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ABSTRACT 

Multivariate s t a t i s t i c a l methods, including recent computing-intensive 

techniques, are explained and applied in a medical sociology context to 

study infant death in relation to socioeconomic risk factors of households 

in Sri Lankan villages. 

The data analyzed were collected by a team of social scientists who 

interviewed households in Sri Lanka during 1980-81. Researchers would like 

to identify characteristics (risk factors) distinguishing those households 

at relatively high or low risk of experiencing an infant death. 

Furthermore, they would like to model temporal and structural relationships 

among important risk factors. 

Similar s t a t i s t i c a l issues and analyses are relevant to many 

sociological and epidemiological studies. Results from such studies may be 

useful to health promotion or preventive medicine program planning. 

With respect to an outcome such as infant death, risk groups and 

discriminating factors or variables can be identified using a variety of 

s t a t i s t i c a l discriminant methods, including Fisher's parametric (normal) 

linear discriminant, l o g i s t i c linear discrimination, and recursive 

partitioning (CART). The usefulness of a particular discriminant 

methodology may depend on distributional properties of the data (whether 

the variables are dichotomous, ordinal, normal, etc.,) and also on the 

context and objectives of the analysis. 
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There are at least three conceptual approaches to statistical studies 

of risk factors. An epidemiological perspective uses the notion of 

r e l a t i v e risk. A second approach, generally referred to as 

c l a s s i f i c a t i o n or discriminant analysis, is to predict a dichotomous 

outcome, or class membership. A third approach is to estimate the 

probability of each outcome, or of belonging to each class. These three 

approaches are discussed and compared; and appropriate methods are applied 

to the Sri Lankan household data. 

Path analysis is a standard method used to investigate causal 

relationships among variables in the social sciences. However, the normal 

multiple regression assumptions under which this method is developed are 

very restrictive. In this thesis, limitations of path analysis are 

explored, and alternative loglinear techniques are considered. 
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1. Introduction 

A study of infant mortality in Sri Lanka was conducted by a team of 

social scientists during 1980-81 (before the current c i v i l war) to identify 

households and socioeconomic conditions in which there was a high risk of 

experiencing an infant death. Further, relationships among risk factors 

would also be of interest to future planning of any preventive health 

programs in developing countries- Similar applications of multivariate 

analyses are widely used to identify risk groups in epidemiology, urban 

planning, economics, business, etc. . This thesis explores and applies 

various statistical methods for assessing risk groups, and relationships 

among risk factors. 

Risk, groups and discriminating factors can be identified by a variety 

of statistical discriminant and modelling methods. The most often used 

criterion for determining the goodness of a discriminant rule has been the 

rate of misclassification. However, the importance of misclassification 

rate varies depending on the purpose of discrimination. In medical 

diagnosis, the objective is to pinpoint as accurately as possible the cause 

of symptoms. Since i t is not desirable to subject a healthy individual to 

possibly detrimental treatments, such as chemotherapy, nor to leave an 

infection untreated because of misdiagnosis, discriminant rules with low 

misclassification rates are preferred. In medical screening, say early 

breast cancer detection, examinations are performed on apparently healthy 

volunteers from the general population, for the purpose of separating them 

into groups with high and low probabilities for breast cancer (Sackett and 

Holland 1975). The idea of a screening discriminant is to use a few 
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inexpensive measurements to capture a l l those with the disorder in a high 

risk, group, so that more complicated, and often more expensive examinations 

need be performed only on this smaller group of individuals. Thus, factors 

considered to be good screening factors may not be acceptable diagnosis 

factors. In epidemiology and medical sociology, the main objective is to 

discover the context in which a disorder may occur. For example, 

homosexual men were identified as the first high risk group in studies of 

AIDS, although homosexuality per se is not the cause of disease; and 

clearly, by using sexual orientation as a discriminant rule, the 

misclassification rate would be high. In our Sri Lankan household study, 

the risk of infant death is being examined from the socioeconomic and 

political perspective. Health planning involves not only the understanding 

of biomedical causes of infant death, but also the social context in which 

infant death may occur. Although discriminant rules constructed using 

socioeconomic and political variables may not have low misclassification 

rates, the socioeconomic and political conditions under which a family is 

most l i k e l y to experience an infant death can s t i l l be identified. 

Thus, the goal is to find discriminating variables and discriminant rules 

that partition the households into distinguishable groups with respect to 

the risk of infant mortality. In this thesis, two other criteria for 

determining the goodness of a discriminant rule are investigated, and 

discriminant methods that are appropriate for the Sri Lankan household data 

set are applied. 

A second objective of the Sri Lankan household study is to test a 

theoretical model that places infant mortality at the center of an 

expanding series of social contexts. Infant deaths may be affected by 
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proximate factors such as inadequate nutrition or poor sanitation creating 

conditions for tetanus or diarrhea. These proximate factors may be 

influenced by the education level of the mother, and the economic status of 

the family, which in turn, may be linked to ethnic group membership. 

Path analysis is the standard method used to analyze such models in the 

social sciences. However, the assumptions under which this method is 

developed are highly restrictive. Thus, the use of path analysis is 

limited. In this thesis, limitations of the methodology are explored, and 

alternative techniques are considered. 
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2. A Study of Infant, Mortality i n S r i Lanka 

2.1 Infant Mortality i n Medical Sociology 

In medical sociology, infant mortality is viewed as a consequence of 

biosocial interactions. The key idea behind the biomedical model of 

disease is that etiology is biologically specific. Hence, medical research 

is primarily focused on disease agents and host-agent interactions. On the 

other hand, social science research on infant mortality has been 

traditionally concentrated on the association between socioeconomic status 

and the level and pattern of mortality in the population. The specific 

medical causes of death are generally not addressed by social scientists. 

Medical sociology attempts to bridge these two approaches to the study of 

infant mortality. Mosley and Chen (1984) proposed a framework based on the 

premise that " a l l social and economic determinants of child mortality 

necessarily operate through a common set of biological mechanisms, or 

proximate determinants, to exert an impact on mortality". This framework 

can be summarized by the following i l l u s t r a t i o n . 

socioeconomic biomedical infant 
factors factors mortality 

Figure 1 Conceptual model of medical sociological approach to 
research on infant mortality 
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Primary causes of infant death in developing countries are well 

understood from the medical perspective. One of the factors that 

contributes to high infant mortality rates is risk of infection. 

Patel (1980) noted the common use of dung as a healing agent prior to 1940 

in Sri Lanka. As documented by the Registrar of Ceylon Medical College in 

1906, tetanus, a common cause of infant death, often resulted from 

infection to the navel after separation of the umbilical cord in 

childbirth. This source of infection can easily be eliminated by 

abolishing such practice. Another source of infection is the contaminated 

water supply caused by lack of proper sanitation facilities. This source 

of infection may be eliminated by construction of sanitary latrines. 

In general, most infant deaths are preventable with current understanding 

of disease transmission and existing health technology. 

Although most infant deaths are preventable with the available 

technology, the social context in which infant death occurs may block the 

use of such technology. The Sri Lankan government has created a subsidy 

program for the construction of latrines. However, many families are too 

poor to take advantage of such subsidies. Another example involves the use 

of hospitals for childbirths. Waxier et al. (1985) suggest that childbirth 

may not be considered serious enough to require a doctor's care. Thus, 

hospitals for maternity care are sometimes not used, even though these 

hospitals which are essentially free, are within short distances. 

Therefore, in order to design an effective package of health policies to 

promote infant survival, the biomedical and the social context of the 

problem must be examined concurrently (Mosley 1984). 
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Two recent developments i n sociological research have also altered the 

approach to infant mortality studies, as pointed out by Waxier et 

al. (1985). McKeown (1976) has argued that changes i n health status across 

time are probably better predicted by changes i n sanitation and available 

food supplies, than by health care or narrowly defined medical variables 

that are often considered. Secondly, infant mortality has been used, by 

development economists and others, as a central indicator of the state of 

development, or q u a l i t y of l i f e , of populations i n developing 

countries (Morris 1979). These developments have c a l l e d for expanded 

models that place infant mortality i n a larger s o c i a l context. 

The proximate causes of infant death may be inadequate 

n u t r i t i o n (Puffer and Serrano 1973) or poor sanitation and water 

supply that create conditions for tetanus or diarrhea (Patel 1980, and 

Smucker et al. 1980). However, these proximate causes may be related to 

the maternal education l e v e l (Caldwell and McDonald 1982, Simmons and 

Bernstein 1982, and Chowdhury 1982), economic status of the family (Grosse 

and Perry 1982, and Waxier et al. 1985), and access to health services 

(World Bank 1975), which i n turn, may be related to ethnic group membership 

(Waxier et al. 1985). In the S r i Lankan household study, relationships 

between infant mortality and various biomedical and socioeconomical factors 

are examined. 
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2.2 The Sri Lankan Household Data 

As described in Waxier et a.1. (1985), the 22 districts of Sri Lanka 

were divided into three clusters having different patterns of quality of 

li f e based on results of a previous study (Morrison and Waxier 1984). 

Four villages representative of a typical district from each of the three 

clusters were selected. For each village, a random sample of 40 households 

was drawn from the population l i s t . A household was substituted only i f 

the sampled house was empty, or i f both male and female head of household 

were absent in several calls over a period of weeks. Approximately 30 

substitutions were made in the sample of 480 households. The researchers 

who devised this sampling scheme regard the sampled households as being 

representative of the Sri Lankan village population. 

A long systematic set of open questions was used for interviewing both 

the male and the female head of household. The questions elicited 

information on health, housing, nutrition, employment, education, etc. . 

The female head of the household, in addition, reported on the number of 

live births in her lifetime, and the number of her children who died before 

reaching age one. Information on the cause of death (or symptoms at death) 

was also obtained for each infant that died. 

The variable of primary interest in our analysis is a dichotomous 

response indicating whether or not the female head of household has 

experienced at least one infant death. All explanatory variables used in 

the study are listed in Table I. 
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391 households (82% of the total sample) have complete information on 

the variables of interest. Table II shows that 92% of the total sample 

satisfied the ini t i a l inclusion criterion: a female head of household with 

known child-bearing history, and known number of infant deaths must be 

present in the household. Further, the table shows that 12% of these 

households had missing information (where 11% have at most one missing 

variable and 1% have two missing variables). Most missing values appear in 

the variables concerning family income, and among older female head of 

households; otherwise, there was no noticable pattern when the distribution 

of households with missing information was examined for each variable. 

Several populations may require separate analysis in this study. 

Women with more childbirths are more likely to have experienced at least 

one infant death. Thus, the Sri Lankan village population is separable 

with respect to the dichotomous response on infant death by the number of 

childbirths. Furthermore, several explanatory variables may have different 

relevance to women of different age groups. For example, the use of health 

services for childbirth is restricted by availibility which may vary across 

time. The impact of ethnicity may also vary for the different generations. 

Thus, analysis should be performed separately for the various age groups. 

However, the available sample size restricts the number of allowed strata. 

Since older women also tend to have more childbirths, the sample is divided 

into two groups based on the woman's age (<44 and 44+). Most women in the 

latter age group are postmenopausal; thus, women in this age group have 

similar numbers of childbirths. In contrast, the number of childbirths 

varies for women in the younger age group. Since there is a one-to-one 

correspondence between household and female head of the household, the 
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terms, fiousehold and woman, w i l l be used interchangably to refer to a unit 

of observation throughout this thesis. In our analysis of this Sri Lankan 

household survey, the two data sets corresponding to those women of 

age <44 (250 cases), and those of age 44+ (141 cases) are treated as simple 

random samples. 
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Table I variables used in the Sri Lankan household study 

Name Explanation Codes 

Infant death indicator 1 at least one 
2 none 

X No. of languages spoken at home 1 one 
2 two or more 

Current usage of health services 
- where was the last child born? 

1 hospital 
2 home with midwife 
3 home without midwife 

Nutrition 
- no. of protein foods consumed 

in the past week, from four 
most common types listed. 

0 none 
1 one type 

4 four types 

Sanitation 1 none 
2 communal latrine 
3 own / open-pit type 
4 own / water-sealed 
5 toilet 

X Economic status 
- no. of household items owned, 
from five listed. 

0 
1 

none 
one 

5 five 

No. of hrs a day female head of 
household worked outside the home 

0 none 
1 one - three 
2 four 

7 nine 
8 ten or more 

X No. of household members 
currently employed 

0 
1 
2 

none 
some 
a l l 
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Name Explanation Codes 

Primary source of income 1 salary 
2 land/business/boat 
3 piece rate 
4 food stamps etc. 

No. of bustrips taken in the 
last week 

0 none 
1 one 

7 seven 
8 eight or more 

X I O Ethnicity 1 Sinhalese 
2 others 

Years of schooling for female 
head of household 

0 none 
1 one 

11 eleven 
12 twelve or more 

X Education level of female head 
1 relative to that of male head 

1 lower 
2 same 
3 higher 

AGE Age of female head of household as reported 
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Table II Households used in the analysis 

Total number of households sampled 480 

no female head of household 12 
no child birth or no information on child birth 25 
no information on infant deaths 1 

number of invalid households 38 

Total number of valid households 442 

missing information on one variable 48 
missing information on two variables 3 

number of excluded households 51 

Total number of households included in analysis 391 

number of women with age <44 250 
number of women with age 44* 141 

( 
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3. D i s c r i m i n a n t A p p l i c a t i o n s t o I d e n t i f y R i sk Groups 

3.1 B a s i c Approaches 

In the Sri Lankan household study, we are interested in deriving 

discriminant rules that partition the households into distinguishable 

groups with respect to the risk of experiencing infant death. There are at 

least three basic approaches to this problem. 

