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ABSTRACT 

Alzheimer disease is believed to be the most common cause of dementia. The main 

cause is presently unknown, with genetic and environmental factors suggested. It appears 

that 10-15% of Alzheimer disease is due to an autosomal dominant gene and it has been 

hypothesized that this is the cause for all Alzheimer's. Alzheimer's variable age of onset 

makes it more difficult to determine the validity of this and other genetic models. Empiric risk 

estimates for Alzheimer disease in relatives can used to test the plausibility of various 

genetic models. 

Three types of procedures for estimating the risk of Alzheimer disease are discussed. 

Three nonparametric, product-limit type estimators (Kaplan-Meier, Life-table, Weinberg) for 

age-specific risks are discussed first. Then three estimators for lifetime risk of disease using 

a predetermined weight function believed to approximate the true age of onset distribution 

(Stromgren, Modified Stromgren, maximum likelihood) are compared. Finally a maximum 

likelihood procedure to estimate lifetime risk and the age of onset distribution is presented. 

The properties of these estimators are discussed using a data set from the Alzheimer Clinic, 

University Hospital - U.B.C. Site. In addition, the results of a Monte-Carlo study of the 

maximum likelihood procedure for estimating the lifetime risk and age of onset distribution are 

discussed. 

The most useful of these estimators appear to be the Kaplan-Meier and the life-table 

estimators for age-specific risks and the maximum likelihood procedure for estimating lifetime 

risk and the age of onset distribution. The Weinberg estimator appears to be biased and the 

fixed age of onset estimators for lifetime risk appear to be too dependent on the choice of the 

age of onset distribution to be useful in general. 
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1 INTRODUCTION 

1.1 Background 

Alzheimer disease (AD) is a condition clinically characterized by dementia (organic 

loss of cognitive function) and is often accompanied by major personality changes. It is 

believed to be the most common cause of dementia, accounting for 50-65% of all patients with 

this diagnosis (Katzman, 1976; Marsden, 1978). A D has a variable age of onset, ranging 

from ages 35 to 90, with the majority of people becoming affected in their 70's. The main 

cause of A D is presently unknown, with genetic and environmental factors hypothesized. It 

is believed that 10-15% of cases represent Familial Alzheimer disease (FAD), a genetic 

form of the disease (Friedland, 1988). These families exhibit autosomal dominant 

inheritance, with each child of an affected person having a 50% risk of inheriting the gene 

causing the disease and becoming affected themselves assuming they life long enough to 

reach their age of onset. A pedigree of one family appearing to represent F A D is shown in 

Figure 1.1 (Sadovnick et al., 1988). An explanation of the pedigree symbols is in Figure 1.2. 

This family is atypical, having an extremely low age of onset. It should be noted that having 

multiple affected members in a family does not imply that the family represents the genetic 

form of the disease, a "sporadic" or non-genetic form of the disease could also account for this 

situation. The F A D and "sporadic" forms of the disease cannot be differentiated with respect 

to clinical, pathological, and biochemical factors. In a few families with early onset of 

dementia, D N A markers have been mapped to chromosome 21 (St. George-Hyslop et al., 

1987; Marx, 1988). Genetic heterogeneity in A D has been suggested by the failure of some 

groups to show linkage to chromosome 21 in FAD pedigrees (Schellenberg et al, 1988; 

Pericak-Vance et al. 1988). It has been speculated that there is no "sporadic" form of the 

disease, with these cases representing age-reduced penetrance of an autosomal dominant 

gene (Editorial, 1986). 

Recent studies have suggested that the rates of A D are consistent with an autosomal 

dominant trait with complete penetrance by some very late age. Breitner and Folstein 
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(1984), Breitner et al. (1988), Martin et al. (1988), and Zubenko et al. (1988) have found 

risks for AD in first degree relatives approaching 50% by approximately age 90. These 

findings have not been consistently found, with Sadovnick et al. (1989) and Farrer et al. 

(1989) reporting much lower risks. 

The purpose of this thesis is to investigate methods for calculating empirical risks for 

dementia in first-degree relatives (parents and siblings) of people with AD. These risk 

estimates serve two purposes. Firstly, they are useful for counselling, allowing people make 

better informed decisions about careers or whether to have children, for example. If someone 

knows that they have a 50% risk of having Alzheimer's by age 40, as in the M M family of 

Figure 1.1, they may decide to live their life differendy than if they have risks of 10% by age 

75 and 25% by age 90. Secondly, the risk estimates can be used to test the plausibility of 

various disease models, in particular genetic models. Of course, obtaining risk estimates 

consistent with an hypothesized model does not prove that the model is correct; it only 

provides supporting evidence. 

1.2 Data Sets Investigated 

The first data set investigated was collected at the Alzheimer Clinic, University 

Hospital - U.B.C. Site. The Clinic's multidisciplinary team consists of an 

internist/geriatrician, a psychiatrist, a neuropsychologist, a social worker, a geneticist, and a 

clinical fellow in Neurology. Al l patients are assessed by all members of the clinic team and 

are given a diagnosis according to NINCDS-ADRDA standards (McKhann et al., 1984). 

Risks will be calculated for relatives of patients with probable or definite AD. For a 

diagnosis of probable AD, dementia must be established by clinical and neuropsychological 

examination. There must be evidence of deficits in two or more areas of cognition, 

progressive worsening of memory and other cognitive functions. Also there should be no 

disturbance of consciousness, and no systemic disorders or other brain diseases that could 

account for the deficits. If in addition to the typical clinical findings, histopathological evidence 

from either a biopsy or autopsy consistent with AD is obtained, a definite, or autopsy 
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confirmed, diagnosis can be given. The pathological "hallmarks" of AD include neurofibrillary 

tangles, amyloid plaques, congophillic angiopathy and granulovascular change. Longitudinal 

studies of patients with a diagnosis of probable AD have shown that over 85% of cases have 

neuropathological findings consistent with definite AD (Joachim et al., 1988; Tierney et al., 

1988). The diagnoses for the patients seen from January, 1985 to August 1988, the study 

period, are shown in Table 1.1. 

Table 1.1: Diagnosis of Clinic Patients After Evaluation 

Clinic Diagnosis Number Percentage of Total 

Demented, Alzheimer's Unlikely 27 6.1 

Demented, Possible Alzheimer's 90 20.2 

Demented, Probable Alzheimer's 141 31.6 

Definite Alzheimer's 10 2.2 

Not Demented 108 24.2 

Diagnosis Pending* 70 15.7 

Total 446 100.0 

This category consists of patients requiring future follow-up prior to assigning a diagnosis 

as well as those still in the process of the assessment. 

All patients referred to the clinic have, as part of their overall assessment, a detailed 

family history taken by a geneticist. The family history method relies on knowledgeable 

informants to provide the information on the relatives of the clinic patient. While the family 

history method has been shown to slightly underestimate the number of affected relatives 

when compared to the family study method in which all family members are directly assessed, 

the errors can be reduced by the use of multiple informants. Whenever possible, multiple 

informants are used, and to date over half of the families have had at least two informants. 

The preferred co-informants are spouses and siblings rather than the children of the clinic 

patients as the former tend to be more informative about older relatives. To increase the 
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accuracy of the medical information on the relatives, medical/autopsy records are obtained 

where possible. These records are evaluated by the appropriate members of the clinic team. 

This method of collecting data avoids many of the biases inherent in studies in which 

families are ascertained through genetics clinics and solicitation of volunteers, two methods 

which tend to result in the over-representation of familial cases. Incorporating genetic 

evaluation into a specialized medical clinic has been done successfully in the past for Multiple 

Sclerosis, another adult-onset disease in which genetic factors appear important in the 

disease's etiology, but where the genetic mechanism is not clear (Sadovnick and Baird, 

1988). 

As only some AD may be due to a genetic trait, it is felt that for research purposes, 

strong criteria are needed for FAD. Of course this should be relaxed for counselling purposes 

as it is recognized that the following criteria only identify a very restricted group as FAD. In 

this study, families must satisfy four conditions to be considered as FAD as described in 

Sadovnick et al. (1989). 

1) A detailed family history must be available must be available for at least the index 

case's (patient's) generation and the previous (parental) generation; 

2) Good clinical documentation of dementia in relatives, preferably from at least two 

separate sibships within the family must be available; and there must be no other 

plausible explanation for the dementia such as strokes, alcoholism, head injury, etc.; 

3) Neuropathological documentation of Alzheimer disease must be available for at least 

one member of the family, but preferably for two or more; 

4) Accurate information on ages of death and/or present ages of relatives must be 

available so that it is possible to assess the "significance" of being clinically 

unaffected. 

For analysis there are 825 parents and siblings of 151 consecutive, unrelated patients 

with probable or definite AD. Four criteria were used to determine what families would be 
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included in the analysis and which relatives would be classified as affected. The first three 

categories were used by Sadovnick et al. (1989) 

a) Stringent without F A D : In this group, relatives were coded as "affected" only if 

good clinical and/or autopsy records could be obtained and Alzheimer disease seemed 

the almost certain diagnosis; FAD families were excluded since their inclusion could 

confound the results if autosomal dominant inheritance does not account for all 

Alzheimer disease. 

b) Stringent with F A D : The criteria as described in (a), but FAD families are 

included. If all Alzheimer disease is in reality due to autosomal dominant genes, such 

families should be included in the analysis. 

c) Relaxed: This includes all cases in category (b), as well as those relatives for whom 

the only documentation of dementia is based on the descriptions by family informants, 

but the descriptions do suggest dementia of unknown etiology. In particular, other 

causes such as strokes and cardiovascular problems have been eliminated. 

d) F A D Only: Only members of families which have been classified as FAD according 

to the above rules are included in the data set. Relatives are considered affected 

under the stringent criteria used in (a) and (b). 

A second data set involving a group of manic patients admitted to Renard Hospital, 

the psychiatric section of the Washington University School of Medicine, in St. Louis, 

between July, 1964 and June, 1965, and between January and May, 1967. The data set is 

described by Winokur et al. (1969). Risks for an affective disorder (mania, depression, and 

manic depression) will be calculated for 143 siblings of 54 manic patients. This data set is 

included to illustrate the properties of some of the analytic techniques. 

1.3 Overview of Thesis 

Three methods of estimating risks will be proposed and discussed. In Chapter 2, 

product-limit estimates for the probability of being affected by any given age are proposed. 

These are based on the non-parametric methods of survival analysis for estimating a 
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distribution function in the presence of censored observations. Three parametric procedures 

for estimating the lifetime risk for disease using a fixed predetermined approximation to the 

true age of onset distribution are discussed in Chapter 3. The first two are extensions of the 

sample proportion to estimate a binomial proportion and the third is a maximum likelihood 

procedure. An extension of this maximum likelihood procedure allowing the estimation of 

lifetime risk and the age of onset distribution is discussed in Chapter 4. This procedure also 

can be used to generate age-specific risk estimates similar to those calculated by the 

product-limit method. The results of a Monte-Carlo study investigating the properties of the 

extended maximum likelihood procedure are discussed in Chapter 5. In Chapter 6, the 

different estimation procedures are compared, and the implications the Alzheimer risk 

estimates have for the model that all AD is due an autosomal dominant trait are discussed. 
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Figure 1.2: Pedigree Symbols 
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2 Product-Limit Estimation of Age-Specific Risks 

2.1 Background 

A number of groups have used product-limit type estimators to calculate age-specific 

risks for Alzheimer disease (Chase et al, 1983, Breitner et al, 1988, Sadovnick et al, 1989, 

Huff et al, 1988) and for psychiatric conditions (Slater and Cowie, 1971, Thompson and 

Weissman, 1981). This method has the advantage that few assumptions about the age of 

onset distribution need to be made. The one disadvantage of this method is that the lifetime 

risk cannot be estimated without making assumptions about an upper bound on the age of 

onset. 

For these nonparametric methods to be useful, complete information about ages of 

family members, in particular, ages of onset for affected relatives is needed. Inaccurate 

determination of age of onset has been shown to lead to inconsistencies in estimation 

(Breitner and Magruder-Habib, 1989). Problems can also occur if the criteria used for 

classification as affected don't match the criteria for age of onset. Also if an affected relative's 

age of onset is unknown, it is not clear how this person should be dealt with. One possible 

solution is to consider the person unaffected at the highest age where this is clearly the case. 

2.2 Model and Estimators 

Assume that the probability of being affected at any given age is the same for all 

relatives in the sample and the outcome for each is independent of the others. Then divide 

the time axis into k+1 intervals Ij = [aj.̂ aj), j = l,...,k+l where T is the largest age observed 

and 0 = a
0
 < aj < ... < a

k
 = T < a

k+1
 = <». For a randomly chosen relative in the sample let: 

Pj P[does not become affected in interval L I unaffected at age aj.j] 

PI Pi = P [unaffected at age aj, with P
0
 = 1 

i=i
 J ( 1 ) 

1 - Pj = P[affected by age aj]. (2) 
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Then collect the data into the form: 

dj = number of people with onset in interval Ij 

Wj = number of people withdrawn due to censoring in interval Ij 

Nj = number of people reaching age a^. 

The product-limit estimates are based on choosing estimators for pj. Three 

estimators which have been proposed are: 

Nj -^Wj + djj-dj 
Pj = Weinberg 

Nj--(wj + dj) 

T T
 N

J - l
W

J -
d

j 

Pj = — Life-Table 
N

J - 2
W

J 

KM Nj -d; 
K M

 =
_ j j Kaplan-Meier (1958). 

Nj 

These estimates lead to the age-specific escape probability estimates, P^, P^
T

 and Pj
0

^, 

which are calculated by substituting the appropriate estimate for pj into equation (1). Then 

the age-specific risk estimates, R^, R̂
7

 and R ™ , are calculated by using the appropriate 

estimate for Pj in equation (2). 

These three different estimators result from different assumptions about the censoring 

and onset patterns in each age interval. The Weinberg estimate is based on the assumption 

that onsets and withdrawals occur uniformly within each interval. The actuarial life-table 

method assumes only withdrawals occur uniformly within an age interval, with no 

assumptions made about where in the interval the onsets occur. The Kaplan-Meier 

procedure makes the assumption that all withdrawals occur after all onsets within each age 

interval. 
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w w 
An estimate for the variance of Pj and Rj (Slater and Cowie, 1971) is: 

2 j 1 W 2 J

 1 "Pi 
v„[pf]-v„[Rn-(pr) s 

i=i (Ni -^Wi + di))
Pl

W 

.2 J 

= (PD I di 

i=i - ̂ wj + di)) (Ni - i (
W i
 + di) - di 

LT LT 
The estimate for the variance of Pj and Rj as shown by Greenwood (1926) is: 

w

 (Ni-^wijp^ 

2 J 

* ( N i - ^ i j j N i - l w i - d i ) ' 

The similar estimate for the variance of P ™ and Rj™ as shown by Kaplan and Meier 

(1958) is: 

i=l NiPj 
2 j

 di 
=
 (pKM) j 

S N i ( N i - d i ) -

These variance estimates can be used to calculate confidence intervals of the escape 

and risk probabilities at any given age. One possible choice (Lawless, 1982) for an 

approximate 100 (1 - a)% confidence interval for Pj using the asymptotic normality of the 

above estimates is: 

P* ± za/
2
 V Var[P* 

where Pj is one of three discussed estimates and za/2 is the 1 - a/2 quantile of the normal 

distribution. Another option (Lawless, 1982) is to apply a transform \y so that the 
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distribution of \)/(Pj) is closer to a normal than the distribution of Pj. One good choice for y 

(Anscombe, 1964) is: 

V ( P ) = [ r^U-t^dr 
Jo 

Another choice which is almost as good (Lawless, 1982) is the logistic transform 

The variance of \|/(Pj) can be estimated using the delta method by: 

4 = MP*)fvar[P;]. 

