expression to be minimized is now

3.32

[ lngls)
el
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!

i

where: Y3 is the ith data point
X, is the ith row of the matrix X
Considering the p first partial derivatives, the following set of p equations

must be solved

ne~as
»
<
[l
|
H
Il
o

3.33
i

where se is a robust estimate of the standard deviation of the residuals,

Again, this set of equations can be solved using a IWLS procedure and Hogg

[43] recommends the following robust estimate

median Iei - median(ei)l

Se T 0.6745 3.34

Autoregression Case

The application of robust methods to time-series data has lagged
behind the application to the i.i.d. case, probably, as suggested by Martin
[47], because of the considerablevdiversity in qualitative features of time-
series data sets as well as the possible dependency that may arise in the

residuals due to data outliers that occur in patches (correlated). Martin
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[47] applies robust estimation to time-series data and shows that many of the
concepts from the i.i.d. observations case can be applied directly. The
greatest difference seems to occur in the definitions of the robust qualities
of the given methods due mostly to the added difficulties mentioned above.
Martin (47] also points out that for data to qualify as a time-series outlier
it only has to be "different" on the innovations (residual) scale not the
process scale, Since the innovations scale is typically 10 to 10,000 times
smaller than the process scale the outliers will often be impossible to
visually detect in a plot of the raw data.
Martin [47] identifies three types of outliers that may occur in time-
series data:
1) independent isolated gross-error outliers which may be caused by various
recording (measurement) errors
2) patchy type outliers whose behavior seems to be uncorrelated with the
behavior of the rest of the data - this may be caused by brief malfunc~
tions in the data collecticn system, inherent behavior of the process or
maybe other unaccountable effects
3) patchy outliers whose behavior does appear to be related to the rest of
the data with the possible exception of an initial jump - this type of
outlier may be caused by unusual events within the process
He also suggests that two types of outlier models can reasonably simulate the
above types of outlier activity. The additive outlier model would apply for
types 1 and 2 while the innovations outlier model would apply for type 3.
The Innovations Outlier (IO) model is described in [47] as

X; = Y  ax, .+ e, . 3.35
k=1

where the innovation sequence e is i.i.d, with a symmetric distribution G

and the observations are given by



33

vy, = X. . 3.36
Innovation outliers occur when G is heavy-tailed. Martin and Thompson [45]
have found that this type of deviation from Gaussianity does not cause,
except perhaps in extréme cases, serioﬁs problems for the conventional
estimation of parameters from a time-series,
In the case of the Additive Outlier (AQO) model, the observations are given
by
y; =X + A 3.37
where xi is defined as in 3.35 with G Gaussian, vi is independent of X, and
2 has a symmetric distribution. A suitable distribution for vifor the
i,i,d. case is the contaminated-normal with degenerate central component
which has the following form [45]
CND(y,oc2) = (1-7)N(0,0) + yN(O,02) 3.38
where y 1is the proportion of contamination and the notation N(u,c?)
represents a normal (Gaussian) distribution with mean g and variance o?.
With this distribution, the probability that v, = 0 is the probability that
y; = %5 which equals 1-y and in typical applications 0.01 < y < 0.25. 1In
contrast to the IO case, it has been shown [45,47,48] that conventional time-
series parameter estimation is highfy non-robust under this additive type of
contamination. Although, ] has been restricted above to the i.i.d. case it
has been found [45] that schemes which deal well with this type of outlier
also deal best with the patchy type of outliers. Furthermore, Martin and
Thompson [45] point out that; in practice, the details of the outlier distri-
bution for v, are largely irrelevant because it would be a poor robust

estimator that depended significantly on a given distribution for V.

A generalized robust M-estimate (GM-estimate) [47], a member of the
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class of bounded-influence autoregression (BIFAR) estimates, was shown to

have robust qualities for the AO case and is given by [42]

n yi - ?_{'ir_ 2
) X, Wk, )b (F——) =0 3.39
i=p+1 P P e

Note that except for the weighting factors W(gi), these equations are of the
same form as the equations given for the M-estimate. As described by Martin
[47], the role of the additional weighting factors is to down-weight the
summands of Equation 3.39 for which §$§ is a poor predictor because one or
more of the values in X, are too large. He shows that an appropriate calcu-

lation of these weights can be achieved by letting

W(§i) = w(di) 3.40
where di is defined as
Eg C—l x; 3.41
dr(xzy) = ———

and C is the pxp covariance matrix For the pth order AR model of the process
and w(.) is a non-negative decreasing weighting function, typically of the
form -

w(t) = ¢ ¢(t/e)/t 3.42
where ¢ is a tuning constant. Hence, there are at least two tuning constants
required: one for the psi function and one for the w function. The value d2
in 3.41 is proportional to §§C_1§i; this expression, known as the
Mahalanobis distance, provides, as noted by Martin [47], a natural metric by
which the relative "largeness" of X, can be determined.

The GM-estimates can be solved using an IWLS procedure as given below

[45]
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= j T ~j+l
L X, W(x. ) B: (y.-x.__a )=0 3.43
j=p+#] TP TP 1 7L AP j=1,2, ... NIT
where
T 7J
- X.
pCi i T
oJ
. P e M
Bl = s . 3.44
1 e P
N
yi Zi-p 2

The process to obtain GM estimates requires starting with model order p=1 and
sequentially increasing p until the desired order is reached. At each
model order in this sequence, a set of p equations resulting from Equation
3.43 are solved for each of the NIT iterations. MEM estimates for a and the
corresponding robust estimate of s, are used as starting values for the
iterations of Equation 3.43, The reason that the model parameters must be
estimated sequentially is due to the manner in which a robust estimate of C-1
is calculated. It has been found [47] that a successful approach to obtain a
robust estimate of C-! is based on the factorization
C-: = ATA 3.45

where A 1is upper triangular and is given by

_E(P—k) -k
, s_(p-k) 1>k
e
Akl = { . 3.46
—_— R = l
se(p—k)
0 2 <k

where k = 1,2,....,p-1 and a(p-k), se(p—k) are the parameter estimates and
residual standard deviation for model order p-k and the required starting

value of sez(O) is set equal to the variance of the original data sequence
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Y- Hence, the pxp matrix C-1 is represented in terms of the AR parameters
and the corresponding residual standard deviations derived for model orders
up to p-l. Therefore, by fitting AR models in succession, the prior GM
parameter estimates at model order p-1 will enable the construction of AP,
the A matrix at the pth iteration, which provides the robust estimate of C-1
via Equation 3.45 to be used for the current GM parameter estimate at order

P.
3.4 GM Estimation on Simulated Contaminated Gaussian Data

Simulation studies were carried out to determine the relative
performance of robust GM estimation methods as compared to the conventional
LSQ (MEM) estimation method when applied to eighth order AR Gaussian data
with 0%, 10% and 20% 1levels of AO contamination. Additive outliers are
studied because conventional parameter estimation is not robust under this
type of contamination (see Section 3.3) ‘and also because, the single trial
analysis method (see Section 4.2)° is largely based on additive outlier
concepts. The contamination for these studies was produced based on the AQ
model given in Equation 3.37 with the distribution G being Gaussian with
variance 1.0 and mean 0.0. The distribution for v, was of the form given in
Equation 3.38 with ¢2=2.0 and =0, 0.1, and 0.2, The simulations were
carried out on data segments with a length equal to 100 points because this
reflects the segment length used on the actual EEG signals as described in
Chapter 4.