An epidemiological perspective uses the notion of relative risk.. 

If a population t can be divided into two disjoint subpopulations, say * 

and <2, then relative risk of a particular phenomenon is defined to be the 

occurrence probability in relative to the occurrence probability in I . 

For example, we would like observable variables to define some groups t 

and *2 such that the probability of infant death is higher for households 

in t2 relative to the probability for households in t . In general, 

a variable which can partition the population so that one subset has high 

relative risk is considered an important rish /actor. 

A second approach is to predict a dichotomous outcome based on some 

collected information; for example, classify a family as likely or unlikely 

to experience an infant death based on the sanitation facility, nutrition, 

etc. available to the family. This approach is generally referred to as 

discriminant analysis or classification, and as pattern recognition in 

engineering. The idea is to select discriminating variables and to derive 

discriminant rules that minimize the expected cost of misclassification. 

This will be referred to hereafter as the c l a s s i f i c a t i o n approach. 
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A third approach is to estimate the probability of each outcome 

or of belonging to each class, given some collected information; 

for example, estimate the probability of infant death given the educational 

level of the mother. Using the terminology in C l a s s i f i c a t i o n , and 

Regression Trees {CART) by Breiman et al. (1984), this approach is called 

c I ass probab i l i t y estimation. The methods used in this approach search 

for variables and rules that minimize a squared error loss function to be 

defined later (Section 3.2.2). 

Obviously, these three approaches are related. For instance, class 

probability estimation for an observation [e.g. for a family) suggests a 

discriminant that assigns the observation to whichever class has the 

maximum probability; and relative risk can be estimated for the resulting 

discriminant partition. The similarities and differences between these 

perspectives can be described in terms of various conditional 

probabilities, and in the more general context of decision theory. 

Some statistical techniques and software may be adapted to more than one of 

these approaches. We will first consider the roles of these approaches in 

characterizing a good discriminant. The underlying principles of 

discrimination will be discussed in the context where the various 

conditional probabilities are known. However, in practice these 

conditional probabilities are often unknown, and need to be estimated from 

the sample data. The last section describes how these estimates may be 

obtained. 

14 



3.2 Opt imal i ty C r i t e r i a for Discriminants 

3.2.1 Re la t ive Risk 

Relative risk is generally considered in a context relating the 

presence or absence of a specific disease to exposure levels for some 

possible risk factor(s) (Schlesselman 1982). The concept of relative risk 

is simplest when exposure level is dichotomous (presence or absence of a 

factor). A high relative risk (of disease) among those exposed suggests 

that the factor may be a cause of disease (Breslow and Day 1980, 

Schlesselman 1982, Hennekens and Buring 1987). 

Let X be a random variable that indicates the level of exposure to a 

specific risk factor. Suppose there are only two levels. 

D e f i n i t i o n 3.1 Relative risk, is defined as 

P(d*sease\X=2) 
P(dr.sease\X = 1 ) 

When RR > I, the probability of disease in the population with X = 2 is 

higher than the probability of disease in the population with X = l. The 

reverse relationship is implied when RR < 1 . 

Historically, relative risk was used primarily for dichotomous 

variables. But suppose the random variable X is continuous on the real 

line, or positive half-line, etc.. Then by considering X as a risk factor, 

we are interested in partitioning the real line into two regions, 

distinguishable with respect to the risk of disease. 
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Is i t reasonable to use relative risk as a partitioning criterion? 

Suppose the disease-present and the disease-absent populations have 

densities of X denoted respectively by p(x|disease) and p(x|n© disease), 

which, in practice, may be estimated from sample data. If p(x|disease) is 

right-shifted with respect to p(x|n© disease), then, at least for most 

smooth unimodal densities, the ideal partition is in the form of 

half-lines, { X < c} and { X > c}, for some c on the real line. Thus, by 

Bayes theorem, for any c e R, the corresponding relative risk is 

RR(c) = W ° " \ X > c) { 3 2 ) 

P(disease|X < c ) 

P ( X > c\disease) P{X < c) 
P(X > c ) P ( X < c\disease) 

The two examples illustrated in Figure 2 show that for densities with 

monotone likelihood ratio, RR(c) may increase to infinity as c decreases; 

but the discriminants corresponding to such extreme c are of no practical 

value. Thus, choosing c to maximize RR{c) is not a useful criterion for 

partitioning. Furthermore, because RR{c) may not be a monotone function, 

relative risk values do not provide information on how well separated are 

the two populations, disease-absent and disease-present. For example, a 

relative risk value of about 2 can arise from different partitions of the 

real line in either of the two situations illustrated in Figure 2. 

Since relative risk does not indicate the magnitude of shift between the 

disease-present and disease-absent densities, relative risk is not 

necessarily informative about the practical discriminating nature of a risk 

factor that is continuous rather than dichotomous. 
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Figure 2 Examples of relative risk function for 
known probability densities 
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These properties indicate that relative risk may not be a meaningful 

criterion for selecting discriminating variables. Even though relative 

risk associated with a particular discriminant may be of interest, relative 

risk per se is not usually an appropriate criterion for construction of a 

discriminant. 

3.2.2 Decision Theoretic Bayes Rules 

Although the formal objective differs for classification and class 

probability estimation, both approaches use discriminant methods that can 

be described in a general framework of decision theory as presented in 

Classification, and. Regression Trees (CART) by Breiraanei al. (1984). 

In the following, discussion will be restricted to the two-class problem, 

which is appropriate for the Sri Lankan household study. Generalization to 

more than two classes can easily be made. 

Let X be the sample space of possible measurement vectors, and let 

S = {1,2} denote the set of possible classes. Further, let X e X be a 

random variable whose distribution is denoted by P(dx), and let Y e 55 

denote the class membership. Suppose jf is the set of possible actions. 

D e f i n i t i o n 3.2 A decision rule d is a jtf-valued function on X : 

d : X -» sf. 

D e f i n i t i o n 3.3 A loss function L is a real-valued function on S x sf : 

L : « x -» R. 

Thus L(y,a) is the loss when Y = y and a e jf is the action taken. 
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D e f i n i t i o n 3 . 4 The risk. R(d) is the expected loss when the decision 

rule d is used. That is, Rid) = E [ L(Y,d(X)) ]. 

In the classification approach, we are interested in predicting the 

class membership of an object with measurement vector X = x . Thus, we 

want to construct decision rules that assign class membership in t to every 

measurement vector x <= X, and so, let the action space J#C be "6. 

Furthermore, any decision rule d is equivalent to the partition of sample 

space X into two regions, l and *2, such that an object with measurement 

vector x e t . is classified as class j, for j = 1,2. These rules will be ~ j 

called c l a s s i / i c a t ion rv.les. The loss function, L (y, a), in this situation 
c 

is the cost of classifying a class y object as a class a object, denoted by 

C(a|y). Suppose C(a|y) is positive when a * y and is O otherwise. 

Then the risk or expected cost of using decision rule d is given by 

R (d) = C(l 12) P(Y = 2,X e * ) + C(2\l ) P(Y = 1 ,X e I ). (3.3) 

Let the probability that an observation comes from class j be 

for j = i,2. In epidemiological terms, these a priori probabilities are 

prevalences of the two classes. Further, let the conditional probability 

of X, given an object from class J be denoted by p(x\j) for j = 1,2. 

Then the risk in (3.3) can be re-expressed as 

* o ( d ) . C ( i U » nz[j p(x\2) rfxj (3.4) 

+ C(2\l ) nt[ J P(x\l) dx j . 
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In the class probability estimation approach, we are interested in 

obtaining an estimate of the probability that an object with measurement 

vector X = x belongs to class j. That is, we are interested in estimating 

p(j |x ) = p(Y = j |X = x ) , j=l,2. 

Thus, we want to construct rules of the type, 

d(x) = (d(i | x ) , d(2\x)) 

with d(J\x) > O for J = 1,2, and £. <i(j'|x) = f, for every x e X. 

Such rules will be called class probability estimators. Hence, the 

action space consists of a l l pairs of nonnegative numbers that sum to /. 

Let the loss function L (y,cn) for a = (a ,a ) € 4f be defined by 
p ~ ~ 1 2 p 

where ^j-(y) i s the Kronecker delta (l if y = j and 0 otherwise), 

for J = Then the risk of a decision rule d is given by 

R (d) » E [ L <y,d(X)) ] = E [ < d<y|X) - 6 (X) ) 2 ] . (3.6) 

But given X = x , 6̂ .(7) is a Bernoulli random variable with success 

probability p ( j | x ) , for J = 1,2. Thus, E [ <5 ̂. (y) | X = x ] = PO ' | X) and 

E [ (SjAY) - p U l x ) ) 2 I X = x ] = Var[ 6y{Y) |X = x ] (3.7) 

= P( j ' lx) [1 - p ( j | x ) ] . 
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Hence, for any a e sf^f 

- Zj < <vy) " pol~) + P(J|~) ~*j )2 1 x = x ] 
= Zj PU\X) t l - P O I X ) ] + E ( P ( J ' | X ) - *j)z 

= 2p(l\x)p(2\x) + Zj (PU\x)- <*J)2, 

from (3.7). Therefore, for class probability estimation, the risk of a 

rule d is given by 

R p(d) = 2 E [ pit |X)p(2|X) ] + Zj lPU\X) ~ dU |X)) 2 ] , (3.8) 

where the first term does not depend the rule. 

D e f i n i t i o n 3.5 A Bayes rule is a decision rule d that minimizes 
B 

the risk function R(d). 

In the classification approach, a Bayes rule d that minimizes the 
D 

expected cost as expressed in (3.4), is obtained by choosing 

i \ X € X • ^(x\2V C(2\l) TI 2 J ' A N D ( 3 ' 9 ) 

*2 \ ~ € • p(x|2) < C(2\l) n\ ) ' 

as shown in Anderson (1984), with the Bayes risk as given in (3.4) with the 

above regions i and t . 
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In the class probability estimation approach, the unique Bayes rule is 

given by d B(x) = ( p(l |x), p(2\x) ) for x e X, with risk 

R (d ) = 2 E[ p(l |X)p(2|X) ] (3.10) 

= 2 J p(l \x)p(2\x) P(dbc) 

which can be seen easily from (3.8). 

Bayes rule and Bayes risk can also be defined for a partition of the 

sample space X. 

D e f i n i t i o n 3 . 6 The partition /unction T associated with the partition 

T is defined as T : X -*• T such that T ( X ) = t i f and only i f x e t, for a l l 

x € X and * e T. 

A decision rule d is said to correspond to the partition T i f i t is 

constant on each subset of T. That is, for every l e T, there exists some 

jtf-valued function u on T such that c o U ) = d(x) for every x e i . Then a 

decision rule d^. corresponding to the partition T is explicitly given by 

d^-(x) = u>(r (x)), and the associated risk is given by 

R(d ) = £ £[ HY,<*(i)) | X 6 i ] P « ) , (3.11) 

where P{t) = P(X € *). Thus d_ is a Bayes rule corresponding to the 

partition T i f and only i f (x) = C O ( T (x)) such that for each t e T, 

a = <oU) minimizes E [ L ( / , a ) | X e I ] . For convenience, let t o U ) be a 

value that minimizes E [ L(y,a) | X e i ] over a e jtf, for * e T. 
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Furthermore, for t e T, let 

rU) = E [ L(y,toU)) | X e * ] . 

Then the Bayes risk corresponding to the partition T can be written as 

R(T) = £ rU)PU). (3.12) 

In the classification approach to discrimination, a Bayes rule d 

corresponding to the partition T is obtained by setting d^ (x) = < * M T (x)) 

for x e X, where o> it) is a value i e {i .2} that minimizes 

EfZ. (Y,i) | X € 4 1 for * e J*. Then for * e J*. co it) is a value 

£ € U ,2} that minimizes 

E [ L o ( y , i ) | X € < ] * C{t\t)p{l\t) + C(i\2)p(2\t), 

where p(jU) = piY = j'|X e i ) , j" =1,2. Thus, the minimum conditional 

expected cost of misclassif ication on subset t e 7" is given by 

r cU) = min [ C(2\l)p(l \t), C(l \2)p{2\i) ] . (3.13) 

Then the Bayes risk for partition T can be written as 

R {T) = E i* (*)*>(*)• (3.14) 

In the class probability estimation approach, the unique Bayes rule d Q 

corresponding to partition T is obtained by setting «*B(>0 = " ( T(x)) 
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for x s X, where <»>pU) is the pair of nonnegative values a = («±/«2) that 

minimizes 

= Ej. £ [ ( - p o m + PU\*) - OLJ ) 2 | X € * ] 

= Zj E [ (6 y(y) - p{j\t)f | x € 4, ] + E y (PO'U) - « Y) 2 

= EJ. P ( J l * ) [ l - P(J"I*)] + E (PU'I*) - « j ) 2 

since 6 ,(y) given X € I is a Bernoulli random variable with success j 

probability p(j'U) = p{Y = j'|X e <) for J =1,2. Thus for t e T, 

oi (t) = ( p(i |4 ) , p(2\l) ), and the minimum conditional expected loss is 
p 

given by 

r U) = 2p(* \t)p(2\t). (3.15) p 

The Bayes risk for partition T can then be written as 

R (T) = E ^ (3.16) 
p teT p 

Suppose the sample space X is to be divided into two regions using the 

class probability estimation approach. How do these two regions compare 

with those selected by the classification approach? For any two-region 

partition T = }/ 

R (D = E U)PU) (3.17) 
p *eJ* p 

= 2p(l \tt)p(2\l±)P(tt) + 2p(l \i2)p(2\iz)PU2). 
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Suppose n^, rz2, p(x|z) and p(x\2) are known as in the classification 

approach. Then (3.17) can be re-expressed as 

Rp(5-) = 2p(i \\)P(X e *±\2)nz + 2p(2\i2)P(X e \l)n± (3.18) 

= 2p(/|* 1)n 2[ J P(x|2) <*x J 

+ 2p<2| J p(x|i) dx ] . 