If \|/
L
 and \|/TJ are defined as: 

V L = V ( P * ) - Z a / 2 S ^ , \|/u = \|/(p*) + Z a / 2 S ~ , 

then a 100 (1 - a)% confidence interval for Pj is (\|/
_1

(VL) »¥
_ 1

(Vu)) where XJT
1

 is the 

inverse function of \|/. Confidence intervals for the age-specific risks can be derived using the 

relationship between Pj and Rj. 

2.3 Properties of Estimators 

The three estimators proposed in section 2.2 satisfy the following orderings: 

w . LT . KM 
i) Pj ^Pj ̂ Pj 

ii) P f S l f s p f " 

iii) Rj
W

 > R^
T

 ;> Rj
0 4 

The relationship between the estimators of Pj can easily be seen by examining 

LT w , KM LT 
Pj -pj andpj -pj . 

LT W 2~ 
Pi "Pi =1 

2,2 
LT 2~J > Q 

P j

 (Nj-^Wj-djlNj-^Wj-rdj))" 
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. K M LT W'i 
Pj "Pj =-

N 

_ P K M ^ ^ 

P j (Nj-dj j fNj-iwj)" 

The relationships between the estimators Pj and Rj are then obvious corollaries. 

In any interval Ij, Pj = Pj if either Wj = 0 or dj = 0. This implies the well known 

property that if all the withdrawals occur in intervals after all the onsets, the life-table and 

the Kaplan-Meier estimates will be the same. 

A small simulation study by Chase et al. (1983) suggested that the Kaplan-Meier 

estimator is approximately unbiased. This is not surprising as Kaplan and Meier (1958) 

showed that P ™ is a consistent estimator (and therefore so is R ™ ) when some reasonable 

assumptions are made. Chase et al. also stated that the life-table estimator appears to be 

approximately unbiased. This statement is mildly surprising since it is known that this 

estimator is not consistent (Lawless, 1982). Finally, Chase et al indicated that the 

Weinberg risk estimator appears to have a positive bias. This is to be expected due to the 

above ordering of the estimators. The size of the bias does not appear large in their trials, 

however they do not give any indication as to the size of the bias in general. 

2.4 Results 

All three estimation procedures were used to calculate age-specific risks in Alzheimer 

disease under the four diagnostic criteria discussed in Chapter 1. The estimated risks are 

shown in Tables 2.1 - 2.4 , with plots of the risks shown in Figures 2.1 - 2.4. As can be 

clearly seen in the figures, the difference between the Weinberg and life-table estimates is 

much smaller than the difference between the life-table and the Kaplan-Meier estimates, 

with the size of the deviations increasing with age. This is due to the relatively heavy 

censoring in this data set. This heavy censoring is to be expected if the risk for Alzheimer's 

was 50% by age 90, on average well over half the members of the sample would have 
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censored observations. However, all three estimators show similar risk curves under the 

four diagnostic criteria. 

In particular, except for the FAD only criteria, the risk estimates are not consistent 

with the 50% risks by age 90 found by other researchers. This suggests that not all 

Alzheimer's is due to an autosomal dominant trait with complete penetrance by age 90. The 

risk for dementia by age 90 under the four criteria and the three estimators is shown in Table 

2.5. However, this method calculates risks to certain ages, not lifetime risk. The latter is 

what is needed to make better statements about the plausibility of the autosomal dominant 

model. 
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Table 2.1: Age-Specific Risks Under Stringent without FAD Criteria 

Age Total Affected Withdrawn Weinberg Life-Table Kaplan-Meier 
0 766 0 13 0.000 0.000 0.000 
1 753 0 3 0.000 0.000 0.000 
2 750 0 5 0.000 0.000 0.000 
3 745 0 1 0.000 0.000 0.000 
4 744 0 2 0.000 0.000 0.000 
5 742 0 1 0.000 0.000 0.000 
6 741 0 2 0.000 0.000 0.000 
7 739 0 0 0.000 0.000 0.000 
8 739 0 1 0.000 0.000 0.000 
9 738 0 0 0.000 0.000 0.000 
10 738 0 0 0.000 0.000 0.000 
11 738 0 0 0.000 0.000 0.000 
12 738 0 1 0.000 0.000 0.000 
13 737 0 0 0.000 0.000 0.000 
14 737 0 0 0.000 0.000 0.000 
15 737 0 0 0.000 0.000 0.000 
16 737 0 0 0.000 0.000 0.000 
17 737 0 0 0.000 0.000 0.000 
18 737 0 5 0.000 0.000 0.000 
19 732 0 1 0.000 0.000 0.000 
20 731 0 9 0.000 0.000 0.000 
21 722 0 8 0.000 0.000 0.000 
22 714 0 3 0.000 0.000 0.000 
23 711 0 1 0.000 0.000 0.000 
24 710 0 1 0.000 0.000 0.000 
25 709 0 5 0.000 0.000 0.000 
26 704 0 0 0.000 0.000 0.000 
27 704 0 1 0.000 0.000 0.000 
28 703 0 3 0.000 0.000 0.000 
29 700 0 3 0.000 0.000 0.000 
30 697 0 6 0.000 0.000 0.000 
31 691 0 2 0.000 0.000 0.000 
32 689 0 0 0.000 0.000 0.000 
33 689 0 2 0.000 0.000 0.000 
34 687 0 0 0.000 0.000 0.000 
35 687 0 10 0.000 0.000 0.000 
36 677 0 0 0.000 0.000 0.000 
37 677 0 0 0.000 0.000 0.000 
38 677 0 3 0.000 0.000 0.000 
39 674 0 0 0.000 0.000 0.000 
40 674 0 9 0.000 0.000 0.000 
41 665 0 1 0.000 0.000 0.000 
42 664 0 3 0.000 0.000 0.000 
43 661 0 2 0.000 0.000 0.000 
44 659 0 0 0.000 0.000 0.000 
45 659 0 8 0.000 0.000 0.000 
46 651 0 1 0.000 0.000 0.000 
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47 650 0 2 0.000 0.000 0.000 
48 648 0 5 0.000 0.000 0.000 
49 643 0 4 0.000 0.000 0.000 
50 639 1 6 0.000 0.000 0.000 
51 632 0 1 0.002 0.002 0.002 
52 631 1 4 0.002 0.002 0.002 
53 626 0 5 0.003 0.003 0.003 
54 621 0 3 0.003 0.003 0.003 
55 618 0 17 0.003 0.003 0.003 
56 601 0 9 0.003 0.003 0.003 
57 592 0 7 0.003 0.003 0.003 
58 585 0 14 0.003 0.003 0.003 
59 571 0 5 0.003 0.003 0.003 
60 566 1 24 0.003 0.003 0.003 
61 541 1 5 0.005 0.005 0.005 
62 535 1 12 0.007 0.007 0.007 
63 522 1 21 0.009 0.009 0.009 
64 500 1 13 0.011 0.011 0.011 
65 486 1 32 0.013 0.013 0.012 
66 453 0 15 0.015 0.015 0.015 
67 438 1 21 0.015 0.015 0.015 
68 416 0 21 0.017 0.017 0.017 
69 395 2 15 0.017 0.017 0.017 
70 378 1 43 0.022 0.022 0.022 
71 334 1 10 0.025 0.025 0.024 
72 323 1 28 0.028 0.028 0.027 
73 294 2 20 0.031 0.031 0.030 
74 272 3 13 0.038 0.038 0.037 
75 256 1 40 0.049 0.049 0.047 
76 215 2 18 0.053 0.053 0.051 
77 195 0 9 0.062 0.062 0.060 
78 186 0 27 0.062 0.062 0.060 
79 159 1 8 0.062 0.062 0.060 
80 150 3 36 0.068 0.068 0.066 
81 111 0 11 0.090 0.089 0.085 
82 100 1 8 0.090 0.089 0.085 
83 91 0 6 0.099 0.099 0.094 
84 85 0 16 0.099 0.099 0.094 
85 69 1 20 0.099 0.099 0.094 
86 48 0 12 0.114 0.114 0.107 
87 36 0 8 0.114 0.114 0.107 
88 28 0 4 0.114 0.114 0.107 
89 24 0 5 0.114 0.114 0.107 
90 19 0 3 0.114 0.114 0.107 
91 16 0 1 0.114 0.114 0.107 
92 15 0 5 0.114 0.114 0.107 
93 10 0 2 0.114 0.114 0.107 
94 8 0 1 0.114 0.114 0.107 
95 7 0 1 0.114 0.114 0.107 
96 6 0 3 0.114 0.114 0.107 
97 3 0 2 0.114 0.114 0.107 
98 1 0 1 0.114 0.114 0.107 
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Table 2.2: Age-Specific Risks Under Stringent with FAD Criteria 

Age Total Affected Withdrawn Weinberg Life-Table Kaplan-Meier 
0 824 0 14 0.000 0.000 0.000 
1 810 0 3 0.000 0.000 0.000 
2 807 0 5 0.000 0.000 0.000 
3 802 0 1 0.000 0.000 0.000 
4 801 0 1 0.000 0.000 0.000 
5 800 0 2 0.000 0.000 0.000 
6 798 0 2 0.000 0.000 0.000 
7 796 0 0 0.000 0.000 0.000 
8 796 0 1 0.000 0.000 0.000 
9 795 0 1 0.000 0.000 0.000 
10 794 0 0 0.000 0.000 0.000 
11 794 0 0 0.000 0.000 0.000 
12 794 0 1 0.000 0.000 0.000 
13 793 0 0 0.000 0.000 0.000 
14 793 0 0 0.000 0.000 0.000 
15 793 0 0 0.000 0.000 0.000 
16 793 0 1 0.000 0.000 0.000 
17 792 0 0 0.000 0.000 0.000 
18 792 0 5 0.000 0.000 0.000 
19 787 0 1 0.000 0.000 0.000 
20 786 0 9 0.000 0.000 0.000 
21 777 0 8 0.000 0.000 0.000 
22 769 0 3 , 0.000 0.000 0.000 
23 766 0 1 0.000 0.000 0.000 
24 765 0 2 0.000 0.000 0.000 
25 763 0 5 0.000 0.000 0.000 
26 758 0 0 0.000 0.000 0.000 
27 758 0 1 0.000 0.000 0.000 
28 757 0 3 0.000 0.000 0.000 
29 754 0 3 0.000 0.000 0.000 
30 751 0 7 0.000 0.000 0.000 
31 744 0 2 0.000 0.000 0.000 
32 742 0 0 0.000 0.000 0.000 
33 742 0 2 0.000 0.000 0.000 
34 740 0 0 0.000 0.000 0.000 
35 740 0 10 0.000 0.000 0.000 
36 730 1 0 0.000 0.000 0.000 
37 729 0 1 0.001 0.001 0.001 
38 728 1 3 0.001 0.001 0.001 
39 724 1 0 0.003 0.003 0.003 
40 723 1 10 0.004 0.004 0.004 
41 712 0 1 0.006 0.006 0.005 
42 711 0 3 0.006 0.006 0.005 
43 708 0 2 0.006 0.006 0.005 
44 706 0 2 0.006 0.006 0.005 
45 704 0 8 0.006 0.006 0.005 
46 696 0 2 0.006 0.006 0.005 
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47 694 0 2 0.006 0.006 0.005 
48 692 0 6 0.006 0.006 0.005 
49 686 0 4 0.006 0.006 0.005 
50 682 1 6 0.006 0.006 0.005 
51 675 0 1 0.007 0.007 0.007 
52 674 1 6 0.007 0.007 0.007 
53 667 0 6 0.008 0.008 0.008 
54 661 0 4 0.008 0.008 0.008 
55 657 1 19 0.008 0.008 0.008 
56 637 0 10 0.010 0.010 0.010 
57 627 0 8 0.010 0.010 0.010 
58 619 0 15 0.010 0.010 0.010 
59 604 1 5 0.010 0.010 0.010 
60 598 1 25 0.012 0.012 0.012 
61 572 1 7 0.013 0.013 0.013 
62 564 1 14 0.015 0.015 0.015 
63 549 1 22 0.017 0.017 0.017 
64 526 2 14 0.019 0.019 0.018 
65 510 1 32 0.022 0.022 0.022 
66 477 0 15 0.024 0.024 0.024 
67 462 3 21 0.024 0.024 0.024 
68 438 0 21 0.031 0.031 0.030 
69 417 2 16 0.031 0.031 0.030 
70 399 3 44 0.036 0.036 0.035 
71 352 1 13 0.043 0.043 0.042 
72 338 1 29 0.046 0.046 0.045 
73 308 3 20 0.049 0.049 0.048 
74 285 3 13 0.059 0.059 0.057 
75 269 2 40 0.069 0.069 0.067 
76 227 2 18 0.076 0.076 0.074 
77 207 1 10 0.085 0.085 0.082 
78 196 0 28 0.089 0.089 0.087 
79 168 1 8 0.089 0.089 0.087 
80 159 3 36 0.095 0.095 0.092 
81 120 1 12 0.115 0.114 0.109 
82 107 1 9 0.122 0.122 0.117 
83 97 0 8 0.131 0.130 0.125 
84 89 0 16 0.131 0.130 0.125 
85 73 1 21 0.131 0.130 0.125 
86 51 0 13 0.145 0.144 0.137 
87 38 0 8 0.145 0.144 0.137 
88 30 0 4 0.145 0.144 0.137 
89 26 0 5 0.145 0.144 0.137 
90 21 0 3 0.145 0.144 0.137 
91 18 0 1 0.145 0.144 0.137 
92 17 0 5 0.145 0.144 0.137 
93 12 0 3 0.145 0.144 0.137 
94 9 0 1 0.145 0.144 0.137 
95 8 0 2 0.145 0.144 0.137 
96 6 0 3 0.145 0.144 0.137 
97 3 0 2 0.145 0.144 0.137 
98 1 0 1 0.145 0.144 0.137 
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Table 2.3: Age-Specific Risks Under Relaxed Criteria 