Figures 3.2, 3.3, and 3.4, show the MSE performance of the LSQ, GM,

GM1l, and GM2 estimation methods on fifty (N=50) random simulated 8th order AR
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Gaussian processes with 0%, 10%, and 20% levels of A0 contamination respec-
tively. The GM1 and GM2 methods are extensions to the GM estimate which will
be described in Section 4.3. In these studies, as suggested by Martin and
Thompson [45], the Huber psi function, as described in Equation 3.24, was
used for the first two iterations (j=1,2) of Equation 3.43 and then Tukey's
bi-weight

_ t(l - (t/c)?)? lt] < ¢
vty = { 0 It] > c.

3.47
was used for the last iteration (j=3=NIT).
Through trial and error, the various tuning constants were selected to

provide the best performance in term of MSE and are summarized below

c
Huber psi 1.0
Tukey psi 3.0 )

w based on Huber psi 1.3

‘ These results show that the robust methods perform, in terms of MSE,
almost as well as the LSQ method on the uncontaminated Gaussian data. With a
10% level of AO contamination the LSQ performance falls off dramatically.
The robust methods perform much better with the GM2 method performing almost
as well as in the uncontaminated case. At the 20% level of contamination the
performance across all the methods has dropped significantly. However, the
GM2 method is still clearly the best performer with a MSE generally less than
the LSQ method in the 10% contamination case. The results support the
expectations of robust estimation in that the robust methods perform nearly
as well as the LSQ method on uncontaminated data but perform significantly

better than the LSQ method on contaminated data.
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CHAPTER 4

OUTLIER PROCESSING OF SINGLE TRIAL EEG
4,1 Experimental Design and EEG Data Acquisition

The objective of the experimental data acquisition was to obtain EEG
signals from subjects during a controlled voluntary skilled motor activity
(active task) and during a controlled state in which the subjects were alert
but not involved in any motor activity (idle task).

For the active task, subjects placed their right hand in an apparatus
which oriented their hand in a standard position. The task required them to
aim for a "target" position by performing a slow smooth (ramped) extension
with their right thumb. During the movement the tip of their thumb pressed
against a lever that provided a small opposing force to the thumb movement.
In the starting position the lever rested on a support so that there was no
initial load and the thumb was in a relaxed state. A potentiometer attached
to the lever provided position information which was used to derive an
encoded thumb movement signal, A sketch of the apparatus is given in Fig.
4,.1a.

The duration of the ramped  extension was approximately one second
long. After subjects completed the extension and had returned their thumb to
the starting position, visual feedback, via different colored lights, was
preseﬁted to them indicating whether they had hit, overshot, or undershot the
target position. During thumb movements subjects were asked to fixate on the
visual feedback area in an attempt to minimize eye movements and to prevent
subjects from looking at their thumb. After subjects were given some

practice trials, they were asked to carry out fifty self-paced repetitions
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with their right thumb. On each trial, acquisition of the EEG started 1
second before thumb movement onset (determined by monitoring the encoded
thumb movement signal) and then continued for 4.5 more seconds at which time
the feedback was presented. The acquisition was then halted one second after
presenting the feedback which resulted in a total epoch 1ength of 6.5
seconds. The above active task was based on a previous study into motor
potentials carried out by Grunewald and Grunewald-Zuberbier [7]. 1In their
analysis they utilized conventional averaging techniques and their grand
averages across seven subjects, 35 trials each, are given in Figure 4.1b.

- For the idle task the subjects were kept in the same physical
situation as in the active task but in this case they were not performing any
thumb movements. Twenty epochs of EEG, 6.5 seconds in length, were collected
from the subjects under this condition. After each epoch was collected, the
feedback lights flashed to indicate to the subject that they had 10 seconds
to relax before the onset of the next epoch. After taking a short pause the
onus was on the subject to fixate their eyes on the feedback lights in
preparation for the onset of the next epoch.

The EEG signals were recorded from the scalp using silver/silver
chloride electrodes. This type of electrode possess the most appropriate
characteristics for EEG recording in terms of low potential differences, long
time constants and low resistance between the electrolyte and the metal
surface of the electrode. The electrodes were "cupped" shaped with a small
hole in the top and they were firmly attached to the scalp around the rim
with the use of collodion. Electrolyte jelly was injected into the air space
under the "cup" of the electrode which provided a good electrical connection

between the scalp and the electrode. Typically the electrode impedance
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between the scalp and the reference electrode was approximately 2500 ohms.
The signal was initially recorded from three standard international 10/20
system electrode sites Cz, €3 and C4 (See Jasper [49]). The signal from each
of these electrodes was referenced to linked ear lobes. A bi-polar EOG
signal and the corresponding encoded thumb movements were also recorded. The
EOG electrodes‘were placed on the supra orbital ridge and the external canthi
of the right eye.

The EOG signal was utilized in a very conservative artifact rejection
criterion which rejected any EEG epoch that had a corresponding EOG signal
that at anytime during the epoch fluctuated above or below baseline by more
than a given threshold value. This value was nominally set at 17 microvolts.
As well, any EEG epoch that was not rejected by the above criterion but
contained peak values that exceeded baseline by 43 microvolts, typically due
to faéial EMG, were also rejected as artifact-contaminated. In addition, for
the active case, trials not containing a reasonable thumb movement were also
rejected. Ultimately, based on the above selection criteria, 15 trials from
both the active and idle cases were utilized from each of the four subjects.
The EEG signal that was used for all the subsequent signal analysis was taken
from the C3 electrode site which was contralateral to the thumb movement.

