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Abstract

Methods of testing for a location shift between two populations in a longitudinal study
are investigated when the data of interest are ordered, categorical and non-linear. A
non-standard analysis involving modelling of data over time with transition probability
matrices is discussed. Next, the relative efficiencies of statistics more frequently used
for the analysis of such categorical data at a single time point are examined. The
Wilcoxon rank sum, McCullagh, and 2 sample t statistic are compared for the analysis
of such cross sectional data using simulation and efficacy calculations. Simulation
techniques are then utilized in comparing the stratified Wilcoxon, McCullagh and chi
squared-type statistic in their efficiencies at detecting a location shift when the data
are examined over two time points. The distribution of a chi squared-type statistic
based on the simple contingency table constructed by merely noting whether a subject
improved, stayed the same or deteriorated is derived. Applications of these methods
and results to a data set of Multiple Sclerosis patients, some of whom were treated with
interferon and some of whom received a placebo are provided throughout the thesis and

our findings are summarized in the last Chapter.
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Chapter 1

Introduction

One hundred Multiple Sclerosis patients from the patient population of the MS Clinic
at the UBC Hospital participated in a randomized double-blind clinical trial to deter-
mine the effectiveness of treatment with interferon. Multiple Sclerosis is a progressive
disease which attacks the nervous system and often results in loss of vision, motor
coordination and/or sensory perception. The severity of the symptoms varies among
patients. The subjects in this study are chronic progressive, that is, their condition
deteriorates progressively over time. In this trial, fifty patients were assigned randomly
to control and treatment groups. Subjects in the control group were given injections
of a placebo and those in the treatment group were given injections of interferon for
six months. The patients were monitored during the six months of treatment and for
eighteen months of follow-up to the subsequent termination of the treatment.

No standard quantitative method of measuring the level of the disease exists. In
this study, measurements of symptoms such as mobility or numbness were used to
assess the severity of the subject’s condition and this information was used to produce
the Kurtzke extended disability status scale (EDSS). The Kurtzke EDSS, referred to
here as Kurtzke score, was chosen as the means of tracing the subjects’ conditions over
time. The Kurtzke score is ordered and categorical, taking on values of 0 (normal) to
10 (dead) in increments of 0.5. It is also nonlinear, so that, for example, a change in
score of 1 to 2 is not as severe as a change of 5 to 6.

The nonlinearity and categorical nature of the scores makes it inappropriate to treat
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them as continuous variables in the assessment of the extent of the disease. In partic-
ular, any statistic which requires the assumption of normally distributed observations
(such as the 2 sample t statistic) is not suitable for analyzing this type of data. On
the other hand, standard categorical data analysis could be done ignoring the ordinal
nature of the data. This type of analysis is not appropriate here as information on the
degree of improvement or deterioration of the patient’s condition would be lost.

One method of analysis, described in Chapter 2, is to consider the categories as
states and the movements of the subjects from category to category over time as tran-
sitions from state to state. The treatment and control groups were modelled by dif-
ferent transition probability matrices which were compared to determine the effect of
the interferon injections. Models assuming stationarity, the Markov property and other
restrictions on the transition probabilities were fit to the data to determine whether a
simple matrix could be used to describe the transitions of the patients.

In Chapter 3, the Wilcoxon statistic, McCullagh model and 2 sample t test were
compared to assess their relative efficiency in detecting a location shift between the two
groups when the scores are assumed to have an underlying continuous distribution.
The McCullagh model, a modification of the logistic regression model, incorporates
the ordinal nature of the scores. In this analysis the data at only one time point was
used. The comparison of the tests was based on asymptotic efficacy calculations and
simulations.

In Chapter 4, the stratified Wilcoxon, McCullagh and chi squared-type statistic were
compared using simulation when analyzing the data between two time points. The chi
squared- type statistic calculated was the usual analysis involving contingency tables
where the cells were the number of patients in treatment and control who improved,
stayed the same or worsened. The distribution of this statistic under the hypothesis of

no difference between the groups is discussed.



Chapter 2

Markov Analysis

Since patients in this study moved from state to state over time, the movements from
one state to another were modelled for each group using transition probability ma-
trices. Comparison of the two groups then involved analyzing the matrices estimated
for each group. This approach does not require the assumption of a parametric form
for the transition probabilities, however some models assuming a specific form for the
probabilities were fit to the data to determine if the number of parameters required to
describe the data could be reduced.

Initially, the data was anaiyzed in its original form. Transition probability matrices
were produced for each group (treatment and control) from 0 months to each of the
other time points (1,3,6,9,12,18,24 months). Most observations were on or near the
diagonals, indicating that the patients’ scores did not change much from one time
period to the next. As the dimensions of the matrices were 21 x 21 and there were
only fifty patients in each group, many cells were empty. For this reason, the Kurtzke
scores were grouped into five categories, chosen to ensure at least four people in each
category at 0 months. The categories were scores of 0-4, 4.5-5.5, 6.0, 6.5, and 7-10, with
0-4 becoming state 1, 4.5-5.5 becoming state 2, etc. Transition matrices of the patients
from 0 months to 24 months are displayed in Appendix A. All further calculations in
this chapter are based upon this collapsed data.

In Section 2.1, likelihood ratio statistics were used to determine if a second order

Markov structure fit appreciably better than a first order model. A test for stationarity
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was also applied to the data. Some modelling of the data in the tridiagonal positions

is discussed in Section 2.2.

2.1 Tests of Order and Stationarity

The following tests were based on those described by Bhat [1]. Some notation used in

the remainder of this chapter is:

z = number of states
t = time points studied, t =0,1,...,7 corresponding to the times
0,1,3,6,9, 12, 18, 24 months

X, = Kurtzke score at time ¢.
Using the collapsed data, transition probability matrices were calculated for tran-

sitions from O months to each of the other time points studied. Maximum likelihood
estimates for PT and PC, the transition matrices of the treatment and control group
were computed, as well as for P, the transition matrix under Hy : PT = P¢. A likeli-
hood ratio statistic was computed separately for each time point t =0,1,...,7 to test
whether the two groups’ transition probabilities were similar. Under the null hypothe-
sis that the two groups can be modelled using the same transition probability matrix,
it can be shown [6] that the log likelihood function In L(P) is:

InL(P)=B +Zz:zz:(n£ In p;; + nzc; In p;;). (2.1)

i=1 j=1

where
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B = a term independent of the p;;’s
n:: = number of observations where X; = j and X¢ = ¢ in the treat-

ment group

ng = number of observations in the control group where X; = j
and Xy =1
pij = PrXi=j]|Xo=1].

Under the alternate hypothesis, Hy : PT # P, the log likelihood function is:

In L( P°, PT) =B+ Z Z ( lnp;T';» + nf’; lnpg) (2.2)
=1 j=1
where
p:r’;. = Pr[X; = j | Xo = ¢ in treatment group]
P = PrX;=j| Xo =i in control group].

The log likelihood statistic, G2, is then

G = -2 [1n L(P) - nL(P°,PT)]
= ZZZ [(n lnp“ + n” lnp”) — (n” + ng)(lnp”)]
i=1 j=1

where all the probabilities were estimated using maximum likelihood techniques:

InL(P) = the log likelihood at P

p.. _ Ny + e
s =
’ n:‘r +n
Py = —=
(¥ n?’
T
o=
17 ng:'
z
c _ c
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Under the null hypothesis, G? has an asymptotic chi-squared distribution with degrees
of freedom equal to z(z — 1) — y¥ where y is the number of zero entries in P.

Pearson’s chi squared statistic, X2, was also calculated:

z z T _ . T\2 c _ ,.C\2
X2 _ Z 2 (nij mz] + (n’z_y mz] (2 3)
=1 5=1 17 17
where mg;- = nIp;;, and mic;- = n¢p;; are the expected number of observations in the

treatment and control group who moved from state : to state j between time 0 and
time £.

