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ABSTRACT 

The goal of t h i s thesis work was to study the c h a r a c t e r i s t i c s of the 

EEG s i g n a l and then, based on the i n s i g h t s gained from these studies, pursue 

an i n i t i a l i n v e s t i g a t i o n i n t o a processing method that would extract useful 

event r e l a t e d information from s i n g l e t r i a l EEG. The fundamental t o o l used 

to study the EEG s i g n a l c h a r a c t e r i s t i c s was autoregressive modeling. E a r l y 

i n v e s t i g a t i o n s pointed to the need to employ robust techniques i n both model 

parameter estimation and s i g n a l estimation a p p l i c a t i o n s . Pursuing robust 

techniques u l t i m a t e l y led to the development of a s i n g l e t r i a l processing 

method which was based on a simple neurological model that assumed an 

ad d i t i v e o u t l i e r nature of event r e l a t e d p o t e n t i a l s to the ongoing EEG 

process. When event r e l a t e d p o t e n t i a l s , such as motor r e l a t e d p o t e n t i a l s , 

are generated by a unique a d d i t i o n a l process they are "added" in t o the 

ongoing process and hence, w i l l appear as a d d i t i v e o u t l i e r content when 

considered from the point of view of the ongoing process. By modeling the 

EEG with AR models with robustly estimated (GM-estimates) parameters and by 

using those models i n a robust s i g n a l estimator, a "cleaned" EEG s i g n a l i s 

obtained. The o u t l i e r content, data that i s extracted from the EEG during 

cleaning, i s then processed to y i e l d event r e l a t e d information. 

The EEG from four subjects formed the basis of the i n i t i a l i n v e s t i g a t i o n 

i n t o the v i a b i l i t y of t h i s s i n g l e t r i a l processing scheme. The EEG was 

c o l l e c t e d under two conditions: an aictive task i n which subjects performed a 
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s k i l l e d thumb movement and an i d l e task i n which subjects remained a l e r t but 

di d not carry out any motor a c t i v i t y . The o u t l i e r content was processed 

which provided si n g l e t r i a l o u t l i e r waveforms. In the a c t i v e case these 

waveforms possessed consistent features which were found to be r e l a t e d to 

events i n the i n d i v i d u a l thumb movements. In the i d l e case the waveforms did 

not contain consistent features. Bayesian c l a s s i f i c a t i o n of a c t i v e t r i a l s 

versus i d l e t r i a l s was c a r r i e d out using a cost s t a t i s t i c r e s u l t i n g from the 

a p p l i c a t i o n of dynamic time warping to the o u t l i e r waveforms. Across the 

four subjects, when the d e c i s i o n boundary was set with the cost of 

m i s c l a s s i f i c a t i o n equal, 93% of the a c t i v e t r i a l s were c l a s s i f i e d c o r r e c t l y 

and 18% of the i d l e t r i a l s were i n c o r r e c t l y c l a s s i f i e d as a c t i v e . When the 

cost of m i s c l a s s i f y i n g an i d l e t r i a l was set to be f i v e times greater, 80% of 

the a c t i v e t r i a l s were c l a s s i f i e d c o r r e c t l y and only 1.7% of the i d l e t r i a l s 

were i n c o r r e c t l y c l a s s i f i e d as a c t i v e . 
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CHAPTER 1 

INTRODUCTION 

1.1 Problem Statement 

Most often the greatest f a i l i n g of t e chnical aids for severely d i s ­

abled persons i s the inadequacy of the man/machine i n t e r f a c e . With a univer­

s a l e f f e c t i v e and e f f i c i e n t i n t e r f a c e , current technology has the c a p a b i l i t y 

of providing substantial independence and hence, a g r e a t l y improved q u a l i t y 

of l i f e for even the most severely disabled persons. In pursuit of such an 

i d e a l i n t e r f a c e , researchers have been studying the f e a s i b i l i t y of u t i l i z i n g 

e l e c t r i c a l b r a i n p o t e n t i a l s to d i r e c t l y communicate to peripheral devices. 

Two important example applications would be the supervisory control of a 

robotic arm and the method of input to a personal computer system. Such an 

i n t e r f a c i n g c a p a b i l i t y would also prove to be very useful i n many man/machine 

int e r f a c e problems i n the able-bodied population. The ultimate goal of t h i s 

researcher i s to provide a d i r e c t communication system between man and 

external devices using e l e c t r i c a l b r a i n a c t i v i t y . 

Brain p o t e n t i a l s are comprised of continuous random e l e c t r i c a l 

a c t i v i t y which when recorded are r e f e r r e d to as electroencephalographic (EEG) 

s i g n a l s . Embedded within the EEG <are event r e l a t e d p o t e n t i a l s (ERP) and 

t y p i c a l l y , there i s a -6 db to a -9 db signal-to-noise r a t i o between the ERP 

and the EEG. This a c t i v i t y i s u s u a l l y recorded using surface electrodes on 

the scalp, since the current r i s k versus benefit s i t u a t i o n does not j u s t i f y 

electrode implantation. The EEG signals as measured from the scalp surface 

are i n the order of 5-50 micro-volts and are e a s i l y contaminated by other 
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b i o - e l e c t r i c a l signals such as electroocular (EOG) p o t e n t i a l s and muscle 

(EMG) p o t e n t i a l s , e s p e c i a l l y those of the scalp and face. To date, the study 

of ERP's has mostly been confined to the averaging of EEG recorded during a 

s p e c i f i c event, such as a f l a s h of l i g h t , over many t r i a l s . With averaging, 

the random s i g n a l not r e l a t e d to the event tends to average out to zero at a 

rate generally proportional to the square root of the number of t r i a l s 

averaged. The s i g n a l r e l a t e d to the event i s assumed to remain constant and 

hence becomes more recognizable as the background random s i g n a l decreases. 

This approach has many drawbacks. In the context of t h i s work, two of the 

greatest drawbacks are f i r s t l y , that i t i s not amenable to real-time process­

ing of event r e l a t e d p o t e n t i a l s for use i n closed loop control applications 

and, secondly, there i s a s i g n i f i c a n t loss of unique si n g l e t r i a l informa­

t i o n . However, i t i s a useful t o o l for obtaining a general idea of the 

underlying waveform of an event r e l a t e d response. 

One of the most s i g n i f i c a n t obstacles that must be overcome i n 

pursuing the ultimate goal i s the establishment of a s i g n a l processing method 

that can extract event r e l a t e d information from si n g l e t r i a l EEG. There have 

been some sing l e t r i a l processing schemes, proposed by various researchers 

(see for example [1,2,3]), that were designed to detect features i n the EEG 

that are r e l a t e d to s p e c i f i c external events. The usefulness of t h e i r 

r e s u l t s has been generally l i m i t e d because t h e i r schemes have often been 

p a r t l y dependent on fundamental assumptions about the s t a t i s t i c a l character­

i s t i c s of the EEG which at the present time are not well understood and, more 

importantly, have been c r i t i c a l l y dependent on complex external v i s u a l 

s t i m u l i . 

The goal of t h i s t hesis work was to study the c h a r a c t e r i s t i c s of the 
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EEG s i g n a l and then, based on the i n s i g h t s gained from these studies, pursue 

an i n i t i a l i n v e s t i g a t i o n into a processing method that would extract useful 

event r e l a t e d information from si n g l e t r i a l EEG. The fundamental t o o l used 

to study the EEG s i g n a l c h a r a c t e r i s t i c s was autoregressive modeling. E a r l y 

investigations pointed to the need 1so employ robust techniques i n both model 

parameter estimation and s i g n a l estimation a p p l i c a t i o n s . Pursuing robust 

techniques u l t i m a t e l y lead to the development of a s i n g l e t r i a l processing 

method which was based on a simple neurological model that assumed an addi­

t i v e o u t l i e r nature of event r e l a t e d p o t e n t i a l s to the ongoing EEG process. 

The EEG from four subjects formed the basis of the i n i t i a l i n v e s t i g a t i o n into 

the v i a b i l i t y of t h i s s i n g l e t r i a l processing scheme. The EEG was c o l l e c t e d 

under two conditions: an active task i n which subjects performed a s k i l l e d 

thumb movement and an i d l e task i n which subjects remained a l e r t but d i d not 

carry out any motor a c t i v i t y . 

1.2 Motor Potentials 

Brain signals that are r e l a t e d to movement are a type of event r e l a t e d 

p o t e n t i a l and were f i r s t reported by Kornhuber and Deecke [4]. These poten­

t i a l s are produced by the sensory-motor cortex p r i o r to and during voluntary 

movements of the body. Figure 1.1 [5] shows a cross-section of the motor 

cortex which i l l u s t r a t e s how various parts of the body are f u n c t i o n a l l y 

mapped onto the motor cortex. 

The use of ERP's r e l a t e d to movement have many advantages over other 

ERP's i n the context of an i n t e r f a c e system. Motor p o t e n t i a l s are produced 

as a r e s u l t of a s e l f - i n i t i a t e d cognitive process. This i s unlike the 
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Primary Motor and Somatosensory Areas 
of the Cerebral Cortex 

Primary motor P r i m a r y somatosensory 

Figure 1.1 
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perhaps better known subset of ERP's, c a l l e d evoked p o t e n t i a l s , where an 

external stimulus i s required to e l i c i t a response, (for example: v i s u a l , 

somatosensory or auditory evoked potentials.) Motor p o t e n t i a l s that are 

associated with parts of the body over which a disabled person does not have 

cognitive c o n t r o l , could be u t i l i z e d to obtain unique control of a given 

peripheral device and thereby minimizing the l i k e l i h o o d of unintentional 

a c t i v a t i o n of that device. As suggested by Figure 1.1, there i s i n fact some 

c a p a b i l i t y to discern what part of the body i s being moved by u t i l i z i n g 

s p a t i a l information from across the motor cortex with the use of surface 

electrodes. Some of the recent work i n t h i s area has been c a r r i e d out by 

Brunia and Van den Bosch [6] i n which they e x p l o i t the i p s i l a t e r a l and 

c o n t r a l a t e r a l properties of the motor p o t e n t i a l s to demonstrate an a b i l i t y to 

discriminate between hand and foot movements as well as r i g h t versus l e f t 

body movements. The extent to which t h i s d i s c r i m i n a t i o n c a p a b i l i t y can be 

r e f i n e d needs to be pursed further but at the very l e a s t i t can provide some 

d i v e r s i t y i n the control functions that could be derived from the motor 

p o t e n t i a l s . It has also been demonstrated [7] that, i n the averaged motor 

p o t e n t i a l s , there i s a sustained response ( i n the order of one second) 

throughout a prolonged task requiring substantial cognitive involvement. 

This property could be p a r t i c u l a r l y exploited i n an i n t e r f a c e system that 

requires a continuous control function such as i n the task of guiding a 

robotic arm. 

A s p e c i f i c issue that w i l l need to be addressed i n future work, i n 

terms of an i n t e r f a c e systems for the disabled, i s the r o l e of peripheral 

aff e r e n t feedback i n the generation of motor responses. Due to the e a r l y 

work of Vaughan [8] i t was thought that the p o s i t i v e components a f t e r onset 
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of the movement were due to afferent feedback. However, Vaughan et a l . [9] 

four years l a t e r unexpectedly found a similar p o s i t i v i t y i n deafferented 

monkeys while they where carrying out a s e l f paced task. Papakostopoulos 

[10] postulated that as long as there are elements of s k i l l required i n the 

task, the p o s i t i v i t y w i l l be developed despite the absence of afferent feed­

back. The uncertainty surrounding t h i s issue remains i n r e l a t i v e l y recent 

work (see Grunewald et a l . [7]) and to resolve i t completely w i l l require the 

a b i l i t y to analyze the motor potentials on a single t r i a l basis because a 

disabled person can not provide a movement trigger for conventional averaging 

techniques. The single t r i a l analysis method described i n th i s thesis 

provides t h i s required a b i l i t y and therefore, w i l l ultimately f a c i l i t a t e the 

study of motor potentials from persons who lack peripheral afferent feedback. 
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CHAPTER 2 

MODELING THE EEG SIGNAL 

2.1 Need for S t a t i s t i c a l Understanding of EEG 

A pr e r e q u i s i t e to the mathematical modeling of a given s i g n a l i s an 

adequate understanding of i t s fundamental c h a r a c t e r i s t i c s . Previous i n v e s t i ­

gations (see Persson [11] or McEwen and Anderson [12]) have noted that the 

random character of EEG makes the theory of random processes applicable to 

EEG s i g n a l s . Therefore, i f the approach to the si g n a l analysis of EEG i s to 

be based on random process s i g n a l theory then basic s t a t i s t i c a l character­

i s t i c s of the EEG si g n a l should be well understood. 

S t a t i s t i c a l properties, p a r t i c u l a r l y assumptions about Gaussianity, 

are often key factors i n the r e s u l t i n g performance of many of the si g n a l 

processing methods that have been conventionally applied to EEG. For 

instance, applications of Wiener f i l t e r i n g , Kalman f i l t e r i n g and AR parameter 

estimation to EEG have met with mixed and inconsistent r e s u l t s (see McGillem 

et a l . [13]). This could very well be explained i f i n fac t the si g n a l 

c h a r a c t e r i s t i c s were at d i f f e r e n t times ranging approximations to the 

required Gaussian assumptions. On occasions when the si g n a l processing was 

c a r r i e d out while the EEG was r e l a t i v e l y close to Gaussian, the r e s u l t would 

have been close to optimal and r e l a t i v e l y good performance would be expected. 

However, as w i l l be demonstrated i n Section 3.4, i f estimation had been 

c a r r i e d out on EEG that was r e l a t i v e l y non-Gaussian the performance would 

have l i k e l y been very poor. 

Hence, to u t i l i z e s i g n a l processing methods which make c e r t a i n s t a t i s -
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t i c a l assumptions, requires both a s t a t i s t i c a l knowledge about the target 

s i g n a l as well as knowledge about the ramifications of using a given method 

when those assumptions are not to some extent met. In the type of s t a t i s ­

t i c a l modeling employed i n t h i s study, d e t a i l s of which are provided i n 

subsequent sections, a s a t i s f a c t o r y understanding of these issues i s very 

important. The following section begins t h i s process of understanding by 

reviewing previous investigations into the s t a t i s t i c a l character of EEG. 

2.2 Previous Stochastic Studies on EEG 

There have been r e l a t i v e l y few investigations into the s t a t i s t i c a l 

c h a r a c t e r i s t i c s of spontaneous EEG a c t i v i t y . The r e s u l t i n g conclusions from 

these few investigations have been l a r g e l y contradictory and i n d e c i s i v e . In 

general, most investigators were attempting to measure the degree of wide-

sense s t a t i o n a r i t y and to estimate the amplitude p r o b a b i l i t y d i s t r i b u t i o n . 

McEwen and Anderson [12] d i d some e a r l y extensive work i n t h i s area. 