In all cases the EEG and EOG signals were initially amplified by a
Beckman 711 polygraph using an analogue lowpass filter with a -3dB point at
100Hz (20dB per decade roll-off) and a highpass analogue filter with a time
constant of 14.7 seconds. The signals for each epoch were digitized in real
time at a rate of 1024 samples per second and were stored on a hard disk.
Before any signal analysis schemes were applied, the EEG signals were
preprocessed by a 20l-point phaseless digital lowpass filter which had a

cutoff frequency of 29Hz (-3dB point), a transition width of 3Hz (-24dB at



46

32Hz), and a minimum stopband attenuation of -27dB. It is generally agreed
[50] that almost all the power in the normal EEG is between zero and thirty
Hertz. Therefore, with the above digital filter the data was resampled at
the relatively low rate of 64 Hz which is desirable because as the sample
rate increases, there is a corresponding need to increase the AR model order
since the time dependency is spread over a greater number of sample points.
Generally, one wants to make the best possible trade-off between using a
sufficiently high sample rate that will allow for the accurate representation
of the highest frequency of interest and yet within that framework keep it as

low as possible so that the required model order is minimized.
4,2 Neurological Premise

The concept that event related information is contained in EEG time
series outliers is based on the followiné model of summation of electrical
brain activity at a given point on the scalp. Under idle conditions the
ongoing electrical activity that sums, spatially and temporally, at a given
point on the scalp can be modeled as an overall ongoing process as "observed"
from that point on the scalp duringga particular time interval. When event
related potentials, such as motor related potentials, are generated by a
unique additional process they are "added" into the pre-existing ongoing
process and would appear as additive outlier content when considered from the
point of view of the ongoing pre-existing process. Therefore, if one could
distinguish outlier. points from pre-existing process points in the single
trial active EEG time series then these outlier points could be used to

provide information about event related potentials on a single trial basis.
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The underlying p rinciple of the single trial processing scheme is to
generate an AR model of the active EEG signal using a robust parameter
estimation method that will represent the ongoing, underlying process by
down-weighting unusual data points (see Section 3.3). This estimated model
is then used in a robust signal estimator (see Section 4.3) which produces an
estimated signal of the ongoing, underlying EEG process, The difference
between the original measured signal and the estimated signal is considered
to be additive outlier content (see Section 4.4.1). The outlier content is
then processed (see Section 4.4.2) to produce waveform patterns that provide
single trial event related information.

4.3 Signal Cleaning Process

An approach to detect outlier points in a time series was proposed by
Martin and Thomson [45]. They used this system not to study the character,
or information contained therein, of the outliers but rather to produce a
"cleaned" time series which was used as part of a process that produced
robust spectral estimates. This cleaning process is based on a "robustified"
Kalman signal estimator. The objective of the cleaning process is to provide
an estimate of the original signal without the AO content. It relies on a
estimated pth order AR model of the process X, as given in the AO model
(3.37) which for convenience is repeated below

y; =%tV 4,1

This AR process written in state variable form is given by

x. = ¢ x, + u. 4.2
=1 7 =i-1 =i
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- T_
where §i—(xi’xi—l"°"xi—p+l)’ gi-(ei,0,0,...,O), and
a, a, . .. ap
1 0 0
I 0 4.3
o o0 ...1 o

Note that, given the above definition, the state .9 is equal to the current

value of x. and past values of x. upsto x. .
i i i-p+1

"Robust" estimates of the state X, are calculated recursively with the

following expression [45]

°T
- - m. y. - X . .a
) I i %32
X, =ox, ,+ 2 s; ¥ ( 5 ) 4,4

where m. is the first column of the pxp matrix Mi which is recursively

calculated as follows

_ T
Mi+1 = @Pi® + Q 4.5
and
y. - ;T a m,m
_ N i =i-1 =, —=i=i
P1 = Mi w ( 5 ) S 2 4.6
i i

where Q is a pxp matrix with all zero entries except the first element which
is equal to a robust estimate of the variance of the residual sequence, i.e.
Q(1,1)= Se2 and s: is a time varying scale defined by

si2 = Mi(l’l) 4.7
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The cleaned data at time i, will then be the first element of the estimated

state x., which is

. = X, 4.8
ic i

In other words, Yie is an estimate of the process Y3 without the influence of
the additive outliers, v, . Note that with the scaling given 4.7 and given

that there is no influence from thé psi function, as would be the desired

result when there is no outlier content, X, =Y.

Hampel's three part redescending psi function [43] was used in

Equation 4.4 and it is given as follows:

It 0< It] < a
a a< |t] <b
v(t) = sign(t) { o1t 4,9

o bs< |t] <c
0 c < |t
where a, b and ¢ are tuning parameters. In a similar fashion as in the case
of GM-estimation the w function is of the form
w(t) = ¥Y(t)/t 4,10

The cleaning process described above was utilized as part of the
procedure to obtain GM1 and GM2 AR parameter estimates. A GMl estimate is
based on the estimated cleaned time series and a GM2 estimate is a further
iteration where the parameters from GMl are used in the cleaner to provide a
theoretically improved estimate of the cleaned time series. Figure 4.2
provides a block diagram of the procedure to obtain GM, GM1, and GM2
parameter estimates. Through the simulation studies described in Section 3.4

it was found that the best performance in terms of minimizing the MSE was

obtained by setting the tuning parameters in Equation 4.9 as given below



ROBUST AR PARAMETER ESTIMATION

I y(k)

Figure 4.2

\V4

GM ESTIMATION

y(k)

N GM ESTIMATE

\/

N
a

CLEANER

\J/i(k)

GM ESTIMATION

y(k)

/

'\A'GMI ESTIMATE
] ,

VAL

CLEANER

k)

GM ESTIMATION

> GM2 ESTIMATE

50



51

tuning parameter

a .
b 2.2
c 3.0

4.4 Extracting and Processing Outlier Information
4.4,1 Extracting Outlier Information

" The outlier extraction process for the EEG data is accomplished by
taking the epoch, 6.5 seconds long, and dividing it into 1.5 second segments
with each segment overlapped by .75 seconds. Each segment is modeled at the
order expected for idle task EEG (12-14) and hence, reducing the ability of
the model to account for active task information in the EEG (see Section
4.5). The signal from each segment is then cleaned using the estimated model
parameters in the cleaner described in Section 4.3. The outliers are then
calculated by taking the difference between the original and cleaned signals
(see Figure 4.3). ¢

The outlier extraction process was initially tested by applying it to
Gaussian simulated 12th order AR . data which contained 10% "patchy"
(correlated) additive outlier contamination. This ﬁest confirmed that the
extraction process had some distinct ability to recover the outlier content
from the simulated signal. Patchy contamination was used since it was
expected that in the case of real EEG the additive event related potentials

would be correlated., ' As suggested by Martin and Zeh [51], the correlated

values for v, were generated by dividing the segment into equal halves.
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Immediately following the first non-zero 2 in each half the rest of the
non-zero Vi'S were grouped together. These grouped vi's were used to produce
correlated vi‘s via the following expression
vi o= evi  + (- 01)1/2v, 4.11

where a value of © = 0.6 was used in these simulation tests. This procedure
results in a correlated outlier series which has roughly the same variance
as in the independent case [51].