Results from the seven tests are given in Table 2.1 and the transition matrices
between time 0 and 24 months are displayed in Appendix A. The p-values reported
were based on the x? approximation.

The p-values were smallest (although not significant) at six and nine months, which
is when the treatment was discontinued. - This suggests that the treatment may have had
an effect at this time, which wore off at eighteen months. Since the statistics calculated
only measure absolute differences it was not possible to determine from them whether
the treatment group did better or worse than the control group. No obvious trend could
be seen from examination of the estimated transition matrices, but previous work [7]
indicated that in fact the treatment group regressed (relative to the controls) from 0

to 6 months.

2.1.1 Tests of Order of Markov Chain

Second order and first order Markov Chain models were fit to the data and the resultant

estimates were compared. Each group was tested separately. A likelihood ratio statistic
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was used to test Hy : chain is 1% order Markov vs. H; : chain is 2" order Markov. This
test was carried out separately for every three consecutive time points in the study, i.e.
at 0-1-3 months, 1-3-6 months, etc. If the data appeared to act as a 2"¢ order Markov
chain then that would imply that a patient’s score would depend on his score both
at the previous time point and the time point before that. In this problem, the G?

statistic becomes:

G2—zzzznmkml e X 1 ]

i=1 j=1 k=1 ngj. X M
where
nfjk = number of observations in which X;_, =1, X;:.1 =7, X; =%k
nl, = number of observations in which X, ; =7, X; =k
i — ¥4 t
nj. = k=1
1 — z t
ni. = Zk:l ik
t = 2,...,z.

G? has an approximate chi squared distribution with 3% (2 —r; — 1) x (3 —¢; — 1)
degrees of freedom where z is the number of categories, ¢; and r; are the number of
zero rows and columns respectively in the two dimensional transition matrix consisting
of the transition probabilities pi; (1 =1,...,2, j is fixedand k =1,...,2).

The results from these tests are in Table 2.2. Only the statistic for the treatment
group in the time interval six to twelve months was significant at an « level of 0.05,
which indicated that modelling with a 1°* order Markov chain was reasonable for most
of the time periods. The counts in these matrices were very low, so the statistics
calculated may be misleading,.

Similar tests were applied to the 1°* order Markov transition matrices to determine

whether the final response depended on the previous score (1! order Markov) or not
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(independence). The appropriate G? statistic becomes:

Gg—ZZZn”ln[n Xn] (2.4)

Pl nt x nt
where
= Z"i.,‘=1 n:]
nt = f:l §=1 n:_j

The statistics calculated using (2.4) are in Table 2.3. All of the statistics were very
large in comparison with the degrees of freedom at all time points which meant that
the reduction from a 1°* order Markov chain model to an independence model was not

reasonable.

2.1.2 Tests of Stationarity

Assuming the data had the Markov Property, another likelihood ratio statistic was
computed, testing for stationarity. We assume that the same transition matrix could
be used to describe the patients’ movements between all of the time intervals measured,
independent of the actual real-time length of that time interval. A transition matrix
was estimated using data from all time points. This was compared to the seven matrices
estimated with the counts for every two consecutive time points in the study (0-1 month,
1-3 months, etc.). The G? statistic here takes on the form:
9 X N

Gl = 2§§§nuln [n . nw]

where
25_1 Et 1 ”
ni; = Yim nij'
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Table 2.1: Comparison of Treatment and Control Groups

Time Period | G? p value X* p value | degrees of
(months) | statistic | (G?) [ statistic | (X?) freedom
0-1 12.386 0.19 10.718 0.30 9
0-3 15.086 0.13 12.745 0.24 10
0-6 22.050 0.08 17.387 0.24 14
0-9 17.985 0.08 14.931 0.19 11
0-12 17.502 0.13 14.239 0.29 12
0-18 12.621 0.32 10.683 0.47 11
0-24 14.072 0.44 11.825 0.62 14

Table 2.2: Tests of 2"¢ Order vs. 1°¢ Order Markov Pr_ocess

Time Period G% | degrees of | p-value
(months) statistic | freedom
00— 1— 3 25.400 19 0.15
1— 3—> 6 22.141 16 0.14
Treatment | 3 —> 6 — 9 | 20.006 15 0.17
Group 6 — 9 — 12 21.161 11 0.03
9—12 - 18 3.589 12 0.99
12 — 18 — 24 29.795 24 0.19
00— 1— 3 18.429 12 0.10
1—- 3— 6 5.997 12 0.92
Control 3— 6— 9 10.104 9 0.34
Group 6 — 9 — 12 19.101 13 0.12
9—-12 - 18 11.920 11 0.37
12 —» 18 —» 24 11.251 17 0.84
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The results are in Table 2.4. The statistics for both groups were nonsignificant (at
a = 0.05) which implied that this model was not unreasonable for the time period

studied.

2.2 Modelling of the Tridiagonals

Specific modelling of the tridiagonals was done as most transitions were made to neigh-
‘bouring Kurtzke scores. In this section, all transitions made to non-neighboring states
were ignored and transition probabilities not in a tridiagonal position were assumed to
be zero; that is, p;; = 0if | ¢ — j |> 2. In the following calculations, the transition
matrices were assumed to be stationary and first order Markov. The observations on
the tridiagonals were modelled first using a general form where each row had different
entries, then using a more specific form which was suggested by the data.

In this section, the uneven spacing of the time points will be taken into account.
The data at the one month time point were omitted so that the remaining time points
(0,3,6,9,12,18,24) were separated by intervals which were multiples of three months.
This allowed modelling of transitions over a three month period using the matrix, P.
Thus, transitions over a six month period could be modelled using P?. To adjust for
this omission, redefine t = 0,1,...,6 corresponding to 0, 3, 6, 9, 12, 18, and 24 months.

Subsection 2.2.1 discusses modelling the tridiagonals using the matrices P and P?
to describe transitions occurring over three and six month periods respectively. In
Section 2.2.2, models are fitted assuming that the same transition matrix, P, can be
used to model both three and six month periods. The entire time interval and that
during treatment (0, 3, 6 months) and after treatment (6, 9, 12, 18, 24 months) were
modelled separately so that the estimates could be compared.

Some other observations were omitted from the analysis because the transitions were
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larger than those allowed by the model. In this case, data from the subject in question
was used until the violation occurred. A subject with a missing observation was dealt
with similarly. Approximately 25% of the subjects in each group had a missing value
at some time point after six months. Only six patients in the treatment group and
three in the control group had transitions which were larger than those allowed by the

model.

2.2.1 Modelling Incorporating P2

Transition matrices for treatment (PT) and control groups (P¢) were estimated and
compared to a matrix estimated under the null hypothesis P¢ = PT. The data were

first modelled using the general matrix, P:

pu l=pn O 0 o ]
P P22 1—pa—p2 0 0
0 P32 P33 1 — p3x — ps3 0
0 0 P43 Paa 1 — P4z — paa
| 0 0 0 1 — pss Pss J
The likelihood function L(P) was as follows:
L(P) = K x Wi;p;;? - (P2

where p;; was redefined as:

pi; =Pr[X;=j| Xiy=i]fort=1,2,3,4
and

nij = Yoy N

Nij = ¥i_s nf;

P.=Pr(X,=j| X,y =1]fort=5,6

K = a constant independent of p;;’s.
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To calculate the m.l.e.’s, it was necessary to solve eight nonlinear equations. This
was accomplished using Powell’s method, described in [5]. The G? statistic calculated

to compare the two groups was:

~T c ﬁc T pT2 o pe2
ny; In +nln ( ”) + Niln| =% | + NjIn| == 2.5
zz_; _722 (pU ) ! Dij P12J J Pi2j ( )

where nk on, NE, N ¢ were defined to correspond to counts in the treatment and control

z]’ ij>
groups in the obvious way. Results of the test are in Table 2.5.

