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Abstract 

Many problems in economics, statistics and numerical analysis can be formu­

lated as the optimization of a convex quadratic function over a polyhedral set. A 

polynomial algorithm for solving convex quadratic programming problems was first 

developed by Kozlov at al. (1979). Tardos (1986) was the first to present a poly­

nomial algorithm for solving linear programming problems in which the number of 

arithmetic steps depends only on the size of the numbers in the constraint matrix 

and is independent of the size of the numbers in the right hand side and the cost 

coefficients. In the first part of the thesis we extended Tardos' results to strictly 

convex quadratic programming of the form max {cTx-\xTDx : Ax <b ,x>0} 

with D being symmetric positive definite matrix. In our algorithm the number of 

arithmetic steps is independent of c and b but depends on the size of the 

entries of the matrices A and D . 

Another part of the thesis is concerned with proximity and sensitivity of integer 

and mixed-integer quadratic programs. We have shown that for any optimal solution 

z for a given separable quadratic integer programming problem there exist an op­

timal solution x for its continuous relaxation such that \\z — X^QQ < nA(A) 

where n is the number of variables and A(A) is the largest absolute sub-

determinant of the integer constraint matrix A . We have further shown that for 

any feasible solution z , which is not optimal for the separable quadratic integer 

programming problem, there exists a feasible solution z having greater objective 

function value and with \\z — 2||oo < nA(A). Under some additional assumptions 

the distance between a pair of optimal solutions to the integer quadratic program­

ming problem with right hand side vectors b and b', respectively, depends 

linearly on ||6 — 6'||i. The extension to the mixed-integer nonseparable quadratic 
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case is also given. 

Some sensitivity analysis results for nonlinear integer programming problems 

are given. We assume that the nonlinear 0 — 1 problem was solved by implicit 

enumeration and that some small changes have been made in the right hand side or 

objective function coefficients. We then established what additional information to 

keep in the implicit enumeration tree, when solving the original problem, in order to 

provide us with bounds on the optimal value of a perturbed problem. Also, suppose 

that after solving the original problem to optimality the problem was enlarged by 

introducing a new 0 — 1 variable, say xn+i . We determined a lower bound on the 

added objective function coefficients for which the new integer variable zn-|_i remains 

at zero level in the optimal solution for the modified integer nonlinear program. We 

discuss the extensions to the mixed-integer case as well as to the case when integer 

variables are not resticted to be 0 or 1 . The computational results for an example 

with quadratic objective function, linear constraints and 0—1 variables are provided. 

Finally, we have shown how to replace the objective function of a quadratic pro­

gram with 0—1 variables ( by an integer objective function whose size is polynomially 

bounded by the number of variables) without changing the set of optimal solutions. 

This was done by making use of the algorithm given by Frank and Tardos (1985) 

which in turn uses the simultaneous approximation algorithm of Lenstra, Lenstra 

and Lovasz (1982). 
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Chapter I 

I N T R O D U C T I O N 

Many problems in economics, statistics and numerical analysis can be formulated 

as the optimization of a convex quadratic function over a polyhedral set. Moreover, 

some algorithms for solving large scale mathematical programming problems mini­

mize a quadratic function over a polyhedral set as a subroutine, e.g. Held at al. [27] , 

Kennington and Shalaby [29] . Several methods that are based on solving a quadratic 

programming subproblem to determine a direction of search were also suggested for 

optimization problems with nonlinear constraints, e.g. Biggs [5] , Garcia and Man-

gasarian [20] and Gill at al. [21]. The existence of efficient quadratic programming 

algorithms and the fact that nonlinear functions can be sometimes accurately approx­

imated by quadratic functions led to the development of approximation methods that 

make use of quadratic subproblems, e.g. Fletcher [18]. The above mentioned are just 

some of the reasons why the quadratic programming arose as a very important part 

of the rich theory of Mathematical Programming. 

We start by presenting in Section 1.1. some preliminary definitions from linear 

algebra and convexity theory to be used in this thesis. Many of the results in this 

thesis make use of duality. We will review the convex nonlinear programming prob­

lem and its dual as stated by Wolfe[49] and, as a special case in Section 1.2., a convex 

quadratic programming problem and its dual as stated by Dorn [13]. In Section 1.3. 
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we introduce integer quadratic programming problems. In Section 1.4. some trans­

formations of quadratic programs which will be used in subsequent Chapters are 

summarized. We do not attempt to survey the algorithms suggested for optimiz­

ing a convex quadratic function, rather we restrict our attention to polynomially 

bounded algorithms and review them in Section 1.5. An introduction to lattices and 

the transformation of simultaneous Diophantine approximation problem to a short 

lattice vector problem will be given in Section 1.6. 

1.1. P R E L I M I N A R Y D E F I N I T I O N S F R O M L I N E A R A L G E B R A A N D 

In this Section we first review some well known definitions and results the details 

on which can be found in any text-book of linear algebra. 

We are considering in this thesis the vector space Rn . The elements of Rn are 

The elements of R are called scalars and will be denoted by lowercase Greek letters 

a, /?, 7, etc. 

The function N(x) : Rn —•> R is called a norm if 

1) N[x) > 0 for all x e Rn , N{x) =0 if and only if x = 0 ; 

2) N(ax) = \a\N{x) for all x e Rn , a e R ; 

3) N(x + y)< N{x) + N{y) for all x , y e Rn . 

We will use the standard notation || x || to denote the norm of a vector x . For 

1 < p < oo the p-norm will be given by 

C O N V E X I T Y T H E O R Y 

ordered tuples of real numbers denoted as and refered to as vectors. 

n 
xeR •n (1.1) 
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In this thesis we will make use of 

- ]Cr=i \xi\ t n e ^i-norm , 

IMh = \Xi\2)^ t n e ^2-norm , 

and 

||x||oo = max {|xj| : i = l,...n} the /oo-norm . 

These three norms are equivalent in the sense that for any x e Rn , 

IMIoo < \\xh < Vn\\x\\<x> (1-2) 

IMloo < ll^lll < ^Iklloo (1-3) 

N| 2 < ll^lli < V^Nh- (1-4) 

For a scalar a, \a] (resp., [aj ) will denote the smallest (resp., greatest) 

integer not smaller (resp., not greater) than a . 

The constraint sets of optimization problems to be treated in this thesis are sets 

of linear equalities and (or) inequalities which are usually stated in matrix form, 

therefore the second algebraic object of our interest are real matrices. Unless other­

wise stated, in our thesis vectors are considered as column vectors, i.e. x e Rn is an 

n x 1 matrix. Transposition applied to a vector x (resp., matrix A ) will have 

the usual notation xT (resp., AT ). 

For our purposes , some special square matrices deserve to be mentioned here. 

1) Identity matrix / : / = (<5iy)"y=1 , Sl}- = 

2) Diagonal matrix D : D = (dtj)"y= 1 , dij = 0 for i ^ j. 

3) Nonsingular matrix A : A is nonsingular if and only if there exist a 

matrix B such that AB = BA = I . B is usually denoted as A-1 and is 

refered to as the inverse of A . 

3 
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4) Symmetric matrix A : A is symmetric if and only if A = AT . 

5) Positive Semidefinite matrix A : A is positive semidefinite if and only if 

xTAx > 0 V x e Rn . A is positive definite if in addition xT Ax = 0 implies 

x = 0 . 

6) Idempotent matrix P : P is idempotent if and only if P2 = P . 

The vectors a^, ...,xr are said to be linearly independent if and only if their 

linear combination vanishes in a trivial way only , i.e. 

OL\X\ + ... + arxr = 0 

implies ai = ... = aT — 0 . Otherwise, the vectors are said to be linearly depen­

dent and each vector x; with ^ 0 can be expressed as a linear combination of 

the remaining vectors. 

A row ( resp., column ) rank of an n x n matrix A is the number of its 

linearly independent rows ( resp., columns ). The row and column rank of a given 

matrix always coincide and will be denoted by r(A) to be refered to as the rank 

of the matrix. A nonsingular n x n matrix A has a full rank , i.e. r[A) = n . 

A determinant is a function that assigns to each n x n matrix A with columns 

A\,...,An a scalar value denoted by det A that hasthe following properties: 

For each scalar a and each i = l,...,n 

1) det(Ai,...,aAi,...,An) = a d e t ( A i , A i , A n ) , 

2) det(Ai,.., A{,.., Aj,.., An) = det(Ax,..,Ai + aAj,.., Aj,.., An) for each j ^ i , 

3) det(I) = 1 . 

As a consequence, it can be observed that det A for a singular matrix A is equal to 

zero. For a nonsingular matrix with all entries integral , det A is not less than one. 
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For n > 3 , determinants are very inefficient as a computational tool, but they are 

useful to obtain some theoretical results. For example, if A is an n x n nonsingular 

matrix then the cofactor of any element ars of A is defined as 

fars = {-l)r+sdetArs, (1.5) co 

where Ars is the (n — 1) x (n — 1) matrix obtained from A by deleting row r and 

column s. The inverse matrix A~1 can then be stated as 

A - 1 = —^—cornA (1.6) 
de*A v ' 

where com A is the transpose of the matrix of cofactors of A . The unique solution 

xT — (x l 5 ...,xn) to a linear system Ax — b where b is an nxl vector is given by 

detAi . . . 
X i = -teZ ' t = 1'-'n ( L 7 ) 

where A{ is the n x n matrix obtained by replacing the i-th column of A by the 

vector 6 (Cramer's rule ). An upper bound on the value of detA is given by the 

following inequality 

\detA\ < ||oi||2---||°n||2- (1-8) 

where a\,...,an are columns of A (Hadamard's inequality). 

Combining (1.2) with (1.8) implies that if A = (aiy) with \a.ij\ < a for all i , j , 

then 

\detA\ < anni. 

For an m x n matrix A we will denote by 

A(A) = max { \detH\ : all square submatrices H of A}. 

5 



The scalar A(A) , where A is the constraint matrix of a quadratic optimization 

problem, will play an important role in many results of this thesis. 

For an m x n matrix A , the matrix norms to be considered in this thesis are 

m 

\\A\\i = max > |at-y| , (1-9) 
1 <j<n 

i = l 
n 

||A||oo = max \ \a.ij\ . (1-1°) 
Ki<m ~ ~ j = l 

The matrix norms are consistent with the vector norms in the sense that 

||-As||i < ||A||i||x||i , 

H-̂ xlloo < IÎ Hooll̂ lloo 

Next, we will review some definitions from convexity theory (see for example 

Stoer and Witzgall [44]). 

A function / : Rn —> R U {+oo, —oo} is convex if 

i) {x : f{x) = -oo} = 0 , 

ii) {x : f{x) < + 0 0 } ^ 0 , 

iii) f{Xx + (1 - A)y) < A/(x) + (1 - X)f[y) for 0 < A < 1 and x, y e Rn . 

E X A M P L E A quadratic function f(x) = cTx + ̂ xTDx with D symmetric 

positive semidefinite is a convex function. This since {x-y)TD{x-y) >0 for all 

x, y and therefore xTDx + yTDy > 2xTDy which in turn implies 

/(Ax + ( l - A ) y ) 

= c T(Ax + (1 - A)y) + f (Ax + (1 - A)y)T7J(Ax + (l - A)y) 

= Ac r x + (1 - A)cTy + \\2xTDx + 1(1 - \)2yTDy + A(l - \)xT Dy 
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< XcTx + (1 - \)cTy + \X2xTDx + \(l - X)2yTDy 

+ |A(1 - X)xTDx + \X(l - X)yTDy 

= XcTx + (1 - X)cTy + \XxTDx + |(1 - X)yTDy 

= Xf(x) + (1 - X)f(y) . 

If D is positive definite, then f[x) = cT x-\-\xT Dx is a strictly convex function. 

With regard to the optimization of a convex function, recall that every local minimum 

is a global one and that a strictly convex function has a unique minimum. If / is 

convex, then — / is concave. 

A set S C Rn is said to be a convex set if it contains all convex 

combinations of its elements, i.e. for any x 1 , x 2 , x s e S , Yli=i wix% e & f ° r a u 

Wi > 0 , V i and X2i=i wi ~ 1 • 

If S contains all nonnegative linear combinations of its elements , i.e. 

Yli-i W{Xl , tu,: > 0 for all i , then it is called a convex cone . 

The solution set P of a finite system of linear inequalities Ax < is a convex 

set refered to as a polyhedron . A cone which is a polyhedron is called a 

polyhedral cone and it is the solution set of some homogeneous system of linear 

inequalities Ax < 0 . In Chapter III we will use the following theorem due to 

Minkowski (which is a special case of Caratheodory's theorem see e.g. [44], page 55): 

T H E O R E M 1.1.1 Every polyhedral cone has a finite set of generators. 

P R O O F See Stoerand Witzgall [44], Theorem 2.8.6., page 55. 

• 
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1.2. D U A L I T Y I N C O N V E X N O N L I N E A R P R O G R A M M I N G 

Although our thesis is concerned mainly with quadratic programming, the results 

presented in Chapter IV were shown to be valid for a broader class of problems, 

namely for convex nonlinear programs in which some variables are restricted to be 

integral. In this Section we will review a duality for convex nonlinear problems as 

introduced by Wolfe [49] and will then state a duality theorem of Dorn [13] for a 

special case of quadratic convex programming problems. 

Consider the following nonlinear programming problem 

min {f{x) : gi(x) > 6,-, i = 1 , m } (l-ll) 

where x is an n x 1 vector, / is (resp., gi ,i = l , . . . , m are) real valued, 

differentiable convex (resp., concave) functions on Rn . 

Denote by S a set of feasible solutions to (l.11). In the sequel we assume that on 

the boundary of the constraint set no singularities will occur, i.e. that some constraint 

qualification is satisfied. (For detailed discussion on constraint qualifications see e.g. 

[3] or [36].) For example, we can assume Abadie's constraint qualification (see [4]) of 

the following form to be valid. 

Let x e S , then every z satisfying Vgl(x)Tz > 0 for all i such that 

gi{x) = b{ has to be an element of a cone of tangents 

T = { z : z = lim Xn(xn - x), xn e S, Xn > 0 for all n, lim xn = x }. 
n—>oo n—>oo 

If the constraints are all linear, this constraint qualification is automatically satisfied. 

(See Bazaraa [4], Lemma 5.1.4., page 164.) The Karush-Kuhn-Tucker necessary 

optimality conditions (which are also sufficient optimality conditions under suitable 

convexity assumptions) are as follows. 
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If x is an optimal solution to problem (1.11) under some constraint qualification 

condition, then there exists a vector u > 0 such that 

V/(x) = uTVg(x) 

and 

uT{g{x) - b) = 0 . 