But this is same as the expected cost (3.4) of a classification rule i f 

2p(l\lt) = C(l\2) and 2p(2\l2) = C(2\t ). Let T* = U*,/} be the 

partition with minimum risk R (• ) among a l l two-region partitions; that is, 
p 

* 
let T be the best two-region partition using the class probability 

estimation approach. Suppose the cost ratio is given by 

Then from (3.9), a Bayes rule that minimizes the expected cost in (3.4) is 
* 

determined by the partition T . Therefore, by varying the cost ratio, the 

best two-region partition determined by the class probability estimation 

approach can be obtained from the classification approach. 

3.3 Sample Space P a r t i t i o n s Corresponding to Bayes Rules 

In the following sections, some of the commonly used methods for 

discriminant analysis are presented. The most widely used method assumes 

multivariate normality for the observations from both classes. In this 
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case, a Bayes rule is obtained by choosing a linear- partition that 

minimizes the risk function. The logistic discrimination procedure also 

provides a linear partition for use with both normal and certain non-normal 

populations. Methods based on nonparametric density estimation algorithms, 

such as kernal and nearest neighbor methods, are also available, but will 

not be covered in this thesis. Instead, the method of classification trees 

is explored. A recent report produced by a panel on Discriminant Analysis 

and Clustering (DAC report), which was created under the Committee on 

Applied and Theoretical Statistics, National Research Council (1988), 

provides a helpful summary of a l l these methods. In the following, we 

present three of these methods from the decision theoretic perspective. 

In addition, we examine the classification trees method in much greater 

detail. 

3. 3. 1 L i n e a r D i s c r i m i n a n t s f o r Normal D i s t r i b u t i o n s 

In the classification problem, by assuming the two class-conditional 

distributions are known multivariate normal with equal covariance matrices, 

namely N(y4,Z) and N(y2,Z), Wald (1944) showed a Bayes rule is obtained by 

choosing the linear partition given by 

x «= X : x ' z " 1 ^ - « 2) > * } , and (3.19) 

where the point k is a function of rc n^, C(l \2), C(2\l ), (j , y 2 and Z ; 
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see Anderson (1984), Hand (1981), Dillon and Goldstein (1984), and others. 

The linear projection given by xTZ"*(g ~ fcj2)/ is sometimes called the 

normal linear discriminant function. 

However, in most applications, the mean vectors and the covariance 

matrices are unknown. Suppose there is a sample of size from class 1 

and a sample of size from class 2. Let be estimated by the usual 

mean x̂ . of the sample from class j population for J = 1,2, and let Z be 

estimated by the pooled sample covariance S defined by 

o _ <* - 1)S. + <N_ - l)S_ 
s> — 1 1 2 2 — , 

(N + N - 2) 
1 2 

where S ± and are the corresponding sample covariance matrices. Then the 

Bayes decision regions are estimated by 

\ = | x <= X : x TS _ 1(x - x ) > * i , 
1 ^ ~ ~ ~ 1 ~Z 2 J 

= I x e X : x TS _ 1(x - x ) < te \ , 

and (3.20) 

^ 
2 

where the point * 2 is a function of n^, n^, C(l\2), C(2\l), x^, x g and S. 

The linear projection given by x TS - 1 (x^ - x 2) is the Fisher linear 

discriminant function suggested by Fisher (1936). 
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3.3.2 L o g i s t i c Linear Discriminants 

In the classification problem, logist ic discrintinat ion also provides a 

linear partition of the sample space for use with normal and certain 

non-normal populations; see Lachenbruch (1975), Hand (1981), Dillon and 

Goldstein (1984), DAC report (1988), and others. 

Suppose that the two class population densities can be expressed as 

P(x|j) = expfOj + x Tgy), for J = 1,2. (3.21) 

Then by invoking Bayes theorem, 

P<* Ix) = P(x\t)n = T 

where n = log( n / n ) + (a - a ) and n = ft - ft . This is called a 
O 1 2 1 2 ~ ~ ± ^ - 2 

i n u ! . t i v ariate logist ic function, which can be re-expressed as 

l o * [TT^ilTTxr] • + 2*3 • (3.23) 

Thus the probability of belonging to a class given a measurement vector 

X = x can be estimated by modeling the logit of p(i |x) as a linear function 

of x. Furthermore, by substituting (3.22) into (3.9), the best decision 

region in the classification setting is given by the partition, 

*4 = | x € X : x Tg > teg | , and (3.24) 
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I = X x € X : xTy> < 

where the point fc is a function of a , a , n , n , C(l \2) and C(2\t). 

3 1 2 1 2 

So far the logarithm of each class-conditional probability function is 

assumed to be adequately modeled by a linear function. A slightly more 

general approach assumes the difference between the logarithms of the 

class-conditional probability functions is linear. This is equivalent to 

the approach adopted by Anderson (1972) which assumes the logit of p(l \x) 

is linear as expressed in (3.23). The equivalence relationship can easily 

be seen by examining expression (3.22). Clearly, the model expressed 

in (3.22) is exact when the class conditional probability density functions 

are multivariate normal with identical variance-covariance matrices, 

Thus, for known normal p(x|/J> and p(x\2), the logistic regression 

coefficients are functions of normal parameters, and the Bayes decision 

regions given in (3.24) correspond to the Wald's linear partition 

in (3.19). However, i f the underlying class conditional probability 

densities are multivariate normal with unknown parameters, then the 

logistic discrimination procedure cannot be expected to classify as well as 

does the linear discriminant function (Efron 1975, and Press and 

Wilson 1978). 
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3.3.3 C l a s s i f i c a t i o n Trees: Recursive P a r t i t i o n i n g 

The technique of classification trees for discriminant analysis was 

initi a l l y developed by Morgan and Sonquist (1963), and Morgan and 

Messenger (1973) under the name automat ic interaction detection (AID). 

This technique has been pursued and refined by several people. 

Recent development, under the name classification and regression 

trees (CART), is described in detail in the book by Breiman et al. (1984). 

The primary differences between AID and CART is in the tree construction. 

The technique of CART creates a binary tree-structured discriminant by 

repeatedly splitting subsets of sample space X into two descendant sets, 

starting with X itself. An example is illustrated in Figure 3, where 

t = X, t and t are disjoint subsets of t with tut = t , and t and 
1 ' 2 9 1 2 3 1 / 4 

t are disjoint subsets of * with tut = t . 
5 2 4 5 2 

t 

t t 
2 3 

t 
5 

Figure 3 An example binary tree 
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Those subsets with no descendant sets are called terminal subsets. 

In the above example, t , t and t are the terminal subsets. Thus the 

technique of CART constructs discriminant rules that partition the sample 

space as specified by the terminal subsets. That is, t^,^,^} forms a 

partition of the sample space that corresponds to some decision rule. 

The tree is constructed based on a set of binary questions of the form 

f Is x e i? } for some subset t of. X. Let the measurement vector X be 

M dimensional, X = (X^,.. . , X m ) t , with mixture of ordered and categorical 

types.1 Then the allowable set of splits is defined as follows: 

a. Each split depends on the value of a single variable. 

b. For each ordered variable X , the questions are of the 

form { Is x < c? }, for a l l c in the range of X . 
vft m 

c. For each categorical variable X , the questions are of 
m 

the form { Is x e S? }, for a l l subsets S of possible 
TTI 

X -values. 
m 

Let J" be a fixed partition and let t e 7 be a fixed subset of X in J*. 
* 

Consider a split o of t into two disjoint subsets l and t . Let T be the 

modification of T after applying split o to t. Then the risk reduction 

As defined in Brieman et al. (1984), a variable is ordered i f its measured 
values are real numbers; and a variable is categorical i f i t takes on 
values from a finite set with no natural ordering. Thus an ordered 
variable can be a continuous or an ordinal variable. 
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AR(o,4) = R(T) - R(T ) due to the split o is given by 

AR(o,4) = RU) - [RUJ + RU R) ] (3.25) 

= P(t) [ r U ) - P^ritJ - P^U^) ], 

where P = P [X e 4 | X <= 4] and P = P [X e 4 | X e *]. The r e l a t i v e 

risk reduction due to the split is then given by 

AR (oU) = AR(4,l) / P{i) = r(*) - Pr.U ) - P r U ). (3.26) 
L, 1. R R 

Thus, the risk, reduction partition is achieved by choosing the split o 

that maximizes the relative risk reduction. 

In the class probability estimation approach, 

PU\*) = Pu PU\iJ + P R PU\*M), J = 

Thus by substituting the above into r U) in (3.15), AR can be shown 
p p 

to be 

AR (<»|i) = 2P P [ p U |* ) - p(J I*) ] 2 . (3.27) 

Hence the relative risk reduction is maximized i f the difference between 

class probabilities in the two resulting subsets is maximized. Suppose 

class 1 corresponds to the class of households with infant death. Then the 

class probability estimation approach seeks splits that maximize the 

difference in probability of infant death between the two resulting groups. 

Furthermore, because of the multiplicative factor P^P^t the criterion also 

favors those splits which divide the set t more evenly into two subsets. 
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Note that relative risk, in epidemiology, as defined in Definition 3.1, 

involves a ratio rather than a difference: 

" P(l i * R r * 

Thus a desirable split should have a very high or very low relative risk 

value. In any case, there is no way of ensuring even splits. Therefore, 

as discussed in Section 3.2.1, using relative risk as a partitioning 

criterion may not be provide splits of practical value. 

Risk reduction is not a good criterion for choosing a split in the 

classification approach. Breiman et al. (1984: pp. 95-96) shoved that for 

any split of * into ^ t and * r, RJl) > K.U ) + R
C ( * R ) w i t n equality i f 

J*U) = ) = ), where j*(u) minimizesC(JIi )pU 1 )̂ + C(J\2)p{2\-u,), 
J W K 

for subset v, of X. Thus, i t is conceivable that every allowable split of t 

may produce a partition for which AR {o,t) is zero. In situations where 
C 

the population is predominated by a single class, the risk reduction 

criterion may result in no splits. The second defect is caused by the fact 

that risk reduction partition (in the classification approach) is a 

one-step optimization process that does not account for the future splits. 

In some situations, the best current choice of split may not provide the 

best overall improvement in strategic position. For futher discussion of 

these considerations, see Breiman et al. (1984: pp. 94-98). 

Two splitting criteria for the classification approach have been 

implemented in the CART software: Gini criterion and Twoing criterion. 

In the two-class problem, these criteria can be shown to coincide (Breiman 
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et al. 1984: pp. 104-108). Thus, in this thesis only the Gini criterion is 

considered. Let T be any partition of sample space X. For t e T, instead 

of r(t) consider an impurity function i(t) defined by 

i(t) = 2p{l \t)p(2\t), (3.28) 

called the Gini diversity index. Then, the partition impurity toxT 

is defined by 

KT) = £ i{t)P{t). (3.29) 

* 

Thus the impurity reduction due to the split -o is AI(4,t) = I (T) - 1 (T ), 

where T and T are as defined in AR(o,l) earlier; and the relative impurity 

reduction due to the split o is given by 

AZ(o|*) = A7(o,«) / P{t) = 2P P [ P{1 \t ) - P{1 \t) ] 2 . (3.30) 
L i K » L i R J 

But this is precisely the risk reduction criterion used in the class 

probability estimation approach as expressed in (3.27). Thus, the impurity 

reduction partition using Gini diversity index in the classification 

approach is the same as the risk reduction partition in the class 

probability estimation approach. Therefore, the sample space X is 

partitioned in the same manner by both approaches when CART is used. 

3. A Construction of Discriminants from Sample Data 

Since the measurement variables available in the Sri Lankan household 

study are mainly ordinal, not continuous, partitioning of the sample space 
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by assuming normal populations may not be appropriate. Thus, only the 

latter two techniques, logistic linear discrimination and CART, are 

discussed in this section. 

In practice, classification or discrimination problems begin with a 

sample of correctly classified objects, each with a set of measurements, x. 

The classification approach uses the sample to derive rules that partition 

the sample space into disjoint regions with each region purely or 

predominantly inhabited by members of a single class. The partitioning of 

a population into classification regions is similar to, but not quite the 

same as the partitioning of population into groups distinguishable with 

respect to high and low risk of belonging to a specific class. 

In principle, class is clearly defined while the terms high risk, and low 

risk are relative. Both the logistic discrimination and the CART 

technique (for class probability estimation) estimate the class 

probabilities for each possible measurement vector x in the sample space X. 

The high and low risk groups are then defined by choosing a probability 

threshold. 

3. 4. 1 L o g i s t i c Discriminant 

Let { (X ,Y ) : n = i W } be a random sample of size N from the 
~ n n 

joint distribution of {X,Y), where X is a X-valued random variable and Y is 

a S-valued random variable that denotes the class membership of the 

observation. Logistic discrimination assumes that 
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r P(Y = i i x ) n for x € X. 

Thus, for x e X, 

P<y = i i x ) = (3.31) 
1 + exp(*o+ x T

2 ) 

Therefore, the parameters i)Q and r? can be estimated by maximizing the 

likelihood function, 

N 

n = 1 

A l l logistic discriminant analyses performed for the Sri Lankan household 

study are accomplished by using a logistic regression program, PLR, of BMDP 

Statistical Software. 

