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ABSTRACT 
Monthly returns data for the 150 companies that have been listed on the Toronto Stock 
Exchange for at least 95% of the period from January 1963 to December 1987 are 
transformed into continuously compounded returns, adjusted for inflation, gathered into 
portfolios, and examined for the property known as mean reversion. The model used to 
describe this scenario comprises two components, namely a random walk and an 
autoregressive scheme of order one. The study's foundation is a paper by Fama and 
French(1988), using data from the New York Stock Excange, but in addition to all the 
estimation performed in that paper, other parameters are estimated. The parameter 
originally of prime interest is shown to behave in accordance with model predictions, in 
the case of nearly all 28 portfolios constructed. However, this interpretation is shown to 
be seriously jeopardised in view of closer scutiny of model parameters, which indicate that 
the model is a poor approximation to the data. 
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1.0 I N T R O D U C T I O N 

Countless random walk tests for stock markets have been conducted on stock exchanges 

around the world, and yet the debate over whether the random walk model adequately 

describes price behaviour seems unresolved, although more recent evidence, sometimes 

resulting from tests more statistically sophisticated than has been the norm, has tended 

to dispute the pure random walk model (e.g. Lo and MacKinlay 1988). Many of these 

tests have been primarily concerned with the fundamental efficient market hypothesis. 

Jensen (1978) believes that "there is no other proposition in economics which has more 

solid empirical evidence supporting it than the efficient market hypothesis". An efficient 

capital market is one that is efficient in processing information. Most importantly, in this 

scenario prices fully reflect all available information, so that they are fair indicators of 

firms' true value. Amongst other things, an efficient market hypothesis says that expected 

returns are positive and constant and that if the true joint distribution of prices of different 

securities at time t is multivariate normal, then the joint distribution of security returns at 

time t is multivariate normal. The implication which is of most concern here though, is the 

capacity for enhanced investment adeptness amongst sectors of the investment 

community. Under the efficient market hypothesis, there ought not to be any such sector 

consistently able to make investment decisions resulting in higher returns than 

comparable decisions made by the rest of the investment community, since this would be 

implicative of unequal dissemination of relevant information, or disparate utilization of 

such information. 

Now in the random walk model, it is believed that price changes and rate of return 

changes are simply a series of random numbers, following no discernible pattern. Also, 

any security price is an unbiased estimate of the true intrinsic value of the security at the 

particular time, i.e. the price itself is not a random number. Of course this model does not 
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preclude the existence of trend, but does assert that price movements are unpredictable 

and that hence, in the long run, chartists will not be capable of beating the market. 

Essentially, the probability distribution for prices, conditional on previous price changes 

and volumes, equals the marginal price distribution. 

In a 1988 paper, Fama and French dispute the position that stock returns are 

unpredictable, based on a mean reversion hypothesis, which they tested on the New York 

Stock Exchange (N.Y.S.E.). They estimated that 25 to 45 percent of the variation of three 

to five year stock returns is predictable from past returns, and add "There is little in the 

literature that foreshadows our estimates". The idea is that prices take long but 

temporary swings away from fundamental or intrinsic values (the rational 'means' or 

expected values). Summers (1986) first translated this economic theory into the 

statistical hypothesis that prices have slowly decaying stationary components, which 

Fama and French modelled with the most natural choice, namely an autoregressive 

scheme of order one, or an AR(1). Previous tests had only calculated autocorrelation 

between daily or weekly returns. The huge resulting sample sizes made it easy, if 

somewhat misleading, to find evidence against the hypothesis that the true 

autocorrelations were zero, even though the estimates were so close to zero as to be of 

no viable interest to potential investors, who face such factors as commissions on each 

transaction. Such brief lags understate or fail to detect the importance of mean reversion, 

which typically unfolds in units of years. 

This study, which uses data from the Toronto Stock Exchange (T.S.E.), shows how a 

structural model for prices, comprising both a random walk and an AR(1) component, may 

be evolved, chiefly by manipulation of relevant covariance terms, into an empirical test 

based on continuously compounded returns, for the existence of mean reversion. It shows 
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how the stationary component induces strong negative autocorrelations in long horizon 

returns, and then examines the data for actual existence of such values. 

The methodology here is based largely on the paper by Fama and French but apart from 

providing a more detailed theoretical development, also establishes a fuller validation of 

model premises and estimates more model parameters, partly as a means tb diagnostic 

checking. One drawback of this study is that only 25 years of data were available for the 

T.S.E., whereas 61 years were used on the N.Y.S.E. This means that return horizons as 

long as those used in the N.Y.S.E. study (up to ten years) are basically intractable 

without risking serious estimation errors. Nevertheless, horizons of up to eight years 

were investigated and the ensuing results for the parameter of prime interest are quite 

encouraging. 

In the spirit of the paper by Fama and French, portfolios will be constructed on the basis 

of firm size and industry, since these factors are known to bear some association to return 

behaviour. This in no way suggests that traditional methods of portfolio construction (in 

which an 'optimal' payoff between expected return and risk is strived after) should not be 

used in conjunction with mean reversion ideas. The latter will assist in the timing decision 

that must be made by all portfolio investors, and is suggested as a useful complemetary 

tool in the investor's arsenal. 
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2.0 THE DATA AND MISSING VALUES 

All the data stems from the Toronto Stock Exchange (TSE), and was retrieved from the 

Laval Master Tape. This data is monthly, beginning, for those companies which were 

already trading by then, in January 1963. The most recently available version of the Laval 

tape encompasses data up to and including, again where applicable, December 1987, for a 

total of 25 years' worth of data. All common stocks that were traded during part or all of 

this period are initially considered as possibly suitable candidates for inclusion in the 

study. An exception, however, is a small number of stocks classified under mines (M) or 

oils (O), which never attained a price level of $5.00 or more at any stage during which 

they were active. However, all industrial (I) stocks that were traded for any segment of 

the 1963 - 1987 period are included in the data base, regardless of their price at any time. 

It is due to the well documented "noisy" behaviour of daily stock prices that monthly 

rather than daily data is considered preferential for use in most empirical studies. 

Furthermore, this study is aimed at detecting the existence of predictable components in 

fairly long horizon investment schemes and consequently, the discovery of any 

substantially non-zeroautocorrelations between daily prices at whatever lag, is not of 

interest here. Such precisely defined lags would surely be spurious, unlikely to be 

repeated, and intractable to economic theory. On the other hand, investment horizons 

measured with months or even years as units, are more stable and statistically reliable, 

and are of more practical use to the investor. The enhanced statistical reliability stems 

directly from the reduced variability associated with monthly returns. 

Under the above definition for the scope of stocks eligible for the Laval tape, 1433 

companies are included. Each company is included once only, irrespective of whether or 
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not it was traded under more than one name during the 25 year period. The large majority 

of companies however, do not have actual data for the entire 25 year period, either 

because they only began trading on the TSE after the beginning of 1963, or ceased to be 

listed before the end of 1987, or were for one reason or another delisted during some 

intervening period. Furthermore, for many companies there are spurious single months, 

sometimes occurring more than once, for which no datum is available. Since it is crucial to 

have data that is as reliable as is feasibly attainable without the adoption of an overly 

exclusive policy whose residual base is statistically unworkable, and since long horizons 

w i l l be involved in the testing procedures, a compromising scheme of selecting only those 

companies for which at least 95% of the 25 year period's data is available, was decided 

upon. This translates into a total number of permissable missing values corresponding to 

at most 15 months for each company selected. This figure includes, for the trading history 

of each company, the very first month, which is necessarily missing due to the form of the 

data actually utilised, as described below. After examination of each of the companies on 

the Lava l tape for admission under these criteria, 150 companies remained.. For these 

companies, the few remaining missing values were replaced by a technique that admits to 

the time series structure of the data. This is described later. 

A l though the statistical model to be presented relates pr imari ly to the stock prices 

themselves, as w i l l be shown in the theoretical development, the testing procedures and 

hence the basic data, involve monthly returns. The Lava l tape provides data for the 

monthly rates of returns, r t , adjusted for capital changes, namely 

* _ P t +DIVt + DISt - Pt-i 

where P t = share price taken as month-end price for month t and split adjusted as needed 
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eg. if a stock splits 2-for-l for the first time in month t, the split factor is 0.5 ; 

on the second 2-for-l split, the split factor becomes 0.5x(0.5) = 0.25 ; 

if subsequently a 1% stock dividend was distributed, the split factor becomes 

100/101x0.25 = 0.2475, etc. 