For problem (1.11) Wolfe's dual [49] is given by 

max bTu + f(x) — uTg(x) 

s.t. uTVg(x) = V/(x) (1.12) 

u > 0 

where bT = (bu 6m) and ff(x)T = (gi{x), ...,gm(x)). 

If all the constraints are linear, then the objective function of (1.12) can be 

equivalently written as bTu + f(x) — xTV f(x) . 

Consider now the convex quadratic programming problem 

min {cTx + \^xTDx : Ax > b,x > 0} (1-13) 

where D is a symmetric positive semidefinite n x n matrix , c and x are 

re x 1 vectors , b is an m x 1 vector and A is an m x re matrix. Positive 

semidefiniteness of the matrix D implies convexity of the objective function. As 

stated by Dorn [13] a dual of problem (1.13) can be written as 

max {bTu - ~xTDx : ATu - Dx < c,u > 0} . (1.14) 

The Karush-Kuhn-Tucker optimality conditions for a pair of problems (1.13) and 
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(1.14) are the primal and dual feasibility conditions 

Ax > b 

x>0 (1.15) 

ATu — Dx < c 

u > 0 , 

and the complementary slackness conditions 

xT(c - ATu + Dx) = 0 

uT{Ax - b) = 0 . 

(1.16) 

The existence theorem for quadratic programming states that the feasibility of both 

the primal and dual programs implies the existence of optimal solutions for each of 

them . The following theorem is taken from Dorn [13]. 

T H E O R E M 1.2.1 i) If x = x is a solution to (1.13) , then a solution [u,x) = 

(u0,x0) exists to problem (1-14) such that Dx = Dx0 . 

ii) Conversely , if a solution {u,x) = (uo,Xo) to problem (1.14) exists, then a 

solution x which satisfies Dx = DXQ exists to problem (1.13). 

In either case the objective function values for (1.13) and (1.14) are equal. 

Also, if one of the problems (1.13) or (1-14) is feasible while the other is not, then 

on its constraint set the objective function of the feasible program is unbounded in 

P R O O F See Dorn [13], page 156. 

• 
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the direction of extremization (see [13] ). 

The Fundamental Theorem of linear programming states that if a linear program 

has an optimal solution, then it has one which is a basic solution of a linear system of 

constraints. For a quadratic programming problem this is, however, not the case. An 

optimal solution for a quadratic programming problem may occur everywhere in the 

feasible region, in the interior as well as on the boundary. Consideration of nonbasic 

solutions makes quadratic programming more difficult than the linear one. However, 

if a quadratic program has an optimal pair (x T, uT) of primal and dual solutions 

satisfying (1.15) and (1.16)), then it has one which is a basic solution for the system 

of linear equalities and inequalities (1.15) or, equivalently, a solution that is a vertex 

of a polyhedron defined by (1.15). Combined with Cramer's rule (see (1.7)) this fact 

gives us a way to bound the values of the primal and dual variables. This will be 

discussed in more detail in Section 1.5. 

1.3. I N T E G E R Q U A D R A T I C P R O G R A M M I N G 

Many real world problems require a mathematical programming formulation in 

which all or some of the variables are restricted to be integral. Moreover, a quadratic 

objective function enables one to take into account the interactions between variables. 

The applications in, for example, finance [34], capital budgeting [31] or scheduling 

[40] have natural representations as 0—1 quadratic programming (i.e. integer 

quadratic programming in which the variables are restricted to be zero or one). 

In this thesis we will consider a general mixed-integer quadratic programming 

problem and will discuss some sensitivity aspects of it (see Chapter III and IV) as 

well as a transformation of the objective function coefficients in Chapter V . 
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1.4. S O M E T R A N S F O R M A T I O N S O F Q U A D R A T I C P R O G R A M S 

In some cases the form of the objective function cTx + x Dx of a quadratic 

programming problem is not suitable for our purposes. In this event some transfor­

mations are performed to obtain an equivalent quadratic programming problem of 

suitable form. In this section we will list the transformations of the objective function 

to be used in subsequent chapters. 

Consider, for example, the quadratic cost matrix D . Without loss of generality 

one can assume that D is symmetric since, if not, D = ^(D + DT) is symmetric and 

replacing D by D in a quadratic programming problem of the form min {cTx + 

xTDx : Ax > b, x > 0} will not change the objective function value. 

Suppose, next, that we have a quadratic 0 — 1 minimization problem of the form 

min f(x)=cTx + xTDx 

s.t Ax > b (1.17) 

0 < x < 1 

x integer 

If we want to solve this problem by implicit enumeration where at each node the 

continuous relaxation of a corresponding integer subproblem is solved, then we would 

like to ensure the convexity of the objective function (in order to avoid local minimum 

points). If D is not positive semidefinite, it is shown in [25] that problem (1.17) 

can be replaced by an equivalent problem in which the objective function is given by 

f'(x) = {cT-XeT)x + xT{D + XI)x (1.18) 

where eT = (l , . . . , l) and A is a positive scalar such that D + XI is positive 

12 



semidefinite. This is due to the fact that x2 = x for any vector x of zeros and 

ones. 

It is often desirable to have a homogeneous quadratic form in the objective func­

tion of a quadratic programming problem. This can be achieved by adding a new 

variable and a new constraint. For example, for problem (1.13) an equivalent homo­

geneous problem is 

min \{xTM(°T

C

Q)Ca) 

s.t. Ax > 0 (1.19) 

a = 1 

x > 0 . 

Note that if D is positive definite adding a constant ~cTD~1c to the objective 

function results with a convex quadratic program since the matrix cTr)-ic) 

is positive definite ( observe that ( X T , O J ) ( ^ C
TD-1 c)i.'a) c a n ^ e w r n ^ e n as (x + 

ac7D-l)T'D{x + ac1'D~l) ). 

An alternative way to homogenize the objective function of a strictly convex 

quadratic programming problems is to leave the matrix D unchanged, but to change 

the right hand side vector. This by replacing the vector x in (1.13) by z — D~lc . 

The resulting problem is 

~-cTD~1c + min -zTDz 
2 2 

s.t. Az >b + AD'h (1.20) 

Iz- Ix = D'lc 

x > 0 . 
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We will employ this transformation in Chapter II. 

Due to the fact that a positive semidefinite matrix can be diagonalized, we shall 

see in Chapter III how a convex quadratic programming problem can be replaced by 

an equivalent separable convex quadratic programming problem. 

Without loss of generality assume that a positive semidefinite matrix C is of 

the form ( Q ° ) where A = (<xt-y) is positive definite (this can be done by a change 

of coordinates). Using the diagonalization for positive definite matrices proposed in 

[48], we obtain 

A = LDLT (1.21) 

where D is a positive diagonal matrix and L is lower triangular with ones on the 

diagonal. The entries in D and L are determined using the following equations 

(which are modifications of the equations from Cholesky's decomposition) 

j j ' - i 
J Z Likdktjk = a,ij giving tijdj = ot-y - ^ tikdkljk , j = 1 , i - l , (1-22) 
k=l k=l 

x i— 1 

UkdkUk = an giving d, = ai{ - ^ l i k d k l i k . (1.23) 
k=l fc=l 

From (1.21) if follows that C can be written as ( Q ) D ( L T , 0 T ) . Observe that no 

square roots appear in the process of diagonalization. 

1.5. A R E V I E W O F P O L Y N O M I A L A L G O R I T H M S F O R 

Q U A D R A T I C P R O G R A M S 

Let us start this Section with some preliminary definitions (see for example [43] 

or [45]). 
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1) The dimension of the input is the number of data in the input of a given 

optimization problem. (Therefore, each number adds one to the dimension of the 

input). 

2) The size of a number is the length of its binary description (i.e. the number 

of bits needed to record a given number in a binary format). For a rational 

number ^ its size s(^) is given by 

*{-) = \l°92(P + 1)1 + \l°92{q + l)] + 1 . (1.24) 
Q 

A size of a rational vector r T = ( r l 5 . . . , r n ) (resp., matrix A = {o-ij)j=1 j-y ) is 

given by s(r) =n + Y!i=i s{ri) (resp., s(A) = mn + £ i y s(a{j) ). 

3) The elementary arithmetic operations are additions, comparisons, mul­

tiplications and divisions. 

4) An algorithm's running time is the number of arithmetic operations per­

formed in it. 

5) An algorithm is polynomial if it has running time polynomial in the dimen­

sion and in the size of the input and, when applied to rational input, the size 

of the numbers occuring in it is polynomially bounded by the dimension of the 

problem and the size of the input numbers. 

6) An algorithm is strongly polynomial if it has running time polynomial in 

the dimension of the input and, when applied to rational input, the size of the 

numbers occuring in it is polynomially bounded by the dimension of the problem 

and the size of the input numbers. 

Note that the merit of a strongly polynomial algorithm lays in the fact that its 

running time is independent of the size of the input data. 
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In 1979 HaCijan [24] proved that a linear programming problem is polynomially 

solvable. In his result the size of the input was a very important constant. For the 

sake of completeness, let us state some well known results with respect to the size of 

the input. 

T H E O R E M 1.5.1 Let A be a square rational matrix of size a . Then the 

size of det(A) is less then 2cr . 

P R O O F See Schrijver [43], Theorem 3.2., page 29. 

• 
Consider a polyhedron P — {Ax < b} and assume that A and b are integral. 

Denote by L the size of the input for P . 

L E M M A 1.5.2 If the system Ax < b is consistent, then there exists a solution 

x° in the Euclidean ball S = {x : \\x\\ < 2L } . 

P R O O F See Hacijan [24], Lemma 1. 

• 

As a consequence of Hacijan's result, in the same year Kozlov, Tarasov and 

Hacijan [30] gave a polynomial algorithm for quadratic programs with n variables 

and m constraints of the form 

min f(x) = dTx + -xTCx (1.25) 

s.t. Ax < b 

where C is an integral symmetric positive semidefinite matrix and all other input 

16 



data are integrals as well. The size of the input was defined as 

L= YI l°92(\cij\ + 1) + YloM\dj\ + 1) 

m,n m 

+ Y / o 0 2 ( h y | + 1) + Y^l°92{\k \ + 1) + log2mn + 1 . (1.26) 
i j = l i=l 

Now, if problem (1.25) has a solution, it has a pair of optimal primal and dual 

variables (xT ,yT) which is a vertex of the polyhedron P' defined by 

Ax < b 

ATy -Dx = d (1.27) 

y > 0 . 

Observe that the length L' of the input data for P' is not greater than 2L . Using 

Lemma 1.5.2, one can then give an upper bound to the components of (xT,yT) . 

Namely, any component of (xT,yT) will have the form | where t and s are 

integers such that \t\ , \s\ < 22L . Since the objective function is quadratic, the 

smallest rational number will be ^L)2 ~ 2 ^ a n c * n e n c e 

\dTx+ -xTDx\ < 25L . I 2 l -

After checking the compatibility of a system of linear equalities and inequalities 

(1.27), Kozlov at al. found the exact value /o = | of the objective function. This 

was done by checking the compatibility of 13L + 2 systems P^ of the form 

Ax < b 

f[x) < . 

where tk and Sk are integers such that \tk\ < 2 1 3 L + 2 and \sk\ < 2 8 i + 2 . Having 
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the objective function value of (1.25), an exact optimal point was obtained. 

Helgason, Kennington and Lall [28] gave a polynomially bounded algorithm for 

a class of singly constrained quadratic programming problems of the form 

min -xTDx — aTx 
2 
n 

s.t. YZXJ = c l 1 - 2 8 ) 
j=i 
0<x<b 

where D is a positive diagonal matrix and b is a nonnegative vector. This 

very specific problem arised in a decomposition procedure to solve multicommodity 

network flow problems using subgradient optimization. The structure of the objective 

function and constraints enables one to explicitly represent the primal and dual 

variables as a function of a single dual variable A (the one associated with the 

constraint ]Cy=i xj = c )• The optimal value of A can be found by using a 

binary search on the interval with 2n points. According to definition, since the 

number of elementary arithmetic operations is polynomially bounded by the number 

of variables, Helgason at al.'s algorithm for solving the restrictive class of problems 

(1.28) is strongly polynomial. 

A more general class of problems was studied by Minoux [39]. He devised a 

polynomial algorithm for minimum quadratic cost flow problems of the form 

min ^2 ^u{<Pu - <Pu)2 

utU 
s.t. A<p = 0 (1.29) 

bu < fu < cu , VueU 

where U is the set of arcs and A is the node-arc incidence matrix of a given graph, 
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bu (resp., cu ) is the integer lower (resp., upper) bound on the flow value <pu on 

arc u , <pu are integer constants and OJU are positive numbers for each u . 

Minoux's algorithm consists of solving a number of successive approximations of 

the initial problem, obtained by replacing the quadratic cost function with a piecewise 

linear convex cost function, using the out-of-kilter algorithm. The approximations 

are iteratively refined until a point, sufficiently close to the optimal solution of the 

initial problem, is obtained. Using the fact that for convex quadratic programs with 

nonempty feasible sets there exist an optimal point which is a basic solution of the 

polyhedron defined by the primal and dual constraints, the minimal distance between 

two basic solutions defines the sufficient approximation to locate the optimal solution. 

Since the number of approximations is polynomially bounded by the input size and 

the out-of-kilter is a polynomial time algorithm, the polynomial bound on the running 

time of Minoux's algorithm follows. 

A drawbeck of Kozlov at al. and Minoux's algorithms is that their running 

time depends on the input size. It is still an open question whether there exist an 

algorithm for solving convex quadratic programming in strongly polynomial time. In 

Chapter II we will present an algorithm for strictly convex quadratic programming 

problems which runs in time independent of the size of the linear cost coefficients 

and the right hand side vector. 

1.6. B A S I S R E D U C T I O N A L G O R I T H M A N D A P P L I C A T I O N T O T H E 

S I M U L T A N E O U S D I O P H A N T I N E A P P R O X I M A T I O N P R O B L E M 

We start this Section by introducing a lattice and a problem of finding a short 

vector in it. We then state the simultaneous Diophantine approximation problem and 

show how it can be transformed into a short lattice vector problem. More detailed 
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discussion can be found in e.g. Lovasz [35] or Schrijver [43]. 

Let di,...,an be linearly independent real vectors in Rn . The set of all 

points x = Z\a,\ + ... + znan with integral zi,...,zn is called a l a t t i c e with 

basis A = (ai,...,an) and denoted by A(A) . A lattice is an additive group and 

its importance follows from the fact that it is the most general group of vectors 

in an n—dimensional space which contains n linearly independent vectors and 

which further satisfies the property that there is some sphere around the origin which 

contains no other vector of the group except the origin. 