3 . 4 . 2 CART Discriminant: Crowing a C l a s s i f i c a t i o n Tree 

Let { (X ,y ) : n = * } be a random sample of size N from the 

joint distribution of (X.Y), where X is a X-valued random variable and Y is 

a S-valued random variable that denotes the class membership of the 

observation. In both the classification and the class probability 

estimation approach, there are two situations to consider: one when the 

prior probabilities rt^ and rc are known, and another when the prior 

probabilities are unknown. 

n 
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Consider f i r s t the situation where the prior probabilities are known. 

Let N , be the number of observations with y = j, j =i ,2. Suppose J* is a 

partition of the sample space X. Given t e T, let Nj(l) be the number of 

observations with x € i and y = j, for j = 1,2. Then estimate 

P{t) = P(X « t) by 

PU) = E,. — ^ n . (3.32) 
J N . J 

J 

Suppose P(t) > O for a l l t e J*. Then for j = * ,2, estimate 

PU\*) = P(y = J'lX e *) by 

n , N .U) / N . 
p(j|«) = J ;? 1— . (3.33) 

PU) 

In practical applications, however, the prior probabilities are 

often unknown. Then for any * e T, let N(t) be the number of observations 

with x € t, and estimate P(t) = P(X e t) by the proportion of 

observations in t, 

PU) = • (3.34) 

Suppose PU) > 0 for a l l l e J*. Then estimate p(j'|*) by the proportion of 

observations belonging to class j in the subset t, 

N .U) 
p(j\t) = . (3.35) 

A?U) 
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For any * e T, let pij \t) be estimated by the appropriate pij\t), 

j = 1,2. in the classification approach, let to it) be the smallest 
C 

i « {1,2} that minimizes C(£|i)pU |*) + C{i\2)p(2\t), and estimate r it) 
C 

in (3.13) by 

r cU) = min [ C(2\l )p(l \t), dl\2)pi2\t) ] . (3.36) 

In the class probability estimation approach, let co it) denote the vector 
p 

(pit \i), p(2\t)), and estimate r U) in (3.15) by 
p 

r it) = 2pU \ t )p(2 \ l ) . (3.37) p 

Using the appropriate Pit) and r ( i ) , the Bayes risk associated with the 

partition T is then estimated by 

RiT) = £ rU)PU) . (3.38) 
4eT 

Recall from Section 3.3.3 the desirable splitting criterion for either 

the classification or the class probability estimation approach (see (3.27) 

or (3.30)). Let T be a partition of sample space X with Pit) > O for every 

t G T. Consider a split o of * e T into * and t , where Pit ) > O and 

£(* ) > O. Let 
R 

P -h*J- and P - J ^ - . 
P(*) P(*) 

Then, the empirical splitting rule for either approach is to choose an 

allowable split o of t that maximizes 

^ I A I C p ( f 'V " p U 1 V i a - ( 3 , 3 9 ) 
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This partitioning procedure will continue to split until each subset 

of the current partition contains either observations of the same class, or 

observations with identical measurement vector x. Discriminant rules 

obtained in this manner are a r t i f i c i a l and highly data dependent. 

Furthermore, i t is conceivable that this splitting procedure may continue 

until each terminal set contains only one observation. In the following, 

the construction of a parsimonious partition suggested by Breiman 

efc al. (1984) is summarized. 

3 . 4.3 CART Discriminant: Pruning- a C l a s s i f i c a t i o n Tree 

The stop-splitting criterion i n i t i a l l y consists of setting a threshold 

and deciding not to split further i f the decrease in the estimated impurity 

for the classification approach, or the decrease in the estimated risk for 

the class probability estimation approach, is less than the threshold. 

This may lead to two problems. If the threshold is set too low, then there 

are too many subsets in the resulting partition. If the threshold is set 

too high, good splits may be lost. That is, a subset t may not produce a 

split with a large enough decrease, but its descendants t and t may be 

able to do so. 

Breiman et al. (1984) suggest the following alternative. The basic 

procedure can be summarized in three steps which are more easily described 

by tree terminologies. Recall the construction of binary tree-structured 

discriminants. Since each node on a tree corresponds to some set on the 
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sample space X, the terms, node and set, will be used interchangeably 

henceforth. So far, the terminal nodes of a given tree, which constitute a 

partition of the sample space, is the only tree terminology introduced. 

D e f i n i t i o n 3.7 The root node of a given binary tree is the node with 

no ancestor; that is, the set on the tree which is not a subset of any 

other sets on the tree. 

Let a binary tree be denoted by T. Any node on the tree T is denoted by 

t « T, and the set of terminal nodes is denoted by T. 

D e f i n i t i o n 3.8 A branch of T with root node t e T consists of the 

node t and a l l descendants of I in ?. 

D e f i n i t i o n 3. 9 Pruning a branch T from a tree T involves cutting off 

T just below the node t. The resulting tree is denoted by T - T . 

D e f i n i t i o n 3. IO T* is a pruned subtree of T i f T' is obtained by 

successively pruning off the branches of T. 

The alternative to the stop-splitting procedure has three basic steps. 

The sample space X is first partitioned into an overly large binary tree; 

that is, the sample space is partitioned into fine sets. This tree is then 

pruned upward until only the root node is left. By using a more 

appropriate estimate of the risk, the right sized tree from among the 

pruned subtrees, is selected. The most obvious criterion for selecting a 

right sized tree is to choose the pruned subtree with minimum 

estimated risk. This criterion may also be adjusted to compensate for 

estimation errors. However, these criteria may not always select a 
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sensible tree. In most practical applications, the primed subtrees and 

their corresponding risk estimates are inspected; and by using external 

information about the variables and by noting the context of the problem, 

the right sized, tree is selected. 

The first step is to grow a large tree T by continuing the splitting 

procedure until a l l the terminal nodes are either pure, or contain only 

identical measurement vectors. Let be the smallest pruned subtree of TQ 

with RiT^) = R{J"o). Note that the pruning criterion may differ for the 

classification and the class probability estimation approach. 

The estimated risk R(T) = E r(*)£(*) is defined differently for the two 

cases: r(4) is the estimated wi thin-node misclassif ication cost in the 

classification approach, while r(4) is the estimated within-node Gini 

diversity index in the class probability estimation approach. 

Now for any branch T of T , define R{T ) by 

R{T.) = E R(t), 

t 

where T is the set of terminal nodes of 3^. Breiman et a l . (1984: 

pp. 287-288) showed that for any nonterminal node t of T , R{i) > R{T ). 

D e f i n i t i o n 3.11 Let \ > O be a real number called the complexity 

parameter- and define the cost-complexity measure (T) as 

R-^{T) = R(T) + 

where \T\ is the number of terminal nodes in the tree T. 
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The complexity parameter X may be thought of as the portal ty on each 

terminal node of a tree. Thus the cost-complexity measure takes into 

account the risk associated with a tree, as veil as the complexity of the 

tree. Consider any nonterminal node I of T . As long as R^TJ < R^{{•*}), 

the tree with the branch intact is preferred over the pruned subtree 

vithout the branch 3^. However, at some critical value of X, the two 

cost-complexities become equal. Then the smaller tree with the branch T 

pruned off is preferred over T±. 

D e f i n i t i o n 3.12 Consider a nontrivial tree T. Define a function t(t) 

for * « T by 

i * V - 1 

+00 t € T. 

Then define the -weakest link t in T as the node satisfying 

t(t*;3r) = min Hi;3r). 

Let \2= Z{i ;T ). Then the node i± is the weakest link in the sense that 

as the complexity parameter X increases, i t is the first node with R^(U}) 

equals ( ) , where is a branch of T± with root node *. Thus, when the 

complexity parameter is \ 2, the pruned subtree, T , obtained by pruning 

away the branch T * from T , is preferred over T . Nov define recursively 
* 1 1 

for k = 2,3,as long as 3^ is not just a terminal node, 
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Continuing pruning in this manner, a decreasing sequence of subtrees is 

obtained: T , T , J r , where T is the root node on a l l subtrees. 

Furthermore, a corresponding increasing sequence of complexity parameters 

is also obtained (Breiman et al. 1984: p.286). 

The next step is to select one of these pruned subtrees as the right 

sized, tree. If R ( ^ ) is used to estimate the risk associated with T^, the 

largest tree will always have the minimum estimated risk. Furthermore, 

this estimate is biased. Thus a more accurate estimate of R{T.) is needed. 

Two methods of estimation are discussed by Breiman et al. (1984): use of an 

independent test sample and cross-validation. 

As noted earlier, the sequence of subtrees, T ,...,T , may differ for 

the classification and the class probability estimation approach. 

Since the class probability estimation approach seems more appropriate for 

the discrimination objectives of the Sri Lankan household study, the 

description of the estimation methods will be restricted to the class 

probability estimation approach. Extension to the classification approach 

can be made similarly. 

3. 4. 3. 1 Test Sample Estimates of Risk 

The sample is divided randomly into two sets, where one set is used to 

construct the decision rules, and the other is used to estimate the risk 

associated with each rule constructed. These two sets are generally called 

the training sample, and the test sample respectively. 
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Let y denote the random sample { (>< ,y^) : n = 1 ,...,N }. A sample of 

fixed size A/ 2 > is randomly selected from y to form the test sample J^ < 2 >. 

The remainder J^ ( 1 > = ? - J* < 2 ) constitutes the training sample, which is 

used to construct the decreasing sequence of pruned subtrees, T ,...,T. 
1 r^. 

For each pruned subtree T^, let p^(j|x) estimate the probability of 

belonging to class j given measurement vector x , j = 1,2, by applying 3 ^ 

to the cases in the test sample. Then for j = 1,2, define 

*ljm<rK)m—£r * = C^<*l2n> " < W ] 2 ' ( 3 ' 4 0 ) 

N . <2> . 

< 2 ) ( 2 ) 

where n . = { n : (X ,Y ) e ? and Y = j }, and 6. (y ) is the Kronecker 
J ~ n n n I n 

delta (/ i f y = £ and 0 otherwise). Test sample estimate of the Bayes risk 

associated with the tree 3^ * s then given by 

Rla(rM) »E*)"<*V nj • (3.41) 

If the prior probabilities are unknown, estimate « by A / ^ . 2 > / A / 2 > , j = 

The standard error estimate for Ri8(J*^) denoted by S£"(Rt8(J"^)), may be 

obtained by standard statistical methods as described in Breiman 

et al. (1984). 

A large sample is needed for this method. In particular, a large 

number of cases is required in the training sample so that the rules 

constructed are somewhat reliable. 
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3.4.3.2 Cross-Validation Estimates of Risk 

When the data set is large, test sample estimation is a reasonable 

approach. However, when the number of cases is only a few hundred as in 

the Sri Lankan household study, test sample estimation can be inefficient 

in its use of available data. Thus, cross-validation is preferred. 

In V-fold cross-validation, the original sample f is randomly divided 

into V subsets of similar sizes, f^, v = 1, ...,V. Then the v-th sample is 

defined as ̂ < v ) = ? - J» , for v = 1,...,V. 

By using the entire sample J " , the decreasing sequence of pruned 

subtrees, T ,...,T^t with corresponding complexity parameters, X ,...,X , 

is constructed. Then for each h = t, let denote the geometric 

/ V ^ 7 o f x * x*+i
 w i t h xk = °°-

( V ) ~ < v> 

Now for each sample Cr , v = 1, ...,V, construct , the optimally 

pruned subtree with respect to the complexity parameter Xj^, h = . 

Then for each tree 3!'^v>, let P^ v >(j|x) estimate the probability of 
l v> belonging to class j given measurement vector x , j = 1,2, by applying 

to the cases in y . Then for j = 1.2, define 
V 

R T { T K ) = —
 E E E [ p i V > ( ^ | x n ) - 6 £(y n) ] 2 , (3.42) 

where 77 V* = { n : (X ,/ ) € y v > and Y = J }, and <5 . (y ) is the Kronecker 
J ~ n n n I n 

delta U i f y = i and O otherwise). Cross-validated estimate of the Bayes 
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risk associated with the tree 3 ^ is then given by 

R c v ( ^ ) = £Ryirh) nj . (3.43) 

If the prior probabilities are unknown, estimate nj by N , / N, j - 1,2. 

Standard error estimate for Rcv(«7"fc) denoted by SE(R C V( T^)), maybe obtained 

by heuristic arguments as described in Breiman et al. (1984). 

The right sized, tree may be defined as the pruned subtree with minimum 

estimated risk, or as recommended by Breiman et al. (1984), the tree 

selected by the 1 SE rule: instead of the tree with minimum estimated 

risk, the smallest tree satisfying 

« t 8 < * W * S ^ t e J + SEiRi9(Thm)) or 

* C V < * W * * C V^**> + S E ( R C V ( ^ ) ) , 

whichever is appropriate, is selected. This rule was created to take into 

account the instability of minimum estimated risk, and to select the 

simplest tree whose estimated risk is comparable to the minimum estimated 

risk. Note that is a pruned subtree of 3"^^. 
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4. Path Analysis 

Path analysis investigates causal patterns in a set of variables, in 

contrast to the focus of discriminant analysis on patterns among 

individuals or cases. This statistical methodology, vhich was introduced 

by a geneticist, Sewall Wright, in the 1920*s, has been popularized in the 

sociological literature (see Duncan 1966, Land 1969, Blalock 1970 and 

others). Path analysis utilizes a visual representation, called path 

diagram, which consists of arrows leading from one variable to another, to 

illustrate the cause-and-effect relationships among the variables. 