DIVt = cash dividend, split adjusted as needed, in (ex-dividend) month t 

DISt = distribution of capital (eg. value of distributed rights, per share), also 

split adjusted where necessary. 

Each of these quantities is adjusted for splits or reverse splits, by dividing by the 

appropriate split factor. 

The definition of the monthly rate of return explains why the first month's return data for 

each company is necessarily missing, as the value "PQ" is non-existent. It would clearly 

be a meaningless exercise to backcast such a value. Whilst care is seen to have been 

taken with regard to most extraordinary events during any month for each stock, some 

factors, whose impact is difficult to gauge, such as the actual number of trading days in 

each month, are omitted, resulting in a not entirely 'crisp' data set. 

2.1 DOUBLE EXPONENTIAL SMOOTHING 

This methodology, also known as discounted least squares, was used to estimate any 

spurious missing values still encountered in the data. It was selected because of its 

suitability in many practical time series frameworks, and because of its outstanding 

amenability to computing, based on a recursive algorithm. Simply put, exponentially 
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successively less weight is attached to 'older' observations when forecasting ; the rate of 

exponential decline depends on the local nature of the data. Since the technique is widely 

known, only a brief overview is presented here. Generally, we consider models of the 

form 

m 

rn(p) = X Pifi(P> = f(P)P 
i=l 

where 

m is the dimension of the vector B (m=2 for double exponential smoothing), 

n is the length of the series up to, but not including, the missing value, 

p is the number of periods ahead that we wish to forecast (usually just 1). 

In general exponential smoothing, we then estimate the parameters by minimizing 

n-1 

X c o J [ r J n . j } - f(-j)p] 2 

j = o 

The "known" constant GO ( I GO I < 1.0 ) is a discount factor that discounts past 

observations exponentially. In double exponential smoothing, we assume that any trend 

is only locally linear. It may easily be shown that this leads to computing forecasts from 

the function 

fife) = (2 + P )SW - (1 . 1^LV)SW 

where 

n-l 
S n

1 ] = ( l - c o ) X c o J r * ( n . j ) = ( l - f i > ) r * „ + fflS^ 
j = o 
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n-1 
SL 2 ] = ( l - c o ) 2 £ ( j + l ) ^ ( , j ) = (l-co)sW + cosS 

j=o 

Initial estimates are usually obtained from the two equations 

S$ = po - 2 ^ , 

where 

1 2 £ ( t - Q ± i ) r * n  

P ( n 3 - n ) 

The algorithm is due mainly to G.M Brown (1962), who has suggested that co be chosen 

to lie between 0.84 and 0.97. This is primarily because, the closer CO is to 1.0, the more 

likely it is that the data MS. described by a locally linear trend model, as assumed by 

double exponential smoothing. In the limiting case, when co = 1.0, the best forecast is 

achieved by fitting a constant linear trend model to all available observations and giving 

each observation the same weight. Furthermore, if the underlying mean reversion is 

long-term, this is supportive of a larger co, in which case relatively more weight is 

attached to 'older' observations. 

In fact, co is chosen by minimizing the squared one - step - ahead forecast errors, i.e. the 

function 

SSE(co) = £ - ?*(P)J2 

t=i 
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So, small increments in co are tested and then that value of co which minimizes this SSE 

is used in the forecasting algorithm. 

In all cases, the optimal CO indeed turned out to be close to 1.0. Whenever more than one 

missing value occurred in any series (not counting the very first "observation"), CO was 

found from the data up to the first missing value, which was subsequently forecast, and 

then co was re-estimated up to the next occurrence of a missing value. 

Technical note. In standard ARIMA notation, double exponential smoothing can be 

shown to be equivalent to the process 

(1 - B)2r t = (1 - coB)2et 

2.2 CONTINUOUSLY COMPOUNDED RETURNS 

Prices (split and capital adjusted) for months t and (t-l) are P(t) and P(t-l)-

If interest were compounded at nominal rate i, m times per month, then 

p ( t ) = p{l.l)(\.o + - ) m  

m 

Therefore, as m -> « , i.e. when we have continuous compounding, 

=> i = l n - ^ - = lnP(t) - lnP ( t.i) = r ( t )  
P(t-D 

i.e. r(t) is the continously compounded nominal return in month t 

(The effective return described before is 

P(t-l) 
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.*. r ( t ) = ln(1.0 + r * t ) ) 

So each return recorded on the Laval tape is transformed according to this rule. (Note that 

in subsequent sections, it will be convenient to alter the return notation slightly; there r̂  

will be written as r( t_i t) , as a special case of r(t_xt) which is just the return from time 

(t-T) to time t.) The chief advantage of using continuously compounded returns is that it 

becomes legitimate to simply add consecutive monthly returns to obtain longer horizon 

returns. 

i.e. r(t_Tt) = i"(t-T,t-T+l) + . .. + r(t-i5t)- This would not be correct for r(t) . 

These returns are then adjusted for inflation by using the monthly increases in the 

Canadian Consumer Price Index (CPI), (Source : The CPI, Statistics Canada), over the 

period 1963 to 1987, to obtain real rates of return. Before adjustment was made with the 

raw inflation figures, the whole inflation series was examined for seasonality, the 

presence of which would interfere with recovery of true returns at any time. The plots 

shown overleaf, however, indicate that the seasonality is not serious, and that 

transformations of the inflation series are not necessary. The three plots below that of the 

data itself show a decomposition of monthly CPI percentage changes into the following 

components - trend, seasonal, irregular. To the right of each plot is a bar which portrays 

the relative vertical scaling of that plot. In the third plot, horizontal lines are drawn at the 

midmean of the seasonal effect for each month, giving a general picture of the seasonal 

effect. The vertical lines emanating from these midmeans show the actual seasonal effects 

computed for the various years of data. 
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3.0 T H E O R Y A N D M E T H O D O L O G Y 

The model proposed here is one for stock prices and comprises not only the traditional 

random walk component, but also a stationary component exemplified by a Box-Jenkins 

type autoregressive scheme of order one. The belief is that instead of the market being 

entirely efficient, prices in fact tend to stray from fundamental values, but that such 

straying is only temporary and ends with a reversion to the value consistent with rational 

expectations. Summers (1986) first equated this with the statistical hypothesis that 

prices have slowly decaying stationary components. However, this mean reversion might 

occur slowly and thus only be revealed in horizons of several years. In the technical 

development of this section, it will be shown that we may test empirically for the 

existence or absence of a stationary component by regressing T-period returns on 

preceeding T-period returns and examining whether the estimated slope parameters 

(which are also the estimated autocorrelations) are significantly different from zero. If 

these slopes are found to be non-zero then some fraction of the variation of returns is 

explained by mean reversion; the greater this fraction the better, from a viewpoint of 

predictability. The value of T will be varied in a logical attempt to identify the length of the 

reversion period for different portfolios of stocks. 

It will also be shown that the presence of a slowly decaying stationary component induces 

negative autocorrelations in long horizon returns. At the same time, it will be explained 

why these autocorrelations are weak (approximately zero) for short horizon returns, for 

instance from day to day or week to week. 

To quote from Fama and French (1988) for the economic theory, "There are two 

competing economic stories for strong predictability of long horizon returns due to slowly 

decaying price components. Such price behaviour is consistent with common models of an 
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irrational market in which stock prices take long temporary swings away from 

fundamental values. But the predictability of long horizon returns can also result from 

time-varying equilibrium expected returns generated by rational pricing in an efficient 

market. Poterba and Summers (1987) show formally how these opposite views can imply 

the same price behaviour. Expected returns correspond roughly to the discount rates that 

relate a current stock price to expected future dividends. Suppose that investor tastes for 

current versus risky future consumption and the stochastic evolution of the investment 

opportunities of firms result in time-varying equilibrium expected returns that are highly 

autocorrelated but mean reverting. Suppose that shocks to expected returns are 

uncorrelated with shocks to rational forecasts of dividends. Then a shock to expected 

returns has no effect on expected dividends or expected returns in the distant future. Thus 

the shock has no long term effect on expected prices. The cumulative effect of a shock on 

expected returns must be exactly offset by an oppposite adjustment in the current price." 

The foregoing theory leads (not uniquely) to the following model. 