In the time period during the treatment, G was large relative to the degrees of
freedom. The low p values (calculated using the x? approximation) indicated that,
during this time period, the two groups’ transition probability matrices were different.
In the follow up period after treatment, and the entire two year period, there was
no evidence that the two groups behaved differently. G? statistics were calculated to

determine how well the models fit the data (see Table 2.6). These statistics indicated

that the fit of the model was reasonable at all of the time intervals modelled.

2.2.2 Modelling Without P?

Since the “stationarity” test seemed to indicate that all consecutive intervals in the
study could be modelled using the same matrix, the above analysis was repeated under
this assumption with the data gathered at one month again omitted. The period
during treatment did not include any six month intervals so estimates are the same
as in the previous section. G2, the log likelihood statistic comparing the two groups,
was similar to that calculated in (2.3). The results, displayed in Table 2.7, show that
the groups could be modelled reasonably according to the same transition probability
matrix after treatment. Over the two year period, the statistics indicated that the
transition probability matrices for the two groups were different, due probably to the

differences which were detected in the first six months of the study (see Table 2.5).
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G? statistics for the period after treatment and the whole time studied are displayed
in Table 2.8. These show that the predictions from the models agreed reasonably well
with the actual data.

After further examination of the data it was noted that most of the diagonal ele-
ments were similar. A pattern among the off diagonal elements was noticed also. To
determine whether the data could be modelled with four parameters instead of the
eight used above, the previous calculations were repeated, this time using a transition

probability matrix suggested by the data, namely:

pu 1—pn 0 0 0
P21 P2 1—pa—pa 0 0
0 P32 P11 l1-psz—pn O
0 0 1—ps2—pnn P11 P32

| 0 0 0 . 1—pn P11 |

The estimates computed for the specific and general tridiagonal models were compared
for each group separately using G2:
) z oz ﬁG
%* 7,
Gr =23 % njln (_sl>
i=1 j=1 Pi;

where

f)g = m.le. of p;; under the hypothesis of a

general tridiagonal matrix
p;; = m.le. of p;; under the hypothesis of the

specific tridiagonal matrix above.



Chapter 2. Markov Analysis . 14

The results are shown in Table 2.9 to 2.10 and estimates for the specific and general
matrices are provided in the Appendix. The statistics for the control group indicate
that the general model does not fit significantly better (at an a level of 0.05) than
the specific model over the two years studied. The specific matrix estimated for the
treatment group however, was only reasonable for the follow up period. As it was of
interest whether the treatment and control group could be modelled using the same
matrix after treatment, this matrix was compared to that for the control group (over
the two year period) and they were found to be significantly different. This difference
may be due to the fact that the specific matrix for the control group does not fit the data
particularly well. A chi-squared statistic for the goodness of fit was 6.056 (p=0.195).

From an examination of the matrices, it appears that in the control group, those
patients in states other than two were more likely to stay in that state. If they were in
state two, however, they were more likely to move to state one. This was also true for
patients in the treatment group after six months. During administration of the drug,
treatment subjects were more likely to move to a higher state (i.e. to become sicker)

than the control group.

All of these analyses indicate that the progress of the disease in the treatment
group was not the same as in the control group in the first six months of the study.
In the follow up period, there was no evidence to indicate that any of the groups
was worse off than the other and over the entire time period studied there seemed
to be little difference between the two. A model assuming the transition probability
matrix was first order Markov and stationary seemed to fit the data reasonably well.
The modelling of the tridiagonal elements revealed that a specific model in which all
diagonal elements were the same except for the second, appeared to fit the data. From

the matrices estimated using this model, it is seems that patients with scores of 4.5
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to 5.5 are more likely to move to an adjacent score than patients in any of the other
categories used. However, it should be noted that the collapsed categories used in this
analysis were somewhat arbitrary and may produce misleading results. As well, many
of the cells in the transition matrices tested were zero, which could produce statistics

that do not reflect the data accurately.
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Table 2.3: Tests of 1°* Order vs. Independence

Time Period G2 degrees of
(months) | statistic | freedom
0—- 1 52.025 16
1— 3 42.851 16
Treatment 3—- 6 53.937 16
Group 6 — 9 46.017 16
9 — 12 59.955 16
12 — 18 51.898 16
18 — 24 49.019 16
0—- 1 58.278 16
1— 3 44.748 16
Control 3— 6 55.247 16
Group 6— 9 45.811 16
9 — 12 52.629 16
12 — 18 51.747 16
18 — 24 63.797 16

Table 2.4: Results of Test for Stationarity

Group G? df | p value
treatment | 88.921 | 84 0.34
control |[65.198 | 78 | 0.85

Table 2.5: Treatment vs. Control (general tridiagonal modelling)

Time G? | p-value
(months)
0-3-6 19.250 0.01

6-9-12-18-24 4.283 0.83
0-3-6-9-12-18-24 | 11.415 0.18
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Table 2.6: Fit of General Tridiagonal Models

Time Treatment | degrees p Control | degrees p
(in months) Group of value | Group of value
(G?) freedom (G*) | freedom
0-3-6 1.22 8 0.99 3.73 8 0.88
6-9-12-18-24 14.75 24 0.93 25.91 24 0.36
0-3-6-9-12-18-24 43.76 40 0.32 42.80 40 0.35
Table 2.7: Treatment vs. Control (general tridiagonal - no P?)
Time G% | p-value
(in months)
6-9-12-18-24 3.456 | 0.484
0-3-6-9-12-18-24 | 9.642 | 0.047
Table 2.8: Fit of General Model - no P?

Time Treatment | degrees p Control | degrees P
(in months) Group | of freedom | value | Group | of freedom | value
6-9-12-18-24 16.74 8 0.86 27.66 24 0.27

0-3-6-9-12-18-24 44.08 40 0.30 43.55 |y 40 0.32

Table 2.9: Comparison of Specific and General Models (treatment)

Time Treatment
(in months) G2 degrees | p-value
of freedom
0-3-6 11.815 4 0.018
6-9-12-18-24 3.919 4 0.417
0-3-6-9-12-18-24 | 14.7211 4 0.005
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Table 2.10: Comparison of Specific and General Models

Time Control
(in months) G2 degrees | p-value
of freedom
0-3-6 6.531 3 0.088
6-9-12-18-24 6.017 4 0.197
0-3-6-9-12-18-24 | 5.565 4 0.234

18



Chapter 3

Analysis At One Time Point

A typical analysis involves comparing the scores of the patients in the treatment and
control group at one time point. Commonly used for this are the 2 sample t statistic
(although iﬁappropriate) and the Wilcoxon rank sum statistic. Here, these statistics
were compared to a McCullagh model statistic described in [4]. The McCullagh model
can be used to analyze data with ordered, categorical responses. The form used in this

chapter is the proportional odds model:

og [1 jj(vi):z ] o —,fo (3.6)
where

7 = 1,2,...,z2

z = total number of categories

¥ = vector of covariates
v;(£) = probability of being in category j or lower given covariate Z

f; = cutpoint j, the (unknown) point separating the categories j

and 5 +1
5 = a vector of unknown parameters
K = a scale parameter.

The relative efficiencies of the three tests were compared using simulation and ef-
ficacy calculations. Data for the treatment and control group were simulated by first

generating normal data with different location parameters. This continuous data was

19
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used to create ordered categorical data according to a chosen set of cutpoints. Tests
for differences in the two groups were then carried out using the 2 sample t, Wilcoxon
rank sum and McCullagh statistic. The 2 sample t test was also calculated on the
uncategorized data so that a test which did not lose information due to the categoriza-
tion could be compared to the others. These results are given in Section 3.1. Efficacy
calculations were also made to determine how different the tests were asymptotically.
The efficacies of the Wilcoxon rank sum test are calculated in Section 3.2.1, and for the
t test calculated on the categorical data in Section 3.2.2. These efficacies are compared

to the t test calculated on the underlying continuous data in Section 3.3.

