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A B S T R A C T 

This thesis presents a cost allocation method for deriving lower bounds on costs 

of feasible policies for a class of production/inventory problems. Consider the joint 

replenishment problem where a group of items is replenished together or individually. 

A sequence of reorders for any particular item wil l incur holding, backorder and set-up 

costs specific to the item, l n addition whenever any item is replenished a joint cost is 

incurred. What is required of the total problem is the minimizat ion of a cost function 

of the replenishment sequence or policy. 

The cost allocation method consists of decomposing the total problem into sub-

problems, one for each item, by allocating the joint cost amongst the items in such a 

way that every item in the group receives a positive allocation or none. The result is 

that, for an arbitrary feasible cost allocation, the sum of the min imum costs for the 

subproblems is a lower bound on the cost of any feasible policy to the total problem. 

The results for the joint replenishment problem follows: 

For the constant and continuous demand case we reproduce the lower bound of 

Jackson, Maxwel l and Muckstadt more easily than they did. For the mult i- i tem dy

namic lot-size problem, we generalize Si lver -Meal and part-period balancing heuristics, 

and derive a cost allocation bound wi th little extra work. For the 'can-order' system, 

we use periodic policies derived from the cost allocation method and show that they 

are superior to the more complex (s,c,S) policies. The cost allocation method is eas

ily generalized to pure distribution problems where joint replenishment decisions are 

taken at several facilities. For example, for the one-warehouse multi-retailer problem, 

we reproduce Roundy's bound more easily than he did. For the multi-facility joint 

replenishment problem (a pure distr ibution system with an arbitrary number of ware

houses), we give a lower bound algorithm whose complexity is dr\ogr where d is the 

maximum number of facilities which replenish a particular i tem and r is the number 

of items. 
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I N T R O D U C T I O N 

This dissertation presents a cost allocation method for deriving lower bounds on costs 

of feasible policies to joint replenishment problems in inventory management. Con

sider a group of items whose replenishment generally requires a common process such 

as having a common supplier or a common production unit, or a common mode of 

transportation. Replenishment of one or more items in the group involves a major 

set-up cost resulting from init iating the order or production process. In addition to 

the major set-up cost, each item to be included in the replenishment group has an as

sociated cost which depends only on the item. This item-dependent cost may include 

a set-up cost, to be referred to as the minor set-up cost, and a purchase cost for the 

item. 

There is also an inventory related cost rate which depends on the amount of stock 

and the demand for each item. The particular nature of this cost depends on the 

context but in general wi l l involve the cost of holding excess inventory in stock when 

it is not needed or a penalty cost for not having enough stock to meet the immediate 

demands. 

The demand process can be either deterministic (constant or time varying, discrete 

or continuous) or stochastic. Each of these processes gives rise to a complex problem 

in joint replenishment inventory management. The methods of solution are quite 

different, and wi l l therefore be treated in separate sections. 

The problem is to schedule replenishment of each item so as to minimize the total 
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set-up and inventory related costs or the average of these costs per unit time over a 

known horizon. One obvious solution to this problem is to treat each item separately 

and schedule replenishments using the sum of the item-dependent set-up cost and 

the major set-up cost as the set-up cost for each item. The solution obtained by this 

method is feasible and hence its cost is an upper bound on all reasonable solutions. This 

upper bound is found to be very loose in most practical problems, indicating that there 

is ample room for improved solutions. Unfortunately, the computational requirements 

for obtaining an opt imum solution to a joint replenishment problem wi th only a few 

items are extraordinarily heavy. Moreover the form of the opt imum policy, if known, 

may be very complex and therefore not implementable in practice. These two issues 

have forced researchers to seek simple solutions to the joint replenishment problem. 

A solution wil l be referred to as easy or simple when the parameters specifying the 

replenishment schedule are easy to compute and the policy induced by these parameters 

is easy to implement. If also the easy solution results in a substantial cost saving when 

compared to the upper bound, the solution is "good". Efforts are made to balance 

computational simplicity and solution quality. 

The greater part of this dissertation wi l l discuss simple techniques that give very 

good solutions - generally better than 105% of a lower bound. 

The major motivation for this research is a lower bound for a general class of 

inventory problems, which has a particularly simple form for the joint replenishment 

problem. Its derivation also gives some useful insight into possible feasible policies 

which turn out to be very good. 

The dissertation is organized into six chapters. In Chapter one, we survey the 

literature on the joint replenishment problem and discuss some existing solution tech

niques. In Chapter two, we introduce a new method referred to as the cost allocation 

method of deriving lower bounds for a class of inventory/ production problems which 

require coordinating the replenishment of more than one item. This cost allocation 
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method is used to work out in detail the lower bounds for the joint replenishment prob

lem and the one-warehouse, multi-retailer problem both under deterministic, constant 

and continuous demands. Other problems to which the cost allocation method can 

be applied are also discussed. In Chapter three we introduce the multi-facility joint 

replenishment problem which is a pure distribution problem requiring joint replenish

ment decisions at various facilities. Although the discussion is long, the algorithm for 

determining the lower bound for this problem is very simple. Again the form of the 

lower bound is obtained from the cost allocation method. In Chapter four, we discuss 

the mult i - i tem dynamic lot size problem. The cost allocation method provides a simple 

lower bound for this problem. This lower bound gives a new insight into the problem 

which helps in generalizing some of the single i tem dynamic lot sizing heuristics to 

the mult i- i tem environment, without losing the quality of the heuristics. For exam

ple a series of computational results shows that the generalized Silver-Meal heuristic 

performs equally well in the multi-i tem environment as the original heuristic in the 

single product environment. It is also demonstrated that the effectiveness ratios of the 

part period balancing heuristic and a variant of it are unchanged when generalized to 

the mult i- i tem environment. These generalized heuristics can be applied quite easily 

to the joint replenishment problem with an arbitrary number of products. This is in 

contrast to the existing heuristics which, because of their complexity, could not be used 

for problems wi th more than a few items. In Chapter five, we demonstrate through 

computational examples that the simple periodic policy obtained using a method de

rived from the cost allocation bound, performs better than the much written-about 

s,c,S policy. Final ly, Chapter six is a summary and a discussion of topics for further 

research. 

In summary, this thesis presents a new and very general method - the cost allocation 

method, and demonstrates its use in determining lower bounds; which in turn can be 

used to develop new solutions to a wide class of production/inventory problems that 
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require coordinating the replenishment of more than one item. 
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C H A P T E R O N E 

T h e J o i n t R e p l e n i s h m e n t P r o b l e m : 

L i t e r a t u r e R e v i e w 

Introduction 

Consider an inventory control manager faced with the problem of scheduling the pro

duction or procurement of N different items over a known horizon, so that the demands 

for each product or item over the horizon are met, subject to constraints on backlog-

ging. If there is no restriction on the total amount that can be backlogged at any time, 

any procurement or production policy that satisfies all demands over the horizon is 

feasible. Whatever constraints there are on the problem, it is likely that there are an 

infinite number of, or very many feasible solutions to the problem. The problem is to 

choose among all the feasible solutions, that policy whose implementation results in 

the overall min imum cost. The cost of a. policy consists of a replenishment cost and 

an inventory related cost. 

The replenishment cost consists of a major set-up cost which must be paid whenever 

one or more items are replenished and a minor set-up cost associated with each item, 

which must be paid whenever an item is included in a joint order. 
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The inventory related cost depends on the current inventory and the demand until 

the next decision point. There is a holding cost rate charged for excess stock and a 

backlogging cost rate, when backlogging is allowed, which is charged for each unit of 

demand not met directly from stock, except in the s.c.S model discussed in Chapter 

5 where a cost which depends on the length of a stockout is also charged. Other costs 

parameters w i l l be introduced as needed. 

The demand pattern of each item is important in determining the method of so

lution to this problem. In most reasonable cases, the computational requirements for 

finding an opt imum solution is prohibitive. Moreover, the form of the policy that is 

opt imal , if known, is usually complex and difficult to implement. Because of these 

problems, researchers have concentrated more effort on the development of reasonable 

heuristics. Unfortunately, these heuristics were evaluated using very simple examples 

because there was no known good lower bound for this problem. There is now available 

a good lower bound which wil l be discussed in Chapter 2. This lower bound is useful 

in that it facilitates the process of developing heuristics. Very simple heuristics can 

now be tested quite easily as is done in chapters 4 and 5. 

For the deterministic demand case, the pattern is usually either the time-varying 

and periodic demand [78,86,87] or stationary and continuous time demand, see for 

example [28,27,26,29,30,36,52,53,66,63]. For the stochastic case the pattern is usu

ally either stationary and periodic demand or stationary and continuous time de

mands. Tan [74] characterized an opt imum policy for a two-product problem with 

periodic demands. For stationary and continuous time demands, see for example 

[75,69,65,23,39,38,82]. 

Veinott [76] treated the case of non-stationary demands but no joint set-up cost. 

The next sections are devoted to specifying the joint replenishment problem induced 

by each of the demand patterns above, and discussing some of the associated existing 

solution methods. 
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1.2 Deterministic Time-Varying Demand 

Demands for the items are known in each period over the horizon but vary from one 

period to the other. In this finite horizon is always assumed. Whenever a 

replenishment is made, a major set-up cost AQ is paid, independent of the number of 

items in the joint order. In addition, a minor set-up cost Ai is paid if i tem i is included 

in the joint order. The unit variable cost of producing or purchasing each of the items 

is assumed constant for each item. The case w i th non-constant unit variable cost is not 

considered here. W i t h this assumption, the total variable purchase or production cost 

for each i tem is constant for all feasible solutions which have no shortage, or excess 

stock at the end of the planning horizon. Since the models of this chapter do not 

permit shortages or excess stock at the end of the planning horizon, the unit variable 

procurement or production cost wi l l be ignored in all subsequent analysis. A t the end 

of each period, a holding cost is charged at the rate of hi per unit, if there is excess 

stock of item i. 

A more general version of this problem has been addressed. For example, Zang-

wi l l [86], and Ka lymon [40] considered the case with a generalized procurement plus 

inventory cost; Veinott [78], K a o [41] and Leopoulos et al . [44] considered the case 

wi th seperable but concave procurement and inventory cost functions. The restricted 

version described here where the set-up costs are constant, is most common in practice 

and has been addressed by Silver [68]. 

There are many algorithms which find the opt imum solution to this problem 

[40,41,68,78,86]. The common problem wi th these solution methods is that their com

putational requirements are enormous. The algorithms of Zangwill [86], K a o [41], 

Silver [68] and Leopoulos et al . [44] are exponential in the number of products, while 

those by Veinott [78] and K a l y m o n [40] are exponential in the number of time periods. 

None of these methods can be used for a problem wi th a moderate to large number of 

items and a long planning horizon. 
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A brief description of some of the solution methods wi l l now be given. 

Some Notations: 

Kit = demand for product i in period t 

Xlt = replenishment quantity of item i in period t 

X1 = (Xlt, X2t, xNt) 
inventory level of item i at the end of period t 

h = {ht, ht, lm) 

N = number of items 

H — number of periods in horizon 

Model Assumptions: 

1. The unit variable acquisition cost of any item is constant and therefore disre

garded. 

2. There is no backlogging of any item. 

3. There is no capacity constraint. 

4. Lead time is zero. 

The single item problem with these assumptions has been studied extensively. Wagner 

and W h i t i n [80] were the first to give a dynamic programming solution to the problem. 

Thei r basic model has been expanded, sometimes to relax some of the assumptions 

above and sometimes to derive new solution properties for the basic problem and for 

a more general class of problems. For example Zabel [85] introduced planning horizon 

theorems which reduce the computational requirements of the Wagner-Whit in model. 

Some properties of opt imum solutions derived for the single item case have been 

extended to the mult i- i tem problem; examples of such extensions can be seen in [66,86]. 
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The most important of these properties which have been exploited in deriving the 

solution to the joint replenishment problem are given below. 

P r o p e r t y 1: Xit — YJj=t^xj t <n< H: n integer and 

n < a rgmin{/ : (/ — tf)/i,-7r„ > Ao + A,} 

P r o p e r t y 2: Xit > 0 implies Iit_1 < 0; Iit > 0. 

Property 1 says that when any item is replenished, the replenishment quantity must be 

equal to the sum of demands for an integer number of periods. Also, it is not desirable 

to purchase the requirement of period n in period t, I < n, if the cost to hold this 

requirement from period t to period n is greater than the total set-up cost. Property 

2 says that a replenishment for any item takes place only when that item has zero 

inventory, and that the replenishment quantity must be sufficient to cover the demand 

of the period in which the replenishment takes place. The condition on n can also be 

treated as a property. It is the planning horizon concept which reduces the solution 

space to consider in searching for an optimum solution. 

Let 

A ( / t - i ) = [X\.XL...,Xl

N). 

where X\ is a feasible sequence of replenishments of item i from period t to the end of 

the planning horizon given that the starting inventory of the item in period t is Iu-i-

If Xn satisfies properties 1 and 2 above, Dt{It-\) is known as the dominant set for 

period t if the starting inventory in period t is It-i, Zangwill [86]. This dominant set is 

simply the set of feasible replenishment schedules, given the starting inventory, which 

satisfy properties I and 2 above and by implication contain an optimum schedule. The 

construction of an opt imum solution to the joint replenishment problem uses dynamic 

programming, efficiently exploit ing the fact that an opt imum replenishment schedule 

is contained in the dominant set. This idea was introduced by Zangwill [86] in the 
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context of a more general problem. The methods of Zangwill , Kao , Leopoulos et al 

and Veinott , used for obtaining an optimum solution wi l l be described in the next four 

subsections. 

1 .2 .1 Zangwill's Algorithm 

Zangwil l devised a dynamic programming method for determining an opt imum replen

ishment schedule from the dominant set of a general class of multi-i tem, multi-stage 

inventory problems. The algorithm specializes easily to the joint replenishment prob

lem, and wil l be described in the context of this chapter. 

Let 

N 

1=1 
N 

Ht(Xl) = *£hiXit 

A t any time t, let 
t=i 

and 

n,-i = mdx{k\Y,*ij = lit-i} 
i=t 

Iit-i = 0 implies n t j = t — 1 

Thus nt] is the time when the current inventory for item i w i l l be fully consumed. For 

every i, define rii2 by 

Xit = ^2 iTij-, ni2 > ntl; ni2 integer. 
J=n,-i + l 

«1 = ("-11,^21, •••,ttjVl) 

n2 = (n12,n22,...,nN2) 

H = an A r -dimensional vector of H 

10 



From the above definition, n^2 is the time when the current replenishment of item i, if 

any, wi l l be fully consumed. The cost incurred in any period t can now be written as 

N 
Pt{nun2) = A06{At) + + h%{X« + ltl^ - Tr,-,)) (1.1) 

t = i 

where 6(x) — 0 if x < 0 and 6(x) = 1 if x > 0. Let F t(nx) be the min imum replenish

ment plus inventory cost from period i to period H given that in period t, the starting 

inventory wi l l meet the demands from period t to periods n^. (Recall that ni is a 

vector). It can be shown that Ft(-) satisfies the following recursion. 

F,(ni) = mm _(Pt(nun2) + Ft+1{n2)) 

F„(H) = 0. 

When backlogging is not allowed as in this case, 

t — 1 < n,-i < H • for every i 

Although this algorithm produces an opt imum solution, the state space required is 

very large. For example the maximum number of ways of selecting raj is HN. For large 

H and N, this algorithm is clearly impractical. 

Example 

Let N = 2 , H=3 , / i x = h2 = 1. 

= 5 TTil = 3 7T2] = 4 

Ax 
= 2 7T12 = 5 = 3 

A2 = 3 7Tl3 = 1 7T23 = 4 
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The relevant calculations are shown below. 

F 3 (3 ,3 ) = P 3 [(3,3) ,(3,3)] = 0 

F3{3,2) = P 3 [(3,2),(3,3)] = 8 

F 3 (2 ,3 ) = P 3 [(2,3),(3,3)] = 7 

F 3 (2 ,2 ) = P 3 [(2,2),(3,3)] = 10 

F2{2,3) = min(P 2 [(2,3) , (2,3)] + F 3 (2 ,3 ) ;P 2 f (2 ,3 ) , (3 ,3 ) ] + F 3 (3 ,3) ) 

= 11 n 2 = ( 2 , 3 ) . 

continuing in this way, the other values are:-

F2 (3,2) = 9 wi th n 2 
-- (3,2) 

F2 (2,2) = 10 wi th n2 = (2,2) 

F2 (1,2) = 15 with n2 = (3,3) 

F2 (2,1) = 15 wi th n2 = (3,3) 

F2 (1,3) = 12 wi th n2 (3,3) 

F2 (3,1) = 13 wi th n2 
(3,3) 

F2 (1,1) = 15 wi th n2 (3,3) 

Fx (o,i) = 15 with n2 (3,3) 

Fx (i,o) = 15 with n2 (3,3) 

Fx (0,0) = 25 wi th n-2 (1,1) 

The solution is to order both items for the first period only, and to order again at 

the beginning of the second period for the second and third periods. The total cost is 

25. 

One weakness of this algorithm is that it does not fully utilize property 2 which 

all opt imum solutions have. The state space of the dynamic program is the vector 

of periods when the entry inventory levels w i l l be fully consumed. Stages are the 

periods. Property 2 says that no replenishment is needed in time t, if all components 

of rii are strictly greater than t; that is if entry inventories for all items are all strictly 

positive. Thus, at stage t, it is only necessary to consider states where the vector of 
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entry inventory contains at least one zero, or equivalently, at least one component of 

rii is t — 1, except when t = H. If this fact is incorporated in the algorithm,the states 

needed wi l l be considerably less. For example, for the problem above it is not necessary 

to calculate F 2 ( 3 , 3 ) , F 2 ( 2 , 3 ) , F 2 (3 ,2 ) , F2{2.2) and Kao [41] noticed this fact 

and incorporated it into his network algorithm. Apar t from the fact that Kao's method 

uses a network approach, it is the same as Zangwill 's algorithm plus property 2 on 

page 9. A brief description of Kao's method now follows. 

1.2.2. Kao's A l g o r i t h m 

As was indicated in the last subsection, Kao's algorithm is an efficient implementation 

of Zangwill 's algori thm. It uses property 2 of opt imal solution to reduce the state space 

at every stage, and formulated the problem as a network problem. Let M denote the 

node set of the network and Mt denote the node set that can be generated at stage 

t. The nodes and arc sets are defined as follows. Any element n x of Mt satisfies the 

following; 

ni = {^11,^21, ••• ,nN1} 

nil ~ {n\t ~~ 1 5: n < H} 

and 

riji = t — 1, for some j. 

and there is a directed arc from rii £ M , to n2 G Mt> if and only if n2 > nj and 

t' > t. The length of an arc from n x to n 2 at stage i , is given by P t ( n i 5
n 2 ) a s defined 

in 1.1. W i t h these nodes and arc set, the joint replenishment problem is to find the 

shortest part through the network, starting from the node which represents the init ial 

inventory to the terminal node which is a vector of N components, with each element 
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equal to H. The problem, can thus be stated as follows. 

min _ { P t ( n ! n 2 ) + Ft{n2)} 

Standard solution techniques for this problem can be found in basic texts on networks 

such as [34]. Al though, this method involves a smaller state space than Zangwills 

method, it is st i l l exponential in the number of products. One solution to the example 

in section 6 using this method wi l l involve all the steps in Zangwill 's algorithm except 

that F 2 ( 3 , 3 ) , F 2 ( 3 , 2 ) , ^ ( 2 , 3 ) , F 2 (2 ,2) and F i ( l , l ) , w i l l not be evaluated. Kao also 

proposed a heuristic which performs very well on some test examples. 

Kao's heuristic 

The heuristic is best described using a two product example, say product 1 and product 

2. 

I n i t i a l i z e : Set R to an A 7-dimenesional vector of zeroes. I <— 1 

S t e p 1: Choose item 1 and define the set-up cost as: 

otherwise 

S t e p 2: Use Wagner-Whi t in ' s algorithm for item 1 using a\t as set-up cost. 

Let R[ = {t j Xit > 0} If R[ = R[~2, S T O P ; otherwise 

/<—/ + ! and go to step 3. 

S t e p 3: Select product 2 and augment the set-up cost as follows: 
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Use Wagner-Whi t in ' s algorithm for product 2 wi th a'2t as set-up cost. 

Let 

R[ = {t\X2t > 0}. 

If R2 = R2~2 S T O P . 

Otherwise /•*—/ + 1. 

R Rl

2, and go to step 1. 

For more than two products the order of product pairs has to be determined before 

step 1. For an N-product problem, a typical choice can be (1.2), ( 2 , 3 ) , . . . , (N — l,N), 

(7V,1). 

This algori thm can be improved wi th better starting values for R . One such starting 

value is described in Variant 1 below [41]. 

Variant 1 

Let 
JV JV 

a = A0 + = At; -Kt = *ithit 
i=l i=l 

Use Wagner-Whi t in ' s algorithm with a as set-up cost, 7rt as the demand in period t, 

and unit holding cost per item per period. Let 

R = {t\Xt > 0}. 

This is then used as ini t ial value for R in step 0 of the heuristic. 

Variant 2 

Use every item as starting point in the heuristic in conjunction with variant 1. Select 

the min imum cost solution. 