(1) P(t) = q(t) + Z( t ) where q(t> is a Random Walk 

(and P(t) is the natural logarithm of the price at time t, as explained above) 

(2) q(t) = LI + q(t_i) + rj(t) where p. is drift and r|(t) ~ W.N.(0,\|/2) 

(3) Z( t ) = Oz(t.i) +E( t) where £(t) ~ W.N.(0,o 2) and|O|<1.0 

The process (3) is autoregressive of order 1, or AR(1), so this model is a mixture of 

random walk and stationary components. Now, 

r(t,t+T) = P(t+T) - P(t) (P(t) is capital adjusted V t) 
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= [q(t+T) -q(t)3 + [Z(t+T) - Z(t)] 

(but from (2), q(t) - q(t-i) = Ji + Tj(t) i.e. 1st difference of a R.W. produces W.N.) 

= Tjl + (T](t+T) + T](t+T-1) + ... +11(t+l)) + 0(Z( t +T-l) - Z(t-l)) + E( t +T) " E(t) 

i.e. the random walk component of the price produces white noise in the returns, a 

desirable feature of the model, from empirical considerations. Next, consider the slope in 

the regression of z(t+T) ~ z(t) o n z(t) " Z(t-T)- This is of course just the 

autocorrelation of consecutive T-period changes in Z(t) , 

p ( T ) = C 0 V [ Z ( t + T ) - Z(t) Z( t ) - Z ( t.T)] _ C 0 V [ z ( t + T ) - Z ( t) ; Z ( t) - Z(t-T)] 

VVar[z( t +T) - Z(t)]-Var[z(t) - z ( t . T)] Var[z ( t + T ) - z ( t ) ] 

since z(t) is a stationary process. 

Two interpretations of this numerator term are now given. 

Firstly, 

C 0 V [ Z ( t + T ) ~ Z(t) ; Z(t) - Z(t-T)] 

= Cov[z ( t) ; Z( t +T)] - Var[z ( t)] - Cov[z ( t-T) ; z ( t + T)] + Cov[z ( t.T) ; z(t)] 

(4) = 2Cov[z(t) ; Z( t + T )] =- - Cov[z ( t ) ; z ( t + 2 T)] 
1 - O z 

due to the stationarity of z(t). 

But since z(t) is an AR(1) process, 

Cov[z ( t) ; Z( t + T)] = G ° 0 - » 0 as TToo 
1 . cp2 

since |0| < 1.0 by assumption. 

It follows that 

14 



- o 2 

Cov[z ( t + T ) - z(t) ; z(t) - z(t-T)] -> — — 7 as T ? o o 
1 - O z 

And examining the denominator in the autocorrelation term, 

Var[z ( t +T) - z ( t ) ] = Var[z( t + T)] + Var[z ( t )] - 2Cov[z ( t+T); z ( t ) ] 

2Cov[z(t+T); z(t)] -» r as TT°° 
1 - O 2 1 - o 2 

Thus the slope in the regression of z(t+T) " z(t) o n z(t)" Z(t-T) converges to 

{ - ^ ° — } + { - ^ — } = -0.5 for large T. 
1 _ O 2 1 - O 2 

Secondly, consider the expected value of the T-period change in z(t), as exemplified by 

the change from time t to time (t + T) as before. If Et[ f ] is the conditional expectation of 

the function f, given {z(s) , s < t} with respect to time t, then 

E t [Z( t + T) " Z( t)] = Et[<E>Z(t+T-l) + £(t+T) " Z(t)] 

(but Et[£(S)] = 0 V s > t since £(S) is indep. of (z(Y), 7 < t} for s > t) 

= E T [ 0 ( O Z ( t + T-2) + £ ( t + T - l ) ) - Z(t)] 

(5) = E T [ 0 T z ( t ) - z(t)] = ( O t - l)z ( t ) 

.•.Var{E t[z ( t + T )-z ( t )]} = (O 1 - l)"Var{z(0} = (O 1 - 1 ) * - ^ 
1 - O 

But, from (4) the numerator in the slope of the regression is 
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2 
2Cov[z(t); Z( t + T)] - a

 9 - Cov[z ( t); z(t+2T)] 
1 - O z 

,2T 
= 2 G 2 O t a 2 a2<E> 

1 . d>2 1 - O 2 1 - 3>2 

(6) =-(l-<D') T\2 C 2 
1 - o 2 

= -Var[Et{z(t+T) - z(t)}] 

i.e. the covariance term is minus the variance of the expected T-period change in the 

AR(1) component of the model. Thus, the slope in the regression of z(t+T) ~ z ( t) o n z ( t ) 

- Z ( t - T ) i s 

p ( T ) = -Var[Et{z(t+T)-Z(t)}] 
Var[z ( t + T ) - Z(t)] 

-> -0.5 asTToo , 

as demonstrated before. 

(From the last expression, it is seen that the slope parameter may be interpreted as the 

proportion of variability of T-period changes in z( t) that is due to expected change.) 

But f rom (6), we see that the slope parameter is approximately zero for small T, 

presuming, from the economic theory, that <J> is close to 1.0. So these two interpretations 

highlight a fundamental point, namely that slow mean reversion in stock prices can easily 

go undetected with short return horizons. 

The above is merely a theoretical development, and does not yet provide a framework for 

any empirical testing, since z( t) is of course unobservable. It is the monthly returns, r( t) , 
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which have been observed for each stock. Consider again the slope in a T-period 

autoregression, but now dealing with the regression of r ( t j t + T) on r(t_T?t) 

Cov[r ( t i t + T) ; r ( t_T)t)] 
P(T) = , 

VVar[r ( t,t+T)] • Var[r(t.T,t)] 

But, 

Var[r ( t > t +T)] = Var[P ( t + T) - P(t)] 

because P( t) is the natural logarithm of the price. 

=Var[T/Li + {T| ( t + T) + ... + %+!)} + 0{z ( t + T - i ) - z ( t.i)} +e ( t +T) - £(t)] 

= Tw 2 + 2 0 2 [ - S 2 _ - + 2o2 

1 - O 2 1 - O 2 

(recall that \\f is the variance of the White Noise process T|(t)) 

= T A J / 2 + 2^_[i . oT"2] + 2o2 

1 - O 2 

= Var[r(t,T,t)] 

• ft =

 C o v [Kq ( t + T ) - qq)) + (z ( t + T) - z(t))} ; {(q(t) - qq-T)) + (z(t) - z(t.T))}] 
*' ( T ) Var[r(t.T,t)] 

= Coyj(TLl + T l ( l + T ) +. • -+T|(t+i)) + ( Z ( t + T ) - Z ( t ) ) j ^ 

:J/TLI + ri(t) +• • .+rj ( l.T +i)) + (z ( t) - z(t.T))) - (Var[r(t.T,t)]) 

but ri(t) ~ W.N. => Cov[r|(t); r|(S)] = 0 V t ̂  s , T is fixed , 

and Tj(t) is independent of £(t) 
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C o v [ { z ( t + T ) - Z ( t ) } ; {Z( t) - Z ( t . T ) } ] 

Var[r(t.T,t)] 

(7) 

p(T)-Var[z ( t+T) - z(t)] 
Var[r ( t.T,t)] 

_ -Var[E t{z ( t +T) - z(t)}] 
Var[r ( t.T,t)] 

From expression (7), it is clear why it is claimed that 8(T) may be interpreted as the 

proportion of the variance of T-period returns that is explained by the mean reversion of a 

slowly decaying stationary component of the price, exemplified here by an AR(1). 

Furthermore, since we can re-write expression (7) as : 

p(T)-Var[z(t+T) - z(t)] 
Var[z ( t + T) - z(t)] + Var[q ( t + T) - q(t)] 

we may immediately assess two extreme cases : 

(1) The price has no stationary component 

=> Z ( t ) = 0 V t => p(T) = 0 => P (T) = 0 
(2) The price has no random walk component 

=> q ( t ) = 0 , V t => p(T) = p(T) P ( T ) -0.5 as T"T°° 
However, when the price consists of a mixture of stationary and random walk 

components, we anticipate that the behaviour of 6(7) will vary as T varies. It has been 

established that 

(i) Var[q ( t + T) -q(t)] = T\j/2 

(ii) Var[z ( T +D -z(t)] = -2aL{l - O T ] 

1 - O Z 

(iii) p(T) = 0 for small T, and p(T) -> -0.5 for large T 

So, for small T, we expect 6(7) to be approximately zero and for large T, we expect the 

quantity (i) to dominate, leading again to B(T) being close to zero. But, for some 
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intermediate values of T, we expect B(T) to reach a (negative) minimum. Overall, a plot 

of B(T) versus T ought to yield a parabola-like curve when the stock price is a mixture of 

random walk and sationary components. By observing the behaviour of B(X), it will thus 

be possible to gauge the relevance of including a stationary component in the model for 

stock prices. If B(T ) is non-zero, not only is the inclusion of a stationary component 

significant, but also, the magnitude of &(T) is a direct measure of the predictable 

proportion of variance in portfolio returns. 