To t e s t for wide-sense s t a t i o n a r i t y they divided a given EEG segment into two 

halves and then c a r r i e d out a two-sample Kolmogorov-Smirnov (K-S) t e s t on 

both the sample amplitude and spe c t r a l d i s t r i b u t i o n functions. This t e s t 

required that both the amplitude and spe c t r a l d i s t r i b u t i o n s from each h a l f 

could not be s i g n i f i c a n t l y d i f f e r e n t for the whole EEG segment to be con­

sidered as wide-sense stationary. They tested for the Gaussianity of a given 

EEG segment by using i t s amplitude d i s t r i b u t i o n i n a K-S goodness of f i t t e s t 

with unknown mean and variance using a 0.05 l e v e l of s i g n i f i c a n c e . They 

rejected t h e i r n u l l hypothesis that EEG from awake r e s t i n g subjects with eyes 

closed was Gaussian and wide-sense stationary approximately 15% of the time 
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over two second epochs and approximately 60% of the time over 8 second 

epochs. Persson [14] i n commenting on t h e i r r e s u l t s , pointed out that the 

s t a t i s t i c a l t e s t s that they used assume independent samples (observations) 

but the d i g i t i z a t i o n rates used res u l t e d i n samples that were hig h l y 

correlated. In f a c t , McEwen and Anderson noted that too high a sample rate 

would cause the e f f i c a c y of the s t a t i s t i c a l t e s t s to be adversely affected 

and they consequently recommended sampling at a rate as l i t t l e above the 

Nyquist rate as possible. 

Persson [14] went on to argue that the maximum t o l e r a b l e c o r r e l a t i o n 

c o e f f i c i e n t between adjacent samples i s about 0.5 and i n previous work he 

showed, based on an estimated autocorrelation function from r e a l EEG, that to 

meet t h i s requirement the sample rates should not be much greater than 10 Hz. 

The obvious r e s u l t i n g conundrum i s that i f only approximately two second 

epochs can be considered stationary and a sample rate i n the order of 10 Hz 

i s used then the r e s u l t i n g number of samples would be so small that a reason­

able inference cannot be made about the amplitude d i s t r i b u t i o n . 

Weiss [15] approached t h i s problem by developing a correction f a c t o r , 

based on the second and fourth s p e c t r a l moments, for the Kolmogorov-Smirnov 

goodness of f i t t e s t which i s designed to compensate for c o r r e l a t i o n i n the 

data two sample points back i n time. He tested t h i s method on simulated EEG 

data which was generated by a second order autoregressive processes. 

Although he reports good r e s u l t s on t h i s simulated data, i t s usefulness i s 

s t i l l generally l i m i t e d by i t s a b i l i t y to compensate for the c o r r e l a t i o n over 

only two sample points. In addition, i t s effectiveness, i f applied to actual 

EEG, w i l l be further l i m i t e d by the accuracy of the estimated s p e c t r a l 

moments. In Section 2.4 a d i f f e r e n t approach i s discussed which would be 
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p o t e n t i a l l y more f l e x i b l e and u l t i m a t e l y provide more information about the 

EEG signal c h a r a c t e r i s t i c s . 

2.3 Neural Basis for the Gaussian Nature of EEG 

R. E l u l was responsible for the i n i t i a l work devoted to the stochastic 

aspects of EEG based on neuronal a c t i v i t y . He f i r s t suggested [16,17,18] 

that each i n d i v i d u a l neuron generator was independent of the summed contribu­

tions from a l l the neuron generators. Therefore, t h i s r e s u l t a n t sum, the 

EEG, could be thought of as the sum of s t a t i s t i c a l l y independent or nearly 

independent neuronal contributions and since the contribution from each 

neuron i s very small r e l a t i v e to the r e s u l t i n g EEG there must be a very large 

number of neurons contributing at any given time. Based on these arguments 

the a p p l i c a t i o n of the Central Limit Theorem (CLT) i s j u s t i f i e d ; that i s , 

the sum of neuronal a c t i v i t y w i l l tend toward Gaussianity. However, E l u l 

[19] l a t e r c a r r i e d out an experiment i n which he administered tetrodotoxin 

(TTX) into the b r a i n of cats. The amount of TTX that was given to the cats 

should have caused about a 10% drop i n neural a c t i v i t y . The r e s u l t i n g EEG 

a c t i v i t y was reduced way below the l e v e l that could be accounted for based on 

hi s concept of independent or nearly independent neural a c t i v i t y . 

A. Siegel [20] followed up on E l u l ' s work and he proposed the idea 

that a substantial proportion of the neurons belong to synchronized groups. 

These groups, however, would be n e c e s s a r i l y r e s t r i c t e d i n s i z e due to the 

existence of many competing inputs to a given neuron which would r e s u l t i n 

attenuation of the synchronizing e f f e c t as one moves along a chain of i n t e r ­

acting neurons. He further postulated that because of t h i s r e s t r i c t e d s i z e 



11 

there would s t i l l be a very large number of " i n t e r n a l l y synchronized but 

mutually unsynchronized groups of neurons". This explanation of neuronal 

a c t i v i t y was able to predict the dramatic reduction of EEG a c t i v i t y which 

occurred i n the TTX experiment. I t also allows for E l u l ' s basic idea of the 

summed a c t i v i t y being independent of the a c t i v i t y of the i n d i v i d u a l 

generators. E l u l [18] also suggested that d i f f e r e n t degrees of independence 

between neurons, as was alluded to e a r l i e r when the terms "independent" and 

"nearly independent" were used, would be the major influence on the degree of 

Gaussianity: as the dependence becomes greater the r e s u l t i n g d i s t r i b u t i o n 

becomes less Gaussian. 

Siegel [20] elaborates on t h i s concept and i n so doing suggests a 

mechanism that would produce t h i s r e s u l t . He u t i l i z e s Bernstein's [21] 

theory of applying the CLT to dependent v a r i a b l e s . Roughly speaking, i t 

states that as long as the dependence between va r i a b l e s decreases with 

separation then the CLT can be applied. Therefore, Siegel argues that as 

long as the dependency of two neuronal generators decreases quickly enough 

with increased separation, the a p p l i c a t i o n of the CLT can s t i l l be j u s t i f i e d . 

It also follows that, at periods of time when dependency i s l e s s , the e f f e c ­

t i v e number of independent contributors increases and the CLT i s more c l o s e l y 

approximated. E l u l [18] suggested the a p p l i c a t i o n of t h i s concept to various 

l e v e l s of mental a c t i v a t i o n : performing an a c t i v e mental task would require 

a greater degree of interneuronal coupling than would a mental i d l e state. 

Hence, the degree of Gaussianity would decrease during performance of mental 

tasks. He c a r r i e d out some empirical work with EEG, which showed some 

support for t h i s idea, but the s t a t i s t i c a l analysis suffered from the sample 

dependency problem that was described i n the previous section as well as 
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other methodological problems. 

As a t t r a c t i v e as the above concept at f i r s t seems, i t i s however, 

contradictory to a common assumption about EEG. As E l u l states: "low-vol­

tage, f a s t a c t i v i t y implies 'desynchronized 1 (active) EEG, and high-voltage 

slow a c t i v i t y i s i n d i c a t i v e of 'synchronization'" ( i d l e EEG). Siegel [20] 

resolves t h i s apparent paradox with the following argument. In the i d l e 

state there are, as stated previously, groups of neurons which are i n t e r n a l l y 

synchronized but mutually independent, which r e s u l t s i n summation of a c t i v i t y 

that i s r e l a t i v e l y high-voltage and appears to be i n r e l a t i v e synchrony. 

During a mental task the r e l a t i o n s h i p between the "within group" neurons 

becomes more complicated than simple "in-step" synchrony. As Siegel [20] 

states: " E s s e n t i a l l y , t h i s i s because neurons must be r e l a t e d i n configura­

tions which correspond i n complexity to that of the task i t s e l f . " So the 

e l e c t r i c a l neuronal a c t i v i t y , although more interdependent does not have the 

same appearance of synchronicity and hence there w i l l be a greater amount of 

neuronal a c t i v i t y canceling each other out r e s u l t i n g i n lower voltage EEG. 

In some recent work by Anninos, Zenone and E l u l [22], they studied 

neuronal a c t i v i t y and the r e s u l t i n g EEG based on a rigorous a r t i f i c i a l neural 

net model. Their p r i n c i p l e conclusion was that the main factor i n causing 

the summed neural a c t i v i t y to deviate from Gaussianity was i n f a c t the l e v e l 

of interneuronal connectivity: greater connectivity caused greater devia­

tions from Gaussianity. This r e s u l t occurred independent of the p r o b a b i l i t y 

d i s t r i b u t i o n of the membrane p o t e n t i a l i n the i n d i v i d u a l elements. In 

addition, they discovered that for a given l e v e l of connectivity i n t h e i r 

model, when external input was applied, as would be the case when afferent 

signals were applied to the neural net, the r e s u l t i n g d i s t r i b u t i o n became 
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less Gaussian. This finding may add<some i n t e r e s t i n g i n s i g h t to the possible 

differences between the motor r e l a t e d p o t e n t i a l s i n normal and disabled 

persons. 

To date, i t appears that the idea of r e l a t i n g various l e v e l s of mental 

a c t i v a t i o n to various l e v e l s of Gaussianity has not been c a r e f u l l y confirmed 

or rejected by empirical measurements. This i s probably due to the f a c t , as 

noted i n Section 2.2, that a s a t i s f a c t o r y t o o l to measure the EEG s t a t i s t i c s 

does not seem to be a v a i l a b l e . 

2.4 Applying AR Modeling to EEG 

A very general l i n e a r model for the modeling of stochastic d i s c r e t e -

time processes i s the autoregressive moving average (ARMA) model. It i s given 

by 

P I 
X i = E a k X i - k + E b j e i - j 2 ' 1 

k=l j=0 

where x_̂  i s the di s c r e t e s i g n a l sequence of length n, i = l,2...n, e_̂  i s the 

r e s i d u a l error sequence and a, , k=l,2...p and b., j=0,l,2....1 are weighting 

parameters on past values of the si g n a l and residuals r e s p e c t i v e l y . The 

autoregressive (AR) model i s the " a l l pole" version of the ARMA model and i t 

has the following form 

x. = a.x. , + a„x. „ + ... + a x. + e. 2.2 
i 1 l - l 2 i-2 p l - p i 

where again x^ i s the si g n a l sequence, a^ are weighting parameters, e^ i s the 

white re s i d u a l error sequence and p i s the order of the AR model. The 

s i g n a l x^ at a g i v e n time i i s assumed to be a l i n e a r l y weighted sum of p 
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past v a l u e s of x. plus a random (white) error term e.. Often t h i s l a s t term 
1 1 

i s r e f e r r e d to as the p r e d i c t i v e error since i t i s the differe n c e between the 

measured value and the predicted value. 

The AR model has some s i g n i f i c a n t p r a c t i c a l advantages over the more 

general ARMA model. F i r s t l y , a closed form s o l u t i o n to the minimization 

problem for the estimation of the ARMA model parameters does not e x i s t and 

hence i t e r a t i v e numerical optimization approaches must be u t i l i z e d . Whereas, 

i n the case of the AR model, the closed form s o l u t i o n of the minimization 

problem does e x i s t and computationally e f f i c i e n t methods have been developed 

to estimate the AR model parameters. Secondly, as noted by Kay and Marple 

[23] , the Wold decomposition theorem demonstrates that any stationary ARMA 

process (in f a c t , any MA processes as well) of f i n i t e variance can be repre­

sented by a unique AR model which may be of i n f i n i t e order. The imp l i c a t i o n 

i s , even i f i t i s argued that for a given s i g n a l an ARMA model i s the most 

appropriate model, a reasonable approximation can s t i l l be achieved by 

u t i l i z i n g an AR model with an appropriately chosen model order. S i m i l a r l y , 

i n a study by Beamish and P r i e s t l y [24] they note that the time s e r i e s does 

not have to exactly conform to a f i n i t e AR model but rather assumes i t can be 

modeled by an i n f i n i t e AR model. Then by choosing an appropriate order which 

w i l l provide i n some sense the optimal f i t with a f i n i t e model, the si g n a l 

can be well represented. Selection of t h i s appropriate model order i s a very 

important issue and i t i s dealt with i n d e t a i l i n Section 4.4. 

Previous work has indic a t e d that AR modeling would prove to be a 

useful t o o l i n the i n v e s t i g a t i o n of the EEG s i g n a l . Jansen et a l . [25] note 

the s t a t i s t i c a l d e f i n i t i o n of regression i s : "a functional r e l a t i o n s h i p 

between two or more correlated v a r i a b l e s used to pre d i c t values of one v a r i -
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able when given values of the others." I f these variables are time r e l a t e d , 

as would be the case with EEG, then an autoregressive model can be applied 

[26]. In general, i t i s not clear how to d e f i n i t i v e l y assess whether an AR 

model at a given model order i s adequately representing a segment of EEG. 

For purposes of t h i s study, the appropriateness of AR modeling w i l l be 

discussed i n terms of i t s r e l a t i v e performance when i t i s applied to the 

spec t r a l estimation of EEG (see Section 4.4). 

The AR model as applied to EEG can be u t i l i z e d i n several ways. The 

estimated parameters could p o s s i b l y be used as features i n a s i g n a l detec­

t i o n / d i s c r i m i n a t i o n problem. As indicated above, the parameters can be used 

i n spectrum estimation. Many researchers [23,25,27] have demonstrated that 

there are some d i s t i n c t advantages of t h i s approach over the conventional FFT 

methods of spectrum estimation. Another benefit of applying AR modeling to 

EEG i s the fact that r e s i d u a l s , i d e a l l y , have the c o r r e l a t i o n of the process 

removed (whitened) and since the AR process i s l i n e a r , the s t a t i s t i c a l char­

a c t e r i s t i c s of the o r i g i n a l process are s t i l l contained i n the r e s i d u a l s . 

Although Andrews [28] demonstrates that residuals from a non-Gaussian process 

w i l l tend to mask the evidence of non-Gaussianity, Chambers and Heathcote 

[29] have developed a method of characterizing the Gaussianity of a process 

based on a scale factor which i s determined by the c h a r a c t e r i s t i c function of 

the r e s i d u a l error d i s t r i b u t i o n . The main benefit of t h i s approach i s that 

i t overcomes the problems of corr e l a t e d data samples, as was discussed i n 

Section 2.2. 

The greatest benefit of applying the AR model to EEG i n terms of t h i s 

t h e s i s work l i e s i n the f a c t that i t has a very convenient state-space 

representation, which allows for the s t r a i g h t forward use of state-space 
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techniques such as Kalman type f i l t e r i n g [30]. These techniques play a major 

ro l e i n the EEG sin g l e t r i a l processing scheme that i s discussed i n d e t a i l i n 

Chapter A. 
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CHAPTER 3 

THEORY OF AR MODELING 

3.1 Conventional AR Parameter Estimates 

EEG s i g n a l c h a r a c t e r i s t i c s are changing over time and hence, a sing l e 

time-invariant model can not be applied. This r e s u l t s i n the need to 

estimate model parameters from the EEG si g n a l i n a manner that w i l l attempt 

to account for time varying c h a r a c t e r i s t i c s . The estimation of the AR model 

parameters can generally be c a r r i e d out eit h e r by block mode estimation or by 

recursive estimation. Recursive methods sequentially update the parameters 

data point by data point. They have the p o t e n t i a l advantage of being set up 

such that the estimation of parameters adapts to time varying c h a r a c t e r i s t i c s 

of a s i g n a l [31]. This i s e s s e n t i a l l y accomplished by assigning greater 

weight to newer information than to older information. I t has been demon­

strated for EEG s i g n a l s , which are slowly time-varying over long epochs, that 

adaptive recursive estimation schemes can be e f f e c t i v e [32,33]. However, 

Jansen [25,32] provides evidence which indicates that the adaptation process 

i s not rapid enough for short segment analysis of EEG signals that are 

expected to be time-varying r e l a t i v e l y quickly. Short segments i n the order 

of 1 to 2 seconds are t y p i c a l for the work c a r r i e d out i n t h i s t h e s i s . 

Hence, a block mode approach, where the AR model parameters are estimated on 

the basis of a short data segment, i s employed throughout t h i s work. 