Al though, this heuristic is reported to perform well , it is not satisfactory for a 

problem with a large number of items, considering the number of Wagner -Whi t in type 

15 



problems to be solved. Wagner-Whi t in ' s algorithm is typically not used in practice 

even in the single item case. Some good heuristics, independent of Wagner-Whit in 's 

algorithm wi l l be discussed in Chapter 4. Another algorithm which is similar to that 

of Zangwil l is that of Loupoulos and Pro th , which wi l l be discussed next. 

1.2.3 Leopoulos—Proth's Algorithm 

The algorithm by Leopoulos and Proth [44] is similar to Zangwill 's algorithm in being 

exponential in the number of products. 

Let Ft[h-i] be the min imum cost from period t to the end of the horizon given 

that the starting inventory in period i is It-i, Ft(-) satisfies the following recursive 

equation. 

Ftih-x) = min {A06{&t) + Yl{AAXt)+hi{Xit + lu^-ixlt) + Ft+l{Xt + It-i-*t)} 

This dynamic program can be shown to be identical to that of Zangwil l , and therefore 

requires a larger state space than that of Kao . Leopoulos and Proth also gave a 

heuristic algorithm which depends on the following argument: 

For simplicity assume there are only two products. Suppose X = (X^X^) is an 

optimum schedule with a given initial starting inventory I0. The value of Xx which 

minimizes Ft{Ia\X2) is X\. 

Leopoulos-Proth's Heuristic 

I n i t i a l i z e : set k *— 0; / 0 X° = some feasible policy for product 1. 

Step 1: Define the set-up cost as follows: 

x£D,(I,-i) 

FH^(-) = 0. 

otherwise 
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Use Wagner-Whi t in ' s algorithm for item 2 using a'2t as set-up cost, to obtain X2 

If Xl

2 = Xlf1 S T O P , otherwise go to step 2. 

Step 2: k *- A; -f 1 and let 

Use Wagner-Whi t in ' s algorithm for product 1 with a'lt as set-up cost, to obtain 

If = X f - 1 S T O P , otherwise 

l-*— I + 1 and go to 1. 

This algorithm is applied using different starting values of X ° , randomly generated. 

The heuristic policy is the policy which gives the minimum cost. 

This heuristic is similar to Kao 's heuristic. The only noticeable difference is that 

K a o uses a systematic method to generate a starting feasible solution while Leopoulos-

Pro th randomly generates the starting solution. Since at least one of the randomly 

generated starting solutions wi l l correspond to an optimum set-up times as the number 

of trials go to infinity, Leopoulos-Proth 's method wil l eventually find an optimum 

solution. However there is no reason to believe that Kao's method of generating ini t ial 

set-up times wil l give an opt imum solution even for large number of trials. 

The algorithms described thus far are based on Zangwill 's method and therefore 

exponential in the number of products. In practice, the number of products involved 

in a joint replenishment problem is large while the number of periods may be small . 

This is partly due to the fact that demand forecasts far into the future are not very 

reliable. Veinott gave this as a justification for proposing a different solution to the 

joint replenishment problem which is exponential in the number of time periods and 

linear in the number of products. 

otherwise 
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1.2.4 V e i n o t t ' s A l g o r i t h m 

The algori thm is based on the fact that in any period, there is either a major set-up 

or there is none. A l l possible major set-up patterns can therefore be enumerated. The 

opt imum replenishment schedule must correspond to at least on of these patterns. 

The algorithm is simply to generate a major set-up pattern, and determine using 

Wagner-Whi t in ' s algorithm for each item an opt imum replenishment schedule wi th in 

the major set-up pattern. The cost for a pattern is the sum of the costs for all the 

items. The replenishment schedule for each item, corresponding to the pattern that 

gives the min imum total cost is the opt imum replenishment policy. This algorithm 

is simple, but enumerating all the possible set-up patterns, which are at most 2 H _ 1 

patterns is obviously not an attractive thing to do in practice, unless the number of 

periods, H is less than about 15. Veinott also showed that when the minor set-up cost 

for each item is zero for all items, the replenishment schedule satisfies: 

N 
hi-i(*}2,Xit) = 0 for every i and t 

i 

This means that no item is ordered unless the total inventory level is zero; all items 

are out of stock simultaneously. 

1.3 Deterministic Stationary Demand Case 

We now turn to continuous time models. The problem parameters are constant and 

stationary in time. Specifically, the demand rate for item i is TT, per period, which for 

convenience wi l l be taken as one year. The holding cost rate per unit of item per unit 

of time is No backlogging of demand is allowed for any item. The major and minor 

set-up costs are as specified in the previous section. The problem is to determine an 

ordering policy which minimizes the average set-up plus inventory holding cost per unit 

t ime over the infinite horizon. This problem arises when a number of items, each of 
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which has a constant demand per period, can benefit from a centralized replenishment 

policy. Such is the case if the items share a common production unit or if they have a 

common supplier or a common mode of transportation. The amount of each item to 

replenish each time a major replenishment process is initiated becomes important, as 

well as the average number of replenishments to be made per unit time. 

A number of authors [20,26,28,27,36,46,53,64,66] have addressed this problem. The 

common denominator of their solution methods is that they use equally spaced replen

ishment epochs. These policies are not necessarily optimal as is argued in [5]. The 

opt imum referred to in all these papers where 'opt imum' is specifically mentioned 

should be qualified by the word 'periodic' . It is s t i l l an open problem what problem 

parameters ensure the existence of periodic opt imum policies, except two cases. The 

first case is obvious and this is the case when all items have equal parameter values. 

This fact is easily seen from the lower bound for this class of problems, to be discussed 

in the next chapter. The second case which is slightly different from the model in 

this chapter has item-dependent set-up costs but with a fixed saving when all items 

are replenished together. For this problem Andres and Emmons [4] showed that an 

opt imum policy has equally spaced replenishments epochs for each item. Even the 

problem of finding optimal periodic policies is not a t r ivial task, [27,66]. Because of 

this, researchers have focussed mainly on developing approximate methods for finding 

good periodic policies. Recently efforts at finding good solutions to this problem have 

shifted to specific periodic policies such as the power-of-two policies, introduced by 

Roundy [57] and also used in [36]. In this class of policies, it is assumed that a base 

period exists for operational reasons or otherwise, or that a convenient one can be 

found by optimization methods. A l l replenishments are then restricted to 2l of this 

base period, with / > 0, a positive integer. This approach is interesting because it gen

erally yields good solutions and in any case, has a worst case performance of less than 

6% above the unknown opt imum cost. In the next subsections, two methods, Silver 
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[66] and Goyal [27] which give good periodic policies and another one by Jackson et al 

[36] for finding optimum power-of-two policy wi l l be discussed. 

Assumptions and Notations: 

Let 

9i 

Ti 

To 

Ni 

No 

Ni 

kt 

Note that if the period is 1 year, 

T0 

71 i hi 

~ 2 ~ 

reorder interval in years for product i 

the major replenishment interval in years. 

the number of replenishments per year for item i 

the number of major replenishments per year. 

replenishment quantity per replenishment epoch for item 

iVo 

Ni 

1 A T 1 

— and i , = — 
NQ Ni 

Problem Formulation. 

This formulation assumes equally spaced replenishments. Let C(N0,N) denote the 

cost per year given A70 and A ; = (JVi, N2, •••, NN) 

N 

C(N0,N) = AoN0 + J2(A>N> + Jf) 
i = l 1 

No 

A N A-
= + S K ^ F T " + Togtki) 

J-0 1 = i J 0 « i 

Let t ing k = {ko, /cj, . . . , k^}. equation 1.3 can be written as 

i=0 * 0 J = 0 

(1.2) 

(1.3) 

(1.4) 

(1.5) 
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and equation 1.4 can be written as 

C(T 0 , fc) = £ ( 7 ^ + 9 ^ 0 ) (1.6) 

where /CQ = 1 and go = 0. 

The problem is to determine No and k, which minimize 1.5 or equivalently T 0 and 

ki which minimize 1.6 with A;,- restricted to the positive integers for every i. 

1.3.1 Goyal's Method 

Goyal 's approach is to choose N0 and A:, for every i, to minimize the cost function 

expressed 1.5. Define the natural cost of an item as the single item cost, if replenishment 

could be made at the minor set-up cost. For every i tem i, let 

n z = natural order frequency for item i 

C — the natural cost for item i 

Cl is given by: 

& = Atnl+*r 

and this is minimized when: 

- - ar 
Let Ci(N0,ki) denote the cost of replenishing i tem i independently of all other 

items, given the major replenishment frequency is NQ. 

n (\r L.\ A I N ° _ L D I K I M 7^ Ci[No,ki) = — — + — (1.7) 
ki IVQ 

For a given A 7

0 let ki(N0) minimize 1.7. 
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Since A;,-(JV0) must be an integer, it must satisfy: 

Ci(N0,k{N0)) < Ci{N0,k{N0) + l) 

and 

(1.8) 

Ci{N0,k{N0)) < Ci{N0,k{N0)-l) (1.9) 

Equations 1.8 and 1.9 are respectively equivalent to 

< M^oMM^o) +1] (1.10) 

and 

N*At 

9i 

which both imply: 

< M/VoMW.) - 1 ] (l .n). 

n'MNo^kiiNo) - 1] < N0 < n'M^MNo) + l] (1.12) 

A simple justification of 1.12 is given in [81]. For any value of 7V0, it is easy to determine 

ki(No) from 1.12. Thus a search over all reasonable values of TVo wi l l give the desired 

result from the point of view of minimizing the cost function given in 1.5. 

Goyal [27] used the following two conditions to restrict the range of N0 values to 

search. 

Let L = arg max,- n\ = {i\ max, n\ = n'L}. 

Condition one: 

No < NL 

This condition states that the major replenishment frequency cannot be greater than 

the natural replenishment frequency of the item with the largest replenishment fre

quency. 
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Andres and Emmons [5] pointed out that this condition is not true in general. It is 

only true when the policy space is restricted to the class of policies for which the major 

set-ups are equally spaced. Because of this and the fact that ki(N0) are restricted to 

integers, the 'opt imum' found by Goyal can at best be optimum in this class of policies. 

Condition Two: 

Set ki = 1 for every i. This implies that all items are ordered at every major set-up. 

Let N0 denote the ordering frequency under this rule. The best value of N'Q can be 

found from 1.6, since the cost function is a convex function of iVo- The value is: 

A necessary condition for A7o to be optimum is that: 

J V 0 > 7 V 0 

Goyal's Algorithm 

S t e p 1: F i n d n'L and N'0 from 1.12 and 1.13 respectively. Arrange all the items in 

descending order by the value of n\. 

S t e p 2: F ind 0, > 0 for every i such that 

kiiNo + Bi) = fc,-(X) + l . 

Let JV : ' = : A R ' + 0,-. Because of step 1, A R , ' < A r j for every j > i, with the restriction 

that A^Q + Oi < n'L for every i. 

Let m be the number of distinct N\. 

S t e p 3: For A^o in each range, N'0 - h\, N[ - N!2,. .., -n'L, determine an opt imum 

value of ki for every i. and the associated cost using 1.5. Let k* be the value of 

ki which gives the overall min imum cost after searching all the ranges. 
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S t e p 4: Determine an opt imum major replenishment frequency by 

A7, 
0 £ £ o ( A / * , - ) 

This algorithm obviously requires a lot of computations. Roundy [57], used an al

gori thm similar to this, but restricted attention only to power-of-two policies, and 

showed that the computational requirement not only reduces considerably, but the so

lution found wi th in the class of power-of-two policies is at most 2% above the unknown 

opt imum. Silver devised a rather simple but relatively good heuristic for this problem. 

1.3.2 Silver's M e t h o d 

Silver [66] gave a very simple closed form equation for selecting values of / c , for every 

i, and To which give close to the minimum value of the average replenishment plus 

inventory holding cost given in equation 1.6 

Consider 1.6 
1 A ' Ax

 N 

C{To, k) = — J2 IT + To Yl 9iki 
J 0 , - = 0 K{ t - = 0 

with k0 — 1 and go = 0. 

For a given k, the cost is convex in To- Min imiz ing with respect to T0 gives 

and 

C(T0,k) = 2 fax1) (1.15) 
\t=0 1 i=0 ) 

The problem is to select / c , for every i to minimize 1.15. The approach used in [66] 

is first to ignore the constraint that every / c , be restricted to the positive integers, and 

minimize 1.15 with respect to k. This is done by taking the partial derivatives wi th 
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respect to each /ct and setting the result equal to zero. This gives 

A N N A ~ -dY,9ik + 9iY,T = 0 ' 1 = 1 , 2 , . . . , ^ (1.16) 
Ki 7 = 1 i=0 K i 

As is shown in Schweitzer and Silver [63] this system has no solution when A0 > 0. To 

show this multiply 1.16 by kl and sum over all i to obtain 
JV 

t'=l 

which implies that A 0 = 0. 

Cal l the item whose A,-/ft is min imum over all i item 1. Despite the fact that 

system 1.16 does not have a solution, if the constraint k\ = 1 is added to the system, 

the solution obtained by this method gives the correct relative values of the k\s. Solving 

system 1.16 wi th this restriction gives; 

(AV2 

k3 = M c ; j = 2,---,N (1.17) v 9, 
ki = 1 

w here 

2 t = l ki9i 
Yli=0 A-ij k% 

* = \ ^ = 1 7 n . 1 (1-18) 

From 1.17 

JV / TV \ ] / 2 

k<9t = 9i + c I A9, (1-19) 
»'=] Vi = 2 / 

and 

1/2 N 4 {T.i-iA.gX 

E r = (1-20) t=l 

Substituting 1.19 and 1.20 into 1.18 gives 
1/2 

From which 
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11/2 

J = 2,...,N. (1.22) 

The kj obtained wil l not necessarily be integer. Simply rounding to the nearest 

integer is found to be satisfactory, although a search routine can be used. 

Goya) and Belton |29] suggested a modification to this method. They pointed out 

that the item to be denoted as item 1 should be that item wi th the min imum value of 

(An + Ai)/gi. Computat ional results with this modification show some improvement 

over Silver's basic method which is ideal for the case wi th A0 = 0. Silver's method is 

simple and performs relatively well when compared to Goyal 's method. Silver showed 

that for the case wi th two items, the algorithm gives a solution that is always better 

than 1% above the opt imum. 

Attent ion has recently shifted to a special class of periodic policies, called power-

of-two policies. The next subsection wil l describe the method of Jackson et al for 

computing an opt imum power-of-two policy for the joint replenishment problem. 

1.3.3 Jackson-Maxwell-Muckstadt's Method 

The method of Jackson-Maxwell-Muckstadt [36] is to determine an opt imum power-

of-two policy for a given base planning period. The basic cost equation used is similar 

to equation 1.6. 

The problem is to minimize the average cost given by: 

wi th the restriction that; 

k, e {?; i = 0,1,.:.},?; = 0,1,2,•••,*/. 

and 

k{ > k0 
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In this formulation To is assumed fixed for operational reasons or otherwise. If the 

second constraint is relaxed and k0 is fixed, the problem becomes separable, and an 

opt imum k'{s are given by: 

k- = 21' ; for every i 

where l\ is a non-negative integer that minimizes-

Ai 
7,-2'To 

2'-T 0 

If the min imum is unique, /t- is the smallest integer that satisfies: 

This is equivalent to: 

2'' >~ teV'! 
'0 

Take log to base 2 of both sides to obtain, 

Ai 1̂/2 
l'i = log-2 

L z f t J d j 2 

where [ x j 2 is the smallest integer power of two greater than or equal to x. 

If the min imum is not unique, the other minimizing value of /, is the above quantity 

plus 1. 

The Algorithm, 

Step 1: Sort items in ascending order of Aljgi. Let 

H = {0,1, •••,*"} 

where 

T.)=o Aj Ai .,. 
> — lor i < i 

and 
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for i > i" 

Step 2: 

( ) 
1/2 

k0 = 2 " = 
2T 0 £ V = 0 ^ 

2 

Step 3: Set kj — ko', for j € H and fcj = 
1/2 

for > 0 K. 
2 

This algorithm is accomplished in 0(N log A7) time and is proved to have a worst 

case performance of at most 6% above the unknown opt imum. 

The mathematical justification for this algorithm, and especially for step 2 is some

what complex as given by the authors. A very simple method for justifying step 2 wi l l 

be given in Chapter 2. 

1.4 Random Demand Case 

The joint replenishment problem under random demands has been studied by many 

authors, [6,11,38,39.65,69,23,76]. Not much is known about opt imum policies for the 

joint replenishment problem with both major and minor set-up costs. Tan [74] char

acterized the optimum policy for a two-product problem under random demands and 

periodic review. Jn some cases, for example when there is no major set-up cost, Veinott 

[76] showed that an optimum policy is of the (s, S) type. When there is a major set-up 

cost but no minor set-up cost, Johnson [38] and K a l i n [39] have shown that an optimum 

policy is of the (a, S) type, where a is a subset, referred to as the 'do-not-order' set, 

of the possible inventory position of the system, when an order is not desirable. The 

characterization of the set o is complex and poses computational problems, rendering 

the (a, S) policy impractical . In the face of these difficulties, researchers have tended to 

focus on heuristic policies like the ( s , c ,5 ) policy where an i tem i is ordered whenever 
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its inventory position reaches its 'must-order' point s,, and any other i tem j whose 

inventory position is at or below its 'can-order' point c ; , is also ordered. The amount 

ordered in either case is enough to raise the inventory level of the item i (resp., j) to 

its 'order-up-to' point 5,- (resp., Sj). This policy was proposed by Balintfy [6]. Silver 

and other authors have developed good procedures for computing the values of the 

control parameters s, c and S [23,65,68,69,75]. The (s,c,S) policy is not an optimal 

policy, as was shown by Ignall [35] but it is judged to be a reasonable policy and has 

been shown empirically to give cost savings of sometimes up to 20% below the cost 

of an uncoordinated policy. The uncoordinated policy uses the major set-up plus the 

item-dependent set-up cost as the set-up cost for each item. The demand patterns 

used in evaluating the s,c,S policy have so far been Poisson demands [65,68] and 

compound Poisson demands [75,69,23]. Assumptions common to all the papers are 

that the opportunities for an item to be ordered at its 'can-order' point are indepen

dently distributed according to the Poisson process wi th rate equal to the expected 

number of major replenishments per period that are not caused by the item and that 

the demands are uncorrelated. These assumptions simplify the required mathematics 

and the solution still shows considerable cost savings over the independent policy. The 

basic method used consists of a decomposition procedure and an iterative routine. 

Silver [65] developed a simple sequential method of determining the values of s, S that 

solve a single item problem under Poisson demand. The values of c for the items are 

then selected iteratively until convergence in the cost is achieved. Thompstone and 

Silver [75] also developed a method for compound Poisson demands. The paper by 

Federgruen et al [23] differs from previous work in one essential aspect: the method 

for solving the decomposed problem, that is, the single item problem, is a specialized 

policy iteration method. 

Other interesting work in this area include those of Mil tenburg and Silver [48,49]. 

They determined the probabili ty distribution of the residual stock of items jointly 
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replenished at the time of replenishment by modelling the inventory process as a dif

fusion process in both periodic and continuous review environments. Heuristics were 

then developed for ordering policies which take proper account of residual stock. They 

showed that these heuristics perform better than the I B M ' s I M P A C T inventory control 

package. Naddor [52] compared different policies e.g, periodic, s,S and other policies 

for single item problem and developed a simple method of determining good periodic 

policies for the joint replenishment problem. 

1.5 O t h e r R e l a t e d M o d e l s 

Clark [15] gave a general survey of multi-echelon inventory models. A n interesting 

survey of general physical distribution problems in inventory management is given by 

Schwarz [61]. A particular model of interest is the dynamic multi-location inventory 

model. In this model there are many locations supplied by a central warehouse that 

may or may not hold stock. When the warehouse does not hold stock, it acts merely as 

a distr ibution center. For this problem where the emphasis is on the distribution of a 

fixed amount of stock to minimize inventory cost, Simpson [70] showed that when the 

penalty costs are equal across locations, the opt imum rule is to distribute the stock so 

as to equalize the probability of shortage in all locations. When the penalty costs are 

different the distribution rule is to equalize the weighted probability of shortage across 

locations, the weights being the penalty costs. Other early studies of this problem can 

be found in [3]. Recently Eppen [21] showed the exact effect of centralization on the 

expected inventory cost for a one-period model. Eppen and Schrage [22] later consid

ered centralized ordering wi th lead time in a multi-period setting with norma] demand 

distr ibution. Following this lead, Federgruen and Zipkin [24,25] developed good ap

proximate allocation rules by aggregating demands across locations and over time. 

They used normal, exponential and gamma demand distributions all wi th constant 
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coefficients of variations. 

When the warehouse can hold stock, the problem becomes a one-warehouse mult i -

retailer problem. This problem and the generalization has been studied widely. Veinott 

[78] and K a l y m o n [40] gave exponential running time algorithms for this problem with 

discrete and deterministic demand under periodic review. Schwarz [60] gave some 

properties which any opt imum solution of the deterministic demand, continuous review 

version of this problem must possess. Roundy [57] exploited these properties along wi th 

restricting the policy to power-of-two policies and found an algorithm which runs in 

N\ogN t ime, if there are N end facilities called retailers, and showed that such a 

solution has effectiveness of 98% in the worst case. This result in part motivates the 

research reported in this thesis. 