Age Total Affected Withdrawn Weinberg Life-Table Kaplan-Meier 
0 825 0 14 0.000 0.000 0.000 
1 811 0 3 0.000 0.000 0.000 
2 808 0 5 0.000 0.000 0.000 
3 803 0 1 0.000 0.000 0.000 
4 802 0 1 0.000 0.000 0.000 
5 801 0 2 0.000 0.000 0.000 
6 799 0 2 0.000 0.000 0.000 
7 797 0 0 0.000 0.000 0.000 
8 797 0 1 0.000 0.000 0.000 
9 796 0 1 0.000 0.000 0.000 
10 795 0 0 0.000 0.000 0.000 
11 795 0 0 0.000 0.000 0.000 
12 795 0 1 0.000 0.000 0.000 
13 794 0 0 0.000 0.000 0.000 
14 794 0 0 0.000 0.000 0.000 
15 794 0 0 0.000 0.000 0.000 
16 794 0 1 0.000 0.000 0.000 
17 793 0 0 0.000 0.000 0.000 
18 793 0 5 0.000 0.000 0.000 
19 788 0 1 0.000 0.000 0.000 
20 787 0 9 0.000 0.000 0.000 
21 778 0 8 0.000 0.000 0.000 
22 770 0 3 0.000 0.000 0.000 
23 767 0 1 0.000 0.000 0.000 
24 766 0 2 0.000 0.000 0.000 
25 764 0 5 0.000 0.000 0.000 
26 759 0 0 0.000 0.000 0.000 
27 759 0 1 0.000 0.000 0.000 
28 758 0 3 0.000 0.000 0.000 
29 755 0 3 0.000 0.000 0.000 
30 752 0 7 0.000 0.000 0.000 
31 745 0 2 0.000 0.000 0.000 
32 743 0 0 0.000 0.000 0.000 
33 743 0 2 0.000 0.000 0.000 
34 741 0 0 0.000 0.000 0.000 
35 741 0 10 0.000 0.000 0.000 
36 731 1 0 0.000 0.000 0.000 
37 730 0 1 0.001 0.001 0.001 
38 729 1 3 0.001 0.001 0.001 
39 725 1 0 0.003 0.003 0.003 
40 724 1 10 0.004 0.004 0.004 
41 713 0 1 0.006 0.006 0.005 
42 712 0 3 0.006 0.006 0.005 
43 709 0 2 0.006 0.006 0.005 
44 707 0 2 0.006 0.006 0.005 
45 705 0 8 0.006 0.006 0.005 
46 697 0 2 0.006 0.006 0.005 
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47 695 0 2 0.006 0.006 0.005 
48 693 0 6 0.006 0.006 0.005 
49 687 0 4 0.006 0.006 0.005 
50 683 1 6 0.006 0.006 0.005 
51 676 0 1 0.007 0.007 0.007 
52 675 1 6 0.007 0.007 0.007 
53 668 0 6 0.008 0.008 0.008 
54 662 0 4 0.008 0.008 0.008 
55 658 1 19 0.008 0.008 0.008 
56 638 0 10 0.010 0.010 0.010 
57 628 0 8 0.010 0.010 0.010 
58 620 0 15 0.010 0.010 0.010 
59 605 2 5 0.010 0.010 0.010 
60 598 2 25 0.013 0.013 0.013 
61 571 1 7 0.017 0.017 0.016 
62 563 1 14 0.018 0.018 0.018 
63 548 1 22 0.020 0.020 0.020 
64 525 2 13 0.022 0.022 0.022 
65 510 1 32 0.026 0.026 0.025 
66 477 0 15 0.028 0.028 0.027 
67 462 3 21 0.028 0.028 0.027 
68 438 0 21 0.034 0.034 0.034 
69 417 2 16 0.034 0.034 0.034 
70 399 3 44 0.039 0.039 0.038 
71 352 1 13 0.047 0.047 0.046 
72 338 2 29 0.049 0.049 0.048 
73 307 3 20 0.055 0.055 0.054 
74 284 6 13 0.065 0.065 0.063 
75 265 4 40 0.085 0.085 0.083 
76 221 2 18 0.100 0.100 0.097 
77 201 1 10 0.109 0.108 0.105 
78 190 0 24 0.113 0.113 0.109 
79 166 2 8 0.113 0.113 0.109 
80 156 4 35 0.124 0.124 0.120 
81 117 1 12 0.150 0.149 0.143 
82 104 2 9 0.158 0.157 0.150 
83 93 1 8 0.175 0.174 0.166 
84 84 1 16 0.184 0.183 0.175 
85 67 1 18 0.195 0.194 0.185 
86 48 0 12 0.209 0.208 0.197 
87 36 1 8 0.209 0.208 0.197 
88 27 0 3 0.234 0.232 0.220 
89 24 0 5 0.234 0.232 0.220 
90 19 0 3 0.234 0.232 0.220 
91 16 0 0 0.234 0.232 0.220 
92 16 0 5 0.234 0.232 0.220 
93 11 0 3 0.234 0.232 0.220 
94 8 0 0 0.234 0.232 0.220 
95 8 0 2 0.234 0.232 0.220 
96 6 0 3 0.234 0.232 0.220 
97 3 0 2 0.234 0.232 0.220 
98 1 0 1 0.234 0.232 0.220 
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Table 2.4: Age-Specific Risks Under FAD Only Criteria 

Age Total Affected Withdrawn Weinberg Life-Table Kaplan-Meier 
0 62 0 3 0.000 0.000 0.000 
1 59 0 0 0.000 0.000 0.000 
2 59 0 0 0.000 0.000 0.000 
3 59 0 0 0.000 0.000 0.000 
4 59 0 0 0.000 0.000 0.000 
5 59 0 1 0.000 0.000 0.000 
6 58 0 0 0.000 0.000 0.000 
7 58 0 0 0.000 0.000 0.000 
8 58 0 0 0.000 0.000 0.000 
9 58 0 1 0.000 0.000 0.000 
10 57 0 0 0.000 0.000 0.000 
11 57 0 0 0.000 0.000 0.000 
12 57 0 0 0.000 0.000 0.000 
13 57 0 0 0.000 0.000 0.000 
14 57 0 0 0.000 0.000 0.000 
15 57 0 0 0.000 0.000 0.000 
16 57 0 1 0.000 0.000 0.000 
17 56 0 0 0.000 0.000 0.000 
18 56 0 0 0.000 0.000 0.000 
19 56 0 0 0.000 0.000 0.000 
20 56 0 0 0.000 0.000 0.000 
21 56 0 0 0.000 0.000 0.000 
22 56 0 0 0.000 0.000 0.000 
23 56 0 0 0.000 0.000 0.000 
24 56 0 1 0.000 0.000 0.000 
25 55 0 0 0.000 0.000 0.000 
26 55 0 0 0.000 0.000 0.000 
27 55 0 0 0.000 0.000 0.000 
28 55 0 0 0.000 0.000 0.000 
29 55 0 0 0.000 0.000 0.000 
30 55 0 1 0.000 0.000 0.000 
31 54 0 0 0.000 0.000 0.000 
32 54 0 0 0.000 0.000 0.000 
33 54 0 0 0.000 0.000 0.000 
34 54 0 0 0.000 0.000 0.000 
35 54 0 0 0.000 0.000 0.000 
36 54 1 0 0.000 0.000 0.000 
37 53 0 1 0.019 0.019 0.019 
38 52 1 0 0.019 0.019 0.019 
39 51 1 0 0.038 0.037 0.037 
40 50 1 1 0.057 0.056 0.056 
41 48 0 0 0.076 0.075 0.075 
42 48 0 0 0.076 0.075 0.075 
43 48 0 0 0.076 0.075 0.075 
44 48 0 2 0.076 0.075 0.075 
45 46 0 0 0.076 0.075 0.075 
46 46 0 1 0.076 0.075 0.075 
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47 45 0 0 0.076 0.075 0.075 
48 45 0 1 0.076 0.075 0.075 
49 44 0 0 0.076 0.075 0.075 
50 44 0 0 0.076 0.075 0.075 
51 44 0 0 0.076 0.075 0.075 
52 44 0 2 0.076 0.075 0.075 
53 42 0 1 0.076 0.075 0.075 
54 41 0 1 0.076 0.075 0.075 
55 40 1 2 0.076 0.075 0.075 
56 37 0 2 0.100 0.099 0.098 
57 35 0 1 0.100 0.099 0.098 
58 34 0 1 0.100 0.099 0.098 
59 33 1 0 0.100 0.099 0.098 
60 32 0 0 0.128 0.126 0.126 
61 32 0 2 0.128 0.126 0.126 
62 30 0 2 0.128 0.126 0.126 
63 28 0 1 0.128 0.126 0.126 
64 27 1 0 0.128 0.126 0.126 
65 26 0 0 0.161 0.159 0.158 
66 26 0 0 0.161 0.159 0.158 
67 26 2 0 0.161 0.159 0.158 
68 24 0 0 0.228 0.223 0.223 
69 24 0 1 0.228 0.223 0.223 
70 23 3 1 0.228 0.223 0.223 
71 19 0 3 0.338 0.327 0.324 
72 16 0 1 0.338 0.327 0.324 
73 15 2 0 0.338 0.327 0.324 
74 13 0 0 0.433 0.417 0.414 
75 13 1 0 0.433 0.417 0.414 
76 12 0 0 0.478 0.462 0.459 
77 12 1 1 0.478 0.462 0.459 
78 10 0 1 0.526 0.508 0.504 
79 9 0 0 0.526 0.508 0.504 
80 9 0 0 0.526 0.508 0.504 
81 9 1 1 0.526 0.508 0.504 
82 7 0 1 0.585 0.566 0.559 
83 6 0 2 0.585 0.566 0.559 
84 4 0 0 0.585 0.566 0.559 
85 4 0 1 0.585 0.566 0.559 
86 3 0 1 0.585 0.566 0.559 
87 2 0 0 0.585 0.566 0.559 
88 2 0 0 0.585 0.566 0.559 
89 2 0 0 0.585 0.566 0.559 
90 2 0 0 0.585 0.566 0.559 
91 2 0 0 0.585 0.566 0.559 
92 2 0 0 0.585 0.566 0.559 
93 2 0 1 0.585 0.566 0.559 
94 1 0 0 0.585 0.566 0.559 
95 1 0 1 0.585 0.566 0.559 
96 0 0 0 0.585 0.566 0.559 
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Table 2.5: Risk for Dementia at Age 90 with Standard Errors. 

Criteria Weinberg Life-table Kaplan-Meier 

Stringent without FAD 0.114 (0.026) 0.114 (0.026) 0.107 (0.023) 

Stringent with FAD 0.145 (0.026) 0.144 (0.026) 0.137 (0.024) 

Relaxed 0.234 (0.039) 0.232 (0.039) 0.220 (0.036) 

FAD Only 0.585 (0.103) 0.566 (0.102) 0.559 (0.101) 
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Figure 2.1: Age-Specific Risks Under Stringent without FAD Criteria 
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Figure 2.3: Age-Specific Risks Under Relaxed Criteria 
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3 Lifetime Risk Estimation Using Fixed Age of 
Onset Distributions 

3.1 Background 

Early methods for estimating the proportion of the relatives susceptible to disease, or 

their lifetime risk, p, used a fixed, predetermined weight function w(t), believed to 

approximate the true age of onset distribution F(t) = P[affected by age t I susceptible] in the 

relatives. The age of onset distribution gives a measure of risk experienced, assuming the 

relative would get the disease if they lived long enough. Since some unaffected relatives 

could still be at risk for disease, using this weight function should give a better estimate of 

lifetime risk than the biased sample proportion of affected relatives. 

3.2 Model and Estimators 

Similarly to the product-limit procedure, assume that the lifetime risk and the age of 

onset distribution are the same for each relative in the sample and that the status for each 

relative is independent of the rest. The data required for relative i, i=l,...,n in the sample is 

the pair (x;,̂ ) where 

Denote the true and approximate conditional risks for relative i as f
t
 = F(tj) and Wj = w(tj). If 

the random variable Xj denotes the status of relative i at age tj, E[Xj] = pF(ti) = pf
;
. 

Some general weight functions used in the past are: 

0 t < ai 

0 
1 

if relative i is unaffected 
if relative i is affected 

ti = age of observation for relative i = age at death 
current age 

if relative i has died 
if relative i is alive 

1) w(t) = /- ai<t<a
2 

Weinberg (1925) 

1 t > a
2 
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0 t < a 
2) w(t) = { _ Larsson & Strogren (1954) 

U t > a 

0 t < ai 

3) w(t) = 1—^- ai < t < a 2 Schulz (1937) 
a2-ai 

1 t > a2 

where [a1,a2] is the age range of susceptibility and a is the mean age of onset. 

4) Stromgren (1935) recommended that a previously observed age of onset distribution 

be used. Similar to this is the use of the empirical distribution function of the ages of onset of 

the index cases as used by Winokur et al. (1969). 

A valid weight function w(t) is one that satisfies the following conditions: 

1) w(t):[0,~) [0,1], 

2) w(t) is non-decreasing, 

3) lim w(t) = 1 
t-»<x> 

While the condition w(0) = 0 is not necessary in theory, it is usually appropriate. The 

situation where w(0) > 0 implies that the condition can be present at birth. 

The following three estimates for lifetime risk have been proposed. 

3.2.1 Original Stromgren (1935): 

n 

i=l 

n 

i=l 

This estimator is an extension of the sample proportion. This estimator has the 

undesirable property that it is possible for p* > 1. However in most situations the probability 

of this happening should be extremely low. 
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The bias of p* is easily calculated: 

n 

Zpfi 
n n 

Bias(p*) = E[p*] - p = ^- p = p 

2 Wi 

i=l 

n 

i=l 

This estimator will be unbiased only if ^ fi = 2 w i - ^ particular, p* is unbiased if the 
i=l i=i 

correct weight function is used. The sample proportion (which occurs with the weight function 

w(t) = 1), as expected, is usually biased, since f; < 1. 

Assuming the correct weight function has been chosen, the variance of p* (Larsson & 

Sjogren, 1954) is 

X PWi(l -pwi) 
/ 

Var[p*]= 1 = 1 

n 2 

_i=l 

_ p 1-p 
i=l 

Some incorrect formulas for the variance which have been reported previously are 

P ( l - P ) 1) (valid only when w; = 1) (Winokur et al, 1969). 

P(l - P) 
2) — which was pointed out previously as an incorrect formula by Larsson and 

Sjogren (1954). Risch (1983) also pointed out the Larsson and Sjogren formula is incorrect if 

one sets the estimate of p to 1 when p* > 1. 

With assumptions on the sequence w i 5 such as they don't approach 0, p* is 

asymptotically normal. Risch (1983) suggested using the asymptotic normality property for 

the construction of confidence intervals and hypothesis tests. 

To avoid parameter estimates greater than one, Stromgren suggested the following 

modification to the estimator. 
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3.2.2 Modified Stromgren (1938): 

i=l 

S W i + S I 1 - w i ) x i 2 x i+X ( 1 _ X i ) W i 
i=l fe=l M i=l 

This estimator always satisfies the condition of p' < 1, as the denominator is always 

greater that the number of affected people. However in situations where p* is unbiased, p' 

will be have a negative bias since p' < p*. This can is easily shown since 

n n n 

^ Wi < X w i + 2 _ W i ) X i • 
F1 M i=l 

The difference between the Stromgren and the Modified Stromgren estimators appears 

to be an increasing function of p*. This also suggests that when p* is unbiased, the bias of p' 

is an increasing function of p. 

