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ABSTRACT 

Poisson process is a common model for count data. However, a 

global Poisson model is inadequate for sparse data such as the marked 

salmon recovery data that have huge extraneous variations and noise. 

An empirical Bayes model, which enables information to be aggregated 

to overcome the lack of information from data in individual cells, is 

thus developed to handle these data. The method fi t s a local 

parametric Poisson model to describe the variation at each sampling 

period and incorporates this approach with a conventional local 

smoothing technique to remove noise. Finally, the overdispersion 

relative to the Poisson model is modelled by mixing these locally 

smoothed, Poisson models in an appropriate way. This method is then 

applied to the marked salmon data to obtain the overall patterns and 

the corresponding credibility intervals for the underlying trend in 

the data. 
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1. I N T R O D U C T I O N 

This thesis develops an empirical Bayes model for marked salmon 

data collected over time. The method, which employs a hierarchical 

prior distribution, is used because the data are sparse and the 

empirical Bayes approach enables information to be aggregated to 

overcome the lack of information from data in individual cells. The 

novelty of our approach lies in our use of locally parametric Poisson 

models and smoothing techniques to obtain estimates of underlying 

trend in the tagged salmon data. 

Over years, data on the return of tagged salmon are collected and 

prepared for the Mark Recovery Program(MRP) database. This database, 

which is described in detail in the Appendix, consists of the release 

data on tagged and untagged salmon, the data on individual marked 

salmon observed when returning from the ocean for spawning, and data 

on the sampling periods for each of the fishing regions. Since the 

database contains a vast amount of information, only selected sample 

data sets, such as the benchmark data sets, are analyzed here. Other 

data sets are also formatted like the benchmark data because this 

benchmark is well documented. With these data, various questions can 

be posed and investigated. 

One topic of Interest is the relationship between the size of 
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smolts at release and their return rate as measured by observed marked 

salmon counts. Another is the comparison of marked salmon counts from 

different brood years and fishing regions. In this study, only the 

marked recoveries are examined. In addition, only two species of 

salmon, chinook and coho, are considered. 

In tackling the two problems of interest described above, we 

first develop a model for the observed fish counts. The Poisson model 

is a conventional choice for count data. However, i t will not be 

adequate for *noisy' data with large sampling variation. Our solution 

to this problem adopts a local Poisson model to describe the variation 

at each sampling period. Noise is removed by local smoothing. 

Finally, the overdispersion relative to the Poisson model is modelled 

by mixing these locally smoothed, Poisson models in an appropriate 

way. 

In Chapter 2, a brief description of the benchmark data sets is 

given. In addition, some relevant recent studies are summarized for 

completeness and later comparison or use. We discuss modelling 

Poisson processes with overdispersion, time series techniques for 

evaluating long-term trend effects, models for handling contagious or 

self-inhibiting processes, a local smoothing procedure for obtaining 

nonlinear regression estimates, and a Bayesian nonparametric smoothing 

method for modelling locally regular processes. Finally, the 

empirical Bayes method with hierarchical priors, the basis of this 
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thesis, is reviewed. 

To obtain insight for further investigation, the data are 

carefully examined in Chapter 3. The results indicate that some data 

pooling might be desirable to partially integrate the separate models 

for the marked recoveries observed in each catch region. The data 

from commercial fisheries appear to be more reliable and consistent 

than those from sport fisheries and escapement; thus, only the 

commercial data are used in the modelling stage of our analysis. 

The local parametric Poisson models are developed in chapter 4. 

Smoothing techniques are also developed there for removing noise, and 

estimating long-term trends in data. The main inferences are 

estimates of the Poisson intensity functions and the calculation of 

their corresponding credibility intervals. 

Finally, in Chapter 5, the proposed models are fitted to selected 

coho and Chinook data sets. A summary of the estimates and the 

corresponding credibility intervals is given. The problems of missing 

values and edge effects are also addressed there. 
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2 . BACKGROUND REVIEW 

2 . 1 The Benchmark Data Set 

The benchmark data set is established in the Pacific Biological 

Station(PBS), which is a research branch of the Canadian Department of 

Fisheries and Oceans (DFO) in Nanaimo. The tag codes in this 

benchmark, which are obtained from the MRP database, form a sample 

data set for statistical analyses and exchanging data with other 

agencies. Complete documentation, including the selected formats and 

information related to the tag codes, is available in the 1986 report 

*A Canadian MRP Data Benchmark1. 

The benchmark consists of release data of tagged and associated 

juvenile salmon, and recovery data of adult marked salmon for selected 

tag codes. Data related to the sampling periods for recovering marked 

salmon are obtained from the MRP database directly. The following is 

a brief description of these data. 

The benchmark release data contain a code for each release group 

of juvenile salmon. In particular, the origin, age, and average size 

of fish, the number of tagged and associated fish, as well as the site 

and date of the release are included for each group. 

When adult fish are recovered, not every fish is inspected for 
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mark. Different recovery methods have different sampling and 

reporting procedures associated with them. These recovery methods are 

mainly of three types: 

i . commercial fisheries, 

i i . sport fisheries, and 

i i i . escapement — fish that are not captured by any fishery. 

Each benchmark recovery data record includes the code found on 

each recovered and tagged salmon, the time, region and method of 

recovery. Times are usually recorded as year, month and statistical 

week (about 5 per calendar month). The recovery regions are 

geographic catch regions divided according to each of the fishing 

methods: t r o l l , net, and sport. For each marked recovery, there is 

one record, except for escapement data. Thus, redundant sample 

information may appear on numerous records of individual tagged fish 

from the same sample. Fortunately, the fields of each data record are 

organized in such a way that data for an entire fish sample can easily 

be obtained. 

The period for observing marked salmon is different in each catch 

region; thus, the data on sampling periods (described later in section 

3.2) are important for determining whether a record is missing because 

of no sampling, or simply because there is no recovery during that 

period. Therefore, together with the recovery data, the distribution 

of marked recoveries in each catch region and the abundance of each 
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group of tagged salmon can be observed over time. With a l l these data, 

many related questions can be tackled. 

2.2 S t a t i s t i c a l T e c h n i q u e s 

2*2.1 Negative binomial and mixed Poisson regression 

In this subsection, we describe for completeness and comparison, 

a model which bears some resemblance to that adopted in this thesis. 

However, i t seems less flexible than ours and so has been set aside 

during the current investigation. 

Suppose the response variable Y, a count, and a vector x of 

explanatory variables are specified. In general, let U I V denote the 

conditional distribution of U given V, where U and V are any two 

random variables with a joint distribution. Then a Poisson model for 

the response is as follows: 

Y I x is Poisson distributed with mean 

where p(x) is to be estimated. 

Very often data exhibit extra-variation or overdispersion 

relative to the proposed Poisson model. For the count data with no 

covariates, the negative-binomial distribution is a popular choice for 

handling the extra-Poisson variation. To handle covariates, this 

result can be generalized to 
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P(Y = y I x) 1 + a /u(x) 
a M(x) 

1 + a /Li(x) 
1 a 

y! r(a *) 

y = 0, 1 ,..., (2.1) 

where a > 0 is called the index or dispersion parameter. 

The mean and variance of Y given x are 

E(Y I x) = fj(x) and Var(Y I x) = M(X) + a / J ( X ) 2 . 

Note that (2.1) yields the Poisson model i f a -» 0. 

Lawless(1987) studies these negative-binomial models and 

examines their properties in detail. He reviews the maximum 

likelihood and moment estimation procedures for estimating the 

dispersion parameter and regression parameters. In addition, he 

compares the asymptotic covariance structures, efficiency and 

robustness of the parameters estimated by these two methods. 

Since Poisson regression models are very useful, a test of the 

Poisson hypothesis is often of interest. One method is to test a = 0 

within the negative-binomial model. Lawless suggests some useful 

statistics such as the likelihood-ratio and the standardized 

dispersion, for testing this hypothesis. He also gives a note of 

caution that the result of any test depends on the size of the sample 

and/u(x). 
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2.2.2 U s i n g S A B L t o d e c o m p o s e t i m e s e r i e s d a t a 

A method which is extensively used in this thesis will now be 

described. Suppose observations of a time series are taken at equally 

spaced time-points and the problem of interest is that of determining 

the long term trend in the deseasonalized series. Nicholls, Heathcote 

and Cunningham(1987) suggests a method, implemented in a software 

called SABL, that deseasonalizes the data, possibly after a 

transformation, without actually modelling the seasonal components. 

This method decomposes the series into three additive components by 

means of a minimization criterion and robust data smoothing 

techniques. The results at time t are the 'trend'(Tt), 'seasonal'(St) 

and * irregular'(I t) components. Let Y* denote the transformed 

response at time t. Then 

YT = T + S + I . t t t t 

Nicholls, et.al.(£&£d) explain that to construct the additive 

model, the original data must be transformed so as to minimize the 

interaction between the trend and the seasonal components. This 

criterion is reasonable since i f their interaction were not at its 

minimum, then for example, if the trend were increasing, the seasonal 

component might also increase. With robust smoothing techniques based 

on moving medians, the trend and seasonal components can be determined 

iteratively. These robust estimates will not be affected by outliers 

because these outliers will be incorporated in the irregular component 

of the series. (To give more flexibility to users, SABL allows them 
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to choose a p a r t i c u l a r transformation, and to selec t the widths of 

smoothing windows for the trend and seasonal components.) 

After the decomposition, the seasonally adjusted s e r i e s i s 

obtained by simply subtracting o f f the seasonal component to give 

Y T = T + i . 
t t t 

This s e r i e s can be converted back to the o r i g i n a l response scale by 

applying the inverse transformation to Y*. Once the trend and 

irre g u l a r components are computed, they may be plotted for v i s u a l 

inspection so that one can model the trend. The model can then be 

validated by other time series procedures, such as the Box-Jenkins 

autoregressive moving average (ARMA) technique. 

2.2.3 Time s e r i e s analysis of a contagious process 

An a l t e r n a t i v e model to ours i s described i n t h i s subsection and 

one of i t s d e f i c i e n c i e s i s noted. However, i t promises to have some 

value and w i l l be investigated further i n future work. 

Holden(1987) developed a model for rare events l i k e the d a i l y 

a i r c r a f t hijackings i n US between 1968 and 1972, for example. The 

proposed model i s for stationary processes. I t incorporates the 

assumption that the contagiousness of an event eventually declines to 

zero, and that the rate of occurrences l e v e l s off over a long period 

with occasional, temporary peaks when an occurrence excites the 
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process. With modification, the model can also Incorporate the 

effects of exogenous time series. 