3.1 CONSTRUCTING PORTFOLIOS AND SECTOR INDICES 

It is chiefly to combat the problem of high variability associated with single firm returns 

that empirical analysis will be undertaken for portfolios and sector indices. Furthermore, 

inferences made from portfolio and sector indices rather than individual stocks are clearly 

concomitant with enhanced reliability. Of course reasonable portfolios may be constructed 

in many ways, such as those with the commonly desired property of maximum expected 

return for minimum expected variance, for a fixed number of firms to be included. However, 

a simpler principle for portfolio construction, with which easier interpretation is 

associated, will suffice here. Several studies (eg, King 1966, Banz 1981, Huberman and 

Kandel 1985) have demonstrated substantial associations between firm size and return 

behaviour. Also, the homogeneity of firms within a sector or industry tends to lead to a 

degree of similarity in return behaviour, obviously as a result of industry-wide factors 

such as new legislation peculiar to one industry. In this light, it is somewhat regrettable 

that T.S.E. firms are classified into only three sectors. (Within the 150 most long-lived 

firms on the T.S.E. the majority are classified under Industrials.) 
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Ten size-defined (or decile) portfolios were constructed; size is determined by the simple 

definition of price times number of outstanding shares. For each of these ten groups of 

fifteen companies, as well as for the three sector indices, both equally weighted and 

value(size) weighted monthly returns were computed. Within each such portfolio, the 

value weighted returns assign greater representation of the over-all portfolio behaviour to 

the larger firms. In fact, for some value weighted decile portfolios, the behaviour is heavily 

dominated by two or three firms. Equally weighted portfolios give a fair representation to 

all firms in any decile portfolio, but are less realistically representative of actual investors' 

returns. 

As a final 'safety net', both an equally and value weighted all-share index were created. 

This protects against the tendency, especially of stocks with unusually high or low 

returns, to move across deciles over the years. Thus a total of 28 return sequences are 

examined in detail. 
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4.0 CHECKING ASSUMPTIONS AND THE CONTRYBUTION OF THE  

STATIONARY COMPONENT. AND ESTIMATING 

None of the model predictions are of any worth if the assumptions are invalid. It must also 

be established that the inclusion of the stationary component appears to be statistically 

worthwhile. Finally, parameter estimation not only leads to a fuller appreciation of the 

data, but serves as a further indication of model validity. These three topics are dealt with 

in this section. 

Firstly, from the expressions already derived for the returns, it is seen that the model 

assumes r(t) to be stationary (not P(t))- Second order or weak stationarity may be tested 

in several ways, and two of these are used here. Since stationary processes should 

exhibit non-changing means, we may simply fit a linear regression, with t as the 

independent variable, to the sequences of returns, and ascertain that the slope parameter 

is zero. Also, if we fit an autoregressive model to the series, the residuals from this 

regression should display no serial correlation. Both the Durbin-Watson statistic and the 

first order autocorrelation of the residuals will be calculated for each portfolio. Note that in 

the absence of any serial correlation, the former of these should equal 2.0 and the latter 

0.0. The order of the autoregression is robust in this test, and 10 is used here. 

To facilitate interpretation of the slope, the ratio of estimated slope to the standard error 

of the estimated slope is given for each portfolio. We would have cause for concern if any 

of these ratios were greater than, say, 2.0. The results for both the Durbin-Watson 

statistic and the A.C.F.(l) of the residuals are so clear cut as to make discussion 

unnecessary. The estimated slopes indicate that the data do indeed seem to have 

constant means. Overall, it would appear to be quite safe to proceed with model 

estimation, content that we are working with stationary data. 
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Table (I) 

Durbin-Watson statistics and A C F ( 1 ) ' S of the autoregression residuals, and slope 

estimates from simple linear regression. 

(A) Equal weighting 

P O R T F O L I O D-W A.C.F.m S L O P E SLOPE/CS.E. SLOPE) 
1 1.996 0.0001 0.0 0.0 
2 1.994 0.0021 0.000005 0.14 
3 1.988 0.0042 0.000016 0.48 
4 1.989 0.0049 -0.000005 0.15 
5 2.006 -0.0039 0.000018 0.55 
6 1.991 0.0039 -0.000016 0.53 
7 2.001 -0.0007 -0.000019 0.57 
8 1.997 0.0107 -0.000015 0.42 
9 1.999 -0.0005 0.000012 0.33 
10 2.007 -0.0039 0.000067 1.58 

Industrials 1.993 0.0029 0.000009 0.32 
Mines 1.999 -0.0005 -0.000009 0.18 

Oils 1.998 0.0004 -0.000016 0.27 
All-shares 1.995 0.0011 -0.000002 0.57 

(B) Value weighting 

P O R T F O L I O D-W A.C.F.m S L O P E SLOPE/CS.E. SLOPE) 
1 2.002 -0.0031 0.000001 0.04 
2 1.994 0.0021 0.000005 0.13 
3 1.998 0.0042 0.000017 0.48 
4 1.989 0.0051 -0.000007 0.19 
5 2.005 -0.0033 0.000017 0.50 
6 1.991 0.0041 -0.000017 0.54 
7 2.000 -0.0040 -0.000015 0.43 
8 1.979 0.0096 -0.000018 0.50 
9 2.000 -0.0008 0.000013 0.35 
10 2.007 -0.0066 0.000021 0.59 

Industrials 1.997 0.0004 0.0 0.0 
Mines 2.001 -0.0012 -0.000004 0.07 

Oils 2.002 -0.0017 -0.000014 0.21 
All-shares 1.997 0.0002 0.000004 0.12 
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In checking the suitability of the model proposed, the element of prime interest is whether 

the inclusion of a stationary component in addition to the random walk component is 

justified. More specifically, we may consider the hypotheses 

Ho : P(t) = LI + P(t-i) + Tj(t) i.e. a pure random walk 

H a : P(t) = q(t) + Z ( t ) 
q<t> = M- + q(M) + Ti(o 

Z ( t ) is non-degenerate and stationary 

But a necessary and sufficient condition for the model H A to be identical to HQ is that 

z(t)=0 , a.s , for all t. In this case , 
r ( t)=P ( t)-P ( t_i)=p+ri ( t ) 

2 
i.e., {r(t)-m} is a WN(0,o ). 



The graphs(figures 1-3) and table 2 presented overleaf show A.C.F.'s estimated up to 

lag 10, for each of the 28 portfolios or sector indices. These quantities are estimated in the 

usual way, namely 
n n 

X (r(t) - r)(r(t_a) - r) £ (r(t) - r)(r(t.a) - r) 
ACF(a) = 

Vl(r ( t ) -r ) 2 X (r(t-a)-r)2 I (r(t) - r)2 

n 
and r = —^ r (t) 

The dashed lines in each plot are drawn at +1,-1,+2 and -2 times the standard errors 

(which are (n)"l/2 under the hypothesis of white noise), to permit objective consideration 

of the hypothesis in question. As may have been anticipated from the N.Y.S.E. study, it is 

the smaller firms, namely those in portfolios 6 to 10, which especially violate the pure 

random walk model, as seen particularly from the A.C.F.'s and P.A.C.F.'s at lag one. For 

each of these portfolios, these two functions (which are by definition equal at lag one) are 

well above two standard errors from zero, leading to the conclusion that O is not equal to 

zero. Looking at the A.C.F.'s at lag 2, we see that in the case of portfolios 8 to 10, (which 

represent the smallest 45 companies) the hypothesis that O = 0 is also clearly violated. 

For the portfolios of larger firms, it is not clear whether a pure random walk model can be 
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Table (IT) 

Autocorrelations and partial autocorrelations for each of the 28 portfolios or sector indices. 