Various block mode methods have been used to estimate a set of AR 

model parameters from a sample s i g n a l segment. The following discussion 

describes the most common conventional methods for AR parameter estimation. 
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In the past, the standard method to estimate AR parameters was often based on 

the Yule-Walker equations. These equations provide a r e l a t i o n s h i p between 

the autocorrelation function and the AR model parameters (see Ulrych and 

Bishop [34]. The d e r i v a t i o n of these equations i s reviewed by Kay and Marple 

[23] and the f i n a l r e s u l t expressed i n matrix form i s 

3.1 

R (0) R (-1) 
X X X X 

. . R U-p) 
X X 

R (1) 
X X 

R (1) R (0) 
X X X X 

. . R (2-p) 
X X 

a2 R (2) 
X X 

R (p-1) R (p-2) . 
X X r X X r 

. . R (0) 
X X 

ap R* (p) 
X X 

where R ^ t k ) i s the a u t o c o r r e l a t i o n f u n c t i o n for lag k, p i s the AR model 

o r d e r , and a^ k=l,2...p are the AR model parameters. Therefore, by obtaining 

estimates of the autocorrelation function, estimates of the AR parameters can 

be obtained by solving the system of Equations 3.1. Kay and Marple 

recommend, to achieve low mean-squared error, estimation of the autocorrela­

t i o n function at s p e c i f i c lags with the following expression 
. n-m-1 

R (m) = - I x.^ x. xx . l+m I n i=0 
3.2 

Note also that for a stationary process the conjugate symmetry property of 

the a u t o c o r r e l a t i o n function R (m)=R (-m) can also be u t i l i z e d i n solving 
X X X X 6 

3.1. In addition, the Yule-Walker equations y i e l d an expression that allows 

the variance of the residuals to be c a l c u l a t e d [23] 

R (0) = I a. R (k) + 6* xx . * k xx e k=l 
3.3 

where 6* i s the v a r i a n c e of the r e s i d u a l sequence. E q u a t i o n 3.1 can be 

augmented with 3.3 to y i e l d the following a l t e r n a t i v e form of the Yule-Walker 

equations [23] 
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R (0) xx 
R (1) xx 

R (p) xx 

R (-1) xx 
R (0) xx 

R (p-1) xx 

R x x ( - ( p - l ) ) 

R (Oj 
X X 

a 
LPJ 

6* e 

0 
3.A 

Least square (LSQ) estimation of the AR parameters i s another very 

common method. In f a c t , as w i l l be shown l a t e r , a l l the conventional methods 

discussed i n t h i s s ection can be shown to be based on le a s t squares minimiza­

t i o n c r i t e r i a . The method that i s most commonly r e f e r r e d to as the "LSQ" 

method can be derived i n the following manner [23]. From Equation 2.2 the 

p r e d i c t i o n error can be written as 

e i = x i " a k x i - k 
k=l 

3.5 

The sum of squared p r e d i c t i o n errors i s then 

SSE 
n 

i = l 1= X [ x i - X a k x i - k ] z 3.6 
i = l * k=l 

To f i n d the AR parameters that minimize 3.6 the p a r t i a l d e r i v a t i v e s with 

respect to each a^ are taken and set equal to zero. That i s 
3(SSE) 
3 a = 0 q=l,2. 3.7 

The r e s u l t of applying 3.7 to 3.6 i s 

P n 
y a. y x. ,x. 
, k . , l-k l-c 

n 
I x,- x 

k=l i = l i = l l l - q q= 1,2... p 3.8 

Then by s u b s t i t u t i n g 3.8 into 3.6, the minimum SSE can be shown to be [23] 

3.9 

Now by expanding 3.8 in t o matrix form for model order p r e s u l t s i n 

n p n 
SSE . = Y. x ? + E a i E x - x - i mm . . I i . k . , I l - k 

i = l k=l i = l 
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£ x i - i x i - i £ x i-2 x i - r 
Ix

i_1

x

i_2 ^ xi-2 Xi-2 
Ex. X . . 

^ 1-p 1-J 

Z x i - p z x i - p j a 
LPJ 

£ X i X i - l 
EXiXi-2 

Zx.x. 
_ 1 l-p_ 

3.10 

_ i - i i -p 

By c a l c u l a t i n g the summations i n 3.10, from a data sequence of n points, t h i s 

system of equations can be solved to determine the LSQ estimate of the AR 

parameters. Note that i f the autocorrelation estimate given i n 3.2 i s used, 

except for the s c a l i n g factor, 1/n, which does not e f f e c t the s o l u t i o n for 

the AR parameters, the above equations reduce to the Yule-Walker method of 

parameter estimation. Therefore, the Yule-Walker estimates are equivalent to 

the LSQ estimates for s u f f i c i e n t l y large n. 

An i m p l i c i t assumption, which i s p a r t i c u l a r l y evident i n the develop­

ment of the Yule-Walker s o l u t i o n , i s that the autocorrelation function i s 

assumed to be zero outside the data segment of i n t e r e s t . In p r a c t i c e , when 

r e l a t i v e l y short segment lengths are used, t h i s truncation of the auto­

c o r r e l a t i o n function can r e s u l t i n r e l a t i v e l y poor parameter estimates 

[25,23], Burg [35] addressed t h i s problem by using extrapolation of the 

autocorrelation function based on concepts of maximum entropy and he formu­

lat e d a method of AR parameter estimation, known as the Burg method or the 

maximum entropy method (MEM). Many authors have noted the superior perform­

ance of t h i s method over the Yule-Walker type methods when applied to 

r e l a t i v e l y short data segments (for example see [23,25,36,37]). Therefore, 

i n t h i s thesis work, because t y p i c a l l y r e l a t i v e l y short epochs of EEG are 

u t i l i z e d , MEM was selected as the conventional AR parameter estimation 

method. 
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The fundamental idea behind Burg's method i s to provide a non-zero 

e x t r a p o l a t i o n of t h e ^ a u t o c o r r e l a t i o n function beyond the known lags (up to 

and including the p lag: see Equation 3.1) as opposed to the implied zero 

extrapolation as i n the Yule-Walker equations. Burg argued that the extrapo­

l a t i o n should impose the fewest possible constraints on the extrapolated 

autocorrelation function without compromising any information about the known 

lags. To achieve t h i s , he required that the hypothetical time s e r i e s , which 

would be represented by the extrapolated autocorrelation function, should 

have maximum entropy. This requirement maximizes the randomness of that time 

s e r i e s , given the constraints of the estimate of the function, and hence 

produces a minimum bias s o l u t i o n . From a spectral point view, the maximum 

entropy estimate i s based on choosing a spectral estimate such that the 

entropy (E) per sample 
l / 2 f 

E = J" S In F (f) df 3.11 
- l / 2 f X 

s 
where F (f) i s the spe c t r a l estimate of the data segment and f i s the sample 

X s 

frequency, i s maximized subject to 
l/2f 

J F (f) exp-(j2TTk—) df = R (k) k=l , 2 , . . .p 3.12 
- l / 2 f X f X X 

s s 

It can be shown [38] that the spe c t r a l estimate which maximizes entropy 

subject to the constraint that i t s f i r s t p Fourier c o e f f i c i e n t s correspond 

exactly to the sample autocorrelation function evaluated at the f i r s t p lags 

i s the estimate of the spe c t r a l density function of an AR model of order p. 

In addition, i t i s shown that the estimates of the parameters and the power 
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i n the r e s i d u a l sequence, P , can be written as 

R (0) . . . R (p) 
X X xx r 

R (p) 
X X 

. R (0) 
X X 

.1 p 
a 1 

p 
1 

— 0 

a 0 
Lp_ _ _ 

3.13 

Note that these equations are of the same form as the augmented Yule-Walker 

Equations 3.4 where the variance of the residuals for the zero mean re s i d u a l 

sequence i s equal to P . 

The algorithm that was u t i l i z e d i n t h i s thesis work to c a l c u l a t e MEM 

parameter estimates i s based on a procedure outlined by Anderson [36]. The 

system of Equations 3.13 i s solved i n a sequential manner. Beginning with 

p=0, P , i s estimated by 

1 n 

P = - X x . 2 < 3.14 o . , 1 n i = l 

Then the model for p=l i s determined as that which minimizes the power i n the 

forward p r e d i c t i o n error sequence averaged together with the power i n the 

backward p r e d i c t i o n error sequence. This average power i s given by 

1 1 
n 
I [(x.-a 1(l)x.. 1) 2 + ( x i _ 1 - a 1 ( l ) x i ) 2 ] 3.15 

2 n-1 i=l+l 

For the general case of progressing from order p-1 to order p, i t i s shown 

that 

1 1 
2 n-p i=p+l k=l 

+ ( x i - p " J ^ k ^ i - p + k ^ 3.16 
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and i t can be minimized w i t h r e s p e c t to the si n g l e parameter a^(p). Note 

that the arguments on the parameters i n d i c a t e the current maximum model order 

at a given stage i n t h i s sequential procedure. The dependence of the other 

model parameters at the pth stage are given by the Levinson recursion 

a k(p) = a k ( p - l ) - a p ( p ) a p _ k ( p - l ) 3.17 
3TT 

A p p l y i n g E q u a t i o n 3.17 to 3.16, t a k i n g ^—j = 0 and solving f or a (p) 
a

p P P 

r e s u l t s i n 

2 _ I b ( i - l ) e (i) 
a (p) = 1 = P + 1 3.18 
p r n 

I ( |b . ( i - D I ' + le , ( i ) l 2 ) 
• i i P ~ l P ~ l i=p+l 

P P 
where b ( i ) = Y a (i)x(i-p+k) and e (i)= Y a ( i ) x ( i - k ) are the backward and 

P i = 0 P P i = 0 P 

forward p r e d i c t i o n e r r o r s . In the above notation i t i s assumed that 

a (0)=1.0. Hence, the value of ap(p) i s calculated v i a Equation 3.18, with 

the remaining parameters being calculated v i a Equation 3.17 and then the 

backward and forward p r e d i c t i o n error sequences are updated. The order i s 

then increased to p+1 and the procedure i s repeated u n t i l the desired model 

order i s reached. 

van den Bos [38] noted that MEM i s equivalent to a l e a s t squares 

f i t t i n g of an AR model. More s p e c i f i c a l l y , Kay and Marple [23] note that MEM 

can be viewed as a constrained l e a s t squares minimization problem because, as 

i s i n d i c a t e d by Equation 3.15, the sum of both the forward and backward error 

energies (squared error terms), as given below 
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n n 
E = I le (i) 12 + I lb Ci) 12 3.19 

i=p+l P i=p+l p 

i s the minimization c r i t e r i a for MEM, 

3.2 LSQ Parameter Estimation on Simulated Gaussian Data 

LSQ methods, as i s shown i n Section 3.3, are optimal when applied to a 

Gaussian random process i n terms of maximum l i k e l i h o o d estimation which 

provides the best l i n e a r unbiased estimates. Simulation studies using LSQ 

parameter estimation were c a r r i e d out on computer generated Gaussian AR data. 

The simulated data were generated using a Gaussian sequence, e^ with variance 

1.0 and mean 0.0, d r i v i n g an 8th order AR model with the following 

parameters: 

a, = 0.838 a. = -0.471 a. = 0.638 a, = -0.429 1 2 3 4 

a c = 0.518 a, = -0.304 a.n = 0.182 a_ = -0.243 

This set of parameters was c a l c u l a t e d from EEG data and the set was selected 

as being t y p i c a l for an 8th order AR model of actual EEG. The Gaussian 

sequence e^ was generated from a uniform white sequence v i a the procedure 

given by Box and Muller [39]. The uniform pseudo-random number generator was 

based on a "generalized feedback s h i f t r e g i s t e r algorithm" which i s given by 

T.G. Lewis and W.H. Payne [40] . They demonstrate that t h i s generator has 

excellent random properties and a sequence period of 2 r a i s e d to the j t h 

power, where j i s the integer word length which i n t h i s case was 31. 

F i f t y sets of estimations using d i f f e r e n t random data segments of 

lengths n=1000, n=500, n=100, n=64, and n=32 were c a r r i e d out. The mean 

squared error (MSE) between the actual and estimated parameter values were 
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calculated for each set. The r e s u l t s are summarized i n Figure 3.1. These 

r e s u l t s show that the MSE began to increase s i g n i f i c a n t l y when the segment 

length was decreased to n=100 and they became very large when the segment 

length was reduced to n=32. This points to, i n terms of parameter estimation 

e f f i c a c y , a p r a c t i c a l lower bound on segment s i z e . I d e a l l y , segment sizes i n 

the order of n=500 would be preferable, but i n the case of actual EEG, there 

i s a need (see Section A.5) to make the segment s i z e as small as possible. 

The EEG data was sampled at 64 Hz (see Section 4.1), and therefore, a one 

second segment contains only 64 data points. Since the MSE and SE became so 

large at n=32 and since i t was s i g n i f i c a n t l y less at n=64, i t was decided 

that one second (n=64) should be the absolute lower bound on segment length 

for EEG data. Ultimately, a segment s i z e of 1.5 seconds (n=96), moderately 

above t h i s lower bound, was u t i l i z e d < i n the s i n g l e t r i a l analysis method (see 

Section 4.4). Further discussion on segment length r e l a t i n g s p e c i f i c a l l y to 

the EEG data used i n t h i s t hesis work i s provided i n Section 4.5. 

3.3 Deviations from Gaussianity 

Several researchers, such as McGillem et a l . [13], Jansen et a l . [25] 

and Smith and Lager [41], employed AR parameter estimation i n various a p p l i ­

cations involving EEG. In t h i s work, the required parameter estimation was 

based on estimation methods involving least squares, which are generally 

optimal i n Gaussian processes. However, i t has been shown [42] that the 

performance of these methods can, under c e r t a i n circumstances, s i g n i f i c a n t l y 

break down under even s l i g h t deviations from Gaussianity. Although i t was 

discussed e a r l i e r i n Section 2.2 and 2.3 that there was considerable evidence 
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to expect EEG to be generally Gaussian, there i s c e r t a i n l y no guarantee that 

sample segments of EEG w i l l always be s t r i c t l y Gaussian. This prompts 

questions about both the Gaussian nature of sample segments of EEG, i n 

p a r t i c u l a r r e l a t i v e l y short segments, and the r e s u l t i n g performance of AR 

model parameter estimation techniques under conditions of varying degrees of 

deviation from Gaussianity. 

A considerable amount of work has been c a r r i e d out on robust estima­

t i o n of l o c a t i o n parameters and l i n e a r regression model parameters i n the 

case of independent and i d e n t i c a l l y d i s t r i b u t e d ( i . i . d . ) observations. The 

basic goal of a robust procedure, for the purposes of t h i s t h e s i s , i s to 

provide good estimates when the data has a small number of o u t l i e r s ( i n the 

order of 5 to 20 percent) causing the assumed, Gaussian i n the case of EEG, 

d i s t r i b u t i o n function to be contaminated. In addition, the robust procedure 

should provide estimation r e s u l t s which are not s i g n i f i c a n t l y d i f f e r e n t from 

the conventional LSQ methods when the data i s not contaminated with o u t l i e r s . 

Location Case 

There are a number of robust methods but the most s a t i s f y i n g to date 

appear to be those given by modifications to maximum l i k e l i h o o d . Hogg [43] 

provides a good background t u t o r i a l on robust methods and the following b r i e f 

d e s c r i p t i o n of modified maximum l i k e l i h o o d methods i s based on that t u t o r i a l . 