The statistical part of the method does not specify the direction of 

cause-and-effect relations between the variables, but does provide 

quantitative assessments of the relationships via what are called path 

coefficients. Thus, this is not a method for discovering causal 

relatioships among the variables, but rather a method for assessing whether 

or not a specified set of relationships among the variables is compatible 

with the observations. Hence, directions of causality between variables 

are specified by using non-statistical information or substantive theory. 

In practice, the natural temporal ordering of the variables usually 

indicates the direction of causality between the variables. 

The method of path analysis was ini t i a l l y developed for quantitative 

data, where a path diagram is based on a sequence of linear regression 

models. However, most sociological data are qualitative instead of 

quantitative. Thus, assumptions under which path analysis was developed 

are generally not satisfied. Goodman (1972, 1973a,b) proposed a method for 

studying causal relationships among discrete variables, where a path 
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diagram is based on one or more loglinear or logit models. However, causal 

models thus constructed have limitations, and are not directly analogous to 

causal models with continuous variables (Fienberg 1980, Rosenthal 1980). 

Various problems in causal modelling with quantitative or qualitative data 

have been explored recently (Wermuth 1980 and 1987, Wermuth and 

Lauritzen 1983, Kiveri, Speed and Carlin 1984, and others). In this 

thesis, only the basic approach which lead to the more recent developments 

for qualitative data is examined. 

4.1 Structural Modelling with Quantitative Data 

4.1.1 Path Models 

A path model can be represented by a path diagram. Suppose we are 

interested in the relationship between infant mortality (X o), a dichotomous 

variable, and two explanatory variables, say age (X^) and education (X^) of 

the mother. We suspect that both age and education influence infant 

mortality directly. Further, we rule out the possiblity that education 

affects age, but will postulate that age affects the level of education 

attained. Then this model can be represented pictorially as in Figure 4. 

Level of education 
X 

Age X + X Infant death i o 

Figure 4 An example of a path diagram 
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The directed arrow, leading from one variable to another, indicates that 

the first variable has direct influence on the second. A path is formed by 

moving along the arrows. In our example, X^—• X^, X̂ —* XQ, X2—• XQ, and 

X —*• X^—* XQ are the possible paths. If a path diagram contains a path 

that traces back onto itself, then the diagram is said to have a feedback, 

loop. Any path model represented by a diagram with no feedback loop is 

called a recursive system. A l l path models considered hereafter are 

recursive. 

The method of path analysis assumes that a l l relationships are linear. 

Thus for the above example, 

X = ft X , ( 4.1) 
2 ' 21 l ' 
X = ft X + ft X . 
O OA 1 02 2 

But in pratice this is not exact; there are unmeasured sources of 

variation. Thus, the above system of equations is more appropriately 

expressed as 

X = ft X + 6 , (4.2) 
2 ' 21 1 2' 
X = ft X + ft X + 6 , 
O CU 1 CS 2 O' 

where the error terms, 6 and 6 , have mean O and are uncorrelated with the 

other variables in the corresponding equations. Without loss of 

generality, assume hereafter that a l l variables are standardized to mean O 

and unit variance. Conventionally, coefficients in the equations with 

standardized variables are referred to as path coefficients, and are 

denoted by fv. . , where the subscripts represent the direct effect of 
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standardized variable X*. on standardized variable XV . Thus, our path 
J 1 

model can be re-expressed as 

X' = fl X'+ fl e , 
2 '21 1 ' 22 2' 

X* = fi X'+ fi X'+ fx e , 
O CU 1 ' 02 2 ' OO O' 

(4.3) 

where coefficients such as, A 2 2 and /v , are generally referred to as the 

residual path, coefficients. The path diagram is then modified as 

follows. 

Level of education 

Age 
01 

02 

> X' Infant death o 

00 

Figure 5 An example of a path diagram with path coefficients 

Since a path model can be represented by a sequence of linear 

submodels, the corresponding path diagram can be modified to better reflect 

this key concept by the use of colors. For instance, the earlier example 

can be represented by a path diagram with colored arcs as in Figure 6 . The 

modified path diagram is visually more attractive, in the sense that vital 

information can be extracted more easily. Suppose we want to know which 

variables have direct effect on a specific variable in a more complicated 

path model. Instead of staring at a maze of arcs, we can focus on a 
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particular color and obtain the desired information. This feature is 

especially useful in specifying the system of linear equations that 

represents a path model. 

£ 
2 

Level of education 

X' Infant death o 

£ 
O 

Figure 6 An example of colored, path diagram 

The basic assumptions underlying the application of path analysis for 

quantitative data are summarized as follows: 

i . Causal (or temporal) ordering of the variables in the model 

is assumed as specified. Validity of the model cannot be 

evaluated from the data; external criteria or substantive 

theory must provide justification for the model proposed. 

i i . Relationships among the variables are linear and additive. 

i i i . Error terms are not correlated with variables proceeding 

them in the submodel, nor with each other. 

iv. The variables are measured on an interval scale (at least), 

with the exception of dichotomous variables, which can be 

Age X; 
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included as interval-scaled by assigning numerical scores to 

the two categories. 

4.1.2 Estimation and Interpretation of Path C o e f f i c i e n t s 

Path coefficients may be estimated in two ways. The first method of 

decomposing correlation coefficients was employed by Wright (1934, 1960) in 

the development of path analysis. The second method consists of applying 

ordinary least squares regression to each submodel in the system. 

The latter method of estimation automatically provides estimates of 

the precision of the coefficients, and a framework in which hypotheses 

concerning the coefficients may be tested. Although the regression method 

is generally preferred, the method of decomposing correlation coefficients 

offers a more fundamental understanding of the relationships among the 

variables considered, in the following, these two estimation methods are 

illustrated in the context of the earlier example using a random sample of 

size N. 

Since the variables are standardized, the sample correlation 

coefficient between X, and X . can be expressed as 
J 

r . . = - | T - V x*. x'. . 

Let the sample correlation coefficient be zero, i f the two variables are 

assumed to be uncorrelated. Then in path model (4.3), 
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Let fv^. denote the estimate of path coefficient fti . Then path 

model (4.3) implies that 

* - ... . _ 1 r = - 7 7 - V x' x' - —r-7- V x* (ft x '+ ft e> ) = ft , (4.4) 
21 N ^ ± Z N ** 1 7 21 1 7 22 2 7 21' 

f 2 i 
since £ x* = 1, and £ x ^ e

2 = 0 • Similarly, 

r = fi + ft r , and (4.5) 
O l CK 02 Z l ' 

r = ft + ft r 
Q2 'oat Ol 12 

In general, Wright (1934) shoved that 

r . . = £ ft. r . (4.6) 

vhere s runs over a l l variables with direct effect on X£ . Therefore, 

estimates of the path coefficients can be obtained by solving for ft. .'s in 
J 

the decomposition of correlation coefficients. In our example, 

ft = r , (4.7) 
' 21 21 ' 

r - r r oi oe 21 , ft = , and ' O l , 2 ' 1 - r 21 

r - r r 
02 Ol 12 02 2 i - r 12 
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Now the residual path coefficients can be obtained by noting 

r = —JJ— TJ x ' = — - - YJ (ft x ' + ft e ) = ft + ft , and w <J N L '21 I 7 22 2 7 21 7 22 ' 

/ \ / \ A 1 2 ^ 2 ^ 2 ~ 2 r = — J T — E x ' = f v + n, + n, + 2ft ft ft 00 N o '01 7 02 7 00 7 ox7 027 21 

Thus, 

(1 - KI Y'*> ( 4 - 8 ) 

ft =[ 1 - ft - ft - 2fV A ft I ' OO V. ' CM. 7 OB Od. 02 21 ' 

For a simple path model as in our example, this method of estimation seems 

straight forward. However, for a more complicated model, this method can 

be very tedious. 

Since a path model is essentially a sequence of linear submodels, path 

coefficients can be estimated by applying the method of ordinary least 

squares regression to each submodel. Thus for path model ( 4 . 3 ) , the 

ordinary least squares estimate of ft is 

^ 1 2 
ft = = r . 21 _ ,2 21' 

E * \ 

since x ; and x'2 are standardized; and the normal equations for the second 

linear relationship are as expressed in (4.5). It can be shown easily that 

/
2 2 1 - R , where R is the 

coefficient of multiple determination between the dependent variable in 

question and those variables with direct influence on i t . Thus for 

model ( 4 . 3 ) , 
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i - R2 = i — L - r (ft x' f 
2 - i N " a i 

= / ~ ft , 
2 1 ' 

f t = f - R = 1 i j - £) (ft x' + ft x* ) z 

' OO 0 - 1 . 2 N ** 7 Ol 1 7 0 2 2 
A 2 ^ 2 ^ ^ ^ 

= f - A. - rt — 2 f t ft ft . 
' O l 0 2 ' O l ' 0 2 ' 21 ' 

where is the coefficient of multiple determination between dependent 

variable X' and independent variable X* . and R2 is the coefficient of 
2 l ' 0 - 1 . 2 

multiple determination between dependent variable X^ and independent 

variables X* and X* . Therefore, estimates of the path coefficients agree 

for both methods. Proof of the general result can be found in Land (1973). 

By treating the data from the Sri Lankan household study as a simple 

random sample, the path coefficients for our example path model (4.3) are 

estimated (see Figure 7). 

~ 2 f t = 
' 22 

°-331 
Level of education 

X' 
2 

-o. ie -o. 15 

Age X^ X' o Infant death 
O. 13 

O. 98 

Figure 7 A path model with estimated path coefficients 
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All path coefficients are significantly nonzero at 5 % level. But, as shown 

by the residulal path coefficients, or equivalently the coefficients of 

multiple determination, linear models do not f i t the data well. For 

further analysis, one may try transforming the variables. 

Wright developed the method of path analysis as a means of studying 

the direct and indirect effects of variables. Direct effect refers to the 

effect of an independent variable on a dependent variable directly without 

any mediating variables. Indirect effect pertains to the effect of an 

independent variable on a dependent variable through a third variable which 

affects the dependent variable either directly or indirectly. In our 

example, x ; has an indirect effect on X^ thru X^ which has a direct effect 

on X ' . In another model, X* may not have a direct effect on X ', but has an 
O 2 O 

indirect effect thru another variable, say X^, that has a direct effect 
on X* . o 

The observed correlation between two variables can be expressed as a 

sum of three components. The direct and indirect effects of one variable 

on the other account for two of the components. The third component of 

correlation coefficient is attributable to the antecedent variables common 

to the two variables under consideration. This component is referred to as 

the spxirioxis component. The decomposition of correlation coefficient as 

shown in (4.6) may be re-expressed as follows: 

direct effect + indirect effects + spurious component 

ft. . + E ft. r . + E rt. r . tj ~*. , i s s j **, . 7 to o j 
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where both X' and X* have direct influence on X". with s running over a l l s o J. 

variables X^ which are influenced by X*. , and o running over a l l variables 

X' which influence X'. : that is. s runs over a l l variables that have a 

direct path to X£ and can be reached by following the arrows from Xj , and 

o runs over a l l variables that have a direct path to X£ , and can reach X̂ . 

by following the arrows. The sum of direct and indirect effects is called 

the total effect. For our path model (4.3), 

direct effect indirect effect spurious component 

r = ft 
21 2 1 

r = ft + ft r 
at o i 02 21 

r = ft + ft r 
O S 02 O l 12 

Using data from the Sri Lankan household study, the estimated direct and 

indirect effects are shown in the following table. 

Effect Direct Indirect 

Age on education -0.16 — 

Age on infant death 0.13 0.02 

Education on infant death -0.15 — 

Table III Estimated direct and indirect effects for path model (4.3) 

Thus, the effect of age on infant death is mainly direct. Therefore, 

decomposition of a correlation coefficient provides a way of separating the 

direct effect on the dependent variable from the indirect effect which 

manifests itself through the correlations with other explanatory variables. 
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4 . 2 Structural Modelling with Qualitative Data 

4.2.1 Loglinear and Logit Models 

Gocdman (1972, 1973a, b) proposed using loglinear and logit models to 

study the causal patterns in a set of discrete variables. Commonly used 

terminologies and notations for the analysis of categorical variables are 

reviewed in the context of three-dimensional contingency tables. A more 

complete presentation of this methodology can be found in Fienberg (1980), 

Haberman (1978), Bishop, Fienberg and Holland (1975), and others. 

Consider three variables, A, B and C , with 1, J and K categories 

respectively. Suppose a random sample of size N has been collected. Let 

m. denote the expected number of observations with (A,B,C) = (i,j',AO for 

i = J = 1,...,J and k = lf...,K. Then the general loglinear 

model is given by 

log m., .. = u + u + v. + v. . 
^ l jk 1< I > 2< J > 3<fc> 

(4.9) 

where 

+ v. . . + v. ,, + v. .. + u , .. . 
12 < l_?> 13< lfc> 23<jfe> 1 2 3 < l j f e ) 

7 J K 

** 1(1) 2<J> ** 3<fc> 7 

i =1 J=l k=i 
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I J I K 
y XL , . = y ii , . = y TJ. = y -u 
** i2<i j> ** i2<i j> *•* i3<ife> taitki 

i=i j=t i=i h=l 

J 
L 

J=l 

K 

k.=i 
= Y xi = Y XL - O, 

** 231 j hi ** 23< jhi 

I J K 
T. xi . ., = TJ xi . = T v. . .. = O. 