The basis is not uniquely determined by the lattice. For example, we can define 

n 

a'i = Jy2vijaj > i = l,...,n (1.30) 
j=i 

as where Vij are any integers with det(vij) =_ 1 . Then each a t can be written 

X2y=i wija'j with integral tu,-y . Substituting this expression into (1.30) and using 

the linear independence of a; , it follows that 

Y^WMi = {l 
1 if i = I , 

otherwise . 

Hence, det(wij)det(vij) = 1 implying det(u>ij) = det(vij) =t. 1 • It follows then that 

det(ai,-...,an) =1 det{a\,...,a'n) . (See for example Cassels [7]). We can, therefore, 

define the d e t e r m i n a n t of a l a t t i c e , detA = |det(A)| where A = (ai,...,an) is 

any basis of the lattice. Geometrically, detA denotes the volume of a parallelopiped 

whose vertices are lattice points and which contains no other lattice point. 

An upper bound of detA is given by Hadamard's inequality 

detA < 11 «x 1 i 2 -'" [| 112 

A lower bound of detA is due to Hermite (1850) and is given as follows. 
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Every n—dimensional lattice A has a basis ( 6 1 , . . . , b n ) such that 

IM|2---||M2 < cndetk (1.31) 

where cn is a constant depending only on n . 

This result led to the question of finding such a basis. As stated by Minkowski, 

the solution to the above problem always exists provided cn > ( f^) 2 • To find 

a basis in the lattice for which the product of the euclidean norms of its vectors is 
n ( n — 1 ) 

minimal is NP—hard. However, for a weaker bound, taking c n = 2 4 , Lovasz 

gave a polynomial algorithm to find a basis satisfying (1.31). (See Lenstra at al. 

[33]). 

A related problem is the following (Short Lattice Vector Problem) : 

Given an n—dimensional lattice A and a number A , find a vector b e A , b 7̂  0 

such that H&H2 < A . 

A classical result of Minkowski implies that for A > 2^J-^-e y/detk such a vector 

always exists, but no polynomial algorithm to find it is known to date. The shortest 

vector in the reduced basis obtained by Lovasz's basis reduction algorithm has a 

length at most 2~*~~ \fdetk . This is not the shortest vector in the lattice, however 

it is very useful in some applications. 

Consider, for example, the Simultaneous Diophantine Approximation Problem 

(see e.g. Lovasz [35]) : 

Given cci , . . . ,a n e Q , 0 < e < 1 and Q > 0 find integers p i , . . , p n and q such 

that 

0 < q < Q , | a » - - | < - ^ , t = l , . . . , n . (1.32) 
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A classical result due to Dirichlet (1842) is the proof of the existence of integers q 

and i = 1, ...n such that (1.32) is satisfied, whenever Q > s~n . No polynomial 

algorithm to find these integers is known (except for the case n = 1 when the 

method of continued fractions can be applied). However, a weaker approximation 

IC /">> n.( re+ 1 ) _ 

(for Q > 2 4 e n ) can be found by transforming this problem into a short 

lattice vector problem and using Lovasz's basis reduction algorithm as follows [35] : 

Consider the lattice A(A) generated by the columns of the (n + 1) x (n + 1) 

nonsingular matrix 

/ l 

0 
Vo 

0 a i \ 

1 ocn 

Q 

Any vector b eA(A) has the form bT = (px + p n + 1 o : i , . . . ,p n + p n + i a n , p n + 1 - | ) , 

where pT = (p l 5 . . . , p n + 1 ) e . Suppose that 6 ^ 0 but ||6||2 < e . This implies 

Pn+\ 7̂  0 . Without loss of generality assume p n +i < 0 and denote q = —pn+i . It 

follows then that 

\bi\ = \pi — qoti\ < E , i = l,...,n 

E 

>n+l | q < E or q < 0. 

(1.33) 

(1.34) 

The shortest vector in the reduced basis of a lattice A(/l) obtained by Lovasz's algo­

rithm satisfies ||6||2 < 2* " +</ d e < A(^) = 2 * ( f ) ' 4 l • F o r 0- = Z^^e < 

E and hence | |&||oo < ||^||2 < £ • 

We .shall make use of Lovasz's basis reduction algorithm in Chapter 5 in order 

to find simultaneous approximations of the objective function coefficients of a given 

quadratic integer programming problem. 
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Chapter II 

T O W A R D S A S T R O N G L Y P O L Y N O M I A L A L G O R I T H M 
F O R S T R I C T L Y C O N V E X Q U A D R A T I C P R O G R A M S 

In [45] Tardos was the first to present a polynomial algorithm for solving linear 

programming problems in which the number of arithmetic steps depends only on the 

size of the numbers in the constraint matrix and is independent of the size of the 

numbers in the right hand side and the cost coefficients. 

The aim of this Chapter is to extend Tardos' results to convex quadratic pro­

gramming problems of the form max{c ri - ~xT Dx : Ax < b, x > 0} with D being 

a positive definite matrix. We assume, without loss of generality, that A and D 

are integral. We develop a polynomially bounded algorithm for solving the strictly 

convex quadratic problem where the number of arithmetic steps is independent of c 

and b but depends on the size of the entries of the matrices A and D. If in partic­

ular the size of the entries in A and D is polynomially bounded in the dimension 

of the input, the algorithm is strongly polynomial, e.g., when the quadratic term 

corresponds to a least squares and A is a node arc incidence matrix of a directed 

graph. 

Following Tardos [45] the algorithm presented here finds optimal primal and 

dual solutions to the quadratic programming problem (if they exist) by solving a 

sequence of simple quadratic programming problems using the polynomial algorithm 
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for solving quadratic programming problems given in [30] and by checking feasibility 

of a linear system in time independent of the right hand side using Tardos' feasibility 

algorithm [45]. 

2.1. S E T U P O F T H E P R O B L E M 

For simplicity of exposition we will first consider the quadratic programming 

problem of the form 

max { cTx — -xTDx : Ax = fe, x > 0 } (2.1) 

where 

A is an integral m x n matrix with rank (yl) = ra; 

D is an integral n x n symmetric positive definite matrix; 

c and x are n-vectors and fe is an m-vector. 

The validity of the algorithm for quadratic programming problems with inequality 

constraints will be discussed in Section 2.3. 

Using the fact that D is nonsingular we can substitute z ~ x — D~lc in (2.1) 

resulting with the following equivalent problem 

^cTD-lc + max {~zTDz : Az = b - AD~xc , lz- Ix= -D~xc , x > 0}. (2.2) 

Recall that positive definiteness of D implies that the objective function of (2.1) is 

strictly concave which in turn implies the uniqueness of the optimal solution of (2.1) 

(if one exists). Moreover, if the set {x : Ax — fe, x > 0} is not empty, (2.1) will be 

bounded. The uniqueness of the optimal value of x implies also the uniqueness of 
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the optimal value of z; however observe that z is not restricted to be non-negative 

any longer. Using now Dorn's duality [13], we can state a dual of the maximization 

problem given in (2.2) as 

min {yT{b - AD~lc) - vTD~1c + -zTDz : ATy + Iv + Dz = 0, t; < 0}. (2.3) 
2 

Substituting v = — Dz — ATy results with (see Section 1.4) 

min {yT{b - AD~lc) + [yTA + zTD)D'1c + -zTDz : ATy + Dz>d} = 
2 

min {yTb - yTAD~lc + yTAD~lc + zTc + -zTDz : ATy + Dz > 0}. 
2 

Finally, after adding slack variables 5 , we get a dual of (2.2) of the form 

-cTD~1c + min {cTz + bTy + -zTDz : ATy + Dz - Is = 0, 5 > 0}. (2.4) 
2 2 

It is easy to see that replacing z by x — D~lc will give us the following dual of 

(2.1) 

min {bTy + ^xTDx : ATy + Dx - Is = c, s > 0}. (2.5) 

It is important to note that the same slack variables appear both in (2.4) and 

(2.5). Since the algorithm to be described in the following is significantly simpler 

when applied to problems with zero right hand side, we will always use the above 

transformation to replace a pair of primal and dual problems of the form (2.1) and 

(2.5) by an equivalent pair of the form (2.2) and (2.4). 

Recall that the Karush-Kuhn-Tucker optimality conditions for a pair of problems 

(2.1) and (2.5) will have the form 
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(2.6) 

x,s > 0 and x s = 0 . 

At each iteration of the algorithm to follow we will detect at least one new slack 

variable which is equal to zero in all optimal pairs of primal and dual solutions for 

the pair of problems (2.1) and (2.5). Or equivalently, at each iteration we will detect 

at least one new dual constraint which is tight at optimality. After each iteration 

we will add constraints of the form Si = 0 , i E I (where J is the set of slack 

variables detected to be zero at the current iteration) to the linear system given in 

(2.6) and perform Tardos' feasibility algorithm which will give us a feasible solution 

(xT,yT,sT). We will check if xTs = 0. If so, the algorithm will terminate since 

an optimal pair of primal and dual solutions was determined. If on the other hand 

xTs 0, we will perform another iteration of our algorithm. In at most n iterations 

we will find a pair of optimal primal and dual solutions. 

As stated above the algorithm will be applied to a minimization problem of the 

form 

Before stating the algorithm we will give two preliminary lemmas. The first one is 

a direct generalization of Lemma 0.1 in [45], while the second is a special case of 

Lemma 2, p. 707 in [15]. 

L E M M A 2.1.1 Replacing ( c T , 6 T , 0 r ) in (2.7) by {c'T,b,T,a'T) = (cT ,bT ,0T) 

P R O O F If (zT,yT,sT) solves (2.7), then it also solves the problem obtained 

from (2.7) by replacing the linear cost coefficient (c T ,6 T ,0 T ) by (c'T, b'T, a'T) and 
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vice versa. This since 

z 
(c ,b ,a J + \ z T D z - ( e T y , 0 T ) 

( z ^ 

y 

-±zTDz = -pT(D,AT,-I) y -pT0 = o 

which is a constant. 

• 

L E M M A 2.1.2 If (zT,yT,sT) solve (2.7), then (azT, ayT, asT) solves the 

quadratic problem in which (c T,b T,0 T) in (2.7) is replaced by a[cT,bT,0T) for 

any scalar a > 0. 

P R O O F Let (zT,yT,sT) solve (2.7). Then for any scalar a > 0 , acT(az) + 

abT(ay) + \{az)TD(az) = o?{cTz + bTy + ~zTDz) and, therefore, Q : ( 2 T , y T , 5 R ) 

solves (2.7) in which (cT, bT,0T) was replaced by a(cT,bT,0T) . 

• 

We are now ready to describe the polynomial quadratic programming algorithm 

whose number of arithmetic steps is independent of the size of the numbers in the 

vectors c and b . 

2.2. T H E Q U A D R A T I C P R O G R A M M I N G A L G O R I T H M 

The Q U A D R A T I C P R O G R A M M I N G A L G O R I T H M (QPA) described below is 

a direct generalization to a class of strictly convex quadratic programming problems 

of Tardos' linear programming algorithm. It uses as input a strictly convex quadratic 

27 



program (2.1), Tardos' feasibility algorithm, which is a polynomial algorithm to check 

the feasibility of a system of linear inequalities in time independent of the right hand 

side and if feasible it generates a basic solution, and a polynomial algorithm for 

solving convex quadratic programming problems, e.g., Kozlov et al.'s algorithm. The 

output from QPA is a pair of optimal primal and dual solutions for (2.1). 

T H E Q U A D R A T I C P R O G R A M M I N G A L G O R I T H M 

S T E P 1. Use Tardos' feasibility algorithm to check whether {Ax = b, x > 0} 

is feasible. If not, terminate since (2.1) is infeasible. If feasible, then the positive 

defmiteness of D guarantees boundedness which in turn implies that the dual 

constraint set is feasible. Set K = 0. 

S T E P 2. Let D°x + AoTy - E°s = c° denote the equality system Dx + ATy-

Is = c together with S{ = 0 for i € K and let P° = {(xT,yT,sT) : Ax = b, 

Dx + ATy — Is = c, S{ = 0 for i G K , x > 0, s > 0} . Use Tardos' feasibility 

algorithm to find a point say (xT ,yT ,sT) in P°. If xTs — 0 terminate with 

(xT,yT,sT) as an optimal solution to (2.1) and (2.5). 

S T E P 3. Find the projection {c'T,b'T,a'T) of (cT,bT,0T) onto the null 

space of (D°, AoT, — E°). Since the rows are linearly independent, this can be done 

using Gaussian elimination. Recall that for a matrix G with full row rank, the 

projection onto its null space {x : Gx = 0} is determined by the idempotent 

matrix P = I — GT(GGT)~1G. I.e., for some vector i its projection onto the 

null space of G is Px (G(Px) = G(x - GT(GGT)~1Gx) = Gx - Gx = 0) where 

Px = x - GT(GGT)~1Gx = x - GTp and p = (GGT)~~1Gx. Applying this to our 

case we obtain 

(c>T,b'T,a'T) = (c T , 6 T , 0 T ) - pT(D°,A°T,-E°). 
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If (c'T, b'T, a'T) = 0 then solve the problem min{±zTDz : D°z + A°Ty -E°s = 0, 

s > 0} by Kozlov et al.'s algorithm to obtain an optimal solution (xT = zT + 

cTD-1,yT,sT). 

S T E P 4. Let 
_ (3ra + m)(2n + m)A 

tt= 11(^,6 ,̂̂ ^)1100 

where A is a maximum absolute sub determinant of (D, AT, — I) , 

i = l , . 

6i = M l t = l , . .., m 

i = l , . ..,n 

S T E P 5. Use Kozlov et al.'s algorithm to find an optimal solution (vT,zT) to 

max {-^zTDz : DoTv - Dz = c, = 6, - £ o r w < a} 

which is a dual of 

min {cTz + bTy + aTs + -zTDz : D°z + AoTy - E°s = 0, 5 > 0}. (2.8) 
2 

Let 

I = {i: (-E°Tv)i < aa'i - (2n + m)A}. 

Add the set I to K and go to Step 2. 

The following lemmas which are extensions of corresponding lemmas in [45] will 

be used in order to verify the validity of QPA. 