3.1 Simulation

A simulation was run to compare the powers of the Wilcoxon rank sum statistic, both 2
sample t tests and McCullagh model estimates. The control and treatment group were
simulated using N(0,1) and N(A,1) distributions respectively to produce underlying
continuous responses. These responses were then categorized with cut points chosen
so that the probability of being in any category was 0.2 if the data came from a
N(0,1) distribution. Fifty observations (the same number as were in the Multiple
Sclerosis data) were generated for each group. The simulations involved one thousand
replications at each value of A. The A values used were those from 0 to 1 in increments
of 0.1. The data were generated without conditioning on the number of observations
in each category as this was the form of the Mulfiple Sclerosis data.

Power curves were calculated for a one sided 0.05 level test of the null hypothesis
H, : A =0 vs. the alternate hypothesis H; : A > 0. The results of the simulation
appear in Figure 3.1. As expected, the 2 sample t test on the underlying continuous

data was the most powerful because no information was lost through collapsing the
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Figure 3.1: Simulation of Data at One Time Point
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data. The Wilcoxon rank sum statistic and the 2 sample t test on the categorized
data were very similar at all ppints. For the results summarized in Figure 3.1, «, the
scale parameter for the McCullagh analysis was set to one. The covariate ¥ was an
indicator variable distinguishing the treatment from the control observations. In this
case the test based on the McCullagh statistic was as powerful as the other tests on the
categorized data. If k was included as a parameter depending on covariate Z, it was
not significantly different from 1 ~ 92% of the time. However, including this parameter
decreased the power of the McCullagh statistic for values of A larger than 1.5.
Differences in the simulated power between any of the models were not very large.
The maximum difference was ~ 0.05 between the 2 sample t test calculated using the
continuous data and the McCullagh model at A = 0.7, where the power of the t test is
about 0.95. Given that the standard error of this difference was ~ 0.02, the t test was

significantly more powerful than the McCullagh model at this time point.
3.2 Efficacy Calculations

Another way of comparing the tests is to calculate their asymptotic relative efficiencies.
The method of calculation used is that in Lehmann {3].

Let Vv, V3, be two sequences of statistics based on N observations. Assume the
distributions of both Vjy and V{; depend on a real valued parameter §. Let the null
hypothesis be § = 8, and the alternate hypothesis be § > 6, as in the simulation.

Define By to be the power of the test which rejects Hy if

VN - ﬂ'(eo)
UN(GO)

and Bj to be the power of the test based on Vy which rejects Hy if

Vi— w6 .
on(8,) T i

2 CN (3.7)

(3.8)
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where ©(6,), on(8,) and p'(6,), o%(68,) are normalizing constants which may be the
expectation and standard deviation of Vy and Vj respectively, and ¢y and ¢y are
sequences of critical values.

Assume 6y is a sequence of alternatives, converging to 6, in such a way that 0y
=6, + 7‘%. For most commonly used tests, this condition is sufficient to ensure that
Bn(On) — Bs, 0 < Bo < 1. Define N’ to be the sample size required for Vy, to achieve
the same limiting power as Vy against the same sequence of alternatives 6x. If ¢y, ey
— 74 (the (1 — &)™ quantile of the standard normal distribution) as N — oo, then the
Pitman efficiency of Viy relative to Vy, is imy_,o (N'/N).

Suppose that whenever 0y = 6, + 7‘%,

Bn(On) — B(cA — z,)

and

Bi(On) = B(C'A — z).

Then ¢ and ¢’ are called the efficacies of the tests based on Vy and V}, and the Pitman

efficiency of Vi relative to Vy, is:

(e/c')?
3.2.1 Efficacy of the Wilcoxon

Suppose the ordered categorical variable takes on values ¢g; < ¢, < -+ < g,, where z is
the number of categories. In this analysis, observations tied in a category were assigned
midranks, so the Wilcoxon rank sum statistic (with ties) was:

W= TNy +1)/2 4 TNy + (N 4+ 1)/2) 4+ T Ny + (V. +1)/2) (39)

i=1
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where
T; = number of observations in the treatment group in category j
C; = number of observations in the control group in category j
and
N; =T;+C;j.
Let
g; = Prfin category j | in control group]
p; = Prfin category j | in treatment group]

N=total number of observations.

The test based on the Wilcoxon involved normalizing W as follows:

W — Eo(W)
where E,(W) is the expectation of the Wilcoxon under Hy : ¢; = p; V 7, and vari(W) is
th¢ variance of the Wilcoxon under Hy conditional on the number of tied observations
in each category.

The power of the test at a specific alternative could have been calculated either
unconditionally or conditionally on the tied observations. In this case, unconditional
power was used as it simplified the efficacy calculations of the t test and eliminated the
need to generate a fixed number of observations in each category for the simulations.

The unconditional power of the test using the Wilcoxon statistic was:

Bn(7,8) = Pr [W—‘m > }

\varx(W)

where
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Bi(W) = E(W)=4

varg(W) = mn(1]\2/+1) TEN(N=T) 2= (N7 = Nj)
§ = VN(@G-P)
m = total number of observations in the control group
n = total number of observations in the treatment group
N = total number of observations in the study
= n+m.

Theorem 3.2.1 Suppose (T1,Ts,...,T,) ~ multinomial(n, p1, ps, ..., p.) independent
of (C1,Cq,...,C,) ~ multinomial(m,q1,q2,...,9;) and N — oo in such a way that
n/N —a,m/N —b,0<a<]l. Then, as N - oo,

BN(B) — B(f(7,8) - 2a) (3.10)
where
HE8 = VI OIS D) DT Dy D 1)
, B \/SJ 1 JpJ 2112, g TiT5PiPy
and

r; =1+ Zf;jl_H pj — Z{;ll pi, defining 171 p; to be 0 for any integer l.

In the simulation run of Section 3.1 p; = p, = --- = p, and the underlying continu-
ous distribution was known. The following corollaries state the efficacies under those

conditions and the proof of Theorem 3.2.1 follows.

Corollary 3.2.1 Assume that the multinomial vectors T and C are generated from
X, Xy, X1, ~ tid N(A,1) and X¢, Xc,, ..., Xe,, ~ 1id N(0,1) in the usual
way. That is, an observation 13 in category i if and only if the X value is between
cutpoints 6; and 8;_; where 8, = —cc and 8, = oco. Then under the assumptions of

Theorem 3.2.1, and with A = 7‘%,

BN(A) — B(c- 6 — z,)
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where
VAT T Sl e T T me
N IS D
d; = u(8;)—u(fj-1) forj=1,...,2—1
u(f;) = probability density function of the standard normal

distribution at §;.

Corollary 3.2.2 In the case where X, —A, X1,—A, ..., X1,—A and X¢,, Xe,, ..., Xc

are 1id observations with a continuous density, h, and p; = p; = --- = p, then, under
the assumptions of Theorem 3.2.1., the efficacy of the Wilcozon becomes:
VabTiZi(z — j)e;
(22 —1)/12

where
A =6/VN
€; — h(9J) — h(Gj_l) ] = 1,2,. ey & 1

8; = cutpoint j.

The above results do not depend upon the scores associated with the categories.