The data is potentially applicable to the commercial marked 

salmon data of a given tag code observed in a catch region since there 

is a long period of no recovery during the winter season. However, 

the leveling off phase of epidemics is not fully reflected in our data 

because of the definition of the yearly sampling 'periods' 

(See Table 3.4). During the sampling season, there are only 

occasional recoveries which can be thought of as rare events. But an 

important similarity is that the observed recoveries are serially 

correlated. Thus, we conclude that Holden's model might be adapted 

for modelling the salmon data in spite of its deficiencies with 

respect to our data. 

Holden assumes that the observed sequence of daily counts, { Nt>, 

is a sequence of Poisson variates with means given by some sequence, 

{ X^}, which incorporates the stimulating effects of previous 

incidents. The linear contagion model for rare events is given by 

X t u < v + 6 (2.2) 

where 
CD 

(2.3) 

W. > 0 (i 1,2 ,... ) and t is an integer. For a discrete-time process 
V 

(2.2), N conditioned on the history { N , u < t} has a Poisson 
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distribution with mean is required to be less than one to 

ensure that s E( X ) > 0. The quantity v is the rate at which 

events are generated by factors other than contagion (assumed 

constant). 

The lag structure of W. (1 = 1,2,...) in (2.3) describes the 

contagiousness of an event i periods after its occurrence. To get a 

finite number of parameters, simply set Wt to zero after some maximum 

lag, or assume that Wt has a specified functional form, such as the 

lag weights associated with a given ARMA process. Then the 

time-series techniques suggested by Box-Jenkins may be used to obtain 

the parameter estimates. 

2 . 2 . 4 Smoothing techniques 

i . Estimating smooth functions by the l o c a l scoring algorithm 

To provide additional perspective on the approach taken in this 

thesis, a very recently proposed method, similar to our own in spirit, 

will now be described. 

For likelihood-based regression models with response variable Y, 

such as normal linear regression, one usually assumes a linear form in 

the covariates X ,X ,...,X . A set of n independent realizations of 
1 2 p 

these random variables will be denoted by (y,x ,...,x ), 

...,(y ,x ,...,x ). Hastie and Tibshirani(1986) propose the class 
n n l n p 
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of generalized additive models which replace the linear form ^ ft X̂  

by a sum of smooth functions ^ « (X ). The « (•) are unspecified 

functions that are estimated using a scatterplot smoother in an 

iterative procedure called the local scoring algorithm. 

Any regression procedure can be viewed as a method for estimating 

E(Y I X ,X ,...,X ). The additive model assumes the following form 
1 2 p 

for this conditional expectation: 

p 

E(Y | X,X,...,X ) = s + ) s.(X.), (2.4) 
1 2 p O £^ j J 

i =1 

where the smooth s.(-)'s are standardized so that E(s.(X.)) = 0. 
J j j 

These functions are estimated one at a time using a scatterplot 

smoother. 

A simple class of scatterplot smoother estimates are the local 

average estimates, 

s(x ) = Ave < y> 
" j « N. J 

j 

where Ave represents some averaging operator like the mean and N is a 

neighborhood of x̂  (a set of indices of points whose x values are 

close to x ) . The type of neighborhoods considered in Hastie and 

Tibshirani's paper are symmetric nearest neighborhoods. Associated 

with this is the span or window size w, which is the proportion of 

points contained in each neighborhood. Other more complicated 

estimates of E(Y I X) can be used, such as kernel or spline smoothers. 
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The span ro is selected to tradeoff between the bias and 

variability of the estimate. A data-based criterion is derived for 

selection. Let s'^x^.be the smoother of span w at x, having 

removed (x^, y j from the sample. Then the c r o s s — v a l i d a t i o n sum of 

squares (CVSS) is defined by 

n 
. 2 

CVSS(w) = (1/n) 
i =1 

The optimal span w is that which gives the smallest value of CVSS(w). 

This criterion effectively weighs bias and variance based on the 

sample. Note that the E(CVSS(w)) can be shown to be approximately 

equal to the integrated prediction squared error (PSE) 

PSE = E(Y - s(X)) 2, 

and that CVSS is approximately unbiased for the expected prediction 

squared error. In addition to these desirable properties, CVSS is 

recommended because i t is computationally efficient for obtaining the 

optimal value of u>. 

For the additive model in (2.4), the l o c a l s c o r i n g algorithm 

estimates the s(*)'s by iteratively smoothing the adjusted dependent 

variable on X, and i t requires a choice of span which can be estimated 

using the CVSS(w) in (2.5). Theoretically, this technique can be 

viewed as an empirical method of maximizing the expected 

log-likelihood, or equivalently, of minimizing the Kullback-Leibler 

distance to the true model. It is called l o c a l s c o r i n g because the 

Fisher scoring update is computed using a local estimate of the score. 
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i i . Bayesian nonparametric smoothing method f o r l o c a l regular 
process 

A potential refinement of the approach adopted in this thesis is 

described by Ma(1986) who improves on the Bayesian nonparametric 

approach proposed by weerahandi and Zidek(1988) for smoothing 

stochastic processes. The processes of concern are of the form 

R = S + N, where S is a smooth function and N is an independent noise 

process. R is assumed to be observed at a sequence of time-values, 

t , 1 = 1,..,n, and S is assumed to be locally regular, that is, 

expandable in a Taylor series to the pth term about t = t . Then an 

a priori structural model for the data is 

R = X ft + s, (2.6) 
where 

R = (R ,...,R ) is a vector of n observations, 
i n 

X = (1,X ,...,X ) is an n by (p+1) matrix, i p 
where l is a vector of ones and 

X* = ( [ t - t [t - t ] j/j!), 
j 1 n+l n n+1 

i 
ft - {ft ,ft ,—,ft ) is vector of coefficients, 

o 1 p 
where ft - S(t ) and ft. = D vs(t ) with D as the operator 

O n+l v. r t + t * 

of differentiation, and 
s = 7) + N is the error term, 

where both 77 and N are vectors; specifically 7? is the 

remainder of the Taylor expansion of S(t ) and N is the 

noise with variance a2. 

One further assumption underlying this approach is that the expansion 

errors and a l l other a priori uncertainty about R, ft and the smoothing 
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parameter c, related to the variance of the noise s, have a joint 

multivariate normal distribution. 

The "smoothing parameter" c controls the degree of smoothness of 

the estimated R. The main objective of Ma's study( ibidD is a simple 

method to compute an estimate of c and to obtain R, a smooth estimate 

of R. His method estimates c, and computes a measure of accuracy for 

any given R, called the predictive squared error PSE (to be defined 

later) for each fixed order p which reflects the degree of local 

regularity of S. The value of p that has the minimum PSE is chosen to 

be the optimal value. 

For each fixed p, the parameter c can be estimated by 

cross-validation which chooses the value of c that minimizes the 

cross-validated sum of squared (a similar method is described in 

section 2.2.4.1). Ma(ibid) develops a simpler alternative called the 

back./it ting method and compares i t to cross-validation. His new 

method is recommended for obtaining c because i t is easier to 

implement and computationally more efficient than the cross-validat ion 

approach. 

Ma's method may be described as follows. Suppose 

(2.6), S has p + 1 derivatives. Then the a priori model 

form 

R.= ft + ft x. + ft x z +...+ ft + ft y? + 1 + e., 
\. O 1 x. 2 V P + l l . l . 

in equation 

is of the 

(2.7) 
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where 
R is the tth component of the vector R, 

e is the ith component of the error vector s, and 

x.= (t - t )V i ! , i = l,...,p+l. 

The bachfi t ting method uses the fact that c = S2/ &z, where <52 is the 

prior variance of £>p+1S/(p+l) !, and a2 is the variance of the noise N. 

Then, for the order p, c is given by 
p 

^ 6Z 

c * 
P 

sample variance of (ft ) 
- E L (2.8) 

<y ((p+D!) 

Thus, i f equation (2.7) holds, by the same argument, (2.8) can be used 

to estimate the values of for any j = 0,...,p. However, to use 

equation (2.8) c
p + ± is needed. This parameter can be estimated by 

cross-val idat ion, or i t can simply be set to zero assuming p is large. 

Then, the with j < p is estimated byback.fi t ting using (2.8). 

The value of p is optimal in the sense that the R, estimated by 

the pth order locally regular f i t , minimizes the predictive squared 

error (PSE) 

n —m ^ 

PSE(j) s l/(n-m) V f R . - R ic.)], j = 0,...,p, 
/ l_ m+x. m+x. 1 J 
i = 1 

where m is the fixed span of observations (m < n), p + 1 is a fixed 

integer, and R. is the observed value at time t.. For each chosen 

16 
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value of p, the back/itting method is used to compute the for 

j < p, and the related R's are estimated using generalized least 

squares procedure. The PSE(j) is computed for each j < p and these 

values are compared to obtain the optimal j S p which minimizes the 

PSE. 

2 * 2 . 5 E m p i r i c a l B a y e s C E B O a n d H i e r a r c h i c a l B a y e s C H T D a n a l y s e s 

i * I n t r o d u c t i o n 

Let X = (X /...,X)* be a vector of n independent random 
i . n 

variables which come from a common distribution f with parameter 9. 

Given a sample of n observations, x = (x^,...,xn)', a l l relevant 

information about 9 is contained in the observed likelihood function 

f(x |©). Thus, a 9 with large f(x \9) is more plausibly the true 9 

than a 9 with small f(x \9). Likewise, the occurrence of x would be 

more plausible i f f(x \9) were large. Therefore, as a corollary of 

the Likelihood Principle, only the observed x should be relevant to 

conclusions about 9. (More details on the Bayesian analysis can be 

found in Berger(1985).) 

Suppose prior knowledge about 9 is given by the distribution 

U(9). Bayesian analysis combines this prior information and the 

sample information using Bayes rule into what is called the posterior 

distribution of 9 given x, from which a l l decisions and inferences may 

be made. This posterior distribution n(0 |x), which reflects the 
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updated beliefs about 8 after observing the sample is defined as 

follows. Let the joint density of X and © be 

h (x ,0) = 7T(0) f ( x 19), (2.9) 

and the marginal density of X is 

<*> - J m(x) = | f ( x I©) dF(©). (2.10) 
© 

Then, providing m(x) * 0, 

When no prior information about 9 is available, what is needed in 

such situations is a noninformative prior, by which is meant a prior 

that contains no information about ©. A reasonable choice of such a 

prior is to give equal weights to a l l possible values of ©. A typical 

noninformative prior density is n(9) = 1 , the uniform density on K. 