L E M M A 2.2.1 Let (zT,yT,sT) be an optimal solution to the problem (2.8) 

where {cT ~bT,aT) = \(cT,bT,aT)] of some vector {cT,bT,aT) e R n + m + n, D is 
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an integral nx n positive definite matrix and D°,A° and E° are integral matrices 

of appropriate dimensions. Let (vT,zT) be an optimal dual solution for (2.8). Then 

for any optimal solution (zT, yT, sT) to 

min {cTz + bTy + aTs + -zTDz : D°z + AoTy - E°s = 0, s > 0} (2.9) 
2 

(i.e., "unrounded" problem), we have, 

{-E°Tv)i <ai- (2n + m)A implies sl = 0. (2.10) 

P R O O F The dual of (2.8) has the following set of constraints 

DoTv - Dz = c < c + e 

A°v = b < 6+ e 

—E°Tv < a < a + e 

where e is a vector of ones of appropriate dimension. Moreover, since (vT,zT) is 

an optimal dual solution for (2.8) and (zT,yT,sT) an optimal primal solution, we 

have from complementary slackness that sT(a + E°Tv) = 0 . Coupling with the fact 

that a < a we obtain 

(—EoTv)i < di <a,i implies S{ = 0. (2-H) 

Now, suppose that (zT, yT, sT) is an optimal solution to the "unrounded" 

problem (2.9). Since (zT,yT,sT) is a feasible solution for (2.9) we have 

cT{z -z)+ bT(y -y) + aT(s - s) + \zTDz - \zTDz < 0. (2.12) 

Substituting u = z — z, u1 = y — y, u2 = s — s in (2.12) and rearranging terms 
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results with 

cTu + bTul + aTu2 + -uTDu + zT Du < 0. (2.13) 
2 

Since \uTDu > 0 for each u, we obtain from (2.13) that 

cTu + bTul + aTu2 + zTDu < 0. (2.14) 

We will prove the validity of (2.10) by contradiction. Suppose that (2.10) is not 

valid, i.e., there exists an index i for which (—E o Tv)i < a; — (2n + m)A and > 0. 

Now since by the optimality condition s t = 0 we have that u\ > 0. Moreover, 

u | > 0 for all j with sy = 0. If for some j , u2 < 0, then sy > 0 which on the other 

hand implies (see (2.11)) that (-£'°rC;)y > ay or -ay - (EoTv)j > 0. Now observe 

that the vector (uT,u1T,u2T) satisfies the system D°u + AoTul - E°u2 = 0. Thus 

there also exists an integral basic solution to D °u + AoTul - E°u2 = 0, u2 > 0 and 

u | > 0 for j with sy = 0 that satisfies (2.14). Denote this solution (uT, u1T, u2T) 

which by Cramer's rule satisfies || (uT,u1T,u2T) ||oo< A . Note that for the dual 

constraints DoTv — Dz = c and A°v = b corresponding to unconstrained primal 

variables z and y we have c < D°Tv — Dz < c + e and b < A°v < b + e which 

in turn implies || —c + D°Tv — Dz ||oo< 1? II — b + A°v ||oo< 15

 a n d for j with 

u | < 0 also | (—aT — vTE°)j \< 1. Combining the above facts and the conditions 

on (uT, u1T, u2T) we obtain from (2.14) that 

0 < -cTu - bTu1 - aTu2 - zTDu = (-cT - zTD)u - 6 T u J - aTu2) 

= {-cT - zTD)u - Pu1 -aTu2 + vT{D°u + A^u1 - E°u2) 

= ( - c T - zTD + vTD°)u + {-bT + vTAoT)ul + {-aT - vTE°)u2 

<T,n
k=1\(-cT-zTD + vTD°)k\\uk\ 
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+ EZL, I M T + vTAoTh 11 «i I + E!U** I (-«T - *TE°h 11 ul | 

+ (-aT - C r £ V ? < E L i K I + E L i I « l I "(2» + m)A 

+ Efc=i,fc#t I "fc l< n ^ + m A - (2n + m)A + (n - l ) A = - A 

which is a contradiction. 

• 

Before stating the following lemma (which will ensure the finiteness of the algo­

rithm), we will briefly explain the ideas used in the proof. 

Consider a full row rank matrix H of the form (Hj H^) and a vector x of the 

same dimension as the columns of H . Let us partition xT — (xj, x^) corresponding 

to the partition of H to H\ and H2- Then the projection (xj T ,x 2

T ) of xT onto 

the null space of H is given by (0 r ,x 2 ' r )- This since Hix[ + i f 2 x 2 = 0, x\ = 0 

has to be valid. 

In our case this tells us that wherever Sk — 0 is a row of D°z + AoTy — E°s — 0 

for k G {l,...,n}, the component a'k of the projection a' determined in Step 3 of 

the algorithm is equal to zero. 

Next, if we have a vector x = GTu for some full row rank matrix G its 

projection to the null space of G is zero since Px = (7 — GT(GGT)~1G)x = 

GTu - GT(GGT)~1GGTu = GTu - GTu = 0. 

If we have a vector y which is a projection of some vector w (i.e., y — Pw) onto 

the null space of G , then the projection of y onto the null space of G is the same 

vector y. This since the projection matrix P = I — GT(GGT)~1G is idempotent 

(i.e., P • P = P ) and therefore Py = P{Pw) = Pw = y. 
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Now, combining the above facts it is easy to see that for a vector d = c' + ATv , 

where c' is a projection of some vector c onto the null space of a full row rank 

matrix A, Pd = c'. 

L E M M A 2.2.2 The set I found in Step 5 of QPA contains at least one index 

i such that S{ = 0 is not a row of D°z + A°Ty — E°s = 0. (Recall that the 

latter system is equivalent to D°x + A°Ty — E°s — c° under the transformation 

z = x - D~lc.) 

P R O O F The proof will follow by constructing a vector d and looking at its 

max-norm. We will use the notation from Step 4 and Step 5 of QPA and distinguish 

between the two cases. 

C A S E 1. If z is not a zero vector, then define the (Sn + ra) vector d as follows 

d{ = -OLC\ + vTD° - zTDir i = 1, ...,n 

dn+j = -a&J + vTA°T, j = 1 , m 

d = i 0 if sk = 0 is a row of D°z + AoTy - E°s = 0, 
n+m+k y —aa'k — vTEk otherwise for k = 1, ...,n. 

i (Dz)t Q , 
l2n+m+£ — \\Dz\laa ' £ — 1, n . 

Since v,z are dual variables for the "rounded" problem (2.8) we know that the 

following is valid: 

ac' <D°Tv - Dz = c= \ac'] < ac' + 1 

ab' <A°v = b= \ab'] < ab' + 1 

-E°Tv <a = [ao'] < aa' + 1. 

Therefore 0 < -ac' + DoTv - Dz < 1, 0 < -ab' + A°v < 1 and -aa' - EoTv < 1. 
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For the last n components of d we know that — 1 < — ^ ^ O T ^ = l>-->n-

Now since all the components of d are bounded by 1 from above and, with the 

exception of components dn+m+i,d2n.+m all others are bounded from below by 

— 1, the validity of the Lemma will follow if we can show that 

|| d Hoô  (2n + m)A . 

To that end note that d can be written as 

d — a 

-c' ̂  
-b' 
-a' 

i o ; 

( D° A0T -E° 0 ) T ( v ) 

It is easy to see that the projection of d onto the null space of 

H ~ [-D 0 
-E° 
0 \D 

0 

is given by the vector d = a ( - c / T , -b'T, -a'T, - \\ Dz ||oo c'T) (i.e. H • d = 0). 

Note also that || (c'T,b'T,a'T) \\oo<\\ {c'T,b'T,a'T,\\ Dz ||oo c'T) ||oo and that for 

any n-vector x , || x ||oo> ^ || i H2 and || x ||2>|| x Hoc are valid. 

Next, since —a(c'T,b'T,a'T, \\ Dz ||oo c'T) is a projection of d, 

dh>a\\ (c'T,b'T\a'T',|| Dz c'T) ||2 . 

Therefore, 

d ||„o> d II,> (3n + m) 

> (2n + m)A 

(3n + m) (2n + m)A 
(3n + m)) || (c '^ ,^,a^) 1̂  

( C^,fe^,a^,|| l l o o Q || 2 
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C A S E 2. It z is a zero vector, then define the (2n + m) vector d as follows 

i = 1 , n dt = -ac'i + vTD°, 

in+j = -ab'j. + vTA°T, l , . . . ,m 

+ m+k - <, _ a f l , f c _ _ T £ o 

or, written in matrix form 

if sk = 0 is a row of D°z + Aoi y - E°s = 0, 
otherwise for k = 1,.... n . 

^ - c ' ̂  
d = a -b' + [ L>° AoT -E° ] v. 

The proof now follows along the same lines as for C A S E 1. 

—a 

• 

L E M M A 2.2.3 Every optimal pair of primal and dual variables (xT,yT,sT) 

satisfies = 0 for i G /. 

P R O O F By Lemma 2.1.1 replacing (c T , 6 T , 0 T ) by (c'T, b'T, a'T) will not 

change the set of optimal solutions (zT,yT,sT) for min{cTz + bTy + ^zTDz : 

D°z + A°Ty - E°s = 0°, s > 0}. By Lemma 2.1.2 multiplying the linear part of 

the objective function by a positive scalar a, one obtains that the set of optimal 

solutions (azT, ctyT, asT) and the set of variables that are equal to zero in all 

optimal solutions is unchanged. Finally, Lemma 2.2.1 holds with c replaced by 

etc' , b replaced by ab' , and a replaced by aa' . 

• 

L E M M A 2.2.4 After at most n iterations of QPA one gets a pair of optimal 

primal and dual solutions for problem (2.1). 
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P R O O F By Lemma 2.2.3 adding constraints S; = 0,i G / where / was 

determined in Step 5 of QPA does not affect the set of optimal solutions (xT, yT,sT). 

Recall that the set of optimal solutions form a face of a polyhedron {Ax = 6, 

Dx + ATy — Is = c, x > 0, s > 0} for which xTs = 0. By Lemma 2.2.2 no more 

than n iterations of QPA are possible. (In the worst case, where all X{ > 0 and 

Tardos' feasibility algorithm in every iteration "missed" the desired face, i.e., face 

with xTs — 0, and where / is a singleton in every iteration, one will have exactly 

n iterations.) 

• 

Let us now calculate the complexity of QPA. Denote by T(A) the complexity 

of Tardos' feasiblity algorithm when applied to the system {Ax = 6, x > 0}, and by 

T(A,D) its complexity when applied to the system {Ax = b, Dx + ATy — Is = c, 

x > 0, s > 0, Si: = 0 for i G K}. Denote by K(A,D) the complexity of 

Kozlov et al.'s algorithm. Note that we will apply Kozlov et al.'s algorithm only to 

quadratic programs for which the linear part of the objective function is integral and 

polynomially bounded by the matrices A and D and with right hand side vector 

which is zero. 

T H E O R E M 2.2.5 The Q U A D R A T I C P R O G R A M M I N G A L G O R I T H M has 

running time polynomial in the size of the matrices A and D and independent of 

the sizes of the vectors c and b . It runs in 

0(n(2n + m) 3 + n(2n + m)log(2n + m)(3n + m) A + T(A) + nT(A, D) + nK(A, D)). 

P R O O F Step 1 takes T(A) time (i.e., time of Tardos' feasibility algorithm when 
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applied to a linear system with constraint matrix A). Consequently Step 2 takes 

T(A,D) plus at most 2n comparisons to verify xTs = 0. The Gaussian elimination 

in Step 3 takes 0((2n + rn)3) time (see Edmonds [16]). Step 4 takes 0((2n + 

m)log(2n + ra)(3n + m)A) comparisons to find (cT,bT,aT) since || (c T ,b T,a T) 

= (2n -f- m)(3n + m)A and one can use binary search to obtain (cT,bT,aT). Step 

5 takes K(A,D) time. Finally, we need at most n iterations and therefore the 

claimed complexity follows. 

• 

Recall (see Section 1.5) that an algorithm is termed strongly polynomial if all its 

operations consist of additions, comparisons, multiplications and divisions and if the 

number of such steps is polynomially bounded in the dimension of the input, where 

the dimension of the input is the number of data in the input. Further, when the 

algorithm is applied to rational input, then the size of the numbers occurring during 

the algorithm is polynomially bounded in the dimension of the input and the size of 

the input numbers. 

Thus the polynomial algorithm described in this paper becomes strongly polyno­

mial if the size of the entries in A and D are polynomially bounded in the dimension 

of the data. This clearly provides a strongly polynomial algorithm for, e.g., problems 

where one minimizes the norm over flow (transportation) type constraints [1,12]. 

2.3. E X T E N S I O N T O T H E I N E Q U A L I T Y C O N S T R A I N E D C A S E 

The Algorithm can be generalized in a straightforward way to work on strictly 

convex quadratic programs with inequality constraints. To show this consider the 
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quadratic programming problem of the form. 

max {cTx - -xTDx : Ax < b, x > 0} (2.15) 

with the same assumptions on the dimension of the problem and the input data as for 

problem (2.1). Observe that the only difference between problems (2.15) and (2.1) 

is the existence of inequality instead of equality constraints. 

The dual of (2.15) has the form 

min {bTy + -xTDx : ATy - Dx > c, y > 0} . (2.16) 
2 

Using the fact that D is positive definite and applying the transformation 

z = x — D~lc we obtain the equivalent pair of primal and dual problems 

-cTD~1c + max{--zTDz : Az + Iw = b - AD~1c, 
2 1 2 

Iz - Ix = - L > - 1 c , £ > 0,w > 0} (2.17) 

and 

-cTD~1c + min{cTz + bTy + -zTDz : ATy + Dz - Is = 0, y > 0, s > 0} . (2.18) 
2 2 

Note that an optimal solution (zT,yT, sT) for (2.18) provides an optimal solution 

x = z + D~1c for (2.15) and (xT,yT) an optimal solution for (2.16). 

The Karush-Kuhn-Tucker optimality conditions for the pair of primal-dual prob­

lems (2.15), (2.16) will have the form 
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y (A 0 I 0 ) y (b) 
{D AT 0 -I ) w ~ (c ) w 

s 

(2.19) 

x,y,w,s>0 and x s — 0, y w = 0. 

In this case, at each iteration the algorithm will detect at least one new variable 

y or s which has to equal zero in all optimal pairs of primal and dual solutions for 

(2.15) and (2.16). After each iteration one will perform Tardos' feasibility algorithm 

to detect a basic point from the linear system (2.19). The conditions xTs = 0 

and yTw = 0 will then be checked. If satisfied the algorithm will terminate since an 

optimal pair of primal and dual solutions were found. Otherwise, another integration 

of QPA will be performed. 

Instead of problem (2.7) (in the equality case), we will work with the problem of 

the form 

min {cTz + bTy + -zTDz : Dz + ATy - Is = 0, y > 0, s > 0}. (2.20) 

The algorithm will have the same form, except that now STEP 1 will read "Set 

Ki = <f> and K2 = <pn, in STEP 2 the system {D°x + AoTy - E°s = c° , y > 0, s > 

0} will be equivalent to the system {Dx + ATy — Is = c, y > 0, s > 0, s t = 0 for 

i £ Ki and yj = 0 for j £ K2}, and the polyhedron P° will be 

"• = {(*'.»T. «'.'')= [A

D °AT I _°7) 

( x \ 
y 
w 
s 

x > 0, y > 0, w > 0, 

5 > 0, Si = 0 for i £ Ki, yj = 0 for j £ if 2}-

S T E P 5 will now read: "Use Kozlov et al.'s algorithm to find an optimal solution 
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{vT,zT) to 

max {--zTDz : DoTv - Dz = c,A°v < b,-EoTv < a} 2 

which is the dual of 

min {cTz + bTy + aTs + -zTDz : D°z + A0Ty - E°s = 0, y > 0, s > 0} . 
2 

Let 

I = {i: {-E0Tv)l < aa'i - {2n + m)A}, 

and 

J = {j: [A°v)l < ab'j - (2n + m)A}. 