It was found in this application that the tuning parameters for the
psi function given in Equation 4.9 needed to be set such that it provided a
stronger influence than in the parameter estimation application discussed in
Section 4.3. By trial and error the best performance of the extraction
process was obtained by setting the tuning parameters as given below

.

tuning parameter

a 1.0
b 1.2
c 1.8

Some example results from these tests, which qualitatively demonstrate the
potential performance of the extraction process, are shown in Figure 4.4,
Each example contains the same randomly generated vz contamination which was
used to contaminate different Gaussian AR sequences X, . The broken line in
each plot represents the actual vz values and the solid line represents the
outlier content that was extracted via the the outlier extraction process.
Figures 4.4a through 4.4c show threeldifferent examples of using GM2 and LSQ

parameters in the cleaning process. Figures 4.4d and 4.4e are the second and
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fhird examples repeated using GM and GM]1 parameter estimation. It is clear
from these examples that the procesé performs better with GM2 estimates than
with GM estimates and much better than with LSQ estimates. The performance
of GM2 and GM1 are quite similar with perhaps some subtle improvements in the
case of GM2. Since these tests revealed three clearly discernable jumps in
performance in using LSQ, GM, and GM2 parameter estimates, it was decided
that subsequent studies using outlier detection in this thesis work would be

restricted to those three estimation methods.
4.4,2 Processing Outlier Information

Processing the extracted outlier information is accomplished by taking
the outlier content from each EEG segment and averaging it together with the
outlier content from the corresponding overlapping segment. This results in
an outlier pattern spanning the whole 6.5 second epoch. The outlier pattern
is then smoothed.by convolving it with a 16 point tapered smoothing window
which is based on a minimum-bias spectral window suggested by Papoulis [52].

It is given by

1 + cos(2m k/16)
[16(2m k/16)2 - m2]2
where k = 0, +/-1, +/-2, .... ,+/-16

W(k) = 1l6n? 4,12

The resulting smoothed pattern constitutes the output waveform of the

single trial processing method.
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4.5 AR Spectral Analysis

Preliminary studies involving AR spectral analysis were wuseful in
providing some measure of the ability of the AR model to represent the EEG
signal. As well, these studies were instrumental in establishing appropriate
EEG segment lengths and a procedure for the selection of the AR model order.

It can be shown [23] that the AR spectral estimate 1is

Se(f)
S(f) = D 4,13
1 -y ay exp--('ﬁ%gi)l2
k=1 s

where Se(f) is the power spectrum of the residual sequence e; and fS is the
sample frequency. Since the term Se(f) applies to the residuals which are in
theory white, the resulting power density function of the residuals should be
flat and therefore Se(f) will be a constant independent of frequency.
Ideally, the value of this constant (noting that the mean of the residuals is
zero) will be proportional to the variance of the residuals [46]. Hence, the
final expression for the conventional AR spectral estimate is obtained by
replacing Se(f) in 4.13 with sé/fs, where sé is an estimate of the variance
of the residuals and the l/fs term is included in the numerator so that the
true power of the corresponding analogue signal will be represented [23].

The EEG signal characteristics from subjects, particularly during
highly active mental states, are changing relatively quickly. Single trial
AR spectral estimates from adjacent one second segments demonstrated that
considerable change in signal characteristics could occur over this span of

two seconds. An example of this is provided in Figure 4.5. It contains four

consecutive AR spectral plots, each derived from a one second segment of
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Figure 4.5 AR spectral estimates of one second segments of
active trial EBG consecutively offset by a t_hlrd of a second.
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active EEG and each offset by 0.333 seconds (total span of ¥ o seconds). As
was discussed in Section 3.2, it was found that a practical lower bound on
segment length,_from a parameter estimation point of view, was approximately
one second. These findings ultimately lead to the utilization, as noted in
Section 4.4.1, of a 1.5 second segment length with an offset of 0.75 seconds
in the single trial processing method. This was an attempt to trade off the
need for short segments because of the relatively rapid changing signal
characteristics with the desire to raise the segment length above the lower
bound for purposes of improving the parameter estimation efficacy.

It was found that selecting the model order via conventional methods
such as Akaike's Information Criteria (AIC) does not work well with these
short segments [53]. Conclusions ‘were similar to Jansen [32] in that the
selection of an appropriate model otrder requires some trial and error and, if
possible, some a-priori knowledge of expected results. It was found useful
to try a number of orders within a reasonable range (for a sample rate of
64Hz, somewhere between 8 to 25), following the trend of the estimate as the
model order was increased. Features were identified that seemed reasonable
based on both the a-priori knowledge of the condition under which the EEG was
collected and a conventional FFT based estimate. The order was sequentially
increased, expecting the features to become better defined, until spurioﬁs
peaks began to occur. The appropriate model order was then selected to be
two or three below that value. Typically, model orders were selected in the
range of 12 to 14 from subjects during the idle task and in the range of 18
to 22 from subjects during the active task. Figures 4.6 and 4.7 provide
example AR spectral plots to demonstrate this model order selection procedure

for the idle and active task respectively.
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In the derivation of the éutoregressive spectral estimate an
alternative to assuming that the residuals will be perfectly white in the
calculation of Se(f) would be to estimate that quantity with a conventional
FFT based estimate. The residual signal can be thought of as a whitened
signal because the information that can be represented by an AR model has
been subtracted resulting in a signal with a much flatter spectrum. When the
FFT is applied to this prewhitened signal the inherent drawback of leakage is
greatly reduced. Application of conventional leakage control, such as
Blackman windowing, serves to further reduce this problem. The prewhitened AR
estimation method, therefore, combines the spectral inférmation from both the

AR model and the residual FFT spectral estimate. It is given by [45]

Sy, (f)
S(f) = 5 Ne , 4,14
1 -3 a, exp - (igﬂki)
k=1 £,

where SNe(f) is a spectral estimate of the residual sequence e using a
conventional FFT method. Some insight into the ability of the AR model to
represent short segments of EEG was gained by pursuing studies wusing
prevhitened AR spectral estimates. These studies demonstrated that when an
appropriate model order was utilized the conventional AR spectral estimates
were reasonably good compared to the prewhitened AR estimate which makes use
of information retained in the residuals (see Birch et al. [53]). This
indicates that the AR model, although not perfect, does represent much of the
information contained 'in a short segment of EEG. An example of both a
conventional and a prewhitened 12th order AR spectral estimate of idle task

EEG is given in Figure 4.8.
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4.6 Applying Outlier Processing to Single Trial EEG

4.6.1 Comparison of Segmented Cleaned Active, Original Active and Original

Idle Signals

It would be predicted, given &he above neurological premise, that the
original idle signal and the cleaned active signal should have little or no
evidence of motor potential activity whereas the original active signal
should contain evidence of motor poténtial activity. Figure 4.9 provides two
sets of plots: one with N=6 trials the other with N=15 trials. Each set
contains plots of conventionally averaged cleaned active, original active,
and original idle signals., Motor potential activity in the active case
should occur, approximately, during the first three seconds of the epoch,
noting that the actual thumb movement began one second into the epoch. These
plots demonstrate that the conventional averaging technique reveals some
distinct motor activity in the original active case (raised level of
positivity in the averaged signal during the first three seconds with a peak
at about two seconds). However, in the cleaned active and original idle
cases the averaging does not reveal any distinct motor activity. Hence, the
above prediction is substantially borne out. The strong negative peak in the
N=6 active task plot at about 6 seconds is the visual evoked response to the

feedback light and is not due to motor potential activity.
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4,6.2 Examples of Single Trial Outlier Patterns and Single Trial Raw EEG

To qualitatively demonstrate the results of the single trial
processing method, four example plots of the single trial outlier patterns
using GM2 model parameters paired with the corresponding raw EEG are provided
in Figure 4.10. Note the significant amount of information that is in the
outlier patterns which can not be easily seen in the raw EEG signals.
Results provided in the following sections demonstrate that the information
in these outlier patterns is relatéd to the thumb movements. However, at
this point it is interesting to note the many similarities of these single
trial patterns with the grand average waveforms from the Grunewald study

cited in Section 4.1.