Proof of Theorem 3.2.1:
W — E,(W) > 2
| vars(W)
(W — E(W) o, [rars(W) _EW) - EO(W)}
———————————————————— z ——

* mnN mniN

ﬂN(ﬁ> 5‘) = Pr

= Pr

mnN

It will be shown that if N — oo in such a way that £ — a, & — b, then

W-EW) d
1. _7"%71 — N(Oa J%V)
oty = L[5t rips - T Tih vy
=14Y%iap— Z;';ll Pj
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2. 208 1

niNof,

5. BB, f(55)

1. To simplify the calculations, substitute m — Y22} C; for C, and n — YT for T,

in the expression for the Wilcoxon (refeq:wilc) to obtain:

VV-—-IE(LV) 1 z—1 z—13-1 z=-1 z-—1
—_— = C; — T; T;C; — T,C;
mnN 2vVmnN n; mz +§,§_: lez_z];.l
z2—13j-1 z—1 z-1
(S EE oL 5w
j=1 =1 j=1i=j5+4+1
Let
. C; — myg;
“="m
* q}'_'npi
7 = ~n
Then,
W —-EW) 1 \/72—1 . \/" L1 =
—F—= 5|V CF — t;T; *Cr —TC*
mnN 2[ Ngr ' ;E—; ;;(TC TZC])

Since T}, C7 converge in distribution to normal random variables with mean 0 and
variance p;(1 — p;), as N — oo,
1 z—1j7-1
T:C: -T;C*
waz(T ;) -
Thus as N — oo,
W — E(W)

mniN

z—1
SV SRR S

=1
where

z—1 i—1
ri=1+4 3 pi= 2P
i=1

J=i+1
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z—1 i—1
si=14 3 ;=2 4
i=1

j=i+1
defining 371 ¢; = 0 and ¥72,2 p; = 0. Since cov(C},C}) = —4igj and cov(T},T}) =
—DiDj, _fn;/vv converges to a normally distributed random variable with mean 0 and

variance o
1 z—1 , z—12—1
= 7| 2omip = 2 2 rimipip;
i=1 =1 5=1
2. Rewriting the ratio as
vary(W)  wari(W)  varo(W)
mnNog,  var,(W) =~ mnNo¥,’

it will be shown that both ratios on the right hand side converge to 1.

For the first ratio,

varo(W) = E,[vari(W)] + var, [E;(W)]

= B [varg(W)]

since EX(W) is a constant. So

vary(W)  wvarj}(W) o vare(W)
mnNoy,  E,[var:(W)] "~ mnNo¥ '

But

w 1
vary, (m) = Ve U

_ 1 fmn(V+1) 3

IYE [ 12 12N(N —-1) & Z(N
ab [ & (N3

~ 3 1—J=21<]—Vi3) as N — oo, and

_ ab z qyﬁ-CE)B
12 1”;( N
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ab 2
- |- >~ (ap;j + bg;)°

i=1

ab A
- 1—Zzpj , under Hy.
J=

Thus, var} (7%) converges to a constant, say y, and is bounded and positive. Hence,

[var ( N3)] also converges to y, and so

vari(W)
—_— 1.
Elvar:(W)]
Now we need to prove that
varo(W)
— 1.
mnN o,

Recalling that under H,, p; = ¢; Vj, and so r; = s; V j it can be shown that

W - E(W)) 1|18, &8
var, | ——————=- - = T T D;
( mnN 4 L; e ; ; i

— o

So
varo(W)
mnN O'W

as N — oo.
3. Finally, using parts 1 and 2, the efficacy term can be shown to converge to a constant:

B(W) — E(W) _

VmnNoZ,
Vab (E;Zl 6+ X5z 21—1 p;b; Wi —j+1pi6 )
\/25—1 r]p] zz=_11 ; } T iPiP;j

= f(5,95).

So now we have that

Bn(5,8) = Pr[N(0,1) < f(#,8) — za) .
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Proof of Corollary 3.2.1. Note that,

g = ®(6;) - ®(6;-1)
p; = @(9] — A) — (:[)(9_7'_1 b A)

Hence,as N — oo,

d:é
g —pj ~ A[u(ej)—u(9j—1)]=—\}—ﬁ,
thatis,
5 = djb.

Substitution of this expression into (3.10) yields the result of Corollary 3.2.1.

Proof of Corollary 3.2.2. From Theorem 3.2.1, the efficacy term is:

va ab ( z—l 6 + Z;_l Zt—-l p] Z:z—‘]+l p; )
\/2;;1 ripj — Dy j—l TiT;PiP;

£(5,8) =

For the case p; =1/2V j,

z—173-1 z—1 2-—1
(zuzzm -5 5w -
j=114=1 j=1i=5+1

Vab|-5.+ 156, z—g—l)—ﬁfu—%}

] =1 7=2

= Vab —6, + — 2(26 —2]5)+—(51—5z 1)}

] 2

since Z 6, =0

=1

1 z—1 z— ]
= ;‘/E 23 6+ Z(z — 2j)6;
| =1 j=1

1 i z=-1 .
= =Vab|2) (z - ])6611 .
z ”
L J=1
Since it can easily be seen from the above argument that

VNA[R6;) — h(6;-1)]

= 66]'

30
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for any continuous density h. Note that when p;, = 1/z,

z—1

Z r; = z-— 1

3=1

zirg _ 2z-1)(22 - 1).
=1 3z

Substitution of these expressions into the denominator of the efficacy term produces:

z=1 R z—12—-1 221
2oTIpi— D Yo miripip; = R
7=1 =1 j=1

and it can easily be seen that the efficacy term is:
Vabii(2 — j)ej
V(2% —-1)/12

3.2.2 [Efficacy of the T test

Let the response variable be as in Section 3.2.1. Then the 2 sample t statistic can be

written as:
_ Xioi(gi — 9:)(mT; — nCj)
nmS \/ 1/m+1/n ’
where
S = pooled standard deviation of the 2 groups (treatment

and control).
As N — oo, (with n/N — a,m/N — b),

Z z—12z-1
§* = a !Z(gj —92)%pi — D 2 (95 — 9:)(9: — 9:)pipi | +
j=1 Jj=11i=1

7=11=1

b [i(ga’ — 9:)"pi — zi:l zf(gj — 9:)(9i — gz)qiq]]

and, under Hy,

z—12-1

z—1
S? = a2 = (95~ 9:)’p; — 2= >_(95 — 9:)(9i — 9:)Pip;-
7=1

i=1 i=1
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The power of the 2 sample t test, IIy(p) is

IN(p) = Pryz [T > ta].
Theorem 3.2.2 Under the assumptions of Theorem 3.2.1
In(p) — @ [w(ﬁ, 8) — za]
where

Vab Y i1(g5 — 9:)5;
VEZizilgs — 9:)%p; — T2 T (9 — 9:)(95 — 9:)pips

w(p,8) =

Corollary 3.2.3 If X7 and X¢ are as in Section 3.2.1 then, as N — oo,
IN(A)=P(c- 6 — z4)

where d; and & are as in the previous section and

VabyiZ1(g; — 9.)d;

c =
Y ioi(gs — 92)%pi — 221 1 (9i — 92)(95 — 92)pip;

where A = §/v/N and n/N — a, m/N — b.

Corollary 3.2.4 When py = p, = --- = p, = 3, (Xg — A, Xg, — A,..., X1, — A)
and (Xe¢,, Xcpy - - -, Xo,) are as in Corollary 3.2.2 and g; « i, the efficacy term of the

2 sample t test becomes

Vab Tz (z — j)e;
/zi;l

where e; is defined as previously.

Proof of Theorem 2.2.2: .

In(f) = Pryz [T > ta]
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Let v = Zj;}(gj — gz)(mTj — nC'J) Then

Y
Iny(p) = Pryz > ty
~(P) P mnsy/1/m +1/n }

_’y B E(,y)'> mntaSp\/]_/m-i— 1/71 — E(7)]

i \/var('y) \/var('y)

In order to reduce this expression to the form in (3.2.2) the following will be shown:

_il\v/-% — N(0,1)

2. var(ot=) — ol

3. mntaSy/1/m+1/n Sz,
\far('y)
_EQ) 5
" Jwar(n) — w(p, )

Part 1 is true by the Central Limit Theorem. To prove part 2, note that:

var(y) = wvar (zf(gj ~ g.)(mT; — ”Cj))

7=1

= mn [Z(gj — g:)* [mp; + ng;] - Z—: ZZ—:(% 9:)(9i — 92) [mpip; + nQin]“ :

7=1 =1

As N — o0, p; — ¢; and hence,

var(y) ~ nmN (2(93’ - gz)ng 22:: i(gg —9:)(9i — gz)Pz‘Pj)

= var( ) — 0(2,.

Y
vVmnN

mnt,Sy/1/m+1/n taSVmnN
\/var('y) \/var(’y)
taS

| var(7==)

—  Z4.