11 x ̂  t ^ 2 * **••»* x^ aire a random sample from a p r o b a b i l i t y density function 

f(x-O) where 0 i s a l o c a t i o n parameter, then the logarithm of the l i k e l i h o o d 

function i s given by 
n n 

JnL(0) = I inf(x.-e) = - I p(x.-0) 3.20 
i = l 1 i = l 1 

The maximum l i k e l i h o o d method maximizes In L(0) or i n terms of the p function 
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minimizes 
n 
I p(x.-G) = K(0) . 3.21 

i= l 1 

Assume that the minimization can be achieved by d i f f e r e n t i a t i n g and solving 

K'(9) = 0. In other words, f i n d the value of G that s a t i s f i e s 
n 
I V> (x.-9) = 0 3.22 

i = l 1 

where 

\|>(t) = P 1 (t) = - f 1 ( t ) / f (t) 3.23 

The value of 0 that minimizes K(0) i s termed the maximum l i k e l i h o o d 

e s t i m a t e of 0 and i s denoted as 0. Robust M-estimates are generated v i a 

Equation 3.22 except that d i f f e r e n t p s i functions are used than that 

described i n Equation 3.23. Each d i f f e r e n t p s i function describes a s p e c i f i c 

type of M-estimate. The basis of robust M-estimates i s to f i n d p s i (\Ji) 

functions that w i l l protect against o u t l i e r data points that cause undue 

influence on the estimation result.* An example of such a p s i function i s 

that due to Huber [44]. It i s designed to deal with data that i s d i s t r i b u t e d 

normally i n the middle with double exponential t a i l s ("heavy-tailed" 

d i s t r i b u t i o n ) . The p s i function i s given by 
-c t < -c 

ij)(t) = { t | t | <. c 3.24 
c t > c 

where c i s a tuning constant. A scale invariant version of the M-estimator 

i s given as 
n x.-0 
I = 0 3.25 

i = l s 
where s i s a robust estimate of the process scale. In t h i s case, c = 1.5 
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i s often selected to allow data from a t r u l y Gaussian d i s t r i b u t i o n to be 

uninfluenced by t h i s p s i function while s t i l l providing the desired 

protection from outlying points. The so l u t i o n to Eqn. 3.25 i s t y p i c a l l y 

found by a block mode i t e r a t i o n scheme, such as the iterated-weighted least 

squares (IWLS) procedure [45]. Other commonly used p s i functions are 

Hampel's three part redescending and Tukey's Bi-weight. 

It should be noted that, the c a l c u l a t i o n of the p s i function for a 

Gaussian d i s t r i b u t i o n demonstrates that the LSQ estimate i s the maximum 

l i k e l i h o o d estimator. The Gaussian d i s t r i b u t i o n i s given by [46] 

r - ( x - 0 ) * n  

e x p [ 2o» ] 

f(x-O) = — — 3.26 
V2TTOJ 

and hence 

p(x-G) = \ fin(2Tro*) + ( * ~ f } 2 3.27 

and 

\b(x-0) = (x-O) 3.28 

Applying Eqn. 3.22 i t follows that the maximum l i k e l i h o o d estimator i s the 

value of 0 that s a t i s f i e s 
1 n 

±7 I (x.-6) = 0 s 3.29 a2 . , I i = l 

y i e l d i n g the well known r e s u l t 

0 = x 3.30 

which i s exactly the LSQ estimate of 0 [43]. 

Regression Case 

The above methods can be extended to the block mode l i n e a r regression 

case (see Hogg [43]). Given the l i n e a r model 
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Y = Xa + e 3.31 

where: X i s n x p data matrix 
a i s a parameter vector of order p 
e i s a r e s i d u a l vector of order n 
p i s the order of the model 
n i s the number of data points 

It then follows that the expression to be minimized i s now 
T 

n y. - x. a 
I P( 1

 a
 1 ) 3.32 

i = l e 

where: y_̂  i s the i t h data point 

x. i s the i t h row of the matrix X - i 

Considering the p f i r s t p a r t i a l d e r i v a t i v e s , the following set of p equations 

must be solved 
T 

n y -x a _ 
I x. * ( 1 1 ) ~ 0 3.33 

i = l e 
where s i s a r o b u s t estimate of the standard deviation of the r e s i d u a l s , e 

Again, t h i s set of equations can be solved using a IWLS procedure and Hogg 

[43] recommends the following robust estimate 

median |e. - median(e.)I 
s = — 3 34 
e 0.6745 * 

Autoregression Case 

The a p p l i c a t i o n of robust methods to time-series data has lagged 

behind the a p p l i c a t i o n to the i . i . d . case, probably, as suggested by Martin 

[47], because of the considerable d i v e r s i t y i n q u a l i t a t i v e features of time-

serie s data sets as well as the possible dependency that may a r i s e i n the 

residuals due to data o u t l i e r s that occur i n patches (correlated). Martin 
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[47] applies robust estimation to time-series data and shows that many of the 

concepts from the i . i . d . observations case can be applied d i r e c t l y . The 

greatest dif f e r e n c e seems to occur i n the d e f i n i t i o n s of the robust q u a l i t i e s 

of the given methods due mostly to the added d i f f i c u l t i e s mentioned above. 

Martin [47] also points out that for data to q u a l i f y as a time-series o u t l i e r 

i t only has to be " d i f f e r e n t " on the innovations (residual) scale not the 

process scale. Since the innovations scale i s t y p i c a l l y 10 to 10,000 times 

smaller than the process scale the o u t l i e r s w i l l often be impossible to 

v i s u a l l y detect i n a p l o t of the raw data. 

Martin [47] i d e n t i f i e s three types of o u t l i e r s that may occur i n time-

seri e s data: 

1) independent i s o l a t e d gross-error o u t l i e r s which may be caused by various 
recording (measurement) errors 

2) patchy type o u t l i e r s whose behavior seems to be uncorrelated with the 
behavior of the rest of the data - t h i s may be caused by b r i e f malfunc­
tions i n the data c o l l e c t i o n system, inherent behavior of the process or 
maybe other unaccountable e f f e c t s 

3) patchy o u t l i e r s whose behavior does appear to be r e l a t e d to the r e s t of 
the data with the possible exception of an i n i t i a l jump - t h i s type of 
o u t l i e r may be caused by unusual events within the process 

He also suggests that two types of o u t l i e r models can reasonably simulate the 

above types of o u t l i e r a c t i v i t y . The additive o u t l i e r model would apply for 

types 1 and 2 while the innovations o u t l i e r model would apply for type 3. 

The Innovations O u t l i e r (10) model i s described i n [47] as 

P 
x. = £ a, x. . + e. 3.35 

l i . k l-k l k=l 

where the i n n o v a t i o n sequence e^ i s i . i . d . with a symmetric d i s t r i b u t i o n G 

and the observations are given by 
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y. = x. . 3.36 
J 1 l 

Innovation o u t l i e r s occur when G i s heavy-tailed. Martin and Thompson [45] 

have found that t h i s type of deviation from Gaussianity does not cause, 

except perhaps i n extreme cases, serious problems for the conventional 

estimation of parameters from a time-series. 

In the case of the Additive O u t l i e r (AO) model, the observations are given 

by 

y. = x. + v. 3.37 
Ji l l 

where x^ i s defined as i n 3.35 with G Gaussian, v^ i s independent of x^, and 

v^ has a symmetric d i s t r i b u t i o n . A s u i t a b l e d i s t r i b u t i o n f o r v^for the 

i . i . d . case i s the contaminated-normal with degenerate c e n t r a l component 

which has the following form [45] 

CND(r,o 2) = (l-r)N(0,0) + rN(0,o 2) 3.38 

where y i s the proportion of contamination and the notation N(u,o 2) 

represents a normal (Gaussian) d i s t r i b u t i o n with mean u and variance a 2 . 

With t h i s d i s t r i b u t i o n , the p r o b a b i l i t y that v^ = 0 i s the p r o b a b i l i t y that 

y^ = x^ which equals 1-/ and i n t y p i c a l a p plications 0.01 < y < 0.25. In 

contrast to the 10 case, i t has been shown [45,47,48] that conventional time-

serie s parameter estimation i s h i g h l y non-robust under t h i s additive type of 

contamination. Although, v^ has been r e s t r i c t e d above to the i . i . d . case i t 

has been found [45] that schemes which deal well with t h i s type of o u t l i e r 

also deal best with the patchy type of o u t l i e r s . Furthermore, Martin and 

Thompson [45] point out that, i n p r a c t i c e , the d e t a i l s of the o u t l i e r d i s t r i ­

b u t i o n f o r v^ are l a r g e l y i r r e l e v a n t because i t would be a poor robust 

estimator that depended s i g n i f i c a n t l y on a given d i s t r i b u t i o n f or v^. 

A generalized robust M-estimate (GM-estimate) [47] , a member of the 
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class of bounded-influence autoregression (BIFAR) estimates, was shown to 

have robust q u a l i t i e s for the AO case and i s given by [42] 
T 

I 5 W(x > « s" i" P") = 0 3.39 
i=p+l e 

Note t h a t except for the weighting factors W(x^), these equations are of the 

same form as the equations given for the M-estimate. As described by Martin 

[47] , the r o l e of the a d d i t i o n a l weighting factors i s to down-weight the 
T 

summands of E q u a t i o n 3.39 f o r which x^a i s a poor predictor because one or 

more of the values i n x^ are too large. He shows that an appropriate calcu­

l a t i o n of these weights can be achieved by l e t t i n g 

WCx^) = wtcL) 3.40 
where d. i s defined as l 

T -1 3.41 x. C x. 
d»(x.) = — -

- i P 

and C i s the pxp covariance matrix for the p ^ order AR model of the process 

and w(.) i s a non-negative decreasing weighting function, t y p i c a l l y of the 

form 

w(t) = c \|)(t/c)/t 3.42 

where c i s a tuning constant. Hence, there are at least two tuning constants 

required: one for the p s i function and one for the w function. The value d 2 

T -1 

i n 3.41 i s p r o p o r t i o n a l t o x^C x^ ; t h i s e x p r e s s i o n , known as the 

Mahalanobis distance, provides, as noted by Martin [47], a natural metric by 

which the r e l a t i v e "largeness" of x^ can be determined. 

The GM-estimates can be solved using an IWLS procedure as given below [45] 
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where 

I x. W(x. ) B̂  (y. - xT a J + 1 ) =0 3.43 
i=p+l r r r j = 1,2, ... NIT 

T ' j y. - x. a J 

*( 1 - 1 ~ P " ) 
e * 

= s J . 3.44 l e T " j y. - x. a J  
J l — i - p — 

The process to obtain GM estimates requires s t a r t i n g with model order p=l and 

sequentially increasing p u n t i l the desired order i s reached. At each 

model order i n t h i s sequence, a set of p equations r e s u l t i n g from Equation 

3.43 are solved for each of the NIT i t e r a t i o n s . MEM estimates for a and the 

c o r r e s p o n d i n g r o b u s t e s t i m a t e of s g are used as s t a r t i n g values for the 

i t e r a t i o n s of Equation 3.43. The reason that the model parameters must be 

estimated sequentially i s due to the manner i n which a robust estimate of C" 1 

i s c alculated. It has been found [47] that a successful approach to obtain a 

robust estimate of C" 1 i s based on the f a c t o r i z a t i o n 

C" 1 = A TA 3.45 

where A i s upper t r i a n g u l a r and i s given by 
-a(p-k) 

X K % > k s e(p-k) 

s g(p-k) 
0 I < k 

where k = 1,2 p-1 and a(p-k) , s e(p-k) are the parameter estimates and 

r e s i d u a l standard deviation for model order p-k and the required s t a r t i n g 

v a l u e of s e
2 ( 0 ) i s set equal to the variance of the o r i g i n a l data sequence 
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y\ . Hence, the pxp matrix C" 1 i s represented i n terms of the AR parameters 

and the corresponding r e s i d u a l standard deviations derived for model orders 

up to p-1. Therefore, by f i t t i n g AR models i n succession, the p r i o r GM 

parameter estimates at model order p-1 w i l l enable the construction of A P, 

the A matrix at the p ^ i t e r a t i o n , which provides the robust estimate of C" 1 

v i a Equation 3.45 to be used for the current GM parameter estimate at order 

P-

3.A GM Estimation on Simulated Contaminated Gaussian Data 

Simulation studies were c a r r i e d out to determine the r e l a t i v e 

performance of robust GM estimation methods as compared to the conventional 

LSQ (MEM) estimation method when applied to eighth order AR Gaussian data 

with 0%, 10% and 20% l e v e l s of AO contamination. Additive o u t l i e r s are 

studied because conventional parameter estimation i s not robust under t h i s 

type of contamination (see Section 3.3) and also because, the sing l e t r i a l 

a nalysis method (see Section 4.2) s i s l a r g e l y based on additive o u t l i e r 

concepts. The contamination for these studies was produced based on the AO 

model given i n Equation 3.37 with the d i s t r i b u t i o n G being Gaussian with 

v a r i a n c e 1.0 and mean 0.0. The d i s t r i b u t i o n for v. was of the form given i n 
l & 

Equation 3.38 with o2=2.0 and T=0, 0.1, and 0.2. The simulations were 

c a r r i e d out on data segments with a length equal to 100 points because t h i s 

r e f l e c t s the segment length used on the actual EEG signals as described i n 

Chapter 4. 

Figures 3.2, 3.3, and 3.4, show the MSE performance of the LSQ, GM, 

GM1, and GM2 estimation methods on f i f t y (N=50) random simulated 8th order AR 
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Gaussian processes with 0%, 10%, and 20% l e v e l s of AO contamination respec­

t i v e l y . The GM1 and GM2 methods are extensions to the GM estimate which w i l l 

be described i n Section A.3. In these studies, as suggested by Martin and 

Thompson [A5] , the Huber p s i function, as described i n Equation 3.2A, was 

used for the f i r s t two i t e r a t i o n s (j = l,2) of Equation 3.A3 and then Tukey's 

bi-weight 

M t ) m r t ( l - (t/c)»)» | t | < c 
V{t> 1 0 It| * c . J , 4 / 

was used for the l a s t i t e r a t i o n (j=3=NIT). 
Through t r i a l and error, the various tuning constants were selected to 

provide the best performance i n term of MSE and are summarized below 

c 
Huber p s i 1.0 
Tukey p s i 3.0 
w based on Huber p s i 1.3 

These r e s u l t s show that the robust methods perform, i n terms of MSE, 

almost as well as the LSQ method on the uncontaminated Gaussian data. With a 

10% l e v e l of AO contamination the LSQ performance f a l l s o f f dramatically. 

The robust methods perform much better with the GM2 method performing almost 

as well as i n the uncontaminated case. At the 20% l e v e l of contamination the 

performance across a l l the methods has dropped s i g n i f i c a n t l y . However, the 

GM2 method i s s t i l l c l e a r l y the best performer with a MSE generally less than 

the LSQ method i n the 10% contamination case. The r e s u l t s support the 

expectations of robust estimation i n that the robust methods perform nearly 

as well as the LSQ method on uncontaminated data but perform s i g n i f i c a n t l y 

better than the LSQ method on contaminated data. 
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CHAPTER 4 

OUTLIER PROCESSING OF SINGLE TRIAL EEG 

4.1 Experimental Design and EEG Data A c q u i s i t i o n 

The objective of the experimental data a c q u i s i t i o n was to obtain EEG 

signals from subjects during a c o n t r o l l e d voluntary s k i l l e d motor a c t i v i t y 

(active task) and during a c o n t r o l l e d state i n which the subjects were a l e r t 

but not involved i n any motor a c t i v i t y ( i d l e task). 