A 98% effective power-of-two solution for the general multi-stage, multi-facility 

production/inventory problem under continuous review, wi th a fixed set-up cost de

pending on the group of items replenished at a facility has also been given by Roundy 

[59]. This result was generalized by Queyranne [55] to include submodular set-up 

cost functions. Other multi-echelon inventory models include the assembly systems 

in M R P setting. Ear ly work in this area include Crowston et al [17,18], Schwarz and 

Schrage [62] Graves i31] and Blackburn and Mi l l en [9j. Others can be found in [56]. 

Recently Afentakis et al [l] used a Langragean relaxation method to develop a lower 

bound on the cost for an assembly system under periodic review and used a branch 

and bound integer programming method for solution. Roundy [56] developed a 94% 

effective power-of-two solution to the assembly problem under continuous review in 

the infinite horizon. 

31 



C H A P T E R T W O 

A Lower Bound on a Class of Production 

/Inventory Problems 

Introduction 

A cost allocation method is presented for determining lower bounds for a class of 

production/inventory problems. We have N products which are replenished together 

or individually. A sequence of reorders for any particular item wil l incur holding, 

backorder and set-up costs specific to the item. In addition whenever any i tem is 

replenished a joint cost Ao is incurred. For instance, if several items are replenished 

simultaneously, the joint cost is incurred. But if only one item is replenished, the joint 

cost is also incurred. 

What is required of the total problem is to minimize a cost function of the replen

ishment sequence. This might be a long run average or a total cost function. It should 

be clear that any feasible replenishment sequence for the total problem would also give 

a feasible replenishment sequence to each item individually. If, at any instance of joint 

replenishment, the joint cost A Q is shared amongst all items so that each i tem i gets a 
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fraction c t , A 0 of the cost, and 

N 

Y, * = 1; a,- > 0 (2.1) 
i = ] 

then the sum of the costs implied by each feasible replenishment sequence on each item 

wi l l not be greater than the cost of the total problem. Thus the sum of the minimum 

costs incurred for each item after reallocating the joint cost wi l l be a lower bound on 

the min imum cost for the total problem. This is true for any allocation which satisfies 

2.1 above and is true in particular if we maximize the lower bound wi th respect to 

a = (<*!,.. .,aN). 

In the sequel we show how to use this cost allocation method to derive lower bounds 

on the costs of any feasible replenishment policy for each of the following problems: 

1. The (single facility) joint replenishment problem 

2. The one-warehouse multi-retailer problem 

3. The multi-facility joint replenishment problem. 

For the one-warehouse multi-retailer problem the item reorder which is relevant in 

applying the cost allocation method is the reorder at the warehouse. Also for the 

multi-facility joint replenishment problem, the relevant item reorders are the reorders 

at facilities which distribute more than one item. 

The one-warehouse multi-retailer problem is the production/inventory problem 

where a warehouse supplies an item to many retailers. The (single facility) joint replen

ishment problem is a special case of the one-warehouse multi-retailer problem. In the 

joint replenishment problem the warehouse does not hold any stock. The multi-facility 

joint replenishment problem is a problem wi th an arbitrary number of warehouses such 

that a warehouse has a unique immediate predecessor. A warehouse supplies an ar

bitrary number of products to warehouses or retailers in the set of its immediate 

successors and so on until the products get to the retailers. 
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One common feature of these problems is that a warehouse or retailer has a unique 

immediate predecessor but may have any number of successors. We shall sometimes 

refer to a warehouse or retailer simply as a facility. Another feature of these three 

groups of problems is that a group of items shares a common replenishment or pro

duction set-up cost, which must be paid whenever one or more items in the group is 

replenished or produced. This joint cost is referred to as a major set-up cost at the 

facility where the joint replenishment takes place. The group of items that shares this 

major set-up cost includes all the items supplied by the end facilities that are also 

successors of the 'major' facility. Each item has a 'minor ' or ' l ine' set-up cost which is 

paid when a particular item is withdrawn by an end facility, that is, a retailer. There 

is also an inventory cost at each facility which depends on the stock level and the 

stock withdrawal pattern at the facility. The specific nature of this cost depends on 

the problem structure and wi l l be described as each example is introduced. 

The problem is generally to schedule replenishments of the various items at each 

facility so as to minimize the total cost or average cost per unit time of ordering 

and holding inventory at each facility over a given horizon, subject to a given set of 

constraints. The effectiveness of a feasible solution is the ratio of the best available 

lower bound on the cost of any feasible solution to the cost of that feasible solution. 

One use of lower bounds is in evaluating the effectiveness of heuristic solutions to 

difficult problems. 94% and 98% effective solution methods exist respectively for the 

joint replenishment problem [36,57] and the one-warehouse multi-retailer problem [57]; 

both with stationary, deterministic and continuous-time demands. Another major use 

of lower bounds is apparent from the methods of obtaining the 94% and 98% effective 

solutions for the above problems: that of deriving feasible solutions from the bound. 

The bound introduced here is derived by using a general principle of allocating the 

set-up cost of a facility amongst all the items that are replenished at the facility. The 

total of all allocated fractions of cost is required to be unity for feasibility. W i t h this 
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allocation scheme, we can decompose the problem into N facilities-in-series problems, 

if there are N end facilities, as illustrated in figures 2.1 and 2.2 below. 

^ 8 

Figure 2.1: A Mul t i -Fac i l i ty Joint Replenishment Problem 

The decomposed problem corresponding to figure 2.1 is shown in figure 2.2 below. 

It is required that 

« 1 8 + « 2 8 + « 3 8 + "48 + « 5 8 = 1 

#16 + "26 + "36 = 1 

"47 + « 5 7 = 1 

The major result of this cost allocation method is that: 

the sum of the minimum costs of the feasible solutions to the subproblems, 

for every allocation scheme such that the total fractional cost allocation at 

each facility is unity, is a lower bound on the cost of any feasible solution 

to the original problem. 

Because it is usually easier to solve a facilities-in-series problem, the bound is easy 

to derive for every cost allocation scheme. The only problem is to determine a cost 

allocation scheme which gives a 'good' bound. 
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8)a 5 g^8 

Figure 2.2: Cost Al locat ion for F i g . 2.1 

The major part of this chapter wi l l be devoted to determining good bounds for 

the joint replenishment and the one-warehouse multi-retailer problems, using the cost 

allocation method. The application of this general bound to the multi-facility joint 

replenishment problem wi l l be deferred to the next chapter. These bounds w i l l , hence

forth, be referred to as the cost allocation bounds. The cost allocation bound, for each 

of the problems, coincides wi th the bounds in [36] for the joint relenishment problem, 

and in [57] for the one-warehouse TV-retailer problem. One further advantage of the 

bound, apart from the simplicity of deriving it, is its very intuitive base, which renders 

it very general. 

The cost allocation bound, is determined and proved for the joint replenishment 

problem in the next section, while the same is done for the one-warehouse multi-

retailer problem in section 3. 
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2.2 T h e J o i n t R e p l e n i s h m e n t P r o b l e m 

In genera] there is a major set-up cost Ao which is paid whenever a replenishment is 

made, and a minor set-up cost Ai also paid whenever item i is replenished. The joint 

replenishment problem can generally be categorized according to the demand patterns 

of the items involved, because the methods of solution are similar for similar demand 

patterns. Three cases wil l be considered. 

2.2.1 Deterministic, Continuous-Time Stationary Demand 

It is desired to schedule the replenishment or production of N items over the infinite 

horizon. Each i tem experiences a known constant and continuous demand per period. 

The inventory related cost consists of a linear echelon holding cost rate per unit of 

stock per unit time. 

The concept of echelon holding cost reflects the value added to an item as it moves 

from a facility to the successor facility. In the joint replenishment problem, a major 

assumption is that no value is added in moving items from the warehouse to the 

retailer, so the echelon holding cost at the retailer is zero. The warehouse and the 

retailers are in fact the same physical facility. 

The individual unit variable procurement cost is assumed constant throughout 

the horizon, and need not be considered since backlogging is not allowed. The to

tal accumulated cost of procurement wi l l clearly not depend on any specific feasible 

replenishment policy wi th no excess stock at the end of the horizon. 

We consider the class of feasible policies consisting of all policies which replenish 

an item only when the inventory of the item is zero, that is an i tem is replenished only 

at the last minute. It is easy to check that this class of policies dominate any other 

class of policies in the sense that it contains the opt imum replenishment schedule. Let 

a particular feasible policy in this class be specified by VP. ty w i l l be uniquely defined 
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by 

• the replenishment epochs of item i denoted by T ° . 

• the replenishment quantities of item i, Qi(T®) at the epochs T f . 

Let ty, be the replenishment schedule induced on item i by . We see that V&j is 

feasible for item i when viewed alone. We can then say that \1> consists of ̂ 2 for all i 

in the group, and hence write 

* = ( * 1 , * 2 , . . . , * j V ) 

and Z(ty) as the average cost of policy 

2.2.2 The Cost Allocation Method 

The cost allocation method requires that a set-up cost that is common to a group of 

items be shared amongst the items in the group. In the joint replenishment problem, 

the major set-up cost is shared amongst all the items that can be joint ly replenished. 

Let a,- be the fractional allocation of the major set-up cost to item i. It is required 

that the total of all fractional allocations derived from this major set-up cost be unity. 

By this allocation, the problem decomposes to N two stage facilities-in-series prob

lems. Let Z,-(Vl/t-, a;) be the cost for the ith facilities-in-series problem if the allocation 

to item i is a, and the policy is vf/,-. The pattern of inventory levels for i tem i resulting 

from using \I/ for the general problem is exactly the same as that resulting from using 

SI*, for the ith facilities-in-series system. Thus the inventory holding costs are equal in 

both cases. Let us now examine the set-up costs. Let r be a member of some T,°. This 

means that at time r , there is a minor set-up and therefore also a major set-up. Let 

ET be the set of items that are replenished at time r. The total minor set-up cost at 

time T is the same using policy or the individual facilities-in-series, that is using 

individually. The major set up cost using ^ for the general problem is AQ. Using the 
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individual policies the total major set-up costs incurred at time r is the quantity 

given below: 

Sum of the major set-up costs at time r — Ao{^2 a 0 — Ao-

We have thus shown that the sum of the set-up costs for all the facilities-in-series 

problems is always bounded above by the total set-up cost for the original problem, 

and the patterns of inventories in the system are identical in both cases. Therefore 

>J2Zi(*i,«i)- (2-2) 

Thus the cost allocation method gives a lower bound on the cost of all feasible policies 

to the joint replenishment problem. The result applies to any demand pattern at the 

retailers and with backorders, including random demands, since it applies verbatim to 

each sample path if the items are distinct so that there is no risk pooling. 

2.2.3 The Lower Bound Problem 

Let 

PZi(a.i) : Zi(a.i) = min Zt(*,-, a,-). 

The echelon holding cost at the retailer is zero in the joint replenishment problem. 

Because of this, in any feasible solution to the ilh facilities-in-series problem we must 

have that the replenishment epochs of the warehouse in the facilities-in-series coincide 

with that at the retailer. The ith facilities-in-series problem is thus equivalent to a 

simple Economic Order Quantity ( E O Q ) problem with a set-up cost a ,Ao + A and 

a holding cost rate of h,. Without loss of generality, we assume for the rest of the 

analysis that delivery lead time is zero, and that demands occur at a constant rate of 2 

per unit time. This latter assumption was first used by Roundy [57]. We also assume 

that there is no backlogging of demands. W i t h these assumptions we can write Zi(at) 

explici t ly as 
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. TV 

Zi(cti) = 2 y ( a ^ o + -A,-)/i,- and Z(a) = ^ Zi{a.i). 

Let 
N 

Z ( Q V ) = m&x{Z(a)\Ya. — 1; a J 0} 
We have pointed out that the lower bound in equation 2.2 is true for any given feasible 

vector a. In particular 

> Z{a) 
The desired lower bound is given by Z(a) wri t ten below. 

N N 
Z[OL) = 2 { m a x ^ yJ(ctiA0 + = 1; a, > 0} (2.3) 

i=l i=l 

Because Z , , is strictly concave and continuously differentiable in c^, the Kuhn-Tucker 

necessary conditions are also sufficient for optimality. Thus, after introducing the 

Lagrange multiplier A, and letting prime denote the first derivative, the relevant K — T 

conditions can be writ ten as: 

= M A J 1 / 2 

(XiA0 + A{ 

< A (2.4) 

a,- > 0 Z?(a,-) = A (2.5) 
N 

£ « . • = 1 (2.6) 
i=i 

The first two conditions imply that N is partitioned into two sets of items K] and N 2 , 

such that: . 
i e Ni = £ • ct, > 0 

Note that K 2 can be empty. From condition 2.5, it can be deduced that: 

• R W , <*JAQ + A, A 0 2 2 (E =^> = constant = (-7-) 
rti A 
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Combin in ing this wi th condition 2.6 and solving for a,, i <E Nj, gives; 

a, = - ^ 6 K ' ' (2.7) 
AQ 

The problem is to parti t ion the items into the sets and N 2 , such that a, defined 

above is non-negative. The parti t ioning problem is solved in [36]. We give a similar 

algori thm which is consistent wi th the spirit of our lower bound. 

The algorithm 

s tep 0 Initialize 

Let c «— a big number, = A,/hi for all i. Rank all ti in ascending order and 

assume for simplici ty that ti < t2 • • • < tn; set k <— 1, N 2 <— { 1 , 2 , . . . , N}, Ni <— 0 

a <— A Q , ft 0. 

s tep 1 Al loca t ion 

If c > tk, do the following: a <— a + A ^ , ft 

A: +— A; + 1, and go to step 1; 

otherwise the problem is solved the current partition is opt imum, go to step 2. 

s tep 2 Calculate a- using equation 2.7 for all i G K x and let a\ < — 0 for all i 6 N 2 

The cost given by the algorithm is then 

2 , / U o + E E M +2 E 

which coincides wi th the lower bound in [36]. A close look at the set Hj reveals that 

the 'run-out ' times (the cycle times in this case) for each i G K i is A / A 0 , and these 

are the items wi th a, > 0, while the 'run-out' times for each i £ K 2 is greater than 
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X/AQ, and these are the items with = 0. Thus we can say that the allocation is 

done to equalize the 'run-out' times as much as possible, or equivalently to maximize 

the minimum 'run-out' time. 

2.2.4 The Multiproduct Dynamic Lotsize Problem 

K a o [41] and Silver [68] amongst others have studied a finite horizon deterministic 

production planning problem without backlogging or other constraints with a major 

(joint) set-up cost A0 and minor (product) set-up cost Ai. In this case the problem 

PZi(cxi) becomes a version of the dynamic lot size model for which much computational 

experience has been accumulated and for which efficient routines exist (e.g., Wagner 

and Whi t i n [80]). However here the choice of optimal a* is by no means obvious. Of 

coursesany feasible choice wi l l still provide a bound. As is demonstrated in Chapter 

4, a heuristic choice of a, to make 'run-out' times as equal as possible without ai 

becbming negative gives a bound which is close enough to the optimal to be useful. 

Further research is needed on optimal choices of c^. 

2.2.5 'Can Order' Policies 

Take the joint replenishment problem but now with the demand process as stochastic. 

W i t h Ai = 0 we know, given other assumptions, that a (CT, S) type policy is optimal, 

Johnson [38] and K a l i n [39], where a is a 'do-not-order' subset of the possible inventory 

states. However few properties are known about a and wi th Ai > 0 interest has 

focused more on (s.c,S) heuristics, [68,23,65,69,75]. Here an item i is ordered up 

to Si if its inventory position drops to and at that time any other item j below 

its 'can order' point Cj is also ordered up to Sj. Ignall [35] has demonstrated that 

such policies are not opt imal , however the suspicion remains that they are fairly good 

and of course are relatively easy to implement once the parameters (s.c,S) have been 

calculated. A g a i n , many authors have studied this problem, in particular Silver [69], 
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and Federgruen et al [23]. Different authors have taken different distributions, although 

all are independent between products, and alternative service level constraints have 

been tried. Concentrating on shortage costs to control service level rather than explicit 

constraints, the problem PZi{cti) is now a single product with a fixed cost of aiA0 + At. 

The lower bound also holds in this case. Again much is known about the optimality 

of (s.S) type policies for such problems and considerable computational experience 

has been accumulated [76,77,79]. A n exploration of a choice of a; to equalize expected 

'run-out' times as much as possible using periodic policies rather than (s,c, S) policies 

has been made with very encouraging results, shown in Chapter 5 where it is also 

shown that even this heuristic choice of CK , wi th in a periodic policy, outperforms the 

(s,c, S) policies on a wide range of examples. 

2.3 The One-Warehouse Multi-Retailer Problem 

Consider the production/inventory problem where a warehouse acts as the sole distrib

utor to many retailers. The warehouse gets its supply from an external source. Because 

there is no constraint on capacity, the warehouse can order any positive amount of any 

item at any time. Each retailer gets its supply from the warehouse and demands are 

deterministic. 

There is a fixed charge A0 which must be paid whenever the warehouse replenishes 

any item, independent of the number or nature of the items replenished. A retailer 

also incurs a set-up cost Ai whenever retailer i replenishes. There is an echelon holding 

cost rate at the warehouse for each item and a strictly positive echelon holding cost 

rate at each retailer for the corresponding item. This distinguishes the one-warehouse 

multi-retailer problem from the joint replenishment problem where the echelon holding 

cost rate at the retailers are all zeros. 

Since the demand on each retailer is deterministic, the amount ordered by the 
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warehouse at any time is determined on the basis of the needs of the different retailers 

over a specific time interval. The part of the order meant for a particular retailer is 

predetermined at the time of order. This initial allocation does not change, because 

of the deterministic nature of the demand patterns. The warehouse can be imagined 

as consisting of N slots, if there are Ar retailers, one slot per retailer. When the 

warehouse's replenishment is received, the amount is shared amongst the slots, with 

each slot receiving the preassigned amount for the corresponding retailer. W i t h this 

interpretation, each retailer can be thought of as representing a distinct i tem, and the 

replenishment problem at the warehouse is a joint replenishment problem. This joint 

replenishment problem is characterized by a fixed cost to be paid whenever one or more 

items are ordered. A n item-dependent minor set-up cost is paid only when the item 

is wi thdrawn from the warehouse. Thus the one-warehouse multi-retailer problem can 

be thought of as a special case of the multi-facility joint replenishment problem to be 

discussed in Chapter 3. 

The problem is to schedule replenishments of all items at the warehouse and each 

item at the corresponding retailer so as to minimize the average set-up plus inventory 

holding cost in the infinite horizon. As in the joint replenishment problem, we restrict 

attention to the class of feasible policies characterized by 'last minute' orders for each 

item. Tha t is, an item is ordered (at the warehouse or retailer) only when the inventory 

level of the item at the facility is zero. Let a particular feasible policy in this class 

be ty. Such a policy is characterized by: 

• the replenishment epochs of item i at the warehouse denoted by T° and at the 

retailer i denoted by Tn'.-

• the corresponding order quantities Q°(T°) at the warehouse and Q;(T\,) at the 

retailer. 
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Let tyt denote the policy induced on item i by ty. We can then write 

* = {tyuty2,...,tyN) 

and Z(ty) the cost of policy ty. 

2.3.1 Cost Allocation and the Lower Bound 

The procedure for deriving the lower bound is exactly the same as for the joint replen

ishment problem. However, the lower bound result is no longer true when demands 

are random because of the possibility of risk pooling at the warehouse. Let Z(tyi,oti) 

be the cost of the ith facilities-in-series problem if the fractional allocation of the ware

house set-up cost to item i is a,. For the rest of the analysis, we assume that demands 

occur at a constant and continuous rate of 2 per unit time for each retailer, and the 

delivery lead time is zero. 

PZi{at): Zi{ai) =TCun{Zi{tyi,OLi) 

and 

i = l 

Schwarz [60] has shown that the opt imum policy to this serial problem is periodic with 

constant cycle times. Thus for any feasible fractional allocations, 

PZ^) : £•(«,•) = m i n { ^ + ^ • + + M j (2-8) 

t'!,ti ti 
subject to 

t°{ = ra,£,; m,- > 1, integer; for every i (2-9) 

Relax the integrality constraint 2.9 to 

*i > ti'i for every i 
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and call the objective function of this later problem S,(aj). Let 

JV 

Sia) = Y S'iai) 
i 

We note here that since St(a,-) is a lower bound on Zi(at), S(a) is also a lower bound 

on Z(a) for any feasible a. The value of 5,-(o;,-) depends on a, as follows: 
ti'A • 

When ft,- > 

A n d when a, < 

f 0 = f . / O i ^ O + A i 

V 
Siicti) = 2yJ{aiA0 + Ai){h° + hi) 

For any feasible choice of a, we can then partition the items into the two sets, Kj and 

K 2 3 below. 

h°A-

hiA0 

and write <S'(a) in terms of these two sets as follows: 

S{a) =2{Y1 vWo + Ai){h? + K) + Yl \fidAoh? + \ /AA)} (2.10) 

and the desired cost allocation bound is 

jv 
S(a') = m a x { 5 ( a ) | ^ a i = l , a , > 0,V?'} 
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which can be solved to determine a ' . The value of a: which solves this maximization 

problem can be determined as follows. Firs t note that 5 (a ) is concave in a. After 

introducing the Lagrange multiplier A, the K — T conditions are: 

S'Aai) < A (2.11) 

at > 0=>S'i{ai) = \ (2.12) 

£ > = 1 (2.13) 
«=i 

The first two conditions imply that there are two sets of items, ((Ki U N 2 3 ) \ N 3 ) and 

N 3 such that: 

i E ((Hj U N 2 3 ) \ N 3 ) =>• ^ > 0 and i ' e K 3 = > a, = 0. 