Given the prior, the analysis can proceed in a conventional Bayesian 

fashion. 

i i . Empirical BayesCEBO analysis 

Assume n(e) has a given functional form, and choose the density 

of this given form which closely matches the prior beliefs. We assume 

TT e r with 

r = { TT : TT(0) = g(0 |\) where \ <= A }. (2.12) 

Here g is a specified function. Then the choice of prior reduces to 
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the choice of \ e A which is usually called a hyperparameter of the 

prior. The Type II maximum likelihood estimate (ML-II estimate) of n 

is such that 

m(x |?T) = sup m(x | T T ) , 
TC e r 

where 

m(x |n) = J* f(x |©) rr(©)d©, and 

r is the set described in (2.12). The marginal density of x given n, 

m(x In), reflects the plausibility of n with the data in hand. This 

function is clearly maximized by choosing n to be concentrated where 

f(x |©) is maximized (as a function of ©). Thus, i t is reasonable to 

consider m(x |rr) as a likelihood function for n. Then 

sup m(x 17T) = sup mCx |g(© |X)!> 
x <E r x «= A 

so that the selection is just a maximization over the hyperparameter X 

(ML-II hyperparameter). 

i l l * H i e r a r c h i c a l B a y e s C H B O a n a l y s i s 

It is often convenient to e l i c i t subjective prior information in 

stages. For two stage priors, for example, the i n i t i a l prior is 

n (9 |X), where X is a hyperparameter in A. Instead of estimating X, 

as in the empirical Bayes analysis, X is given a second stage prior 

distribution 7 r 2(X). This could be a proper prior, but more often i t 

is an appropriate noninformative prior. Sometimes x is written in the 

form of X = (X ,X ) for ease of computation. Then 
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TT (X) = TT v V l X 2 ) TT ( X 2 ) . (2.13) 2 2,1 2,2 

The posterior distribution of 9 is then expressed in terms of the 

posterior distribution at various stages of the hierarchical 

structure. The procedure is as follows. 

If a l l densities below exist and are non-zero, then 

Tl(9 |x) = f rr (9 |x,X) rr (X4|x,X2) rr (X2|x) dX. (2.14) 
J . 1 2,1 2,2 

A 

Here 

£ ( X \9) TT (© | \ ) 

nt(9 |x,M = -i-(x-tx) ' ( 2 ' 1 5 ) 

where 

m (x IM = f f(x \9)U (9 |X) 69, 

m (x |X) TT (X^X 2) 
TT (X* |x,X2) = — - ~ , (2.16) 

m (x |XZ) 
2 

m (x IX2) = P m (x IX) TT (X*|X2) dX2, 
2 J 1 2,1 

m (x |X2) rr (X 2) 
/ • v 2 I \ 2 2 ' 2 

n ^ J x l x ) = ' 
m(x) 

and 

m(x) = f m (x |X2) rr (X2) dX2. (2.17) 
J 2 2.2 
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i v . C o m p a r i s o n o f E B a n d H B 

First, the advantages of HB over EB are considered. The EB 

estimates of the hyperparameters obtained from the ML-II approach and 

then using the fir s t stage prior in a standard Bayesian way albeit 

with the hyperparameter replaced by its ML-II estimate ignores the 

inherent uncertainty about the hyperparameter. It leads to unduly 

optimistic estimates. The HB approach incorporates such uncertainty 

automatically. Furthermore, with only slight theoretical difficulty, 

HB can Incorporate actual subjective prior information at the second 

stage. 

Even though HB has many advantages over the EB approach, i t is 

more difficult to apply because of its greater computational 

complexity among other things. As well, Savage's Principle of Precise 

Measurement asserts that when the likelihood is "peaked" relative to 

the prior, the EB method is justifiable as a good approximation to HB. 

So, in particular, there is a large amount of data available in the 

marginal likelihood, the ML-II estimate produces a reliable estimate 

of the hyperparameter without an additional stage of prior modelling 

and conventional Bayes estimation. 
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3 . D A T A E X P L O R A T I O N 

3*1 I n t r o d u c t i o n 

The structure of each of four sets of data is examined in this 

section as a preliminary step in model development. These sets 

Include the benchmark release data, the benchmark rollup recovery 

data, the rollup recovery data for replicated tag codes, and the 

sampling period data. These sample data sets involve two species of 

marked salmon: chinook(124) and coho(115). (The codes in parentheses 

are species Hart codes used by DFO for species identification.) Note 

that the rollup recovery data set for replicated tag codes and the 

sampling period data sets are not part of the benchmark data. These 

data are obtained directly from the MRP database, and they are 

formatted like the benchmark so that the documentation for the 

benchmark can be used for reference. 

The release, recovery and sampling period data have, 

respectively, 31, 33 and 15 fields in their records. The fields are 

of varying lengths depending on the type of information contained. A 

blank field in a release or recovery data record represents a missing 

value. Zero in one or both of the catch and sample fields of a 

sampling period data record indicates no sample is taken for that time 

period. With this background, we now begin a careful examination of 

these data sets. 
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3. 2 Benchmark Release and Recovery Data Sets 

The tag cedes in the benchmark release and recovery data subsets 

are chosen so as to include a wide range of total recoveries and to 

have several release years represented. In particular, some codes 

associated with true scientific replicates are selected for coho. A 

preliminary examination of these two data sets will indicate the 

problems and the sort of information available. The results are 

discussed below. 

3*2.1 Missing values i n the two benchmark data subsets 

i . Release data 

Each record in the release data set contains the data for one tag 

code. Since there are only 9 tag codes for Chinook and 27 for coho in 

this benchmark subset, a l l records are examined together. Table 3.1 

gives the 36 tag codes and their corresponding codes in the analysis. 

Table 3.2 shows that none of these records have any missing values. 

Also, note that fields lKnumber tagged), 12(adipose only) and 

13(undipped) are a l l nonzero which indicates that not a l l released 

fish are tagged. Thus, for each release group, information such as 

brood year, production area, size at release and time of release, is 

important in associating unmarked and marked fish. The size of each 

release considered here is in thousands, but Figures 3.1a and 3.1b 

show that the Chinook release, in general, is much larger ln size than 

the coho. 

23 



i i . Recovery data 

For the benchmark rollup recovery data subset, there are more 

than 2000 records for the combined chinook and coho data. For 

illustrative purposes, only the chinook records are considered here. 

Some fields in a record contain information only relevant to one of 

the three recovery methods: commercial fisheries, sport fisheries and 

escapement. Thus, we have to know the number of records corresponding 

to each recovery method before computing the percentage of missing 

values for each field. 

The results, as shown in Table 3.3, show that one third of these 

33 fields in the recovery data subset are missing more than 75 percent 

of its values. Most of them are about the physical characteristics of 

salmon, such as average fork length and percentage of mature females 

in the sample. Two other important fields with a high percentage of 

missing values are concerned with recoveries from sport fisheries. As 

a result, the reliability of the sport data is questionable. 

3. 2. 2 The structure of observed recoveries 

The observed counts over time are of particular interest because 

the results may reflect the survival rate of tagged salmon and the 

trend of observed recoveries. These counts may also indicate some 

relationship between the return rate and factors that affect the 

survival of salmon. Plots of tag codes 021827(chinook) and 
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081842(coho) are given as illustrations. 

The results indicate that Chinook start to return a year after 

their release while the coho return the year they are released. The 

recorded recovery time has three components: year, month and 

statistical week. The statistical week (0 to 5) indicates the week 

within a month. When week = 0, the week is not known. These three 

components are usually known only for commercial recovery times. For 

the sport fisheries, the recoveries are mostly monthly data, and the 

escapement has only yearly bulk data. 

A term called xperiod', which represents the time of recovery in 

each year, is defined using the month and statistical week components. 

This *period' is a number ranging between 1 and 40 representing a one 

week time period during which salmon fishing may occur. Table 3.4 is 

a reference table for computing 'period' from month and statistical 

week in each calendar year. Note that period 40 actually covers three 

months of the winter season when there is no salmon fishing. 

Using the definition of 'period', the total observed number of 

recoveries from sport and commercial fisheries over the entire 

recovery period, ignoring the catch regions, are now inspected. The 

plot of chinook, as shown in Figure 3 .2a , shows that the tagged 

Chinook have a recovery period spanning four years, and that most 

recoveries are concentrated between May and September in each year, 
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but larger observations are obtained during the second and the third 

year. For the tagged coho, the sport recoveries are monthly data; 

therefore, they cannot be combined with the commercial recoveries. 

The plots in Figure 3.3a(commercial) and 3.3b(sport) indicate that 

only a few return in later months of the f i r s t recovery year, and most 

data from the commercial fisheries are observed between June and 

September in the second recovery year. A point that is not 

demonstrated by these plots is that most marked recoveries found 

during the f i r s t year for both species are from escapement. 

The variation of commercial and sport chinook recoveries can 

clearly be identified when they are plotted separately and this is 

done in Figures 3.2b and 3.2c, respectively. Note that the plots for 

the commercial recovery data are similar to those for sport recovery. 

Also note from Figure 3.2c the relative paucity of points for sport 

recovery. The results from the chinook and coho plots indicate that 

the sport fisheries contribute l i t t l e to the total number of 

recoveries. As mentioned earlier, the escapement data are yearly bulk 

data so we cannot compare them to the commercial data. Therefore, we 

have chosen to concentrate our study on the commercial recoveries with 

l i t t l e apparent loss of information obtainable from these data. 

The plots of the cumulative sum of chinook and coho commercial 

recoveries observed over time are also examined. These plots, as 

presented in Figures 3.4a and 3.4b , show that the recoveries are a 
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step function of time. The jumps that are of visible size in August 

in later recovery years are especially obvious for coho. These 

observations provide more information on the peak season of salmon 

return. 

3 . 3 O t h e r R e l a t e d I n f o r m a t i o n a n d D a t a S e t s 

We f i r s t investigate the 37 commercial and sport catch regions. 

Table 3.5 is a l i s t of old and new catch region codes. The old codes 

are the originals used by DFO, and the new ones are created for ease 

of programming. The results in Table 3.6 show that only 25 of these 

regions have recoveries among the approximately thousand records 

considered, and very few of them have more than 100 recoveries over 

the entire recovery period. 

The sampling period data are the sampling schedules for different 

catch regions. In each year, each catch region has its own sampling 

scheme which may be different from previous years. For most 

commercial catch regions, there are usually consistent sampling 

periods during the fishing season. However, for the sport catch 

regions, often there are few samples taken each year and this results 

in a long period of no information (missing values). This is another 

reason why i t is difficult to analyze the sport data. 