4.6.3 Comparison of Averaged Active Outlier Patterns, Averaged Idle
Outlier Patterns and the Conventional Average of Active EEG

To demonstrate that there is some strong consistency in the active
case outlier patterns and very little consistency in the idle case outlier
patterns, the plots in Figure 4.11 have been provided. These plots contain
the averaged outlier patterns for N=6 and N=15 using GM2 parameter estimates.
As well, for comparison purposes, a plot of the conventional average for the
active case is also included in this figure.

The fact that the average active case patterns maintain a general
shape similar to the single trial patterns, strongly indicates that there is

information related to the thumb movement that is consistent from trial to

trial. On the other hand, the fact that the average reduces in magnitude and
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subtle features become less pronounced as N is increased, indicates that
there is a significant amount of uniéueness in individual trials that is lost
as many trials are averaged togethe;. This uniqueness is certainly in part
due to the variance in thumb movements from trial to trial which can be seen
clearly in Section 4.7. It is also expected that additional trial by trial
uniqueness is due to cognitive factors such as the mental intensity with
which the subject carried out the task. The average of the idle task outlier
patterns clearly demonstrates that there is no significant information that
is being reinforced across idle task trials. The conventional average of
active trials shows that with N's of 6 and 15 the motor potential information
is quite limited and the "smearing" effect of event related information that
is discussed above for the active case outlier patterns would also be
occurring in these conventional averages. Hence, with the conventional
averaging method, even with much greater N's as in the case of the Grunewald
study (see Section 4.1), the information obtained will be limited to that

which has remained relatively consistent across the trials.
4,6.4 LSQ Active Outlier Patterns Degrading with Higher Model Orders

It would also be expected, based on the neurological premise, that the
single trial processing method would perform best when the AR model order was
selected to best fit the idle case. As the model order is increased the AR
model would be expected to gain some improved ability to represent the motor
related activity in the active task EEG. Hence, the performance of the
single trial method should begin to degrade since the cleaning process, which

utilizes the higher order AR model, would lose some of its effectiveness in
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detecting motor related outliers. A pair of averaged active outlier pattern
plots using LSQ parameters for model order 12 (generally appropriate for the
idle case) and model order 22 (generally appropriate for the active case) are
shown in Figure 4.12, These plots demonstrate that the performance does
degrade, in terms of both the amplitude and the detail of features in the
averaged outlier pattérn, when the model order is better matched to the

active case.
4,7 Statistical Analysis of Features in the Outlier Patterns

The set of 15 active trial outlier patterns superimposed with the
corresponding encoded thumb movements from Subject #1 are given in Figure
4.13, The patterns, although unique from trial to trial, do seem to posses a
generally consistent waveform which contains features that appear related to
events in the thumb movements. Statistical analysis was carried out to
determine if features in the individual thumb movements are related to
features in the corresponding outlier patterns. Two features in the thumb
movement and three features in the outlier pattern were utilized in the
statistical analysis. The features are described below and are shown in

Figure 4.14.

Feature 1: Time from epoch onset to the point when the thumb movement

first reaches the "on target" position.

Feature 2: Time from epoch onset to the point when the thumb movement

first leaves the "on target" position.
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Feature 3: Time from epoch onset to the first dominant (greate

amplitude) positive peakn the outlier pattern.

Feature 4: Time from epoch onset to the first negative peak in the
outlier pattern after feature 3, that has a minimum of 5 units

magnitude peak-to-trough difference.

Feature 5: Time from epoch onset to the next positive peak in the
outlier pattern after feature 4, that has a minimum of 20 units

magnitude peak-to-trough difference on both sides of the peak.

There was an expectatién resulting from the earlier conventional study by
Grunewald and Grunewald-Zuberbier [7] and from observations taken from Figure
4.13 that feature 1 would be particularly related to features 3 and 4 whereas
feature 2 would be particularly related to feature 5. The sample correlation
coefficients between all of the features from Subject #l1 were calculated and
are summarized in Table 4.1. These results show that the correlation
coefficients between the features that were expected to be particularly
related are the strongest, with coefficient values all greater than 0.77.
Hence, this demonstrates that there is a strong consistent relationship
between features in the thumb movement and features in the single trial
outlier pattern. In particular, the relationship between features in the
outlier pattern and in the thumb movement was examined using the z-test for
the difference between correlations calculated on dependent samples (see
Steiger [54]). The results from these tests are also summarized in Table

4.1, They show that features 3 and 4 correlated with feature 1 significantly

.
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TABLE 4.1
SINGLE TRIAL FEATURE STATISTICS

Feature Correlation Matrix

feature 1 feature 2 feature 3 feature 4 feature 5
feature 1 1.0
feature 2 0.76 . 1.0
feature 3 0.78 0.51 1.0 '
feature 4 0.88 ' 0.69 0.71 1.0
feature 5 0.60 0.80 0.41 0..57 1.0
z-test on the Difference Between Correlations
Calculated on Dependent Samples
Correlation Coefficients z P
(one-sided)
feature 4 feature 5
feature 1 "0.78 0.51 1.91 0.029
feature 2 0.88 0.69 1.67 0.048

"feature 3 0.60 0.80 1.55 0.060
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more strongly than with feature 2 (p < 0.05). As expected, the correlation
between feature 5 and feature 2 was larger than that between feature 5 and
feature 1, but this difference achieved only a marginal level of

significance.
4.8 Application of Dynamic Time Warping to Outlier Patterns

All the initial work with actual EEG was carried out on the data from
one subject, referred to as Subject #l1. These initial investigations,
revealed that the use of dynamic time warping (DTW) provided the best
quantitative measure of performance for the single trial processing method
compared to the other previous analysis, Hence, DTW analysis was ultimately
applied to all four of the subjects included in this study. Specific results

are summarized in the following subsections.