A third proposal takes a maximum likelihood approach to the problem. 

3.2.3 Maximum Likelihood (Risch, 1983): 

The maximum likelihood estimate p is estimated by maximizing L(p) or log L(p), the 

likelihood or log-likelihood functions: 

n 

L(p)=n(p
w

i)
x i

(
i

-p w0 1^ 
n n n 

log L(p) = log p X x

i + X X

i
 lo

§
 W

i
 + X (* _ x0 lo

S I 1 ~ Pw0-
i=l M i=l 

The estimate can be found by solving the following equation 

"Xj (1 - XjjWjl 

p 1-pwi 

d log L(p) 

dp .-I 
p i=i 

= 0. (3) 

This equation does not have a closed form solution but can be solved easily and 

quickly by the Newton-Raphson method. As the second derivative of log L(p) can be shown 

to be less than or equal to 0 for all pe (0,1], there is a unique pe [0,1] which maximizes log 
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L(p). As with the Stromgren estimator, using the solution to (3) can lead to an estimate 

greater than 1. This will occur when 

d log L(p) 

p=i 

= m > o . 
tr i-wi dp 

If this occurs, p = 1. 

Estimates of the variance of p can be obtained using the observed or the expected 

information. The observed information is: 

X i
 (l-Xi)w

21 

I
0 ( p ) =

 _ d ! i 2 l L ( p )
=

n 

dp
z 2 

i=l /""(l-pwi)
2 

and the expected information is 

l E ( p ) = _ E t a ] 4 b + ^ 
L dp

2

 J a[p
2

 (l-pwi)
2 

When evaluated at the maximum likelihood estimate: 

- I 
i=l 

W; W: 
+ • 

P l-pwi 

io(p) = 2 

-2 
i=l 

jq (1-X J ) W 2 

P 2 (l-pwi)
2 

l(l-
X i
)wi (l-xjw

2 

p (l-pwi) (l-pwi)' 

= S 
i=l 

I E ( P ) = 2 
i=l 

' l-xj-

1̂ -pw
i; 

2 \ 
Wi W; 

— + • 
\V l-pwi/ 

— + 
w
; 

P l-pwi 

It is not immediately obvious whether IE(P)"
1

 or IQ(P)"
1

 would better estimate the 

variance; it appears that both would give similar values. The one advantage to using 

IQ(P)
 1

 *
s m a t

 ̂  *
s

 calculated when the Newton-Raphson method is used for estimation. 
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As the method of estimation is maximum likelihood, p is asymptotically normal 

allowing the construction of confidence intervals and hypothesis tests. Risch (1983) also 

proposes using the likelihood ratio test to compare estimates of p among two of more groups. 

Misspecification of the weight function can lead to problems, as with p*. As 

may not be zero when an inappropriate weight function is chosen, p may not be a consistent 

estimator and one or both of the variance estimates may be poor. 

Risch showed that p is more efficient than p* and the efficiency of p* relative to p is 

independent of the sample size. Risch also showed that: 

3.3 Results 

Three different weight functions, as displayed in Table 3.1, were chosen to analyze the 

Alzheimer and the Winokur data sets. The plots of these functions are shown in Figures 3.1 

and 3.2. The first two were chosen to roughly match the lower and upper observed ages of 

onset of the index cases and the relatives in the appropriate data sets. 

n n 

where W = X
 w

i
 a n

d Wj = X v r l -
i=l j=l 
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Table 3.1 Weight Functions Used 

Alzheimer Winokur 

1) Half Risk 

(0 t<34 

wf(t) = j i 35<t<90 

(l t > 91 

10 t < 14 

w^(t) = U 15<t<70 

(l t > 71 

2) Uniform 

[0 t<34 

w

2
( t ) = r i r 3 5 - 1 - 9 0 

(l t > 91 

(0 t < 14 

w7(t) = ' ^ - 15<t<70 

(l t > 71 

3) Empiric 

CDF 
w^(t) = empiric distribution function 

of age of onset of index cases, 

regardless of diagnostic criteria 

w 

w
3
 (t) = empiric distribution function 

of age of onset of index cases 
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Figure 3.1: Alzheimer Weight Functions 
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Figure 3.2: Winokur Weight Functions 
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As in Chapter 2, the Alzheimer data set was analyzed under the four criteria. One 

family (MM Pedigree, Figure 1.1) can greatly influence the results using the methods to be 

discussed in Chapter 4. It was felt that the data should be analyzed twice, with and then 

without this family, for the criteria containing the possible FAD families to see what effect 

this family has on this type of estimation. For the reanalysis, weight functions one and two 

were unaltered, but the empiric distribution function was modified to exclude the age of onset 

for the index case of the MM family. 

Generally under each criterion for the Alzheimer data, the three weight functions seem 

to give similar risk estimates for each of the three estimators (Tables 3.1 - 3.4). The 

standard errors shown were calculated using the expected information. The increasing 

difference between the modified Stromgren and the Stromgren estimators with increasing p* 

is suggested in the tables. The maximum likelihood and Stromgren estimators agree very 

closely under the Stringent without FAD, Stringent with FAD, and Relaxed Criteria for each 

of the weight functions. The largest differences between the maximum likelihood and the 

Stromgren estimators occurs under the FAD only criteria. However with the small number of 

relatives in the group, the differences are all less than one standard error. Also the exclusion 

of MM family appears to make little difference in the lifetime risk estimates with the biggest 

difference occurring under the FAD only criteria. 

Except for the FAD only group, under these three weight functions, the lifetime risk 

for Alzheimer disease does not approach the 50% rate consistent with an autosomal 

dominant trait. In fact for these criteria, the lifetime risk estimates appear to be lower 

(though not significantly lower) than the age-specific risks to age 90 calculated by the 

product-limit estimators. This suggests that a poor set of weight functions may have been 

used. 

For the Winokur data set, changing the weight function appears to make a great 

difference in the estimates (see Table 3.6). The estimates using the empirical distribution 

function are much lower than those for the other two weight functions. As the empirical 

distribution dominates the other weight functions for ages greater than 22, the large 
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differences are not surprising. It is not clear which of these three is the best choice for the 

weight function. However the ages of onset in the index cases appear to be less than the 

ages of onset in their relatives, suggesting that the empiric distribution may be a poor choice. 

As it appears that a poor choice of onset distribution can lead to poor a estimate of 

lifetime risk, this suggests that a better procedure which will also estimate the age of onset 

distribution is needed. An extension to the maximum likelihood procedure of this chapter 

allowing the estimation of lifetime risk and the age of onset distribution will be discussed in 

the next chapter. 
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Table 3.2: Lifetime Risk Under Stringent without FAD Criteria 

Weight Function Method Risk (SE) 

Half Risk 

Stromgren 

Modified Stromgren 

Maximum Likelihood 

0.093 (0.016) 

0.081 

0.094 (0.016) 

Uniform 

Stromgren 

Modified Stromgren 

Maximum Likelihood 

0.077 (0.013) 

0.067 

0.077 (0.013) 

Empiric CDF 

Stromgren 

Modified Stromgren 

Maximum Likelihood 

0.078 (0.013) 

0.067 

0.078 (0.013) 

Table 3.3: Lifetime Risk Under Stringent with FAD Criteria 

Weight Function Method 
Risk (SE) 

With MM Family 

Risk (SE) 

Without MM Family 

Half Risk 

Stromgren 

Modified Stromgren 

Maximum Likelihood 

0.131 (0.018) 

0.109 

0.131 (0.018) 

0.122 (0.017) 

0.102 

0.122 (0.017) 

Uniform 

Stromgren 

Modified Stromgren 

Maximum Likelihood 

0.109 (0.015) 

0.092 

0.109 (0.015) 

0.100(0.014) 

0.085 

0.101 (0.014) 

Empiric CDF 

Stromgren 

Modified Stromgren 

Maximum Likelihood 

0.111 (0.015) 

0.093 

O.I'll (0.015) 

0.103 (0.015) 

0.086 

0.103 (0.015) 
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Table 3.4: Lifetime Risk Under Relaxed Criteria 

Weight Function Method 
Risk (SE) 

With MM Family 

Risk (SE) 

Without MM Family 

Half Risk 

Stromgren 

Modified Stromgren 

Maximum Likelihood 

0.189 (0.021) 

0.146 

0.190 (0.021) 

0.180 (0.021) 

0.140 

0.181 (0.021) 

Uniform 

Stromgren 

Modified Stromgren 

Maximum Likelihood 

0.157 (0.017) 

0.123 

0.159 (0.018) 

0.149 (0.017) 

0.117 

0.151'(0.017) 

Empiric CDF 

Stromgren 

Modified Stromgren 

Maximum Likelihood 

0.160 (0.018) 

0.124 

0.160 (0.018) 

0.152 (0.017) 

0.118 

0.153 (0.017) 

Table 3.5: Lifetime Risk Under FAD Only Criteria 

Weight Function Method 
Risk (SE) 

With MM Family 

Risk (SE) 

Without MM Family 

Half Risk 

Stromgren 

Modified Stromgren 

Maximum Likelihood 

0.630 (0.124) 

0.324 

0.597 (0.121) 

0.531 (0.124) 

0.295 

0.509 (0.122) 

Uniform 

Stromgren 

Modified Stromgren 

Maximum Likelihood 

0.610 (0.114) 

0.313 

0.554 (0.110) 

0.486 (0.110) 

0.268 

0.476 (0.108) 

Empiric CDF 

Stromgren 

Modified Stromgren 

Maximum Likelihood 

0.677 (0.112) . 

0.332 

0.556 (0.108) 

0.528 (0.111) 

0.279 

0.486 (0.108) 
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Table 3.6: Lifetime Risk for Winokur Data Set 

Weight Function Method Risk (SE) 

Half Risk 

Stromgren 

Modified Stromgren 

Maximum Likelihood 

0.552 (0.076) 

0.288 

0.511 (0.076) 

Uniform 

Stromgren 

Modified Stromgren 

Maximum Likelihood 

0.600 (0.083) 

0.311 

0.575 (0.081) 

Empiric CDF 

Stromgren 

Modified Stromgren 

Maximum Likelihood 

0.355 (0.052) 

0.215 

0.361 (0.052) 
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4 Lifetime Risk and Age of Onset Distribution 
Estimation 

4.1 Background 

The two methods discussed in the previous chapters, while computationally attractive, 

have major drawbacks. The product-limit procedures, which give good estimates of age-

specific risks, cannot give the lifetime risk for disease unless possibly unreasonable 

assumptions are made. The fixed weight (age of onset) function approaches, though giving 

easily calculated lifetime risk estimates, can give poor estimates if an inappropriate weight 

function is used. 

Risch (1983) suggested a maximum likelihood approach for calculating morbidity risks 

for diseases with late variable onset. It allows for the simultaneous estimation of lifetime 

risk and the age of onset distribution. This approach has also been used by Pericak-Vance et 

al (1983) to study the heterogeneity of age of onset of Huntington disease. 

4.2 Model and Estimation 

It is assumed that each relative belongs to one of two groups, susceptible or not 

susceptible with: 

For those in the susceptible group, it is assumed that their age of onset can be 

described by a distribution function F(.I9_) belonging to a class of distributions parametrized 

by 0 = (9
l5
...,0

k
) e @. Let the corresponding density function be f(.l0_). 

For each relative i, let the random variable denote the person's status and the 

random variable Tj denote the observation time. 

where age at FH is the age of a live relative when the family history was collected . 

P[susceptible] = p = 1 - P[not susceptible]. 

0 if person i is unaffected 
1 if person i is affected 

Let q 
age at onset if S j = 1 and age of onset is known 
age at FH/Death if S ; = 1 and age of onset is unknown or if S j = 0 
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Also, if appropriate, let x.i be a vector of covariates for person i. Examples of possible 

covariates are sex, information on other medical conditions, or age of onset of the index case. 

Then one or both of p and 0_ could be functions of x. 

Then (with the possible dependence on X j suppressed) 

P[Si = 11 Ti = tj = P[Si = 1, susceptible I Ti = tj + 

P[Si = 1, not susceptible I Ti = tj 

= P[susceptible] P[Si = 1 I Tj = ti, susceptible] + 

P[not susceptible] P[Si = 1 I Ti = ti, not susceptible] 

= pFdiiej 

and 

P[Si = 0 I Ti = tj = P[Si = 0, susceptible I Ti = tj + 

P[Si = 0, not susceptible I Ti = tj 

= P[susceptible] P[Si = 0 I Ti = ti, susceptible] + 

P[not susceptible] P[Si = 0 I Ti = ti, not susceptible] 

= p(l - F(tiiej) + (1-p) = 1 - pFfolfi) 

Assume there are n relatives with relatives 1 to affected with known age of onset, 

n
t
 + 1 to n

2
 affected with unknown age of onset, and n

2
 + 1 to n unaffected. Then the 

likelihood function and log likelihood functions are: 

ni n.2 n 

L(p.fi) = II pf(tiie) n pFwa) n [i-pFteifi)] 
i=l i=ni+l i=ri2+l 

ni m n 

logL(p,G) =n
2
logp + X log f(tilfl)+ £ logF(til6)+ £ log[l - pF(tilfi)] 

i=l i=ni+l i=n.2+l 

(It should be noted that there is a mistake in the first term of the log likelihood function (12) 

in Risch's paper. The correct term is n
2
 log p, not (^ + n

2
) log p). The maximum likelihood 

estimates for p, 0_ (denoted by p, 0J can be calculated by standard procedures. 
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Now assume f(tl0_) has continuous first and second partial derivatives with respect to 

9 and that the set {t I f(tl0) > 0} doesn't depend on 0. If the order of integration and 

differentiation can be changed, the first and second partial derivatives of F(tl0_) exist implying 

that L(p,0) and log L(p,0J will also have continuous first and second partial derivatives. 

Then the maximum likelihood estimate (p, 0_) satisfies the following system of equations 

(assuming it doesn't occur on the boundary of the parameter space): 

9 log L(p,0) 

dp 

9 log L(p,0J 

-52. n 
y 

P i=n2+l 

F(
ti
l0) 

30i 

Li-pF(tiie) 

z 
i=ni+l 

= 0 

^ a log f(tjia) y a log F(
ti
i0_) 

1 
i==n.2+l 

30i 

d F(ti l0) 

.l-pF(tiia) 3 0 i 
= 0;i=l,...,k 

For most if not all choices of F, this system of equations will not have a closed form 

solution and must be solved numerically. The Newton-Raphson method appears useful here 

as it has good convergence properties and gives an estimate of the variance-covariance 

matrix of the parameter estimates. However for some families of distributions, such as the 

gamma, some of the partial derivatives are difficult to calculate, suggesting a quasi-Newton-

Raphson approach would be more appropriate. 

One problem with a Newton-Raphson type approach is that the procedure may not 

converge if poor initial estimates are chosen. Some of the time this can be overcome some of 

the time by scaling the difference between iterates or by replacing intermediate values 

outside the parameter space with values contained in the parameter space. Otherwise, the 

likelihood function will have to be investigated to find better initial estimates. It appears that 

the quality of the choice of initial estimates is less important for some choices of the age of 

onset distribution such as the logistic. 