Using the data on sampling periods and catch regions, the 
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commercial observed recoveries may be examined further. As a result, 

three commercial catch regions are found to have a substantial number 

of observations for chinook, and four for coho over the corresponding 

recovery period. The three regions for chinook are: Northwest 

Vancouver Island Troll, Northern Troll and North Central Troll. The 

four regions for coho are: Southwest Vancouver Island Troll, Georgia 

Strait Troll, South Central Troll and Johnstone Strait Net. 

For chinook, these results indicate that the length of the 

recovery period in these three catch regions is about three years long 

instead of four for each particular tag code. Also, the samples are 

mostly taken from the beginning of May to the end of October with some 

missing ones in between, and no sampling was done beyond these time 

limits. For this reason, there are about 63 sampling periods, which 

will hereafter be called the adjusted period, in each catch region 

over the three-year period. The observed recoveries over the adjusted 

periods are now plotted for each catch region. Note that the blanks 

between lines on the graphs, as shown in Figure 3.5, indicate missing 

values and that most observations are obtained at the beginning of the 

recovery period. 

For coho, the recovery period is only a year long for each tag 

code in the four regions mentioned. In addition, the sampling period, 

which starts in mid-June and ends at the end of October, is shorter 

than that of chinook. Plots of observations over the 17 periods in 
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Figure 3.6 reveals that few tagged coho are found during sampling. 

Data is available in the MRP database on replicated tag codes for 

both coho and Chinook. This enables us to pool information to 

estimate the trend of recoveries over time. In addition, the model 

developed for these replicates can be used as a guide in modelling 

other individual tag code or pseudo-replicates. This set of data 

consists of statistical replicates, in that each set of replicated tag 

codes of various time-size combinations come from a single pond 

representing one treatment. The replicates in each group of three can 

be further classified according to three relative size groups: large, 

medium, and small. Table 3.7 gives a sample l i s t of these size 

groups. 

Examination of both chinook and coho replicates shows that there 

are not many observed coho recoveries over the 17 periods in each 

catch region for each group and there are even fewer observations over 

the 63 adjusted periods for the chinook groups. The sparse data 

suggest that pooling observations appropriately may be helpful in 

obtaining meaningful results. In addition, since there is so much 

sampling variation and noise in the recovery data, some smoothing 

techniques may be useful when modelling this data. 
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4 . E M P I R I C A L B A Y E S A P P R O A C H F O R M O D E L L I N G C O U N T D A T A 

4 . 1 I n t r o d u c t i o n 

The investigation o£ the trends in recovery rate for each catch 

region and species of salmon is the main interest of this study. The 

results of exploratory analysis indicate that the tagged salmon 

recovery data have not only noise but also huge variation due to other 

factors. Further, data on individual tag codes are sparse given that, 

in fact, there are few recoveries over the entire recovery period. 

However, replicated tag codes have a somewhat similar pattern of 

recoveries, sampling scheme and set of recovery regions. Thus, 

pooling the data for tagged salmon with similar characteristics 

provide more informative data for further statistical analysis. Some 

smoothing techniques for removing noise and sampling variation in the 

data also prove useful. 

Since no prior information about the distribution of the rates of 

observing marked salmon are available, we can only use the recovery 

data to suggest possible ways to estimate these rates and their 

corresponding confidence intervals. We now develop models that can 

aggregate data, remove most of the sampling variation and noise from 

data while reflecting the mechanisms of the underlying process and 

taking account of the source. 
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The Poisson process is a common model for count data. However, a 

global Poisson model is inadequate for these data because of the 

heterogeneity in these data. An empirical Bayes approach to fitting 

local Poisson models to these counts enables us to incorporate this 

heterogeneity. 

4 . 2 L o c a l P a r a m e t r i c P o i s s o n M o d e l s w i t h S m o o t h i n g T e c h n i q u e s 

Let NAt) denote the count for the ith process up to time t, 

where i = 1, ...,Z. Assume that for a fixed period, N (t) has been 

observed at a sequence of time-intervals, (t^, J = 1, ...,-7-1 

a l l equally long. Each of these I processes is serially correlated, 

and furthermore, a l l of them are interrelated. For a fixed i, let 

E[N. (t)l = X.(t). This mean function reflects how the arrival rate of 

NAt) changes over time. Suppose V (t) has a prior distribution which 

is exponentially distributed with mean ftAt). Then ft represents our 

prior expectation about the size of V . However, the -values are 

themselves uncertain so we put a second stage hyperprior on ft to 

incorporate this uncertainty and also to remedy the possible 

over-dispersion effect relative to the Poisson distribution. This 

prior is an inverse exponential distribution with parameter C ( t ) . 

Note that in choosing our prior distribution, we seek a 

distribution which is both noninformative and easy to handle. 

Further, to reflect our a priori view of these ft^s as different in 

unspecified ways, we postulate that they are exchangeable random 
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variables. More precisely, at every fixed time t, are 

regarded as a random sample taken from a common inverse exponential 

distribution so these ft As are independent and identically 

distributed(i.i.d.). Also, E(X.) = ft. for i = Once the X.'s 

are given, the NAs are independent, but the I processes are related 

indirectly through C • 

Recalling our convention of letting U I V denote the conditional 

distribution of U given V for any two random variables U and V having 

a joint distribution, we assume 

i) N. U)|X. {t),ft. U ) , C U ) isPoissonCX. U P , 
V V V V 

where ft At) and C U ) are non-negative, 

i i ) KU)\ftAt)rC(t) is exponential^ U P , and 

i i i ) fti (t) IC (t) is inverse exponential C U P . 

We now develop the model further by specifying the densities of 

these non-negative real variables. From now on, the time t is assumed 

to be fixed and is omitted for clarity. Then, for the ith process, we 

have for X̂ , ft , C > 0: 

t(N= A. IX.,̂ 3.,0 = , (4.1) 
v v. v. v n . ! 

, -K/ ft. 
f(X.|f3.,C) = - ~ e \ (4.2) 
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r - C / ft. 

t{ft. IC) = — ^ ~ e v . (4.3) 

Note that because of our choice of a noninformative prior for ft^f the 

moments of HftAC) do no exist. We can rewrite (4.3) as follows 

f ( ^ i o = - i - ( . -«V*> ( ^ / c r 2 ] . 

That is, 

iiftAC) = ~-g(ft./K)r (4.4) 

where g (^. /C) = exp(-f?./C) iftJK )"2 . 

We can easily identify C in equation (4.4) as the scale parameter 

of the density f(^3 IC) and 1/C as the precision parameter. Thus, C 

indicates the spread of the ft population from which the ft As are 

picked, and 1/C expresses the degree of equality among the ft As. In 

particular, the ft. 's are identical when C is zero and the ft. 's are 

very different when C is large. 

Now the joint density of V and ft given C is 

f ( \ , P . K > = f ( \ l ^ , C ) f(^.IC) 
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That Is, 

-(X.+ C ) / ft 
= — £ — e 1 1 . (4.5) 

Then the prior for V given C is 

00 

f ( \ K ) = I f(X.,^. IC) oV3.. 

That is, 

0 0 -(X. + C ) / ^ 

f(X. IC) = C J &ft. • (4.6) 
v •* „ 3 v. 

t o = c \ 

After the change of variable, u = 1/ f?., equation (4.6) becomes 

-(x.+ C ) u 
f(X .IC) = C | u e v du. 

uu I -
or 

f(X. IC) = - - • (4.7) 
(X.+ C) 

It is easy to show that £ ( / ? J C ) and f ( X J C ) are both unimodal 

functions with respect to C and their unique modes are at C = 2fti and 

C = x^, respectively. Thus, a priori, most of the ft As are 

concentrated near C/2. 

We now determine the joint density of N and X given C which is 

f(rV.,X. IC) = UN. IX. ) f(X. IC), 
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that is, 

-X n 
v i 

e X. _ 
f(W.,X. IC) = " 7 " " —• (4.8) 

v * V (x.+ c)2 

After integrating out x̂ , ve obtain 

-X n oo v. . v r e X. 
UN IC) = - - T " ^ dX. . (4.9) 

J 0 V (x.+ o 2 v 

Finally, to obtain the conditional posterior joint distribution 

of X and ft , we require an estimate of C = C ( t ) . The value of C can 

be estimated by maximizing an expression which involves the integral 

of (4.9). Then, using (4.1) ,(4.5) ,(4.9) and C, the above mentioned 

estimate, the posterior is 

UN IX ft C ) f ( X ft IC) 
f ^ ^ l V 1 = - ~ — -

t(N. IC) 
That is, 

-X. n. 
e 1 X. p -(X. + C ) / ft-i. e 

n. J ft.  3  

f(X.,/?. |W.,C) = 1 1 ,(4.10) 
v ^ 1 -X. rx 

00 l .. l e X. ~ 
i £ I — dX. 

V (x. + C ) 2 1 

o V 

where /? and X are non-negative. 
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The integral in the denominator o£ (4.10), which is just (4.9), 
is essentially a constant once C is estimated. It remains to estimate 
C using (4.9). For clarity, the subscripts in (4.9) are dropped and 
we let P = n.!. Then (4.9) becomes 

f -A. n 
g(C) = P" 4 e \ c ( \ + C ) " 2 d \ (4.11) 

o 

where \ > 0, n and P are positive integers. 

To prove that g(C) has a unique maximum, we appeal to a lemma of 
Brewster and Zidek(1974). First, suppose WCxO is a continuous 
non-negative function whose domain is either (0,oo) or ( - 0 0 , 0 0 ) , and i t 
is s t r i c t l y bowl-shaped. Thus, W is differentiable almost elsewhere. 
In addition, assume that, whenever necessary for integrals involving 
W, the Interchange of integral and derivative is permissible. The 
lemma i s : 

Iff is a. d&rxsi ty on CO, ooJ> [ C —oo, OCL5 ] arid < fCxc  ±^>: c > O > 

[</Cx—cJ>: - 0 0 < c < 0 0 > ] has monotone lihelihood ratio property 

CMLRP), then 

c -+ J x W'Ccxl fCx> dx £ fWCx+cl fCxl dx j 

has at mos t one sign change and 

is stric t ly bowl-shaped Cor monotone}. 
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We f i r s t show that g(C) in (4.11) satisfies the conditions stated 

in this lemma. From (4.11), we have w(\) = p - 1 &~X x n , where n and 

P are positive integers and X > 0. It can easily be shown that ¥ ( X ) 

is strictly bowl-shaped (opening down) and / ( X l O is a scale density 

which can be written as 

/ ( X I C ) = 
C (1 + X/C >' 

• / 0 ( M : ) , 

where / (y) = / ( y l l ) = (1 + y f 2 dy. 