4.,8.1 Standard Outlier Patterns using Dynamic Time Warping

DTW as described by Roberts et al. [55] was used to obtain standard
(template) representative single trial active outlier patterns for each
subjeét. The time warping procedure attempts to best match waveform A to
waveform B by shifting, expanding or contracting the time scale of waveform A
in such a manner that minimizes the "cost" of warping. The cost of warping

is based on the following cost function [55]

1

CTAEEM - AP | 415

where w is the warped time function (warped time axis) used to warp

waveform A, Q is the correlation between warped waveform A and waveform B, P



is a penalty function and A ishe penalty coefficient. The penalty function
is nonlinear such that the penalty for large expansions or contractions is
proportionately much higher than the penalty for small expansions or
contractions. The A coefficient is a tuning parameter that directly effects
how expensive it is to warp. In all the DIW applications used in this study
a A=75.0 was utilized because it was fouﬁd by trial and error that this value
produced reasonable warped waveforms; smaller values of produced A extreme
warpings whereas larger values of A produéed warpings that were only shifted
in time and contained very limited expansions or contractions.

A standard pattern for each of the four subjects was achieved by using
the procedure recommended by Roberts et al. [55]. The set of active single
trial patterns was warped against each pattern in that set. The pattern that
produced the lowest mean cost and variance across the set was then selected
as the best representative pattern of that set. The standard pattern was
then constructed by averaging together all the patterns in the set after
being warped to the above selected pattern. Plots of the standard patterns
for all four subjects using LSQ, GM and GM2 parameter estimation are provided

.

in Figure 4.15.
4.8.2 DTIW Cost Statistics on Individual Subjects

Once a standard active case pattern was obtained for each subject, it
was warped against the 15 trials of active outlier patterns and the 15 trials
of idle outlier patterns for each subject. Each time a pattern is warped to
the standard pattern a éost value is produced. This cost reflects how well

the single trial pattern "fit" the standard pattern. The lower the cost the
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better the fit. Therefore, it would be expected that the costs in the active
cases would be smaller than the costs in the idle case. A t-test designed to

test the difference between two means, given by [56]

}_{1 _}_{z
t = 4,16

2
J/ s,2 + 8,2
N

df = 2N - 2 = 28

where x, and X, are the sample means, s,? and s,? are the sample variances,

and N is the number of active and idle cases, was applied to the mean costs
for the active and idle cases. The results of this test for GM2, GM, and LSQ
model parameters for all four subjects are summarized in Table 4.2. This
test shows that in the GM2 case the difference between the means is highly
statistically significant (p < .001). The mean differences in the GM and LSQ
case are also statistically significant (ranging from p < .00l to p < .01)
except for Subject #4 with LSQ parameters where the difference was not
significant. These results strongly support the expectation that the costs
from the active case would be smaller than the costs from the idle case. 1In
turn, this implies that on average the active case patterns fit the standard

patterns much better than the idle case patterns.

4,8.3 Grouped DIW Cost Statistics

The average active and idle cost values from the four subjects were
considered together to provide inferential statistics about the actual popu-
lation (for all possible subjects); of mean differences between idle and
active cases. For each subject, the difference between the average idle cost
(over the 15 idle trials) and the average active cost (over the 15 active

trialé) was evaluated. The differences appear in Table 4.3 and form



SUBJECT

GM2 MODEL
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LSQ MODEL
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TABLE 4.2

DIFFERENCE BETWEEN IDLE AND ACTIVE WARPING COSTS

t-Test Results for the Difference
Between Means: df=28

DIFFERENCE

BETWEEN THE TWO-SIDED

MEANS t-VALUE
13.3 6.05
16.4 5.04
1.6 4.66
1.5 6.25
8.7 4.18
12.7 3.74
6.1 2.93
4.9 3.35
12,7 : 4.08
17.2 3.65
12.9 2.96

3.5 0.65

p <

0.001 .
0.001
0.001
0.001

0.001
0.001
0.01
0.01

0.001
0.002
0.01
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the basis of the inference to be made for all possible subjects. This was
carried out by considering the null hypothesis that the mean difference of
the actual population is zero and then applying a statistical test to deter-
mine whether that hypothesis should be rejected. The statistical test was a
t-test designed to test the difference between two means with correlated

(paired) samples. It is given by [50]

t = 5%9— df =N -1=3 4,17
MD

where MD is the sample mean difference (mean of the paired differences), SEMD

is the standard error of this sample mean difference and N equals the number
of mean differences (number of subjects). The standard error of the sample

mean difference is given by

54
SE.. = 4,18
MD P

where Sq is the sample standard deviation of the mean difference. With three

degrees of freedom a 95% confidence interval for the mean difference is given
by [50]

CI,, = MD £ 3.18(SE,) 4,19

The group statistics for GM2, GM, and LSQ parameter estimation are
summarized in Table 4.3. In the GM2 case the statistics imply that, even
given this small sample of four §ubjects, the hypothesis that the mean
difference of the actual population of mean differences is zero is strongly
rejected (p < .002). Alternatively, in terms of confidence intervals, it was
found‘that with 95% confidence the interval of 9.7 to 16.8 contains the
actual mean difference value. The implications are similar but less signifi-
cant in the GM and LSQ cases. These results imply that the mean cost differ-

ences between active and idle trials based on all possible subjects is highly

unlikely to be zero.



Subject #
1

2
3
4

Mean Cost
Std. Dev.
Std. Error

TABLE 4.3

GROUP STATISTICS

Mean Cost Difference Between
Active and Idle Cases

GM2 MODELING GM MODELING
13.3 8.7
16.4 12.7
11.6 6.1
11.5 4.9
13.2 8.1
2.28 3.45
1.14 1.73

Summary for GM2 Modeling

Mean Difference =

13.2

two sided t-test
t = 11,58 : Hy, rejected p < 0,002

95% Confidence Interval:

9.6 to 16.8

Summary for GM Modeling

Mean Difference = 8.1
two sided t-test ,
t = 4.68 : H, rejected p < 0.05

95% Confidence Interval:

2.6 to 13.6

Summary for LSQ Modeling

Mean Difference =

11.6

two sided t-test .
t = 4.03 : Hy, rejected p < 0.05

95% Confidence Interval:

2.4 to 20.8

95

LSQ MODELING
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TABLE 4.4
BAYESIAN CLASSIFICATION
Assuming Probabilities of Either Case Occurring are Equal

a) Cost of Misclassification set Equal

ACTIVE
BOUNDARY CLASSIFIED FALSE

SUBJECT " VALUE CORRECTLY POSITIVE

GM2 MODEL :

1 11.35 14/15 2/15

2 19.88 15/15 1/15

3 19.10 13/15 5/15

4 S 17.05 14/15 - 3;15
56/60=93% 11/60=18%

GM MODEL -

1 : 15.28 12/15 4/15

2 19.10 15/15 4/15

3 16.93 12/15 8/15

4 13.26 13/15 5/15
52/60=87% 21/60=35%

LSQ MODEL

i 22.58 13/15 4/15

2 41,06 14/15 5/15

3 34.08 13/15 7/15

4 20.52 5/15 2§15
45/60=75% 18/60=30%

b) Cost of Misclassifying an Idle Case as Active Set to be 5 Times

Greater

GM2 MODEL
1

2
3
4

GM MODEL

ENERY NN

LSQ MODEL
1 .