For the active task, subjects placed t h e i r r i g h t hand i n an apparatus 

which oriented t h e i r hand i n a standard p o s i t i o n . The task required them to 

aim for a "target" p o s i t i o n by performing a slow smooth (ramped) extension 

with t h e i r r i g h t thumb. During the movement the t i p of t h e i r thumb pressed 

against a lever that provided a small opposing force to the thumb movement. 

In the s t a r t i n g p o s i t i o n the lever rested on a support so that there was no 

i n i t i a l load and the thumb was i n a relaxed state. A potentiometer attached 

to the lever provided p o s i t i o n information which was used to derive an 

encoded thumb movement s i g n a l . A sketch of the apparatus i s given i n F i g . 

4.1a. 

The duration of the ramped < extension was approximately one second 

long. After subjects completed the extension and had returned t h e i r thumb to 

the s t a r t i n g p o s i t i o n , v i s u a l feedback, v i a d i f f e r e n t colored l i g h t s , was 

presented to them i n d i c a t i n g whether they had h i t , overshot, or undershot the 

target p o s i t i o n . During thumb movements subjects were asked to f i x a t e on the 

v i s u a l feedback area i n an attempt to minimize eye movements and to prevent 

subjects from looking at t h e i r thumb. Aft e r subjects were given some 

pr a c t i c e t r i a l s , they were asked to carry out f i f t y self-paced r e p e t i t i o n s 
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with t h e i r r i g h t thumb. On each t r i a l , a c q u i s i t i o n of the EEG started 1 

second before thumb movement onset (determined by monitoring the encoded 

thumb movement signal) and then continued for 4.5 more seconds at which time 

the feedback was presented. The a c q u i s i t i o n was then halted one second a f t e r 

presenting the feedback which res u l t e d i n a t o t a l epoch length of 6.5 

seconds. The above active task was based on a previous study into motor 

po t e n t i a l s c a r r i e d out by Grunewald and Grunewald-Zuberbier [7] . In t h e i r 

analysis they u t i l i z e d conventional averaging techniques and t h e i r grand 

averages across seven subjects, 35 t r i a l s each, are given i n Figure 4.1b. 

For the i d l e task the subjects were kept i n the same phys i c a l 

s i t u a t i o n as i n the active task but i n t h i s case they were not performing any 

thumb movements. Twenty epochs of EEG, 6.5 seconds i n length, were c o l l e c t e d 

from the subjects under t h i s condition. A f t e r each epoch was c o l l e c t e d , the 

feedback l i g h t s flashed to ind i c a t e to the subject that they had 10 seconds 

to relax before the onset of the next epoch. Af t e r taking a short pause the 

onus was on the subject to f i x a t e t h e i r eyes on the feedback l i g h t s i n 

preparation for the onset of the next epoch. 

The EEG signals were recorded from the scalp using s i l v e r / s i l v e r 

chloride electrodes. This type of electrode possess the most appropriate 

c h a r a c t e r i s t i c s for EEG recording i n terms of low p o t e n t i a l d i f f e r e n c e s , long 

time constants and low resistance between the e l e c t r o l y t e and the metal 

surface of the electrode. The electrodes were "cupped" shaped with a small 

hole i n the top and they were f i r m l y attached to the scalp around the rim 

with the use of c o l l o d i o n . E l e c t r o l y t e j e l l y was i n j e c t e d into the a i r space 

under the "cup" of the electrode which provided a good e l e c t r i c a l connection 

between the scalp and the electrode. T y p i c a l l y the electrode impedance 



LEFT INDEX FIN6ER RIGHT INDEX FINGER 

A B CD E F A B CD E F 

Ramp p o s i t i o n i n g movements of the l e f t and 
r i g h t index f i n g e r . Grand averages across seven r i g h t 
handed subjects. Recordings of force, r e c t i f i e d EMG, 
po s i t i o n , v e r t i c a l EOG, and slow p o t e n t i a l s h i f t s i n 
l e f t and r i g h t precentral (C3' f C4') and postcentral 
(C3'', C4**) EEG (1cm a n t e r i o r and 2 cm po s t e r i o r to 
C3, C4 p o s i t i o n s ) . 

Figure 4.1b 



45 

between the scalp and the reference electrode was approximately 2500 ohms. 

The sign a l was i n i t i a l l y recorded from three standard i n t e r n a t i o n a l 10/20 

system electrode s i t e s Cz, C3 and C4 (See Jasper [49]). The s i g n a l from each 

of these electrodes was referenced to linked ear lobes. A bi - p o l a r EOG 

signal and the corresponding encoded thumb movements were also recorded. The 

EOG electrodes were placed on the supra o r b i t a l ridge and the external canthi 

of the r i g h t eye. 

The EOG s i g n a l was u t i l i z e d i n a very conservative a r t i f a c t r e j e c t i o n 

c r i t e r i o n which rejected any EEG epoch that had a corresponding EOG s i g n a l 

that at anytime during the epoch fluctuated above or below baseline by more 

than a given threshold value. This value was nominally set at 17 microvolts. 

As w e l l , any EEG epoch that was not rejected by the above c r i t e r i o n but 

contained peak values that exceeded baseline by 43 microvolts, t y p i c a l l y due 

to f a c i a l EMG, were also rejected as artifact-contaminated. In addition, for 

the active case, t r i a l s not containing a reasonable thumb movement were also 

rejected. Ultimately, based on the above s e l e c t i o n c r i t e r i a , 15 t r i a l s from 

both the active and i d l e cases were u t i l i z e d from each of the four subjects. 

The EEG signal that was used for a l l the subsequent s i g n a l analysis was taken 

from the C3 electrode s i t e which was c o n t r a l a t e r a l to the thumb movement. 

In a l l cases the EEG and EOG signals were i n i t i a l l y amplified by a 

Beckman 711 polygraph using an analogue lowpass f i l t e r with a -3dB point at 

100Hz (20dB per decade r o l l - o f f ) and a highpass analogue f i l t e r with a time 

constant of 14.7 seconds. The signals for each epoch were d i g i t i z e d i n r e a l 

time at a rate of 1024 samples per second and were stored on a hard disk. 

Before any s i g n a l analysis schemes were applied, the EEG signals were 

preprocessed by a 201-point phaseless d i g i t a l lowpass f i l t e r which had a 

cutoff frequency of 29Hz (-3dB p o i n t ) , a t r a n s i t i o n width of 3Hz (-24dB at 
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32Hz), and a minimum stopband attenuation of -27dB. It i s generally agreed 

[50] that almost a l l the power i n the normal EEG i s between zero and t h i r t y 

Hertz. Therefore, with the above d i g i t a l f i l t e r the data was resampled at 

the r e l a t i v e l y low rate of 64 Hz which i s desirable because as the sample 

rate increases, there i s a corresponding need to increase the AR model order 

since the time dependency i s spread over a greater number of sample points. 

Generally, one wants to make the best possible trade-off between using a 

s u f f i c i e n t l y high sample rate that w i l l allow for the accurate representation 

of the highest frequency of i n t e r e s t and yet within that framework keep i t as 

low as possible so that the required model order i s minimized. 

4.2 Neurological Premise 

The concept that event r e l a t e d information i s contained i n EEG time 

series o u t l i e r s i s based on the following model of summation of e l e c t r i c a l 

b r ain a c t i v i t y at a given point on the scalp. Under i d l e conditions the 

ongoing e l e c t r i c a l a c t i v i t y that sums, s p a t i a l l y and temporally, at a given 

point on the scalp can be modeled as an o v e r a l l ongoing process as "observed" 

from that point on the scalp during* a p a r t i c u l a r time i n t e r v a l . When event 

r e l a t e d p o t e n t i a l s , such as motor r e l a t e d p o t e n t i a l s , are generated by a 

unique a d d i t i o n a l process they are "added" into the p r e - e x i s t i n g ongoing 

process and would appear as additive o u t l i e r content when considered from the 

point of view of the ongoing pre - e x i s t i n g process. Therefore, i f one could 

d i s t i n g u i s h o u t l i e r points from pre - e x i s t i n g process points i n the s i n g l e 

t r i a l a ctive EEG time seri e s then these o u t l i e r points could be used to 

provide information about event r e l a t e d p o t e n t i a l s on a single t r i a l b a s i s . 



47 

The underlying p r i n c i p l e of the s i n g l e t r i a l processing scheme i s to 

generate an AR model of the active EEG s i g n a l using a robust parameter 

estimation method that w i l l represent the ongoing, underlying process by 

down-weighting unusual data points (see Section 3.3). This estimated model 

i s then used i n a robust s i g n a l estimator (see Section 4.3) which produces an 

estimated s i g n a l of the ongoing, underlying EEG process. The difference 

between the o r i g i n a l measured s i g n a l and the estimated s i g n a l i s considered 

to be additive o u t l i e r content (see Section 4.4.1). The o u t l i e r content i s 

then processed (see Section 4.4.2) to produce waveform patterns that provide 

si n g l e t r i a l event r e l a t e d information. 

4.3 Signal Cleaning Process 

An approach to detect o u t l i e r points i n a time ser i e s was proposed by 

Martin and Thomson [45], They used t h i s system not to study the character, 

or information contained therein, of the o u t l i e r s but rather to produce a 

"cleaned" time series which was used as part of a process that produced 

robust s p e c t r a l estimates. This cleaning process i s based on a " r o b u s t i f i e d " 

Kalman s i g n a l estimator. The objective of the cleaning process i s to provide 

an estimate of the o r i g i n a l s i g n a l without the AO content. It r e l i e s on a 

e s t i m a t e d pth order AR model of the process x^ as g i v e n i n the AO model 

(3.37) which for convenience i s repeated below 

= x. + v. 
l l 

4.1 

This AR process written i n state v a r i a b l e form i s given by 

x. 
— I 

= $ X. - i - 1 + u. 
— 1 

4.2 
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T T where x. = (x. ,x. x. u. = (e.,0,0 0) , and - i I i - i i-p+1 - i i ' ' ' ' • 

a l a2 
1 0 
0 1 

0 0 

0 
0 

. 1 0 

4.3 

Note t h a t , g i v e n the above d e f i n i t i o n , the state x^ i s equal to the current 

value of x. and past values of x. up<to x. ,,. 
l I r i-p+1 

"Robust" estimates of the state x^ are calculated r e c u r s i v e l y with the 

following expression [45] 
m. y. - x 

x. = <J>x. , + — s. \|) ( - i - i - l s? l y s. l 
i-1- ) 4.4 

where i s the f i r s t column of the pxp m a t r i x which i s r e c u r s i v e l y 

c a l culated as follows 

M l + l l x 4.5 

and 

y. - x . , a m.m. r> w / i ~ i - l \ - i - i P. = M. - w ( ) s. 4.6 

where Q i s a pxp matrix with a l l zero entries except the f i r s t element which 

i s equal to a robust estimate of the variance of the re s i d u a l sequence, i . e . 

Q( l , l ) = S g
2 and s^ i s a time varying scale defined by 

s±* = M i ( l , l ) 4.7 
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The cleaned data at time i , w i l l then be the f i r s t element of the estimated 

state x., which i s - i 
y. = x. 4.8 
J 1 C 1 

In other words, y^ i s an estimate of the process without the influence of 

the a d d i t i v e o u t l i e r s , v^. Note that with the s c a l i n g given 4.7 and given 

that there i s no influence from the p s i function, as would be the desired 

r e s u l t when there i s no o u t l i e r content, x. = y.. 

Hampel's three part redescending p s i function [43] was used i n 

Equation 4.4 and i t i s given as follows: 

Itl 0 <. | t | < a 
a <. | t | < b 

ii(t) = sign(t) { 4.9 
c-b b * Itl < c 

0 c £ | t | 

where a, b and c are tuning parameters. In a s i m i l a r fashion as i n the case 

of GM-estimation the w function i s of the form 

w(t) = f ( t ) / t 4.10 

The cleaning process described above was u t i l i z e d as part of the 

procedure to obtain GM1 and GM2 AR parameter estimates. A GM1 estimate i s 

based on the estimated cleaned time ser i e s and a GM2 estimate i s a further 

i t e r a t i o n where the parameters from GM1 are used i n the cleaner to provide a 

t h e o r e t i c a l l y improved estimate of the cleaned time s e r i e s . Figure 4.2 

provides a block diagram of the procedure to obtain GM, GM1, and GM2 

parameter estimates. Through the simulation studies described i n Section 3.4 

i t was found that the best performance i n terms of minimizing the MSE was 

obtained by s e t t i n g the tuning parameters i n Equation 4.9 as given below 
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tuning parameter 
a 1.8 
b 2.2 
c 3.0 

4.4 Extracting and Processing O u t l i e r Information 

4.4.1 Extracting O u t l i e r Information 

The o u t l i e r e xtraction process for the EEG data i s accomplished by 

taking the epoch, 6.5 seconds long, and d i v i d i n g i t into 1.5 second segments 

with each segment overlapped by .75 seconds. Each segment i s modeled at the 

order expected for i d l e task EEG (12-14) and hence, reducing the a b i l i t y of 

the model to account for active task information i n the EEG (see Section 

4.5). The s i g n a l from each segment i s then cleaned using the estimated model 

parameters i n the cleaner described i n Section 4.3. The o u t l i e r s are then 

calculated by taking the diff e r e n c e between the o r i g i n a l and cleaned signals 

(see Figure 4.3). * 

The o u t l i e r e xtraction process was i n i t i a l l y tested by applying i t to 

Gaussian simulated 12th order AR data which contained 10% "patchy" 

(correlated) additive o u t l i e r contamination. This t e s t confirmed that the 

extraction process had some d i s t i n c t a b i l i t y to recover the o u t l i e r content 

from the simulated s i g n a l . Patchy contamination was used since i t was 

expected that i n the case of r e a l EEG the additive event r e l a t e d p o t e n t i a l s 

would be correlated. As suggested by Martin and Zeh [51] , the correlated 

v a l u e s f o r v. were generated by d i v i d i n g the segment i n t o equal halves. 
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Immediately f o l l o w i n g the f i r s t non-zero v^ i n each h a l f the r e s t of the 

non-zero v^'s were grouped together. These grouped v^'s were used to produce 

corr e l a t e d v_^'s v i a the following expression 

v? = 0v? . + (1 - Q 2 ) 1 ' 2 v . 4.11 l i - l l 

where a value of 0 = 0.6 was used i n these simulation t e s t s . This procedure 

r e s u l t s i n a correlated o u t l i e r series which has roughly the same variance 

as i n the independent case [51]. 

It was found i n t h i s a p p l i c a t i o n that the tuning parameters for the 

p s i function given i n Equation 4.9 needed to be set such that i t provided a 

stronger influence than i n the parameter estimation a p p l i c a t i o n discussed i n 

Section 4.3. By t r i a l and error the best performance of the extraction 

process was obtained by s e t t i n g the tuning parameters as given below 

tuning parameter * 
a 1.0 
b 1.2 
c 1.8 

Some example r e s u l t s from these t e s t s , which q u a l i t a t i v e l y demonstrate the 

p o t e n t i a l performance of the ex t r a c t i o n process, are shown i n Figure 4.4. 
c 

Each example contains the same randomly generated v_̂  contamination which was 

used to contaminate d i f f e r e n t Gaussian AR sequences x^. The broken l i n e i n 

each p l o t r e p r e s e n t s the actual v^ values and the s o l i d l i n e represents the 

o u t l i e r content that was extracted v i a the the o u t l i e r e x t r a c t i o n process. 