In some cases, it is possible that the maximum likelihood estimate may occur on the 

boundary of the parameter space, for example p = 1. This situation can be suggested by the 
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Newton-Raphson iterations and must be confirmed by examining the likelihood function. In 

many cases when this happens, the parameter estimates can be found easily by fixing the 

appropriate parameters to their respective boundary values and estimating the rest by 

Newton-Raphson. 

Let I be the observed information matrix. When the estimates are in the interior of the 

parameter space, I"
1

 provides an estimate of the variance-covariance of the parameter 

estimates. When the estimates of one or more parameters occurs on the boundary, the 

inverse of the observed information matrix may not be an appropriate estimate of the 

variance-covariance matrix as the required relationships 

9 log L(p,9_) 

Bp 

9 log L(p,9) 

= 0; 
p.e 

_ = 0;i=l,...,k 
p.e 98i 

will not necessarily hold. 

When the variance-covariance is well-defined, approximate confidence sets for the 

parameters can be constructed using standard multivariate normal theory, since maximum 

likelihood estimates are asymptotically normal. In particular, an approximate 100(l-a)% 

confidence interval for p is: 

J±Za/
2
V[r

1

]
0
,0 

where za/
2
 is the 1 - a/2 quantile for a standard normal distribution andfr^o is the entry in 

position (0,0) of T
1

. 

Once the parameter estimates have been calculated, age-specific risks like those 

calculated using the methods of Chapter 2 can also be estimated. 

Let r(t) = P[onset by age t] 

= P[susceptible] P[onset by age t I susceptible] 

= p F(tl9). 
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Then the maximum likelihood estimate of r(t) is r(t) = pF(tl0J and the following 

estimate of Var[r(t)] can be obtained by the delta method: 

F(tia) 
~ 3F(tl9) 
P 90i 

~ 3F(tl0) 
p aek 

Breitner et al. (1988) used a multi-stage procedure which approximates the general 

maximum likelihood procedure. They started by estimating age-specific risks R
t
 by the 

Kaplan-Meier procedure as discussed in Chapter 2. Then they assumed that the age of onset 

distribution was gamma (discussed in Section 4.3) and found the least-squares estimates of 

the lifetime risk and the parameters of the gamma distribution (denoted a and m) by finding 

the values of p,a,m which minimize: 

teT 

where T is the set of ages where at least one onset occurred and R
t
 is the age-specific risk 

at age t. Finally they proceeded to estimate the parameters of the gamma distribution by 

maximum likelihood by using the estimate of lifetime risk obtained from the least-squares 

procedure as if it were the known value of p. They claimed, due to technical reasons which 

were not stated, maximum likelihood fails to estimate lifetime risk, implying another 

procedure such as theirs is needed. 

4 . 3 Age of Onset Distributions 

Five different classes of distribution were chosen to model age of onset for the two 

data sets. 

X (Rt - pF(tla,m; Of 
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4.3.1. Multiple Hit (Gamma): 

gm*m-l 

f(.la,m) =
 W

e «
: 

Em-™: Var[T]=^ 

t>0, a>0, m = 1,2,3,... 

Under this model the time to onset is the time for m (possible hypothetical) hits or 

shocks of frequency a to occur. It is assumed that the times between hits are independent 

exponential random variables with mean = a"
1

. This model has been hypothesized by 

Breitner et al. (1986) as a possible model for describing the age of onset in Alzheimer 

disease. 

The estimation procedure used under the Multiple Hit model is slightly different than 

in the general situation presented earlier since the scale parameter is constrained to take on 

only integer values for interpretation purposes. 

Let L*(m) = sup{
p a
} L(p,a,m) and p(m),a(m) be defined such that 

L(p(m),a(m),m) = L*(m). The values p(m) and a(m) can be calculated by Newton-Raphson 

for each m. Then define m* to be the smallest m to satisfy L*(m*) > L*(m) for all m * m*. 

Then the constrained maximum likelihood estimates for p, a, m are p = p(m ), a = a(m ), and 

By constraining m to be an integer, the gradient of log L(p,a,m) at the maximum 

likelihood estimate is not the zero vector. Because of this, the inverse of the observed 

information matrix may not be an appropriate estimate of the variance-covariance matrix, and 

therefore no estimate of the variance-covariance matrix will be reported. 

4.3.2. Incubation (Lognormal): 

E[T] = exp(n+0.5a
2

); Var[T] = exp(2p:+a
2

)(exp(G2) - 1) 
Sartwell (1950) showed that the incubation times for many infectious diseases could 

be described by a lognormal distribution. Later it was shown (Armenian and Khoury, 1981) 

that the age of onset for some non-infectious conditions, such as Huntington disease, could 

* 

m = m . 
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also be modeled using a lognormal distribution. By examining four data sets from the 

literature, Horner (1987) suggested that Alzheimer disease may also satisfy the lognormal 

model. 

4.3.3. Logistic: 

f(tla,p) = (3
 e < X + P

* : t>0, -~<a<oo, (3>0 

2 
E[T]=-£; Var[T]=^-

The logistic model was chosen since it has the computational advantage of having 

closed form expressions for f(tla,p), F(tla,|3) and their first and second partial derivatives. 

Also, this distribution has been used in modelling the age of onset in hereditary polyposis coli 

(Morales et al, 1984) 

4.3.4. Normal: 

f(tlp.,a) = L>0, -°o<n<oo, o~>0 

E[TJ = n; Var[T] = a
2 

This class of distributions was chosen for two reasons. The first is that it was used 

by Risch (1983) in modelling the Winokur data set and and by Pericak-Vance et al. (1983) to 

model age of onset in Huntington's disease. Also the normal distribution is a limiting case for 

both of the gamma and lognormal distributions. 

4.3.5. Normal with Covariate: 

f(tla,b,o\x) = * expl-̂ -(* ~^a+bx^n
 :
 t>0, -*o<a<°°, -=»<b<oo, a>0 

E[Tlx] = a + bx; Var[Tlx] = a
2 

where Xj = age of onset in index case of person i 

In some Alzheimer families it appears that the ages of onset are very similar 

(Sadovnick et al, 1988). One such example is shown in the pedigree of family MM (see 

Figure 1.1). It seems that a better fit may occur by trying to incorporate a distinct age of 
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onset distribution for each family. This type of model is desirable from a genetic counselling 

point of view as the smaller variation in the ages of onset, which would result in this model, 

would lead to better statements about risk. Assume the mean age of onset for person i can 

be modelled as m = a + bxj. A model which would be easy to interpret would have a = 0 and 

b ~ 1. This would imply that the index case's age of onset is a good predictor for the age of 

onset in other family members. If the parameter estimates were different than this, in 

particular b ̂  1, interpretation seems to be more difficult. 

As the method of estimation is maximum likelihood, the improvement of this model 

over the normal model can be assessed by looking at the likelihood ratio statistic testing the 

hypothesis of whether b is zero. The age of onset was not clear in a few of the index cases. 

So the two models could be compared, these few families were deleted from the data and the 

estimation for both models was done on the reduced data set. 

4.4 Results 

Under each of the four diagnostic criteria for the Alzheimer data set all five models 

were fit. The parameter estimates with the estimates of the variance-covariance matrices 

where appropriate are shown in Tables 4.1 - 4.4 and plots of the age-specific risk are shown 

in Figures 4.1 to 4.7. The maximum likelihood estimates of the means and standard 

deviations shown in the tables under each age of onset model were calculated by: 

mean = E[Tfi]; SD = VVar[TlfiJ . 

Also shown in the tables are the values of the log-likelihood under each of the models. 

These can be used as rough guides to suggest distributions which may not be appropriate, 

but as the models are not nested, conventional hypothesis tests cannot be constructed. 

For the Alzheimer data set, the age of onset distribution for one family (MM pedigree; 

see Figure 1.1) is clearly different, than that of the rest of the study group. When this family 

is included in the data set the parameter estimates appear to be greatly influenced by this 

family. In fact in some cases the estimate of lifetime risk is one, which does not appear to 

make biological sense. The inclusion of this very young onset family also leads to the 
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estimate of the mean age of onset to be much larger than generally recognized, which seem to 

be counterintuitive. Therefore, where appropriate, the data was analyzed twice for each of 

the criteria for which the MM family would be included, once with the family included, then 

with the family excluded. The estimates calculated with the MM family excluded appear to 

be in much greater agreement with the published literature. 

Except for the FAD Only criteria analysis, the following relationship of the estimates 

holds: 
XN. X"V XS XS 

p (logistic) < p (normal) < p (gamma) < p (lognormal) 

mean (logistic) < mean (normal) < mean (gamma) < mean (lognormal) 

SD (logistic) < SD (normal) < SD (gamma) < SD (lognormal) 

Even though the four basic age of onset distributions can give estimates for lifetime 

risk which appear to be quite different, the age specific risks up to age 90, the upper bound on 

the data, appear to be almost the same. This can be seen in Figures 4.1 to 4.7. These age-

specific risk estimates are also very similar to the product-limit estimates discussed in 

Chapter 2. One example showing the close agreement is given in Figure 4.8. 

Although the parameters calculated under a given criteria when the MM family is 

included and excluded can give very different values, the estimates of the age specific risk 

are again very similar. Two examples showing this are displayed in Figures 4.9 and 4.10. 

Using the age of onset as a predictor always appears to be a better model than the 

smaller normal model. The presence of the MM family with its very strong age correlation 

does not affect the decision about which is a more appropriate model, though it does influence 

the lifetime risk estimate. The effect of this family is much smaller here than for the other 

choices of distribution. 

As for the product-limit and fixed age of onset methods, there is no indication of a 50% 

risk by age 90 as has been suggested in the other studies mentioned, except under the FAD 

only criteria. As these are families which are believed to represent the genetic form of the 

disease, this is to be expected. If the lognormal distribution is appropriate, it appears that 

under the relaxed criteria the data is consistent with a lifetime risk of 50%, as 0.5 is contained 
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in the approximate 95% confidence interval for p. However this is the only case where this 

occurs. 

The parameter estimates for the Winokur data set are shown in Table 4.5 and the 

age-specific risks are shown in Figure 4.11. For this data set, the estimates for the lifetime 

risk and the mean and standard deviation for the age of onset distribution seem to be the 

same for the four basic models. However for this data set, using the age of onset of the index 

cases as a predictor doesn't give a significantly better fit. This suggests that the correlation 

of the ages of onset within families is not very strong in this data set. 
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Table 4.1: Parameter Estimates Under Stringent without FAD Criteria 

Model 

Gamma p = 0.186; a = 0.501; m = 41 

mean = 81.791; SD = 12.774 

log L = -205.830 

Lognormal p = 0.2 

mean = 

Var = 

logL = 

,10; £ = 4.424; 5 = 0,175 

= 84.692; SD = 14.969 
0.013 0.012 0.004] 
0.012 0.012 0.005 
0.004 0.005 0.002J 

= -206.053 

Logistic p = 0.1 

mean 

Var = 

logL = 

46; a =-14.548; p = 0.189 

= 77.121; SD =9.615 
0.002 0.026 -0.001] 
0.026 5.663 -0.081 
-0.001 -0.081 0.001J 

= -205.004 

Normal p = 0.1 

mean 

Var = 

logL: 

57 £ = 78.436; o= 10.346 

= 78.436; SD = 10.346 
0.003 0.178 0.070] 
0.178 17.333 7.259 
0.070 7.259 4.444J 

= -205.490 

Normal 

with 

Covariate 

p = 0.1 

Var = 

logL = 

-2 log 

52; a = 46.885; b = 0.453; 0 = 9.289 
0.002 0.020 0.002 0.048] 
0.020 149.158 -2.178 1.143 
0.002 -2.178 0.034 0.0582 

_ 0.048 1.143 0.058 3.362J 

= -196.406 

A = 5.791 
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Table 4.2: Parameter Estimates Under Stringent with FAD Criteria 

Model With MM Family Without MM Family 

Gamma p = 1; a = 0.076; m= 10 
mean = 130.849; SD = 41.378 
log L =-318.001 

p = 0.208; a = 0.502; m = 40 
mean = 79.673; SD = 12.597 
log L = -278.671 

Lognormal p = l;£ = 4.874; o = 0.391 
mean = 141.205; SD = 57.447 
log L =-318.489 

p = 0.2 

mean = 

Var = 

logL = 

27; J = 4.390; 0 = 0.174 
= 81.841; SD = 14.367 

0.008 0.007 0.003] 
0.007 0.007 0.003 
0.003 0.003 0.00lj 

= -278.921 

Logistic p = 0.2 
mean = 

Var = 

logL = 

21;a =-9.794; (3 = 0.123 
= 79.552; SD = 14.739 

0.004 0.029 -0.00l" 
0.029 1.641 -0.025 

-0.001 -0.025 0.0004 
= -315.489 

p = 0.1 
mean = 

Var = 

logL = 

76; a = -13.512; (3 = 0.177 
= 76.174; SD = 10.225 

0.001 0.021 -0.0004" 
0.021 3.586 -0.052 

-0.0004 -0.052 0.001 

= -278.121 

Normal p=0.3 
mean = 

Var = 

logL = 

59; JT = 90.109; a =19.235 
= 90.109; SD = 19.235 

0.061 3.357 1.094" 
3.357 195.598 66.069 
1.094 66.069 24.787 

= -316.840 

p = 0.1 
mean = 

Var = 

logL = 

83; p% 76.891; o = 10.468 
= 76.891; SD = 10.468 

0.002 0.127 0.052] 
0.127 11.315 4.938 
0.052 4.938 3.283J 

= -278.376 

Normal 

with 

Covariate 

p = 0.2 
a= 10 

Var = 

logL = 

-2 log 

07; a = 14.976; b = 0.930; 
.626 

0.002 0.020 0.001 0.047 
0.020 77.138 -1.139 0.456 
0.001 -1.139 0.019 0.057 

_ 0.047 0.456 0.057 2.873. 
= -293.114 
A = 34.613 

p = 0.1 
a = 9. 

Var = 

logL = 

-2 log 

79; a = 41.264; b = 0.516; 
_38 

0.002 -0.001 0.001 0.033 
-0.001 106.491 -1.581 0.121 
0.001 -1.581 0.025 0.043 

_ 0.032 0.121 0.043 2.217. 
= -266.893 
A =10.131 
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Table 4.3: Parameter Estimates Under Relaxed Criteria 

Model With MM Family Without MM Family 
Gamma p = 1; a = 0.115; m = 13 

mean = 113.536; SD = 31.489 
log L =-387.195 

p = 0.376; a = 0.424; m = 36 
mean = 84.905; SD = 14.151 
log L = -347.229 

Lognormal p = 1; £ = 4.742; a = 0.328 
mean = 121.069; SD = 40.833 
log L = -388.362 

p = 0.4 

mean = 

Var = 

logL = 

38; £ = 4.468; a = 0.190 
= 88.752; SD = 16.974 

0.046 0.022 0.007] 
0.022 0.011 0.004 
0.007 0.004 0.002J 

= -347.502 

Logistic p = 0.3 
mean = 

Var = 

logL = 

51;oc =-10.586; J = 0.128 
= 82.513; SD = 14.137 

0.009 0.041 -0.001" 
0.041 1.344 -0.020 

-0.001 -0.020 0.0003. 
= -383.843 

p = 0.2 
mean = 

Var = 

logL = 

81; a = -13.568; p = 0.171 
= 79.095; SD = 10.574 

0.003 0.032 -0.00 l l 
0.032 2.543 -0.037 

-0.001 -0.037 O.OOlJ 
= -346.465 

Normal p = 0.7 
mean = 

Var = 

logL = 

26; £ = 97.372; o= 19.845 
= 97.372; SD = 19.845 

0.343 9.027 2.642" 
9.027 245.855 74.220 
2.642 74.220 24.068. 