F r o m the definition of the set K l 5 the intersection of Kj and K 3 is empty, since a, > 0 

for i 6 K x if all holding cost and set-up costs are strictly positive. Let N 2 = N 2 3 \ N 3 . 

F rom 2.11 and 2.12, it can be deduced that; 

i e N l = > ( ^ ) = A 2 (2.14) 
ai 

: £ K . => ( A „ ) ! ( ^ ^ ) < A ! (2.16) 

Ai 

From 2.14 and 2.15, it is found that: 

alA0 + Ai (AgOi def . , 

Observe that c is the square of the replenishment cycle time at the warehouse for those 

items with at > 0. That is 

— yjc for i e N] U N 2 

which can be determined from 2.17 using the fact that the sum of the fractional 

allocations must be unity. The value of c is: 

_ AQ + Ai 
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Substi tut ing for c in 2.17 the values of a* are obtained and are given below: 

c(/i° +_hi) - At 

A-

A\ 
a} = 0 i e K 3 (2.21) 

«? = ^ T ; r ^ i (2.19) 
j 

< = ^ (2.20) 

It can be verified that the set H 3 satisfies: 

Three sets are now clearly identified in terms of c. 

K, = {,•!«>£} 

The problem of determining a is equivalent to the problem of partit ioning the items 

into these three sets. Once the parti t ioning problem is solved c is obtained from 2.18, 

while the values of o are obtained from 2.19 - 2.21. Substituting a for a in 2.10, the 

cost allocation bound is obtained as given below. 

S{a) = 2 {Ao + E Ai)(H2 + Hx) + E + M + E \lAihi {V « e N 2 t€« 3 ieN, J 
where 

#2 = E(/i« + /i°) a n d
 Hi = E ̂ -

The cost allocation bound above coincides wi th the lower bound in Roundy [57] where 

also an 0(N log N) algorithm for parti t ioning the items into the three sets is given. 
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2.4 Concluding Remarks 

In this chapter we have proposed an extremely simple lower bound for a fairly general 

class of cost minimization problems in production and inventory control. Two examples 

have been worked out in detail giving much easier derivations of bounds than in the 

original papers. We believe these papers [57,36] are pivotal in their respective fields 

in the sense that, they solve their respective problems for practical purposes. Our 

approach however has much wider generality. This fact is demonstrated in Chapter 3. 
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C H A P T E R T H R E E 

T h e M u l t i - F a c i l i t y 

J o i n t R e p l e n i s h m e n t P r o b l e m 

Introduction 

The multi-facility joint replenishment problem is a multi-facility production/inventory 

problem where the facilities (warehouses or production facilities) are arranged as a 

directed tree network. Each facility is a sole distributor to one or more facilities, 

called the successor facilities. A facility without successor facilities is a sole distributor 

of only one item to meet external demand for that item. A characteristic of this 

problem which needs emphasis is that a facility, except for the root facility, gets all 

its supplies from only one facility, referred to as the immediate predecessor; that is, 

a facility has a unique immediate predecessor in the facilities configuration. The root 

facility is the unique facility without a predecessor. A facility may have any number 

of successors. 

A particular system that fits this description is a distribution network which con

sists of a national warehouse, regional warehouses, branch warehouses and retail out

lets. A retail outlet gets all its supplies from a branch warehouse, while a branch 

warehouse gets all its supplies from a regional warehouse which in turn gets all its 
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supplies from the national warehouse. A retail outlet may stock any number of items, 

provided that these items are obtained from one source. We consider the problem 

with this configuration of facilities, where the facilities without successor facilities, 

referred to as end facilities, each faces a constant and continuous time demand over 

the infinite horizon. Each facility has a major set-up cost which must be paid at each 

replenishment regardless of the number of items replenished. W i t h this cost structure, 

the generalization to the mult i- i tem case does not complicate the problem because a 

retailer wi th j items is equivalent to a warehouse that is a sole distributor of an item 

each to j retailers. Each retailer in this case wil l have the demand and cost character

istics of the corresponding item. Also the conventional holding cost of an item at the 

retailer-turned warehouse wil l be equal to the conventional holding cost of the item at 

the corresponding retailer, that is, the echelon holding cost at the retailer is zero. This 

implies that it is irrelevant where the stock is kept, either at the warehouse or at the 

retailer. It can be assumed therefore that the warehouse, representing a retailer wi th 

many items, does not hold any item in stock. Because of this relationship, 'items' and 

'retailers' wi l l be used interchangeably. 

A facility without successors distributes exactly one item. The number of items 

distributed by a facility with more than one successor facility is the number of its 

successors which are end facilities, since each such end facility distributes exactly one 

item. The problem is a joint replenishment problem because a distributor facility 

incurs a fixed set-up cost whenever it orders or produces at least one of the items it 

distributes. This replenishment cost is sometimes referred to as the joint or major set

up cost. This cost, as in the conventional joint replenishment problem, is independent 

of the nature or the number of items replenished. This implies that a distributor facility 

has some incentive to coordinate the replenishment of all the items it distributes. A 

minor set-up cost at the distributor facility is the cost incurred by a successor facility 

when the successor facility withdraws items from the distributor. This minor set-up 
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cost at a distributor facility is a joint or a major set-up cost at the successor facility, 

when the successor facility has successors of its own. The simplest case of this problem 

is the one warehouse multi-retailer problem where, as pointed out in Chapter 2, there 

is only one joint replenishment facility, the warehouse. 

A more general case of this problem where a facility may have any number of 

successors and predecessors has been considered in the literature, [57,86] The solution 

algorithms are generally complex. Recently Roundy [57] developed an algorithm which 

solves this general multi-facility product ion/ inventory problem by solving a series of 

min-cut max-flow problems. Al though the solution therein is guaranteed to be 98% 

effective in the class of all feasible policies, the complexity of the algorithm is 0($4), 

where $ is the number of paths that can be drawn from an end facility through all 

its predecessors. In the special case of a directed network of facilities, each with a 

unique predecessor facility, $ is of the order of the total number of end facilities. The 

algorithm for the general multi-facility problem, when the policy space is restricted to 

nested policies, has a complexity of / log / when there are / facilities in the network 

[57]. Included in this class is the one warehouse multi-retailer and multi- i tem problem 

[51]. 

A solution method is proposed here for the multi-facilities joint replenishment prob

lem which is guaranteed to be 98% effective in the class of all feasible policies, in the 

worst case. The complexity of the solution method is 0(dr log r) where r is the number 

of end facilities and d is the maximum number of predecessors of any one facility. This 

coincides with the r log r algorithm for the one-warehouse multi-retailer problem. The 

facility wi th the maximum number of predecessors is obviously an end facility. The 

method derives naturally from a lower bound on the cost of all feasible solutions to 

the problem. The lower bound is new and belongs to the general class of the cost 

allocation bounds introduced in chapter 2. 

The remainder of this chapter is organized as follows: the next section introduces 
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the notation. Section 3 gives the cost allocation method and the lower bound, while 

section 4 discusses the solution to, and gives an algorithm for solving, the lower bound 

problem to the multi-facility joint replenishment problem. 

3.2 Problem Definition and Notation 

Let the set F of facilities be numbered from 1 to / , where / = \F\, (\F\ denotes 

the cardinality of F), such that the number assigned to a facility is greater than the 

number assigned to any of its successors. In addition the facilities without successors 

wi l l be numbered consecutively from 1 to r = \R\, where R is the set of the facilities 

without successors. Each facility i £ i? faces a constant deterministic demand for 

an item replenishes only this item, also numbered item i. A facility may have any 

number of successors but only one predecessor. Facili ty / is the only facility without a 

predecessor, and is called the root facility. Because a facility has a unique predecessor, 

the path from any facility to any of its predecessors is unique. Let p3 and Sj denote 

the immediate predecessor (a single facility) and the set of immediate successors of 

facility j respectively, while Pj and Sj are the set of all predecessors plus facility j, 

and the set of all successors plus facility j , respectively. It is important to note that 

each of Pj and Sj includes facility j. We shall use Rj to denote the intersection of R 

and Sj, that is, the set of retailers or items that are replenished from facility 'j. Let A , 

be the set-up cost associated with facility j, and htj the echelon holding cost of item i 

at facility j , for each item i £ Rj. The concept of echelon holding cost was discussed 

in Chapter 2. 

A facility with no predecessor either is a production facility, or replenishes from 

an outside supplier. In the multi-facility joint replenishment problem considered here, 

there is only one facility, / , without a predecessor. The set-up cost associated with 

a facility must be paid whenever a replenishment or production takes place at the 
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facility. The echelon holding cost, hij, is the cost rate per unit time per unit of echelon 

stock of i tem i at the facility j. The individual unit variable cost is assumed to be 

constant throughout the horizon, and need not be considered since backlogging is not 

allowed. The average procurement cost should therefore not depend on any particular 

policy. 

The problem is to schedule replenishments of all items at all the facilities so as to 

minimize the average set-up plus inventory holding cost over the infinite horizon. 

Let ty be a feasible policy defined by 

• the replenishment times of i tem i at facility j denoted by the sequence TV,-, for 

every i £ Rj and every j . 

• the corresponding order quantities Q , J ( T , J ) of i tem i at facility j, at times in IV,, 

% e Rj. 

Let tyt denote the replenishment schedule induced by ty on item i. We can then write 

Let Z{ty) be the average cost of policy ty. 

3.3 C o s t A l l o c a t i o n a n d t h e L o w e r B o u n d 

The set-up cost of facility j is allocated amongst all the items it produces or replenishes, 

that is, all i £ Rj. Let a t J be the fractional allocation from facility j to item i, i £ Rj. 

It is required that the sum of all fractional allocations, derived from a single facility 

be unity. 

The tree network of facilities is now decomposed into r facilities-in-series such that 

the facilities-in-series corresponding to each i £ R, consists only of P, . The holding 

cost rates for an i tem at the facilities-in-series are the same as the holding cost rates 
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for the i tem at the corresponding facilities before the allocation scheme. The set

up cost at facility j in the facilities-in-series corresponding to item i is a^Aj. Each 

facilities-in-series represents an inventory problem of its own; that is, to determine a 

feasible replenishment policy at each facility in the facilities-in-series which minimizes 

the average set-up plus inventory holding cost over the infinite horizon. 

Let 

a = (<*!,-••,«,.) 

where 

a t = [aij\j e Pi)-

The allocation vector a is admissible if 

ctij = 1; ctij > 0 V j £ F and i e R, (3.1) 
ieii-, 

Using the policy Vl> for the r fa.cilities-in-series, we observe that the replenishment times 

associated with the ith facilities-in-series problem, \J/;, are feasible for this problem. 

Let the cost of this facilities-in-series problem be denoted by Z , ( ^ j , a , ) , if a, is the 

fractional allocation vector to i tem i. Firs t note that the sequence of orders implied 

by ^ is the same as the sequences implied by applied to the ith facilities-in-series 

problem. So the inventory patterns are the same, and hence the inventory holding 

costs are also equal in both cases. Suppose T is a. replenishment time of a particular 

facility, say j. The set-up cost of facility j, Aj is paid at time T when \F/ is applied to 

the general problem. Let E(T) be the set of items in Rs that are replenished at time 

r by facility j. When ty,- is applied individually to each facilities-in-series problem i, 

i £ Rj, the total set-up cost incurred at facility j is given by: 

Ai av — Ai A'3 = Ai 
i£E(r) iC II, 
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It follows that, for all admissible cost allocation vectors a,, 

Z(V) > £ £ , ( * , - , « , ) (3.2) 

Thus the cost allocation method gives a lower bound on the average cost of all feasible 

policies to the multi-facility joint replenishment problem. Let 

Z-'(ai) = mjii Zi{tyi,cti) (3.3) 

This is the minimum average cost over all feasible policies to the ith facilities-in-series 

problem. 

We remark that a lower bound on the general problem would be obtained if only 

the set-up cost of any one facility is allocated. However, allocating the set-up costs of 

all facilities as is done here decomposes the problem to units that can be solved. 

We can rewrite this section by replacing the word 'average' wherever it occurs by 

the word ' total ' , and 'infinite' by 'finite', and the result is stil l true. That is, the lower 

bound holds true for both finite and infinite horizon problems wi th any deterministic 

demand pattern. It also applies to non-deterministic demands if items are all distinct. 

3.3.1 The Lower Bound Problem 

A policy is product-nested if each item must be replenished at a facility whenever 

the immediate predecessor of the facility replenishes the same item. Product-nested 

policies should be distinguished carefully from the nested policies in the literature, 

which we might call facility-nested and require that a facility replenishes whenever its 

predecessor replenishes. Facility-nestedness implies product-nestedness but not vice 

versa. Consider periodic policies where the intervals between replenishments at a 

facility, and for each item are constant. The replenishment times for item i at facility 

j w i l l be, for example, of the form 

T J J {0, Cjy, 2c,j, • • •} 
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The replenishment cycle time of item i at facility j in this case is c%r 

We consider periodic and product-nested policies. Power-of-two policies [57,36] 

which require that the ratio of the replenishment cycle time of an item at a facility 

to the replenishment cycle time of the same item at a successor facility be an integer 

power of two, are special cases of the periodic and product-nested policies. The lower 

bound.problem is developed by first restricting attention to only periodic and product-

nestedipolicies. In this class of policies, each facility j has a fixed cycle time of Tj, and 

a fixed replenishment cycle time T±j for each item i £ Rj. The minimum cost equation 

is developed for this class of policies. It is then shown that when the integrality 

requirement of product-nestedness is relaxed, a lower bound on the cost of all feasible 

policies is obtained. 

Let s(i, j) = Pi n Sj, that is, the immediate successor of facility j which is also a 

predecessor of i. Let P be the following problem: 

P : ZP = m\n{J2(^+ E f k j T a ) } (3.4) 

subject to 

Ttj = rn,ijTi<,(ij); rriij > 1, integer; V j £ F, and i £ Rj (3-5) 

Tij > T3 > 0 ; V j , and i € R3 (3.6) 

This problem P is the multi-facility joint replenishment problem restricted to product-

nested policies. Constraint 3.5 is the product-nested constraint. Replace 3.5 by the 

following relaxation: 

Tj > Tis(itj) > 0 V j , and i£ Rj (3.7) 

This relaxes the integrality requirement of product-nestedness. Denote this relaxed 

problem by RP and its objective function by Z^p. Because constraint 3.7 is a re

laxation of 3.5, we have Zp > Zpp. The right hand side of equation 3.4, that is the 
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objective function of this problem, can be re-written as 

jeF iERj i£Rj ieBjEP, L1 

Note that, this function is independent of a whenever a is admissible, that is a satisfies 

equation 3.1. Because T t J > Tj, and Tj is only in the denominator of the objective 

function of RP, we can get a lower bound on RP by replacing Tj in 3.8 by Tj and 

deleting the constraint 3.6. Let the resulting problem be denoted by RRP{a), which 

is stated below. 

^ Q . . . 

RRP(a) : Z R R P [ a ) = min ]T ^ [ - ^r 1 + hi3

Ti3'] 
ieftjeP, v 

subject to 3.7 

This problem is clearly dependent on a. We can now write down the following rela

tionships. 

Zp > ZpP > ZRRP(a) (3.9) 

Let RSi(ai) be defined as: 

RSi(cti) : ZRS,(a) = min ]T 1 + -Ti3•] (3.10) 

subject to 

Tij > Tit[iJ) > 0; je Pi. (3.11) 

W i t h this definition, 

ZRRP(a) = Z~L ZR Si\<*i)-

The notation RSi(cti) is meant to remind us that i25,(a,) is a relaxation of the following 

periodic facilities-in-series problem: 

5,-(at-) : ZSi(a) = min E [-^T- 1 + ^ T i j ] ( 3 - 1 2 ) 
j£P, J i ' i 

subject to 

T^ = mijTis(itj) > 0; m , ; > 1,integer, j G P j . (3.13) 
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The relaxation stems from the fact that 3.11 is a relaxation of 3.13. The desired result 

is stated after the following proposition. 

P r o p o s i t i o n 3.1 

ZRS,[O,) < Z-{a{) 

where Z{ (a,-) is defined in 3.3. 

P r o o f : 

In [56] Roundy showed that when the integrality requirements on the set of constraints 

3.13 are relaxed for the pure assembly system, the resulting problem provides a lower 

bound on the cost of all feasible solutions to the assembly problem. The facilities-in-

series problem is a special case of the pure assembly system. So, that result holds for 

facilities-in-series problem. That is 

Z-{cxi) > Z H S x ( a , ) . 

The following relationship is an obvious consequence of the definitions of P, RP, RRP(a) 

and proposition 3.1. 

Yl ZHai) > ZRRP(A) = Yl ZRSi(ai)- (3-14) 

The above relationship is true for any admissible vector a, that is ZRRP^ is a lower 

bound on the cost of any feasible solution to the original problem, and also on problem 

RP, for any admissible a. In particular the maximum of ZRRP^ over all admissible 

a satisfying 3.1 is our desired lower bound. 

RRP • ZRRP(A*) = m z x Z R R P ( A ) (3.15) 

subject to 

J~] ctij = 1; a,j > 0 V j and i £ Rj 
ieRj 
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In section 4 we provide an algorithm for this problem which gives T and a such that 

the following holds. 

a.ij = 1; ctij > 0. (3.16) 
{t'|iSifj,T,j=min/t 

Denote by a:', the particular a which satisfies equation 3.16. 

First we establish that ZRRP^ = ZRP = ZRRP(0*) and then discusss how a\ or 

equivalently a' can be determined. 

Theorem 3.2 Suppose a' satisfies equation 8.16, then any solution to problem RRP(a') 

ts feasible for problem RP and ZRRP^I) = ZRP = ZRRP(0-) where a is defined in S.15. 

Thus ZRP is a lower bound on the cost of any feasible solution to the original problem. 

Proof 
Let V be a solution of RRP(a'). Let T\ = \mnk{Vki\k £ Rj). The cycle times T" 

satisfy equations 3.6 and 3.7 and are therefore feasible for problem RP. So we have 

ZnRp(a>) = ZRR. But as shown in equation 3.9, ZRRP^) < ZRP for any admissible a. 

The maximum of ZRRP^ over all admissible a cannot be greater than ZRP. Thus 

ZR.Rp.(a') — ZRRP(a*y The last statement of the theorem follows since ZRRP^^ is a 

lower bound on the cost of any feasible solution to the original problem. 

• 
The implication is that if we solve the lower bound problem and hence can de

termine the optimal values of a, we wi l l have solved problem RP. We now consider 

the implication of this theorem in the context of the solution procedure we shall pro

pose for providing a' and by implication solving the lower bound problem and RP. 

Purely as a. motivational device and anticipating somewhat the results below, we shall 

consider RRP(a) further in the context of 3.16. We know from the above that the 

solution to RSi(oti) for any particular i £ R of the r facilities-in-series problems gives 

a lower bound on the cost of an opt imum policy for the facilities-in-series problem. 
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The policy however, may not be feasible. In [57] Roundy has shown that when the 

constant cycle times T I J 7 are rounded to a multiple of 2 of some common base period, 

then the cost penalty incurred is less than 6%, or less than 2% if the base period is 

optimized, of the cost of the optimum policy. In addition the resulting power-of-two 

policy is feasible. If we take the problem of figure 2.1 and create the facilities-in-series 

problems as in figure 2.2 for the values of a shown, we could get the solution shown 

in figure 3.1 below. 

The numbers to the right of each facility-in-series are the values of the fractional 

cost allocations from the corresponding facility, while the the numbers to the left are 

the unrounded cycle times or solution to each RSi(ai), i £ R. If these cycle times are 

rounded to a common base period, say 2, then we could have the picture shown in 

figure 3.2. 

. 8 ( 8 ) 0.3 5 . 1 ® 0.2 4 . 5 ® 0.1 6 . 5 ® 0.15 7 . 5 ® 0.25 

2 ( f ) 

2.4(6) 0.2 4.6(6) 0.5 4.1(6) 0.3 i !5.1(7) 0.6 4.6(7) 0.4 

2 . 4 ® 3.9(3J 3.5(4) 3.7(5 

Figure 3.1: A Typical Solution for a Given Cost Al locat ion 

Although this is a feasible solution, the accounting of set-up costs is not done 
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4.0(8) 0.3 4.0(8) 0.2 4.0® 0.1 8 . 0 ® 0.15 8 . 0 ® J0.25 

2.0(6) 0.2 4.0(6 0.5 4.0(6) : 0.3 

•o® 4.0(3 

4.0(7) 0.6 

4.0(4 

1.0® 

L O ® 

0.4: 

Figure 3.2: 'Rounded ' Power-of-two Solution for Figure 3.1 

correctly. For example, consider the second replenishment that takes place at time 

4.0, after the init ial replenishment at time 0 at facility 8, the total set-up cost incurred 

at the facility is 0.6Ag, which does not correctly account for the actual set-up cost of A$. 