(A) Equal weighting 

P O R T F O L I O A.C.F.m=P.A.C.F.m A.C.FX2) P.A.C.F.(2) 
1 0.0443 -0.0513 -0.0533 
2 0.1062* -0.1018 * -0.1143 * 
3 0.1412 ** -0.1022* -0.1246 ** 
4 0.0559 -0.0971 * -0.1005 * 
5 0.1127 * -0.0208 -0.0339 
6 0.1581 ** -0.0205 -0.0467 
7 0.2046 ** -0.0466 -0.0923 * 
8 0.1677 ** -0.0818 * -0.1131 * 
9 0.1726 ** 0.0791 * 0.0508 
10 0.3345 ** 0.0522 -0.0672 * 

Industrials 0.2412 ** -0.0210 -0.0840 * 
Mines 0.1042 * -0.0960 * -0.1080 * 
Oils 0.0022 0.0003 0.0003 

All-shares 0.1895 ** 0.0208 -0.0156 

(B) Value weighting 

PORTFOLIO A.C.F.m=P.A.C.F.m A.C.F/2) P.A.C.F.tD 
1 0.0441 -0.0493 -0.0514 
2 0.1045 * -0.1031 * -0.1153 * 
3 0.1412** -0.1022 * -0.1246 ** 
4 0.0574 -0.0979 * -0.1016 * 
5 0.1145 -0.0264 -0.0400 
6 0.1634 ** -0.0071 -0.0348 
7 0.2046 ** -0.0458 -0.0905 * 
8 0.1454 ** -0.0979 * -0.1216 ** 
9 0.1602 ** 0.0671 * 0.0426 
10 0.1562 ** -0.0528 -0.0791 * 

Mines 0.0566 -0.1073 * -0.1108 * 
Oils 0.0158 -0.0483 -0.0485 

.1-shares 0.0971 * -0.0761 * -0.0864 * 

Legend * The value is above or below one standard error from zero 
** The value is above or below two standard errors from zero 
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rejected in favour of the mixed model. Further confirmation will come from estimation of 

the J3's in the main testing procedure. In the case of the industrial, mining and all-share 

indices, we are again led to the rejection of a pure random walk model. This does not 

appear to be true of the oil index, but it should be borne in mind that only three of the 150 

companies were classified under Oils (17 were Mines and 130 were Industrials) so the 

dependability of this index is jeopardised. Furthermore, the value of those three 

companies differed vastly. 

4.1 E S T I M A T I N G M O D E L P A R A M E T E R S 

Although the foregoing plots provide a good indication of the merit of the inclusion of a 

stationary component, it is not clear if the AR(1) component is a suitable candidate. To 

see the goodness of fit of the AR(1) model,we begin by actually estimating <E> for each 

portfolio. Two special cases of result (4) provide a pair of equations that can be solved 

simultaneously to yield an estimate of <X>. Recall that 

Cov[r(t,t+T) ; r(t.T)t)] = Cov[(z(t+T) - z(t)) ; (z ( t ) - z(t.T))] 

= 2Q2<Pt a 2 g2<X>2T 

1-cp2 l-O2 1-<X>2 

To be able to solve the equations explicitly, one value of T should be double the other. It 

is however not at all clear which values of T should be used in the estimation. Throughout 

the model development it was implicitly assumed that O was constant i.e. that it was not 

time varying. Thus, if the model is a good approximation to the data, it should not matter 

much which values of T we choose. This is now shown not to be true. For each portfolio or 

index, six estimates of O are attempted by the following general method. 
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rv ^ 2a2Om a2 a2Q2m 

(1 = m) = 
i - o 2 i-a>2 i - o 2 

( T = 2 m ) = ^ 1 . ^ _ . ^ 1 

l -O 2 l -O 2 l -O 2 

But Cov[r( t t + 'T) ; r( t.j ) t)] is just the autocovariance function of the continuously 

compounded series (where T monthly returns are summed) r t at lag 1. Summing returns 

over T months is a good reason for not choosing T equal to one or two months, since we 

know that the mean reversion model is quite inappropriate for such short periods of 

compounded returns. Now suppose the first and second covariance terms above are 

estimated as x and y respectively. Then 

~2 „ ~2 
-^-[20 - 1 - <X> ] = x , and -^-[20 - 1 - <E> ] = y 
1-8 l -$ 2 

— m 2 2 
x = -(l-O ) = l-O = 1 -
y -2m 2 L -2mJ L -m J 

So we at least need lyl > Ixl , lyl < 41x1 , y < 0 , x < 0 for the model to be feasible.(The 

negativity of x and y is clear from the third last equation since 0.0 < IO| <1.0). 

In table 3, several estimates for <X> are absent. In each case this is because one of these 

conditions has not been met. Apart from these obvious model violations, the fact that the 

estimates of O vary according to T points to a more subtle model mis-specification, 

namely that O is time-varying. The model assumed a constant value of O in each 

portfolio. 
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It immediately follows that 

-2 x(l - S2) 
(2$ -1 - 3 ) 

Also, 

Var[r(t.i,t)] = \\f2 + ̂ 2(-^~ + 1) = v say 

- 2 -2 l -O 
=> \j/ = v - a ( — — + 1) 

l+O 

And lastly, the obvious method of moments estimate for (i is 

n 

M- = r(t) = ~ E r ( t ) 
n t = l 

(All of these estimates are just method of moments estimates, and may thus be biased.) 

The estimates of these quantities are presented in table 3(ii). 

From this table, we see that the model cannot stand up to close scrutiny. The estimates 

are based entirely on the model structure which can now be seen to be a poor 

approximation to the data. Two general points can be made. Firstly, the estimates of the 

random walk error variances are, without exception, negative. Secondly, the estimates of 

the AR(1) error variances are huge compared to the estimates of the return variances, 

although, according to the model, they are supposed to be only one component of these 

variances. This can only point to model mis-specification, a factor that will have to be 

borne in mind when proceeding with estimating the (3 s . Arithmetically what is happening 

is that the AR(1) error variances are so large compared to Var(r(t)) that the random walk 

error variance is forced to be negative to comply with the above equations. 
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Table (TLDd) 

Estimated values of O for each of the portfolios and indices. 

(A) Equal weighting 

m 6 12 18 24 30 36 
P O R T F O L I O 

1 - 0.983 0.916 - 0.938 0.926 
2 - 0.988 0.964 0.953 0.951 0.972 
3 1.11 0.949 0.917 
4 - 0.989 0.962 0.954 0.861 
5 - 0.973 0.891 - - 0.950 
6 - 0.995 0.936 0.843 - 0.958 
7 - 0.989 0.795 - - 0.954 
8 - 0.990 0.965 0.944 
9 - 0.978 0.914 0.852 
10 - - 1.019 

Industrials - 0.985 0.952 0.865 
Mines - 0.988 0.870 - 0.914 

Oils - 1.090 0.928 0.873 0.954 0.991 
All-shares - 0.995 0.881 

(BWalue weighting 

m 6 12 18 24 30 36 
P O R T F O L I O 

1 - 0.985 0.943 0.849 0.932 0.958 
2 - 0.994 0.959 0.950 0.951 0.927 
3 - 0.950 0.914 - - -
4 - 0.992 0.963 0.954 0.863 -
5 - 0.947 0.796 - 0.912 0.964 
6 - 0.993 0.932 0.826 - 0.963 
7 - 0.992 0.850 - - 0.947 
8 - 0.993 0.974 0.953 - -
9 - 0.979 0.908 - - -
10 - - 1.005 0.871 - -

Industrials - 0.985 0.951 0.857 - 0.962 
Mines - 0.970 - - 0.941 0.959 

Oils - 1.110 0.956 0.844 0.890 0.966 
All-shares - 0.995 0.942 0.857 0.837 0.923 
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Table am(ii) 

Estimated model variances for each of the portfolios and indices. 

