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ABSTRACT 

A procedure is described for the redesign of undamped unforced linear 

structural systems to meet specified changes in natural frequency or mode 

shape. A baseline analysis is conducted using f i n i t e elements to obtain a 

subset of the natural frequencies and mode shapes. A two stage perturbation 

analysis is then used to obtain the structural changes required to meet the 

specified changes in natural frequency or mode shape. 
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NOMENCLATURE 

[ M ] = n x n baseline mass matrix 

[ K ] = n x n baseline stiffness matrix 

{<|;̂} = n x 1 eigenvector corresponding to i-th mode. 

= natural frequency corresponding to i-th mode. 

[$] = n x n modal matrix containing the {<\>̂} 's as columns. 

[ w2 ] = n x n frequency matrix containing the w2 as diagonal entries. 

[ M ] = n x n generalized mass matrix. 

[ K ] = n x n generalized stiffness matrix. 

[ AM ] = n x n change to mass matrix due to change of structural parameters. 

[ A K ] = n x n change to stiffness matrix due to change of structural 

parameters. 

[ M ' ] = n x n mass matrix of the modified system. 

[ K' ] = n x n stiffness matrix of the modified system. 

[ ] = n x n modal matrix of the modified system. 

[ IO2 ] = n x n frequency matrix of the modified system. 

[ A $ ] = n x n change to modal matrix due to change of structural parameters. 

[ Aw2 ] = n x n change to frequency matrix due to change of structural 

parameters. 

4 ^ = k-th degree of freedom of i-th mode. 

[c] = n x n matrix where c^j represents the participation of the j-th 

baseline mode to changes in the i-th modified mode. 

= fractional change required in property p of element e to bring about 

the desired frequency shift. 
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= Linear approximation to as given by the linear perturbation 

equation. 
Q 

a = Final approximation to as given by the general perturbation 

equation. 

{4>̂ } = n x 1 Linear approximation to the i'th eigenvector of the changed 

system. 
Tk ] = r x r stiffness matrix of element e. e 
[m] = r x r mass matrix of element e. e 
[k ] = r x r matrix by which the change in the elemental stiffness matrix 

which results from the structural change a Is given by 
ep 

[Ak ] - a [k ]. 
1 eJ ep epJ 

[mep] = r x r matrix by which the change in the elemental mass matrix which 

results from the structural change a is given by 

[Am 1 = a [m ]. e J ep epJ 

{9 }̂ = r x 1 reduced eigenvector for the i'th mode with elements corresponding 

to the global d.o.f. of the r x r matrices. 
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CHAPTER 1 

INTRODUCTION 

In many structural problems the c r i t e r i a for an acceptable design involve 

constraints on the free vibration characteristics of a structural system, these 

constraints may be on one or more of the natural frequencies or the mode shapes. 

This work w i l l be primarily concerned with structural problems involving 

frequency constraints only. In most cases the preliminary design does not 

satisfy a l l of the required constraints and reanalysis is required. There are 

two different approaches for this reanalysis procedure. One is to use a direct 

structural modification procedure in which the new frequencies resulting from a 

certain structural change are calculated using a method such as modal condens­

ation. This Is less time consuming than re-running the f i n i t e element program 

but is s t i l l a t r i a l and error approach. The second method, which is employed in 

this work, is an inverse structural modification procedure in which the structur­

al changes required to bring about a specified frequency shift are calculated. 

This procedure is based on a perturbation analysis of the basic undamped vibra­

tion equations of a discrete system. Consequently only one baseline f i n i t e 

element analysis is required. 

A perturbation based inverse modification procedure has previously been 

implemented as a preliminary design program to interface with the finite element 

program NASTRAN [19]. This program, called LDRUM - Linear Dynamic Redesign 

University of Michigan [17], has been rewritten to interface with the f i n i t e 

element program VAST [18] as well as extended to provide improved and varied 

problem solving. This new program is called INSTRUM - INverse STRUctural 

Modification program. 
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1.1 Review of Previous Work 

Historically redesign procedures involving only natural frequency were 

developed f i r s t . Since Rayleigh [1] proposed his procedure in 1893, several more 

methods have surfaced, and only recently have methods been developed that 

considered mode shape changes as well as frequency changes. 

The goal of most frequency objective procedures is to minimize the mass of a 

structure given a specified frequency objective or to maximize the frequency of a 

structure for a certain total mass. Constraints are sometimes placed on design 

variables such as thickness of plates, cross-sectional area of bars, or moment of 

inertia of beams. Turner proposed one of the f i r s t methods to solve this problem 

[2]. Lagrange multipliers were used to solve the free vibration equations. 