What we need for proper accounting is that those facilities-in-series that drive the joint 

facility cycle times have their values of a that sum to 1, and hence account correctly 

for the facility set-up cost. Accounting correctly for the set-up cost is exactly the 

statement of equation 3.16. For example suppose Q 1 8 = 0.5, a2$ = 0.3 and a 3 8 = 0.2, 

the full set-up cost of facility 8 wil l always be paid whenever a set-up cost takes place 

at the facility. This correctly accounts for the set-up cost at facility 8. l n the sequel 

we shall provide an algorithm for choosing a which gives correct accounting, and 

simultaneously solves 725, (a t ) , for all i £ R. Such a solution ensures that al l facilities-

in-series that share a common facility j and have a non-zero allocation > 0, i £ Rj, 
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wil l have an identical cycle time. Wri t ten formally, we shall have that: 

T,j > Tkj imples a,^ = 0. (3-17) 

This is obviously equivalent to 3.16 and implies the following: 

Tij — Tkj whenever atj > 0 and akj > 0 . (3.18) 

A n y such choice of a wi l l be termed correctly accountable. The main objective of this 

chapter is to provide an algorithm which solves PS,-(a,), i <E R and simultaneously 

provides correctly accountable a. Before describing this algorithm, we shall give some 

useful properties of any opt imum solution to a facilities-in-series problem. 

3.3.2 T h e F a c i l i t i e s - i n - S e r i e s P r o b l e m 

One algorithm which gives the opt imum solution to a facilities-in-series problem is the 

min imum violators algorithm [56], described in Appendix A . Let j be the topmost 

facility, that is, the facility without a predecessor and let n £ Sj n P j . Facility n is 

the immediate successor of j in this series system. Suppose the set-up cost OL{nAn of 

facility n in the ith facilities-in-series is strictly positive, that is ain > 0 and An > 0. 

Let ctij = 0- In the opt imum solution provided by the minimum violators algorithm, 

facility n and j have the same cycle time. Suppose we wish to solve this ith facilities-

in-series problem such that the max imum index with a positive set-up cost is n. The 

set-up cost for a facility k k £ Sj fl P, is alkAk. Let this problem be called P S j ( n , j). 

The algorithm results in a partition of the set of facilities in the series system 

into series clusters. The topmost cluster for problem F S , ( n , n ) is CL(i,n,n) while it 

is CL(i,n,j) for PSi(n,j). The clusters for P 5 , ( n , j ) consists of CL(i,m,m) where 

m £ P,• n Sn and ra is the root of the cluster CL[i,m,m), and a topmost cluster 

CL[i,n,j). Note that CL(i,n,j) is different from CL(i,n,n); the former being the 

topmost cluster for problem PSi(n,j) and the latter being the topmost cluster for 
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problem PSi(n,n). The optimality conditions for these clusters are given in Roundy 

[56], and repeated here. For any subset B, define 

T\B\ = ^ J & B AIJ^J 

The necessary and sufficient conditions for optimality are: 

1. T\CL{i,m,m)\ > T\CL(i,k,k)}, implies m > k 

Also T\CL(i, n.j)] > T\CL(i, m, m)] for m 6 Sn \ CL(i, n,j). 

2. T\CL(i,m,m) n Sk] > T\CL(i,m,m)], for any k E CL(i,m,m). 

These two conditions wi l l be referred to as the optimum series conditions. The follow

ing is a direct consequence of the second opt imum series condition. 

3. If / e Sn n Pu T\CL{i,l,l)} < T\CL{i,n,j)\ implies that / £ CL{i,n,j). 

Another condition that can be deduced from the first two conditions above is: 

4. I N £ CL{i,n,j): then CL{i,l,l) C CL(i,n,j) 

We now show the implications of these conditions in the context of the solution pro

cedure for the lower bound problem. Suppose we wish to solve problem PSi(j,j) 

parametrically as follows. We first assume that a t ; is set equal to zero, that is the 

set-up cost at facility j is zero. Thus we have problem PSi(n,j). (Recall n 6 Sj D Pi). 

The algorithm, for problem PSi(n,j), gives us the topmost cluster CL(i,n,j), with 

T\CL(i,n,j)) = g ^ ( ' ^ ) \ W > «inAn + 0 d g ^ ( 3 j g ) 

Z-'keCL(i,n,j)\{nj} aik + "in + nij 

For I e SnD CL(i,n,j) let 
. JJ _ T,keCL{i,l,l) aikAk 

HkeCL((i,i,i) ha* 

Note that Ui = T[CL(i,l,l)]. Suppose we decide to raise the set-up cost of facility 

j from its zero level by increasing a,j to a positive value. This process is referred to 
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as allocation in the sequel, and it is the general step in both the algorithms for the 

facilities-in-series described in this section and for the general problem in the next 

section. Because facility j is now assigned a set-up cost OHJAJ, the resulting optimal 

topmost cluster is no longer CL(i.n.j) but CL(i.j.j). Let this new cluster be referred 

to as the current cluster. To determine membership of this current cluster, replace the 

zero in the numerator of 3.19 by a^A2 and examine the relationship of T\CL(i,j, j)] 

and Ui, I £ Sn P , CL(i,n,j). So long as the new value of T\CL(i,j,j)] is less than 

or equal to the minimum of Ut, I £ Sn D CL(i,n,j), all the facilities in CL(i,n,j) 

wil l remain in the new cluster CL(i,j,j) and the opt imum series conditions are sat

isfied. Suppose, on the other hand, the value of T\CL(i,j,j)\ is greater than some 

Ui. This violates the thi rd condition above and by implication the second opt imum 

series condi t ion. To rectify this situation, we detach CL(i,l,l) from CL(i,j,j). Be

cause of condition 4 above, if CL(i,l,l) is the first such cluster to be deleted, then 

CL(i,l,l) = Si n CL(i,n,j). By this detachment, the feasible clusters become the 

clusters obtained when solving P S , ( / , / ) , plus the new cluster CL(i,j,j). The detach

ment also preserves the opt imum series conditions because if T\CL(i, n, j)} was greater 

than T\CL(i,k,k)\ for some k £ Sn, the new cluster CL(i,j,j) has a cycle time at 

least as large as T\CL(i,n,j)\, and then also larger than T[CL(i,k,k)}. The detached 

cluster CL(i,l,l) and the newly created cluster CL(i,j,j) clearly satisfy condition 1 

of the opt imum series conditions. The second condition is also satisfied because as the 

set-up cost Aj is being allocated, any violation of the second condition is immediately 

rectified by detaching the portion of the cluster causing the violat ion. We can now call 

Ui, I £ Sn n CL(i,n,j), the upper point and CL(i,l,l) the upper cluster of facility I, 

which is also the topmost cluster for problem P, (1,1), when allocating the set-up cost 

of facility j . The upper point is the point at which facility / wi th the upper cluster 

CL(i,l,l) drops out of the current cluster and the opt imum clusters of P S , ( / , / ) become 

members of the opt imum clusters for PSi(j,j). We also refer to Ln as the lower point 
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and CL(i,n,j) as the lower cluster of facility n. The lower point is thus the point 

at which we can begin to consider facility n wi th the lower cluster of n as a member 

of the current cluster: in this case cluster CL(i, j, j), when the amount of set-up cost 

allocated from facility j is raised just above zero. The main point to note here is that 

when allocating the set-up cost Aj the immediate successor of j . that is, n in this case 

has two sets of clusters associated with it, the lower cluster CL(i,n,j) and the upper 

cluster CL(i,n,n) while each facility / £ S„ n CL(i,n,j) has one cluster associated 

wi th i t , that is, the upper cluster CL(i,l,l). The lower cluster must always contain 

j . This also implies that whenever the set-up cost of a facility is being allocated, the 

cluster that can be added to the current cluster must contain the immediate successor 

of the facility whose set-up cost is being allocated, and the cluster that can be deleted 

must have been a member of the current cluster, that is, the cluster which contains 

the current facility (the one whose cost is being allocated). A n algorithm based on 

this allocation method can be used to solve the general facilities-in-series problem if 

we choose the sequence of subproblems to solve in the correct order. In particular 

if we have a facilities-in-series problem from i to / , once the problem from i to / is 

solved wi th the set-up cost of / temporarily set to zero, the final solution is obtained 

by allocating the set-up cost ctifAj. 
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An Algorithm for the Facilities-in-Series Problem 

Statement of the Algorithm for P S , - ( / , / ) 

Initialize: j —̂ pt-: / -e— i 

Step 1: Solve P S , w i t h set-up cost of all P ; 

temporarily set to zero. 

Allocate anA\ to topmost cluster CL(i,l,j). 

to determine the new set of opt imum clusters for PSi(l,j). 

I *— pi. Repeat step 1 until / =- j. 

Step 2: j' <— pj\ I <— i. 

G o to step 1 if j < f. 

The algorithm for the general problem determines how much of each set-up cost to 

allocate to each facilities-in-series, so that series by series, the optimum series condi

tions are satisfied and also the allocated fractions are correctly accountable. That is, all 

those receiving an allocation must have the min imum cycle time before allocation and 

equal cycle time after allocation. This would suggest that if we only allocate enough 

to the cluster that has the min imum cycle time to bring its cycle time up to that of the 

next minimum, then allocate again to all those at this minimum until their cycle time 

becomes equal to the next, and repeat until no more allocation can be made, then we 

would have satisfied the criterion of correct accontability. Also using the allocation 

method described earlier in this section, the allocation satisfies the optimum series 

conditions for each series. By theorem 3.2, the problem is then solved. 

We now consider the problem of simultaneously allocating set-up cost to more 

than one serial cluster, so that the opt imum series conditions are not violated and the 

allocation is correctly accountable. As an example, suppose after allocating the set-up 
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cost An to four facilities-in-series, we have the lower clusters CL(l,n,j), CL(2,n,j), 

CL(3,k,j), CL(4,l,j), wi th k and / in Sn. Suppose we have 

T[CL{4,l,j)} > T\CL{l,n,j)\ = T[CL(2,n,j)} = T\CL(3,k.j)}. 

This situation implies that a i n > 0, a2n > 0, a 3 n = aAn = 0. For a cluster CL(3,k,j) 

to be a lower or topmost cluster, the set-up cost of the predecessors of k including n 

are zeroes. We say that CX(3, k, j) has no allocation from n. Notice that although 

CL(3,k,j) has no allocation from facility n , it has the same cycle time as the facilities 

that do receive an allocation. This is a special case when, after allocating the set-up 

cost of facility n , the resulting cycle time coincides with the cycle time of a series 

without any allocation. We now wish to allocate A2- to these four lower series clusters 

so that the opt imum series conditions are satisfied and the resulting allocation is 

correctly accountable. We start by allocating to a lower cluster wi th minimum cycle 

t ime. In this case there is a tie; CL(l,n,j), CL(2,n,j) and CL(3,k,j). Because of 

this, whenever an allocation is made to any one of these clusters, we can always share 

this allocation amongst the relevant clusters wi th the same cycle time so that their 

resulting cycle times after the allocation are all equal. This condition wi l l be referred 

to as keeping the clusters with the same cycle time in balance. Suppose we allocate 

enough of the set-up cost Aj to the three clusters to raise their cycle time to that of 

CL(4,l,j). A t this point all the four clusters are in balance and wil l remain so in 

any further allocation. Further the clusters are now CL(l,j,j), CL(2,j,j), CL(3,j,j) 

and CL(4,j,j). We wi l l at any point take note of any upper cluster to delete as 

our allocation gets past the cycle time of the cluster. Because all clusters with an 

allocation are kept in balance, the fractional allocations to the clusters are correctly 

accountable, since the clusters receiving allocation have all the min imum cycle time. 

This is equivalent to correct accountability as in 3.16. 

Suppose the maximum index of a facility whose set-up cost has been allocated is /. 

Let us say that those serial clusters that have received an allocation from Ai are similar 
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because they have equal cycle time by our allocation regime. Thus cluster CL(i,l,j) 

and cluster CL(m,l, j) are similar if T\CL(i,l,j)\ = T\CL(m,/,j)] = Tj. Similar 

clusters are those clusters whose cycle times are equal and must, by necessity, be kept 

in balance during any later allocation. If this is the case we loose no information if we 

combine all similar serial clusters before making any allocation. We can now formally 

define a combination of serial clusters: Let 

CL{l,j) = u{CL(i,l,j)\i £ RhT\CL(iJ,j)} = Ti}. 

Any reference to a cluster, without qualification, in the subsequent discussion is a 

reference to a combination of similar serial clusters. 

3.4 Solution to the General Problem 

We shall solve the general problem by solving subproblems defined on subtrees of the 

original problem. Let the path from facility i to facility j consist of facilities in (P.-DS,-). 

Let TInj be the subtree wi th root node n plus a path from n to j, j £ Pn. For the 

subtree Tlnj, the set-up cost of all facilities on the path from pn to j are temporarily 

set to zero, while the set-up costs at all facilities k,k £ Sn are unchanged. The echelon 

holding costs of items i,i £ Rn at facility n are also temporarily replaced by h'in, 

defined below. 

Kn= E bk- (3-20) 
keP„nS3-

The reason for replacing the echelon holding cost at facility n by h'in when solving the 

problem on Tlnj wi l l become clear in what follows. 

The cost allocation method applied to Ylnj defines \Rn \ facilities-in-series problems. 

The problem on the subtree Tlnj is said to be 'solved' when we have partitioned each 

of its facilities-in-series problems into serial clusters which, series by series, satisfy the 

optimum series conditions and we have allocated the set-up cost of all facilities k £ Sn 
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between series such that the a's are correctly accountable. Ult imately, we wish to 

'solve' the tree 11//. Thus we consider the equivalent \Rn\ series problem from i to n 

with the echelon holding cost at facility n in the iih facilities-in-series replaced by h'in. 

A formal definition of problem RPn„j on J\nj is as follows: 

RPnHj: m i n £ £ \^HL + htmTim] (3.21) 

subject to 

Tim > Ti.,(,- im); V m e l l n ; & i e Rm\ (3.22) 

T .m > T m > 0 ; V m e n n j & i G 7? m . (3.23). 

A n d a formal statement of the desired solution is as follows: find clusters which par

t i t ion the \Rn\ facilities-in-series and a feasible allocation 

<*ik > 0; Y aik = i ; 1 ^ Rn, k e Sn 

such that the optimal series conditions hold, and the allocation is is correctly account

able, condition 3.16 is satisfied. Theorem 3.2 tells us that an opt imum solution to this 

problem does in fact possess these properties. Recall that correct accountability is 

defined by: 

Tkm > Ttm implies a k m = 0 

We can deduce from these that whenever correct accountability is achieved, the fol

lowing must also be satisfied: 

Tkm =miny Tj,„ } aim. 

2: a t m > 0 and a k m > 0 imply Tim = Tkm. 

We know by Theorem 3.2 that the above conditions, that is, correct accountability and 

the opt imum series conditions, are sufficient for the optimali ty of any a. The algorithm 

below is designed such that at each allocation step, the opt imum series conditions are 
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satisfied and moreover the a's resulting from the allocation are correctly accountable. 

The algori thm ensures that the relevant information is available when allocating Af. 

3.4.1 The Algorithm 

This algorithm provides correctly accountable ct's which also satisfy the opt imum series 

conditions for each subtree Tlnj in 0(dn\Rn\ log \Rn\) time, where dn is the number of 

facilities on the longest path from an item to root facility, which in this case is facility 

n . The algorithm is constructive. It consists of solving a sequence of problems on 

subtrees Jlnj, j £ Pn- The set-up cost An is allocated sequentially to the lower 

clusters to raise the min imum cycle time as much as possible. If at any time during 

the allocation, the cycle time of the current cluster becomes greater than that of an 

upper cluster which is a subset of the current cluster, that upper cluster is deleted from 

the current cluster. This allocation rule is justified on the ground that series-by-series, 

it preserves the opt imum series conditions and the resulting fractional allocations are 

correctly accountable since all clusters wi th the same cycle time before allocation are 

kept in balance during allocation. B y Theorem 3.2 this allocation rule solves RP\-\nj. 

A simple way to carry out this allocation procedure is to rank and merge all the 

existing lower clusters CL(l,j) where / £ Sn and the upper clusters, that is those 

clusters whose roots are in CL(l,j), and to perform the allocation step to be described 

later in this section. 

Initially the current cluster CL(n,j) only consists of facilities (Pn\Pj)l) {j}. A list 

of the the relevant lower and upper clusters, ranked in ascending order of their cycle 

times, is kept in the list of unchecked clusters denoted by UP(n,j). The set-up cost An 

is allocated first to the unchecked cluster with the smallest cycle t ime. Members of this 

cluster are added to cluster CL(n,j). The set-up cost associated wi th this cluster is 
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added to the set-up cost An to determine the new set-up cost of CL(n,j). The holding 

cost of the new cluster is the holding cost of the old cluster. Let r n j denote T\CL(n,j)\. 

The resulting r n j is then compared with the next point on the list UP(n,j). If rnj 

is greater than or equal to the next point and the point is a lower point, the cluster 

associated wi th it. is added to the current cluster, if it is strictly greater and the point 

is an upper point, the cluster associated with the point is deleted from the current 

cluster. In either case rn] is updated. Deletion of a cluster consists of simply removing 

the set-up cost and the holding cost of the cluster to be deleted from the set-up cost 

and holding cost respectively of the current cluster, while addition of a cluster consists 

of adding the set-up cost and the holding cost of the cluster to be added to the set-up 

cost and holding cost respectively of the current cluster. 

When allocating, a record of all the upper clusters deleted from the current cluster, 

that is the clusters in the immediate successor set of the current cluster, is kept in a 

list known as the active points AP(n,j). It wi l l be seen that AP(l.j) I (E Sn is a record 

of the feasible clusters for Tlnj. 

The algorithm consists of two major steps. 

S t e p 1: Determination of the unchecked points. 

S t e p 2: Al locat ion of the set-up cost to determine the active points, while simultane

ously updating the unchecked points. 

Let UP(k,j) be the ordered list of unchecked points, representing the clusters when 

solving the problem on Tik] and when allocating Ak. The points are quadruples. The 

first element is the cycle time of the cluster, the second element is the first index of the 

cluster, that is, the root of the cluster, and the third element is the second index of 

the cluster. The fourth element is an indicator variable indicating whether the point 

(cluster) is a lower or an upper point (cluster). 

D e t e r m i n a t i o n o f u n c h e c k e d p o i n t s : 
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Let © be a notation for 'rank and merge'. The following are the formulae for deter

mining the unchecked points relevant to problem Tlkj. 

A A-
UP{i,j) = (( —L,i,j.lower); upper)): i £ R; j = p{; 

UP{i,j) = {^~,i,j.lower): i£R j > pt 

UP{n,j) = ®{UP{k,j); k e sn) © {AP{n,l);n(t R, 

l e Sj n Pn} 

since Sj n Pn — 0 for n = j 

UP(n,n) = ®UP(k,n); k 6 sn. 

A l l o c a t i o n of s e t - u p cost An to UP(n,j), n ^ R: 

Initially set rnj to a very large number. Compare it wi th the first element of the 

next point in the ordered list UP(n,j). Let a point whose second and th i rd elements 

are / and k repectively be denoted by Let the next point in the ordered list 

of points of UP(n,j) be C/ i f c. B and E are init ial ly zero. If r n j > rlk, and it is 

a lower point, do the following: Bnj < — An + Bik, Enj <— Enj + Eik, CL(n,j) <— 

CL(n,j) U CL(l,k) otherwise if it is an upper point, and the inequality is strict do 

the following: Bnj <- Bnj - Btk, Enj *- Enj - Elk, CL(n,j) <- CL(n,j) \ CL(l,k), 

AP{n,j) AP{n,j)(j{Ulk}. In either case UP{n,j) +- {UP{n,j)\Ulk). Let rnj <- | j 

and T( <— r n j for all / £ CL(n.j). Compare rnj with the next unchecked point of 

UP(n,j) and repeat the above update unti l rnj < rlk, where Uik is the next unchecked 

point of UP(n,j). The current point is denoted by Unj- Include the current point in 

UP(n,j) as the first unchecked lower point. 

If n = j , after the above update, check all remaining unchecked points in UP(n, n). 

If the next unchecked point is a lower point, include it in AP(n,n) as an upper point 

and delete it from UP(n,n). If the point is an upper point, simply delete it from 

UP(n,n). Repeat unti l UP(n,n) is empty. 

73 



This later step is necessary to ensure that all serial clusters of the CL(i,l,n) I G 

sn become CL(i,n,n) after allocating the set-up cost An even for those without an 

allocation. 

S t a t e m e n t o f the A l g o r i t h m 

I n i t i a l i z e : Eij <— h\- and Bi3 <— A , ; Mj and i G Rj 

UP{n,j)+-Q, A P ( n , j ) < - 0 , CL{n,j) <- {n}, n $ R-J £ Pn 

AP{i,i) <-0, i e R 

Determine UP(i,j), and set CL(i,j) {i}, i G R, j' G P,-. 

M a i n S t e p : For ra = | P | + 1 step 1 unti l n = f 

Determine UP(n,j); j G P n . Allocate A n to determine AP(n,j) and update 

,-UP(n,j). 

The cycle times from the algorithm are given by 

k£F 

To get a policy which is 94% effective, we simply choose a base period and round the 

cycle times to the nearest power-of-two of the base period in such a way that the order 

of the cycle times are preserved. That is if T'k > T{, then the cycle times should be 

rounded such that if Tk denotes the rounded cycle time of facility k then Tk > 7}. To 

obtain a solution which is 98% effective, we optimize over the base period. Details of 

this are in Roundy (57]. 
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Complexity of the Algorithm 

For illustrative purpose we assume a symmetric tree. If. the number of facilities in P,-

is d for i G R, we say there are d, stages in the facilities network. Let Fk be the set 

of facilities in stage k and let the number of successors for each facility in Fk be nk. 