Now
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The efficacy term can then be found to converge to a constant:

E(v)
yvar(y)
Vab¥ 21 (g. — 9;)8;

V(g5 — 9:)%p5 — Lot 51 (90 — 9:)(95 — 92)Pip;
= w(p,9).

3.3 Comparison of the Efficacies

The 2 sample t test is often used in analyzing ordered categorical data although it is
not appropriate. For this reason, the relative efficiency of the Wilcoxon and the t test is
of some interest. Under conditions listed below, as the number of observations becomes
large, the efficacy terms for the Wilcoxon and the t tests applied to such data converge

to the same expression:

VabSizi(z — j)e;
(22 —1)/12

Sufficient conditions for (3.11) to hold are:

(3.11)

1. the probabilities of the responses are equal i.e. py = p, =--- = p,
and
2. the scores for the categories are proportional to the category number.

3. the scores are generated by a continuous distribution.

The efficacy for the t test applied to the continuous data is calculated in Lehmann

[3]. It is

*[
o~

where
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o is the standard deviation of the distribution of the data
a = n/N, the proportion of the sample in the treatment group

b = m/N, the proportion of the sample in the control group.

The efficiency of the Wilcoxon applied to the categorical data relative to the the
t test applied to the underlying continuous data was of interest as this indicated the
decrease in power due to the categorization of the continuous data. Under the condition
of equal p;’s and data generated from a continuous distribution, the Pitman efficiency

of the Wilcoxon to the t test was:

22 -1
Cwile,t(cut) = — 3
o) = 1202210 = f)es)?

So, for example if the control group’s scores were uniformly distributed on [0,1] and the

treatment group’s scores were uniformly distributed on [A, 1+ A] then the efficiency

of the t (uncut) test to the Wilcoxon (on scores categorized as in the simulation) is:

22 -1
= ——
(z —1)2

(Although the uniform density is not continuous at 0 and 1, Corollary 3.2.2 can be
modified for this case‘.) It is easily seen from this that as z, the number of categories
becomes large, ¢ — 1, which is what would be expected.

The simulation in Section 3.1 was run under conditions 1 and 2 with the normal as
its underlying continuous distribution. Although there were only 100 observations in
each run, the curves in Figure 3.1 are very close. Using the efficacy terms calculated,
the asymptotic Pitman efficiency of the Wilcoxon with respect to the t test on the
continuous data was calculated and found to be 0.89. This means that the t test
requires ~ 89% of the observations needed by the Wilcoxon in order to attain the same
limiting power under the same alternate hypotheses. These calculations seem to agree

with the simulation run in Section 3.1.
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Analysis at Two Time Points

Most patients in the Multiple Sclerosis trials were examined at all of the time points
0,1, 3,6,9, 12, 18, 24 months during the study. A better indication of the differences
between the treatment and control group could be gained by analyzing how the scores
of the patients change between two time points. The power of some statistics frequently
used to analyze ordered data over time were compared using simulation. These statis-
tics were the stratified Wilcoxon, the McCullagh, and a chi squared statistic. Section
4.1 contains a description of the simulation runs. The Wilcoxon and the chi-squared
statistic are described more fully in Sections 4.1.1 and 4.1.2. In the latter, the dis-
tribution of the chi-squared statistic is derived under the hypothesis of no difference
between the treatment and control groups. In Section 4.2, the results of the simulation

are discussed.

4.1 Description of the Simulation

An initial and final score were generated for each subject simulating his condition at
two time points. The values of the underlying continuous random variables giving rise
to these scores were denoted by (RT,Y.T) or (RY,Y, ) for those in the treatment or
control group. These data were categorized using the same cut points as in the previous

chapter to produce scores. The distribution of these pairs was:

T 0 1 p
~ BV N
Y7 B+A |, |p 1

36
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and

B vn (]| b
Ye Bl Lr1
The parameters # and A represented the changes in the scores due to the progression
of the disease and the treatment respectively. Power curves were computed for a level
a=0.05 test of the null hypothesis A = 0 vs. the alternate hypothesis A # 0. A
simulation run generated two groups (fifty observations/group) at A values of 0 to 1.2
in increments of 0.1. Each curve was calculated using one thousand simulation runs.
The stratified Wilcoxon, chi-squared and McCullagh model statistics were calcu-
lated for each set of data generated. The McCullagh model statistic was computed
using the plum software in a way similar to that in Chapter 2, except that the co-
variate x had multiple components. One component was a variable indicating whether
the observation was from the treatment or control group. The other components were
indicator variables for each possible initial score. The scale parameter was set to one.
Since, in the simulation, the continuous observations were known, the continuous
response variable was regressed using an indicator for the treatment/control groups
and the initial values for covariates. The null hypothesis Hy : A = 0 was rejected if the
estimate for the treatment/control variable was significantly different from zero. This
statistic was included so that the decrease in power due to the loss of information from

categorization could be determined.

4.1.1 Stratified Wilcoxon

The stratified Wilcoxon rank sum statistic, described in [3] (p. 132), is an extension
of that employed in the previous chapter. The subjects in the two groups were first

stratified according to their initial score. Within each strata, s, the Wilcoxon statistic
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W, was computed, as in Chapter 3, using the final scores as the basis for the ranking
procedure and summing the treatment ranks. Each of the statistics, W, was normalized

by subtraction of its mean to produce W;:
Wi =W, — E(W,)

where
E(W,) = B
T, = number of observations in treatment group with initial score s
N, = total number of observations with initial score s.
The overall Wilcoxon, W*, was then calculated as:
W
wr=>" N, _: o

i=1

The variance of W* was:

[se(W™)]? = ; [s]\eévz;l)]z , |

where
z = number of strata
se(W?) = standard deviation of W} calculated in the usual way.
The test was then rejected or accepted using the normal approximation:

W*
se(W*)

~ N(0,1).

4.1.2 Chi-squared Statistic

A natural test of the null hypothesis that a subject’s progress is independent of treat-
ment received is based on a simple contingency table analysis. The resulting statistic,
referred to as x2,,, is based on the number of subjects whose condition improved, de-
teriorated or remained the same over the two time points. To calculate x2,,,, the data

were collapsed into a 3 x 2 contingency table:
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where

T~

T°
C°
Tt
Cct

m

N

Treatment | Control | Totals
T- C- n-
T° C° n°
T+ Cct nt
n m N

z—1 z .
1=1 J=i+1 Ti]

z2=1 z ..
i=1 J=i+1 CU
z .

j=1 Tj]

z

z Ei—l T..
i=2 Loj=111j

z -1

1=2 Luj=1 Cij

the number of observations in the treatment group

with initial score ¢ and final score j

the number of observations in the control group

with initial score ¢ and final score j

number of observations in the treatment group

number of observations in the control group

total number of observations in the study.

The statistic was calculated as:

X<2:alc = (T_ ;—n%—)z + (C_ 7:717—,1_17;—‘)2 +
N N ,
(%) (%) |
N N

39
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(Tt —22)"  (c+ — =t
¥ T mnt
N N

The statistic, x2,,, is usually assumed to have a limiting x? distribution with two
degrees of freedom. It was not clear if this approximation was valid so the limiting
null distribution of x?,, was derived. Two methods of sampling which pl;oduce data
in a fashion similar to that in the Multipie Sclerosis study were considered, and led
to distinct limiting null distributions for x2 ;.. A description of each of these sampling
schemes and the distribution of y2,,, is preceded by some notation used in this analysis:

pi; = Pr[ final score = j | initial score = ¢, in treatment group ]
¢;; = Pr[final score = j | initial score = i, in control group ]

p; = Prf final score = j, initial score = ¢, in treatment group |
¢} = Pr[ final score = j, initial score = ¢, in control group ]

n; = number of treatment observations in strata 2

m; = number of control observations in strata z

Unconditional Sampling

In unconditional sampling, subjects are randomly assigned to groups and then are
stratified according to the chosen covariate. In this case, the numbers of observations
in each strata is random. This type of sampling is appropriate when it is not important
if strata are empty, or there are so many subjects that the experimenter is assured that
it is unlikely that any of the strata will be empty.