Add the set I to K\ , the set J to K2 and go to Step 2." 

The complexity of the algorithm will be affected in the sense that at most (n+ra) 

iterations are now possible. 
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Chapter III 

P R O X I M I T Y A N D S E N S I T I V I T Y R E S U L T S F O R 
Q U A D R A T I C I N T E G E R P R O G R A M M I N G 

In a recent paper, Cook et al. [8], obtained many proximity results for integer 

linear programming problems with a fixed constraint matrix and varying objective 

function and right-hand side vectors. In this Chapter we will extend their main 

proximity results to quadratic integer programming problems of the form 

max cTx + xTDx 

s.t. Ax < b (3.1) 

x integer 

where c and x are n-vectors, b is an ra-vector, A is an integral m x n matrix 

and D is a negative semidefinite n x n matrix. 

In the sequel we will assume that the set {x : Ax < b,x integer} is non-empty, 

that max{c rx + xTDx : Ax < b} exists, and that D is rational. 

As stated before, for any matrix A let A (A) denote the maximum of the 

absolute values of the determinants of the square submatrices of A . 

For simplicity of exposition we first consider problem (3.1) with diagonal matrix 

D , i.e. the separable case. We start by showing in Theorem 3.1.1 that, in this case, 

for any optimal solution z for (3.1) there exists an optimal solution x* for its 
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continuous relaxation such that || z — x* ||oo < nA(A) . Also, if z is a feasible 

solution to (3.1) which is not optimal then we show in Theorem 3.1.3 that there exists 

another feasible solution z to (3.1) having greater objective function value and with 

II z ~ z \\oo < nA(A) . With some additional assumptions we show in Theorem 3.2.2 

that if z and z! are optimal solutions for (3.1) with right hand side vectors 6 

and b' respectively then || z — z' ||oo < a \\ b — b' \\i +/3 where a and /3 are 

parameters which depend only on A, D and n . Finally, we show how to extend 

the above results to mixed-integer quadratic programs. 

3.1. P R O X I M I T Y R E S U L T S F O R S E P A R A B L E Q U A D R A T I C 

I N T E G E R P R O G R A M M I N G 

Theorem 3.1.1, to follow, provides an upper bound on the distance between a 

pair of optimal solutions for problem (3.1) and its continuous relaxation respectively. 

The bound obtained depends only on the number of variables n and the largest 

absolute subdeterminant of the matrix A , and is independent of the vectors 6, c 

and the matrix D . 

T H E O R E M 3.1.1 Let A be an integral m x n matrix, D a diagonal 

negative semidefinite n x n matrix, b an m-vector and c an n-vector such that 

the set {x : Ax < b , x integer} is non-empty and max{c r i + xTDx : Ax < b} 

exists. Then 

(i) For each optimal solution x for max{c T i + xTDx : Ax < 6} there exists an 

optimal solution z* for max{cTx + xTDx : Ax < 6,x integer} with | | 2 * — x | | o o 

< nA(A) , and 

(ii) For each optimal solution z for max{cTx + xTDx : Ax < b, x integer} there 
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exists an optimal solution x* for m&x{cTx-\-xTDx : Ax < 6} with ||x* — z \\oo 

< nA(A) . 

PROOF Let z and x be optimal solutions for problems (3.1) and its continuous 

relaxation respectively. Further assume without loss of generality that the first £ 

components of x — z are nonpositive and the last n — I components are positive. 

Partition the rows of the matrix A into submatrices A\ and A2 such that A\x > 

A\z and A2x < A2z . Consider the cone C = {x = (x\,..., xg, X£+i,..., xn) : 

A\x > 0, A2x < 0,xl = (xl5...,X£) < 0,x2 = ( x £ + 1 , . . . ,xn) > 0} . Clearly, C 

is nonempty since x — z G C . Let G be a finite set of integral vectors which 

generate C . By Cramer's rule for each g G G , || a ||oo < A(yl') = A(A) , where 

A' = ^ - / f o j and 7x (resp., I2 ) is an I x £ (resp., (n — £) x (n — £) ) identity 

matrix. Now, since x — z G C there exists a finite set {g\,... ,gt} C G and scalars 

> 0, i = 1,.. . , t such that x — z = Yll=i ai9i • 

In order to prove part (i) we will define the vector z* = z + 5Zi=i L^t'Jfft • ^ e 

will show first that z* is feasible and optimal for (3.1). Coupling with the fact that 

z* = x — Yli=i{ai ~~ [ai\)di we will obtain that || z* - x \\oo< tA(A) < nA(A) . The 

proof of the feasibility of z* is identical to the proof given in Cook et al., but we 

will state it for the sake of completeness. Observe that z* is integral and satisfies 

Aiz* = Ai{x- Ei=i(«i - lai\9i)) < , A2z* = A2{z + Y?i=Aail9i) < A2* 

and therefore Az* < b . To prove optimality, recall (see e.g. Dorn [13]) that the 

dual of the continuous relaxation of (3.1) is given by 

min{u r6 - xTDx : uTA - 2xTD = cT,u> 0} (3.2) 

with complementary slackness conditions uT(b— Ax) = 0 . Now, if we partition bT 

to (bi,b2) corresponding to the partition of A to (Ai,A2) we have A2x < A2z < 
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&2 , and thus it follows from the above condition that for a vector uT = (uf, uT) of 

optimal dual variables for (3.2) we have u2 = 0 and u7Ai — cT + 2xTD . Also, 

since for every y £ C, vliy > 0 we have 

c T y + 2x r7Jy > 0. (3.3) 

Finally, using (3.3) and the fact that Ei=i [ai\9i £ C* we obtain 

t t 
cTz* + z*TDz* = cT(z + Yia^9i) + zTDz + 2z T£(]T[a lJff l) 

i=i i=i 
t t 

= cTz + zTDz + cT{Y[oct\gi) +2xTD{J2l<Xi\9i) 
i=i t=i 

t t t t 

i=l t=l i=l t= 1 

t t 
> cTz + zTDz+ QTQa.-J -2a t-)ffi) r^£l- a«J^)-

i=l i=l 

It remains to show that (Ei=i(l_aiJ — 2a:t)<7t)T.D(E*=1 [ai\9i] > 0 . To that end 

recall that gi £ C and hence can be partitioned into (<?/,<7j2) where g] contains 

the first £ components and g2 the last n — £ components of gi . Clearly, 

9i < 05 <7j2 > 0 . Diagonality and negative semidefiniteness of D implies 

gjDgj < 0 for all i,j = 

Coupled with the fact that [atJ — OLX < 0 and [a,-J > 0 for all i we obtain 

( E U ( M - 2a0ft)TD(E!=iL«iJft) = ES=i (W - 2a t ) [« I j 5 f /J f f l 

+ E-=i Ej>,-(([a.-J - 2a,-) Lay J + ([ayJ - 2ay)[a t-J)^I>W > 0 . 
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Thus, cTz* + z*7Dz* > cTz + zTDz and part (i) is valid. Also, the optimality of 

z and z* implies 

(3.4) 

In order to prove (ii) define first the vector 

x = (3.5) 

which will be shown to be feasible and optimal for the continuous relaxation of (3.1). 

The feasibility of x* can be shown in a similar manner to the way it was done for z*. 

To show optimality observe that 

cTx* + x*TDx* = cTx - cT(Y2leti\gi) + xTDx - 2xT D(^2[ai\gi) 
t ' = i i = i 

t t 

+ (£L«.:I*)t0(£L«.-J*) 
i = l i = l 

t t t 
= cTx + xTDx - ( c r ( E | a i J g t ) + (21 + ^[ctilgif D(Y,[<*i\gi)) 

i=i i=i i = i 

t t 

+ 2 ( ^ ( [ a t J - a i ) » i ) T - D ( X ] L a » - J ^ ) = ° T * + 
i = i i=i 

t t 
+ 2(^2{[ai\-ai)gi)TD(^2[ai\gi) > cTx + xTDx, 

where the equalities follow from (3.5) and (3.4) and the last inequality follows from 

the fact that 

i = i 

(£(La,-J -ai)gi)TD(J2l"i\9i) > 0. 

Finally, from (3.5) || x* - z ||oo< tA(A) < nA(A). 

• 
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Using the example provided by L. Lovasz for the linear case (see Schrijver [43], 

page 241) it can be verified that the bound is tight. Observe that if lower and 

upper bounds on the variables X{ are known one can naturally improve the bound 

on the difference between an integral and continuous optimal solution. Indeed, if 

P = {x : Ax < b, ti < Xi < Ui} then denote by B = min { nA(A), max {| Uj — ti |: 

i — l,...,n} } . Clearly B is a valid bound. Trivially, in the case of a 0 — 1 

quadratic programming problem we have B = 1 . 

As a consequence of Theorem 3.1.1 we obtain Corollary 3.1.2 which provides a 

bound on the difference between the optimal objective function value of (3.1) and its 

continuous relaxation. 

C O R O L L A R Y 3.1.2 Let A be an integral m x n matrix and b an m-

vector. Let P = {x : Ax < b} be a nonempty bounded polyhedron having an 

integral point. Then, , 

max{cTx + xTDx : Ax < 6} — max{cTx + xTDx : Ax < b, x integer} 

< n A ( 4 ) ( | | c ||i +2nA(A | 6) || Z? ||oo). 

P R O O F Denote by z (resp., QI ) an optimal solution (resp., the optimal ob­

jective function value) for max{cTx + xTDx : Ax < b, x integer} and by x (resp., 

QC ) an optimal solution (resp., the optimal objective function value) for its contin­

uous relaxation with || x — z | | o o < nA(A) which clearly exists by Theorem 3.1.1. 

Then, 

QC -QI = cTx + xTDx - cTz - zTDz 

= cT(x - z) + (x + z)TD(x - z) 

<\\ C ]ji|| X - Z || oo + || X + Z || i | | D(x - 2) || oo 

<|| C || i | | X - Z || oo + || X + Z || i | | D ||oo || Z - Z ||oo 
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where || D = max{|d\i| : i = . Now since for a vector x , || x \\i< 

n || x ||oo and for a pair of vectors x, y \\ x + y ||oo<|| % ||oo + || V ||oo , we have 

II x + z ||i< n(\\ x Hoc + || z ||oo) < n(A(A \ fe) + A(A | fe)) by the boundedness of 

the polyhedrons. Therefore, 

QC-QI<\\x-z lu (|| c Id +2nA(A | fe) || D IU) 

< nA(A)(\\ c Id +2nA(A | fe) || D W^) . 

• 
Theorem 3.1.3, which follows, will show that for any integral solution z of 

Ax < fe which is not optimal for (3.1), there exists an integral solution z of Ax < b 

which has greater objective function value and with || z — z ||oo< nA(A) . 

T H E O R E M 3.1.3 For each integral solution z of Ax < b , either z is 

an optimal solution for (3.1) with a diagonal matrix D or there exists an integral 

solution z of Ax < b with || z — z < nA(A) and cTz + zTDz > cTz + zTDz . 

P R O O F Let z be an integral solution of Ax < b which is not optimal for (3.1) 

with a diagonal matrix D . Then there exists an integral solution z* of Ax < fe 

with cTz* + z*TDz* > cTz'+ zTDz . As in the proof of Theorem 3.1.1, without 

loss of generality, assume that the first I components of z* — z are nonpositive 

and that the last n — £ components are positive. Partition the rows of A into 

submatrices Ax and A2 such that A\z* > A\z ,A2z* < A2z and consider the cone 

C = {x = (xi,... ,X£,xe+1,... ,xn) : Aix > 0 , A2x < 0 , xl = ( x l s . . . ,xt) < 0 , 

x2 = (x^+i,... ,xn) > 0} . Since z* — z G C , we can write z* — z = Y A = I
 ai9i 

where a t > 0 for i'. = 1,..., t and {gt,...,gt} is a subset of integral generators of 

C . By Cramer's rule || gi ||oo < A(A) for every i . If oti > 1 for some i , then 

z + 0{ = z* — 5Zj = i J ? i , ajSj — iai ~ l)°i is a n integer feasible solution of Ax < b . 
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Now, if in addition cTgi + (2z + gi)T Dgi > 0 , then cT(z + gi) + (z + gi)TD(z + gi) 

> c Tz + zTDz and by choosing I = z + we are done. Thus, let us assume that 

for all i for which ai > 1 we have 

cT

gi + (2z + g i ) T D g i < 0. (3.6) 

Next, define the integral vector 

t t 

z = z* - 5^|a«j0i = z + X^" 1' _ La*J)0* 
i=i i'=i 

which is a feasible solution of Ax < b and satisfies || z — z ||oo < tA(A) < nA(A) . 

To complete the proof we will show next that the objective function value at z is 

larger than at z* . Indeed, 

cTz + zTDz = cTz* + z*TDz* - c r(E*=i L«iJ*) - 2^ T7J(E! = 1 

+ ( E L i L^JffO^lELi l«i\9i) = cTz* + z*TDz* 

- ( ' r ( E ! = i L«.-J*) + (2* + 2 £,-=i ^ - E!=i L«.-J*)tJ>(E!=I L«.-J w)) 

= cTz*+z*TDz* - (cT(El1M9i)+2z'rD(EL1Mgl)) 

-(E!=i(2ai - l^J)</Or£>(E!=i |ajtt) = c rz* + z*TDz* 

-(c r(El=iL«dffO + 22 Ti?(E:=iKJ^)) - E!=i(2a,- - L"d) W ^ . -

- E L Ej>i((2a,- - L«iJ)L«>J + (2«y - L « , J ) K J ) ^ ' > ' T * * + z*rI>** 

-(cr(E!=iLatJj/i) + 2«r£>(E!=iL«.-JffO) - EL i ( 2 ^ - [a^la^gfDgi 

where the inequality follows from the fact that gi (E C , [a;J > 0 and 2^ — [a,-J > 0 

for all i which in turn implies ((2a, — [at'J)LayJ + (2ay — [ayj) [ai\)gf Dgj < 0 . 
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Therefore 
t 

cTz + zTDz > cTz* + z*TDz* - cT{Y^[<*i\gi) 
i=l 

t 

- ^[a»J(2a-|- (2at- - [al\)gl)TDgl • 
i=l 

Now, since for cc,; < 1 , |_a;j = 0 , the only nonvanishing terms in the above 

summation correspond to a; > 1 . Further, since D is negative semidefinite and 

2a; - [cti\ = a t + («i - [a,-J) > a, > 1 , (2at- - of Dg^ < gf Dgt- . This implies, 

using (3.6), that 

t 

cTz + zTDz > cTz* + z*TDz* - Y, L«d {cT9x + (2* + O i ) T ^ f ) 
t = i 

> C T 0 * + 2 * T D 2 * > CTZ + 2 T £ > 2 . 