W i t h this notation Fx = R and n r f n d _ 1 . . . n 2 = r. For each j £ F 2 , the ranking done to 

determine unchecked points is ra2logre2. This is done for the n d ra d _]. . .n 3 facilities in 

F2. The required amount of work for this ini t ial ranking is thus 

n d n r f_j . . . n 3 n 2 log n2 = r log n2 

The amount of computational work involved is r which is no more than in ranking 

as long as n2 > 1. The ranking is done d — 1 times. So the total amount of work in 

ranking involving j G P 2 is 

(d - l ) r \ogn2 

For j G P 3 we need to merge already ranked points of F2. The amount of work for the 

merging operation for each j G P 3 is 

n3n2 log n3 

Again the amount of computational work is no more than the ranking as long as ra3 > 1. 

The ranking is done for the n^nd-i•••nA facilities in P 3 , (d — 2) times in a l l . The total 

amount of work involved is thus 

(d - 2)n d n r f _]. .n 2 log n 3 = {d - 2 ) r l o g n 3 

In general the amount of ranking for facilities in stage k is 

(d - k + l ) r logn,t 

The computational work is again, no more than the ranking as long as. nk > 1. The 

total amount of work involved in ranking for the algorithm is thus 
d 

E (d — + l ) r log nk < dr log r 
k=2 • 
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The complexity of the algorithm is therefore 

0(dr log r ) . 

The case where some or all = 1, k = 2,..., d, is rather too special to be of general 

interest here. 

3.4.2 Example 3.1 

Let 

Ax = 4, A2 = 5, A3 = 7, A4 = 2, A 5 = 20, A6 = 8, A 7 = 6 and A 8 = 10. 

h n = .14 ^16 = .16 his = .05 

.25 h2& - .20 h2s = .10 

^33 = .15 h3& = .10 hzs = .05 

h44 = .30 h47 = .20 h4S = .15 

^55 = .20 h57 = .15 hw = .10 

Initialize 

A * wi l l be used to denote a lower point. 

t /P( l ,6 ) = {4/.14 (1,1): 4/ .3* (1.6)} 

rjp(2,6) = {5/.25(2,2); 5/.45 * (2,6)} 

£/P(3,6) = {7/.15 (3,3); 7/.25 * (3,6)} 

UP{4,7) '= {2/.30(4,4); 2/.50 * (4,7)} 

f/P(5,7) '= (20/.20(5,5); 20/. 35* (5,7)} 

l/P(l,8) = {4/.35* (1,8)} 

£/P(2,8) = • {5/.55* (2,8)} 

£/P(3,8) = {7/.30* (3,8)} 

£/P(4,8) = {2/.65* (4,8)} 

C/P(5,8) =' {20/.45 * (5,8)} 
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Set CL(n,j) n for all relevant n and j. 

t /P (6 ,6 ) = t / P ( l , 6 ) © t /P(2 ,6) © t /P(3 ,6) 

= 5 / .45* (2,6); 4/.3 * (1,6); 5/ .25(2,2); 

7/.25 •• (3,6); 4 / . 14 (1,1); 7/.15 (3,3). 

Allocate As = 8 to obtain 

AP(6,6) = (5 / .25(2 ,2) ; 12/ .5(6,6); 7/ .25(3,6)} 

C L ( 6 , 6 ) = {6,1} 

C/P(6,8) = £ / P ( l , 8 ) © C / P ( 2 , 8 ) © t / P ( 3 , 8 ) © A P ( 6 , 6 ) 

= {5 / .55* (2,8); 4/.35 * (1,8); 5/ .25(2,2); 

7 / . 3 * (3,8); 12/ .5(6,6) ; 7 / .25(3 ,6)} 

Allocate A& = 8 to obtain 

A P ( 6 , 8 ) = 0 

t /P (6 ,8 ) = { 1 7 / . 9 * (6,8); 5/ .25(2,2); 7/.3 * (3,8); 

12/ .5(6,6) ; 7/ .25(3,6)} 

C L ( 6 , 8 ) = {6,1,2} 

\UP{1.1) = UP{4,7) © C / P ( 5 , 7 ) 

{ 2 / . 5 * (4,7); 2/ .3(4,4) ; 20/.35 * (5,7); 20/.2 (5 

Allocate A-i = 6 to obtain 

A P ( 7 , 7 ) = {2/ .3(4 ,4) ; 6 / .2(7,7) ; 20/.35 (5,7)} 

C X ( 7 , 7 ) = { 7 } 
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E/P(7,8) = r j P ( 4 , 8 ) © l / P ( 5 , 8 ) © v l P ( 7 , 7 ) 

= {2/.6S* (4,8); 2/.3(4,4); 6/.2(7,7); 20/.35(5,7); 

20/.45 * (5,8) } 

Allocate A 7 = 6 to obtain 

A P ( 7 , 8 ) = {2/.3(4,4)> 

t/P(7,8) = {6/.35* (7,8); 6/.2(7,7); 20/.45 * (5,8); 

20/.35 (5,7) } 

CL(7,8) = {7} 

UP{8,8) = UP{6,8) © t / P ( 7 , 8 ) 

= {6/.35* (7,8); 17/.90 * (6,8); 5/.25(2,2); 

7/.3* (3,8); 12/.50(6,6); 7/.25(3,6); 

6/.20(7,7); 20/.45 * (5,8); 20/.35(5,7); } 

Allocate As — 10 to obtain 

A P ( 8 , 8 ) = {5/.25(2,2); 12/.50(6,6); 7/.25(3,6); 

16/.55(8,8); 20/.45 (5, 8) } _ 

CL(8,8) = {8,7} 

The resulting clusters and their cycle times are recorded in AP(6,8) , AP(7,8) and 

AP(8,8) . The clusters are obtained starting from the 'topmost' that is facility 8, and 

working down through the facility network, such that a facility is examined only after 
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its predecessors have been examined. Thus 

AP(8,8) 

C L U S T E R facilities in Cluster Cycle Time 

CL(2 ,2 ) 

CL(6 ,6 ) 

CL(3 ,6 ) 

CL(8 ,8 ) 

C L ( 5 , 8 ) 

2 yJb/0.25 = 4.47 

1,6 ^12/0.50 = 4.90 

^7/0.25 = 5.29 

7,8 ^16/0.55 = 5.39 

5 ^20/0.45 = 6.67 

AP(7 ,8 ) 

CL(4 ,4 ) 4 2.58 

A P ( 6 , 8 ) 

The cycle times at each facility and for each item at a facility are obtained directly 

from the table above. 

TU = r1 6 = r2 6 = rj = r6 = 4.90 

r 2 2 = T2 = 4.47 

T 3 3 = r3 6 = r3 = 5.29 

7^44
 =

 7̂ 4 — 2.58 

T 5 5 = T 5 7 = T 5 8 = 6.67 

TiS — T 2 8 = T 3 8 = T4S = T47 = T 7 = Tg — 5.39 

The determination of the fractional allocation is not a necessary part of the algorithm 

but it can be done as an illustration to check that the solution obtained corresponds to 

correctly accountable cost allocation and also satisfies the opt imum series conditions. 

We can determine the cost allocations as follows. 

Allocation at facility 6 
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Firs t note that a 3 6 = 0 since T 3 6 > T&. The following gives a 1 6 and a26 

a 20, A6 

h2e 
and a 1 6 -f a2G = 1. 

This gives us a ] 6 = 0.4 and a2a — 0.6. 

Allocation at facility 7 

Since T57 > T7 a 5 7 = 0 and hence 0:47 = 1. 

Allocation at facility 8 

Since T 5 8 > T 8 , c*58 = 0- The other allocations can be obtained using the equations 

below. 

W i t h these two equations we have a 1 8 = 0.145, a2S = 0.290, a3S = 0.145, and a 4 8 = 

It can be checked from figure 3.3 that -these allocations (on the right of circles) 

are correctly accountable and that the cycle times (on the left of circles) satisfy the 

op t imum series conditions. 

^ 1 8 ^ 8 

^18 

CX28^8 _ a 3 8 ^ 8 

h2s h3s 

A7 + O J 4 8 A 8 

/147 + /148 

and 

"18 + « 2 8 + "38 + 0>48 = 1 

0.420. 
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5.39(8)0.145 5.39(8) 0.29 5.39(8)0.145 5.39(8) 0.420 ! 

4 .9(6) 0.4 4 . 9 ( 6 ) 0.6 

4 . 9 ® 

5.29(6) 0. i !5.39(7) 1.0 

. 4 7 © 5.29 (3 ! . 5 8 ( t ) 

Figure 3.3: O p t i m u m Clusters for Example 3.1 
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C H A P T E R F O U R 

The Multi-Product Dynamic Lot-Size Problem 

Introduction 

This chapter considers the determination of lot sizes in a multiple product environ

ment. A fixed set-up or order cost Ao is incurred whenever any product is ordered or 

produced, independently of the number or type of products; and an extra cost A , is 

added if product i is included in the joint order. The demand for each item is discrete 

in time and known over a given time horizon H. Linear holding costs are charged on 

the end of period inventories and backlogging is not permitted. It is assumed that 

the variable purchase cost for each product is constant through out the horizon, so 

that the total purchase cost of any item for total demand in the horizon is a constant 

independent of the replenishment policy since backlogging is not permitted at the end 

of the horizon. Quantity discounts are not considered here. The problem is to schedule 

the replenishment of each item so that the total set-up and inventory holding cost is 

minimized over the horizon. 

This problem has been studied very widely in the literature with several optimal 

solutions proposed. The dynamic programming solutions for this problem are complex. 

The solutions by Zangwill and Veinott described in Chapter 1 are generalizations of this 
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problem. When specialized to this problem Zangwill 's method (86] is exponential in the 

number of products, while Veinott 's [78] and Kalymon's [40] solutions are exponential 

in the number of time periods. Solutions which are exponential in the number of 

products have also been proposed by K a o [41] and Silver [66]. These solutions are not 

useful for practical problems which usually involve many items and many time periods. 

Efforts have therefore shifted to the development of heuristic solutions. Unfortunately, 

though these heuristics are relatively simple when compared to the opt imum solutions 

they still have two major disadvantages. Firs t , they generally depend on the Wagner-

W h i t i n dynamic programming solution to the single item dynamic lot size problem. 

Second, it is not known how good these heuristics are. Some of these heuristics are 

described in Chapter 1. Silver [67] reports on a simple one-pass heuristic with a 

three product example. Because a typical practical problem involves many items, and 

managers find it difficult to understand dynamic programmin solutions, these heuristics 

are not desirable from a practical standpoint. The a im of this chapter is to present 

heuristics which overcome the two disadvantages of earlier heuristics. We introduce a 

new lower bound (the cost allocation bound) whose computational complexity varies 

as the square of the number of time periods and linearly as the number of products. 

In addition we present generalizations of some of the very simple heuristics for the one 

product dynamic lot size problem. Thus for any data set we can establish easily a 

bound on how far the opt imum is from the heuristic solution. 

The heuristics that we generalize are; the Silver-Meal [54], the part-period balanc

ing ( P P B ) and a variant of it proposed by Bi t r an , Magnant i and Yanasse [8] which we 

denote as B M Y heuristic. It is known that the Silver-Meal heuristic is arbitrarily bad 

in the worst case but performs very well in practical problems. We show by a series of 

examples that the generalization we propose also performs very well. It is, of course, 

not questionable that this generalization can also be arbitrarily bad in the worst case. 

The Si lver-Meal heuristic is known to be widely used in practice [54] because of its 
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simplicity and the very highly intuitive base. So, we hope that this generalization wi l l 

also capture the attention of practitioners who have joint replenishment problems to 

solve. 

The part-period balancing heuristic is known to perform well in practice and it is 

simple, but it has an effectiveness ratio of 1 /3. That is the ratio of the cost of an 

opt imum solution to the cost of the heuristic solution cannot be less than 1/3 in the 

worst case. We shall show that when this heuristic is generalized to the multi-product 

dynamic lot size problem, the effectiveness of the generalized heuristic cannot be less 

than 1/3 either. The other heuristic ( B M Y ) reported in [8] which is a simple variant 

of the part-period balancing heuristic is shown to have an effectiveness ratio of 1/2. 

We show that when this heuristic is generalized, the generalization does not affect its 

effectiveness. 

These generalized heuristics are simple one pass heuristics, which are linear in 

the number of products and the length of the horizon. The lower bound run time is 

linear in the number of products and the same as the Wagner-Whit in algorithm in the 

number of time periods. We thus have heuristics and also a posteriori guarantee of 

the heuristics' performances on all data set. In two cases, the genaralized part period 

balancing and a variant of it, the B M Y heuristic, we in fact have the effectiveness 

ratios. For the generalized Silver-Meal heuristic we report results over a wide variety 

of cost and demand scenarios for a thirty product, twenty-four period problem, which 

is a much larger problem than any reported result in the literature. We emphasize 

that the heuristics can be used very easily for any number of products. The heuristic 

is usually between 95% and 100% of the lower bound and hence maybe even closer to 

the opt imum. 

This chapter is divided into four sections. In section 2, we formally define the 

problem and describe the lower bound. In section 3, we describe the Silver-Meal 

heuristic and the generalization. The result on a series of examples are also presented. 
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In section 4, we present the two other heuristics, the generalized P P B ( G P P B ) and 

the generalized B M Y ( G B M Y ) , and establish their effectiveness ratios. 

4.2 The Lower Bound 

Let N be the number of items and H the time horizon. There is a. linear inventory 

holding cost hi per unit per period for item i. Backlogging is not allowed. The major 

reorder cost is A0 while the item-specific reorder cost is Ai for item i. Let du, Xtt and 

lit be the demand, order quantity and end of period inventory respectively for item i 

in period t. The holding cost rate can be allowed to vary from period to period but 

it is assumed constant for expository simplicity. Let 6(x) = 0 if x = 0 and 6(x) = 1 

if x > 0. The problem of minimizing the total order cost plus inventory holding cost 

over the horizon can be stated as follows: 

H r N N 

P: ZP = niin^ I Ao6[J2 Xit]+ Yl\Ai6{Xit)+hiIit] 
t=l l i=l i=l 

subject to 

-Xlt + lit-i - dit - In = 0; Vt" and £ = 1 ,2 , . . . , IT (4.1) 

Xit > 0, Iu > 0, du > 0. (4.2) 

Without loss of generality, we can assume that IiQ = 0. Let us say that the fractional 

allocation a is admissible if 

£ > * = 1; ait>0; V / 

Let ai — (ail,aI2,... , atH) For any admissible cost allocation we can write the follow

ing single item dynamic lot-size problem: 

Pi{ai) : ZP.(ai) = mm{(aitA0 +Ai)6(Xit) + hJit} 

subject to 4.1 and 4.2 
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Since 

it, must be true that 
A' 

Zp >Y Zp,(a,) 
i = 1 

Note that JliLi Zpi(a,) i s the objective function value of a decomposition problem, 

P{cx), of problem P. The lower bound expressed in equation 4.2 is true for any admissi

ble a. It is reasonable therefore to choose the a which maximizes Zp(ay The problem 

of making such a choice is st i l l rather complex. The problem Pi(at) is a single item 

dynamic lot size problem. Many heuristics exist for solving this problem. In Chapter 

2, it was observed in the case of continuous review, infinite horizon stationary de

mands and cost parameters, and minimizat ion of long run avearge cost problem, that 

the choice of a was made so that the min imum cycle time was as large as possible. 

We use a similar strategy for choosing a in this case. We select a such that when 

each problem P,-(a,-) is solved then in any interval, the minimum 'run-out' time for any 

i tem is as large as possible. Having chosen a we can then determine Zp^ai) using the 

Wagner-Whit in 's algorithm for the dynamic lot size problem. 

In the following sections, we describe heuristics solutions to the multi- i tem dynamic 

lot-size problem and the corresponding methods of choosing the fractional allocations. 

4.3 Generalized Silver-Meal Heuristic 

Firs t we review the Silver-Meal heuristic for the single item dynamic lot size problem. 

Let 

SMit(Ai) = A + hi T,'j=Li{j - Li)d%} 

t - U + 1 

where Li is the time of the last set-up for item i. The heuristic recommends a set-up 

at time t if t is the first time after Ll such that SMit(Ai) > SMit~i(Ai) 
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Multiple Items 

The following is the Silver-Meal heuristic generalized to the multiple item environment. 

Let T be a set-up epoch. A t any time t > T, products are in one of two sets, set 

R contains all items for which it has already been decided to include in the joint 

replenishment at time T, that is we have L , = T. Set C , the 'continuation' set 

contains all other items, that is those for which L , < T. 

For the products not in R, we have the choice of reordering them at time T, or 

continuing to satisfy demands from the previous set-up. The total cost of continuing 

to satisfy demand between T and t > T from the previous set-up Li is given by 

t 

while the cost of ordering at time T and continuing to t > T is 

t 

-. j=T 

So these products would rather not join the reorder set unti l 

i 

hi{T - Li) Yl dij > A (4.3) 

The Heuristic 

I n i t i a l i z e : Put all items in R and let C be the empty set. Let T = t = 1. 

Step 1 Calculate SMit(Ai) for each i 6 C. If SMtt(At) > SMu-^Ai) and the 

condition of equation 4.3 holds, move i from C to R and set L t <— T. 

Step 2: Calculate SMit(Ai) for each i £ R. If SMit(At) > SMit-i(Ai), we allocate 

as much of the major set-up cost A0 to i tem i to equalize the two quantities. The 

allocation, A,-, necessary to do this is given by 

SMit(Ai + Ai) = SMit_1(Al + A,-) (4.4) 
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Set t <— t + 1 and repeat steps 1 and 2 unti l £2; A ; > A0. In this case go to step 

3. 

Step 3 Set T t and reorder at time T. Let 7? = {z| A , > 0 } and L , = T if i (E R. 

Return to step 1 until i = B. 

This algorithm is easy to program and clearly runs in time proportional to TV and 

H. 

An Example 

Three items and five periods problem wi th the following parameter values. 

Ao = 39, Ai = A-2 = As = 20, hi = h-2 = h-s = 1. The demands are shown in the table 

below. 

Time 

1 1 3 4 5 

item 1 10 6 20 10 10 

item 2 5 4 12 16 10 

item 3 10 10 6 2 7 

The Algorithm 

Initially R = {1 ,2 ,3}: C = 0; U = L2 = L3 = 1. 

T ime t = 1 S M „ = 20 SM-n = 20 S M S 1 = 20 

A i = 0 A 2 = 0 A 3 = 0 

Time t = 2 SMV1 = 13 SM22 = 12 SM32 = 15 

A i = 0 A 2 = 0 A 3 = 0 

Time t = 3 SMiS = 22 SM23 = 16 SM3S = 14 

A ] = 54 A 2 = 24 A 3 = 0 

This is because SJWi 2 (20 + 54) = 5 M 1 3 ( 2 0 + 54) = 40 and 5 M 2 2 ( 2 0 + 24) = 5 M 2 3 ( 2 0 + 

24) = 24 
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As A ] + A 2 > 39 a reorder is scheduled at T = 3 and we reset L\ — L2 — 3 and 

P = { l , 2 } , C = {3}. 

T ime 4 : 

S M ] 4 = 15 SMU = 18 SMM = 12 

• A ] = 0 A 2 = 0 A 3 = 0 

T ime 5: SM^ > SM-i4 and (3 - 1)(6 + 2 + 7) > 20 so item 3 joins R, is reordered at 

T = 3. and set L3 = 3. 

S M 1 5 = 50/3 5 M 2 5 = 56/3 5 M 3 5 = 12 

A 3 = 10 A 2 = 4 A 3 = 6 

No reorder is scheduled at time 5 because the major set-up cost is not exhausted, that 

is 

A ] + A 2 + A 3 = 20 < 39 = A0 

So the heuristic gives a reorder schedule of 

Time 

1 2 3 4 5 

item 1 16 0 40 0 0 

item 2 9 0 38 0 0 

item 3 20 0 15 0 0 

and a total cost of 2(39) + 6(20) + 1(102) = 300. 

The lower bound 

We left the lower bound without specifying a choice of att. From the heuristic, at a 

period when we decide to reorder we have allocated A 2 > 0 to i' £ R and A , = 0 to 

i £ C. Let 
A t-

a u = T A " 
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for each i 6 R and for each period t, from the period immediately following the last 

joint reorder period to period T. If the last joint reorder is in period 1, then an is as 

above from t = 1 to t = T. 

The logic behind this rule is that this allocation lengthens the joint reorder interval 

as much as possible. When A , = 0, which may be the case when t = H, we simply 

allocate Ao equally amongst all the items. Returning to the example we have the 

values of an. 

Time 

1 2 3 4 5 

item 1 54/78 54/78 54/78 10/20 10/20 

item 2 54/78 24/78 54/78 4/20 4/20 

item 3 0 0 0 6/20 6/20 

The Wagner-Whit in solution to each in turn is 

Time Cost 

1 2 3 4 5 

item 1 16 0 40 0 0 130 

item 2 9 0 38 0 0 104 

item 3 20 0 15 0 0 66 

which gives a total cost of 300. The heuristic gives the opt imum solution in this case. 

We now present the results for realistically sized problems. 