This general loglinear model does not impose any restriction on expected 

cell counts lm£jk}r a n d is denoted by [ABC]. By setting some of the 

u-terms to zero, special cases of the model can be obtained: 

Model u-terms set to zero 

IAB][AC][BC) XL . .. 
±23i I jhi 

[AB] [AC] 123< l j h i ' 
XL ., 23< J&> 

[AB][BC] Xi . , 123 < I jhi ' tanhi 

[AC][BC] 123< Ijhi ' 
XI , . 12<l J > 

[AB][C] XL . . . . . 123< tjh) 
u ... 
13<lfe> ' 

XL ., 23 < jfc> 
[AC][B] 123< I J«> ' XI . . . 12<lJ> ' 23 < j'fc> 
[BC][A] XI . . 129 < I jfc> XI . . . 12<t J> ' ia< th) 

[A][B] [C] 123< I. jhi ' U . . . 12<lJi ' XL . , XL ,, 
ia< ifc> ' 23<jhi 

Table IV Various loglinear models for three-dimensional tables 
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Model [AB][AC][BC] assumes that each two-variable interaction is unaffected 

by the value of the third variable. Models [AB][AC], [AB]IBC], and 

[AC][BC] are obtained by assuming conditional independence of two variables 

given the third. For example, model [AB][AC] assumes that variables B and 

C are independent given variable A. Models [AB][C], [AC][B], and [BC)[A] 

are obtained by assuming one variable is jointly independent of the other 

two. For example, model [AB)[C] assumes that variable C is jointly 

independent of variables A and B. Lastly, model [A][B][C] assumes that the 

three variables are mutually independent. 

The method proposed by Goodman is restricted to a hierarchical set of 

models in which higher-ordered terms may appear only i f the related 

lower-ordered terms are present. An example of a nested hierarchy of 

models is given below: 

[A][B][C] c [AB][C] <z [AB][AC] c [AB] [AC] [BC] c [ABC], 

where c means "is a special case of". 

Effects of categorical predictors, say A and B, on a dichotomous 

response, say C, can also be assessed by a logit model: 

C | A B = log 2(J> 
+ W 

i2<i j> 
(4.10) 

for i = 1 .,7, and j = 1 ,..., J, where 
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KI) *"• 2<J> ±2(1. J i ±2<IJ> 
i=l j=l i=l j=i 

Note that this logit model can be obtained from the general loglinear model 

by making the following identifications: 

xo = 2 XL , w . = 2 xi . . . 
3<i> i< i> taut ), 

xo . = 2 XL . , xo . . = 2 u . . . 
2<J> 23<J1>' 12<tJ> 123< Xjk>, 

Special cases of this logit model can again be obtained by setting some of 

the io-terms to zero. 

Logit models for categorical predictors are special cases of logistic 

response models introduced in Section 3.3.2. Let p. .. denote the 
i JR. 

probability that (A,B,C) = (i,j,te), for i = 1 , j = 1,. ,.,J, and 

te -1,2. Then, (4.10) can be rewritten as 

log = XO + XO + W . + XO 
1<1> 2< J) ±2<l J> 

(4.11) 

with the same restrictions on the w-terms. Suppose I = J = 2. Let X^ and 

X be dummy variables defined as 
B 

i f A = 1, 
i f A = 2, 

and 
- • • f - i 

i f B = i , 
i f B = 2, 

and let X = X X . Further, let p(te|X) denote the probability of C = te 
A B A B 

given X and X , i.e. let p(te|X) = p. . . Then (4.11) can be rewritten as 
A B L J K. 
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l o a LeilLXL-1 
10* [p(2\X) J 

= w + w X + w X + w X 
t(l) A 2<1> B 12<11> A B 

(4.12) 

Thus, logit models are special cases of logistic response models where the 

predictors need not necessarily be categorical. Extension to predictors 

with more than two categories can be made similarly by defining the 

appropriate dummy variables. 

4. 2. 2 Path Models 

As in Section 4.1, suppose we are interested in the relationship 

between infant death (C) and two explanatory variables, say age {A) and 

education (B) of the mother. But now assume that each variable has only 

two levels. The relationship between variables A and B can then be 

expressed by the logit model 

n . . B I A B | A , B | A . . , _ . 

logit^. ' =w i<£>' (4.13) 

B I A 

where E W
A < £ > = 0* N o w build a logit model with C (infant death) as the 

response variable, and A and B as the explanatory variables. The three 

unsaturated loglinear models corresponding to such a logit model are 

1. [AB][AC)[BC] 

2. [AB][AC] 

3. [AB)[BC]. 

The best model among those providing acceptable f i t is chosen using 

external information, or substantive theory. The f i t of a recursive system 
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of logit models can be assessed by two approaches, which are presented in 

later section. Suppose model 1 is the best model. Then the path model can 

be represented by the following diagram with path coef ficients given by the 

10- terms. 

Level of education 
B 

|AB 
< i > 

Age A C Infant death 
c I A B w ' 
i < i > 

Figure 8 A path model with dichotomous variables 

Several drawbacks of this method proposed by Goodman (1972, 1973a,b) 

are illuminated by the above example. Although Goodman does assign 

numerical values to arrows in the diagram, these values do not have the 

same interpretation as in path analysis for continuous variables. There is 

no calculus of path coefficients; so there is no way of evaluating the 

indirect effect of a variable. Further, variables with multiple categories 

have multiple coefficients associated with a given arrow in the path 

diagram. Thus, interpretation of the model may be complicated. Since a 

sparse contingency table will pose problems in estimation of the u-terms, 

and thus the u>-terms, the number of categories for each variable, and the 

number of variables considered must be restricted. In view of these 

obstacles, we will limit ourselves to variables with two categories, and 

consider only a small number of variables. 
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4.2.3 Estimation of Path C o e f f i c i e n t s 

The path coefficients are estimated by maximum likelihood method, 

which will be illustrated using a two-dimensional table. The method can 

easily be extended to higher dimensional tables. Our Sri Lankan household 

data set is assumed to be a fixed sample, in which each member is 

cxoss-classified according to its values for the variables under 

consideration. Since a multinomial sampling model is assumed for the Sri 

Lankan household study, the estimation procedure will be developed based on 

such models. Estimation procedures are similar for other commonly 

encountered sampling models, such as product-multinomial and Poisson (see 

Bishop, Fienberg and Holland 1975, and Fienberg 1980). 

Consider a random sample of N subjects, where (A^,B^) for subject h is 

observed, h. = / N. Let p^j denote the probability that (A,B) = {i,j), 

and let Z^j be the number of subjects with A = i and B - j, for i ,j = 1,2. 

Then, under the multinomial sampling model, the expected number of subjects 

with A = i and B = j is given by 

m.. . = £(Z. .) = Np. . . (4.14) 
ij ij 

The general loglinear model for a two-dimensional table is 

log m.. . = xi + v. + xi . + u (4.15) 

for i,j = i,2, where 

2 2 2 2 
T.u. = T \ x i . = Vv. . . = V VL ..=0. 

i=l j=l i =1 J=i 
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Alternatively, the matrix representation of this model is 

log 

m. 
ti 

m 
12 — 

171 
21 

m. 
L 22 J 

l i l t 

1 1-1-1 

1-1 1-1 

1-1-1 1 

XL 

XL 
1(1> 

U 
2<1> 

XI 
L 12<11> J 

or 
log m. = WQ. 

The likelihood function is given by 

2 . . L(Q) oc rj p. ij oc n m. ij , 

where s. .. are the observed cell counts. Thus the maximum likelihood 
*• J 

equations are given by 

a log L(Q) = w'is - m) = 0 , (4.16) 

where -z = (z ,z , 3 , 2 ) and m. is the maximum likelihood estimate 
~ 11' 12 21 22 ' ~ 

of m. Further, the observed Fisher information matrix is given by 

where 

&q = log L (Q) = WT M W, (4.17) 

M = 

m. 0 0 O 
11 

0 m 0 0 
12 

0 0 m. 0 
21 

0 0 0 m. 
22 J 

Hence, the maximum likelihood estimates of Q can be obtained by 

Newton-Raphson iterative procedure: 
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gi+o.gi** [ ^ l V ] V ( . - s

a » , , 1=0,1,... 

where Q<li is the estimate of (3 at the l-th stage, j a l ) = exp(W(3<l>), and 

tf**' is the diagonal matrix corresponding to » J J < 1 > . Since the choice of 

ini t i a l estimate g < 0 > will affect the rate of convergence, the in i t i a l 

estimate should be chosen carefully. In general, the weighted least square 

estimate of Q with weights — - — will provide a satisfactory i n i t i a l 
S i j 

estimate. 

The u-terms can also be estimated by using various other methods (see 

Bishop, Fienberg and Holland 1975). However, only the Newton-Raphson 

iterative procedure provides a readily available estimate of the precision 

of Q. The maximum likelihood estimator Q is asymptotically normally 

distributed with mean Q and variance where & is the Fisher 

information matrix. In practical applications, the observed information 

matrix &q, which is available upon convergence in the Newton-Raphson 

procedure, is often used in place of 3>. Therefore, statistical inference 

for the u-terms (in vector Q) is possible. 

Although the above iterative procedure is described for the saturated 

loglinear model in the case of two-dimensional tables, extension to other 

loglinear models simply involves modifying the m.-vector, the W-matrix, and 

others accordingly. Thus, estimates of the u-terms can be obtained 

similarly. Since path coefficients (w-terms) are twice the appropriate 

ii-terms, they can be estimated from the estimates of u-terms. 
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4. 2. 4 Goodness-of-Fit for Path Models 

A path model is specified by a recursive system of models. The f i t of 

a system of logit models can be assessed by directly checking the f i t of 

each component model, or by computing a set of estimated expected cell 

counts for the combined system. 

Once the expected cell counts are estimated, the f i t of the model can 

be assessed by either the Pearson chi-square statistic X 2 or the 

likelihood-ratio statistic G2i 

v 2 - r» (observed - expectecD2 ' a 

expected 9 

where the summation in both cases is over a l l cells in the table. If the 

fitted model is correct and the total sample size is large enough, both X 2 

and G2 are approximately x distributed with degrees of freedom given by 

d.f. = # of cells - # of parameters. (4.20) 

In the context of causal modelling, Goodman uses the likelihood-ratio test 

statistic G 2 to evaluate the f i t of a model. 

Improvement in the f i t of a model by adding or deleting some 

iteraction terms can also be assessed by chi-square statistics. Consider 

two models, model I and II, where model II is a special case of model I. 

That is, model II is obtained from model I by setting some of the u-terms 
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to zero. Then the likelihood-ratio test statistic, 

AG2 = G 2(II) - G 2(I) = 2 E observed * log 
expected^ 

(4.21) 
expected 

xx 

with d.f. = d.f.(I) - d.f .{ID can be used to test whether the difference 

between the expected cell counts for the two models is simply due to random 

variation given the true expected cell counts satisfy model I. 

For instance, in our example, the effect of adding the relationship between 

A (age) and C (infant death) to the model [AB)[BC] can be evaluated by 

using the test statistic 

with / degree of freedom. 

Goodness-of-f i t of a path model can also be assessed by using the 

expected cell counts of the combined system of logit or loglinear models. 

The computation of these combined estimates is best illustrated by an 

example. Suppose we have three variables with the following causal 

ordering: 

as shown in Figure 8. Then the estimated expected cell counts for a 

system, consisting of the pair of unrestriced logit models implied 

by (4.22), are given by 

AG2 = G2( [AB)[BC] ) - G2( [AB] [AC ] [BC ] ) 

A precedes B precedes C, (4.22) 

m. 
a I A ~ C I A B 

1 m 1 

(4.23) ijh " C I A B 
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A B I A 

where i s the number of observations with {A,B) = (i,j), and to^y 1 
and { f f i . c . ' A B } are the estimated expected cell counts for the logit models i JR. 

with variables B and C as the response variables respectively. Since the 

latter model involves conditioning on the marginal totals ^^j^r which can 

be seen from the maximum likelihood equations, the second equality 

in (4.23) is obtained. Thus, the likelihood-ratio test statistic is 

given by 

G 2 = 2 £ * t J K * log * i J h (4.24) 
i , j , h L m i j h J 

" 2 E a t j h * l ° € \ Z i J : * — 
. . J I ~ B A C I A B 

= G 2. + G 2, 
B I A C I A B 

where G 2 . is the likelihood-ratio test statistic for logit model specified 
B | A 

on the 2x2 table obtained by collapsing over variable C, and g 2.| a b is the 

likelihood-ratio test statistic for logit model specified on the complete 

2x2x2 table. Thus, the overall likelihood-ratio test statistic has degrees 

of freedom given by the sum of degrees of freedom corresponding to the two 
2 

component G 's. A more detailed discussion on this approach can be found 

in Goodman (1973b), and Fienberg (1980). 
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5 . R e s u l t s o f S t a t i s t i c a l A n a l y s e s on t h e S r i Lankan 
Household Data 

The Sri Lankan infant mortality data set was first analyzed by 

discriminant methods to identify risk factors and to characterize 

households with high risk of infant mortality. Methods for path analysis 

were then applied to the identified risk factors, in order to assesss the 

relationships among them, and their relationship to infant death. 

5.1 I d e n t i f i c a t i o n o f I n f a n t M o r t a l i t y R i s k Groups 

The main objective of this analysis is to identify risk factors that 

discriminate between households with relatively high and low infant 

mortality. By using the terminologies and notations introduced in 

Section 3, the problem can be formalized as follows. For each household 

sampled in the Sri Lankan household study, let Y be a dichotomous variable 

indicating whether or not an infant death has occurred, and let X be a 

vector of explanatory variables. Then, Y specifies the class to which the 

household belongs. The explanatory variables are listed as X-variables in 

Table I, which includes information on nutrition, sanitation, education of 

the mother, economic status, childbirth environment, ethnicity of the 

family, etc.. Then, the sample space X consists of a l l possible 

combinations of the x-values. Using decision theoretic criteria, estimates 

of infant death probability at each x-value partition the sample space X 

into two regions corresponding to relatively high and low risk 

groups. Two discriminant methods are advocated in Section 3: logistic 
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discrimination and class probability estimation by CART. For each of these 

methods, the analysis was performed separately for those women of age less 

than 44 (N - 250) and those of age greater than or equal to 44 (N = 141). 