Taylor solved the problem for an axially vibrating bar by using energy methods 

[3], while Sheu extended the work of Turner and Taylor to situations where the 

number of constant stiffness segments was specified, but the boundaries and 

specific stiffness values of the segments were design variables in the minimum 

bar weight problem [4]. Pierson reviewed these and other methods in a survey 

paper [5]. 

More recently Taylor investigated the problem with only a frequency 

constraint in terms of a modal correlation [6]. A procedure was developed to 

scale an existing structural model to meet experimentally measured natural 

frequencies. The modification scheme is based on the f i r s t order terms of a 

Taylor series expansion about the baseline model. Bellagamba employed an exter­

ior penalty function technique based on the f i r s t derivatives of the violated 

constraints [7]. Additional constraints were imposed on static displacements and 

element stresses. 
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The combined natural frequency and mode shape constrained problem has lately 

been considered using a perturbation based approach. Stetson proposed a f i r s t 

order perturbation method based on the assumption that the new mode shapes could 

be expressed as linear combinations of the baseline mode shapes [8]. In later 

works, the technique was formulated in terms of f i n i t e elements and applied to 

several example problems [9-12]. Sanstrom developed f i r s t order equations which 

are similar to Stetson's, but provide a method for specifying mode shape 

constraints based on physical quantities [13]. Kim formulated the problem using 

the complete nonlinear perturbation equations [14]. He employed a penalty 

function method where the objective function was a minimum weight condition and 

the penalty term was a set of residual force errors. Hoff extended this work 

successfully in a predictor-corrector algorithm [16]. He used the linear equa­

tions of Sanstrom as a f i r s t approximation to the solution, updated the mode 

shapes and used Kim's nonlinear equations as a correction. 

1.2 Objectives 

The purpose of this work was to develop a general purpose inverse modifica­

tion program that interfaced fully with the f i n i t e element program VAST. The 

program, called INSTRUM, is designed to return the optimum set of structural 

changes required to obtain certain desired dynamic characteristics. INSTRUM f i t s 

into the dynamic redesign process as shown in Fig. 1.1. One starts with a 

structural design and makes a fi n i t e element model in order to study the dynamic 

response of the structure. After running VAST for the model's frequencies and 

mode shapes i t is discovered, for example, that one or more of the model's 

frequencies must be shifted in order to avoid a dangerous forcing frequency. The 

designer specifies what properties and elements of the model are allowed to 
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change as well as the desired frequency objectives. INSTRUM returns a set of 

structural changes amounting to a revised structural design. The finite element 

program VAST can then be run on the new model to check i f the frequency 

objectives have been reached. If the objectives have not been reached then 

INSTRUM can be run again with these latest f i n i t e element results. INSTRUM is 

based on the preliminary design program LDRUM, written by Hoff, which was 

designed to interface with the fin i t e element program NASTRAN. LDRUM handled a 

small library of properties and elements and could only deal with small desired 

frequency shifts. 

This work had three main areas of emphasis. The f i r s t was to implement a 

version of Kim's nonlinear formulation to allow for large desired frequency 

shifts ("large" in general meaning frequency shifts greater than 10%). The 

second was to expand the library of properties and elements that could be used in 

the program. Finally, the third was to gain numerical experience in the 

performance of INSTRUM and to point out areas which might require further 

development. 
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CHAPTER 2 

GENERAL INCREMENTAL PERTURBATION METHOD 

The following section contains the development of the theory used in the 

inverse structural modification algorithm. This theory arises from the free 

vibration equation for an undamped discrete linear system. This equation is 

perturbed and the results provide linear approximations to the changed 

frequencies and the changed mode shapes that come about due to changes in the 

stiffness and mass properties of the system. The next part of the chapter 

relates these changes in stiffness and mass properties to actual physical 

structural changes. Then the INSTRUM algorithm is explained showing the 

different kinds of analysis that can be used for various problems. Finally an 

alternative formulation of one of the equations is shown which gives insight into 

the solution behaviour for certain problems. 