2
3
4

9.18
19.88
19.10
17.05

8.57
15.58
7.53
6.38

12.22
28.68
21.35

2.92

14/15
12/15
10/15

12/15
48/60=80%

9/15

—__0/15
16/60=26%

1/60=1.7%

0/15
2/15
0/15
0/15
2/60=3.3%

1/15
2/15
3/15
0/15
6/60=10%
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4.8.4 Bayesian Classification of Active Cases versus Idle Cases

A Bayesian classifier was applied to the cost values to classify
active cases verses idle cases. It was assumed that the cost values had a
Gaussian distribution. This classification was carried out wunder two
different conditions: cost of misclassification set equal and cost of
misclassifying an idle case as an active case set to be five times greater.
In both conditions the probabilities of either case occurring were set equal.
The results of the classification under both conditions across the four
subjecté for GM2, GM and LSQ are provided in table 4.4, Under the first
condition 93% of the GM2 active cases were correctly classified with 18% of
the idle cases being classified as active. The number of false positives is
fairly high if the active cases are going to be used in a control applica-
tion. Hence, the second classifying condition was carried out were the
decision boundary was moved closer to the active case mean by increasing the
cost of a false positive. In this case the percentage of GM2 active cases
correctly classified was reduced to a still very respectable 80% but in so
doing reduced the false positives tg a very low 1.7% (only one idle case out
of sixty was classified incorrectly).

The results using GM and LSQ outlier patterns under the first condi-
tion were fairly good in classifying active cases correctly but both had a
very high percentage of false positives. Under the second condition, how-
ever, the classification performance using GM and LSQ outlier patterns fell
off dramatically. This is perhaps the best demonstration of the superiority

of utilizing GM2 parameter estimates in the single trial processing method.
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4,8,5 Cross Validation and Intersubject Reliability Using DTW

A combined measure of the cross validation of a standard pattern on a
unrelated set of outlier patterns and the intersubject reliability of the
standard patterns was obtained by applying DTW with the standard pattern from
one subject to the outlier patterns from a different subject. The GM2
standard patterns from each subject‘were applied to the GM2 outlier patterns
of each of the other subjects. Tﬁis resulted in twelve addition sets of
active and idle costs. The t-test for the difference between two sample
means was applied, in a similar manner as in Subsection 4.8.2, and the
difference was highly significant (p < 0.001) in every case. In addition, in
a similar manner as in subsection 4.8.4, Bayesian classification with the
cost of misclassifying an idle case as an active case set to be five times
greater was carried out and the results are given in Table 4.5. On average
the percent correct using cross—-matched standard patterns fell off by about
16% when compared to the percent correct using matched standard patterns for
subjects 1,3 and 4 while it stayed exactly the same for subject 2. The
percentage of false positives was almost exactly same for both the matched
and cross-matched cases. The overall average of active cases correctly
classified using standard patterns from one subject on the outlier patterns
from the other subjects was 67% with only a 3% overall average of false
positives. These results strongly indicate that the standard patterns do
cross validate on data that was not used in the construction of these
patterns and that these patterns provide substantial intersubject

reliability.



TABLE 4.5

SUMMARY OF BAYESIAN CROSS-MATCHED CLASSIFICATION

Cost of Classifying an Idle Case as an Active Case

Set to be Five Times Grea

Standard _ Data from Subject #
Pattern # 1 2
C F C F C
1 14/15 0/15 12/15 1/15 9/15
2 11/15 0/15- 12/15 1/15  8/15
3 ' 12/15 0/15 12/15 ]/15 ) 10/15
4 11/15 1/15% 12/15 1/15 6/15

C = Active Trial Classified Correctly

AVERAGED RESULTS

With Matched
Standard Pattern

Subject Active False
Number Correct  Positive
1 933 0%

2 80% ’ 7%

3 66% 0%

4 80% 0%
OVERALL T 80% y 2%

AVERAGE

ter

F
0/15
0/15
0/15
0/15

C
8/15
11/15
'9/35
12/15

F

0/15 -

0/15%
0/15

0/15

F = False Positive

With Cross-Matched

Standard Pattern

Active
Correct

75%
80%
51%.
62%

67%

False

Positive

2%
7%
0%
0%

3%

99
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CHAPTER 5

CONCLUSION
5.1 Summary of Major Results and Related Conclusions

AR Parameter Estimation .

Simulation studies on AR parameter estimation demonstrated that the
robust general maximum likelihood (GM) methods performed almost as well as
the least squares (LSQ) method on Gauséian processes and significantly better
on additive outlier (AO) contaminated Gaussian processes. Amongst the GM
methods the GM2 method provided the best performance. However, it should be
noted that the GM2 estimates are also the most computationally expensive to
calculate. 1In terms of the single trial outlier processing method, the most
important finding from these simulation studies is that given the AO model
(see equation 3.37) the robust estimation methods, in particular the GM2

method, demonstrated a strong ability to model the process X, without being

unduly influenced by the additive outiiers Ve

Neurological Premise and Outlier Extraction

The basic neurological premise for the single trial processing method
is that event related potentials have an additive outlier effect on the
ongoing EEG process. If the outlier content could be extracted from the
resulting overall combined process, then single trial évent related informa-
tion could be obtained. Simulation studies demonstrated that a robust signal
estimator, which utilizes robustly estimated AR model parameters, has a

distinct ability to extract a significant amount of the additive outlier
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conteﬁt from a contaminated process. This extraction process was found to be
most effective when GM2 parameter estimates were utilized. This result
should be expected since the GM2 parameter estimation is based on an
estimated cleaned signal X, and hence, it has the best opportunity to provide
a good estimated model representing the actual process X . The better the
model of X, the better the expected performance of the outlier extraction

process.,

Spectral Analysis of EEG

AR spectral analysis provided a great deal of insight into both the
EEG signal itself and into the application of AR modeling to the EEG signal.
EEG data used in this thesis work was collected during an active task
involving motor activity and an idle task not involving motor activity.
Spectral analysis demonstrated that the signal characteristics of these EEG
signals were typically changing at a relatively rapid rate. Hence, an EEG
segment size as small as practical parameter estimation considerations would
allow was utilized. Ultimately, in the single trial processing method, the
EEG epochs were broken down into 1.5 second segments offset by 0.75 seconds.
AR spectral analysis was also the key tool in determining appropriate AR
model orders. It was found that orders in the range of 12 to 14 were suit-
able for idle task EEG while orders‘in the range of 20 to 24 were suitable
for active task EEG. Finally, the study of prewhitened AR spectral analysis
was useful in providing some insight into how well the AR model represented
the information in the EEG signal. This study indicated that, given the
selection of an appropriate model order, the AR model does represent much of

the information contained in a short segment of EEG.
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Single Trial Outlier Processing