Figures 4.4a through 4.4c show three d i f f e r e n t examples of using GM2 and LSQ 

parameters i n the cleaning process. Figures 4.4d and 4.4e are the second and 
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t h i r d examples repeated using GM and GM1 parameter estimation. It i s clear 

from these examples that the process performs better with GM2 estimates than 

with GM estimates and much better than with LSQ estimates. The performance 

of GM2 and GM1 are quite s i m i l a r with perhaps some subtle improvements i n the 

case of GM2. Since these t e s t s revealed three c l e a r l y discernable jumps i n 

performance i n using LSQ, GM, and GM2 parameter estimates, i t was decided 

that subsequent studies using o u t l i e r detection i n t h i s t h e s i s work would be 

r e s t r i c t e d to those three estimation methods. 

4.4.2 Processing O u t l i e r Information 

Processing the extracted o u t l i e r information i s accomplished by taking 

the o u t l i e r content from each EEG segment and averaging i t together with the 

o u t l i e r content from the corresponding overlapping segment. This r e s u l t s i n 

an o u t l i e r pattern spanning the whole 6.5 second epoch. The o u t l i e r pattern 

i s then smoothed by convolving i t with a 16 point tapered smoothing window 

which i s based on a minimum-bias sp e c t r a l window suggested by Papoulis [52]. 

It i s given by 
,,,,, 1 C , 1 + COS(2TT k/16) 
W(k) = 16TT2 4.12 

[16(2ir k/16) 2 - I T 2 ] 2 

where k = 0, +/-1, +/-2 +/-16 

The r e s u l t i n g smoothed pattern constitutes the output waveform of the 

sin g l e t r i a l processing method. 
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A. 5 AR Spectral Analysis 

Preliminary studies involving AR spe c t r a l analysis were useful i n 

providing some measure of the a b i l i t y of the AR model to represent the EEG 

s i g n a l . As w e l l , these studies were instrumental i n e s t a b l i s h i n g appropriate 

EEG segment lengths and a procedure for the s e l e c t i o n of the AR model order. 

I t can be shown [23] t h a t t h e AR s p e c t r a l e s t i m a t e i s 
S (f) 

S(f) = A.13 
P 

II - I a k e x p - ( ^ ) | 2 

k=l s 
where S (f) i s the power spectrum of the re s i d u a l sequence e. and f i s the 

6 I S 

sample frequency. Since the term S e ( f ) applies to the residuals which are i n 

theory white, the r e s u l t i n g power density function of the residuals should be 

f l a t and t h e r e f o r e S e ( f ) w i l l be a constant independent of frequency. 

Id e a l l y , the value of t h i s constant (noting that the mean of the residuals i s 

zero) w i l l be proportional to the variance of the residuals [A6]. Hence, the 

f i n a l expression for the conventional AR spe c t r a l estimate i s obtained by 

r e p l a c i n g S (f) i n A.13 with s 2 / f , where s 2 i s an estimate of the variance r ° e e s e 
of the r e s i d u a l s and the 1/f term i s included i n the numerator so that the 

s 

true power of the corresponding analogue s i g n a l w i l l be represented [23]. 

The EEG si g n a l c h a r a c t e r i s t i c s from subjects, p a r t i c u l a r l y during 

h i g h l y active mental states, are changing r e l a t i v e l y quickly. Single t r i a l 

AR sp e c t r a l estimates from adjacent one second segments demonstrated that 

considerable change i n si g n a l c h a r a c t e r i s t i c s could occur over t h i s span of 

two seconds. An example of t h i s i s provided i n Figure A.5. I t contains four 

consecutive AR spe c t r a l p l o t s , each derived from a one second segment of 
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Figure 4.5 AR spectral estimates of one second segments of 
active trial EEG consecutively offset by a third of a second. 
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active EEG and each o f f s e t by 0.333 seconds ( t o t a l span of * o seconds). As 

was discussed i n Section 3.2, i t was found that a p r a c t i c a l lower bound on 

segment length, from a parameter estimation point of view, was approximately 

one second. These findings u l t i m a t e l y lead to the u t i l i z a t i o n , as noted i n 

Section 4.4.1, of a 1.5 second segment length with an o f f s e t of 0.75 seconds 

i n the si n g l e t r i a l processing method. This was an attempt to trade o f f the 

need for short segments because of the r e l a t i v e l y r a pid changing signal 

c h a r a c t e r i s t i c s with the desire to r a i s e the segment length above the lower 

bound for purposes of improving the parameter estimation e f f i c a c y . 

It was found that s e l e c t i n g the model order v i a conventional methods 

such as Akaike's Information C r i t e r i a (AIC) does not work well with these 

short segments [53]. Conclusions were s i m i l a r to Jansen [32] i n that the 

s e l e c t i o n of an appropriate model order requires some t r i a l and error and, i f 

possi b l e , some a - p r i o r i knowledge of expected r e s u l t s . I t was found useful 

to t r y a number of orders within a reasonable range (for a sample rate of 

64Hz, somewhere between 8 to 25), following the trend of the estimate as the 

model order was increased. Features were i d e n t i f i e d that seemed reasonable 

based on both the a - p r i o r i knowledge of the condition under which the EEG was 

c o l l e c t e d and a conventional FFT based estimate. The order was sequentially 

increased, expecting the features to become better defined, u n t i l spurious 

peaks began to occur. The appropriate model order was then selected to be 

two or three below that value. T y p i c a l l y , model orders were selected i n the 

range of 12 to 14 from subjects during the i d l e task and i n the range of 18 

to 22 from subjects during the active task. Figures 4.6 and 4.7 provide 

example AR s p e c t r a l p l o t s to demonstrate t h i s model order s e l e c t i o n procedure 

for the i d l e and active task r e s p e c t i v e l y . 
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Figure 4.6 Progression of AR spectral estimates with 
increasing order using BEG data from an example idle trial, a) conventional FFT b) model order 8 c) model order 10 d) model order 12 e) model order 14 f) model order 16 
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In the de r i v a t i o n of the autoregressive s p e c t r a l estimate an 

al t e r n a t i v e to assuming that the residuals w i l l be p e r f e c t l y white i n the 

c a l c u l a t i o n of S g ( f ) would be to estimate that quantity with a conventional 

FFT based estimate. The r e s i d u a l s i g n a l can be thought of as a whitened 

si g n a l because the information that can be represented by an AR model has 

been subtracted r e s u l t i n g i n a si g n a l with a much f l a t t e r spectrum. When the 

FFT i s applied to t h i s prewhitened signal the inherent drawback of leakage i s 

gre a t l y reduced. A p p l i c a t i o n of conventional leakage c o n t r o l , such as 

Blackman windowing, serves to further reduce t h i s problem. The prewhitened AR 

estimation method, therefore, combines the spe c t r a l information from both the 

AR model and the re s i d u a l FFT spe c t r a l estimate. I t i s given by [45] 

S(f) = — r 4.14 

1 - I a, exp - ( l ^ f ) 
k=l K f 

s 
where S.T (f) i s a s p e c t r a l estimate of the r e s i d u a l sequence e. using a Ne l 

conventional FFT method. Some i n s i g h t into the a b i l i t y of the AR model to 

represent short segments of EEG was gained by pursuing studies using 

prewhitened AR spe c t r a l estimates. These studies demonstrated that when an 

appropriate model order was u t i l i z e d the conventional AR spe c t r a l estimates 

were reasonably good compared to the prewhitened AR estimate which makes use 

of information retained i n the residuals (see Birch et a l . [53]). This 

indicates that the AR model, although not perfect, does represent much of the 

information contained i n a short segment of EEG. An example of both a 

conventional and a prewhitened 12th order AR spe c t r a l estimate of i d l e task 

EEG i s given i n Figure 4.8. 
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RR SPECTRAL ESTIMATION OF IDLE TASK EEG 

Frequency 

Figure 4.6 
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A.6 Applying O u t l i e r Processing to Single T r i a l EEG 

A.6.1 Comparison of Segmented Cleaned Active, O r i g i n a l Active and O r i g i n a l 

Idle Signals 

It would be predicted, given the above neurological premise, that the 

o r i g i n a l i d l e s i g n a l and the cleaned active s i g n a l should have l i t t l e or no 

evidence of motor p o t e n t i a l a c t i v i t y whereas the o r i g i n a l a c t i v e s i g n a l 

should contain evidence of motor p o t e n t i a l a c t i v i t y . Figure A.9 provides two 

sets of p l o t s : one with N=6 t r i a l s the other with N=15 t r i a l s . Each set 

contains p l o t s of conventionally averaged cleaned a c t i v e , o r i g i n a l a c t i v e , 

and o r i g i n a l i d l e s i g n a l s . Motor p o t e n t i a l a c t i v i t y i n the active case 

should occur, approximately, during the f i r s t three seconds of the epoch, 

noting that the actual thumb movement began one second into the epoch. These 

pl o t s demonstrate that the conventional averaging technique reveals some 

d i s t i n c t motor a c t i v i t y i n the o r i g i n a l active case (raised l e v e l of 

p o s i t i v i t y i n the averaged s i g n a l during the f i r s t three seconds with a peak 

at about two seconds). However, i n the cleaned active and o r i g i n a l i d l e 

cases the averaging does not reveal any d i s t i n c t motor a c t i v i t y . Hence, the 

above p r e d i c t i o n i s s u b s t a n t i a l l y borne out. The strong negative peak i n the 

N=6 active task p l o t at about 6 seconds i s the v i s u a l evoked response to the 

feedback l i g h t and i s not due to motor p o t e n t i a l a c t i v i t y . 
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4.6.2 Examples of Single T r i a l O u t l i e r Patterns and Single T r i a l Raw EEG 

To q u a l i t a t i v e l y demonstrate the r e s u l t s of the s i n g l e t r i a l 

processing method, four example p l o t s of the single t r i a l o u t l i e r patterns 

using GM2 model parameters paired with the corresponding raw EEG are provided 

i n Figure 4.10. Note the s i g n i f i c a n t amount of information that i s i n the 

o u t l i e r patterns which can not be e a s i l y seen i n the raw EEG s i g n a l s . 

Results provided i n the following sections demonstrate that the information 

i n these o u t l i e r patterns i s r e l a t e d to the thumb movements. However, at 

t h i s point i t i s i n t e r e s t i n g to note the many s i m i l a r i t i e s of these s i n g l e 

t r i a l patterns with the grand average waveforms from the Grunewald study 

c i t e d i n Section 4.1. 

4.6.3 Comparison of Averaged Active O u t l i e r Patterns, Averaged Idle 
O u t l i e r Patterns and the Conventional Average of Active EEG 

To demonstrate that there i s some strong consistency i n the active 

case o u t l i e r patterns and very l i t t l e consistency i n the i d l e case o u t l i e r 

patterns, the p l o t s i n Figure 4.11 have been provided. These pl o t s contain 

the averaged o u t l i e r patterns for N=6 and N=15 using GM2 parameter estimates. 

As w e l l , for comparison purposes, a p l o t of the conventional average for the 

active case i s also included i n t h i s f i g u r e . 

The fact that the average active case patterns maintain a general 

shape s i m i l a r to the s i n g l e t r i a l patterns, strongly indicates that there i s 

information r e l a t e d to the thumb movement that i s consistent from t r i a l to 

t r i a l . On the other hand, the f a c t that the average reduces i n magnitude and 
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subtle features become less pronounced as N i s increased, indicates that 

there i s a s i g n i f i c a n t amount of uniqueness i n i n d i v i d u a l t r i a l s that i s l o s t 

as many t r i a l s are averaged together. This uniqueness i s c e r t a i n l y i n part 

due to the variance i n thumb movements from t r i a l to t r i a l which can be seen 

c l e a r l y i n Section A.7. I t i s also expected that a d d i t i o n a l t r i a l by t r i a l 

uniqueness i s due to cognitive factors such as the mental i n t e n s i t y with 

which the subject c a r r i e d out the task. The average of the i d l e task o u t l i e r 

patterns c l e a r l y demonstrates that there i s no s i g n i f i c a n t information that 

i s being r e i n f o r c e d across i d l e task t r i a l s . The conventional average of 

active t r i a l s shows that with N's of 6 and 15 the motor p o t e n t i a l information 

i s quite l i m i t e d and the "smearing" e f f e c t of event r e l a t e d information that 

i s discussed above for the active case o u t l i e r patterns would also be 

occurring i n these conventional averages. Hence, with the conventional 

averaging method, even with much greater N's as i n the case of the Grunewald 

study (see Section A . l ) , the information obtained w i l l be l i m i t e d to that 

which has remained r e l a t i v e l y consistent across the t r i a l s . 

A.6.A LSQ Active O u t l i e r Patterns Degrading with Higher Model Orders 

It would also be expected, based on the neurological premise, that the 

single t r i a l processing method would perform best when the AR model order was 

selected to best f i t the i d l e case. As the model order i s increased the AR 

model would be expected to gain some improved a b i l i t y to represent the motor 

r e l a t e d a c t i v i t y i n the active task EEG. Hence, the performance of the 

sin g l e t r i a l method should begin to degrade since the cleaning process, which 

u t i l i z e s the higher order AR model, would lose some of i t s effectiveness i n 
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detecting motor r e l a t e d o u t l i e r s . A p a i r of averaged active o u t l i e r pattern 

p l o t s using LSQ parameters for model order 12 (generally appropriate for the 

i d l e case) and model order 22 (generally appropriate for the active case) are 

shown i n Figure 4.12. These p l o t s demonstrate that the performance does 

degrade, i n terms of both the amplitude and the d e t a i l of features i n the 

averaged o u t l i e r pattern, when the model order i s better matched to the 

active case. 

4.7 S t a t i s t i c a l Analysis of Features i n the O u t l i e r Patterns 

The set of 15 active t r i a l o u t l i e r patterns superimposed with the 

corresponding encoded thumb movements from Subject #1 are given i n Figure 

4.13. The patterns, although unique from t r i a l to t r i a l , do seem to posses a 

generally consistent waveform which contains features that appear r e l a t e d to 

events i n the thumb movements. S t a t i s t i c a l analysis was c a r r i e d out to 

determine i f features i n the i n d i v i d u a l thumb movements are r e l a t e d to 

features i n the corresponding o u t l i e r patterns. Two features i n the thumb 

movement and three features i n the o u t l i e r pattern were u t i l i z e d i n the 

s t a t i s t i c a l a n a l y s i s . The features are described below and are shown i n 

Figure 4.14. 

Feature 1: Time from epoch onset to the point when the thumb movement 

f i r s t reaches the "on target" p o s i t i o n . 

Feature 2: Time from epoch onset to the point when the thumb movement 

f i r s t leaves the "on target" p o s i t i o n . 
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Feature 3: Time from epoch onset to the f i r s t dominant (greatest 

amplitude) p o s i t i v e peakn the o u t l i e r pattern. 

Feature A: Time from epoch onset to the f i r s t negative peak i n the 

o u t l i e r pattern a f t e r feature 3, that has a minimum of 5 units 

magnitude peak-to-trough d i f f e r e n c e . 

Feature 5: Time from epoch onset to the next p o s i t i v e peak i n the 

o u t l i e r pattern a f t e r feature A, that has a minimum of 20 units 

magnitude peak-to-trough diffe r e n c e on both sides of the peak. 

There was an expectation r e s u l t i n g from the e a r l i e r conventional study by 

Grunewald and Grunewald-Zuberbier [7] and from observations taken from Figure 

A.13 that feature 1 would be p a r t i c u l a r l y r e l a t e d to features 3 and A whereas 

feature 2 would be p a r t i c u l a r l y r e l a t e d to feature 5. The sample c o r r e l a t i o n 

c o e f f i c i e n t s between a l l of the features from Subject #1 were calculated and 

are summarized i n Table A . l . These r e s u l t s show that the c o r r e l a t i o n 

c o e f f i c i e n t s between the features that were expected to be p a r t i c u l a r l y 

r e l a t e d are the strongest, with c o e f f i c i e n t values a l l greater than 0.77. 