In addition, < / ( X K ) > has the MLRP since i f X < X and C < C / then 
1 2 1 ^2' 

/ ( \ I C ± ) / ( X t I C 2 ) 

> 0. 

Since g(C) satisfies a l l the conditions in the lemma, we conclude that 

C -»> f x w"cxc:> / cx;> dx 

has at most one sign change, and 

C J* wc\> /<rxic^ dx 

is strictly bowl-shaped (opening down). Thus, g(C) in (4.11) has a 

unique maximum which implies the same for expression (4.9). 

Since at each time point t, are assumed to be a random 

sample from the inverse exponential distribution with parameter C/ we 

can use a l l the data from these I processes to estimate C ( t ) . An 
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advantage of this approach is that we can aggregate data indirectly 

instead of simply summing the data without considering their sources, 

degree of association, and so on. Further, i f observations obtained 

for each process are from replicated experiments, we can also use them 

together so that rv(the observed count) is a vector of counts from the 

replicates. 

To remove noise and other extraneous variation from the data, we 

use moving averages with appropriate window sizes (of at least 3). 

Other more complicated smoothing techniques may be used, but this 

simple method has the advantage that i t can easily be incorporated 

into the models we are developing. One assumption underlying a l l 

smoothing methods is that the counts within a window are homogeneous. 

So the size of the window is restricted since the data points ln a 

small neighborhood are expected to be more similar than those far 

apart. 

As an example, suppose there are 4 processes (1=4) with 2 

replicates each, and a symmetric neighborhood with a 3-point window is 

used for smoothing. Then, for a given time t and for each 

i = 1,...,4, N. = (N. ,N. )' is a vector of the 2 replicates. The 
V. l l V 2 

joint density of these two replicates given V is 

t •*• 1 2 
t(N.\\.) = ~TT ~TT f(N |\. ,ft. ). (4.12) 

\. v. . 1 1 • • vjk x. x. 
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Note that f (N. ,X. \ft. ) = £(N |X. ) f (X. \ft.) and 
I I I V V X, X. 

£{N.F\.,{3. K) = f (N. |X. ) f(X. |/3. ) f(/?. IC) 
I I I l l l l I 

Thus, £ ( N , X IC) is given by 
00 CD 

[ f (N. ,X. ,ft. IC ) d/3. = £(N. |X. ) f £(X. |/?. ) f(ft. IC ) d/3. J I ' I ' I i t , - J i i i i 

co 
f(Af. |X.) f t{\.,ft. IC) 6ft.. i i i i t i 

That is, 
£(N.,X.IC) = f(N. |X.) £(X. IC), (4.13) i i i i i 

which is a product o£ (4.12) and (4.6). 

4 . 3 Inference on the Parameters of Interest 

To estimate C using data from the 4 processes, we require 

fCN ,N ,N ,N IC3 . First, note that 

t(N. ,X. ,ft. IC ) = fCAU (X. ),C3 f(X. ,/3. IC). 

In section 4.2, we assumed that the X^'s are conditionally independent 

given the ftAs and C, and that the N *s are independent given the 

X. 's. Then: i 

1) the conditional joint distribution of the 4 processes at time t is 

given by: 

£ C W
1 ' W

a ' W a ' W * l ( \ ' ' ? i ) ' ( \ ' ^ 2 ) ' ( X
a ^ 3 ) ' ( \ ' / ? 4 ) ' . C 3 

T T few. I (X . ,/?.),C3; 
i = 1 
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2) KNx,Na,Na,Ns{\x,px)A\,fla)A\,fla),i\,PJ\W 

= "frfCW.|(X.,/?.),(3 f t V ^ J C ) . (4.14) 
1 = 1 

Thus, to obtain fCN ,N ,N ,N I O , we eliminate the X. 's and p. 's in 
x 2 3 4 C v 

(4.14) by integrating them over (0,oo). We fi r s t integrate out the X's 

and obtain 
OO OO 

I - J Ir: fCN. |(X. p.),0 UK ,ft. IC) dX ...dX 
x, x,, x. x. x, 1 4 o o 

= If fCN.i^.,c:> fC^.IC) . (4.15) 
i = 1 

Then, we integrate the PAs in (4.15) over its entire domain to get 

00 00 

\ '"\ ~TT~ fCN I/? ,0 fCp. K ) &P. • • '&P. 

J J t SS 1 
O O 

= fCN ,N ,N ,N IC3 . (4.16) 

Using the result in equation (4.13) and the assumptions of conditional 

independence, we have 

KN ,N ,N ,N IC3 i ' 2' a' 4 ^ 

00 oo 
= J ...J ~JT~ f(W. IX. ) f(X. IC) dXi 

o o 

-X n. 
00 00 v . 1, jk • • - - e X. r * » 4 - . t - t - 1 2 e X. ^ _ 

- I .»I T T [ T T T T 1 — c — 1 *V J J i = i j = t - i k = i n. ., ! J(X.+ C) 
O O v jk v 
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that is, 

KN ,N ,N ,N 1' z 7 a' « s 

- 6 \ . n. 
oo 00 t. i , 

• I -I T T - ! — - - — — _t 

J J i = l P. (\. o o 

where 

--d\., (4.17) 
( V + C ) ' 

1+1 2 

and 
t +1 2 

p i = T l TT - i 
j = t - l k=1 

Note that KN.N.N.N given in equation (4.17) is a product 
x 2 3 4 

of t(N. IC) and is similar to the result for the unreplicated case 

given ln equation (4.9). Though the function in equation (4.9) itself 

is unimodal, the analogous result in the present case has not been 

established. The shape of this product integral evaluated in equation 

(4.17) with numerous different combinations of n.., 's at various 

values of C's suggest the result is true. Numerical methods are used 

to compute the estimate of C that maximizes the function in equation 

(4.17) in spite of the potential risk of multi-modality. 

The smoothing window used for estimating C is small but the C(t) 

obtained may s t i l l contain a fair amount of noise and sampling 

variation. A numerical method called SABL, described in section 

2.2.2, can be used to decompose this C-series into trend, seasonal and 

irregular components. The seasonal and irregular components, which 
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are usually o£ much smaller magnitude when compared with the trend, 

reflect some of the sampling variation and noise s t i l l in the 

C-series. The trend is smoother than the C-series, and is closely 

related to the trends of x\ (t)*s for the 4 processes so we will use i t 

in this study as a general summary of the data in the domains for 

which C is computed. 

With the smoothed version of C ( t ) , we can compute the posterior 

point estimates for V at each t by maximizing an equation similar to 

that of (4.9) with respect to V . So for each 1 = 1,...,4 and each 

time t, 

-6A. n. 
X. - X. + + » X. p 

max fCX. \N. = max , (4.18) 
X. ' " X. P. (X. + o 2 

X. X. X. X. 

where 
1 + 1 2 1+1 2 

rx. 
1 + + 

I l ^ ^ n = T y 
j = " - l k = l J j = t - 1 k = 1 

This maximization problem is easier to handle when we take the natural 

logarithm of (4.18) to obtain a quadratic expression of X̂ . The 

maximum can be explicitly evaluated in this case and is found to be at 

(n. - 2 - 6C ) + I (n. - 2 - 6C f + 24 rx. ( 

a* = 1+* , ( 4 . 1 9 ) 

12 
t + 1 K 

where rx, = S Y rx.., . 
x,++ . L, L, i j k 

The X^ in equation (4.19) is only 1/6 of the actual X̂  so i t is 
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multiplied by 6 (2 for the number of replicates times 3 for the window 

size). Now, let V = 6X* which is comparable in magnitude with the 

observations of the i t h process. It would be desirable to present a 

100(l-a)% credibility interval for \ at each t. Each interval is a 

subset, C, of the parameter space which gives the probability that V 

is in C. This amounts to choosing a pair of upper and lower limits, 

(a,£>), such that 

F ( C f 4 | fCX. dX. = 1-ot, (4.20) 

where a > 0 and 6 > 0, and 

-6\ . n. 

F(C) = Pf* J e 1 \ ;

 i + * C <\ + 6"2 dV, 
X. X. X. 

n 

t + i 2 t + 1 2 

j= l-1 k=l j = t - l k = l 

In choosing a credibility Interval for V at time t, the usual 

approach is to minimize its length. This may be done by using the 

highest posterior density(HPD) criterion which is to include in the 

interval only those points with HPD, that is, the 'most likely' values 

of \.. 

To evaluate the HPD credibility interval in equation (4.20), we 

set up the following program: 

1) set the lower limit a = 0; 

2) create a subroutine which, for a given time t, computes the 
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A 

maximum of £CX. IN. as a function of X. at, say, X. = 

3) set x = (a+m.)/2 and evaluate fcx. \N. , 0 at X. = x; 

4) create a subroutine which find the value of 6 such that 

f(X.= 6 |N.,C) = f(X.= x l*.,C); 

5) numerically integrate 

where a and fe are the values from steps (3) and (4). 

If this value is approximately (1-ot), then stop. If not and i f : 

i) the value is larger than (1-a), set m, = x (a remains 

unchanged) and go back to steps (3) to (5); 

i i ) the value is smaller than (1-a), set a = x (m remains 

unchanged) and return to steps (3) to (5). 

It can happen that the integral P(a,6) evaluated from a - 0 to 

the point where fCXJA^O has its maximum is very small so that the 

above procedure cannot be used. In such situations, we abandon the 

HPD criterion and find o such that P(<z,6) evaluated at (0,6) is 

approximately equal to (1-a). 

We can plot a l l these results with lines connecting the point 

estimates of X̂  and their corresponding limits over time for visual 

inspection. These graphs should roughly indicate the trend of X^s 

and the size of their possible fluctuations. 

a 

44 



5 . A P P L I C A T I O N 

5 . 1 I n t r o d u c t i o n 

in this section, the method developed in the last chapter is 

applied to the marked salmon recovery data. For coho, data from 

replicated tag codes observed in 4 catch regions are used. These data 

are further grouped according to hatchery, brood year and size at 

release of the tagged smolts. The hatcheries of interest are Quinsam 

with broods from 1978 and 1979, and Capilano with broods from 1979 and 

1980. An example of such a grouping is (Quinsam, 1979, large) which 

refers to smolts which are raised in the Quinsam hatchery starting in 

1979 with a large average size at release. For each grouping, there 

are 4 similar sets of replicated tag codes. Thus, in each catch 

region, a total of 12 codes are included for each possible hatchery, 

brood year and size combination. Details of these tag codes can be 

found in Appendix F of 'A Canadian MRP Data Benchmark'(1986). 