(A) Equal weighting 

PORTFOLIO Var(r ( t )) 
-2 
a 

-2 
¥ 

1 0.0023 0.700 -0.703 0.0044 
2 0.0028 0.762 -0.764 0.0045 
3 0.0025 0.310 -0.315 0.0026 
4 0.0026 1.140 -1.143 0.0052 
5 0.0023 0.227 -0.227 0.0030 
6 0.0018 1.638 -1.639 0.0046 
7 0.0023 1.193 -1.197 0.0036 
8 0.0024 0.935 -0.937 0.0014 
9 0.0025 1.132 -1.143 0.0033 
10 0.0035 - - 0.0053 

Industrials 0.0017 0.807 -0.811 0.0046 
Mines 0.0055 2.220 -2.230 0.0013 

Oils 0.0065 -0.098 0.099 0.0033 
All-shares 0.000022 0.036 -0.036 0.0003 

PORTFOLIO Var(r ( t )) a ¥ 
1 0.0022 0.715 -0.717 0.0045 
2 0.0027 1.495 -1.517 0.0044 
3 0.0025 0.315 -0.322 0.0026 
4 0.0026 1.444 -1.447 0.0052 
5 0.0023 0.143 -0.145 0.0027 
6 0.0019 1.395 -1.399 0.0048 
7 0.0022 1.518 -1.522 0.0037 
8 0.0026 1.395 -1.400 0.0010 
9 0.0027 1.197 -1.207 0.0035 

10 0.0028 - - 0.0042 
Industrials 0.0020 0.794 -0.798 0.0049 

Mines 0.0062 0.985 -0.994 0.0045 
Oils 0.0093 -0.091 0.091 0.0021 

Al l-shares 0.0022 0.192 -0.190 0.0043 
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5.0 R E S U L T S F O R T H E pVs 

Table (TV) 

Estimated p"s 

(A) Equal weighting 

PORTFOLIO 

1 2 3 4 5 6 7 8 9 10 

n months 
6 0.01 0.04 -0.05 0.03 0.03 0.05 0.01 0.07 0.08 0.23 
12 -0.19 -0.09 -0.24 -0.16 -0.08 -0.12 -0.14 -0.09 -0.22 0.19 
18 -0.32 -0.27 -0.34 -0.32 -0.16 -0.29 -0.43 -0.26 -0.39 -0.07 
24 -0.33 -0.34 -0.38 -0.38 -0.15 -0.37 -0.51 -0.28 -0.42 -0.24 
30 -0.33 -0.35 -0.38 -0.40 -0.13 -0.37 -0.50 -0.34 -0.43 -0.25 
36 -0.36 -0.44 -0.39 -0.55 -0.13 -0.36 -0.50 -0.43 -0.46 -0.21 
42 -0.44 -0.52 -0.40 -0.65 -0.14 -0.42 -0.41 -0.47 -0.44 -0.16 
48 -0.34 -0.46 -0.25 -0.54 -0.01 -0.31 -0.37 -0.34 -0.39 -0.10 
54 -0.33 -0.44 -0.08 -0.38 0.01 -0.24 -0.22 -0.29 -0.28 -0.01 
60 -0.31 -0.37 -0.09 -0.36 -0.09 -0.22 -0.34 -0.29 -0.28 0.00 
66 -0.33 -0.36 -0.09 -0.36 -0.06 -0.24 -0.32 -0.27 -0.32 0.00 
72 -0.34 -0.36 -0.11 -0.35 -0.12 -0.26 -0.30 -0.21 -0.28 -0.06 
78 -0.34 -0.32 -0.12 -0.34 -0.12 -0.26 -0.31 -0.04 -0.18 -0.09 
84 -0.33 -0.30 -0.12 -0.31 -0.24 -0.24 -0.24 -0.30 -0.01 -0.13 
90 -0.32 -0.28 -0.13 -0.30 -0.28 -0.22 -0.28 -0.02 -0.12 -0.23 
96 -0.32 -0.26 -0.14 -0.19 -0.32 -0.19 -0.23 -0.07 -0.12 -0.27 

(B) Value weighting 

PORTFOLIO 

1 2 3 4 5 6 7 8 9 10 

n months 
6 -0.04 0.03 -0.05 0.04 0.02 0.04 0.01 0.06 0.08 0.12 
12 -0.14 -0.10 -0.23 -0.15 -0.11 -0.12 -0.13 -0.08 -0.12 0.08 
18 -0.28 -0.29 -0.34 -0.31 -0.18 -0.29 -0.38 -0.25 -0.21 -0.12 
24 -0.38 -0.36 -0.38 -0.37 -0.15 -0.35 -0.45 -0.27 -0.39 -0.27 
30 -0.32 -0.36 -0.39 -0.40 -0.13 -0.36 -0.51 -0.34 -0.42 -0.29 
36 -0.36 -0.44 -0.39 -0.55 -0.13 -0.34 -0.43 -0.44 -0.43 -0.31 
42 -0.41 -0.53 -0.40 -0.62 -0.15 -0.41 -0.43 -0.48 -0.44 -0.29 
48 -0.32 -0.48 -0.29 -0.54 -0.02 -0.29 -0.38 -0.36 -0.42 -0.22 
54 -0.33 -0.47 -0.11 -0.38 0.05 -0.22 -0.33 -0.23 -0.36 -0.11 
60 -0.35 -0.47 -0.09 -0.35 0.06 -0.20 -0.33 -0.21 -0.26 -0.08 
66 -0.41 -0.46 -0.10 -0.36 -0.05 -0.21 -0.34 -0.22 -0.26 -0.16 
72 -0.44 -0.46 -0.12 -0.36 -0.12 -0.21 -0.35 -0.22 -0.26 -0.21 
78 -0.49 -0.39 -0.12 -0.35 -0.13 -0.26 -0.31 -0.03 -0.18 -0.21 
84 -0.41 -0.39 -0.13 -0.32 -0.22 -0.27 -0.30 0.03 -0.17 -0.27 
90 -0.40 -0.36 -0.14 -0.30 -0.28 -0.24 -0.28 -0.01 -0.17 -0.33 
96 -0.39 -0.33 -0.14 -0.18 -0.32 -0.21 -0.22 0.01 -0.16 -0.31 
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(C) Equal weighting 

S E C T O R 

Industrials Mines Oils All-shares 
T in months 

6 0.06 0.03 -0.05 0.00 
12 -0.09 -0.17 -0.23 -0.18 
18 -0.25 -0.45 -0.34 -0.35 
24 -0.32 -0.48 -0.38 -0.46 
30 -0.32 -0.41 -0.39 -0.55 
36 -0.34 -0.50 -0.39 -0.43 
42 -0.36 -0.56 -0.40 -0.33 
48 -0.26 -0.45 -0.29 -0.22 
54 -0.11 -0.44 -0.11 -0.17 
60 -0.12 -0.41 -0.09 -0.18 
66 -0.12 -0.40 -0.10 -0.19 
72 -0.19 -0.42 -0.12 -0.17 
78 -0.17 -0.40 -0.12 -0.02 
84 -0.14 -0.40 -0.13 -0.01 
90 -0.13 -0.37 -0.14 -0.06 
96 -0.10 -0.19 -0.14 -0.02 

(D) Value weighting 

S E C T O R 

Industrials Mines Oils All-shares 
T in months 

6 0.04 -0.02 0.00 0.02 
12 -0.10 -0.21 -0.04 -0.14 
18 -0.27 -0.43 -0.28 -0.31 
24 -0.35 -0.46 -0.41 -0.39 
30 -0.34 -0.43 -0.41 -0.38 
36 -0.37 -0.36 -0.39 -0.40 
42 -0.41 -0.49 -0.37 -0.46 
48 -0.37 -0.39 -0.34 -0.42 
54 -0.21 -0.29 -0.34 -0.43 
60 -0.22 -0.34 -0.35 -0.42 
66 -0.22 -0.35 -0.45 -0.41 
72 -0.23 -0.34 -0.52 -0.41 
78 -0.22 -0.32 -0.46 -0.33 
84 -0.21 -0.33 -0.44 -0.28 
90 -0.20 -0.31 -0.43 -0.24 
96 -0.19 -0.29 -0.41 -0.21 
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Portfolio 1 
Beta(Equally Weighted Portfolios) 

Portfolio 2 Portfolio 3 Portfolio 4 Portfolio 5 

1 3 5 7 9 11 14 

T,in 6 month periods 

Portfolio 6 

1 3 5 7 9 11 14 

T,in 6 month periods 

Industrials 

1 3 5 7 9 11 14 

T.in 6 month periods 

fl ' 
CD 

1 3 5 7 9 11 14 

T,in 6 month periods 

Portfolio 7 

• • • • • • > 

1 3 5 7 9 11 14 

T,in 6 month periods 

Portfolio 8 

1 3 5 7 9 11 14 

T.in 6 month periods 

Mines 

1 3 5 7 9 11 

T,in 6 month periods 

Oils 

s 
CO 

1 3 5 7 9 11 14 

T,in 6 month periods 

1 3 5 7 9 11 14 

T,in 6 month periods 

1 3 5 7 9 11 14 

T.in 6 month periods 

Portfolio 9 

fl CM 

CD o 

1 3 5 7 9 11 14 

T,in 6 month periods 

All-shares 

1 3 5 7 9 11 14 

T,in 6 month periods 

1 3 5 7 9 11 14 

T,in 6 month periods 

Portfolio 10 

r o 

1 

1 3 5 7 9 11 14 

T,in 6 month periods 



Portfolio 1 
Beta(Value Weighted Portfolios) 