Hence, t h i s demonstrates that there i s a strong consistent r e l a t i o n s h i p 

between features i n the thumb movement and features i n the sing l e t r i a l 

o u t l i e r pattern. In p a r t i c u l a r , the r e l a t i o n s h i p between features i n the 

o u t l i e r pattern and i n the thumb movement was examined using the z-test for 

the difference between c o r r e l a t i o n s calculated on dependent samples (see 

Steiger [5A]). The r e s u l t s from these t e s t s are also summarized i n Table 

A . l . They show that features 3 and A correlated with feature 1 s i g n i f i c a n t l y 
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TABLE 4.1 
SINGLE TRIAL FEATURE STATISTICS 

F e a t u r e C o r r e l a t i o n M a t r i x 

f e a t u r e 1 f e a t u r e 2 f e a t u r e 3 f e a t u r e 4 f e a t u r e 
f e a t u r e 1 1 .0 
f e a t u r e 2 0.76 1.0 
f e a t u r e 3 0.78 0.51 1.0 
f e a t u r e 4 0.88' 0.69 0.71 1.0 
f e a t u r e 5 0.60 0.80 0.41 0-.57 1.0 

z - t e s t on the D i f f e r e n c e Between C o r r e l a t i o n s 
C a l c u l a t e d on Dependent Samples 

C o r r e l a t i o n Coef f i c i e n t s z p 
(one - s i d e d ) 

f e a t u r e 4 f e a t u r e 5 
f e a t u r e 1 0.78 0.51 1.91 0 .029 
f e a t u r e 2 0.88 0.69 1 .67 0 .048 
f e a t u r e 3 0.60 0.80 1 . 55 0 .060 
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more strongly than with feature 2 (p < 0.05). As expected, the c o r r e l a t i o n 

between feature 5 and feature 2 was larger than that between feature 5 and 

feature 1, but t h i s difference achieved only a marginal l e v e l of 

s i g n i f i c a n c e . 

4.8 A p p l i c a t i o n of Dynamic Time Warping to O u t l i e r Patterns 

A l l the i n i t i a l work with actual EEG was c a r r i e d out on the data from 

one subject, r e f e r r e d to as Subject #1. These i n i t i a l i n v e s t i g a t i o n s , 

revealed that the use of dynamic time warping (DTW) provided the best 

quantitative measure of performance for the s i n g l e t r i a l processing method 

compared to the other previous a n a l y s i s . Hence, DTW analysis was u l t i m a t e l y 

applied to a l l four of the subjects included i n t h i s study. S p e c i f i c r e s u l t s 

are summarized i n the following subsections. 

4.8.1 Standard O u t l i e r Patterns using Dynamic Time Warping 

DTW as described by Roberts et a l . [55] was used to obtain standard 

(template) representative s i n g l e t r i a l active o u t l i e r patterns for each 

subject. The time warping procedure attempts to best match waveform A to 

waveform B by s h i f t i n g , expanding or contracting the time scale of waveform A 

i n such a manner that minimizes the "cost" of warping. The cost of warping 

i s based on the following cost function [55] 

C = Q(A,B,W) - X P(w) 4 * 1 5 

where w i s the warped time function (warped time axis) used to warp 

waveform A, Q i s the c o r r e l a t i o n between warped waveform A and waveform B, P 
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i s a penalty function and X ishe penalty c o e f f i c i e n t . The penalty function 

i s nonlinear such that the penalty for large expansions or contractions i s 

proportionately much higher than the penalty for small expansions or 

contractions. The X c o e f f i c i e n t i s a tuning parameter that d i r e c t l y e f f e c t s 

how expensive i t i s to warp. In a l l the DTW applications used i n t h i s study 

a X=75.0 was u t i l i z e d because i t was found by t r i a l and error that t h i s value 

produced reasonable warped waveforms; smaller values of produced X extreme 

warpings whereas larger values of X produced warpings that were only s h i f t e d 

i n time and contained very l i m i t e d expansions or contractions. 

A standard pattern for each of the four subjects was achieved by using 

the procedure recommended by Roberts et a l . [55]. The set of active s i n g l e 

t r i a l patterns was warped against each pattern i n that set. The pattern that 

produced the lowest mean cost and variance across the set was then selected 

as the best representative pattern of that set. The standard pattern was 

then constructed by averaging together a l l the patterns i n the set a f t e r 

being warped to the above selected pattern. Plots of the standard patterns 

for a l l four subjects using LSQ, GM and GM2 parameter estimation are provided 

i n Figure A.15. 

A.8.2 DTW Cost S t a t i s t i c s on Individual Subjects 

Once a standard active case pattern was obtained for each subject, i t 

was warped against the 15 t r i a l s of active o u t l i e r patterns and the 15 t r i a l s 

of i d l e o u t l i e r patterns for each subject. Each time a pattern i s warped to 

the standard pattern a cost value i s produced. This cost r e f l e c t s how well 

the s i n g l e t r i a l pattern " f i t " the standard pattern. The lower the cost the 
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better the f i t . Therefore, i t would be expected that the costs i n the active 

cases would be smaller than the costs i n the i d l e case. A t - t e s t designed to 

te s t the d i f f e r e n c e between two means, given by [56] 

t = A.16 
/ + s 2

2 

/ N 
df = 2N - 2 = 28 

where x1 and x 2 are the sample means, S j 2 and s 2
2 are the sample variances, 

and N i s the number of active and i d l e cases, was applied to the mean costs 

for the active and i d l e cases. The r e s u l t s of t h i s t e s t for GM2, GM, and LSQ 

model parameters for a l l four subjects are summarized i n Table A.2. This 

te s t shows that i n the GM2 case the difference between the means i s h i g h l y 

s t a t i s t i c a l l y s i g n i f i c a n t (p < .001). The mean differences i n the GM and LSQ 

case are also s t a t i s t i c a l l y s i g n i f i c a n t (ranging from p < .001 to p < .01) 

except for Subject #4 with LSQ parameters where the difference was not 

s i g n i f i c a n t . These r e s u l t s strongly support the expectation that the costs 

from the active case would be smaller than the costs from the i d l e case. In 

turn, t h i s implies that on average the active case patterns f i t the standard 

patterns much better than the i d l e case patterns. 

4.8.3 Grouped DTW Cost S t a t i s t i c s 

The average active and i d l e cost values from the four subjects were 

considered together to provide i n f e r e n t i a l s t a t i s t i c s about the actual popu­

l a t i o n (for a l l possible s u b j e c t s ^ of mean differences between i d l e and 

active cases. For each subject, the difference between the average i d l e cost 

(over the 15 i d l e t r i a l s ) and the average active cost (over the 15 active 

t r i a l s ) was evaluated. The differences appear i n Table 4.3 and form 
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TABLE 4.2 
DIFFERENCE BETWEEN IDLE AND ACTIVE WARPING COSTS 

t - T e s t R e s u l t s f o r t h e D i f f e r e n c e 
Between Means: df=28 

SUBJECT 

GM2 MODEL 
1 
2 
3 
4 

DIFFERENCE 
BETWEEN THE 
MEANS 

13.3 
16.4 
1 1.6 
11.5 

TWO-SIDED 
t-VALUE 

6.05 
5.04 
4.66 
6.25 

P < 

0.001 
0.001 
0.001 
0.001 

GM MODEL 
1 
2 
3 
4 

8.7 
12.7 
6.1 
4.9 

4.18 
3.74 
2.93 
3.35 

0.001 
0.001 
0.01 
0.01 

LSQ MODEL 
1 
2 
3 
4 

12.7 
17.2 
12.9 
3.5 

4.08 
3.65 
2.96 
0.65 

0.001 
0.002 
0.01 
X 
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the basis of the inference to be made for a l l possible subjects. This was 

c a r r i e d out by considering the n u l l hypothesis that the mean difference of 

the actual population i s zero and then applying a s t a t i s t i c a l t e s t to deter­

mine whether that hypothesis should be rejected. The s t a t i s t i c a l t e s t was a 

t - t e s t designed to te s t the difference between two means with correlated 

(paired) samples. I t i s given by [50] 
MD 

SEMD 
df = N - 1 = 3 4.17 

where MD i s the sample mean difference (mean of the paired d i f f e r e n c e s ) , S E ^ 

i s the standard error of t h i s sample mean difference and N equals the number 

of mean differences (number of subjects). The standard error of the sample 

mean difference i s given by 

V N 

where s^ i s the sample standard deviation of the mean dif f e r e n c e . With three 

degrees of freedom a 95% confidence i n t e r v a l for the mean difference i s given 

by [50] 

C I g 5 = MD ± 3.18(SE M D) A.19 

The group s t a t i s t i c s for GM2, GM, and LSQ parameter estimation are 

summarized i n Table A.3. In the GM2 case the s t a t i s t i c s imply that, even 

given t h i s small sample of four subjects, the hypothesis that the mean 

differen c e of the actual population of mean differences i s zero i s strongly 

rejected (p < .002). A l t e r n a t i v e l y , i n terms of confidence i n t e r v a l s , i t was 

found that with 95% confidence the i n t e r v a l of 9.7 to 16.8 contains the 

actual mean difference value. The implications are s i m i l a r but less s i g n i f i ­

cant i n the GM and LSQ cases. These r e s u l t s imply that the mean cost d i f f e r ­

ences between active and i d l e t r i a l s based on a l l possible subjects i s highly 

u n l i k e l y to be zero. 
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TABLE 4.3 
GROUP STATISTICS 

Mean C o s t D i f f e r e n c e Between 
A c t i v e and I d l e Cases 

GM2 MODELING GM MODELING LSQ MODELING 
S u b j e c t # 

1 13.3 8.7 12.7 
2 16.4 12.7 17.2 
3 11.6 6.1 12.9 
4 11.5 4.9 3.5 

Mean C o s t 13.2 8.1 11.6 
S t d . Dev. 2.28 3.45 .5.77 
S t d . E r r o r 1.14 1 .73 2.88 

Summary f o r GM2 M o d e l i n g 

Mean D i f f e r e n c e = 13.2 
two s i d e d t - t e s t 

t = 11.58 : H 0 r e j e c t e d p < 0.002 
95% C o n f i d e n c e I n t e r v a l : 9.6 t o 16.8 

Summary f o r GM M o d e l i n g 

Mean D i f f e r e n c e = 8.1 
two s i d e d t - t e s t 

t = 4.68 : H Q r e j e c t e d p < 0.05 
95% C o n f i d e n c e I n t e r v a l : 2.6 t o 13.6 

Summary f o r LSQ M o d e l i n g 

Mean D i f f e r e n c e = 11.6 
two s i d e d t - t e s t . 

t = 4.03 : Hjj r e j e c t e d p < 0.05 
95% C o n f i d e n c e I n t e r v a l : 2.4 t o 20.8 
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TABLE 4.4 
BAYESIAN CLASSIFICATION 

Assuming P r o b a b i l i t i e s of E i t h e r Case O c c u r r i n g are Equal 

a) Cost of M i s c l a s s i f i c a t i o n set Equal 

SUBJECT 
BOUNDARY 
VALUE 

ACTIVE 
CLASSIFIED 
CORRECTLY 

FALSE 
POSITIVE 

GM2 MODEL 
1 
2 
3 
4 

GM MODEL 
1 
2 
3 
4 

LSQ MODEL 
1 
2 
3 
4 

1 1 .35 
19.88 
19.10 
17.05 

15. 
19. 
16. 
13. 

28 
10 
93 
26 

22.58 
41 .06 
34.08 
20.52 

14/15 
15/15 
13/15 
14/15 

56/60=93% 

12/15 
15/15 
12/15 
13/15 

52/60=87% 

13/15 
14/15 
13/15 
5/15 

45/60=75% 

2/15 
1/1 5 
5/15 
3/15 
11/60=18% 

4/15 
4/1 5 
8/15 
5/15 

21/60=35% 

4/15 
5/15 
7/15 
2/15 
18/60=30% 

b) Cost of M i s c l a s s i f y i n g an I d l e Case as A c t i v e Set to be 5 Times 
Greater 

M i s c l a s s i f y i n g an 

GM2 MODEL 
1 9.18 14/15 0/1 5 
2 19.88 12/15 1/1 5 
3 19.10 10/15 0/15 
4 17.05 12/15 0/15 

48/60=80% 1/60=1.7% 
GM MODEL 
1 8.57 9/15 0/15 
2 15.58 11/15 2/1 5 
3 7.53 2/1 5 0/15 
4 6.38 0/15 0/15 

22/60=37% 2/60=3.3% 
LSQ MODEL 
1 12.22 4/15 ' 1/15 
2 28.68 5/15 2/15 
3 21 .35 7/15 3/1 5 
4 2.92 0/15 0/1 5 

16/60=26% 6/60=10% 
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A.8.4 Bayesian C l a s s i f i c a t i o n of Active Cases versus Idle Cases 

A Bayesian c l a s s i f i e r was applied to the cost values to c l a s s i f y 

a ctive cases verses i d l e cases. It was assumed that the cost values had a 

Gaussian d i s t r i b u t i o n . This c l a s s i f i c a t i o n was c a r r i e d out under two 

d i f f e r e n t conditions: cost of m i s c l a s s i f i c a t i o n set equal and cost of 

m i s c l a s s i f y i n g an i d l e case as an active case set to be f i v e times greater. 

In both conditions the p r o b a b i l i t i e s of e i t h e r case occurring were set equal. 

The r e s u l t s of the c l a s s i f i c a t i o n under both conditions across the four 

subjects for GM2, GM and LSQ are provided i n table 4.4. Under the f i r s t 

condition 93% of the GM2 active cases were c o r r e c t l y c l a s s i f i e d with 18% of 

the i d l e cases being c l a s s i f i e d as a c t i v e . The number of f a l s e p o s i t i v e s i s 

f a i r l y high i f the active cases are going to be used i n a control a p p l i c a ­

t i o n . Hence, the second c l a s s i f y i n g condition was c a r r i e d out were the 

decision boundary was moved closer to the active case mean by increasing the 

cost of a f a l s e p o s i t i v e . In t h i s case the percentage of GM2 active cases 

c o r r e c t l y c l a s s i f i e d was reduced to a s t i l l very respectable 80% but i n so 

doing reduced the f a l s e p o s i t i v e s to a very low 1.7% (only one i d l e case out 

of s i x t y was c l a s s i f i e d i n c o r r e c t l y ) . 