• 
Observe that the above Theorem assures finite "test set" for problem (3.1). In 

other words, one has to check only a finite number (which depends only on the 

constraint matrix and the number of variables) of integral vectors in order to obtain 

a better solution or to verify the optimality of the current solution. Although the set 

is finite, it might require the exponential (in n ) number of comparisons in order to 

get better solution. 

3.2. S E N S I T I V I T Y F O R Q U A D R A T I C I N T E G E R P R O G R A M M I N G : 

T H E R I G H T H A N D S I D E C A S E 

In this Section we show that if z and z' are optimal solutions for (3.1) with 

negative definite matrix D , constraint matrix A of full row rank and right hand 

side vectors 6 and b' respectively, then || z — z' ||oo £ a || b — b' \\\ +/? where 
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a and 0 are parameters which depend only on A, D and n . Observe that 

restricting D to be negative definite implies that the continuous relaxation of the 

quadratic integer program has a unique optimal solution whenever the polyhedron 

P — {x : Ax < ft} is nonempty. 

For simplicity of exposition Theorem 3.2.2, to follow, will be stated and proved for 

the separable case. The general case will be discussed in Section 3.3. Theorem 3.2.2 

is using a special case of Theorem 2.1 in [11] in which changes in the linear cost 

coefficients are considered. For completeness we will state the part of Theorem 2.1 

in [ll] we use. 

L E M M A 3.2.1 Let A be an m x n matrix, b an m-vector, c and c' 

n-vectors and D = diag(di) an n x n diagonal negative definite matrix. Let 

x (resp., x' ) be the optimal solution for max{c rx + xTDx : Ax < ft} (resp., 

max{c' rx + xTDx : Ax < b}) . Then 

\\ X - x' Hoô  — || C - c' ||i 

where K = — max{d, : i = 1,. . . , n} > 0. 

P R O O F See Daniel [11], Theorem 2.1 . 

• 

T H E O R E M 3.2.2 Let {Ax < ft} = {AEx = bE,Ajx < ft/} and {Ax < ft'} = 

{AEX — b'E, Ajx < b'j} have integral solutions where A is an integral mxn matrix 

of full row rank and ft, ft' are m-vectors. Let c be an n-vector and D = diag(d{) 

a diagonal, negative definite n x n matrix. Then 

(i) For every optimal solution z for max{cTx + xTDx : Ax < ft, x integral} and 

50 



every optimal solution z' , for max{c rx + xTDx : Ax < b',x integral} we have 

II z - z' ||oo < nA{A)(H{D) \\ b - b' ||i +2) where H(D) = max{|a\| : i = 

1,.. . , n}/ min{|o!i| : i = l,...,n}. 

(ii) Assume, in addition, that D is integral. If f(b) (resp., f(b') ) is the optimal 

value for max{c rx + xTDx : Ax < b , x integral} (resp., max{cTx -f xTDx : 

Ax < b' , x integral} ), then |/(6) - /(6')| < nA{A){\\ c ||x +n \\ D 

{2nA{A) + A{A\b

c) + A{A\b

c'))){H{D) | |6 -6' | | i+2) where A = 

PROOF We will start by determining an upper bound on the difference between 

the optimal solutions to the corresponding continuous quadratic programs. To that 

end let us first write the dual of the continuous relaxation of (3.1) in primal form 

- m a x { ( 0 ^ ) Q + ( * V ) ( £ o)(o)> 
(3.7) 

-2D AT ) ' c ' 
S.t. 2D -AT —c 

. o -I , \u ) . 0 , 

Now, we will treat changes in the right hand side of (3.1) by considering changes in 

part of the linear cost coefficient of (3.7). To that end, recall that if x is an optimal 

solution for max{c rx -+- xTDx : Ax < b} then x is also an optimal solution for 

the linear programming problem max{(c r + 2xTD)x : Ax < 6} see e.g. Dorn [13]. 

Thus if (x,u) and (x',u') are, respectively, optimal of (3.7) and the quadratic 

programming problem obtained from (3.7) by replacing b by b' then, for every 

feasible solution (x, u) of (3.7) we have 

- uTb + 2xTDx < -uTb + 2xTDx 

- uTb' + 2x'TDx < -u'Tb' + 2x'TDx'. (3.8) 
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Substituting (x',u') (resp., (x, u) ) in the first (resp., second) inequality of (3.8) 

adding and rearranging terms results with 

2{x' - x){-D){x' -x)< ( « ' - u)T{b - b') <|| s' - fi lull b-b' HJ. (3.9) 

Now, since both (x,u) and (x', tt') are feasible for (3.7), (x' — x, u' — u) = (v,w) 

satisfies 2Dv — ATw = 0 and hence 

AT(u' -u) =2D{x'-x). 

Using the fact that AT is integral and has full column rank, Cramer's rule, and a 

property of determinants we obtain 

|| « ' - fi | | o o < A(AT | 2D(x' - x)) < 2nA(A) \\ D Ĥ H i ' - z ||oo • (3.10) 

Now let K = min {—d{ : i = l,...,n} = —max {di : i = l,...,n} . Substituting 

(3.10) into (3.9) and observing that K > 0 results with 

2K || x - x ||̂ < 2K || x' - x \\\< 2nA(A) \\ D | |oo| | x' - x W^W b' - b ||i (3.11) 

or 

II *' - x lU^ n A ^ D H°° || b> _ 6 ||1= nA(i)ff(i?) || 6' - 6 ||i . 

Using the fact that the continuous relaxation of our quadratic integer program 

has a unique solution and applying part (ii) of Theorem 3.1 it follows that for every 

pair of optimal solutions z and z! for the quadratic integer programming problem 

with right hand side vectors b and b' respectively 

|| 2 2 | | o o ^ | | 2 X \\oo || X X \\oo + || X Z | | o o ^ 

<nA{A){{H{D)\\b-b'IU+2). 
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To complete the proof we will show that part (ii) of the theorem follows from 

the above bound, the existence of the optimal solutions and Cramer's rule. 

Denote by A = ^ ®T ^ . Observe that an optimal pair of primal and 

dual solutions (x, u) for the continuous relaxation of (3.1) is a basic solution of a 

polyhedron defined by Ax < b , ATu — 2Dx = c . Now, by Cramer's rule and the 

integrality of A and D we get 

||*||oo<|| | |oo<A(i|J). 

Thus, for an optimal integral solution we have ( by Theorem 3.1) 

II z ||oo<|| z ~ x ||oo + || x ||oo< nA(A) + A ( i |*) . 

Therefore 

II z ||oo + || z' !!«,< 2nA(A) + A(A \b
c) + A{A |*') . 

Now, 

| f(b) - f(b') | = | cT(z - 2') + (z - z')TD(z + z') |< 

<ll c lllll Z-z' Hoc +n || D Hooll 2 + 2 ' || oo |j 5 - z' ||oo< 
< nA(A)(| | c ||, +n || L> (2nA(A) + A ( i |*|) + A ( i |f |))(tf(£>) || 6 - fc' ^ +2). 

• 

3.3. E X T E N S I O N T O N O N S E P A R A B L E Q U A D R A T I C 

M I X E D - I N T E G E R P R O G R A M M I N G 

The results given so far can be easily extended to separable quadratic mixed-

integer problems of the form 
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T * T 1 f 

max c1 x + c 2 y + x D\x + y D2y 

s.t. Ax + By<b 

x integer 

(3.12) 

where c\ and x are k-vectors, c2 and y are (n — fc)-vectors, (resp., 5 ) is 

an m x k (resp., rn x (n — k) ) integer matrix, D\ (resp., D2 ) is a k x k (resp., 

(n — k) x (n — k) ) diagonal, negative semidefinite matrix and b is an m-vector. For 

example, Theorem 3.1.1 for the mixed-integer case should read "... 

(i) For each optimal solution (xT,yT) for the continuous relaxation of (3.12) there 

exists an optimal solution (zT,wT ) for (3.12) with || (zT,wT) — (xT,yT) | | oo< 

nA(A | B) , and 

(ii) For each optimal solution (zT,wT) for problem (3.12) there exists an optimal 

solution (xT,yT) for its continuous relaxation with || (xT,yT) — (xT,yT) | | oo< 

nA{A | 5)." 

Consequently, Corollary 3.1.2 and Theorem 3.1.3 have analogous statements for the 

mixed-integer case and all the proofs follow in a straightforward way from the proofs 

given for the pure integer case. Unfortunately, Theorem 3.1.3 loses its significance in 

the mixed-integer case because it does not imply the existence of a finite "test set" 

any longer. 

The validity of the theory for the mixed-integer case allows us to consider a 

broader class of quadratic integer programming problems namely when the matrix 

D in (3.1) is not necessarily diagonal. This since D can be diagonalized (see 

Section 1.4) using an I x n matrix B (where I is the rank of D ) such that 
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D = BTCB , with C being a diagonal negative definite matrix. Recall here that, 
D' 0 S 

without loss of generality, we can assume that D = ^ ~ ^ J , where D' is an £ x £ 

negative definite matrix. Using the diagonalization for definite matrices proposed in 

[48], we obtain that D' = CB' or D = BTCB = [B',0)TC(B',0) without 

dealing with square roots, i.e. no irrationalities will occur. Thus, problem (3.1) can 

be equivalently written as 

rp rp 

max c x + xx Cx\ 

s.t. Ax <b (3.13) 

Bx - Ix1=0 

x integer 

or 

(3.14) 

x integer . 

Problem (3.14) is a mixed-integer, separable, quadratic programming problem for 

which the theory developed above is valid. Observe, however, that the bounds should 

be expressed in terms of n and A (/I) , where n = n + £ and A as defined in 

(3.14). Also, if B is not integral, we will have to multiply Bx — Ixx = 0 by a large 

enough constant which will not restrict generality but will enlarge the bound. Note, 

however, that the size of a constant might not be bounded by a polynomial in the 

size of A . 

A similar transformation can be carried out for nonseparable mixed-integer 

quadratic programs. The stability of mixed-integer quadratic minimization pro-
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grams in the absence of boundedness on the feasible region and convexity on the 

objective function was studied by Bank and Hansel [2]. 

In order to generalize Theorem 3.2.2 to the nonseparable case observe that the 

proof of Theorem 3.2.2 up to equation (3.11) is valid without the diagonality as­

sumption on the (negative definite) matrix D . However, in this case the constant 

K will be the smallest absolute eigenvalue of D . In order to obtain the bound 

on the difference between the two optimal integral solutions z and z' we used 

Theorem 3.1.1 in the Proof of Theorem 3.2.2 and, therefore, required separability of 

the objective function. At this point we can transform problem (3.1) to an equivalent 

separable mixed-integer problem (3.14). Using the fact that the optimal solutions 

x and x' to the continuous relaxation of (3.1) with right hand side vectors b 

and b' , respectively, are unique (since they are optimal solutions for strictly convex 

quadratic problems) and that the matrix B obtained in the diagonalization of D 

is nonsingular (and, as stated before, can be assumed to be integral), we can obtain 

the bound on the difference between the optimal solutions z and z' for (3.1) with 

right hand side vectors b and b' respectively, as follows : 

N-*' ||oo<|| (£)-(/,,) II-

— II (fiz) ~~ (fix) H°° + II (BX) ~ (fiz') IIO° + II (BX') ~ (BS') H°° 

< 2(2n)A(A) + (1+ US ||oo) || x-x' ||oo 

< (1+ || B \\00)A{A)H{C) \\b-b' Hi +4nA{A) 

where A , B and C are given in (3.14) and (resp., (^,) ) are optimal for 

(3.14) with right hand side vectors b (resp., b' ). 
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Chapter I V 

N O N L I N E A R I N T E G E R P R O G R A M S : 
S E N S I T I V I T Y A N A L Y S I S F O R B R A N C H A N D B O U N D 

Recently, Schrage and Wolsey [42] studied the effect of small changes in the 

right hand side or objective function coefficients of a linear integer program. In 

this Chapter we will naturally extend their results to nonlinear integer programming 

problems. Although much attention has been given to sensitivity analysis for linear 

integer programming, unfortunately this is not the case for nonlinear integer pro­

gramming. Some results for the latter problem can be found for e.g. in Radke [41] 

who developed a continuity analysis for nonlinear bounded integer programming, in 

[38] where McBride and Yormark solved a class of parametric quadratic integer pro­

gramming problems which were obtained by changing the right hand side of a single 

constraint, or in [9] were Cooper solved a parametric family, with respect to the right 

hand side, of a pure integer nonlinear program with separable objective function and 

constraints. We will restrict our attention to a nonlinear integer program whose 

continuous relaxation is a convex programming problem satisfying the Kuhn-Tucker 

constraint qualification. This since we will make use of the duality theory for convex 

nonlinear programming problems as introduced by Wolfe [49]. In Section 4.1. we 

will consider pure 0 — 1 nonlinear programs. In Section 4.2. we will discuss the 

extension to the mixed-integer case as well as to the case when integer variables are 

not restricted to be 0 or 1 . Finally, the computational results for an example with 
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quadratic objective function, linear constraints and 0—1 variables will be given in 

Section 4.3. 

4.1. T H E P U R E N O N L I N E A R 0-1 P R O G R A M 

Consider the nonlinear integer programming problem 

N(b) = min f{x) 

s.t. g(x) > b (4.1) 

0 < x < 1 

x integer 

where x is an n x l vector, b is an m x 1 vector, g(x)T = (gi(z),...,om(x)) , 

/ and gi , i = l , . . . , m are real-valued, differentiable functions and, furthermore, 

/ is convex and gi , i = 1, ...ra are concave on Rn . We will also assume that the 

continuous relaxation of (4.1) satisfies the Kuhn-Tucker constraint qualification (see 

e.g. [49]), which is automatically satisfied if the constraints are all linear. 

Explicitly assume the nonlinear integer programming problem (4.1) was solved 

by implicit enumeration and some small changes have been made in the right hand 

side or objective function coefficients of (4.1). The question we would like to answer 

is what information from the implicit enumeration tree, if at hand, will provide us 

with bounds on the optimal value of the perturbed problem. 