4.4 Computational Experience 

We take the following problem. Horizon=24 periods and the number of items equals 

30. Wi thout loss of generality we take / i , = 1 for all items. The item-specific set-up 

costs A% are uniformly distributed on [30,50]. The demand is uniformly distributed on 

[a, b] as shown in Table 4.1. Each cell of the table gives the average performance for 
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Ao 

demand 0 100 200 300 400 

[20,20] 0 0 0 0 0.2 

[20, 30] 0.3 0.2 0.1 0.2 0.4 

[15,25] 0.5 0.6 0.9 1.8 2.5 

[15,30] 1.3 0.6 1.0 1.4 3.0 

[10,20] 3.8 3.5 3.5 2.4 2.4 

[5,10] 1.5 2.7 2.8 2.8 3.3 

[5,15] 4.0 2.7 3.3 5.2 6.4 

[10,30] 4.4 2.7 3.0 4.3 5.3 

Table 4.1: Heuristic Performance 

five different runs. The performance measure used is 

heuristic cost — lower bound cost 
- — x 100 
lower bound cost 

The first row is for a constant demand. The first column is essentially the Silver-

M e a l heuristic, although the possibility of the rule in equation 4.3 changes things 

slightly. We see that over a wide data set, seldom is the heuristic more than 5% away 

from the lower bound and hence closer to the unknown opt imum. We see however 

that when the demand variability is proportionally high, that is (b — a)/a = 2, as in 

the last two rows and the joint cost Ao is high, the performance of either the heuristic 

or the bound or both deteriorates. 

We have presented a simple heuristic, easy to code and calculate, which is essentially 

an extension of the Silver-Meal heuristic for single products. The key importance of 

this heuristic compared with other heuristics is that a posteriori performance guarantee 

is given for the particular data set being considered. A variety of experiments on 
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varied data sets indicate performance of usually better than a 5% error. In view of the 

inaccuracies of demand and cost data typically available to the production planner, 

a 5% gap from the lower bound but not, necessarily from the opt imum is a relatively 

small price to pay for the simplicity of the algorithm. 

4.5 Other Heuristics 

The heuristics to be generalized in this section are the part period balancing heuristic 

and a variant of it introduced in Bi t ran et al . [8] to be referred to as B M Y heuristic. 

The main purpose of this section is to show that the effectiveness ratios of these 

generalized heuristics are the same as the effectiveness ratios of the corresponding 

single item heuristics. 

4.5.1 P P B a n d G P P B H e u r i s t i c s 

The part period balancing heuristic minimizes the absolute difference between the 

set-up cost and the inventory holding cost unti l the next set-up. Let Hi(Li,t) be the 

cummulative inventory holding cost from period L ; to /. — 1 given that a set-up occurs 

at period L , . Let t' be the smallest time greater than L t such that Ht(Li,t') — Ai > 0. 

The part period balancing heuristic sets up in period t' if 

Hi(tt,t') - A < A - Hi{ti,t' - 1) (4.5) 

and in period t' - 1 otherwise. 

Proposit ion 4.1 The effectiveness of the PPB heuristic is at least l/S. 

Proof 

The proof of this proposition is given in [8] and is repeated here. The maximum 

inventory holding cost between any two set-ups is 2,4,. So the max imum total cost 
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incurred from one set-up to the period before the next set-up is 3At. If the two 

consecutive set-ups of the heuristic are and t\ the cost incurred in an optimum 

policy between £, and t\ cannot be less than A,-, being either a set-up cost or inventory 

holding cost. Thus if C# is the cost of the heuristic solution and C 0 is the cost of the 

opt imum solution, the effectiveness of the P P B heuristic is given by 

9°. > A = I 
CH ~ ZAi 3 

• 
For the G P P B heuristic, let L , be the last time item i was ordered. Let Gt be 

defined as the set of items each of whose accumulated holding cost at t ime t exceeds 

its item-dependent set-up cost, that is 

Gt = {i\Hi(Li,t) > A,} 

and let t' be the first time after L, such that the following holds 

•Y,{Hi{Li,t')-Ai)-A0>0 (4.6) 
ieG,, 

A set-up is made at /,' if 

E {ffi(Li,t') - A{) - A 0 < E (Ai ~ Hi{Li,t' - 1)) + A0 

i€Gt, ieG,, 

and at time t' — 1 otherwise. The items reordered are those in Gt>. 

P r o p o s i t i o n 4.2 The effectiveness of the GPPB heuristic is at least l/S. 

P r o o f 

Suppose two consecutive set-ups are in periods t' and t". The max imum cost incurred 

for those items ordered at t" between periods t' + 1 and / " inc lus ive is the set-up cost 

at period t", which consists of A0 plus the the set-up cost of the items ordered at time 

t"; and the inventory holding cost in these periods. But the inventory cost cannot be 
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greater than twice the set-up cost at period t". Thus if we denote the set-up cost by 

A" and the cost given by the heuristic in the interval by C"H 

C"H < 3A" + Inventory cost of items not ordered at t" 

If the opt imum cost in this interval is CQ then 

Co > A" + Inventory cost of items not ordered at t" 

Note that the minimum cost for all those items ordered by the heuristic at t" is A". If 

an item not ordered by the heuristic is ordered in the opt imum solution, the set-up cost 

incurred for that item is greater than the holding cost for the item in this interval. 

Also if an opt imum set-up occurs between the last heuristic set-up and the end of 

the horizon, the cost incurred due to this set-up cannot be less than the holding cost 

incurred by the heuristic. Thus the effectiveness of the heuristic is given by 

CQ ^ A" + Inventory cost of items not ordered att" A" 1 
C'H ~ ZA" + Inventory cost of items not ordered at t" ~ SA" 3 

• 

4.5.2 B M Y and G B M Y heuristics 

B M Y requires a set-up to be made at time t' — 1 if 

Hi(ti,t') > A{ and #,•(*,-,*' - l ) < At 

where t' is as defined in 4.5. 

P r o p o s i t i o n 4.3 The effectiveness of the BMY heuristic is at least 1/2. 

P r o o f 

The proof is similar to the proof of proposition 4.1. Here the inventory holding cost 

between two consecutive replenishments is bounded by the set-up cost. 
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For the G B M Y heuristic, a set-up is made in period t' — 1 where t' is as defined in 

4.6 above. 

Proposition 4.4 The effectiveness of the GBMY heuristic is at least 1/2. 

Proof 

The proof is similar to that of proposition 4.2. The inventory holding cost between two 

consecutive replenishments is bounded by the cost of the second set-up in the interval. 

• 

4.6 Conclusion 

We have presented very simple heuristics which are easy to implement and easy to 

code. The first is a generalization of S i lver -Meal heuristic. This heuristic is shown to 

perform very well on a series of examples. The second is a generalization of the part 

period balancing while the third is also a generalization of a variant of the part period 

balancing first presented in [8]. The effectiveness ratios of these latter heuristics are 

shown .to be the same as for their corresponding single item heuristics. It is also simple 

to derive lower bounds for these heuristics. The major contribution of this chapter, 

therefore, is that it gives simple heuristics with posteriori guarantees of performance. 
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C H A P T E R F I V E 

Periodic Versus 'Can-Order' Policies 

Introduction 

In this chapter we consider the problem of the coordination of replenishment orders 

for groups of items in a mult i - i tem inventory system. A single fixed cost is incurred 

whenever any item is replenished and an individual fixed cost is incurred for each item 

included in the joint replenishment. The latter is often referred to as a 'line i tem' cost 

on a joint reorder. Demands are generated by independent Poisson Processes. Excess 

demands are backlogged and there is a constant delivery lead time for each item. The 

full model details are described in section 2. Here we discuss the motivation and the 

main results of this chapter. 

Al though in practice periodic replenishment policies may perhaps be more preva

lent, the literature has tended to concentrate an (s.c,S) or can-order systems. Such 

a policy operates as follows. When any item's inventory drops to its reorder point s,-

a reorder is scheduled. Other items j are inspected and any at or below their can-

order point Cj are also included in the reorder. Items i (resp., j) are reordered up to 

Si (resp., Sj). Such policies were proposed by Balintfy [6] and have been investigated in 

a series of papers by Silver [65,68,69], Thompstone and Silver (75] and recently by Fed-
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ergruen et al . [23], and have been shown to be considerably better than uncoordinated 

policies, often with savings around 20%. 

We know 'can-order' policies are not opt imal , e.g., Ignall [35]. However, their 

performance on small problems (two products) has been good, Silver and Peterson 

[54, page 450]. The question arises as to how good they are for realistically sized 

problems. 

The cost allocation bound described in Chapter 2 also applies to this problem 

but, used as a lower bound, it is 'a long way' below the 'can-order' policy. B y a 'long 

way' we mean varying from nothing when the joint cost is zero, that is no coordination 

opportunities, to up to 50% for subtantial joint costs. This raises the question whether 

the bound is weak or whether can-order policies can be considerably improved or both. 

These results were obtained on a 12-item example. In order to answer this question, 

an alternative heuristic is proposed which is very easy to calculate and implement. 

A n obvious choice would be a. heuristic wi th opportunity for coordination. One such 

heuristic is an (R.T) periodic review policy where every T periods the inventory of 

item i is raised to i2t-. (R.T) policies are common in practice as they tend to lower set

up cost because the process of setting up for replenishment becomes a routine periodic 

operation. To achieve coordination, all periods T are integral multiples of a base 

period. This policy was tested on a range of problems and performed consistently 

better than 'can-order' policies except for small values of the joint cost. We would 

expect poor performance for small values of the joint cost because, for example, when 

the joint cost is zero, we are simply comparing periodic review with continuous review 

models. What was surprising was the much better performance for significant values 

of the joint cost, where the gap between the lower bound and the can-order policy was 

typically halved, a saving of often 20%. Encouraged by this result we also replaced 

the (R,T) policy by a simple heuristic. In this heuristic the T : periods were calculated 

from essentially an Economic Order Quantity and then rounded to a multiple of the 
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base period. This heuristic which is very easy to calculate performed only slightly 

worse than the (R, T) policy, and still much better than the 'can-order' policy. 

Thus the main result of this chapter is that periodic review policies can outperform 

'can-order' policies for coordinated replenishment inventory systems, and can do it with 

considerably simpler calculations. The remaining part of this chapter is organized 

as follows: section 2 describes the model assumptions, section 3 presents s , c , 5 and 

independent policies tested, section 4 gives a brief description of the lower bound, 

section 5 describes the periodic heuristics, section 6 gives details of the numerical 

results-, while section 7 concludes wi th a discussion of topics for further research. 

5.2 Model Assumptions 

The TV-item inventory system is subject to a continuous review and demands are 

generated by independent Poisson processes wi th rate A, for item i. The possibility of 

continuous review is required by 'can-order' policies even though only periodic review 

wi l l be required for the periodic policies. Excess demands are backlogged and each 

replenishment needs a constant lead time /,-. The joint cost is A0 and the ' l ine' cost is 

At. Holding costs are charged at a rate fo, on every item of inventory. Two types of 

shortage costs are used, 0, for every item i unable to be filled immediately on request, 

and a rate p, for every unit of backlogging outstanding. Thus p, is a 'time-weighted' 

shortage charge. These shortage and holding costs are linear. The criterion is to 

minimize the long run average cost per unit time. Which of these assumptions can be 

readily generalized wi l l be discussed in section 7. 
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5.3 'Can-Order' Policies 

The method of calculation used for the parameters (s, c, S) is that given by Federgruen 

et a l . [23]. We used only simple, not compound, Poisson demands and did not include 

service level constraints. The two types of shortage costs were used alternatively, not 

together. Further details on the (s.c.S) policies and the method of calculation are 

in Federgruen et al [23]. The calculations for the (s,c,S) policy are not quite exact 

because of the assumption of independence needed for item reorders. A g a i n , details on 

the extent of this exactness are given in the above paper. In addition, we calculated the 

'independent 1 policy, where item i incurs the full cost Ao + A , whenever it is reordered. 

The optimal (s,S) policies for this were calculated using the methodology, used in 

Federgruen et al.[23, page 352]. 

5.4 The Lower Bound 

The cost allocation method decomposes the problem into N single item problems, if 

there are N items, as in the joint replenishment problem in Chapter 2. The key here 

is that the 'opt imum' policy for the single item problem is known. The set-up cost for 

item i after the cost allocation is a , A 0 + A , . The choice of the best a's to use is difficult 

in this case. Recall that any feasible values of a w i l l give a lower bound. However, we 

use a heuristic method to determine the allocations for the lower bound. For the joint 

replenishment problem wi th constant and continuous demands discussed in Chapter 2, 

the choice of a, was made as follows: first calculate the run-out times for each item 

init ial ly with a,- = 0 for all i. We then allocate the set-up cost to raise the minimum 

cycle time to equal the next higher cycle time and repeat the allocation until there is 

no more set-up cost to allocate. We use the same procedure here with mean demand 

used for calculating the run-out times. The min imum run-out time achieved after the 

allocation is termed the base period and all items i with a,- > 0 the base set, B. If 

99 



Ci(cii) is the min imum cost for i tem i wi th allocation a,-, the lower bound is 

LB = J£Ci{ai) + YtCi(0) iEB i£B 

We note here that 'better' lower bounds are clearly available with more calculations. 

5.5 The Periodic Policies 

The (R, T) policy is one that orders the inventory position up to R every T periods. 

We use-the Poisson demand distribution and the equations for calculating the average 

cost of an (R,T) model for each item below are taken from Hadley and Whi t in [33, 

page 260], equations 5.65-67 inclusine. 

Let P\q\nx\iT\ be the probability that the demand in a review interval of length 

riiT is at least q. Let 

Average backorders per period for 

item i under (J2j,n,-T) policy 

Average unit years of shortage for 

item i under (i2,-,n t-T) policy 

Average on-hand inventory per period for 

item i under (Ri,n.,T) policy 

The average cost is given by 

Ai -I- a,-A0 

(P[l;nt-A,-r]) + hiDi(R,,n,T) + n,T) + piB(Ri,nlT) 

The expressions for Dt, E% and Bi are given below. 

B(Rl,n,T) AplirUli + ntT)2P[R, - 1; A.-ft + mT)] - llP\Ri - 1;A,-/,-]} 
riil A 

^ ( 2 A + + ' 1 5 K [ h + H l T ) ] " + 1 5 U ] } 

+ niT)P[Ri; A,- (/, + n t T) ] - / 4 P [ P , ; A,/,]}] 
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E(Rx,n%T) 

At7,-P[P,- — 

•i + n,-r)P[J2,- - 1; A,-(/,- + n,T)} - P , P | P , ; A,-(/,• + n,T)] 

l ; A , / t ] + /2,-Pfi2,-;A.-/i]} 

D(Ri,n,T) — Rj — Hi 
T 

-- + B{R„ntT) 

Three versions of this policy were tried. The first, we shall call simply [R,T). For 

this, all items used the same period P,that is, n, = 1 for all i. A single variable search 

was used to determine T. For the second, which we shall term (R,nT), a single search 

over T was also performed but any item could have a period of any n , T where n,t is 

a positive integer. The values of n, were determined in the following way. For each 

value of T and for each i, n, was increased from 1 unti l the resulting cost no longer 

decreased. 

F ina l ly a simple alternative was tried, motivated by the lower bound in section 4. 

For items in the base set, i £ B, T was taken as the common base period. A l l other 

items i B (or rather their deterministic equivalents) have run-out times greater than 

T. This is because of the way the G ; were defined. Each of these items i is given 

a period n t P nearest to the runout time, where again nt is a positive integer. This 

heuristic wi l l be termed PH, for periodic heuristic. For all three options P , is chosen 

to minimize expected carrying and shortage costs during lt + P,. It should be recalled 

that for periodic policies, if an order is placed now, then another chance to place an 

order wi l l not occur unti l Pj later and that wi l l not result in products being available 

unti l a further time /,-. Hence current decisions must face the uncertainty of demand 

over a t ime /, + TJ. 

5.6 C o m p u t a t i o n a l R e s u l t s 

Twelve products are listed in Table 5.1, along wi th values for Aj, A, and /,-. The 

products have been ranked by the value of A;/A, which means that the base set B 

occurs first and is actually products 1 to 6 inclusive. 

101 



D A T A Results 

P rod . A A / LB PH (R,T) ( s,c,S) Indep. 

(s,S,T) (R,T) T=0.8 s,S 

1 10 40 0.2 11 39 0.65 41 0.65 46 8 34 46 10 58 

2 10 35 0.5 22 47 0.65 47 0.65 52 17 43 54 20 66 

3 20 40 0.2 11 39 0.65 41 0.65 46 8 32 49 10 59 

4 20 40 0.1 6 34 0.65 36 0.65 42 4 27 44 5 54 

5 40 40 0.2 11 39 0.65 41 0.65 46 8 29 53 10 62 

6 20 20 1.5 35 52 0.65 50 0.65 53 23 46 58 32 70 

7 40 20 1 24 43 0.82 40 0.65 42 14 33 50 21 60 

8 40 20 1 24 43 0.82 40 0.65 42 14 o o oo 50 21 60 

9 60 28 1 33 60 0.85 54 0.65 58 25 44 69 30 78 

10 60 208 1 23 46 1 50 1.3 42 13 32 53 21 62 

11 80 20 1 23 49 1.15 50 1.3 42 12 31 55 21 64 

12 80 20 1 23 49 1.15 50 1.3 42 12 31 55 21 64 

C O S T 2047 2291 2322 2620 3357 

C O S T / L B 100 112 113 128 164 

Table 5.1: Data and Typica l Results (A0 — 150, cf> = 30, p = 0, h = 6) 
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N O T E S : LB = Lower Bound 

PH = Periodic heuristic, using T from the lower 

bound to the nearest multiple. 

(R,T) = Periodic policy with common cycle length T. 

(s.c.S) — 'can-order 'policy. 

The (R,nT) results are identical to the PH results up to the last digit or two and 

are omitted for clarity. 

For different experiments Ao varies from 20 to 250. A l l the p,, (0,-) are identical 

and equal to 30 or zero alternately. A l l the hi are identical and equal to either 2 or 

6. Experiments were run with different and nonidentical values of / i , - , p^, (</>,) but no 

essentially different results were obtained. Neither did varying the range of Xi, At and 

hi affect the qualitative impact of the results, although of course the actual numbers 

varied considerably. In terms of relative performance the most sensitive factor is Ao-

Examples of some of these results for varying A, and /, are shown in Table 5.5 

Table 5.1 gives details of a run with AQ — 150, h = 6 and using the non-time 

weighted shortage cost <f> = 30. Under LB are given the values of s, S and the 'runout' 

times as described in section 4. Notice that the base set have identical times, the base 

period of 0.65. Notice under PH that products 6 through 9 have been 'rounded down' 

to the base period and 10 through 12 'rounded up ' to twice the base period. The 

minimiz ing value of T found with (R, T) was T = 0.8. Only a coarse grid search with 

interval 0.05 was used. Smaller grids were not worthwhile, achieving only very small 

improvements. 

The savings of the (s,c,S) policy over the independent policy are consistent with 

previous work, see [23]. Note that the c o s t / L B ratio is to be interpreted in the light 

that the bound LB might st i l l be quite weak. The simple PH policy is seen to perform 

well in comparison wi th others. 
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LB PH (R,T) [s,c,S) Indep. 

50 999 1135 1183 1172 1349 

(114) (118) (117) (135) 

100 1051 1195 1223 1327 1643 

(114) (116) (126) (156) 

150 1096 1244 1262 1459 1886 

(114) (115) (133) (172) 

200 1137 1289 1299 1571 2052 

(113) (114) (138) (180) 

250 1175 1329 1334 1676 2239 

(113) (114) (143) (191) 

Table 5.2: tfi = 30, p = 0,h = 2 

The first main experiment is given in Table 5.2. Everything is identical to the 

previous experiment except h = 2. The ratio of c o s t / L B is given underneath each 

figure in parentheses, in percentage points 

Again the improvement of (s,c,S) over independent is consistent wi th previous 

findings. The performance of the periodic compared wi th the (s,c,S) policy improves 

as A0 increases and is quite pronounced, reaching a 20% improvement for high values 

of Ao. Interestingly the ratio of P H / L B seems independent of Ao- We know however 

that for small values of A0 the periodic policy wi l l begin to behave poorly compared 

wi th (s, c, S) policies. We can see this in Table 5.3. Here the data is identical to Table 

5.2 except that we use the time-weighted shortage cost and A0 has been extended to 

the value of 20. 

We see that with Ao = 20, the (s,c,S) policies are better, but Ao = 20 is a rather 

small cost for this data set and the whole value of coordination is becoming marginal. 
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LB PH (R,T) [s,c,S) Indep. 

20 815 907 961 922 975 

(111) (118) (110) (120) 

50 851 944 984 1114 1189 

(111) (116) (131) (140) 

100 901 1005 1023 1243 1476 

(112) (114) (138) (164) 

150 945 1046 1059 1350 1713 

(111) (112) (143) (183) 

200 981 1088 1095 1443 1908 

(111) (112) (147) (194) 

Table 5.3: </> = 0, p = 30, h = 2 

A n extra, run with Ao — 0 confirmed what we already know. For this LB, (s,c,S) and 

Indep. were all identical and the periodic solutions more costly. 

A final run is shown in Table 5.4, identical to Table 5.3 except that h = 6, and 

with a smaller range of AQ. 

To demonstrate the robust nature of these results some rather different experiments 

were performed. The base case for these experiments, example 1 in Table 5.5, had the 

following parameters. 

Eight identical products, 

Ai = 20 A0 = 150 

A, = 40 / = 0.2 h = 6 4> = 30 p = 0 

Only the values for the lower bound, the independent policy, the 'can-order' and 

periodic heuristic are shown. 

In experiments 1-3 the lead times are lengthened and the biggest change is in the 
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LB PH (R,T) [s,c,S) Indep. 