= -385.745 

p = 0.3 
mean = 

Var = 

logL = 

10; £=80.765; o= 11.300 
= 80.765; SD = 11.300 

0.007 0.288 0.112] 
0.288 14.676 6.062 
0.112 6.062 3.32lJ 

= -346.879 

Normal 
with 
Covariate 

p = 0.3 
o= 10 

Var = 

logL = 
-2 log 

37; a = 25.391; b = 0.804; 
.977 

0.004 0.162 0.000 0.065 
0.162 69.487 -0.929 3.427 
0.000-0.929 0.014 0.002 

_ 0.065 3.427 0.002 2.275. 
= -372.418 
A = 31.789 

J = 0.3 
a = 9.c 

Var = 

logL = 
-2 log 

20; a = 48.241; b = 0.454; 
505 

0.004 0.133 0.0002 0.0591 
0.133 84.865 -1.167 3.029 

0.0002-1.167 0.018 0.0002 
_ 0.059 3.029 0.0002 1.964J 
= -344.751 
A = 10.567 
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Table 4.4: Parameter Estimates under FAD Only Criteria 

Model With MM Family Without MM Family 

Gamma p = 1; a = 0.090; m = 8 

mean = 89.027; SD = 31.476 

log L = -86.032 

p = 0.554; a = 0.766; m =54 

mean = 70.457; SD = 9.588 

log L =-59.129 

Lognormal p = 1; £ = 4.428; o = 0.402 

mean = 90.817; SD = 38.075 

log L = -85.995 

p = 0.5 

mean = 

Var = 

logL = 

62; £ = 4.251; a = 0.141 

= 70.841; SD = 10.035 
0.020 0.005 0.003" 
0.005 0.003 0.002 
0.003 0.002 0.002 

= -59.168 

Logistic p = 0.6 

mean = 

Var = 

logL= 

86;a = -6.700; p = 0.094 

= 71.034; SD = 19.229 
0.036 0.093 -0.003" 
0.093 2.202 -0.036 
-0.003 -0.036 0.001 

-85.084 

p = 0.5 

mean = 

Var = 

logL = 

52; a =-12.764; p = 0.181 

= 70.387; SD = 10.002 
0.016 0.100 -0.002] 
0.100 11.248 -0.168 
-0.002 -0.168 0.003J 

= -59.350 

Normal p = 0.6 

mean = 

Var = 

logL = 

98; £ = 71.376; a= 18.892 

= 71.376; SD = 18.892 
0.058 2.000 0.982" 
2.000 92.988 44.219 
0.982 44.219 31.871 

= -85.923 

p = 0.5 

mean = 

Var = 

logL = 

42; £=69.945; a = 9.055 

= 69.945; SD = 9.055 
0.016 0.180 0.093" 
0.180 9.895 3.801 
0.093 3.801 5.623_ 

= -59.138 

Normal 

with 

Covariate 

p = 0.5 

a = 8.: 

Var = 

logL = 

-2 log 

66;a = 4.084;b= 1.000; 

>45 
0.014 0.014 0.002 0.069 
0.014 89.037 1.439 0.239 
0.002 -1.439 0.025 0.033 

_ 0.069 0.239 0.033 3.219_ 

= -76.416 

A= 19.115 

p = 0.5 

<5 = l.t 

Var = 

logL = 

-2 log 

39; a = 39.477; b = 0.464; 

i23 
0.015 0.044 0.002 0.058] 
0.043 245.385 -3.752 2.0612 
0.001 -3.752 0.059 0.002 

_ 0.058 2.062 0.002 3.575J 

= -57.631 

A = 3.015 
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Table 4.5: Parameter Estimates For Winokur Data Set 

Model 

Gamma p = 0.507; a = 0.175; m = 7 
mean = 40.0; SD = 15.1 
log L = -156.791 

Lognormal p = 0.f 
mean 

Var = 

logL 

S39;p- =3.666; a = 0.429 
= 42.873; SD =19.294 

0.019 0.019 0.009] 
0.019 0.027 0.012 
0.009 0.012 0.008J 

= -156.301 

Logistic p = 0/ 
mean 

Var = 

logL 

157; a = -5.264; p = 0.145 
= 36.346; SD = 12.524 

0.006 0.007 -0.001] 
0.007 0.662 -0.019 

-0.001 -0.019 0.001J 
= -159.477 

Normal p = 0.' 
mean 

Var = 

logL 

178 £ = 37.801; a= 12.468 
= 37.801; SD = 12.468 

0.007 0.154 0.068] 
0.154 10.275 4.142 
0.068 4.142 4.297J 

= -158.843 

Normal 

with 

Covariate 

p = 0.̂  

Var = 

logL 

-2 log 

37; a = 27.248; b = 0.278,; c = 10.815 
0.006 0.210 -0.003 0.058~] 
0.210 37.099 -0.826 5.583 

-0.003 -0.826 0.023 -0.073 
_ 0.058 5.583 -0.073 3.48lJ 
= -157.449 
A = 2.787 
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Figure 4.1: Probability of Being Affected Under Stringent without FAD Criteria 
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Figure 4.2: Probability of Being Affected Under Stringent with FAD Criteria 
(MM Family Included) 
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Figure 4.3: Probability of Being Affected Under Stringent with FAD Criteria 
(MM Family Excluded) 
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Figure 4.5: Probability of Being Affected Under Relaxed Criteria 
(MM Family Excluded) 
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Figure 4.6: Probability of Being Affected Under FAD Only Criteria 
(MM Family Included) 

Figure 4.7: Probability of Being Affected Under FAD Only Criteria 
(MM Family Excluded) 
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Figure 4.8: Probability of Being Affected Under Stringent without FAD Criteria 
with Life-Table Estimate 

0.25 -, 

P 

30 40 50 60 70 80 90 100 110 120 
Age 

Gamma "•"Lognormal """Logistic " N o r m a l ~ Life Table 

Figure 4.9: Probability of Being Affected Under Relaxed Criteria 
(Effect of MM Family with Normal Age of Onset) 
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Figure 4.10: Probability of Being Affected Under Stringent with FAD Criteria 
(Effect of MM Family with Gamma Age of Onset) 
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Figure 4.11: Probability of Being Affected For Winokur Data Set 
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5 SIMULATION STUDY 

5.1 Background 

As the method of estimation discussed in Chapter 4 is maximum likelihood, it is 

known that the estimators are consistent and asymptotically normal when the correct class of 

distributions is chosen. But due to the complex structure of this mixture model, making 

statements about the rates of convergence of the estimators is difficult. Also, it is not clear 

what will happen when an incorrect class of distributions is chosen to fit the data. Monte-

Carlo simulations can be used to address these questions. 

5.2 Simulation Conditions 

There were four factors which were varied in this simulation study: the proportion of 

people susceptible, the size of the simulated data sets, the class of distribution functions for 

the age of onset, the mean and variances of the age of onset and censoring distribution. It 

was felt that these factors could have the greatest affect on the estimates. The choices for 

the factors are shown in Table 5.1. 

The one factor which was not varied was the use of a gamma distribution for the 

censoring process. It was felt that the mean and standard deviation, not the class of the 

censoring distribution, would be the more important factor. The mean, and to a lesser extent 

the standard deviation, of the censoring distribution should be chosen to be similar to the 

mean and standard deviation of the age of onset distribution. This property has been 

observed in the two data sets considered here and also appears to occur in Multiple 

Sclerosis. In particular, the choices should not imply most people will be censored before 

reaching their age of onset, which doesn't seem to occur in practice. This undesirable 

condition can happen when the mean of the censoring distribution is set too low. 
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Table 5.1: Parameters of the Simulation Study 

p Data Set Size 

0.5 150, 500 

0.25 150, 500 

0.15 500 

Age of Onset Censoring 

Mean Standard Deviation Mean Standard Deviation 

80 10 65 20 

55 10 65 20 

35 10 35 10 

Class of the Age of Onset Distributions: Logistic, Normal, Gamma, Lognormal. 

Class of the Censoring Distribution: Gamma 

Data Sets per configuration: 200. 

The random numbers required for the onset and censoring processes were generated 

using the parametrizations described in Chapter 4, where the parameters of each distribution 

were set to match the desired mean and standard deviations. However, in the gamma case, 

to match the assumption used in Chapter 4 that the shape parameter is an integer the 

following parametrization was used: 

mean  

(standard deviation)
2 

where int[r] is the integer part of a real number r. Using this parametrization implies that the 

mean and standard deviation actually used for the gamma distribution are slightly smaller 

than the desired values when the nominal values for the mean are 55 and 35. The values for 

m = int 
/ mean \

2 

(standard deviation] 
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m in these two cases are 30 and 12 instead of 30.25 and 12.25. The true values for the mean 

and standard deviation under the gamma case are: 

Nominal Mean True Mean True Standard Deviation 

80 80 10 

55 54.5455 9.9586 

35 34.2857 9.8974 

These small differences in the means and standard deviations shouldn't affect the 

conclusions. 

The possible configuration with p = 0.15 and 150 people in the data set was not 

considered in the simulations as some preliminary runs suggested that this was an unstable 

situation which would not be particularly informative. The problem appeared to be that not 

enough affected people were contained in these simulated data sets leading to divergence 

even when the correct distribution was being used for estimation. 

Each simulated data set was examined under the four age of onset distributions used 

for generating the data. Two forms of the gamma distribution were used in estimation; with 

and without the assumption that the shape parameter m is an integer. 

5.3 Results 

Three parameters of the processes have been estimated for each configuration: the 

lifetime risk, and the mean and standard deviation of the age of onset. It was decided to 

investigate the mean and standard deviation as these can be compared across various 

distributions, whereas the natural parameters of the age of onset distributions cannot. In a 

few cases, the Newton-Raphson procedure did not converge. Sample averages (with 

standard errors) using the cases that converged for each of these three parameters under the 

60 configurations are shown in Tables 5.2 to 5.13. The averages which differ from the true 

value by more than two standard errors, indicating possible bias, are in bold type. As a large 

number of comparisons are done (180 just to test for unbiasedness of the three parameters 
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under the correct model), some of these deviations could be due to random variation. 

Assuming that all the estimators were unbiased, using this two standard error rule would 

lead to about 5% of the cases appearing to be biased. 

The restricted and unrestricted gamma models appear to give almost the same 

estimates under all of the configurations considered. The major difference appears to be in 

the estimate of the shape parameter, with the restricted estimate set to the nearest integer of 

the unrestricted estimate in almost all cases. Because of this, only the properties under the 

unrestricted model will be discussed. 

The first parameter considered is the lifetime risk for disease; Irrespective of what the 

true class of the distribution is, it appears that the expected value of the lifetime risk will 

satisfy the relation 
XN. XN. XN. XN. 

E [p I logistic fit] < E[p I normal fit] < E[p I gamma fit] < E[p I lognormal fit]. 

This holds for all but six of the sixty configurations. In four cases the average under the 

logistic is larger than the average under the normal, and in two cases the average under the 

gamma is larger than the average under the lognormal. However, the differences are very 

small and could to be due to random variation. 

In general, it appears that when the correct class of age of onset distribution is chosen 

for estimation, the estimates appear to be approximately unbiased as only four out of the 

sixty (6.67%) averages differ significantly from the true value of p. In all four cases the 

difference appears to be small. The apparent unbiasedness is to be expected from the 

consistency of maximum likelihood estimates. 

However, when the incorrect distribution is chosen, biases in the estimates appear. 

The normal and logistic distributions appear to do fairly well when trying to approximate the 

other. This is not very surprising as the shapes of these distributions are quite similar; in 

particular both are symmetric about their means. Also both of these distributions do fairly 

well when trying to estimate in the gamma and lognormal settings. It appears that the 

maximum size of the bias is about 10%. The use of the gamma or lognormal distributions 

when the true distribution is either logistic or normal leads to positive and occasionally large 
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biases. In fact, when the gamma and lognormal models are used to estimate a logistic or 

normal situation with a mean age of onset of 35, the Newton-Raphson procedure won't 

converge and suggests that the maximum likelihood estimate in these cases is 1. For these 

cases, the true expected value of the estimator is probably higher than is shown in the tables. 

When the gamma and lognormal are used to estimate the other, the biases again appear to be 

small with the maximum size of the bias also about 10%. 

The largest biases seem to occur when a mean of 35 is chosen. This should not be 

surprising since the distributions are most dissimilar in this case. As the mean increases, 

the gamma and lognormal distributions become more symmetric and look more like the normal 

and logistic distributions. 

The expected values for the estimates of the mean age of onset appear to have a 

similar property to the expected values for the estimates of the lifetime risk. Regardless of 

the true distribution, it appears: 

E [meanllogistic fit] <, E[meanlnormal fit] < E[meanlgamma fit] 

< E[meanllognormal fit]. 

This relationship holds for all but four configurations, with the average under the logistic 

larger than the average under the normal in three cases, and the average under the gamma 

larger than the average under the lognormal in one case. Again the differences are small and 

could be due to random variation. 

When the correct class of distributions is used, the estimate of the mean also appears 

to be approximately unbiased, with the averages from only two of the sixty configurations 

differing from the true value by more than two standard errors. As the size of the apparent 

bias appears to be small, this could be due to random variation. 

As with the estimates of lifetime risk, choosing the incorrect distribution appears to 

lead to a biased estimate of the mean age of onset. The logistic and normal both appear to do 

fairly well in all cases, in particular when trying to estimate the other. Again the maximum 

bias appears to be less than 10%, with the size decreasing with increasing mean. The 

gamma and lognormal distribution do fairly well except for trying to estimate the logistic and 
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normal distribution when the mean age of onset is 35. This again is due, at least in part, to 

the convergence problems. 

For lifetime risk and mean age of onset estimates, there is a mild suggestion that bias 

is more likely when the number of relatives is 500 rather that 150. This could be due to the 

fact that the greater amount of data leading to much less variation in the estimates. As there 

should be approximately three to four times more affected people in the data sets with 500 

relatives, less variation should be expected. 

The structure of the average values observed for the lifetime risk and the mean age of 

onset breaks down when the standard deviation is considered. Similar to before, independent 

of the true class of onset distributions: 

E[SDIlogistic fit] < E[SDIgamma fit] < E[SDIlognormal fit] and 

E[SDInormal fit] < E[SDIgamma fit] < E[SDIlognormal fit]. 