Before attempting to answer the above question observe that the continuous 

relaxation of (4.1) is a convex nonlinear optimization problem for which we can state 

the dual (see Wolfe [49]) 

max b u + e v +f(x) — u g(x) — (v +v ) x 
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s.t. uTVg(x) + v1TI + v2TI = Vf(x) (4.2) 

u , v1 > 0 , v2 < 0 

where eT = (1,..., l) and u (resp., v1 , v2 ) denotes the vector of dual variables 

associated with the constraints g(x) > b (resp., x > 0 , — x > —1 ). Solving the 

primal (i.e. the continuous relaxation of (4.1)) with some readily available computer 

code, one can obtain the value of these dual variables as a byproduct (e.g. using 

MINOS -Modular In-core Nonlinear Optimization System). 

R E M A R K 4.1.1 If all the constraints of (4.1) are linear, then the objective 

function of (4.2) can be written as (see e.g. Dorn [14]) bTu + eTv2 + f(x) — xTVf(x) . 

Let us start by solving (4.1) using implicit enumeration. In doing so we con­

struct a tree with node 1 corresponding to the continuous relaxation of the original 

problem. At each node t of the tree one solves 

R\b) = min f{x) 

s.t. g(x) > b 

L}<XJ<U}, j = l,...,n 

where 

L) = U} = 0 , jeFl 

L) = U} = 1 , jeFl 

L} = 0,1^ = 1 ,jeF\(F*UFt) 

with F = { 1 , n ) and FQ (resp., F\ ) is the set of indices of variables fixed to zero 

(resp., one). Notice that (4.3) is the continuous relaxation of the integer nonlinear 

subproblem /*(&) associated with node t . For simplicity of exposition we will use 
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N(b) , P(b) and JR*(6) to denote the respective problems as well as their optimal 

value. 

Now, since for each j at most one of the constraints L1- < Xj or ij < UJ can 

be binding at any time, we will associate the same dual variable Vj with the two 

constraints. If < Xj is binding then the associated dual variable satisfies Vj > 0 

otherwise v y < 0 . Let (uJ, xf, vf) be the associated dual solution obtained by 

solving (4.3). Using (4.2) the optimal objective function value of (4.3) equals 

R\b) = bTut + Y, {vt)j + Y min<0' > + f ^ 

- ufg{xt) - Y (vt)i - Y m i n { ° 5 (vt)j) 
jeF* jcF\(FluF<) 

= bTut + f(xt) - ufg(xt) . 

R E M A R K 4.1.2 If the constraints in (4.1) are all linear the optimal objective 

function value of (4.3) can be alternatively written as 

R'ib) = bTut + Y + Y m m < 0 ' + ttXt) - x?Vf{xt) . 
jeFl jeF\{F*UF*) 

Assume now that (4.1) is perturbed by replacing b by a new vector d . We 

would like to use the information from the implicit enumeration tree to derive a 

lower bound on the value of the perturbed problem. To this end notice that the 

dual variables ut, Xf, i>t derived at node t of the tree remain feasible, but not 

necessarily optimal, for the perturbed problem. Therefore, a lower bound on the 

objective function of the perturbed problem is given by 

Rt{d) = dTut + f{xt)-ujg{xt) . (4.4) 

Let I (d) denote a lower bounding function on the objective function value 
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/*(d) . For terminal nodes with feasible solutions for .#'(6) we can set f (d) = R*(d) . 

For terminal nodes with no feasible solutions set 

where 14 and Xt used in this case in the evaluation of R (d) are part of the dual 

variables (uJ, xf, vj) associated with the minimization of the sum of the infea-

sibilities. (Having a problem with only linear constraints and using Remark 4.1.2, 

both Ut and vt and xt = 0 can be used in the evaluation of R*(d) .) 

For each nonterminal node t define 

where L(i) and R(i) are the two offsprings of t. 

Theorem 4.1.3 below provides us with a lower bound on the objective function 

value of the perturbed problem obtained from (4.1). 

T H E O R E M 4.1.3 lld) is a lower bound for N(d) . 

P R O O F We show first that for any node t and any d , I*(d) < /*(d) is valid. 

If t is a terminal node then the inequality follows from the definition of l'(d) and 

the convention that an infeasible minimization problem has objective function value 

+oo . Now, if t is not a terminal node, / 4(d) > Rt(d) > R*(d) . Further, from the 

implicit enumeration 

J*(d) = min {ILM{d) , IRW{d) } > min (I L ( t ) (d) , fW{d) } . 

Therefore, /*(d) > max (R*(d) , min {IL ( f )(^) , lm{d)} and by (4.5), J*(d) > 

I^d) 
-oo if R'(d) < 0 
+ oo if R*(d) > 0 

I*(d) = max {R*(d) ,min (I L ( t ) (d) , lm{d)}} (4.5) 
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^(d) . By induction towards node 1 of the tree we get N(d) = > I 1^) • 

• 
Theorem 4.1.4 to follow provides an answer to the following question. Assume 

we augment problem (4.1) by adding a new 0 — 1 variable, say x n +i , resulting in 

the addition of new linear terms in the constraints and some terms (not necessarily 

linear) in the objective function. Under what conditions will x n +i remain at zero 

level in the optimal solution to the modified integer nonlinear program? 

T H E O R E M 4.1.4. Suppose after solving (4.1) to optimality the problem was 

enlarged by introducing a new 0—1 variable, say x n + 1 , resulting in the addition 

of a new linear term, say a(Xn+i , to each constraint i = 1, .. . ,m , and a number of 

new terms in the objective function given by / ( x ) x „ + i . Then there exist an optimal 

solution to the new problem with x n + i = 0 if 

IF, >N{b)-l\b-a) 

where a T = (aj,. . . ,am) , fpl = /(x) and x is the optimal solution to the initial 

problem (4.1). 

P R O O F Suppose x n + i = 1 is in an optimal solution at node 1 . The remaining 

optimal values can thus be found by solving problem (4.1) with right hand side b—a . 

By Theorem 4.1.3, N(b — a) > I 1 (6 — a) and therefore a solution to the enlarged 

problem with xn+\ = 1 has objective function not less than 

N = fFl + I 1 ( 6 - a ) . 

Now, if N > N(b) the solution to the initial problem remains optimal. 

• 
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4.2. T H E M I X E D - I N T E G E R C A S E 

Consider now problem (4.1) where only a subset of variables is restricted to be 

integer. Theorem 4.1.3 can be carried over without any changes. For Theorem 4.1.4 

to be valid the assumptions remain unchanged, while the result should read : "Then 

there exist an optimal solution to the new problem with xn+i — 0 if 

f{x) > N{b) - I 1 ( 6 - a) 

where f(x) denotes the sum of the new terms in the objective function evaluated 

at x , the optimal mixed-integer solution to the original problem, and x n +i = 1 •" 

Next, consider the nonlinear mixed-integer program of the form (4.1) except that 

the integer variables are not necessarily restricted to be zero or one. The bound (4.4) 

can be derived in a straightforward manner as for the 0 — 1 case and Theorem 4.1.3 

will be valid without any changes. However, if xn+\ is an integer variable restricted 

to the interval [0,17], then we will restrict ourselves in Theorem 4.1.4 to the case in 

which the added terms in the objective function are linear in . In this event 

the bound can be improved as follows. If 

min{ / (x)x n + 1 + I1 (6 - axn+l) : x n + i = 1,...,U} > N(b) 

then the solution to the initial problem remains optimal. 

4.3 T H E Q U A D R A T I C 0-1 P R O B L E M : A N E X A M P L E 

Consider the quadratic integer programming problem 

Q[b) — min c x-\—x Dx 
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s.t. Ax > b (4.6) 

0<x<l 

x integer 

where A is an ra x re and D an re x re matrix, c and x are re—vectors and 6 

is an ra —vector. 

Observe that, although no restrictions are imposed on D , we can assume without 

loss of generality that D in (4.6) is symmetric and positive semidefinite. This will 

ensure the existence of a global minimal solution to the continuous relaxation of (4.6) 

whenever the polyhedron P = {x : Ax > b,0 < x < 1} is nonempty. Indeed, as 

stated in Section 1.4, if D is not of the desired form (4.6) can be replaced by an 

equivalent problem in which the objective function of (4.6) is replaced by 

[ J - \ \ e T ) x + \xT{\(D + DT) + \I)x 

where A is a positive scalar such that \(D + DT) + AJ is positive semidefinite, see 

for example [25]. 

Taking into account Remark 4.1.1, the dual of the continuous relaxation of (4.6) 

can be written as (see e.g. Dorn [13]) 

max o u + e v x Dx 
2 

s.t. ATu - Dx + Iv < c (4.7) 

u>0, -v > 0 . 

This since the continuous relaxation of problem (4.6) can be written as 

min {-xTDx + cTx : Ax >b,x>0} 
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where A = ^ A ^ and b = with eT = (!,...,!) . Following Dorn [13] 

Type I, page 60, its dual is 

1 
max {— w Dw + b z : A z — Dw < c, z > 0 } 2 

which is equivalent to 

l /TT /TT /TT 
max it; Dw + b z\ — e zo 

2 
rp 

S.t. A 2 ! - Iz2 — Dw < c 

Z\ > 0 , 2 2 > 0 . 

Now, replacing w by x , z\ by u and 22' by —v results in (4.7). 

From Remark 4.1.2, the bound (4.4) in this case becomes 

Rt{d) = dTut+J2{vt)j+ m i n ( 0 , {vt)j} ~ \xfDxt . (4.8) 

It is easy to see that R t(d) can be further improved using information obtained 

from other nodes in the tree (see also [42] for the linear case). Indeed if the dual 

prices of all nodes, say N , of the implicit enumeration tree are used, R f(d) can be 

improved to 

R*(d) = max {dTus + V (va)j + Y] min{0, (us)y> - \xT

sDxs } . 
seN ^ L 

jeF* jeF\(F*UF*) 

For problem (4.6), Theorem 4.1.2 specializes to " Suppose after solving (4.6) to 

optimality the problem was enlarged by adding a new column, say a n + i to A . 

Then, there exist an optimal solution to the new problem with x n + i = 0 if 

cn+l + ^ ( d n + l , n + l + rf*>+1) - Q(b) ~ ̂  (b ~ an+l) , 

65 



where Fi is the set of variables fixed to 1 in the optimal solution for (4.6) with 

Q(b) its optimal objective function value." 

E X A M P L E 4.1 

form 

Consider the quadratic integer programming problem of the 

Q — min 65xi - 10x2 + 7x 3 + 58x4 — 8x 5 + 23x6 — 8x^ 4 + 16xxx6 + 4x 4 x 6 

s.t. 70X] - 20x2 + 30x3 - 20x4 + 90x5 + 100x6 > 200 

lOOxj + 30x2 - 30x3 + 80x4 - 5x5 + 70x6 > 100 

0 < X{ < 1 , X{ integer , i' = 1, ...,6 . 

The equivalent objective function of the form cTx+\xTDx with positive semidefinite 

matrix D has 

(15,-10,7,50,-8,5) and D = 

/100 0 0 
0 0 0 
0 0 0 

- 8 0 0 16 0 
0 0 0 

V 16 0 0 

-8 0 16 \ 
0 0 
0 0 

0 
0 
4 

0 0 0 
4 0 36/ 

The optimal solution to the continuous relaxation equals (0.20588,1,0.5196,0,1,1) 

with objective function value of 17.139 . The corresponding 0 — 1 optimal solution 

equals (0,0,1,1,1,1) with objective function value of 84 . The continuous relax­

ation subproblems were solved using QPSOL, a F O R T R A N package for Quadratic 

Programming developed at Systems Optimization Laboratory, Department of Oper­

ations Research, Stanford University, and implemented on A M D A H L 470 V-6 com­

puter model II. QPSOL minimizes an arbitrary quadratic function subject to linear 

constraints where upper and lower bounds on the variables are handled separately. 

It requires an initial estimate of the solution and a subroutine to define the quadratic 

part of the objective function. Among output arguments, the Lagrangian multipliers 
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for each constraint are given. In the case of an infeasible constraint set , the minimum 

of the sum of the infeasibilities was determined using the LINDO package. 

CR 

X i = 1 

xi = 0 

XQ = 1 
xT = (1,1,0,0,1,1) , z = 86 

xe - 0 
infeasible 

X4 = 1 
xT = (0,0,1,1,1,1) , 2 - 8 4 

X4 = 0 
infeasible 

Figure 4.1: Branch and Bound Tree for Example 4.1 

Figure 4.1 describes the enumeration tree associated with example 4.1. The 

number above each node corresponds to the node index while the entry in each 

node represents the branching choice. For terminal nodes with feasible solution an 

optimal solution and the optimal objective function value are denoted by x and 2 , 

respectively. 

The lower bounding functions R*(d) for the continuous subproblems solved at each 

node are given by 

R7{d) = dx + d2 - 265 , 

Re{d) = 0.5di - 16 , 
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R5{d) =di+ 0.25d2 - 206.25 , 

R4{d) = 86 , 

R3{d) = 2.756<2X + 1.504d2 - 640.88 , 

R2(d) = 0.318**! - 1.68 , 

R :(d) = 0A41di + 0.207d2 - 91.75 . 

The lower bounding functions for the corresponding integer problems are 

T7(J\ _ / - ° ° i f R7(d) < 0 
" 1 ' ~ \ +oo if R7{d) > 0 ' 

f{d) = R6{d) , 

T5(J\ - I -oo if R5[d) < 0 
- [ > ~ \+oo if R5{d) >0 ' 

I4(<2) = R4{d) , 

f{d) = max {R3{d) , min {I6(<f), I7(d)}} , 

I2{d) = max {R2(d) , min {l4{d),f{d)}} , 

^{d) = max {R}{d) , min {l2{d),f{d)}} . 