Overall, the recovery data set for replicated tag codes of 

chinook has very few observations. Even with 4 sets of replicates for 

each hatchery, brood year and size combination, few recoveries are 

found over the 63 adjusted sampling periods for the 3 catch regions 

considered. Therefore, over almost the entire recovery period, the 

estimated intensity, X., is near zero for each catch region. Three 
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tag codes (021827, 021829 and 021661) which have substantial 

recoveries are thus selected from the benchmark rollup data subset. 

The method described is then applied to these data. 

The local Poisson model allows us to aggregate data from related 

tag codes when there is a paucity of Information for a single tag. 

The use of this approach on two different sets of data, one from 

replicated tag codes and the other from individual codes, illustrates 

the flexibility and advantage of our method. 

5* 2 P r o b l e m s E n c o u n t e r e d w h e n M o d e l l i n g t h e S a l m o n R e c o v e r y D a t a 

5 * 2 * 1 M i s s i n g v a l u e s 

In fitting local Poisson models to the recovery data, the C 's are 

estimated from small neighborhoods where counts are homogeneous. As 

Indicated in subsection 3.2.2, usually the f i r s t 10 and the last 10 

periods for a l l catch regions in each recovery year contain missing 

values so our approach cannot be used to obtain C -estimates over these 

long intervals. We thus include at most two periods with missing 

values to open or to close a sampling interval. As a result, there 

are 18 periods for coho and 63 adjusted periods for chinook in which 

the interval between these periods is more or less equally spaced. 

Suppose there are a few missing values in the recovery data over 
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m periods of interest. An ad hoc method is used to obtain a number 

for each period with missing values. Assume that a symmetric 

neighborhood with a 3-point window is used for smoothing. For a fixed 

catch region, let the 3 counts in a window be denoted by n ^, and 

n , where t = 1,...,m, n = 0 and n =0. Then, the procedure 

adopted to f i l l in missing value in that window is as follows: 

1) i f n is missing and there are data on the left of n , search 
t - i ^ . t - i 

backward for at most 5 steps to obtain the fi r s t data value n ., 

where j = 2,..., or 6, for When is in the f i r s t 

position or when there are only missing values before i t , set 
n = 0. t - i 

2) i f n is missing and there are data close to the right of n , 

search forward for at most 5 steps to find the fi r s t available 

count n .. where j = 2,..., or 6, for n . when there are only 

missing values following n , set n = 0. 

3) i f n is missing and there are data points just beyond n , 

search forward for at most 5 steps and set n = n . for the 
t + i t+j 

f i r s t j = 2,..., or 6 which is not missing. If n is at the end 

or there are only missing values after i t , set = 0. 

In a few cases when there is more than one missing value in a 

window, we use an appropriate combination of the above three cases to 

obtain counts for these periods. The decision to search for at most 5 

steps is based on the general pattern of missing values in the 

sampling periods for two of the species of salmon. Having 3 or more 
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consecutive missing values is rare, except for one chinook tag code. 

S. 2.2 The edge e f f e c t 

The edge effect, which occurs at the two extremes of the 

C-series, is a byproduct of the local smoothing technique in our 

model. To obtain C 's for m periods, we require counts for 2 extra 

periods, n and n , to obtain estimates for the fi r s t and the last 

windows. Here, we set n and n to zero since in most cases no more 
O m + l 

than one recovery was observed in the fi r s t and last periods. These 

two estimates must therefore be regarded with caution. 

5* 3 F i t t i n g t h e P r o p o s e d Models t o t h e S e l e c t e d Data S e t s 

For a particular hatchery, brood year and size combination, 

consider the ith catch region at time t, where t = 1, ...,m. Then 

N. = C N . f t p is a matrix of counts where k = 1, ...,K denotes the 
x. \ . k l 

number of similar sets of replicated tag codes, and 1 = 1,...,L 

denotes the number of replicates in each of the K sets. For coho, 

K = 4, L = 3, and t = 16,...,33 (m = 18 actual periods) for each 

i = 1,...,4. For chinook, K = 1, L = 1, and t = 1,...,63 (m = 63 

adjusted periods) for each i = 1,2,3. in each case, the smoothing 

technique uses a symmetric neighbourhood with a 3-point window, and 

the sampling periods are the same for the catch regions considered. 
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Now, following equation (4.12), the joint density of these 

Af k l(t)'s given V for a fixed catch region i at time t is 

f(N.|X.) = TT "TT TT" KW (3)|X). (5.1) 
j = t - l k = 1 1 = 1 

The C ' s are estimated for each group of replicates by maximizing a 

modified equation similar to that of (4.17). That is, we maximize the 

following function for I catch regions with respect to C: 

f(W , . . . , N I C ) 

-X. n. , oo v x. j k l 

= TT f ~n—rr TT — ] ox, ( 5 . 2 ) 
i. = i J «• j = t - i k = i l = i n. 1 J (X. + C) 

O v j k l t 

where t = 1, ...,m. 

The C-series obtained from each group of codes are f i r s t plotted 

over the periods for visual inspection. Figures 5.1a is an example 

for coho of the Quinsam, 1979 and medium combination, Figures 5.2a is 

for a similar groupings of Capilano coho, and Figure 5.7a is the 

C-plot for chinook tag code 021827. These plots show for each group, 

that the C -series is not very smooth and has a different trend for 

each group. 

The computer routine SABL, described in subsection 2.2.2, is used 

to smooth these C ' s . The C ' s associated with tag codes from the 

Quinsam hatchery are transformed by taking their fourth root. A plot 
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o£ t h e s e results is illustrated in Figures 5.1b. For the remaining 

tag codes, no transformation is used on the C ' s . Examples of the 

resulting trends of C's are then given in Figures 5.1c, 5.2b and 5.3b. 

From now on, we will use the smoothed version of C ( t ) , denoted by 

C ( t ) , as a general summary of the data. The C curves for a l l brood 

year and size combinations of Quinsam coho are plotted against time in 

Figure 5.4. In general, the shapes of these C-plots exhibit two humps 

connected by a small dip. The second hump, which is between periods 

26 and 33, is usually flatter than the f i r s t one, which is between 

periods 16 and 22. For brood year 1978, the size of the C's for each 

size-group is about the same. However, for brood year 1979, the 

medium size-group has larger C ' s , which Indicates that there is more ft 

dispersion among the 4 different catch regions. For Capilano coho, as 

shown in Figure 5.5, the shape of the C curves is unimodal, with the 

mode usually in period 21. The C -plots of the medium size coho for 

both brood years 1979 and 1980 have a similar magnitude. However, for 

the other two sizes, there are big differences between the two broods. 

Note that for each brood year and hatchery, i f the C-series of 

one size group is fixed, the C curves of each remaining group is only 

a constant multiple of i t . Also, in general, larger C-values indicate 

that there is more ft dispersion among different catch regions while 

smaller C-values reflect that the /Vs are more similar. 
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The C-plots for the 3 chinook tag codes are given in Figure 5.6. 

Clearly, we can observe that there are 3 distinct recovery intervals, 

with each interval of 21 periods representing a fishing season. 

Within each interval, an increasing trend in the C-series is always 

followed by a decrease, and the largest peak comes near the end. 

Further, the C's for the f i r s t two intervals are larger in magnitude 

than the third. When comparing the C's of the three tag codes, those 

of 021827 are usually smaller even during the peak periods. This 

result reflects that the (3As are more similar among the 3 catch 

regions for tag code 021827. 

With the smoothed version of C-series, V can be obtained for 

each catch region using the modified equation (4.19) that includes a l l 

replicates with similar characteristics. We then have 

(n. - 2 - AC) + [(n. - 2 - AC f + 4A rx. C 
x * = SI** y_ttt f { 5 3 ) 

2A 

where 

n 
t+1 K L 

i=V-± k=± 1=1 

and 
A = 3 x K x L (3 is the window size). 

The final result is multiplied by A to obtain Xfc for the i t h region. 

Figures 5.7 to 5.9 are plots of the estimated recovery 

intensities, X.'s, for the 3 sizes of Quinsam coho. Note that X(t)'s, 
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that is, the recovery intensity levels for the three trolling regions: 

Southwest Vancouver Island Troll, Georgia Strait Troll and South 

Central Troll, peak much earlier than the Johnstone Strait Net. In 

addition, the recovery intensity for the Johnstone Strait Net is the 

largest among the 4 catch regions for a l l sizes. 

For Capilano coho the \-plots are shown in Figures 5.10 to 5.12. 

Like the Quinsam coho, a l l trolling regions here have their x curves 

peaking earlier than the Johnstone Strait Net. Nevertheless, the 

general pattern for each of the four catch regions is different from 

that of Quinsam coho. First, the recovery intensity is often the 

largest for Southwest Vancouver Island Troll and the smallest for 

Johnstone Strait Net. Second, from periods 28 to 33, the intensity is 

usually zero for a l l catch regions. 

Now, we turn to examine the relationship between the smolts' size 

at release and their recovery intensity at maturity, and the 

difference in recovery rate between different brood years. For the 

fi r s t case, we have to study the estimated recovery intensities of the 

3 sizes: small, medium and large, for each brood year separately. 

However, no obvious conclusions are suggested since there is so much 

variation among the 4 catch regions. For the second case, we compare 

the estimated intensity for different brood years and observe that: 

1) for Quinsam coho, the recovery intensities for coho raised in 

1979 are larger than those from 1978; and 
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2) for Capilano coho, the recovery Intensities for brood year 

1980 are much larger than for 1979. 

These results Indicate that for coho from a particular hatchery more 

recoveries are observed from one brood than the other on average. 

The X-plots for the 3 chinook tag codes in each catch region are 

presented in Figure 5.13. Here, the trolling regions are: Northwest 

Vancouver Island Troll, Northern Troll, and North Central Troll. 

Again, as in the C-plots, the recovery intensities are distributed in 

3 intervals, with larger Intensities found in the f i r s t two intervals. 

Among the 3 catch regions, the Northern Troll has larger recovery rate 

on average. When comparing the estimated intensities for the 3 tag 

codes, overall 021661 and 021827 has better recovery rate than 021827. 

This indicates that on average fewer recoveries are observed with tag 

code 021827. 

After computing the X-series, we derived the 95% credibility 

intervals for the X's using the procedure described in section 4.3. 

That is, we found the upper and lower limits (a,6) such that 

-A\. n. 

G(a,b,C) = F ( C ) " 1 ~ - — - - - dX. = 0.95, (5.4) 
J P. (x. + c) ' 

CL l i 
where 

A = 3 x K x L (3 is the window size), 

l + l K L 

• I 11 n i k i ( j ) ' 
j=1-1 k=l 1=1 
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t + 1 K L 

p t • " r r " r r " r r ^ » u . 
j = I - 1 k = l 1 = 1 

and 
r -AX n. 