The r e s u l t s using GM and LSQ o u t l i e r patterns under the f i r s t condi­

t i o n were f a i r l y good i n c l a s s i f y i n g active cases c o r r e c t l y but both had a 

very high percentage of f a l s e p o s i t i v e s . Under the second condition, how­

ever, the c l a s s i f i c a t i o n performance using GM and LSQ o u t l i e r patterns f e l l 

o f f dramatically. This i s perhaps the best demonstration of the s u p e r i o r i t y 

of u t i l i z i n g GM2 parameter estimates i n the si n g l e t r i a l processing method. 
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4.8.5 Cross V a l i d a t i o n and Intersubject R e l i a b i l i t y Using DTW 

A combined measure of the cross v a l i d a t i o n of a standard pattern on a 

unrelated set of o u t l i e r patterns and the intersubject r e l i a b i l i t y of the 

standard patterns was obtained by applying DTW with the standard pattern from 

one subject to the o u t l i e r patterns from a d i f f e r e n t subject. The GM2 

standard patterns from each subject were applied to the GM2 o u t l i e r patterns 

of each of the other subjects. This resulted i n twelve ad d i t i o n sets of 

active and i d l e costs. The t - t e s t for the difference between two sample 

means was applied, i n a s i m i l a r manner as i n Subsection 4.8.2, and the 

diff e r e n c e was h i g h l y s i g n i f i c a n t (p < 0.001) i n every case. In addition, i n 

a s i m i l a r manner as i n subsection 4.8.4, Bayesian c l a s s i f i c a t i o n with the 

cost of m i s c l a s s i f y i n g an i d l e case as an active case set to be f i v e times 

greater was c a r r i e d out and the r e s u l t s are given i n Table 4.5. On average 

the percent correct using cross-matched standard patterns f e l l o f f by about 

16% when compared to the percent correct using matched standard patterns for 

subjects 1,3 and 4 while i t stayed exactly the same for subject 2. The 

percentage of f a l s e p o s i t i v e s was almost exactly same for both the matched 

and cross-matched cases. The o v e r a l l average of active cases c o r r e c t l y 

c l a s s i f i e d using standard patterns from one subject on the o u t l i e r patterns 

from the other subjects was 67% with only a 3% o v e r a l l average of f a l s e 

p o s i t i v e s . These r e s u l t s strongly i n d i c a t e that the standard patterns do 

cross v a l i d a t e on data that was not used i n the construction of these 

p a t t e r n s and t h a t these p a t t e r n s p r o v i d e s u b s t a n t i a l i n t e r s u b j e c t 

r e l i a b i l i t y . 
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TABLE 4.5 
SUMMARY OF BAYESIAN CROSS-MATCHED CLASSIFICATION 

C o s t of C l a s s i f y i n g an I d l e Case as an A c t i v e Case 
Set t o be F i v e Times G r e a t e r 

S t a n d a r d Data from S u b j e c t # 
P a t t e r n # 1 2 

C F C F C F C F 

1 14/15 0/15 12/15 1/15 9/15 0/15 8/15 0/15 

2 11/15 0/15 12/15 1/15 8/15 0/15 1 1/15 0/15 

3 12/15 0/15 12/15 1/15 10/15 0/15 9/15 0/15 

4 1 1/15 1/1 5 12/15 1/15 6/1 5 0/15 12/1 5 0/1 5 

A c t i v e T r i a l C l a s s i f i e d C o r r e c t l y F = F a l s e P o s i t i v e 

AVERAGED RESULTS 

W i t h Matched 
S t a n d a r d P a t t e r n 

W i t h C r o s s - M a t c h e d 
S t a n d a r d P a t t e r n 

S u b j e c t 
Number 

1 

2 

3 

4 

OVERALL 
AVERAGE 

A c t i v e 
C o r r e c t 

93% 

80% 

66% 

80% 

80% 

F a l s e 
P o s i t i v e 

0% 

7% 

0% 

0% 

2% 

A c t i v e 
C o r r e c t 

75% 

80% 

51% 

62% 

67%" 

F a l s e 
P o s i t i v e 

2% 

7% 

0% 

0% 

3% 
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CHAPTER 5 

CONCLUSION 

5.1 Summary of Major Results and Related Conclusions 

AR Parameter Estimation 

Simulation studies on AR parameter estimation demonstrated that the 

robust general maximum l i k e l i h o o d (GM) methods performed almost as well as 

the l e a s t squares (LSQ) method on Gaussian processes and s i g n i f i c a n t l y better 

on additive o u t l i e r (AO) contaminated Gaussian processes. Amongst the GM 

methods the GM2 method provided the best performance. However, i t should be 

noted that the GM2 estimates are also the most computationally expensive to 

c a l c u l a t e . In terms of the sing l e t r i a l o u t l i e r processing method, the most 

important fi n d i n g from these simulation studies i s that given the AO model 

(see equation 3.37) the robust estimation methods, i n p a r t i c u l a r the GM2 

method, demonstrated a strong a b i l i t y to model the process x^ without being 

unduly influenced by the additive o u t l i e r s v^. 

Neurological Premise and O u t l i e r E x t r a c t i o n 

The basic neurological premise for the single t r i a l processing method 

i s that event r e l a t e d p o t e n t i a l s have an additive o u t l i e r e f f e c t on the 

ongoing EEG process. I f the o u t l i e r content could be extracted from the 

r e s u l t i n g o v e r a l l combined process, then si n g l e t r i a l event r e l a t e d informa­

t i o n could be obtained. Simulation studies demonstrated that a robust s i g n a l 

estimator, which u t i l i z e s robustly estimated AR model parameters, has a 

d i s t i n c t a b i l i t y to extract a s i g n i f i c a n t amount of the additive o u t l i e r 
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content from a contaminated process. This extraction process was found to be 

most e f f e c t i v e when GM2 parameter estimates were u t i l i z e d . This r e s u l t 

should be expected since the GM2 parameter estimation i s based on an 

estimated cleaned signa l x^ and hence, i t has the best opportunity to provide 

a good e s t i m a t e d model r e p r e s e n t i n g the actual process x^. The better the 

model of x^ the b e t t e r the expected performance of the o u t l i e r e x traction 

process. 

Spectral Analysis of EEG 

AR sp e c t r a l analysis provided a great deal of i n s i g h t i n t o both the 

EEG s i g n a l i t s e l f and into the a p p l i c a t i o n of AR modeling to the EEG s i g n a l . 

EEG data used i n t h i s t hesis work was c o l l e c t e d during an ac t i v e task 

involving motor a c t i v i t y and an i d l e task not involving motor a c t i v i t y . 

Spectral analysis demonstrated that the si g n a l c h a r a c t e r i s t i c s of these EEG 

signals were t y p i c a l l y changing at a r e l a t i v e l y r a p id rate. Hence, an EEG 

segment s i z e as small as p r a c t i c a l parameter estimation considerations would 

allow was u t i l i z e d . Ultimately, i n the single t r i a l processing method, the 

EEG epochs were broken down into 1.5 second segments o f f s e t by 0.75 seconds. 

AR sp e c t r a l analysis was also the key t o o l i n determining appropriate AR 

model orders. It was found that orders i n the range of 12 to 14 were s u i t -

able for i d l e task EEG while orders i n the range of 20 to 24 were su i t a b l e 

for active task EEG. F i n a l l y , the study of prewhitened AR spe c t r a l analysis 

was useful i n providing some i n s i g h t into how well the AR model represented 

the information i n the EEG s i g n a l . This study indicated that, given the 

s e l e c t i o n of an appropriate model order, the AR model does represent much of 

the information contained i n a short segment of EEG. 
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Single T r i a l Outlier Processing 

I n i t i a l investigation into the single t r i a l o u t l i e r processing method 

was carried out on the EEG data from one subject. I t was shown, through 

conventional averaging analysis, that the cleaned active task EEG did not 

contain any s i g n i f i c a n t motor related potentials. This r e s u l t indicated that 

much of the motor related a c t i v i t y had been extracted from the active task 

EEG signal by the application of the cleaning process. By using the o u t l i e r 

information extracted from the active EEG, single t r i a l o u t l i e r patterns were 

produced. These patterns had strong s i m i l a r i t i e s to previous results using 

conventional averaging techniques over many t r i a l s of active EEG. By 

averaging active t r i a l o u t l i e r patterns together i t was demonstrated that 

much of the information was consistent across active t r i a l s whereas, i n 

contrast, the average of i d l e case patterns showed that there was no s i g n i f i ­

cant information that was consistent across i d l e t r i a l s . In addition, t h i s 

averaging also demonstrated that there was a s i g n i f i c a n t amount of informa­

t i o n i n the active task patterns that was unique to individual t r i a l s which 

was l o s t when the patterns were averaged together. I t i s , therefore, 

expected that t h i s same loss of information i s occurring i n the conventional 

averaging method of EEG analysis. 

I t was shown that consistent features i n the active o u t l i e r patterns 

were strongly correlated with features i n the thumb movement. This analysis 

demonstrated that there was a strong relationship between the information i n 

the o u t l i e r patterns and events i n the thumb movements on a t r i a l by t r i a l 

basis. 

I t was found i n the i n i t i a l investigations that dynamic time warping 
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(DTW) analysis provided the best quantitative information on the performance 

of the sing l e t r i a l processing method. Hence, DTW analysis was applied to 

a l l four of the subjects used i n t h i s i n i t i a l i n v e s t i g a t i o n into the sing l e 

t r i a l processing method. Through the a p p l i c a t i o n of DTW, standard repre-

sentative active s i n g l e t r i a l o u t l i e r patterns for each subject were 

obtained. The o u t l i e r patterns from both the active t r i a l s and the i d l e 

t r i a l s were warped against the standard patterns. With each warping an 

associated cost value was obtained which r e f l e c t e d how well the o u t l i e r 

patterns f i t the standard pattern. These cost values revealed that there was 

a hi g h l y s t a t i s t i c a l l y s i g n i f i c a n t (p < .001) differ e n c e between the i d l e and 

active mean costs across a l l four subjects with o u t l i e r patterns derived 

with GM2 parameter estimates. The cost values from the four subjects pooled 

together i n a group, demonstrated that the mean of the actual population of 

mean differences between active and i d l e cases was highly (p < .002) u n l i k e l y 

to be equal zero. 

Bayesian c l a s s i f i c a t i o n was applied to the warping cost values to 

c l a s s i f y a ctive patterns versus i d l e patterns. I t was found that with the 

cost of m i s c l a s s i f y i n g an i d l e case as an active case set to be f i v e times 

greater, 80% of the GM2 active patterns were c l a s s i f i e d c o r r e c t l y while only 

1.7% of the i d l e cases were i n c o r r e c t l y c l a s s i f i e d as a c t i v e . This analysis 

also demonstrated the s u p e r i o r i t y of u t i l i z i n g GM2 parameter estimates 

because with the u t i l i z a t i o n of GM and LSQ parameter estimates the c l a s s i f i ­

c ation performance f e l l o f f dramatically. 

Bayesian c l a s s i f i c a t i o n was also applied to the cost values obtained 

from using standard patterns from one subject on the o u t l i e r patterns from 

the other subjects. These r e s u l t s strongly indicated that the standard 
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patterns do cross v a l i d a t e on data that was not used i n the construction of 

these patterns and that these patterns provide substantial intersubject 

r e l i a b i l i t y . 

In conclusion, the pursuance of robust methods to deal with the 

ranging Gaussian properties of the EEG si g n a l l e d to the development of a 

singl e t r i a l processing method based on u t i l i z i n g o u t l i e r information. The 

v a l i d i t y of t h i s processing method to extract event r e l a t e d information from 

active task EEG has been established through the r e s u l t s obtained from the 

investigations undertaken i n t h i s t hesis work. 

5.2 Areas for Future Investigation 

There are many areas involved with the possible further improvement of 

the s i n g l e t r i a l processing method that should be pursued i n future i n v e s t i ­

gations. Some of the most important recommended areas are: 

1) Pursue models that w i l l better represent the underlying s i g n a l since 

the processing method i s fundamentally based on these models. This may 

involve the a p p l i c a t i o n of d i f f e r e n t types of models such as those based on 

orthonormal functions. Regardless of the type of model employed, the 

accuracy of the estimated parameters i s an important issue. In terms of 

using GM estimation on AR models, further work could be c a r r i e d out to 

improve the parameter estimates. One p a r t i c u l a r aspect to consider i s the 

u t i l i z a t i o n of methods that are more robust than MEM estimation, such as 

based methods, to provide the s t a r t i n g estimates i n the GM i t e r a t i o n 

procedure. 
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2) Study the e f f e c t s of varying the segment s i z e to determine the length 

that i s best suited for the representation of the underlying EEG process. 

For instance, i t may be found that the s i g n a l c h a r a c t e r i s t i c s of the under­

l y i n g process are changing slowly enough such that the modeling of longer 

segments would allow for an improved representation of the underlying 

process. 

3) Further investigate the o u t l i e r detection process to determine ways i n 

which the performance could be improved. One s p e c i f i c area to consider, as 

suggested by Martin [45], i s to u t i l i z e a cleaning process that makes use of 

both forward and backward p r e d i c t i o n i n the estimation of the s i g n a l x^. 

4) Peruse a l t e r n a t i v e s to the current method of processing the o u t l i e r 

information. The current method i s r e l a t i v e l y unsophisticated i n that i t i s 

simply a c a r e f u l smoothing of the extracted o u t l i e r information. Investiga­

t i o n into other approaches of processing t h i s information may prove to be 

b e n e f i c i a l i n revealing a d d i t i o n a l information that may be contained i n the 

o u t l i e r data. 

Future empirical EEG experimentation should be c a r r i e d out on the 

si n g l e t r i a l processing method. The i n i t i a l goals of these i n v e s t i g a t i o n s 

should be to further v a l i d a t e the method on a new set of EEG data. A recom­

mended paradigm would be to c o l l e c t a t r a i n i n g set of a c t i v e t r i a l s for the 

construction of a standard pattern. * Then c o l l e c t a set of intermixed active 

and i d l e t r i a l s , perhaps at the d i s c r e t i o n of the subject, on which the 

c l a s s i f i c a t i o n performance of the processing method could be further 

evaluated. Later goals of these investigations should be oriented to using 

the processing method to learn more about motor p o t e n t i a l s , p a r t i c u l a r l y the 
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motor p o t e n t i a l s rom disabled persons, so that when u t i l i z e d i n a control 

a p p l i c a t i o n these p o t e n t i a l s can be taken advantage of i n the most appro-

p r i a t e manner. 

F i n a l l y , i n vestigations on making the sing l e t r i a l processing method 

work i n r e a l time must be undertaken. As i t stands, the method i s very 

computationally i n t e n s i v e . Although some improvements could undoubtedly be 

made i n the e f f i c i e n c y of these computations, the most s i g n i f i c a n t advances 

towards t h i s goal would l i k e l y be i n the implementation of some or a l l of the 

component processes i n s p e c i a l i z e d hardware. 

5.3 S i g n i f i c a n t Contributions 

The s i g n a l processing method developed i n t h i s t hesis work i s a 

s i g n i f i c a n t contribution. Modeling the underlying s i g n a l and then extracting 

the o u t l i e r content from the underlying s i g n a l i s a unique approach to 

deriving very low l e v e l and r e l a t i v e l y short event type information from an 

ongoing process. The path that l e d to the development of t h i s processing 

method, also led to the understanding that ranging l e v e l s of Gaussianity i n 

the EEG si g n a l requires that serious consideration be given to the use of 

robust methods i n the future a p p l i c a t i o n of various types of EEG si g n a l 

processing. Also, a successful approach to the s e l e c t i o n of appropriate AR 

model orders, the s e l e c t i o n of appropriate EEG segment lengths and the 

assessment of the r e l a t i v e a b i l i t y of AR models to represent the EEG si g n a l 

were established through the studies on AR sp e c t r a l a n a l y s i s . 

The a b i l i t y to c o n s i s t e n t l y acquire event r e l a t e d information from a 

singl e t r i a l i s an important contribution to the f i e l d of EEG si g n a l 
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a n a l y s i s . In addition, the neurological premise inv o l v i n g the way i n which 

event r e l a t e d information i s contained i n the o v e r a l l EEG s i g n a l i s estab­

l i s h e d as a v i a b l e model. This model should be considered when attempting to 

understand event r e l a t e d p o t e n t i a l s and t h e i r r e l a t i o n s h i p to ongoing EEG 

processes. 

F i n a l l y , the work i n t h i s t h e s i s , taken as a whole, represents an 

important contribution towards the ultimate goal of harnessing EEG signals 

for control a p p l i c a t i o n s . It overcomes perhaps one of the greatest obstacles 

by providing the framework for the extraction of u s e f u l information from 

sing l e t r i a l EEG. 
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