Portfolio 2 Portfolio 3 Portfolio 4 Portfolio 5 

a 
m 

I 1 L I | | | I 

1 3 5 7 9 11 14 

T,in 6 month periods 

Portfolio 6 

1 3 5 7 9 11 14 

T,ln 6 month periods 

Industrials 

11111 
1 3 5 7 9 11 14 

T,in 6 month periods 

3 
ca 

1 3 5 7 9 11 14 

T,in 6 month periods 

Portfolio 7 

1 3 5 7 9 11 14 

T,in 6 month periods 

Mines 

1 3 5 7 9 11 14 
T,ln 6 month periods 

1 3 5 7 9 11 14 

T,ln 6 month periods 

Portfolio 8 

3 CM 

1 3 5 7 9 11 14 

T,in 6 month periods 

Oils 

1 3 5 7 9 11 14 
T,in 6 month periods 

1 3 5 7 9 11 14 

T,in 6 month periods 

Portfolio 9 

2 <NJ 
a> o 

1 3 5 7 9 11 14 

T,ln 6 month periods 

All-shares 

1 3 5 7 9 11 14 
T,in 6 month periods 

1 3 5 7 9 11 14 

T,ln 6 month periods 

Portfolio 10 

1 3 5 7 9 11 14 

T,in 6 month periods 



The table and plots of the p"s show that, as predicted from the model, negative values are 

very predominant. The only general exception to this occurs for the case T=6 months, but 

this too may have been expected from the theory developed earlier, when it was pointed out 

why this study is concerned with longer-horizon returns. The model seems to be further 

supported by the empirical verification that almost all estimated values of [3 lie in the range 

-0.5 to 0.0. Only portfolio 10, consisting of the 15 smallest companies, is in serious violation 

of model predictions. This portfolio is exceptional in several ways, one of which was pointed 

out during the discussion of the O s . The biggest company there has a value 19 times larger 

than the smallest, by 1987 - a very much wider range than is encountered in any other 

portfolio (the average ratio for the other nine portfolios is only 1.93). Some of these smallest 

of the long-lived companies have also at times been very thinly traded - a factor notoriously 

associated with unusual price behaviour. In fact, the very interpretation of the pVs estimated 

from portfolio ten in the same way as for the other portfolios is highly questionable, since the 

(attempted) estimation of <E> pointed to a mis-specified model for this portfolio. The same 

may be said of the oil indeces, where O was estimated as being greater than one - a direct 

violation of model assumptions. 

Comparing results across value vs equally weighted portfolios, we naturally observe 

different magnitudes, but in all cases the general pattern as T increases is the same. Since 

value weighting favours larger firms, it is not surprising to detect a slight improvement in the 

performance of the p"s here, over equal weighting, for portfolio 10. This is also true of the two 

next smallest portfolios, 8 and 9. 

If there is a disapointment in these results, it is that the pattern of the pVs is not as nicely 

U-shaped as predicted. This could point to insufficient parameterization but there is also a 

simple statistical problem here. The main departure from the U-shaped prediction is the 

general failure of the f3's to regain a level around zero, after having attained the predicted 

minimum. However, nothing in the theoretical development suggested that the 'U' would or 
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should be symmetric or even monotonic so it is not surprising to find that the increasing part 

of the 'U' has a considerably flatter slope than the decreasing part. All indications from the 

plots of the f3s are that a value of 0.0 will again be reached, but that this does not generally 

occur within 96 months (8 years). Therein lies the simple statistical problem - since data 

from the T.S.E.reaches back only to 1963, examining summed returns and then 

autocorrelations for values of T over 96 months becomes futile. If longer sequences of 

returns were available, it would be a simple matter to confirm whether or not the p' s really 

do return to zero. Several more years of data will have to be patiently accumulated before 

this can be done reliably. Already, looking at the plots of the f3s for all the portfolios or 

indices, a visual impression is gained of how the reliability of the estimates is dwindling for 

the larger values of T (one standard error for each estimate of P has been added and 

subtracted to the estimate, and been plotted as a dotted line in each case). The behaviour of 

the (3s in portfolios 5 and 10 however, can evidently not be explained by a shortage of data. 

Perhaps the model is simply inappropriate for these portfolios or perhaps mean reversion is 

just not a relevant factor in all firms. The plots for these two portfolios indicate that another 

possibility is that p has not yet attained a minimum by 96 months. Indeed, for both cases we 

see that the values at 96 months are considerably lower than the previous minima attained. 

At this stage there is no way of telling which, if any, of these scenarios is correct. Of course 

the results for these two portfolios do not seriously detract from the support afforded the 

model by the results from the other 12 portfolios or indices. 

5 . 1 BIAS ADJUSTMENT 
When the (5 s were calculated, overlapping observations were used, as a necessary way of 

providing "sufficient" observations. However this procedure obviously introduces bias into 

the estimates which then turn out too negative, or optimistic. Now we correct for this bias. 

Fama and French have shown that the bias is biggest when the process is a pure random 

walk, so the natural conservative approach is to presume this to be the case when adjusting 

the estimates. 
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Suppose prices follow a pure random walk, i.e. 

P(t) = IL + P(t-i) + 8(0 where 8(t)~W.N.(0,ci2) 

Then 

P(T) = Corr[r(t.T)t) ; r( t ) t + T )] 

= Corr[{Tu, + 8 ( t.T +i) + • • • + 8(t)} ; {Tji + 8 ( t+i) + • • • + 8(t+T)}] 

= 0 

So, i f we have a pure random walk p"(T) s h o u l d equal zero for a l l T . Note that this is 

perfectly general - the values of the parameters are immaterial . Thus we may simulate 

random walks with say N (0 ,1) errors, construct overlapping returns and estimate B(-r) for 

all values of T of interest. The average values of $(T) from very many simulations w i l l give 

us a good idea of the bias introduced by overlapping, and we thus adjust al l previous 

estimates of $(T) appropriately. Fama and French did 10 000 random walk simulations with 

N (0 ,1 ) errors and showed that of course the bias increases as the return horizon (T) 

increases, since this constitutes larger overlaps. Because these simulations are unrelated to 

any particular stock exchange, their results are used here for adjusting the estimates of S. 

Their horizons were only i n units of whole years, so the half-yearly biases are simply 

interpolated. 

Since the bias is largest for the largest values of T , looking at figures 7 and 8, we 

immediately notice an improvement in the B ' s in respect of regaining a level around zero. In 

some cases, the effect of the bias results in the upper standard error bound being 

considerably above zero when T is large. Basical ly , the interpretation of these B ' s is 

unchanged, but the values are more dependable. 
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Table (V) 

Bias adjusted B' s 

(A) Equal weighting 

P O R T F O L I O 

1 2 3 4 5 6 7 8 9 10 

n months 

6 0.03 0.06 -0.03 0.05 0.05 0.07 0.03 0.09 0.10 0.21 
12 -0.16 -0.06 -0.21 -0.13 -0.05 -0.09 -0.11 -0.06 -0.19 0.22 
18 -0.29 -0.24 -0.31 -0.29 -0.13 -0.26 -0.40 -0.23 -0.36 -0.04 
24 -0.29 -0.30 -0.34 -0.34 -0.11 -0.33 -0.47 -0.24 -0.38 -0.20 
30 -0.28 -0.30 -0.33 -0.35 -0.08 -0.32 -0.45 -0.29 -0.38 -0.20 
36 -0.29 -0.37 -0.32 -0.48 -0.07 -0.29 -0.43 -0.37 -0.39 -0.14 
42 -0.36 -0.44 -0.32 -0.57 -0.06 -0.34 -0.33 -0.39 -0.36 -0.08 
48 -0.24 -0.36 -0.15 -0.44 0.09 -0.21 -0.27 -0.24 -0.29 0.00 
54 -0.22 -0.33 0.03 -0.27 0.12 -0.13 -0.11 -0.18 -0.17 0.10 
60 -0.18 -0.24 0.04 -0.23 0.04 -0.09 -0.21 -0.16 -0.15 0.13 
66 -0.19 -0.22 0.03 -0.22 0.08 -0.10 -0.18 -0.13 -0.18 0.14 
72 -0.18 -0.20 0.05 -0.19 0.04 -0.10 -0.14 -0.05 -0.12 0.08 
78 -0.16 -0.14 0.06 -0.16 0.06 -0.08 -0.13 0.14 0.00 0.09 
84 -0.13 -0.10 0.08 -0.11 -0.04 -0.04 -0.04 -0.10 0.19 0.07 
90 -0.10 -0.06 0.09 -0.08 -0.06 0.00 -0.06 0.20 0.10 -0.01 
96 -0.08 -0.02 0.10 0.05 -0.08 0.05 0.01 0.16 0.12 -0.08 