F(C) = Pt o V C (V+ C) • 

Note that in the case when the total count n and X. are zero, 

and C is close to zero, the corresponding credibility interval for X 

is (0,«) where « > 0 is arbitrarily small. In this case, we are sure 

that there is no recovery in the i t h catch region. The result is 

obtained to a good approximation by taking the limit of G(a,b,C) in 

(5.4) as C •* 0. The proof of the result lim G(a,b,C) = 1 is shown in 
C - 0 

the following. 

First, note that 

rb 

J e 1 / (X.+ C) 2 dX. 
lim G(a,b,C) = Um — --. (5.5) 

C + 0 C - 0 r°° -X 
J e / (X.+ C) dX. 

Letting u = X + C/ (5.5) becomes 

r
b + C f -(u.-C) 2 V 

L U v / u 2 J da 
lim — ^ --. (5.6a) 

du. 
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The expression in (5.6a) is just 

r - u . 
J * " 2 

e u. du. 
lim -- --. (5.6b) 

C O 

§ e " u." du. 
C -*• 0 r -u. 
^ 1 t -2 

Since in equation (5.6b), both numerator and denominator are 

analytical functions, they are differentiable. Further, they are both 

Infinite in the limit; therefore, we can apply the L'Hospital rule to 

(5.6b) and obtain 

g - ( b * C ) (b + C ) " 2 - e C C lim 
< * 0 - ( e ^ C " 2 ) 

lim C " 2 • b (b + C ) " 2 + 1 
C 0 

= 1. 

Sample plots of these credibility Intervals for coho and chinook 

and their corresponding \-estimates are portrayed in Figures 5.14 to 

5.16. We must be careful in interpreting these credibility intervals. 

The bands in Figures 5.14 to 5.16 are not simultaneous interval 

estimates. They merely indicate the pointwise credibility interval 

for the recovery intensity, M t), at each period t. Note that during 

some periods when a region has substantial recoveries, the ratio of 

the \ and the width of theses intervals on average for that region is 

about two or three times smaller than regions with much smaller 
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recoveries. This indicates that large recoveries are ln general more 

informative for estimating the recovery intensities and computing the 

corresponding credibility interval just as Intuition would suggest. 

5 . 4 Conclusion 

To identify an appropriate model for the salmon recovery data, we 

have examined the raw data in detail. We learned that the salmon 

recovery data set has missing values, huge extraneous variations and 

noise. An empirical Bayes model was thus developed to handle these 

data. The method fitted local parametric, Poisson models to be 

precise, and incorporated this approach with a conventional smoothing 

technique to obtain the overall recovery patterns and the 

corresponding credibility Intervals for the underlying salmon 

recoveries. 

The resulting conclusions are: 

1 ) there are huge variations in the pattern of recovery intensities 

for both species of salmon from different brood years; 

2) in a l l catch regions, the overall recovery trends for coho from 

the two hatcheries are different in shape; 

3 ) no overall difference is observed for the three sizes of coho; 

4) in general the Quinsam coho recovery is usually the largest in the 

Johnstone Strait Net area while for Capilano this is largest in 

Southwest Vancouver Island Troll area; and 
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5) among the 3 intervals of recovery for the chinook, the recovery 

rate is always the largest during the fi r s t two periods. 

Our method has demonstrated its usefulness in aggregating 

information from Individual sampling periods to overcome the problem 

of sparse data. However, we suggest that further investigations be 

carried out, including 

1) extending our method to Include general parametric models, and 

2) finding a weighting scheme for smoothing so that the weight given 

to a point depends on the distance i t is from the 'period' of 

interest. 

57 



REFERENCES 

Becker, R. A. and Chambers, J. M. (1984). S: An Interactive 

Environment for Data Analysis and Graphics. California: Wadsworth. 

Berger, J. 0. (1985). Statistical Decision Theory and Bayesian 

Analysis. New York: Springer-Verlag. 

Brewster, J. F. and Zldek, J. V. (1974). Improving on equivariant 

estimators. Annals of Stat is tics, 2, 21-38. 

A Canadian MRP Data Benchmark (1986). Fisheries Research Branch, 

Department of Fisheries and Oceans, Canada. 

English, K. K. (1985). The contribution of hatchery produced chinook 

and coho to west coast fisheries: preliminary analysis. Department of 

Fisheries and Oceans, Canada. 

Hastle, T. and Tibshirani, R. (1986). Generalized Additive Models. 

Stat ist ical Science, 1, 297-318. 

Holden, R. T. (1987). Time Series Analysis of a Contagious Process. 

J. Amer. Statist. Assoc. , 2, 1019-1026. 

58 



Lawless, J. F. (1987). Negative binomial and mixed Poisson 

regression. TK& Canadian Jo-urnal of Statistics, 15, 209-225. 

Ma, H., Joe, H. and Zidek, J. (1986). A Bayesian Nonparametric 

Univariate Smoothing Method, with Applications to Acid Rain Data 

Analysis. University o£ British Columbia Statistics Department 

Technical Report No. 47. 

Nicholls, D. F., Heathcote, C. R. and Cunningham, R. B. (1986). The 

Evaluation of Long Term Trend I. Austral. J. Statist. , 28, 294-313. 

Salmon Stock Interpretation Unit (1984). The mark recovery program as 

an assessment tool for the hatchery chinook and coho salmon 

enhancement program. Fisheries Research Branch, Department of 

Fisheries and Oceans, Canada. 

Salmon Stock Interpretation and Assessment Unit (1986). Development 

of a Pacific coastal database for assessing the contribution of B.C. 

hatchery chinook and coho salmon production to the Canadian commercial 

catch. Fisheries Research Branch, Department of Fisheries and Oceans, 

Canada. 

Weerahandi, S. and Zidek, J.V. (1988). Bayesian nonparametric 

smoothers for regular processes. 77ie Canadi an Joxirna I of Statistics , 

16, 61-74. 

59 



A P P E N D I X 

T h e M a r k R e c o v e r y P r o g r a m C MRP5 D a t a b a s e 

A two-phase marking program, which includes tagging fish in the 

hatchery and recovering tags in the fishery, is currently the best 

known method for providing information to assess the benefits of 

a r t i f i c i a l l y reared fish. The most popular marking technique for 

hatchery coho and chinook is the use of coded wire tags (CWTs), which 

are usually inserted in the snouts of juvenile fish as an indicator of 

the fish's origin. In addition, the adipose fins of these tagged fish 

are clipped to allow detection of them later as adults. 

Two main types of data are thus available from this marking 

program. One is the hatchery release data and the other is the 

recovery data. The fi r s t type is of two broad categories: 

1) fish released with a CWT and clipped adipose fin (marked), and 

2 ) fish released without a CWT (unmarked). 

The second type of data include fishery data giving recoveries from 

commercial and sport fishing, and escapement data which are recoveries 

not from any fishery. 

In each category of the release data, there are time variables, 

such as the brood year (the year in which the eggs were spawned) and 
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the date of release. There are also geographic variables which 

include stock site (location from which eggs are taken), hatchery site 

and release site. In addition, an average size (gram/fish) and the 

actual number of releases are given to each released group of fish. 

The above variables represent only a small subset in the release data. 

Many others variables related to the survival of fish are also 

available. 

Note that in order to calculate the total contribution of 

hatchery fish to fisheries, each hatchery release group must be 

represented by a group of marked fish. A method has been developed to 

determine the marked release group that would represent the release of 

unmarked juveniles. Thus, the different variables in the release data 

are also important for associating marked and unmarked releases. 

In the fishery data, there are information about recoveries of 

marked fish and the corresponding sampling program. Whenever 

possible, the recovery time is recorded as year, month and statistical 

weeks (about 5 per calendar month), and the recovery region 

corresponding to the fishing method is also recorded. Not every fish 

caught by a commercial fishery is inspected for tag since this is 

costly. Thus, a sample is taken for mark inspection and only those 

marks detected in the sample are recorded as data. The sport recovery 

data usually come from voluntary returns of salmon heads by fisherman. 

Thus, these recoveries depend very much on the fishermen's awareness 
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of the clipped adipose fins. The sport catch size is obtained 

differently from commercial catch, which is estimated based on sales 

slips. 

The escapement data include tagged fish escapement to the 

hatchery or escapement to rivers or lakes near the hatchery. Detailed 

recovery information on a single tagged fish is difficult to obtain so 

only yearly bulk data are available. 

A brief review of the l i f e cycle of chinook and coho would show 

us how recoveries from a particular brood are distributed over time. 

A coho's or Chinook's l i f e begins as an egg in the year of spawning, 

the 'brood year'. Eggs are hatched, and juvenile fish are reared 

until the 'release year', when they are allowed to leave the hatchery 

and begin l i f e in the ocean. Eventually, in the 'recovery year', 

adults are captured by the fishery or escape to their spawning ground. 

Therefore, i f the brood year is defined to be year 0, then the 

following table from the Salmon Stock Interpretation and Assessment 

Units(1986) report is a summary for the majority of coho and chinook. 

Year chinook coho 

0 brood year brood year 
1 release year release year (fry) 
2 release year (smolts) 
3 recovery year (age 3) recovery year (age 3) 
4 recovery year (age 4) 
5 recovery year (age 5) 
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In some cases, some fish of both species are recovered in year 2 as 

jacks and chinook are sometimes recovered in years 6 and 7. 