5.1.1 L o g i s t i c Discrimination 

A forward stepwise procedure implemented in the logistic regression 

program PLR of BMDP, was used to select explanatory or predictive variables 

that may adequately model the logit of infant death probability, as 

described in Section 3. The results of this analysis are shown in Table V. 

Consider the results for younger women (Table Vb). About 25% of these 

women with age less than 44 have experienced at least one infant death. 

Maximum likelihood estimates of the regression coefficients in the most 

parsimonious model indicate that probability of infant death seems to be 

greater for those who gave birth at home, and for those whose families have 

lower economic status. By setting some threshold value pQ, the Sri Lankan 

village households can be partitioned into two risk groups with the higher 

risk group composed of households with estimated infant death probability 

greater than the threshold value. Using the maximum likelihood estimation 

results, the sample space can be partitioned as follows: the region of high 

risk corresponds to families with 

1. last child born in hospital, and 
economic status < -4.732 ( logit p + 1.134 ), or 
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2. last child born at home with a midwife, and 
economic status < -4.732 ( logit p + 0.305 ), or 

3. last child born at home without a midwife, and 
economic status < -4. 762 ( logi t pQ + O. 352 ). 

Details on formulation of the above partition are shown in Appendix I. 

Although this partition of the sample space can be interpreted easily, this 

may not always be the case where more variables are in the final model. 

Next, consider the results for older women (Table Vb). Maximum 

likelihood estimates of the regression coefficients in the most 

parsimonious model indicate that probability of infant death for the 

non-Sinhalese families may be twice as high as that for the Sinhalese 

families. Thus, for the older women, the relatively high and low risk 

groups may be defined by ethnic group membership. 
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Table V Results of forward stepwise logistic regression 

a. Model selection 

Study group Model -2 log X d.f. p-value 

Women of age <44 constant 
constant, X 

5 
8.509 1 0.004 

constant, X , X s' z 7.003 2 0.030 

Women of age 44+ constant 
constnat, X 

10 
11.665 1 0.001 

maximum likelihood under previous model 
where X. = , 

maximum likelihood under current model 

X is the environment of child birth, z 

X_ is the economic status, and 
5 
X^o is the ethnicity. 

Note that X is treated as continuous variable, while X and 
5 2 

X are treated as categorical variables represented by dummy 

variables as defined on the following page. 
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Maximum likelihood estimates of the coefficients in the final model 

Maximum likelihood estimate 
Study group Variable coefficient s.e. 

Women of age <44 constant -0.597 0.209 
X 

5 
-0.210 0.098 

X 
2<2> 

0.292 0.224 
X 

2<9> 
0.245 0.238 

Women of age 44+ constant -0.683 0.187 
X 

10<2> 
0.622 0.187 

where X_ is the economic status, 
5 

2<2> 
-1 

O 

i f the last child was born at home 
with a midwife, 

if the last child was born in hospital, 
otherwise, 

X 
2 ( 3 ) 

X 
10<2> 

-1 

o 

i f the last child was born at home 
without a midwife, 

if the last child was born in hospital, 
otherwise, and 

if the household is non-Sinhalese, 
i f the household is Sinhalese. 
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5.1.2 Discrimination using CART 

The probability of infant death at each point in the sample space was 

estimated using the CART software described in Section 3, using the 10-fold 

cross-validation procedure. As in the previous section, younger and older 

women were analyzed separately. For the younger women, the pruned subtree 

with the minimum cross-validated estimate of risk is shown in Figure 9. 

If the same criterion is used for the older women, then a tri v i a l tree with 

one terminal node would be selected. Thus, the next larger- tree which can 

be obtained by growing a tree with an appropriate complexity parameter 

using the entire sample, is considered (see Figure 10). 

For younger women, the binary tree (Figure 9) has three terminal 

groups corresponding to low risk, and one terminal group corresponding to 

high. risk. Women who gave birth in the hospitals, or whose families have 

high economic status appear to have a relatively low risk of experiencing 

at least one infant death. For those women who gave birth at home, and 

whose families have low economic status, families whose major source of 

income is from piece-rate work or hourly labor seem to be at a much lower 

risk than those families whose income is from other sources. For those 

households in poverty, piece-rate work or hourly labor may provide a 

steadier source of income. Thus, women who give birth at home, live in 

poverty, and whose families have no steady income, are at the highest risk 

of experiencing at least one infant death. 
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For older women, the binary tree (Figure 10) suggests that Sinhalese 

families may have been at a lower risk than the non-Sinhalese families. 

The estimated probability of infant death indicates the risk of infant 

death may be twice as high in non-Sinhalese families as in Sinhalese 

families. 
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Figure 9 CART results for the younger women 

63 class 1 
187 class 2 

C25%> 

in hospital Where was the 
la s t c h i l d born? 

at home 

24 class 1 
115 class 2 

C17X? 

39 class 1 
72 class 2 

C35VO 

0-2 Economic 
status 

34 class 1 
48 class 2 

C41T& 

5 class 1 
24 class 2 

C171D 

piece rate Primary source 
of income 

others 

10 class 1 
31 class 2 

C24TO 

24 class 1 
17 class 2 

C59X> 

class 1 : households with infant death experiences, 
class 2\ households with no infant death experience. 

Proportion of class 1 households are reported in the brackets. 
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Figure 10 CART results for the older women 

Sinhalese 

16 class 1 
59 class 2 

48 class 1 
93 class 2 

C34%> 

I O 

others 

32 class I 
34 class 2 

(21%) (48%) 

class 1 : households with infant death experiences, 
class 2: households with no infant death experience. 

Proportion of class 1 households are reported in the brackets. 
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5.1. 3 D i s c u s s i o n 

Explanatory variables considered important by the logistic 

discrimination method were also considered important by the CART method. 

However, the partition of the sample space into regions of relatively high 

and low risk may be different for the two methods. Logistic discrimination 

forces a linear partition, whereas CART partition is piecewise linear. 

For younger women, economic status of the family is considered an 

important risk factor by both methods. But in the CART result, the 

partition uses this variable only for those women giving birth at home. 

Suppose the threshold value, pQ, in Section 5.1.1 equals O. 17 as in the 

CART result. Then logistic discrimination method partitions the sample 

space into high and low risk regions as follows: the region of High, risk 

corresponds to families with 

1. last child born in hospital, and economic status < 3 , or. 

2. last child born at home with a midwife, or. 

3. last child born at home without a midwife. 

Thus, women who gave birth at home are in the high risk group, and so are 

women who gave birth in the hospital but whose family is poor. But this 

contradicts the CART result (Figure 9), where a l l women giving birth in 

hospital are in the low risk group. Consider the 3x2 contingency table 

formed by cross-tabulating the environment of childbirth, and the economic 

status dichotomy created by grouping the categories 0-2 and 3-5 , as shown 

in Table VI. The table shows that the partition provided by the CART 
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method seems more coherent than the partition provided by logistic 

discrimination. 

The logistic discrimination method assumes that the relationship 

between the logit of infant death probability (logit p) and economic 

status (X5) for environment of childbirth (X^), can be modelled by parallel 

straight lines (Table VII). This criterion seems reasonable for latter two 

childbirth conditions, but not for a l l three conditions. By imposing this 

parallelism on the results, the more appropriate partitioning of the sample 

space is overlooked. However, i f interactions between the two explanatory 

variables were allowed, logistic discrimination might have obtain the 

appropriate partitioning. In general, logistic discrimination may require 

fitting many different models with various iteraction terms before a 

partitioning comparable to that found by the CART method, is discovered. 

Discrepancies between results for the two age groups may be explained 

by several factors. Health services may be more readily available at time 

of child bearing for the younger women. Younger generation may also be 

less inhibited by health technologies; and thus utilizes the services more 

frequently. Ethnicity may be more relevant to everything (including infant 

mortality) when the older women were child bearing. Ethnicity may s t i l l be 

pertinent to economic status and usage of health services in the younger 

generation, but the effect of ethnicity on infant mortality may have 

lessen. Lastly, economic status at time of study may be strongly related 

to economic status at time of child bearing for the younger women, but 

perhaps not for the older women. 
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Table VI Comparison of sample space partitioning by logistic 
discrimination and by CART 

The following table is constructed based on women of age less than 44. 

Economic status - ownership of 
household items. (X ) 

5 

Where was the last 
child born ? (X ) 

2 
0 - 2 3 - 5 

In hospital °-13 (-^-) 

At home with 
midwife ° - 4 1 ( - £ - : > 

At home without 
midwife ( - £ - ) 0-13 (JL-) 

The high, risk group identified by logistic discrimination is the 
group of households in the highlighted region given by the union 
of the first column and the last two rows. 

The high risk group identified by CART is the group of households 
in the highlighted region given by the intersection of the first 
column and the last two rows. 
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Table VTI Estimated logistic regression equations for younger women 

Where was the last 
child born? (X ) 

2 

Estimated 
Logistic Regression Equation 

In hospital 

At home with midwife 

At home without midwife 

logit p = -1. 134 - 0. 210 X 5 

logit p = -0.305 - 0.210 X 

logit p = -0.352 ~ 0.210 X 
5 

83 



5.2 Causal Modelling 

Discriminant analysis performed earlier indicates that economic 

status, environment of childbirth, and ethnic group membership may be 

associated with infant mortality. To understand how these variables work 

together to affect infant mortality, a path model is constructed based on 

the natural temporal ordering of the variables (Figure 11). 

Figure 11 A path model specifying temporal relationships among selected 
variables 
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5.2.1 Structual Modelling with Quantitative Data 

The following analysis is performed using the REG procedure in the SAS 

statistical software, by treating a l l four variables as continuous. 

Results of path analysis for the two age groups are shown in Figures 12 and 

13 respectively. The estimated direct and indirect effects of explanatory 

variables on infant mortality are summarized in Table VIII for the two age 

groups. 

Comparing path models shown in Figures 12 and 13 suggests that the 

relationships among the variables may differ for the two age groups. 

The effect of ethnic group membership on childbirth environment seems 

stronger for the younger women. Economic status and childbirth environment 

appear to affect infant mortality for the younger women, whereas only 

ethnicity appears to have a substantial effect on infant mortality for the 

older women. 

Consider the estimated direct and indirect effects of explanatory 

variables on infant mortality for the younger women (Table VIII). Although 

ethnicity has virtually no direct effect on infant mortality, i t does seem 

to influence the other two variables, economic status and environment of 

childbirth, to affect infant mortality. Thus minority group status may 

adversely affect the economic status, and may obstruct access to better 

childbirth environment, which in turn, increases the risk of infant death. 
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Estimated direct and indirect effects of explanatory variables on 

infant mortality for the older women in (Table VIII) indicate that neither 

economic status nor childbirth environment have strong direct or indirect 

effects on infant mortality. Therefore, minority group status seems to be 

the only factor, among the three considered, to increase the risk of infant 

death. 

For both path models (Figure 12 and 13), the path coefficients 

corresponding to the unobserved sources of variations are high. Thus, the 

linear models considered by path analysis do not seem to f i t the data well. 

Since the occurrence of infant death is a relatively rare event, and the 

variables investigated are not immediate biological causes of infant death, 

a linear model is not likely to f i t the data well. However, this type of 

model s t i l l provides some useful information on the relationships among the 

variables. 
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Figure 12 Path analysis results for the younger women 

| 0.93 

Economic 

Environment of c h i l d b i r t h 

X 
2 

| 0.90 

where • signifies statistically nonzero path coefficient at 
the 10% level (excluding residual path coefficients). 
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Figure 13 Path analysis results for the older women 

90 

Economic 
status \ 
X 

-O. 44 

Ethnicity 
X 

s 

i o -O. 19 

O. 16 

S o. IO 

-O. 25 ^ Infant death — • 
S y 

y -o.02 95 

Environment of c h i l d b i r t h 

Xz 

| O. 96 

where • signifies statistically nonzero path coefficient at 
the *0% level (excluding residual path coefficients). 

88 



Table VIII Estimated direct and indirect effects on infant death 

Effect on Infant Mortality 
Study Group Variable (source) Direct Indirect 

Age <44 Ethnicity 0.00 -0.12 
Economic status 0.13 0.05 
Use of health services 

for childbirth 
-0.16 1 

Age 44+ Ethnicity -0.25 -0.04 
Economic status 0.10 -0.G1 
Use of health services 

for childbirth 
0.02 
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5.2.2 Structural Modelling with Qualitative Data 

The preceding section applied statistical analysis that was originally 

derived for continous variables; but most of the variables in this study 

are ordered categorical. In this section, the relationships between the 

variables are analyzed using the method for categorical variables proposed 

by Goodman, which was described in Section 4.2. Due to limitations of the 

method as discussed in Section 4.2.2, the variables considered are receded 

into two categories (Table IX). Let A - D be the receded variables for 

ethnicity, economic status, environment of childbirth, and infant death 

respectively. Then the following causal ordering of the variables is 

assumed: 

A preceeds B preceeds C preceeds D. 