(B) Value weighting 

P O R T F O L I O 

1 2 3 4 5 6 7 8 9 10 

n months 
6 -0.02 0.05 -0.03 0.06 0.04 0.06 0.03 0.08 0.10 0.14 
12 -0.11 -0.07 -0.20 -0.12 -0.08 -0.09 -0.10 -0.05 -0.09 0.11 
18 -0.25 -0.26 -0.31 -0.28 -0.15 -0.26 -0.35 -0.22 -0.18 -0.09 
24 -0.34 -0.32 -0.34 -0.33 -0.11 -0.31 -0.41 -0.23 -0.35 -0.23 
30 -0.27 -0.31 -0.34 -0.35 -0.08 -0.31 -0.46 -0.29 -0.37 -0.24 
36 -0.29 -0.37 -0.32 -0.48 -0.06 -0.27 -0.36 -0.37 -0.36 -0.24 
42 -0.33 -0.45 -0.32 -0.54 -0.07 -0.33 -0.35 -0.40 -0.36 -0.21 
48 -0.22 -0.38 -0.19 -0.44 0.08 -0.19 -0.28 -0.26 -0.32 -0.12 
54 -0.22 -0.36 0.00 -0.27 0.16 -0.11 -0.22 -0.12 -0.25 0.00 
60 -0.22 -0.34 0.04 -0.22 0.19 -0.07 -0.20 -0.08 -0.13 0.05 
66 -0.27 -0.32 0.04 -0.22 0.09 -0.07 -0.20 -0.08 -0.12 -0.02 
72 -0.28 -0.30 0.04 -0.20 0.04 -0.05 -0.19 -0.06 -0.10 -0.05 
78 -0.31 -0.21 0.06 -0.17 0.05 -0.08 -0.13 0.15 0.00 -0.03 
84 -0.21 -0.19 0.07 -0.12 -0.02 -0.07 -0.10 0.23 0.03 -0.07 
90 -0.18 -0.14 0.08 -0.08 -0.06 -0.02 -0.06 0.21 0.05 -0.11 
96 -0.15 -0.09 0.10 0.06 -0.08 0.03 0.02 0.25 0.08 -0.07 
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(C) Equal weighting 

S E C T O R 

Industrials Mines Oils All-shares 
T in months 

6 0.08 0.05 -0.03 0.02 
12 -0.06 -0.14 -0.20 -0.15 
18 -0.22 -0.42 -0.31 -0.32 
24 -0.28 -0.44 -0.34 -0.42 
30 -0.27 -0.36 -0.34 -0.50 
36 -0.26 -0.43 -0.32 -0.36 
42 -0.28 -0.48 -0.32 -0.25 
48 -0.16 -0.35 -0.19 -0.12 
54 0.00 -0.33 0.00 -0.06 
60 0.01 -0.28 0.04 -0.05 
66 0.02 -0.26 0.04 -0.05 
72 -0.03 -0.26 0.04 -0.01 
78 0.01 -0.22 0.06 0.16 
84 0.06 -0.20 0.07 0.19 
90 0.09 -0.15 0.08 0.16 
96 0.14 0.05 0.10 0.22 

(D) Value weighting 

S E C T O R 

Industrials Mines Oils All-shares 
T in months 

6 0.06 0.00 0.02 0.04 
12 -0.07 -0.18 -0.01 -0.11 
18 -0.24 -0.40 -0.25 -0.28 
24 -0.31 -0.42 -0.37 -0.35 
30 -0.29 -0.38 -0.36 -0.33 
36 -0.30 -0.29 -0.32 -0.33 
42 -0.33 -0.41 -0.29 -0.38 
48 -0.27 -0.29 -0.24 -0.32 
54 -0.10 -0.18 -0.23 -0.32 
60 -0.09 -0.21 -0.22 -0.29 
66 -0.08 -0.21 -0.31 -0.27 
72 -0.07 -0.18 -0.36 -0.25 
78 -0.04 -0.14 -0.24 -0.15 
84 -0.01 -0.13 -0.24 -0.08 
90 0.02 -0.09 -0.21 -0.02 
96 0.05 -0.05 -0.17 0.03 
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Portfolio 1 

1 3 5 7 9 It 14 

T.ln 8 month periods 

Portfolio 6 

1 3 5 7 9 11 14 

T.in 6 month porlods 

Industrials 

1 3 5 7 9 11 14 

T,ln 6 month periods 

Bias Adjusted Beta(Equally Weighted Portfolios) 
Porllolio 2 Portfolio 3 Porllolio 4 

3 5 7 9 11 14 

T.in 6 month periods 

Portfolio 7 

1 3 5 7 9 II 14 

T.ln 8 month periods 

Mines 

1 3 5 7 9 tt 14 

T.in 6 month periods 

1 3 5 7 9 11 14 

T.in 6 month periods 

Portfolio 8 

1 3 5 7 9 11 14 

T.ln 6 month poriods 

Oils 

3 5 7 9 11 14 

T.ln 6 month periods 

Portfolio 9 

3 5 7 9 11 14 

T.ln 6 month porlods 

All-shares 

3 5 7 9 11 14 

T.in 6 month periods 
1 3 5 7 9 11 14 

T.in 6 month periods 

Portlolio 5 

1 3 5 7 9 11 14 

T.tn 6 month periods 

Portfolio 10 

1 3 5 7 9 11 14 

T.ln 6 month periods 



Bias Adjusted Bela(Value Weighted Portfolios) 
Porllolio 1 

1 3 5 7 9 11 14 

T.ln 6 month periods 

Portfolio 6 

1 3 5 7 9 II 14 

T.ln 6 month periods 

Industrials 

1 3 5 7 9 II 14 

T.in 6 month periods 

Portfolio 2 

1 3 5 7 9 11 14 

T.ln 6 month periods 

Portfolio 7 

1 3 5 7 9 11 14 

T.ln 6 month periods 

Mines 

3 5 7 9 11 14 

T.ln 6 month periods 

Portfolio 3 

3 5 7 9 11 14 

T.ln 6 monlh periods 

Portfolio 8 

1 3 5 7 9 11 14 

T.ln 6 month periods 

Oils 

1 3 5 7 9 II 14 

T.ln 6 monlh periods 

Portfolio 4 Portfolio 5 

1 3 5 7 9 11 14 

T.in 6 month periods 

Porllolio 9 

1 3 5 7 9 11 14 

T.ln 6 month periods 

All-shares 

1 3 5 7 9 II 14 

T.ln 6 month periods 

1 3 5 7 9 11 14 

T,in 6 month periods 

Portfolio 10 

1 3 5 7 9 11 14 

T.ln 6 month periods 



5.2 C O N C L U S I O N S 

In simply attempting to repeat the study by Fama and French, we might be led to an overly 

optimistic interpretation of the B' s . However, closer examination of model assumptions and, 

in particular additional parameter estimation, show very clearly that a great deal of caution 

must be exercised. The model appears to represent the data only very weakly, but even 

more importantly, several model assumptions are seriously violated. In this light, the 

interpretation of the B' s is no longer as clear as was suggested in the theoretical discussion, 

where all results followed strictly from the exact nature of the model equations,in 

particular,the stationary component is AR(1). Whether the fact that the B' s turned out more 

or less as anticipated can still be attributed to mean reversion is now highly questionable. In 

fact it seems that their patterns occurred not because of a suitable model, but in spite of a 

mis-specified model. Of course this does not discount the theory of mean reversion - it 

simply says that the existence of mean reversion on the T.S.E. could not be convincingly 

proved from the framework of the model proposed by Fama and French. 
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