These release and recovery data of tagged and untagged salmon 

have been collected over years, but they were unorganized and 

scattered among different agencies. Thus, i t is difficult to have an 

analysis on a complete set of data. In 1983, the Canadian Department 

of Fisheries and Oceans(DFO) decided to construct a Mark Recovery 

Program(MRP) database on the VAX computer at the Pacific Biological 

Station(PBS) in Nanaimo. As a result, many interesting questions can 

now be addressed. When this database is completed, valuable 

information will be available for assessing the coho and chinook 

salmon enhancement program. 
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Table 3.1. The tag codes found ln the benchmark data subset. 

code used original species 
in plots code Hart code 

1 020408 124 (chinook) 
2 020409 124 
3 021615 124 
4 021635 124 
5 021661 124 
6 021827 124 
7 021829 124 
8 022202 124 
9 022405 124 

1 081810 115 (coho) 
2 081811 115 
3 081812 115 
4 081813 115 
5 081841 115 
6 081842 115 
7 081843 115 
8 081844 115 
9 081845 115 
10 082001 115 
11 082002 115 
12 082003 115 
13 082004 115 
14 082005 115 
15 082006 115 
16 082007 115 
17 082008 115 
18 082009 115 
19 082019 115 
20 082020 115 
21 082021 115 
22 082022 115 
23 082023 115 
24 082024 115 
25 082025 115 
26 082026 115 
27 082027 115 
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Table 3.2. Summary of data fields for the benchmark release data 
subset. 

field description number of zeros % of zeros 

1 tag code 0 0 
2 species Hart code 0 0 
3 brood year 0 0 
4 run type code 27 75.00 
5 day first released 29 80.56 
6 month f i r s t released 29 80.56 
7 year fi r s t released 29 80.56 
8 day last released 0 0 
9 month last released 0 0 
10 year last released 0 0 
11 number tagged 0 0 
12 adipose only 0 0 
13 undipped 0 0 
14 total released 0 0 
15 number of days held 5 13.89 
16 size code 0 0 
17 size at release 0 0 
18 percentage tag loss 0 0 
19 expected survival 36 100 
20 stage code 0 0 
21 study type 0 0 
22 hatchery code 0 0 
23 release site code 0 0 
24 stock site code 0 0 
25 agency code 0 0 
26 co-ordinator code 0 0 
27 production area code 0 0 
28 province/state code 0 0 
29 years with recoveries 0 0 
30 release type 0 0 
31 total associated release 0 0 
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Tab le 3 . 3 , Summary l i s t o£ chinook data fields for the benchmark 
rollup recovery subset. 

(There are four possible recovery methods: t r o l l , net, sport(S), or 
escapement(E). The letter in square brackets indicates that only one 
of these methods applies to the field. Those fields without any 
letters apply to a l l methods. The number and percentage of NAs were 
calculated according to the number of records corresponding to a 
particular catching method.) 

* NAs = missing values 

field description number of NAs % of NAs 

1 tag code 0 0 
2 recovery year 0 0 
3 gear 0 0 
4 catch region 0 0 
5 brood year 0 0 
6 non-tag indicator 0 0 
7 species Hart code 0 0 
8 statistical week 0 0 
9 average fork length (mm) 1361 98.27 
10 average hyperal length (mm) 1385 100 
11 average total length (mm) 1385 100 
12 average dress weight (kg) 1385 100 
13 average round weight (kg) 1385 100 
14 % immature female 1385 100 
15 % mature female 1385 100 
16 % immature male 1385 100 
17 % mature male 1385 100 
18 % unknown sexual maturity 35 2.53 
19 recovery site code [E] 0 out of 35 0 
20 recovery site number [E] 0 II 0 
21 run type [El 0 II 0 
22 sample age type [El 0 II 0 
23 number of observed recoveries 0 0 
24 catch or escapement 67 4.84 
25 sample size 67 4.84 
26 sum of known tags 5 0.36 
27 number of no-pins 138 9.96 
28 number of lost-pins 347 25.05 
29 number with no data 614 out of 1350 45.48 
30 number of sport marks observed [S] 68 out of 89 76.40 
31 est. marks in the est.sport catch [S] 68 II 76.40 
32 number observed sport recoveries [S] 0 0 
33 sum of escapement non-tags [El 3 out of 35 8.57 
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Table 3.4. Table for computing "Period" from statistical week (MMW). 

Week Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
1 2 3 4 5 6 7 8 9 10 11 12 

1 40 40 1 5 10 14 18 23 27 31 36 40 
2 40 40 2 6 11 15 19 24 28 32 37 40 
3 40 40 3 7 12 16 20 25 29 33 38 40 
4 40 40 4 8 13 17 21 26 30 34 39 40 
5 40 0 0 9 0 0 22 0 0 35 0 0 

"Period" is a number ranging between 1 and 40 representing a one 
week time period during which salmon fishing may occur. 
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Table 3.5. List o£ catch region codes, and names. 

new code old code Name 

1 1 NW Vancouver Is. Troll 
2 2 SW Vancouver Is. Troll 
3 3 Washington/Oregon Troll 
4 4 Georgia Strait Troll 
5 5 Central Troll 
6 6 Northern Troll 
7 7 Alaska Troll 
8 14 Juan de Fuca Troll 
9 15 NW Vane. Is. and Central Troll 
10 17 NW Vane. Is. and SW Vane. Is. Troll 
11 18 Northern and Central Troll 
12 34 Georgia Strait and Central Troll 
13 53 Georgia Strait and SW Vane. Is. Troll 
14 56 North Central Troll 
15 57 South Central Troll 
16 8 Fraser Gillnet 
17 9 Northern Net 
18 10 Georgia Strait Net 
19 11 Johnstone Strait Net 
20 12 Central Net 
21 13 Juan de Fuca Net 
22 19 Johnstone Strait and Central Net 
23 20 NW Vancouver Is. Net 
24 21 SW Vancouver Is. Net 
25 33 Northern and Central Net 
26 36 Yukon Net 
27 37 Juan de Fuca and Georgia Strait Net 
28 45 Johnstone Strait and Georgia Strait Net 
29 46 Fraser Gillnet and Georgia Strait Net 
30 47 Alaska Net 
31 48 British Columbia Net 
32 58 Fraser Seine Net 
33 25 Northern Sport 
34 26 Central Sport 
35 27 Washington Sport 
36 28 Georgia Strait Sport 
37 29 Freshwater Sport 
38 99 Canadian Escapement 
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Table 3.6. k summary o£ catch regions with observed recoveries. 

(New catch region codes from Table 3.5 are used here.) 

Description COHO CHINOOK 

# Troll catch regions 10 6 

catch region codes I, 2,4,5,6,9,10, 
II, 14,15* 

1,4,6,11,14,15 

# Net catch regions 9 6 

Catch region codes 16,17,18,19*,20, 
21,22,23,24 

17*,18,19,20,22, 
24 

# Sport catch regions 4 4 

Catch region codes 34,35,36*,37 33,34,35,36* 

# tags considered 153 69 

# records examined 2989 940 

* : Catch region with more than a hundred observed recoveries. 
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Table 3.7. A sample l i s t of coho release replicates that are 
classified according to size. 

(All the replicates are In groups of three.) 

release tag release brood total total tote 
date code site year size re l . obs. % rec. es] 

10/5/81 081855 Quinsam 1979 small 7189 123 1.71 87 
59 7191 130 1.81 86 
62 7192 111 1.54 71 

10/5/81 081856 Quinsam 1979 medium 7192 144 2.00 108 
58 7210 114 1.58 88 
61 7193 115 1.60 86 

10/5/81 081857 Quinsam 1979 large 7202 148 2.05 110 
60 7192 146 2.03 116 
63 7207 134 1.86 99 

26/5/81 081910 Capilano 1979 small 4098 135 3.29 49 
11 4093 115 2.81 48 
12 3845 103 2.68 42 

26/5/81 081913 Capilano 1979 medium 3983 123 3.09 51 
14 4038 127 3.15 54 
42 4208 139 3.30 67 

26/5/81 081943 Capilano 1979 large 3516 91 2.59 46 
44 3570 102 2.86 57 
45 3565 81 2.27 46 
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Figure 3.1 a. Size of chinook release for tag codes from the benchmark release data subset 
S S 

10 

Figure 3.1 b. Size of coho release for tag codes from the benchmark release data subset 
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tag c o d e 
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Figure 3.2. Chinook observed recoveries over the recovery period considered, 
(tag code: 021827 brood year: 1979 recovery year: 1981 to 1984) 

Figure 3.2a. Commercial and sport observed recoveries. 

200 

Figure 3.2b. Commercial observed recoveries. 

200 

Figure 3.2c. Sport observed recoveries. 

200 

periods over the 4 recovery years 
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Figure 3.3. Coho observed recoveries over the recovery period considered, 
(tag code: 081842 brood year: 1979 recovery year: 1981 to 1982) 

Figure 3.3a. Commercial observed recoveries. 

periods over the 2 recovery years 

Figure 3.3b Sport observed recoveries. 

months over the 2 recovery years 
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Figure 3.4a. Plot of cumulative sum of chinook commercial observed 
recoveries over time. 
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periods over the 4 recovery years 

Figure 3.4b. Plot of cumulative sum of coho commercial observed 
recoveries over time. 

1 0 0 1 2 0 

periods over the 2 recovery years 



Figure 3.5. Plots of chinook commercial observed recoveries over the sampling period. 
(tag code: 021827 brood year: 1979) 
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Figure 3.6. Plots of coho commercial observed recoveries over the sampling period. 
(tag code: 081842 brood year: 1979) 
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Figure 5.1a. Zeta(t) for coho. 
(Hatchery: Quinsam brood year: 1979 size at release: medium) 
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Figure 5.1b. Transformed zeta(t) (power = 0.25). 
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Figure 5.3a. Zeta(t) for chinook tag code: 021827. 



Figure 5.4. The trends of zeta's for Quinsam coho from different brood years. 
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Figure 5.5. The trends of zeta's for Capilano coho from different brood years. 
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Figure 5.6. The trends of zeta's for the three chinook tag codes. 
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Figure 5.7. The estimated recovery intensity of coho for each of the 4 catch regions. 
(Hatchery: Quinsam size at release: large) 
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Figure 5.8. The estimated recovery intensity of coho for each of the 4 catch regions. 
(Hatchery: Quinsam size at release: medium) 
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Figure 5.9. The estimated recovery intensity of coho for each of the 4 catch regions. 
(Hatchery: Quinsam size at release: small) 
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Figure 5.10. The estimated recovery intensity of coho for each of the 4 catch regions. 
(Hatchery: Capilano size at release: large) 

S W Vancouver Island Troll 

o , 
CO 

LO . 
CM brood year 1980 
O . 
CM 

W . brood year 1979 
o . \ 
in • 

o • 
15 20 25 30 35 

Georgia Strait Troll 

o 

86 



Figure 5.11. The estimated recovery intensity of coho for each of the 4 catch regions. 
(Hatchery: Capilano size at release: medium) 
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Figure 5.12. The estimated recovery intensity of coho for each of the 4 catch regions. 
(Hatchery: Capilano size at release: small) 
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Figure 5.13. The estimated recovery intensity of chinook for each of the 3 trolling regions. 
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Figure 5.14. Estimated recovery intensities of coho and the corresponding 95% credibility intervals. 
(Hatchery: Quinsam brood year: 1979 size at release: medium) 
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Figure 5.15. Estimated recovery intensities of coho and the corresponding 95% credibility intervals. 
(Hatchery: Capilano brood year: 1980 size at release: medium) 
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Figure 5.16. Estimated recovery intensities of chinook and the corresponding 95% credibility intervals. 
(tag code: 021827 brood year: 1979) 
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