Suppose that (T11,T12, ..., Tz;) ~ multinomial(n, piy, pty, - . ., p,), independent of
(Cy1, Ciay - .., C,,) ~ multinomial(m, ¢y, 41, - - -, ¢%, ) under unconditional sampling. If

we define T to be a vector with the components (T*,T~,T°) and C to be (C*,C~,C°)
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then T and C are independent with distributions:
T ~ multinomial(n, pt,p~, p°)

C ~ multinomial(m,q, ¢, q°)

where
pt =Y, Tainy
p = zz-_:ll §=i+1 P:'Lj
p° = §=1 Py

+ _ 2z -1
g7 =2 2 4

- z—1 2z [
¢~ =20 j=i+1 45

o __ 4 uw
9 = 2.=194;;-

In this case, the usual asymptotic theory for independent multinomials holds and
under the hypothesis p* = ¢t, p° = ¢°, p~ = ¢~, (and thus also under the more
restrictive null hypothesis p¥; = ¢i V 4, 7), X2 18 asymptotically distributed as a x?

with two degrees of freedom.

Conditional Sampling

In conditional sampling, the number of subjects in each strata is fixed at the begin-
ning of the experiment. This type of sampling could be used when it is expensive to
allow many subjects to take part. It ensures that there will be observations in each
strata, although the total number of subjects may be relatively small. This type of
sampling is common so it is natural to calculate the distribution of x2 , conditional
on n; and m;. In this case, the distribution of the counts becomes (Ti1, Tia, . .., Ty) ~
multinomial(n;, pi, piz, - - -, Piz) and (Ci, Cia, - . ., Ciz) ~ multinomial(m;, g, Gizy - - - 5 Giz)

where 2 = 1,2,...,z and all multinomials are independent. Some assumptions made to
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facilitate computations were that n; = m; V 7 and that N — oo in such a way that

n;/N — a;. Note that x?,,. can be rewritten as:

XZalc = {12 + 1{22 + I{§

Theorem 4.1.1 If n; = m; V i, then, under H, : p;; = ¢i5, V 1,7 as N — oo and
n;/N — a;,
(K1, K3, K3) % MV N(0, %)

with

.

z i—1 1
_ 2 Ej:l k=1 @iPijPik

211 =1 z 1—1
i=2 2.5=1 AiPij
z 2
=1%;
Yo = 1-— —i 27
2;’:1 a;P;;
z=1 z z
S o izl Xjmin 2 k=it1 GiPijPik
3 = z—1 <z o
=1 j=1+1 QA;Pij
z i—1
¥ _ — 22 2521 QiDiiDij
12 =

[(05: Ttk aipy) (i aipif)]1/2

_ z

i—1
22721 Lkmig1 WiPisDik

Y. — -2
13 [(Zf=2 23;11 aipij) ( D DA aipij>]1/2

" — Sl AiDiiDes

Yy = i=1 Z2oj=it1 YiPiDij

(o S i) (Sim )|
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Thus,
XZate ~ (\/XI‘Z1>2 + (\/EZ2>2 + (\/)\—3Z3)2

where
21,249,723 are tid N(0,1) and

A1, A2, A3 are the etgenvalues of X.

Proof of Theorem 4.1.1. Let

1 nn-
Xi = —=\|T7 — —
' N( N)
1 nn°
X, = _(T°_ )
2 \/N N
1 nnt
X:s = — [Tt - 7.
R

To determine the limiting distribution of x2 ., first find the limiting distributions of

X1, X, Xa. If

T _ Ti; — nipij
2_7 \/‘77;
and
o Ci; — migs;
17 \/T_,rl—z‘
then

X1=
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Therefore, under H,,

since n; = m; and p;; = ¢;; under Hy.

n z i-1
— Cz

n z i-1
T2 ZCE}\/WHL

44

Under Ho, T}; and C}; converge to normal random variables with mean zero, and

thus X, is asymptotically normal with mean zero and variance:

var(X,) ~

Under Hy,

and thus Kj is asymptotically normal with mean zero and variance,

i—1 5—1

— Pij) — 2 Z Z Z a;PijPik

i=2 j=1 k=1

z -1
var [ (EZ (1 - c3) W—)]
1_23 1
1 [ [elizt .
4 2 Zzaipij(l
L \#=2j=1
1] z i-1i-1
5 Z azp%] Z Z Z aipijpikjl .
=2 =2 j=1k=1
nm _ L Lo (Th+Cy)
N N |
z 1=1 C
B
z i—~1
- > > (pijai + pijas)
=2 j=1
z 1—1

= 2)) aipij,

1=2 j=1

-1
7=1 aipi; —

2iza

ik Y

zpszzk

1—2 ZZ_

aiPij

)
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Similar calculations show that K3 and K; are asymptotically normal. The variance/covariance

calculations are straightforward. Now
(K1, K, K3) ~ MVN(0,%).

If ¥ is a positive semidefinite matrix, 3 a diagonal matrix D, with the eigenvalues
(A1, A2, A3) of T as its elements, and a matrix P, such that PTP = I, and PXPT = D.
Let Y = PK, then Y ~ N(0, D) and

KTK = YTy

In most cases, the eigenvalues of ¥ are difficult to find explicitly. However, one simple

case is considered in the following:

Corollary 4.1.1 Suppose that ny =ny;=...=n, and p;; =1/z V1,5. Under the null

hypothesis, ,
Xlaie = 22 + ( 2- LZZ2)
where
Z1,2Z, ~ N(0,1).

Thus, x2,. does not have a limiting chi-squared distribution with two degrees of freedom

in this case.

Proof of Corollary:
Using Theorem 4.1.1, the asymptotic covariance matrix of (K, K3, K3) is:

e

_,/252-1) 1 __21 _3,/252-12)
-1(1-2) -3 1(1+Y)

The eigenvalues for this covariance matrix are A\; =0, Ay =1, A3 = % - -31—2
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4.2 Simulation Results

The power curves computed by the simulations appear in Figures 4.1 to 4.4. In all of
the figures, the most powerful test was the one based on the regression parameter. This
result was expected as no information due to categorization was lost in the calculation
of this statistic. The next most powerful was the McCullagh statistic which had a
similar power curve to the Wilcoxon. In all cases both of these statistics were much
more powerful than the chi-squared statistic. Because the chi-squared statistic did
not take into account the initial score or the size of the difference, this was was not
surprising.

The powers of the tests increased with increasing p. This probably occurred because
increasing p would decrease the variation in differences between the initial and final
scores at fixed values of f and A. Changes in £ did not affect the power curves of
the Wilcoxon, McCullagh or regression statistics, but increasing it did decrease the
power of the chi-squared statistic. As  became large, most patients’ scores increased,
and the difference between the treatment and control groups were in the sizes of these
increases. Since the Wilcoxon and the McCullagh statistics compared the treatment
and control groups based on the differences of the final scores given the inital scores, an
increase in # would not be expected to change the power of these statistics. However,
very large changes in # would result in all patients moving to the largest score, in which
case, none of the tests would detect any difference between the groups. The chi-square
statistic computed here was unconditional as the initial number of observations in the
strata were not fixed. It only recorded whether or not the patients’ scores increased,

decreased or remained the same, so its power was expected to decrease as 8 increased.
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proportion of tests (delta=0) rejected - 2 sided tests
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Figure 4.1: Simulation Run 1 (8 = 0.1, p = 0.8)
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Figure 4.2: Simulation Run 2 (8 = 0.1, p = 0.6)
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Figure 4.4: Simulation Run 4 (8 =0.3,p = 0.6)
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Table 4.1: Results of McCullagh Analysis

Time estimate standard | z-score
(in months) | of treatment | error
~ parameter
0-1 -0.82 0.418 -1.95
1-3 -0.40 0.403 -1.00
3-6 -0.17 0.424 -0.40
6-9 0.98 0.466 2.10
9-12 0.07 0.51 0.14
12-18 0.31 0.452 0.69
18-24 -0.16 0.48 -0.33

4.3 Application of Tests to the MS Data

The stratified Wilcoxon and x? tests have been calculated on the MS data set previously
[2]. Both statistics were calculated on the data between 0 months and each of the other
times the patients were observed. The results of the test based on the Wilcoxon statistic
showed that the treatment group regressed (p ~ 0.05) relative to the control gorup in
the time periods 0-1 months and 0-3 months. The remaining statistics calculated
were nonsignificant. However, the change in sign in those time periods larger than six
months indicates that patients in the control group may have fared less well than those
in the treatment group in the follow up period. Since the x2 is less powerful than the
Wilcoxon, it is not surprising that none of the tests based on it were significant.