However E[SDIlogistic fit] < E[SDInormal fit] only seems to hold when the true age of onset 

distribution is logistic with a mean of 80 or 35. The opposite holds when the true distribution 

is normal, gamma, or lognormal, or when the true distribution is logistic with a mean of 55. 

As the size of the differences in the average estimate between the normal and logistic 

distributional assumptions when the true age of onset distribution is logistic with a mean of 

55 are small, the reversal in ordering could be due to chance, but the consistent pattern 

seems to suggest otherwise. 

When the correct distribution is chosen, the estimate often appears to have a negative 

bias (18/60 = 30%). There was also one situation with an apparent positive bias. It appears 

bias is least likely when the true mean is 55 and most likely when the true mean is 80. Since 

P[affectedlmean = 80] < P[affectedlmean=35] < P[affectedlmean = 55] 

appears to hold, this suggests that the number affected in the data set determines the size of 

the bias. This may also explain why the lognormal (2/15) and gamma (3/15) distributions 

appear to have fewer bias problems than the logistic (5/15) and the normal (8/15). In this 

case the interaction between the age of onset and censoring distributions also appears to be 

involved, as it determines the number of affected people. 
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When the wrong distribution is chosen, a biased estimate appears in most situations. 

The maximum bias appears to be approximately 30%, which occurs when the mean age of 

onset is 35. As with the estimates for lifetime risk and mean age of onset, the values in the 

tables for the gamma and lognormal distributions are probably underestimated when the true 

age of onset distribution is logistic or normal with a mean of 35. 

For the classes of distributions chosen, an important factor in determining the bias of 

lifetime risk, mean and standard deviation of the age of onset distribution and the probability 

of the Newton-Raphson procedure converging appears to be the relative size of the left tails 

of the true and fitting distribution. These simulations suggest that the heavier the tail of the 

fitting distributions, the lower the estimate of lifetime risk and mean age of onset. However if 

the tail is too light, the lifetime risk estimate will be larger. Also the estimated age of onset 

distribution will shift to the right suggesting larger ages of onset. The importance of the size 

of the left tail agrees with the effect the MM family had on the estimates in Chapter 4. This 

family gives the true age of onset distribution for the sample a heavier left tail, leading to the 

expected shifts in the estimates under this hypothesis: 

These simulations suggest that choosing a distribution with a heavier left tail, such as 

the logistic, can lead to robustness against outliers with the possible cost of slightly 

underestimating the lifetime risk and the average age of onset. This finding is in 

disagreement with Risch's (1983) statement based on the Winokur data set that the 

estimate of the lifetime risk didn't particularly depend on the choice of age of onset 

distribution. However, Risch did make the very important point that one should try to 

characterize the choice of onset distribution as carefully as possible prior to analysis. 
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Table 5.2: Average of Estimates for p (Generated by Logistic) 

p mean Relatives Logistic Normal Gamma Lognormal 

0.5 80 150 0.4945 (0.0081) 0.4992 (0.0084) 0.5060 (0.0087) 0.5193 (0.0091) 

0.5 80 500 0.4981 (0.0038) 0.5058 (0.0039) 0.5252 (0.0046) 0.5391 (0.0050) 

0.25 80 150 0.2581 (0.0060) 0.2590 (0.0062) 0.2731 (0.0071) 0.2746 (0.0074) 

0.25 80 500 0.2525 (0.0037) 0.2561 (0.0039) 0.2656 (0.0042) 0.2739 (0.0047) 

0.15 80 500 0.1479 (0.0027) 0.1511 (0.0028) 0.1596 (0.0039) 0.1659 (0.0049) 

0.5 55 150 0.4997 (0.0043) 0.5003 (0.0043) 0.5140 (0.0048) 0.5252 (0.0052) 

05 55 500 0.4995 (0.0021) 0.5005 (0.0022) 0.5129 (0.0026) 0.5236 (0.0030) 

0.25 55 150 0.2465 (0.0036) 0.2472 (0.0036) 0.2529 (0.0041) 0.2601 (0.0054) 

0.25 55 500 0.2520 (0.0018) 0.2525 (0.0018) 0.2578 (0.0020) 0.2654 (0.0023) 

0.15 55 500 0.1501 (0.0015) 0.1502 (0.0015) 0.1536 (0.0017) 0.1581 (0.0018) 

05 35 150 0.5047 (0.0066) 0.5206 (0.0072) 0.5933 (0.0112) 0.6474 (0.0156) 

0.5 35 500 0.4987 (0.0033) 0.5159 (0.0036) 0.6759 (0.0117) 0.7696 (0.0141) 

0.25 35 150 0.2580 (0.0059) 0.2666 (0.0064) 0.3354 (0.0127) 0.3508 (0.0131) 

0.25 35 500 0.2504 (0.0029) 0.2596 (0.0032) 0.3620 (0.0114) 0.4809 (0.0182) 

0.15 35 500 0.1517 (0.0020) 0.1575 (0.0023) 0.2308 (0.0103) 0.2946 (0.1573) 
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Table 5.3: Average of Estimates for p (Generated by Normal) 

p mean Relatives Logistic Normal Gamma Lognormal 

0.5 80 150 0.5105 (0.0087) 0.5168 (0.0092) 0.5222 (0.0094) 0.5312 (0.0096) 

0.5 80 500 0.4929 (0.0045) 0.4988 (0.0046) 0.5093 (0.0049) 0.5160 (0.0050) 

0.25 80 150 0.2557 (0.0068) 0.2570 (0.0069) 0.2666 (0.0074) 0.2690 (0.0081) 

0.25 80 500 0.2492 (0.0035) 0.2518 (0.0035) 0.2552 (0.0037) 0.2607 (0.0038) 

0.15 80 500 0.1518 (0.0028) 0.1526 (0.0028) 0.1552 (0.0030) 0.1582 (0.0031) 

05 55 150 0.5150 (0.0041) 0.5145 (0.0041) 0.5234 (0.0044) 0.5326 (0.0050) 

0.5 55 500 0.4998 (0.0025) 0.4997 (0.0025) 0.5066 (0.0026) 0.5139 (0.0026) 

0.25 55 150 0.2504 (0.0036) 0.2500 (0.0035) 0.2544 (0.0037) 0.2586 (0.0038) 

0.25 55 500 0.2532 (0.0018) 0.2531 (0.0018) 0.2567 (0.0019) 0.2605 (0.0019) 

0.15 55 500 0.1536 (0.0015) 0.1537 (0.0015) 0.1561 (0.0016) 0.1583 (0.0016) 

0.5 35 150 0.4909 (0.0068) 0.5006 (0.0071) 0.5622 (0.0109) 0.6355 (0.0141) 

0.5 35 500 0.4902 (0.0031) 0.5019 (0.0034) 0.6124 (0.0077) 0.7429 (0.0114) 

0.25 35 150 0.2466 (0.0048) 0.2543 (0.0056) 0.3168 (0.0117) 0.3521 (0.0145) 

0.25 35 500 0.2494 (0.0029) 0.2557 (0.0032) 0.3272 (0.0077) 0.4166 (0.0118) 

0.15 35 500 0.1439 (0.0021) 0.1469 (0.0022) 0.1953 (0.0065) 0.2499 (0.0109) 
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Table 5.4: Average of Estimates for p (Generated by Gamma) 

p mean Relatives Logistic Normal Gamma Lognormal 

0.5 80 150 0.4858 (0.0077) 0.4929 (0.0079) 0.4995 (0.0082) 0.5006 (0.0085) 

0.5 80 500 0.4870 (0.0045) 0.4941 (0.0050) 0.5011 (0.0047) 0.5064 (0.0049) 

0.25 80 150 0.2498 (0.0065) 0.2515 (0.0066) 0.2596 (0.0067) 0.2569 (0.0070) 

0.25 80 500 0.2416 (0.0035) 0.2451 (0.0036) 0.2493 (0.0037) 0.2505 (0.0038) 

0.15 80 500 0.1527 (0.0028) 0.1544 (0.0028) 0.1569 (0.0029) 0.1581 (0.0030) 

05 55 150 0.4970 (0.0039) 0.4986 (0.0039) 0.5031 (0.0040) 0.5072 (0.0040) 

05 55 500 0.4919 (0.0022) 0.4941 (0.0022) 0.4980 (0.0022) 0.5017 (0.0023) 

0.25 55 150 0.2503 (0.0033) 0.2513 (0.0034) 0.2531 (0.0034) 0.2551 (0.0034) 

0.25 55 500 0.2467 (0.0018) 0.2480 (0.0018) 0.2497 (0.0019) 0.2516 (0.0019) 

0.15 55 500 0.1486 (0.0015) 0.1495 (0.0015) 0.1505 (0.0015) 0.1515 (0.0016) 

05 35 150 0.4699 (0.0050) 0.4766 (0.0051) 0.5085 (0.0065) 0.5487 (0.0085) 

0.5 35 500 0.4614 (0.0030) 0.4692 (0.0031) 0.4971 (0.0036) 0.5280 (0.0045) 

0.25 35 150 0.2309 (0.0041) 0.2336 (0.0042) 0.2527 (0.0063) 0.2684 (0.0068) 

0.25 35 500 0.2330 (0.0022) 0.2377 (0.0023) 0.2528 (0.0028) 0.2717 (0.0035) 

0.15 35 500 0.1405 (0.0020) 0.1437 (0.0021) 0.1544 (0.0028) 0.1709 (0.0047) 
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Table 5.5: Average of Estimates for p (Generated by Lognormal) 

p mean Relatives Logistic Normal Gamma Lognormal 

0.5 80 150 0.4921 (0.0084) 0.4941 (0.0080) 0.5013 (0.0084) 0.5059 (0.0086) 

05 80 500 0.4763 (0.0040) 0.4844 (0.0041) 0.4891 (0.0041) 0.4930 (0.0042) 

0.25 80 150 0.2421 (0.0070) 0.2445 (0.0071) 0.2567 (0.0074) 0.2493 (0.0075) 

0.25 80 500 0.2469 (0.0033) 0.2505 (0.0034) 0.2530 (0.0035) 0.2550 (0.0035) 

0.15 80 500 0.1483 (0.0026) 0.1513 (0.0027) 0.1519 (0.0028) 0.1540 (0.0029) 

0.5 55 150 0.4844 (0.0039) 0.4875 (0.0039) 0.4912 (0.0040) 0.4929 (0.0040) 

05 55 500 0.4915 (0.0023) 0.4950 (0.0023) 0.4980 (0.0023) 0.5005 (0.0023) 

0.25 55 150 0.2493 (0.0037) 0.2505 (0.0037) 0.2532 (0.0037) 0.2538 (0.0038) 

0.25 55 500 0.2451 (0.0017) 0.2474 (0.0017) 0.2480 (0.0018) 0.2499 (0.0017) 

0.15 55 500 0.1500 (0.0014) 0.1512 (0.0014) 0.1520 (0.0014) 0.1527 (0.0015) 

0.5 35 150 0.4596 (0.0059) 0.4697 (0.0062) 0.4929 (0.0071) 0.5124 (0.0082) 

0.5 35 500 0.4566 (0.0027) 0.4674 (0.0029) 0.4855 (0.0032) 0.5050 (0.0036) 

0.25 35 150 0.2349 (0.0045) 0.2396 (0.0046) 0.2517 (0.0054) 0.2664 (0.0066) 

0.25 35 500 0.2267 (0.0023) 0.2318 (0.0024) 0.2409 (0.0026) 0.2513 (0.0030) 

0.15 35 500 0.1379 (0.0020) 0.1406 (0.0021) 0.1464 (0.0025) 0.1541 (0.0029) 
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Table 5.6: Average of Estimates for the Mean Age of Onset (Generated by Logistic) 

p mean Relatives Logistic Normal Gamma Lognormal 

0.5 80 150 79.624 (0.218) 79.880 (0.231) 80.634 (0.269) 81.464 (0.315) 
0.5 80 500 79.879 (0.104) 80.328 (0.120) 81.518 (0.183) 82.490 (0.224) 
0.25 80 150 79.690 (0.284) 79.793 (0.303) 80.775 (0.377) 81.857 (0.497) 
0.25 80 500 79.999 (0.160) 80.408 (0.188) 81.523 (0.221) 82.635 (0.307) 
0.15 80 500 79.935 (0.211) 80.518 (0.259) 81.935 (0.466) 83.461 (0.656) 
0.5 55 150 55.103 (0.101) 55.106 (0.102) 56.149 (0.150) 57.269 (0.323) 
0.5 55 500 54.950 (0.052) 54.986 (0.055) 55.910 (0.092) 56.826 (0.147) 
0.25 55 150 54.884 (0.175) 54.963 (0.182) 55.918 (0.260) 57.184 (0.715) 
0.25 55 500 55.019 (0.088) 55.064 (0.091) 55.952 (0.118) 57.080 (0.214) 
0.15 55 500 54.932 (0.098) 54.923 (0.101) 55.872 (0.156) 56.975 (0.220) 
0.5 35 150 34.902 (0.176) 35.436 (0.190) 39.457 (0.385) 43.636 (0.798) 
0.5 35 500 34.990 (0.078) 35.637 (0.091) 43.185 (0.533) 49.081 (0.747) 
0.25 35 150 34.813 (0.257) 35.371 (0.295) 41.219 (0.762) 45.289 (1.039) 
0.25 35 500 34.877 (0.129) 35.539 (0.158) 44.367 (0.848) 56.974 (1.652) 
0.15 35 500 35.019 (0.154) 35.699 (0.191) 45.355 (1.131) 58.143 (2.539) 
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Table 5.7: Average of Estimates for Mean Age of Onset (Generated by Normal) 

p mean Relatives Logistic Normal Gamma Lognormal 

0.5 80 150 79.692 (0.214) 79.953 (0.226) 80.417 (0.241) 81.156 (0.287) 
0.5 80 500 79.709 (0.118) 79.981 (0.120) 80.652 (0.136) 81.168 (0.147) 
0.25 80 150 79.094 (0.320) 79.158 (0.328) 80.001 (0.386) 80.498 (0.462) 
0.25 80 500 79.721 (0.167) 79.949 (0.171) 80.605 (0.192) 81.166 (0.213) 
0.15 80 500 79.845 (0.217) 79.951 (0.223) 80.631 (0.256) 81.202 (0.276) 
0.5 55 150 55.060 (0.109) 55.052 (0.107) 55.689 (0.130) 56.464 (0.224) 
0.5 55 500 54.873 (0.060) 54.899 (0.058) 55.443 (0.061) 56.038 (0.074) 
0.25 55 150 55.184 (0.169) 55.173 (0.167) 55.851 (0.196) 56.695 (0.324) 
0.25 55 500 54.945 (0.093) 54.955 (0.092) 55.547 (0.106) 56.141 (0.120) 
0.15 55 500 55.065 (0.125) 55.123 (0.122) 55.718 (0.145) 56.398 (0.176) 
0.5 35 150 34.518 (0.172) 34.891 (0.186) 38.350 (0.359) 43.353 (0.657) 
0.5 35 500 34.460 (0.087) 34.913 (0.095) 40.364 (0.317) 48.384 (0.617) 
0.25 35 150 34.394 (0.251) 34.874 (0.290) 40.515 (0.773) 46.699 (1.618) 
0.25 35 500 34.704 (0.139) 35.168 (0.153) 41.810 (0.596) 51.305 (0.987) 
0.15 35 500 34.322 (0.171) 34.711 (0.182) 41.872 (0.745) 52.721 (1.901) 
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Table 5.8: Average of Estimates for Mean Age of Onset (Generated by Gamma) 