100 1493 1676 1673 1898 2362 

(112) (U2) (127) (158) 

150 1562 1733 1743 2054 2738 

(111) (112) (131) (175) 

200 1626 1803 1798 2193 3069 

(111) (111) (135) (189) 

Table 5.4: 4> = 0,p = 30, h = 6 

lower bound thereby improving the relative measure of performance of both heuristics. 

It needs to be emphasized that the actual performance need not be improving; only 

our estimate using the lower bound did. A caution needs also to be made with respect 

to the periodic heuristic. 

The heuristic solution was calculated in the tradit ional way, assuming a very low 

chance of more than one outstanding order per i tem. As lead times lengthen this 

assumption becomes suspect. See [33] for more on this. Experiments 4 and 5 changed 

the demand and the number of products without changing the aggregate demand. 

Again the relative performance was little affected. 

5.7 C o n c l u d i n g R e m a r k s 

For the model studied here simple periodic policies seem to show considerable promise 

over more complex 'can-order' system. Periodic policies were studied by Naddor [52] 

but without a bound or computational comparison with 'can-order' systems. Natural 

extensions to this work are to compound Poisson demands, systems under service level 

constraints and lost sales case. Alternatively the discrete nature of demand can be 
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Example Description LB PH [s,c,S) Indep. 

1 Base case 1357 1559 1929 2490 

2 Base case except lead 

times have increased 

to 0.4 

1451 1615 1991 2563 

3 Base case except lead 

times have increased 

to 0.6 

1523 1664 2043 2618 

4 Base case except 

demand has changed to 

4 products with 

A, = 20, and 4 products 

wi th A, = 60 

1348 1543 1869 2405 

5 Base case except only 

4 products with 

A,- = 80 

1348 1543 1869 2405 

Table 5.5: Summary of Results wi th Different Lead Times and Demands 
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dropped in favour e.g., of normal distribution of demands. 

M o r e profound extensions would raise the following questions. Can this bound be 

sharpened? We noted in Section 4 that we are not using the values of a, that would 

maximize the lower bound as was the case with deterministic demands in previous 

chapters. A second question is, can the heuristic be improved? A th i rd and most 

interesting question is, can a guaranteed performance be given for a heuristic compared 

to the bound? 

One last comment which could have implications for extensions is the observation 

that although ( s , c ,5 ) policies require independence for their computation, nowhere is 

independence needed for either the lower bound or the periodic heuristic. 
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C H A P T E R SIX 

Conclusion 

Lower bounds for some production/inventory problems were derived using a cost allo

cation method. The generality of this method is demonstrated in its use for the joint 

replenishment problem with constant and time-varying demands, the one-warehouse 

multi-retailer problem, the multi-facility joint replenishment problem, the multi-item 

dynamic lot-size problem and the (s,c,S) or 'can-order' model. This work can be 

extended in various directions. For example, we could relax the assumption on back-

logging or use more complex cost structures for the joint replenishment problem with 

constant and continuous demands and the mult i- i tem dynamic lot-size problem. Back-

logging of demand could also be allowed in the one-warehouse multi-retailer problem. 

For the 'can-order' system some possible extensions include: using alternative demand 

distributions, like compound Poisson distribution; allowing lost sales and no backlog

ging; incorporating service level constraints and using alternative heuristics. For the 

lower bound itself, research into better ways of choosing the cost allocations in the 

multi-product dynamic lot-size and the 'can-order' systems is needed. Better choices 

of the cost allocations wil l help in extablishing better performances for the heuristics 

introduced here and possibly give ideas about other heuristics. 

109 



B ibliography 

[l] Afentakis, P., B . Gavish and U . Karmarkar . "Computationally Effecient Op

t imal Solutions to the Lot-Sizing Problem in Mult i -Stage Assembly Systems." 

Management Sci., 30 (1984), 222-239. 

[2] Agnihot r i , S., U . Karmarkar and P. Kuba t . "Stochastic Al locat ion Rules." Oper. 

Res., 30 (1982), 545-555. 

[3] A l l en , G . S. "Redistribution of Total Stock Over Several User Locations." Nav. 

Res. Log. Quart., 5 (1958), 337-345. 

[4] Andres, F . M . and H . Emmons. " A Mult i -product Inventory System wi th Inter

active Setup Costs." Management Sci., 21 (1975), 1055-1063. 

[5] Andres, F . M . and H . Emmons. "On the Opt imal Packaging Frequency of Prod

ucts Jointly Replenished." Management Sci., 22 (1976), 1165-1166. 

[6] Balintfy, J . L . "On a Basic Class of Mul t i - I tem Inventory Problem." Management 

Sci., 10 (1964), 287-297. 

[7] Bensoussan, A . and J . M . Pro th . "Economical Ordering Quantities for the Two 

Products Problem wi th Joint Production Costs." A P I 1 , Systemes de production. 

19 (1985) 509-521. 

110 



[8] B i t r a n G . R . and T. L . Magnant i and H . H . Yanasse. "Approx imat ion Methods 

for the Uncapacitated Dynamic Lot Size Problem." Management Sci., 30(1984), 

1121-1141. 

[9] Blackburn , J , D . and R. A . Mi l l en . "Improved Heuristics for Multi-Stage Re

quirement Planning Systems." Management Sci., 28 (1982), 44-56. 

[10] Bomberger, E . " A Dynamic Programming Approach to a Lot Size Scheduling 

Problem." Management Sci., 12 (1966), 778-784. 

[ l l ] Brown, R . G . Decision Rules for Inventory Management. Hol t , Rinehart, and 

Wins ton , N Y , 1967. 

[12] Cahen, J . F . "Stock Policy in Case of Simultaneous Ordering." Int. J. Prod. 

Res., 10 (1972), 301-312. 

[13] Chakravarty, A . K . "Mult i - I tem Inventory Aggregation into Groups." J. Opl 

Res., 22 (1981), 19-26. 

[14] Chakravarty, A . K . , J. B . Or l i n and U . G . Rothblum. " A Part i t ioning Problem 

wi th Addi t ive Objective wi th an Appl ica t ion to Opt imal Inventory Grouping for 

Joint Replenishment." Oper. Res., 30 (1982), 1018-1022. 

[15] Clark , A . " A n informal Survey of Mul t i -Echelon Inventory Theory." Nav. Res. 

Log. Quart., 19 (1972), 621-650. 

[16] Clark , A . J . and H . Scarf. "Opt imal Policies for a Mul t i -Echelon Inventory Prob

lem", Management Sci., 6 (i960), 475-490. 

[17] Crowston, W . B . , M . H . Wagner and A . Henshaw. " A Comparison of Exact and 

Heuristic Routines for Lot-Size Determination in Mult i -Stage Assembly Sys

tems." AIIE Transactions, 4 (1972), 313-317. 

I l l 



[18] Crowston, W . B . , M . H . Wagner and J . F . Wi l l i ams . "Economic Lot Size De

termination in Multi-Stage Assembly Systems." Management Sci., 19 (1973), 

517-527. 

119] Das C . "Supply and Redistribution Rules for Two-Locat ion Inventory Systems: 

One-Period Analysis ." Management Sci., 21 (1975), 765-776. 

[20] D o l l , C . L . and D . C . Whybark " A n Iterative Procedure for the Single-Machine 

Mul t i -P roduc t Lot Scheduling Problem." Management Sci., 20 (1973), 50-55. 

[21] Eppen , G . D . "Effects of Centralization on Expected Costs in a Mul t i -Loca t ion 

Newsboy Problem." Management Set., 25 (1979), 498-501. 

[22] Eppen , G . and L . Schrage. "Centalized Ordering Policies in a Mult iware-

house System with Leadtimes and Random Demand." in Multi-Level Produc

tion/Inventory Control Systems Theory and Practice. Schwarz. L . , E d . , North 

Hol land, Amsterdam. (1981), 51-69. 

[23] Federgruen, A . , H . Groenevelt and H . C . Ti jms. "Coordinated replenishment in 

a mult i- i tem inventory system wi th compound Poisson Demands." Management 

Sci., 30(1984), 344-357. 

[24] Federgruen, A . and P. Z ipk in . "Approximations of Dynamic , Mul t i loca t ion Pro

duction and Inventory Problems." Management Sci., 30 (1984), 69-84. 

[25] Federgruen, A . and P. Z ipk in . "Al locat ion Policies and Cost Approximations for 

Mul t i loca t ion Inventory Systems." Nav. Res. Log. Quart., 31(1984), 97-129. 

[26] Goya l , S. K . "Determination of Economic Packaging Frequency for Items Jointly 

Replenished." Management Sci., 20 (1973), 232-235. 

[27] Goya l , S. K . "Determination of Opt imum Packaging Frequency of Items Jointly 

Replenished." Management Sci., 21 (1974), 436-443. 

112 



[28] Goya l , S. K . "Opt imum Ordering Policy for a M u l t i Item, Single Supplier Sys

tem." Oper. Res. Quart.., 25 (1974), 293-298. 

[29] Goyal , S. K . and A . S. Bel ton. "On ; A Simple Method of Determining Order 

Quantities in Joint Replenishments Under Deterministic Demand' ." Manage

ment Sci., 26 (1979), 604. 

[30] Graves, S. C . "On the Deterministic-Demand Mul t i -P roduc t Single-Machine Lot 

Scheduling Problem." Oper. Res., 25 (1979), 276-280. 

[31] Graves, S. C . "Multi-stage Lot-Sizing: A n Iterative Procedure." in Multi-Level 

Production/Inventory Control Systems: Theory and Practice. Schwarz, L . B . 

(Ed.) , North Hol land. 

[32] Graves, S. C . and L . B . Schwarz. "Single Cycle Continuous Review Policies for 

Arborescent/Inventory Systems." Management Sci., 23 (1977), 529-540. 

[33] Hadley, G . and T . M . W h i t i n . Analysis of Inventory Systems. Prentice Hal l , 

1963. 

[34] H u , T . C . Combinatorial Algorithms. Addison-Wesley, 1982. 

[35] Ignall, E . "Opt imal Continuous Review Policies for the Two Product Inventory 

Systems wi th Joint Setup Costs." Management Sci., 15(1969), 277-279. 

[36] Jackson, P., W . Maxwel l and J . Muckstadt . "The Joint Replenishment Problem 

with a Powers-of-Two Restrict ion." HE Transactions, 17 (1985), 25-32. 

[37] Jensen, P. A . and H . A . K h a n . "Scheduling in a Mult istage Production System 

wi th Set-up and Inventory Costs." AIIE Transactions, 4 (1972), 126-133. 

[38] Johnson, E . L . "Opt imal i ty and Computat ion of [o, S) Policies in the Mul t i - i t em 

Infinite Horizon Inventory Problem." Management Sci., 13 (1967), 475-491. 



[39] K a l i n D . "On the Optimali ty of (o,S) Policies." Management Set., 5 (1980), 

293-307. 

[40] K a l y m o n , A . B . " A Decomposition Algor i thm for Arborescence Inventory Sys

tems." Oper. Res., 20 (1970), 860-873. 

[41] K a o , E . P. C . " A Mul t i -P roduc t Dynamic Lot-Size Mode l with Individual and 

Joint Set-Up Costs." Oper. Res., 27 (1979), 279-289. 

[42] Karmarkar , U . "Equalizat ion of Runout Times." Oper. Res., 29 (1981), 757-752. 

[43] Lambrecht, M . and J . Eecken Vander. " A Facilities in Series Capacity Con

strained Dynamic Lot-Sized Model . " European J. Oper. Res., 2 (1978), 42-49. 

[44] Leopoulos, V . I. and J . M . Proth . "The General Mul t i -Produc ts Dynamic 

Lot Size Mode l with Individual Inventory Costs and Joint Production Costs." 

RAIRO APII, 19 (1985), 117-130. 

(45] Love, S. " A Facilities in Series Inventory Model wi th Nested Schedules." Man

agement Sci., 18 (1972), 327-338. 

[46] Madigan , J . G . "Scheduling a. Mul t i -Produc t Single Machine System for an In

finite Planning Period." Management Sci., 14 (1968), 713-719. 

[47] Mendelson,H. , J . Pl iskin and U . Yechial i . " A Stochastic Al loca t ion Problem." 

Oper. Res., 28 (1980), 687-693. 

[48] Mil tenburg , G . J . and E . A . Silver. "Accounting for Residual Stock in Continuous 

Coordinated Control of a Family of Items." Int. J. Prod. Res., 22 (1984), 607-

628. 

114 



[49] Mil tenburg , G . J . and E . A . Silver. "The Diffusion Process and Residual Stock in 

Periodic Review Coordinated Control of Families of Items." Int. J. Prod. Res.. 

22 (1984), 629-646. 

[50] Moi ly , J . A . "Opt imal and Heuristic Procedures for Component Lot-Spl i t t ing in 

Mult i-Stage Manufacturing Systems." Management Sci., 32 (1986), 113-125. 

[51] Muckstadt , J . A . and R . O. Roundy. "Mult i - I tem, One-Warehouse, M u l t i -

Retailer Dis t r ibut ion Systems. Technical Report No . 646, 1985. Dept. of Industr. 

Eng . , Cornell University, Ithaca. 

[52] Naddor, E . "Opt imal and Heuristic Decisions in Single and Mul t i - I t em Inventory 

Systems." Management Sci., 21(1975), 1234-1249. 

[53] Nocturne, D . J . "Economic Ordering Frequency for Several Items Jointly Re

plenished." Management Sci., 19 (1973), 1093-1096. 

[54] Peterson R. and E . A . Silver. Decision Systems for Inventory Management and 

Production Planning. Wiley, New York , 1985. 

[55] Queyranne, M . " A Polynomial -Time, Submodular Extension to Roundy 's 98%-

Effective Heuristic for Production/Inventory Systems." Tecnichnical Report 

No. 1136, 1985. Faculty of Commerce and Bus. A d m i n . , University of Br i t i sh 

Columbia , Vancouver. 

[56] Roundy, R . "94%i-Effective Lot-Sizing in Mult i -Stage Assembly Systems." Tech

nical Report No. 647. (1983), Dept of Indust. Eng . , Cornell University, Ithaca. 

[57] Roundy, R. O. "98%-Effective Integer-Ratio Lot-Sizing for One-Warehouse 

Mul t i -Reta i ler Systems." Management Sci., 31 (1985), 1416-1430. 

115 



[58] Roundy, R. "Efficient, Effective Lot-Sizing For Mul t i -Produc t Mult i-Stage Pro

duct ion/Dis t r ibut ion Systems with Correlated Demands." Tecnhnical Report 

No . 671. (1985), Dept of Industr. Eng . , Cornell University, Ithaca. 

[59] Roundy R. " A 98%-Effective Lot-Sizing Rule for a Mul t i -Produc t , Multi-Stage 

Production/Inventory System." Maths, of OR., 11 (1986), 699-727. 

[60] Schwarz, L . B . " A Simple Continuous Review Deterministic One-Warehouse N-

Retailer Inventory Problem." Management Sci., 19 (1973), 555-566. 

[61] Schwarz, L . B . "Physical Distr ibut ion: The Analysis of Inventory and Location." 

A HE Transactions, 13 (1981), 138-150. 

[62] Schwarz, L . B . and L . Schrage. "Opt imal and System-Myopic Policies for M u l t i -

Echelon Production/Inventory Assembly Systems." Management Sci., 21 (1975), 

1285-1294. 

[63] Schweitzer, P. J . and E . A . Silver. "Mathematical Pitfalls in the One Machine 

Mul t ip roduc t Economic Lot Scheduling Problem." Oper. Res., 31 (1983), 401-

405. 

[64] Shu, F . T . "Economic Ordering Frequency for Two Items Jointly Replenished." 

Management Sci., 17 (1971), B-406-410. 

[65] Silver, E . A . " A Control System for Coordinated Inventory Replenishment." Int. 

J. Prod. Res., 12 (1974), 647-671. 

[66] Silver, E . A . " A Simple Method of Determining Order Quantities in Joint Re

plenishment Under Deterministic Demand." Management Set., 22 (1976), 1351-

1361. 

116 



[67] Silver, E . A . "Some thoughts on Extension of Lot-Sizing Procedures Under De

terministic Time-Varying Demand." Working Paper No. 104, 1976. Dept of M a n 

agement Science, U . of Waterloo. 

[68] Silver, E . A . "Coordinated Replenishments of Items Under Time Varying De

mand: Dynamic Programming Formulation." Nav. Res. Log. Quart., 26 (1979), 

141-151. 

[69] Silver, E . A . "Establishing Reorder Points in the (S,c,s) Coordinated Control 

System under Compound Poisson Demand." Internat. J. of Prod Res., 9 (1981), 

743-750. 

(70] Simpson, F . K . J r . " A Theory of Al locat ion of Stocks to Warehouses." Oper. 

Res., 7 (1959), 797-805. 

[71] Steinberg, E . and H . A . Napier. "Opt imal Mul t i -Leve l Lot-Siz ing for Require

ments Planning Systems." Management Sci., 26 (1980), 1258-1271. 

[72] Szendrovits, A . Z. "Manufacturing Cycle Time Determination for a Multi-Stage 

Economic Production Quantity Mode l . " Management Sci., 22 (1975), 298-308. 

[73] Taha, H . A . and R. W . Skieth. "The Economic Lot Sizes in Multi-Stage Pro

duction Systems." AIIE Transactions, 2 (1970), 157-162. 

[74] Tan, K . F . "Opt imal Policies for a. Mul t i -Eche lon Inventory Problem with Peri

odic Ordering." 20 (1974), 1104-1111. 

[75] Thompstone. R. and E . A . Silver. "A Coordinated Inventory Control System for 

Compound Poisson Demand and Zero Lead Time." Int. J. Prod. Res., 13 (1975), 

581-602. 

[76] Veinott , A . F . "Opt imal Policy for a Mul t i -product , Dynamic , Non-stationar 

Inventory Problem." Management Sci., 12 (1965), 206-222. 

117 



[77] Veinott , A . F . " O n the Optimali ty of (s, S) Inventory Policies. New Conditions 

and a New Proof." SIAM J. Appl Math., 14 (1966), 1067-1083. 

[78] Veinott , A. F . " M i n i m u m Concave-Cost Solution of Leontief Substitution Models 

of Mult i faci l i ty Inventory Systems." Oper. Res., 17 (1969), 262-291. 

[79] Veinott , A . F . , Jr . and H . M . Wagner. "Computing Opt imal [s,S) Inventory 

Policies." Management Set., 11 (1965), 525-552. 

[80] Wagner, H . M . and T . W h i t i n . "Dynamic Version of the Economic Lot Size 

M o d e l " , Management Sci., 5 (1958), 89-96. 

[81] Washburn, A . " A Note on Integer Maximiza t ion of Unimodular Functions." 

- Oper. Res., 23 (1975), 358-360. 

[82] Wheeler, A . "Mult iproduct Inventory Models wi th Set-up." Technical Report 

No. 106, 1968. Oper. Res. Dept. Stanford University, Stanford. 

[83] Wi l l i ams , J . F . "Heuristic Techniques for Simultaneous Scheduling of Production 

and Dist r ibut ion in Mul t i -Echelon Structures: Theory and Empir ica l Compar

isons." Management Sci., 27 (1981), 336-352. 

[84] Wi l l i ams , J . F . " A Hybr id Algor i thm for Simultaneous Scheduling of Product ion 

and Distr ibut ion in Mul t i -Eche lon Structures. Management Sci., 29 (1983), 77-

105. 

[85] Zabel, E . "Some Generalization of an Inventory Planning Horizon Theorem." 

Management Sci., 10 (1964), 465-471. 

[86] Zangwil l , W . I. " A Deterministic Mul t iproduct Mul t i fac i l i ty Product ion and 

Inventory Mode l . " Oper. Res., 14 (1966) 486-507. 

118 



[87] Zangwil l , W . I. " A Backlogging Model and a Mul t i -Echelon Mode l of a Dynamic 

Economic Lot Size Product ion System—A Network Approach." Management 

Sci., 19 (1969), 506-527. 

[88] Zipkin , P. "Simple Ranking Methods for Allocation of One Resourse." Manage

ment Sci., 26 (1980), 34-43. 

[89] Z ipk in , P. "On the Imbalance of Inventories in Mul t i -Echelon Systems." Maths, 

of Oper. Res., 9 (1984), 402-423. 

119 



A P P E N D I X A 

The Minimum Violators Algorithm for a 

Facilities-in-Series Problem 

Initialize 

Let the root facility be j and let Ak <— 0 temporarily, A; <E (Pn U Sj) \ {n} Let am 

a i m A m , em <- h i m , rn < n, en +- h'tn; where 

Kn= E ^ 
keP,.nSj 

FAC (Pi \ (Pn \ {n}), CL(i, m , m) +- {m}, m < n; CL(i, n) <— P „ , s m <— max{A; 

m l m G FAC1 }. cm <- s{ <- 0, F A C l <- J M C . 

Step 1: 

Whi le FAC1 # 0 repeat / <- argmin{c f c | /c £ F A C l } If = 0 or c ( > c „ , F A C T 

F A C l \ {/}. 

If FAC\ — 0, S T O P , the current clusters are optimum; otherwise go to step 2. 

Step 2: 

CL(iJ,l) <- CL(i,l,l) U CZ/(t',s t); a, <- a/ + a,,, e( <- e, + e,,, ci *- fj-, F A C 

FAC\{Sl}, st ^ ssl, 

Set Ttfc = Q for all k £ CL(iJ,l). 

FACl <- FAC. Repeat step 1. 
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