A sample of sensitivity analysis for d\ e (180,240) and d2 e (60,140) is given in 

Table 4.1. The first number in each cell equals the optimal value Q(d) , the second 

number equals I 1 (d) , while the third number equals R 1 (d) . 
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di 
d2 

180 190 200 210 220 230 240 

12 12 12 86 86 86 86 
60 -0.106 4.29 8.69 86 86 86 86 

-0.106 4.29 8.69 13.09 17.49 22.1 26.51 
74 84 84 86 86 86 86 

90 55.56 79 84 86 86 86 86 
6.26 10.67 15.08 19.49 19.76 28.31 32.72 
74 84 84 86 86 86 86 

100 74 79 84 86 86 86 86 
8.33 12.74 17.139 21.56 21.83 30.38 34.79 
74 84 84 86 86 86 86 

110 74 79 84 86 86 86 86 
10.4 14.81 19.21 23.63 23.9 32.45 36.86 
74 86 86 86 86 86 86 

120 74 79 84 86 86 86 86 
12.47 16.88 21.29 25.7 30.11 34.52 38.93 

74 86 86 86 86 86 86 
130 74 79 84 86 86 86 86 

14.54 18.95 23.36 27.77 32.18 36.59 41 
74 86 86 86 86 86 86 

140 74 79 84 86 86 86 86 
16.61 21.02 25.43 29.84 34.25 38.66 43.07 

Table 4.1: Sensitivity Analysis Sample for Example 4.1 
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Chapter V 

S I M U L T A N E O U S A P P R O X I M A T I O N 
I N Q U A D R A T I C 0-1 P R O G R A M M I N G 

Consider the following quadratic programming problem 

min cTx H—xT Di 
2 

s.t. Ax>b (5.1) 

0 < x < 1 

x, integer 

where A is an m x n matrix, D is an n x n symmetric matrix, c and x 

are n-vectors and b is an m-vector. Problem (5.1) is a natural representation of 

many problems in, for example, finance [34] and capital budgeting [31]. Different 

approaches for solving the above problem can be found in the literature, e.g., lin­

earization methods where the quadratic problem is transformed into a linear 0—1 

or a mixed-integer program can be found, respectively, in Watters [47] and Glover 

[22]. Algorithms based on a branch and bound method have been proposed by many 

authors, e.g., Mao and Wallingford [37], Laughhunn [31] and Hansen [26]. McBride 

and Yormark [38] gave an implicit enumeration algorithm in which at each node they 

solve a quadratic programming relaxation of a corresponding integer subproblem 

using Lemke-Howston's complementary pivoting algorithm. It is conceivable that a 

70 



success of such an implicit enumeration algorithm depends greatly on the efficiency of 

the quadratic programming algorithm used. Although, at present, the polynomiality 

of an algorithm can not always be identified with real world computational efficiency 

or practicality, it is an important theoretical result which leads the research efforts 

in the direction of constructing efficient problem oriented polynomial algorithms. As 

stated in Section 1.5. Kozlov, Tarasov and Hacijan [30] provided the first polynomial 

time algorithm for convex quadratic programming problems. For a class of strictly 

convex quadratic programming problems, in Chapter II we proposed a polynomially 

bounded algorithm in which the number of arithmetic steps is independent on the 

size of the numbers in the linear cost coefficients and in the right hand side vector. 

We show in this Chapter how to replace the objective function of a quadratic 

0 — 1 programming problem with n variables by an objective function with integral 

coefficients whose size is polynomially bounded by n , without changing the set 

of optimal solutions. We will use Frank and Tardos' [19] algorithm which in turn 

uses the simultaneous approximation algorithm from Lenstra at al. [33]. The above 

result assures that the running time of any algorithm for solving quadratic 0 — 

1 programming problems can be made independent of the size of the objective 

function coefficients. This since the equivalent problem can then be solved by e.g. 

an implicit enumeration algorithm in which at each node the continuous relaxation 

of the corresponding integer subproblem is solved in polynomial time independent of 

the size of the objective function coefficients. 

Observe that since (5.1) is a 0—1 programming problem then a constraint i with 

b{ > Ey=i \aij\ 15 clearly infeasible. This since Yl^=iaijxj — Ey=i \aij\ < ^» • 

Therefore, assuming that (5.1) is feasible automatically assures that the entries of b 

can be bounded by the entries of the constraint matrix A . Note, however, that this 
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does not imply that the input size of 6 is polynomially bounded by the input size of 

the size of p and (or) q is not polynomially bounded by the size of the entries of 

A . In any event, if the entries in the constraint matrix are polynomially bounded by 

the number of variables and/or constraints, then the continuous relaxations of the 

integer subproblems can be solved in strongly polynomial time using the algorithm 

presented in Chapter II. Recall that in a strongly polynomial algorithm the number 

of elementary arithmetic operations (i.e., additions, comparisons, multiplications and 

divisions) is independent of the size of the input and is polynomially bounded in the 

dimension of the input (i.e., the number of data in the input). 

In Section 5.1. we state the problem and give some preliminary definitions. The 

extension of Frank and Tardos' preprocesing algorithm to quadratic 0 — 1 problems 

is given in Section 5.2. 

For simplicity of exposition we will consider a problem with an objective function 

in homogeneous quadratic form 

A since 6 can be a rational vector ^ ( pT = (p,, ...,pn) , o r = (gi, qn) ) where 

5.1. S E T U P O F T H E P R O B L E M 

mm 2 

s.t. Ax>b (5.2) 

0 < x < 1 

x integer . 

This can be done without loss of generality since the transformation of the objective 

function of (5.1) to the homogeneous quadratic form given in (5.2) can be easily 
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achieved as stated in Section 1.4. For the sake of completeness we will give here some 

details. 

For example, by adding a new variable y = 1 problem (5.1) can be restated as 

(5.2) with 

(;)< 

' A 0 ' ' b ' 
A = 0 1 and b = 1 

, o -1 . ; -1 . 

= I , -.,n we h ave 

cTx + ̂ xTDx = \xT{D + 2C)i 

where C is a diagonal matrix with ca = c t, i = 1, ...,n. 

In the sequel we will use some vector and matrix norms as defined in Section 1.1. 

Let S = {x £ f?2 : Ax > 6}, where B2 = {0,1} . A vector v G S is said to be 

a feasible solution of (5.2) while a vector z G S for which zTDz < vTDv for 

every v G 5 is said to be an optimal solution for (5.2). 

The following lemma will justify the algorithm to follow. 

L E M M A 5.1.1 If for every u,v G S we have 

sign(u — v)TD(u + v) = sign(u — v)TD(u + v) 

for some symmetric matrices D and D, then problems (5.2) with matrices D and 

D , respectively, have the same set of optimal solutions. 

P R O O F We will show that every optimal solution of (5.2) with matrix D 

(resp., D ) in the objective function is optimal for problem (5.2) with D (resp., 

D ) in the objective function. To that end suppose that for some u G S u1Du < 
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vTDv is valid for every o £ S. Then it follows from the symmetricity of D that 

uTDu - vTDv = (u- v)TD(u + v) < 0 for all v e S. Now 

s ign( t t - i , ) r D(u + t,) = {- 1 !J TT^TT < ^ 
1.0 if u J Du — v Dv . 

By the assumption, sign(u — v)TD(u + v) = sign(u — v)TD(u + v) . This means that 

uTDu < vTDv for every v G 5, which in turn implies optimality of u for problem 

(5.2) with the matrix D in the objective function. 

• 

5.2. S I M U L T A N E O U S A P P R O X I M A T I O N O F 

O B J E C T I V E F U N C T I O N C O E F F I C I E N T S 

Frank and Tardos [19] presented an algorithm which replaces a rational cost 

coefficient vector w of a linear programming problem with an integral vector w, 

without changing the set of optimal solutions. Their algorithm uses a revised ver­

sion of Lenstra, Lenstra and Lovasz's simultaneous approximation algorithm (LLL 

algorithm) which is strongly polynomial. For the sake of completeness we will state 

Frank and Tardos' algorithm (F-T algorithm) [19] : 

I N P U T w = (w(l), ...,w(n)) rational vector and an integer TV with 1 < TV < 2n! 

O U T P U T w = (td(l),...,w(n)) integral such that || w < 2n'+2n2+2nJVn(n+2) 

and sign (w,b) = sign (w,b) whenever b is an integral vector with || b \\\< TV. 

0. Let M = 2" 2 +"+ 1 TV n + 1 , wi=w, w = 0 and i = 1. 

1. Let Ul' = T T — T i — 

1 I!*".- Moo 1 

2. Apply the revised L L L algorithm to TV and w'^l), ..^w^n). Let p t = 
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( p i ( l ) , P i { n ) ) and g; denote the output. Then || qiw\ — pi | | o o < 1/-W 

and 1 < qx < 2 n 2 + n N n . 

3. Let Wi+\ = q{Wi — pi and w = Mw + pi. If it>;+i = 0, H A L T . Otherwise 

let i = t + 1 and G O T O 1. 

E N D . 

The algorithm presented above can be generalized into a preprocessing algorithm 

that will transform the objective function coefficients of a 0—1 quadratic program­

ming problem into integer coefficients whose size will be bounded by a polynomial 

function of n and for which the set of optimal solutions remains unchanged. As 

stated above, without loss of generality, we will assume the homogeneous form in the 

objective function. 

P R E P R O C E S S I N G A L G O R I T H M F O R 

Q U A D R A T I C 0-1 P R O B L E M S 

I N P U T D = (dij) an n x n symmetric rational matrix and an integer N = An2. 

O U T P U T D = (dij) an nxn symmetric integer matrix with 6 < 2^+2h~+2hNh(h+2\ 

where h =  n( n+ l) a n d £ — max{dij i,j = 1, ...,n} and for which sign(u — v) TD(u + 

v) = sign(u — v) TD(u + v) for every integral u,v with || u | | o o < 1 and || v | | oo< 1-

S T E P 1. Construct a rational vector d = ( d u , d l n : d 2 2 , d2n-, •••> dnn) where 

dij is the entry in the i t h row and j t h column of the matrix D. Recall that since D 

is a symmetric matrix, we only need to approximate n ^ n

2

+ 1 ^ elements of D. 

S T E P 2. Apply F - T algorithm to the vector d and integer N obtaining the 

integral vector d. 
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S T E P 3. Construct the integer, symmetric n x n matrix D 

entries of the output vector d. 

E N D . 

Theorem 5.2.1 to follow is a generalization of Theorem 3.1 in [19]. 

T H E O R E M 5.2.1 The matrix D satisfies the output criteria. 

P R O O F Using the entries of the vector d{ (resp., d'{, pi ) from F - T algorithm, 

construct a symmetric matrix (resp., D'{, P; ). Denote by <5t (resp., 7T; ) the 

largest absolute value of the entries in JDt (resp., P, ) and by r the number of 

iterations in F - T algorithm. The first part of the output criteria (i.e., the bound on 

the entries of D ) is satisfied by construction of the matrix D and since the F - T 

algorithm is valid. The validity of the second assertion can be shown in a similar 

way it was done in [19] as follows. Recall that for a matrix D its max-norm is given 

by || D \\oo— m a x K K n E j = i Now, we first show that (u — v)TD{(u + v) > 0 

implies (u — v)TPi(u + v) > 0 . Suppose, on the contrary, that (u — v)TPi(u + v) < 0. 

Then, from the integrality of u,v and P t , (u — v)TPi(u + v) < —1. Therefore 

(u - v)TDi(u + v) = Si(u - t;)r7J^(tt + v) 

= 6i{u - v)T{fP{ + ^{qijy. - Pt)}(tt + v) 

< 6i{=± + i ( u - v)T{qtD' - Pt)(tt + v)} 

< < $ i { ^ + f{ || u - V ||i|| qiD\ - Pi | |oo|| « + V |]oo} 

< + j-n || tt - v ||oo n || qid\ - p{ |]oo|| « + v ||oo} 
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<^{^r + i^(IMIoo + IIHIoo)2} 

which is a contradiction. Interchanging the roles of u and v will result in a reversed 

inequality which in turn proves that ( i t—v) TDi(u+v) = 0 implies (u—v)TP{(u+v) = 

0. From F - T algorithm and the construction of the vector d and the matrices 

D,Pi,...,Pr it follows that D as well as D are linearly dependent on Pi,...,Pr. 

Therefore, if (u — v)TP{(u -j- v) = 0 for each i , then (u — v)TD(u + v) = 

(u — v)TD(u + v) = 0 and in this case the theorem is proved. Now, suppose that this 

is not the case and that j is the smallest index such that (u — v ) T P j ( u + v) ̂  0. 

F - T algorithm implies that sign(u — v)TD(u + v) = sign(u — v)TDj(u + v). Since 

sign(w — v)TDj(u + v) is equal to sign(u — v ) T P j ( u + v), it remains to show 

that sign(u — v ) T P j ( u + v) = sign(u — v)TD(u + v) . To that end recall that D = 

J ^ = 1 Mr~lPi , where M is given in F - T algorithm. By induction on k we will 

prove that for j <k <r , s ign(« — u ) TPj(u + v) = sign Yli=i Mk~l(u-v)TPi(u-\-v) . 

For k = j this follows because (u — v)TP{(u + v) =0 for i < j . Assume that 

the induction hypothesis is true for k — 1 . Without loss of generality assume 

sign(u-i;)TPy(u-|-v) =+1 . Then sign YAZI Mk-1~i{u - v ) T P i ( u + v) =+1 , which 

together with the integrality of u, v and P, implies 

fc-i 

Mk~l-l(u - v)TPi(u + v) > 1. 
i=i 

Now, 
k 

J2 M^iu - v ) T P i ( u + v)=MY, M * - 1 - * ^ - v)TPt{u + v) 
i=l i=l 

+ (u - v)TPk[u + v)>M- 4n2 || pk ||oo 

> M - 2h2+hNhN > 0. 
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The last inequality follows from F - T algorithm since || a1'- \ \ o o — 1 implies || p; \\oo 

< Q i < 2 h 2 + h N f i . This completes the proof. 

• 

The preprocessing algorithm described above can precede, for example, an im­

plicit enumeration algorithm for solving quadratic 0—1 programming problems. At 

each node, due to the above transformation, the continuous relaxation of the corre­

sponding integer subproblem can then be solved in time independent of the objective 

function coefficients. Observe that we can always assume, without loss of generality, 

that the continuous subproblems are convex quadratic programming problems, i.e. 

the matrix associated with the quadratic terms is positive semidefinite (see e.g. [25]). 
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Chapter VI 

A R E A S F O R F U R T H E R R E S E A R C H 

In this thesis we extended a number of recent results for linear programming 

problems to quadratic programming problems. Moreover, the results from Chap­

ter IV were shown to be valid for a broader class of problems, namely for nonlinear 

integer programming problems whose convex continuous relaxations satisfy a given 

constraint qualification. 

One possible avenue of further research is to try and extend the results obtained in 

Chapter III to a broader class of problems, for example to separable convex problems 

in which some or all of the variables are restricted to be integral. 

As far as Chapter V is concerned, one might try to extend the given result 

to quadratic integer programming problems in which the integral variables are not 

necessarily restricted to be 0 or 1 . 

In Chapter II a polynomial algorithm (whose running time is independent of the 

size of the linear cost coefficients and the right hand side vectors) was proposed for 

a class of strictly convex quadratic programming problems. It is an open question 

whether there exists a strongly polynomial algorithm for the above class of problems, 

as well as whether there exists such an algorithm for a class of linear programs. 

Finally, although the results in this thesis have mainly theoretical significance, one 

might investigate the practical benefits in some cases. For example, the calculation of 
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a lower bound on the objective function value of a problem with perturbed right hand 

side vector (see Chapter IV) might help a decision maker in deciding on a suitable 

changes of the initial right hand side vector. 
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