Programs written in a language implemented in the statistical software 

package called S were used for the analysis. Path diagrams depicting the 

causal connections implied by the best logit or loglinear models for women 

of the two age groups are shown in Figures 14 and 15. Details on the model 

selection are given in Appendix II and III respectively for the two groups 

of women. 

The path diagram for the younger women (Figure 14) indicates that: 

(1) minority group status may adversely affect economic status, and may 

obstruct access to better childbirth environment; (2) poverty may have 

blocked access to better childbirth environment; (3) lastly, poverty and 
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childbirth environment may be linked to infant mortality. Although 

minority group status does not seem to have direct effect on infant 

mortality, i t does seem to have an indirect effect through economic status 

and environment of childbirth. 

The path diagram for the older women (Figure 15) indicates that: 

(1) minority group status may have negative effects on both economic status 

and infant mortality; (2) poverty may have blocked access to better 

childbirth environment; but (3) neither economic status nor childbirth 

environment has any significant effect on infant mortality. Therefore, 

for older women, no variables in addition to ethnicity (among those 

considered) can significantly improve discrimination between high and low 

risk groups. 
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Table IX variables used in modified path analysis 

Variable Variable in original data set Codes 

A X 
to 

Ethnicity 1 
2 

Sinhalese 
non-Sinhalese 

B X 
s 

Economic status 1 
2 

0 - 1 
2+ 

C X Use of health services 
for childbirth 

1 
2 

in hospital 
at home 

D y Infant death 1 
2 

at least one 
none 
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Figure 14 Path diagram showing causal links implied by selected logit 
models for the younger women 
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Figure 15 Path diagram shoving causal links implied by selected logit 
models for the older women 

Economic 
status \ 
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A s -O. 41 
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-0.59 NJ Infant death 
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Environment of childbirth 
C 

where signifies non-significant relationship. 
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5.2.3 Discussion 

Causal interpretations of path diagrams constructed by both 

quantitative and qualitative approaches are similar. For the younger 

women, both path diagrams (Figures 12 and 14) show that minority group 

status seems to result in poverty, and seems to obstruct access to better 

childbirth environment, which in turn, leads to infant deaths. For the 

older women, both path diagrams (Figures 13 and 15) indicate that minority 

group status per se appears to be the only factor that has any effect on 

infant mortality. Discrepancies between results for the two age groups may 

be explained as in Section 5.1.3. 

None of the linear regression models in Figures 12 and 13 f i t the data 

particularly well, as shown by the path coefficients corresponding to the 

unobserved sources of variations. On the other hand, the loglinear or 

logit models considered in Figures 14 and 15 provide reasonable f i t to the 

data sets. However, the method for qualitative data does not provide 

quantitative assessments of indirect effects as provided by the method for 

quantitative data. 
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6. Remarks and Recommendations on Statistical Methods Used to 
Identify Risk Groups 

An objective of the Sri Lankan household survey was to identify a 

small number of risk factors that distinguish groups of women having 

relatively high or low probability of experiencing at least one infant 

death. This study examined socioeconomic factors (not medical causes) that 

are relevant to resource allocation priorities, and to cultural obstacles 

in the planning of health services and health promotion programs. 

Structural or temporal relationships among the risk factors are also of 

interest to the researchers. 

Statistical discrimination methods were used to select significant 

risk factors, and to identify the high risk group (or groups) in the Sri 

Lankan households. Although both logistic discrimination and CART are 

computing-intensive, the logistic discrimination method requires less 

computing resources, and has more readily available software packages. 

Otherwise, the CART technique is preferable, since i t provides more 

informative and more easily interpretable results. Furthermore, the CART 

technique does not require any distributional assumptions. 

After a small set of risk factors had been identified by discriminant 

analysis, the structural or temporal relationships among selected risk 

factors and infant mortality were investigated using path analysis. 

The classical method of path analysis using linear regression models 

has often been applied to social science data that are ordinal or 
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categorical in nature, where a modified method using logistic quanta1 

response models would be more appropriate. When the classical method is 

applied inappropriately, the resulting path model usually does not f i t the 

data well, as indicated by high residual path coefficients. Although the 

modified method does provide a better f i t , i t is highly computing-

intensive, and is restrictive in the number of variables allowed in the 

proposed path model. 

In practice, social scientists would use path models with more 

variables than the models considered here. variables that were not 

selected by the discrimination methods might s t i l l be of interest to the 

researchers, when considering infant mortality in a larger socioeconomic 

and political context. 

The approach used in this thesis, and recommended for similar studies 

to identify risk groups, applies discriminant analysis (preferably CART) as 

an exploratory tool, and then uses path analysis (preferably logistic 

quanta 1 response modelling) to confirm significance of relationships among 

variables. 

In our Sri Lankan household study, discriminant analysis identified 

economic status and environment of childbirth as significant risk factors 

for the younger women. In contrast, ethnic group membership is the only 

risk factor identified for the older women. Younger women who gave birth 

at home, and whose families have low economic status appear to be at a high 

risk of experiencing at least one infant death, whereas, younger women who 
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gave birth in the hospital, or whose families have high economic status 

seem to be at a substantially lower risk. For the older women, 

non-Sinhalese families appear to have a higher risk of experiencing at 

least one infant death than the Sinhalese families. 

Results of path analysis on infant mortality using the three 

identified risk factors suggest that the changing role of ethnicity may 

have partially explained the discrepancies between previous results for the 

two age groups. While ethnic group membership may be relevant to many 

things, including infant mortality, for the older generation, its influence 

on infant mortality seems to have lessened for the younger generation. 

The discrepancies between results for the two age groups may also be 

explained by other factors. Health services may not have been as readily 

available at time of child bearing for the older women as for the younger 

women. The use of better childbirth environment by the younger women may 

also be explained by the changing attitude toward the seriousness of 

childbirth by the families. Finally, the economic status at the time of 

study may be strongly related to the economic status at time of child 

bearing for the younger women, but may not be so for the older women. 

In order to plan an effective health program to promote infant 

survival, one must understand the socioeconomic conditions in which infant 

death is likely to occur, as well as the biomedical causes of infant death. 

Our analysis suggests most of the high risk households will be too poor to 

take advantage of the government's subsidy program for the construction of 
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sanitary latrines. Although Sri Lanka has a well-organized network of 

essentially free health services that extend into rural areas, access to 

and usage of better childbirth environment can s t i l l be improved. 

Health planning entails more than designing a program that treats or 

prevents a health disorder; i t must also ensure health care delivery to 

those in need. 
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Appendix I Partitioning the Sample Space Using Logistic Discrimination 
(Younger Women) 

Let p o be some threshold value chosen, so that the high, risk group is 

composed of households with estimated probability of experiencing at least 

one infant death greater than pQ. Then using maximum likelihood estimates 

of the regression coefficients (Table Vb), the high risk households have 

explanatory variables satisfying the following inequality: 

- 0.597 - 0.210 X + 0.292 X + 0.245 X > logit p , (A.l) 
5 2<2> 2<9> O 

where X denotes the economic status, and X and X are dummy 
5 2<2> 2(3) 

variables representing the categorical variable X^ as defined below, 

if the last child was born at home with a midwife, 
X =1-1 i f the last child was born in hospital, 

* ~ otherwise, 
f 1 1 

= \ -1 i 

X = \ -1 i 
2 < 9 > l o o 

f the last child was born at home without a midwife, 
i f the last child was born in hospital, 
otherwise. 

Alternatively, the partition region can be described by examining each 

childbirth environment in (A.l) : the region of high risk corresponds to 

families with 

1. last child born in hospital, and 
economic status < -4.762 ( logit P 0 + 1.134 ), or 

2. last child born at home with a midwife, and 
economic status < -4.762 ( logit pQ + 0.305 ), or 

3. last child born at home without a midwife, and 
economic status < -4. 762 ( logi t pQ + O. 352 ). 
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Appendix I I Modified Path Analysis - Model Selection (Younger Women) 

Using the method proposed by Goodman as described in Section 4.2, the 

relationship between variables A and B is investigated through the logit 

model 

, , . B | A B I A . B I A , . „ , 
logiti

 1 = u> 1 + w
x t i ) r (A.2) 

~ B I A 

with estimated effect parameter \ ( ± ) = -0.63 . By examining results of 

fitting the three unsaturated loglinear models corresponding to the logit 

model with C as the reponse variable, and A and B as the explanatory 

variables (models Ml - M3 in Table X), we see that models 

[AB)[AC][BC] (Ml) and [AB][AC] (M2) provide reasonable fits for the data. 

That is, their goodness-of-fit statistics (either X 2 or G2) are not 

statistically significant. However, G2(M2) - GZ(M1) = 3.087 with 1 degree 

of freedom is significant at the 10% level, suggesting the relation between 

variables B and C may be important. Thus, the larger model, Ml, is 

preferred. The corresponding logit model is 

, C U B C I A B , C 1 A B . C I A B . , _ . 

logit . .1 = w 1 + it> + w '. , (A.3) 

VN £• I ^ C I A B 

with estimated effect parameters; *> =0.82 and w = -0.24 . 
1< 1 > 2< i> 

Now examine the effects of A on D, B on D, and C on D as suggested by the 

assumed causal ordering. The results of fitting the seven unsaturated 

loglinear models corresponding to the logit model with D as the reponse 

variable, and A, B and C as the explanatory variables (M4 -MIO in 

Table X), show that a l l except model [ABC)[AD] (M8) f i t the data well. 
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Since model M7 is a special case of model M4, and G2(M7) - G2(M4) = 0.216 

with * degree of freedom is not statistically significant at the 5% level, 

the smaller model, M7, is preferred. For models M9 and MIO, two special 

cases of model M7, 

G2(M9) - G2(H7) = 6.729 and G2(M10) - G2(M7) = 4.886, 

each with 1 degree of freedom; both are statistically significant at the 5% 

level. Thus, father reduction from model M7 is not desirable. The logit 

model corresponding to H7 is 

, . . D I A B C D 1 A B C , D I A B C , D I A B C . , , , logtt ..' = w 1 + w \ + w ' , (A.4) 
IJ 2< J > 3<fc> 

with estimated effect parameters: u> 1 =0.33 and w 1 = -0.38 . 
15 2< 1 > a< i > 

The results are summarized by the path diagram in Figure 14. 
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e x Goodness-of-fit statistics for loglinear models (younger women) 

Model d.f. X 2 GZ 

Mi [AB][AC)[BC] 1 0.215 0.215 
M2 [AB][AC] 2 3.325 3.302 
M3 [AB][BC] 2 32.029 32.887 

M4 [ABC] [AD] [BD)[CD] 4 2.830 2.896 
MS [ABC] [AD] [BD] 5 8.766 8.063 
M6 [ABC] [AD] [CD] 5 6.629 7.051 
M7 [ABC] [BD] [CD] 5 3.012 3.112 
M8 [ABC][AD] 6 13.740 13.252 
M9 [ABC][BD] 6 9.781 9.841 
MIO [ABC][CD] 6 7.716 7.998 

where X 2 is the Pearson chi-square statistic, and 
Gz is the likelihoodf ratio statistic. 
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Appendix III Modified Path Analysis - Model Selection (Older Women) 

Using the method proposed by Goodman as described in Section 4.2, the 

relationship between variables A and B is investigated through the logit 

model 

, , . B | A B I A , B I A C . 
logitt = xo ' + w

t ( i > r 

^ B I A 

with estimated effect parameter w
i i ± ) - -0.73 . By examining results of 

fitting the three unsaturated loglinear models corresponding to the logit 

model with C as the reponse variable, and A and B as the explanatory 

variables (models Ml - M3 in Table XI), we see that models 

[AB][AC][BC] (Ml) and [AB][BC] (M3) provide reasonable fits for the data. 

That is, their goodness-of-fit statistics (either X 2 or G2) are not 

statistically significant. Since M3 is a special case of Ml, and 

G2(M3) - G2(M1) = 0.609 with 1 degree of freedom is not statistically 

significant at the 5% level, the smaller model, M3, is preferred. 

The corresponding logit model is 

, . . C A B C A B . C A B . . C . 

logit . = io 1 + xo '. , (A.6) 

A ci I A B 

with estimated effect parameter, w
2 l ± > ~ -0.41 . By examining results of 

fitting the seven unsaturated loglinear models corresponding to the logit 

model with D as the reponse variable, and A, B and C as the explanatory 

variables (M4 -MIO in Table XI), we see [ABC] [AD] (M8) is the smallest 

model that fits the data well. Since adding more interaction terms into 

model M8 does not significantly improve the f i t , the most parsimonious 
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model is M8. Thus, the corresponding logit is given by 

, . , D | A B C D I A B C , D I A B C , „ „ % logit.^ - » ' + wjiy , (A.7) 

with estimated effect parameter, w^l*BC
 ~ -0.59 . The results are 

summarized by the path diagram in Figure 15. 
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Table XI Goodness-of-fit statistics for loglinear models (older women) 

Model d.f. x2 G2 

Ml [AB] [AC ] [BC ] 1 0.106 0.105 
M2 [AB][AC] 2 4.023 4.058 
M3 [AB)[BC] 2 0.724 0.715 

M4 [ABC] [AD] [BD][CD] 4 1.776 1.682 
MB [ABC][AD][BD] 5 2.505 2.514 
Me [ABC][AD][CD] 5 1.771 1.714 
M7 [ABC][BD][CD] 5 12.187 12.130 
M8 [ABC] [AD] 6 2.503 2.515 
MQ [ABC][BD] 6 13.335 13.304 
M1Q [ABC][CD] 6 12.805 12.917 

where X 2 is the Pearson chi-square statistic, and 
G2 is the likelihood ratio statistic. 
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