The data were fit to a McCullagh model. Unlike the previous analysis, the collapsed
scores were used here since the data were sparse. The covariates in this analysis were
indicator variables for each of the possible initial scores and one for treatment/ control
group. The data were modelled between consecutive time points rather than from
baseline to the other scores. The results are shown in Table 4.1.

The variable for the treatment group parameter was set up so that a negative value
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implied that the control group regressed with respect to the treatment group. Collaps-
ing the data has produced results which are contradictory to the previous Wilcoxon
analysis in the 0-1 month time period.

The Wilcoxon and x? analysis agree with the analysis using the Markov techniques
in that all three show that patients in the treatment group may not have progressed at
the same rate as those in the control group during the first six months of the study. In
the case of the Markov analysis, it is not possible to determine which group improved

relative to the other.
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Conclusions

As the data set was small, the number of observations which had any particular Kurtzke
score was low. For this reason, the data were collapsed into five categories chosen only
to ensure at least four observations in each category at zero months. Results from the
Markov analysis indicate that, during the administration of interferon, the treatment
group regressed relative to the controls. After this period, subjects in the treatment
group appeared to return to a state in which their transition probabilities were not
significantly different from the controls. Models which did not incorporate information
about the length of time intervals between observations fit the data just as well as those
that did. That is, a model which assumed that transitions between any two consecutive
time points could be modelled using the same transition matrix fit as well as a model
which allowed a different matrix for each time interval. Modelling with a specific
tridiagonal matrix with all diagonal elements equal, except for the second, proved to
be reasonable for the control group over the entire time period. The treatment group
could be modelled reasonably by this form only in the eighteen month follow up period.
The major differences between the two groups were in those patients that started at
Kurtzke scores in the range 4.5 to 5.5. Control patients with initial scores in this
range fared better than treatment patients, during the period when the interferon was
administered.

Statistics commonly used to compare the groups at one time point were examined

53
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using simulation techniques. If data for the control group were generated using under-
lying N(0, 1) distribution and those for the treatment group by a N(A, 1) distribution,
and the probability of being in each category was equal for A = 0, then the Wilcoxon,
McCullagh and 2 sample t test were found to have similar relative efficiencies. Theoreti-
cal asymptotic calculations yielded expressions for Pitman efficiencies of these statistics
for general shift models. Under the conditions of the simulations, the efficacies of the
Wilcoxon and 2 sample t test calculated on the categorized data were found to be equal.
The Pitman efficiency of these two statistics with respect to the t test calculated on
the underlying continuous data was 0.89.

A comparison of statistics used to compare the two groups’ progression of disease
between two time points was then carried out. Simulation results showed that when
the categorical data were generated using a bivariate normal distribution, with equal
initial probabilities of being in any category, the Wilcoxon and McCullagh statistics
were much more efficient than the chi squared statistic. The asymptotic distribution
of the chi-squared statistic was derived under the hypothesis of no treatment effect.
It was determined that the chi-squared statistic did not necessarily have a limiting x?
distribution with two degrees of freedom if, in the sample of patients, the initial number
of subjects in each category was fixed. However, if the number was not fixed, the chi

squared statistic did have an asymptotic x? distribution with two degrees of freedom.
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Sample Transition Matrices

Transition Matrix for Control Group from 0 to 24 months
[ 217 1 0 O
8 7 3 0 O

2 67 29 1

-3

0
0 0 23 49
0 0 1 5 8

Transition Matrix for Treatment Group from 0 to 24 months

[ 2326 1 0 O

4 2 7 0 O
3 59 20 1

0 0 20 40 14
0

0 12 16

55



Appendix A. Sample Transition Matrices 56

Control Group - General Tridiagonal Modelling

0 months to 6 months

0.67 0.33 0.00 0.00 0.00
0.57 0.29 0.14 0.00 0.00
0.00 0.03 0.65 0.32 0.00
0.00 0.00 0.35 0.59 0.06

0.00 0.00 0.00 1.00 0.00
6 months to 24 months

[ 0.81 0.19 0.00 0.00 0.00 W
0.36 0.45 0.18 0.00 0.00
0.00 0.02 0.71 0.28 0.00
0.00 0.00 0.24 0.64 0.11

L0.00 0.00 0.00 0.20 0.80

0 months to 24 months

[ 0.75 0.25 0.00 0.00 0.00 -
0.44 0.39 0.17 0.00 0.00
0.00 0.02 0.68 0.30 0.00
0.00 0.00 0.29 0.62 0.09

0.00 0.00 0.00 0.38 0.62
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Treatment group - General Modelling

0 months to 6 months

0.75 0.25 0.00 0.00 0.00 —
0.13 0.13 0.75 0.00 0.00
0.00 0.07 0.57 0.37 0.00
0.00 0.00 0.35 032 0.32

0.00 0.00 0.00 0.58 0.42
6 months to 24 months

- 0.82 0.18 0.00 0.00 0.00
0.60 0.20 0.20 0.00 0.00
0.00 0.02 0.81 0.17 0.00
0.00 0.00 0.21 0.70 0.09

0.00 0.00 0.00 0.31 0.69

0 months to 24 months
[ 0.79 0.21 0.00 0.00 0.00
0.31 0.15 0.54 0.00 0.00
0.00 0.04 0.72 0.24 0.00

0.00 0.00 0.27 0.54 0.19

0.00 0.00 0.00 0.43 0.57
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Control Group - Specific Tridiagonal Modelling

0 months to 6 months

0.61 0.39 0.00 0.00 0.00 -
0.57 0.29 0.14 0.00 0.00
0.00 0.04 0.61 0.35 0.00
0.00 0.00 0.35 0.61 0.04

0.00 0.00 0.00 0.39 0.61
6 months to 24 months

[ 071 029 0.00 0.00 0.00
0.36 0.45 0.18 0.00 0.00
0.00 0.05 0.71 0.24 0.00
0.00 0.00 0.24 0.71 0.05

L0.00 0.00 0.00 0.29 0.71

0 months to 24 months

0.67 0.33 0.00 0.00 0.00
0.44 0.39 0.17 0.00 0.00
0.00 0.05 0.67 0.29 0.00
0.00 0.00 0.29 0.67 0.05

0.00 0.00 0.00 0.33 0.67J
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Treatment Group - Tridiagonal Modelling

0 months to 6 months

i 0.48 0.52 0.00 0.00 0.00
0.13 0.13 0.75 0.00 0.00
0.00 0.18 0.48 0.33 0.00
0.00 0.00 0.33 0.48 0.18

0.00 0.00 0.00 0.52 0.48

6 months to 24 months
- 7
0.76 0.24 0.00 0.00 0.00
0.60 0.20 0.20 0.00 o0.00
0.00 0.05 0.76 0.19 0.00

0.00 0.00 0.19 0.76 0.05

0.00 0.00 0.00 0.24 0.76
0 months to 24 months

- 0.65 0.35 0.00 0.00 0.00
0.31 0.15 0.54 0.00 0.00
0.00 0.11 0.65 0.25 0.00
0.00 0.00 0.25 0.65 0.11

0.00 0.00 0.00 0.35 0.65
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