p mean Relatives Logistic Normal Gamma Lognormal 

0.5 80 150 79.346 (0.212) 79.648 (0.217) 80.085 (0.234) 80.491 (0.252) 
0.5 80 500 79.263 (0.106) 79.575 (0.111) 80.044 (0.120) 80.406 (0.128) 
0.25 80 150 79.032 (0.329) 79.090 (0.326) 79.635 (0.347) 79.796 (0.371) 
0.25 80 500 79.189 (0.166) 79.477 (0.170) 79.880 (0.181) 80.259 (0.193) 
0.15 80 500 79.630 (0.228) 79.848 (0.225) 80.349 (0.242) 80.688 (0.260) 
0.5 55 150 53.982 (0.118) 54.203 (0.115) 54.554 (0.122) 54.886 (0.130) 
0.5 55 500 53.892 (0.060) 54.154 (0.060) 54.476 (0.062) 54.780 (0.066) 
0.25 55 150 54.057 (0.152) 54.262 (0.155) 54.591 (0.166) 54.914 (0.180) 
0.25 55 500 53.919 (0.094) 54.176 (0.095) 54.491 (0.099) 54.793 (0.105) 
0.15 55 500 53.885 (0.121) 54.179 (0.121) 54.480 (0.127) 54.772 (0.135) 
0.5 35 150 32.417 (0.142) 32.712 (0.145) 34.282 (0.210) 36.403 (0.339) 
0.5 35 500 32.405 (0.074) 32.745 (0.077) 34.161 (0.107) 35.876 (0.154) 
0.25 35 150 32.057 (0.202) 32.307 (0.202) 33.935 (0.339) 35.898 (0.499) 
0.25 35 500 32.497 (0.111) 32.872 (0.119) 34.412 (0.161) 36.464 (0.241) 
0.15 35 500 32.421 (0.147) 32.828 (0.158) 34.621 (0.242) 37.211 (0.488) 
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Table 5.9: Average of Estimates for Mean Age of Onset (Generated by Lognormal) 

p mean Relatives Logistic Normal Gamma Lognormal 

0.5 80 150 79.312 (0.209) 79.481 (0.207) 79.834 (0.225) 80.198 (0.245) 
0.5 80 500 78.950 (0.113) 79.322 (0.118) 79.670 (0.126) 79.941 (0.133) 
0.25 80 150 78.587 (0.337) 78.729 (0.342) 79.408 (0.373) 79.356 (0.391) 
0.25 80 500 79.088 (0.166) 79.367 (0.170) 79.736 (0.185) 80.020 (0.191) 
0.15 80 500 78.918 (0.229) 79.294 (0.250) 79.456 (0.239) 79.942 (0.281) 
0.5 55 150 54.002 (0.102) 54.342 (0.105) 54.605 (0.112) 54.805 (0.116) 
0.5 55 500 54.228 (0.059) 54.604 (0.060) 54.852 (0.063) 55.073 (0.064) 
0.25 55 150 54.411 (0.153) 54.641 (0.154) 54.959 (0.164) 55.195 (0.173) 
0.25 55 500 54.198 (0.088) 54.602 (0.091) 54.832 (0.098) 55.070 (0.098) 
0.15 55 500 54.218 (0.114) 54.567 (0.117) 54.811 (0.124) 55.048 (0.127) 
0.5 35 150 32.959 (0.162) 33.372 (0.171) 34.448 (0.216) 35.586 (0.278) 
0.5 35 500 32.722 (0.076) 33.173 (0.082) 34.134 (0.101) 35! 167 (0.127) 
0.25 35 150 32.557 (0.189) 32.946 (0.196) 34.034 (0.261) 35.474 (0.383) 
0.25 35 500 32.601 (0.105) 33.010 (0.110) 33.962 (0.138) 35.087 (0.180) 
0.15 35 500 32.619 (0.140) 32.962 (0.145) 33.917 (0.190) 35.199 (0.257) 
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Table 5.10: Average of Estimates for the Standard Deviation of the Age of Onset 

(Generated by Logistic) 

p mean Relatives Logistic Normal Gamma Lognormal 

0.5 80 150 9.564 (0.132) 9.736 (0.153) 10.633 (0.207) 11.617 (0.268) 
0.5 80 500 9.835 (0.075) 10.193 (0.092) 11.522 (0.150) 12.619 (0.194) 
0.25 80 150 9.196 (0.199) 9.249 (0.222) 10.388 (0.301) 11.510 (0.469) 
0.25 80 500 9.751 (0.105) 10.062 (0.126) 11.325 (0.186) 12.503 (0.263) 
0.15 80 500 9.565 (0.146) 9.927 (0.191) 11.263 (0.338) 12.750 (0.509) 
0.5 55 150 9.892 (0.085) 9.779 (0.089) 11.294 (0.197) 12.742 (0.386) 
0.5 55 500 9.989 (0.051) 9.883 (0.053) 11.321 (0.119) 12.649 (0.185) 
0.25 55 150 9.878 (0.139) 9.642 (0.140) 10.902 (0.262) 12.612 (0.820) 
0.25 55 500 10.003 (0.069) 9.879 (0.074) 11.206 (0.134) 12.775 (0.258) 
0.15 55 500 9.984 (0.084) 9.862 (0.084) 11.259 (0.182) 12.771 (0.271) 
0.5 35 150 9.826 (0.116) 9.919 (0.122) 13.834 (0.358) 18.916 (0.902) 
0.5 35 500 9.952 (0.059) 10.125 (0.063) 16.747 (0.428) 23.941 (0.762) 
0.25 35 150 9.567 (0.145) 9.639 (0.160) 14.696 (0.576) 20.486 (1.082) 
0.25 35 500 9.856 (0.084) 10.049 (0.094) 17.528 (0.652) 32.297 (1.809) 
0.15 35 500 9.891 (0.111) 10.063 (0.126) 17.821 (0.872) 33.896 (2.972) 
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Table 5.11: Average of Estimates for Standard Deviation of the Age of Onset 

(Generated by Normal) 

p mean Relatives Logistic Normal Gamma Lognormal 

0.5 80 150 9.599 (0.128) 9.551 (0.137) 10.245 (0.168) 11.075 (0.225) 
0.5 80 500 9.845 (0.070) 9.787 (0.071) 10.632 (0.093) 11.321 (0.111) 
0.25 80 150 8.857 (0.192) 8.690 (0.197) 9.663 (0.252) 10.185 (0.334) 

0.25 80 500 9.729 (0.101) 9.653 (0.103) 10.480 (0.132) 11.200 (0.160) 
0.15 80 500 9.600 (0.123) 9.497 (0.123) 10.308 (0.164) 11.058 (0.196) 
0.5 55 150 10.303 (0.089) 9.859 (0.084) 10.859 (0.134) 11.951 (0.265) 
0.5 55 500 10.404 (0.046) 9.963 (0.041) 10.860 (0.056) 11.784 (0.079) 
0.25 55 150 10.227 (0.131) 9.791 (0.124) 10.790 (0.182) 11.987 (0.365) 
0.25 55 500 10.293 (0.066) 9.883 (0.063) 10.804 (0.089) 11.744 (0.117) 
0.15 55 500 10.370 (0.090) 9.935 (0.087) 10.826 (0.125) 11.864 (0.179) 
0.5 35 150 9.967 (0.111) 9.753 (0.114) 13.190 (0.276) 19.336 (0.720) 
0.5 35 500 10.137 (0.056) 9.956 (0.057) 15.080 (0.264) 24.312 (0.677) 
0.25 35 150 9.712 (0.141) 9.612 (0.156) 14.754 (0.589) 23.248 (1.963) 
0.25 35 500 10.088 (0.087) 9.933 (0.090) 15.824 (0.454) 26.619 (0.970) 
0.15 35 500 9.952 (0.109) 9.759 (0.110) 15.934 (0.573) 29.452 (2.358) 
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Table 5.12: Average of Estimates for Standard Deviation of the Age of Onset 

(Generated by Gamma) 

p mean Relatives Logistic Normal Gamma Lognormal 

0.5 80 150 9.198 (0.121) 9.049 (0.122) 9.677 (0.147) 10.176 (0.170) 

0.5 80 500 9.445 (0.067) 9.316 (0.068) 9.979 (0.081) 10.472 (0.094) 
0.25 80 150 8.673 (0.179) 8.349 (0.172) 9.031 (0.201) 9.308 (0.234) 
0.25 80 500 9.217 (0.098) 9.087 (0.095) 9.698 (0.113) 10.187 (0.133) 

0.15 80 500 9.399 (0.126) 9.205 (0.123) 9.882 (0.148) 10.366 (0.170) 
0.5 55 150 9.865 (0.086) 9.375 (0.079) 9.921 (0.093) 10.479 (0.111) 
0.5 55 500 9.878 (0.042) 9.444 (0.039) 9.965 (0.045) 10.499 (0.053) 
0.25 55 150 9.656 (0.116) 9.175 (0.113) 9.701 (0.132) 10.245 (0.159) 
0.25 55 500 9.755 (0.063) 9.318 (0.058) 9.832 (0.068) 10.356 (0.080) 
0.15 55 500 9.742 (0.088) 9.304 (0.081) 9.792 (0.094) 10.302 (0.110) 
0.5 35 150 8.471 (0.090) 8.097 (0.084) 9.808 (0.153) 12.331 (0.302) 
0.5 35 500 8.471 (0.049) 8.111 (0.047) 9.690 (0.079) 11.795 (0.137) 
0.25 35 150 8.220 (0.123) 7.796 (0.118) 9.470 (0.232) 11.911 (0.458) 
0.25 35 500 8.584 (0.068) 8.223 (0.066) 9.920 (0.114) 12.364 (0.212) 
0.15 35 500 8.577 (0.083) 8.242 (0.085) 10.134 (0.162) 13.139 (0.433) 
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Table 5.13: Average of Estimates for the Standard Deviation of the Age of Onset 

(Generated by Lognormal) 

p mean Relatives Logistic Normal Gamma Lognormal 

0.5 80 150 8.947 (0.135) 8.732 (0.131) 9.244 (0.154) 9.715 (0.180) 
0.5 80 500 9.117 (0.072) 8.982 (0.071) 9.515 (0.083) 9.911 (0.093) 

0.25 80 150 8.240 (0.202) 7.960 (0.199) 8.764 (0.231) 8.838 (0.265) 
0.25 80 500 9.072 (0.098) 8.908 (0.096) 9.454 (0.115) 9.877 (0.127) 
0.15 80 500 8.974 (0.118) 8.829 (0.123) 9.282 (0.134) 9.786 (0.165) 
0.5 55 150 9.320 (0.082) 8.932 (0.078) 9.339 (0.089) 9.724 (0.100) 
0.5 55 500 9.638 (0.044) 9.220 (0.041) 9.596 (0.045) 10.015 (0.051) 

0.25 55 150 9.262 (0.115) 8.824 (0.107) 9.305 (0.125) 9.745 (0.146) 

0.25 55 500 9.579 (0.066) 9.190 (0.063) 9.575 (0.071) 9.994 (0.077) 

0.15 55 500 9.539 (0.082) 9.104 (0.078) 9.492 (0.084) 9.932 (0.100) 
0.5 35 150 7.899 (0.094) 7.596 (0.094) 8.798 (0.139) 10.235 (0.210) 

0.5 35 500 7.950 (0.048) 7.646 (0.048) 8.748 (0.070) 10.073 (0.103) 

0.25 35 150 7.698 (0.120) 7.395 (0.117) 8.591 (0.183) 10.298 (0.322) 

0.25 35 500 7.884 (0.071) 7.566 (0.067) 8.678 (0.099) 10.080 (0.150) 

0.15 35 500 7.715 (0.086) 7.390 (0.083) 8.507 (0.131) 10.025 (0.205) 
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6 CONCLUSIONS 

6.1 Risks for Alzheimer's and Their Implications 

The three general procedures of estimation all suggest that the lifetime risk for 

disease does not approach 50%. In particular the risk of dementia by age 90 appears to be 

approximately only 25%, much lower than the 50% risk found in other recent studies. Three 

possibilities for the differences between this data set and others come to mind. The stringent 

criterion with its requirement of existence of medical records appears to be much stronger 

than the criteria used in the other studies mentioned. The relaxed criteria still may be more 

restrictive than that used by other studies. In the product-limit setting, Breitner and 

Magruder-Habib (1989) showed that varying the rule for deciding age of onset could change 

risk estimates. As the age-specific risk estimates from the full maximum likelihood 

procedure appear to be close to the product-limit estimates, changing the rule determining the 

age of onset should also affect the full maximum likelihood estimates. Possibly the age of 

onset has been determined differently in some of the other studies. Finally, as the other 

groups ascertain their index cases differently, the populations being sampled may be different. 

As the other studies were conducted in the United States, one factor which could affect 

sampling is the universal medical insurance program available in Canada. Also the methods 

of ascertainment used by other groups may cause more families with the genetic form of the 

disease to be included in the sample. 

6.2 Comparisons of the Estimation Methods 

Three types of estimation procedures for calculating risks for disease have been 

discussed. The product-limit method gives a very easy and quick way to estimate age-

specific risks. The Kaplan-Meier and life-table estimators appear to be approximately 

unbiased, while the Weinberg estimator appears to have a positive bias, suggesting that it 

shouldn't be used. The one drawback to these three estimation procedures is that it is 

difficult to estimate the lifetime risk for disease without making possibly unreasonable 
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assumptions. The estimators for lifetime risk using fixed approximations to the age of onset 

distributions, while easy to calculate, do not appear to be very useful. It appears that they 

can be strongly influenced by the choice for the age of onset distribution, with little 

robustness when a poor choice is made. Also, one estimator, the modified Stromgren, will 

almost always be biased, even when the correct age of onset distribution is chosen. The 

maximum likelihood procedure for estimating the lifetime risk and the age of onset distribution 

appears to be the most useful. Since the age of onset distribution is estimated along with the 

lifetime risk, the lifetime risk estimate should have a smaller bias than the fixed onset 

distribution estimators, though poor choices for the class of the age of onset distributions 

could still lead to biased estimates. However, the age-specific risks calculated by this 

method appear to be very close to those calculated by Kaplan-Meier or the life-table 

estimators, irrespective of the choice of the class of the age of onset distributions. Our 

simulation study seems to support the usefulness of this type of estimator when intelligent 

choices are made about which classes of distributions to use to estimate the age of onset. 
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