Initial investigation into the single trial outlier processing method
was carried out on the EEG data from one subject. It was shown, through
conventional averaging analysis, that the cleaned active task EEG did not
contain any significant motor related potentials. This result indicated that
much of the motor related activity had been extracted from the active task
EEG signal by the application of the cleaning process. By using the outlier
information extracted from the active EEG, single trial outlier patterns were
produced. These patterns had strong similarities to previous results using
conventional averaging techniques over many trials of active EEG. By
averaging active trial outlier patferns together it was demonstrated that
much of the information was consi;tent across active trials whereas, in
contrast, the average of idle case patterns showed that there was no signifi-
cant information that was consistent across idle trials. In addition, this
averaging also demonstrated that there was a significant amount of informa-
tion in the active task patterns that was unique to individual trials which
was lost when the patterns were averaged together. It is, therefdre,
expected that this same loss of information is occurring in the conventional
averaging method of EEG analysis.

It was shown that consistent features in the active outlier patterns
were strongly correlated with features in the thumb movement. This analysis
demonstrated that there was a strong relationship between the information in
the outlier patterns and events in the thumb movements on a trial by trial

basis.

It was found in the initial investigations that dynamic time warping
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(DTW) analysis provided the best quantitative information on the performance
of the single trial processing method. Hence, DIW analysis was applied‘to
all four of the subjects used in this initial investigation into the single
trial processing method. Through the application of DIW, standard repre-
sentative active single trial ou;lier patterns for each subject were
obtained. The outlier patterns from both the active trials and the idle
trials were warped against the standard patterns. With each warping an
associated cost value was obtained which reflected how well the outlier
patterns fit the standard pattern. These cost values revealed that there was
a highly statistically significant (p < .00l1) difference between the idle and
active mean costs across all four subjects with outlier patterns derived
with GM2 parameter estimates. The cost values from the four subjects pooled
together in a group, demonstrated that the mean of the actual population of
mean differences between active and idle cases was highly (p < .002) unlikely
to be equal zero.

Bayesian classification was applied to the warping cost values to
classify active patterns versus idle patterns. It was found that with the
cost of misclassifying an idle case as an active case set to be five times
greater, 80% of the GM2 active patterns were classified correctly while only
1.7% of the idle cases were incorrectly classified as active. This analysis
also demonstrated the superiority of utilizing GM2 parameter estimates
because with the utilization of GM and LSQ parameter estimates the classifi-
cation performance fell off dramatically.

Bayesian classification was also applied to the cost values obtained
from using standard patterns from one subject on the outlier patterns from

the other subjects. These results strongly indicated that the standard

.
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patterns do cross validate on data that was not used in the construction of
these patterns and that these patterns provide substantial intersubject

reliability.

In conclusion, the pursuance of robust methods to deal with the
ranging Gaussian properties of the EEG signal led to the development of a
single trial processing method based on utilizing outlier information. The
validity of this processing method to extract event related information from
active task EEG has been established through the results obtained from the

investigations undertaken in this thesis work.
5.2 Areas for Future Investigation

There are many areas involved with the possible further improvement of
the single trial processing method that should be pursued in future investi-
gations., Some of the most important recommended areas are:

1) Pursue models that will better represent the underlying signal since
the processing method is fundamentally based on these models. This may
involve the application of differenE types of models such as those based on
orthonormal functions. Regardless of the type of model employed, the
accuracy of the estimated parameters is an important issué. In terms of
using GM estimation on AR models, further work could be carried out to
improve the parameter estimates., One particular aspect to consider is the
utilization of methods that are more robust than MEM estimation, such as Ll

based methods, to provide the starting estimates in the GM iteration

procedure.



105

2) Study the effects of varying the segment size to determine the length
that is best suited for the representation of the underlying EEG process.
For instance, it may be found that the signal characteristics of the under-
lying process are changing slowly enough such that the modeling of longer
segments would allow for an improved representation of the underlying
process.

3) Further investigate the outlier detection process to determine ways in
which the performance could be improved. One specific area to consider, as
suggested by Martin [45], is to utilize a cleaning process that makes use of
both forward and backward prediction in the estimation of the signal X .

4) Peruse alternatives to the current method of processing the outlier
information. The current method is relatively unsophisticated in that it is
simply a careful smoothing of the extracted outlier information. Investiga-
tion into other approaches of processing this information may prove to be
beneficial in revealing additional information that may be contained in the

outlier data.

Future empirical EEG experimentation should be carried out on the
single trial processing method. The initial goals of these investigations
should be to further validate the method on a new set of EEG data. A recom-—
mended paradigm would be to collect’ a training set of active trials for the
construction of a standard pattern.‘ Then collect a set of intermixed active
and idle trials, perhaps at the discretion of the subject, on which the
classification performance of the processing method could be further
evaluated., Later goals of these investigations should be oriented to using

the processing method to learn more about motor potentials, particularly the
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motor potentials rom disabled persons, so that when utilized in a control
application these potentials can bé taken advantage of in the most appro-
priate manner, ‘

Finally, investigations on making the single trial processing method
work in real time must be undertaken. As it stands, the method is very
computationally intensive. Although some improvements could undoubtedly be
made in the efficiency of these computations, the most significant advances

towards this goal would likely be in the implementation of some or all of the

component processes in specialized hardware.
5.3 Significant Contributions

The signal processing method developed in this thesis work is a
significant contribution. Modeling the underlying signal and then extracting
the outlier content from the underlying signal is a unique approach to
deriving very low level and relatively short event type information from an
ongoing process. The path that led to the development of this processing
method, also led to the understanding that ranging levels of Gaussianity in
the EEG signal requires that serious consideration be given to the use of
robust methods in the future application of various types of EEG signal
processing. Also, a successful approach to the selection of appropriate AR
model orders, the selection of appropriate EEG segment lengths and the
assessment of the relative ability of AR models to represent the EEG signal
were established through the studies on AR spectral analysis.

The ability to consistently &cquire event related information from a

single trial is an important contribution to the field of EEG signal
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analysis. In addition, the neurological premise involving the way in which
event related information is contained in the overall EEG signal is estab-
lished as a viable model. This model should be considered when attempting to
understand event related potentials and their relationship to ongoing EEG
processes.

Finally, the work in this thesis, taken as a whole, represents an
important contribution towards the ultimate goal of harnessing EEG signals
for control applications. It overcomes perhaps one of the greatest obstacles
by providing the framework for the extraction of useful information from

single trial EEG.
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