2.1 Perturbation Theory for Undamped Linear Discrete Systems 

2.1.1 Linear Perturbation Equations 

The undamped free vibrations of a discrete system are given by 

[M] {1} + [K] {d,} = {0} (2.1) 

Eigenvalue analysis produces the eigenvalue problem 

([K] - a)2 [M]) M = {0} (2.1a) 

which yields the eigenvalues (or natural frequencies squared) 



[ <* ] -
0J' 
1 2 

U2 

n 

(2.2) 

and the corresponding eigenvectors (or mode shapes) 

[*] = [OK { * 2 } , • • • » ( * N } ] • (2-3) 

Now due to orthogonality of the eigenvectors with respect to [M] and [K] 

[$] T [M] [*] - [ 5 ] (2.4) 

[*] T [K] [*] - [ K ] (2.5) 

Then by (2.1a) 

[ K ] - [ M ] [ w2 ] (2.6) 

Let 

[ K ' ],[M' ] , [ $ ' ] , [ O J 2 ' ] represent the characteristics of a modified 

physical situation. Then in the same way as before 

[ K» ] = [ M' ] [ w2' ] (2.7) 

[ K' ] = |>'] T [K'] [»•] (2.8) 

[ M' ] = |>']T [M»] [»'] (2.9) 

The relationship between the unprimed and the primed quantities can be expressed 

in terms of perturbations of the original structure. 

[M'] = [M] + [AM] (2.10) 

[K»] = [K] + [AK] (2.11) 

[ U 2 ' ] = [ O J 2 ] + [ Aw2 ] (2.12) 

[©»] = [*] + [A*] (2.13) 
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The mode shape changes can be represented as linear combinations of the mode 

shapes obtained from the baseline structure 

[ A $ ] = [$] [c] T C i j = 0 for i = j (2.14) 

Combining equation (2.14) with (2.13) any direction in the space spanned by the 

baseline eigenvectors can be realized. Imposing C^j = 0 for i = j has the effect 

of fixing the resulting magnitudes of the changed eigenvectors. 

Using relationships (2.8) - (2.11) equation (2.7) can be re-written as 

0 « ] T
 [ A K ] [ » » ] - [ $ ' ] T [ A M ] [ $ ' ] [ t o 2 ' ] = 

0'] T [ M ] [$'] [ u 2'] - [ > ' ] T [ K ] [$'] (2.15) 

Equation (2.15) is known as the general perturbation equation. At this 

stage no assumptions have been made and equation (2.15) is an exact equation for 

a linear undamped discrete system. 

Expressions (2.12) and (2.13) are applied to equation (2.15) resulting in 
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[ft]T [AK] [ft] + [ft]T [AK] [A*] + [ A $ ] T [AK] [ft] + 

[ A $ ] T [AK] [Aft] - [ f t ] T [AM] [ft] [ co2 ] - [ f t ] T [AM] [ft] [ Aco2 ] -

[ f t ] T [AM] [AS] [ to2 ] - [ f t ] T [AM] [Aft] [ Aco2 ] -

[ A S ] T [AM] [ft] [ co2 ] - [ A f t ] T [AM] [ft] [ Aco2 ] -

[ A f t ] T [AM] [Aft] [ cu2 ] - [ A f t ] T [AM] [Aft] [ AOJ2 ] = 

[ f t ] T [M] [ft] [ co2 ] + [ f t ] T [M] [ft] [ Aco2 ] + 

[ f t ] T [M] [Aft] [ co2 ] + [ f t ] T [ M ] [Aft] [ Aco2 ] + 

[ A f t ] T [ M ] [ft] [ co2 ] + [ A f t ] T [M] [ft] [ Aco2 ] + 

[ A f t ] T [ M ] [Aft] [ co2 ] + [ A f t ] T [M] [Aft] [ Aco2 ] - [ f t ] T [K ] [ft] -

[ f t ] T [ K ] [Aft] - [ A f t ] T [ K ] [ft] - [ A f t ] T [ K ] [Aft] ( 2 . 1 6 ) 

For very small changes It is assumed that the terms of higher order than one 

in the A quantities w i l l be negligible (Appendix A shows an example of the actual 

magnitudes of these 2 4 terms for a two element cantilever beam example). Thus 

assuming small changes and so neglecting a l l terms not linear in A 

[ f t ] T [AK] [ft] - [ f t ] T [AM] [ft] [ co2 ] = 

[ f t ] T [M] [ft] [ co2 ] + [ f t ] T [M] [ft] [ Aco2 ] + 

[ f t ] T [M] [Aft] [ co2 ] + [ A f t f [M] [ft] [ co2 ] -

[ ® ] T [ K ] [ft] - [ f t ] T [ K ] [Aft] - [ A f t ] T [ K ] [ft] ( 2 . 1 7 ) 
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Finally after reducing and using equation (2.14) 

[ ® ] T [ A K ] [*] - [ $ ] T [ A M ] [ « ] [ J ] = 

[ $ ] T [ M] [*] [ Au*] + [ $ ] T [M] [*] [ C ] T [ 0)2 ] -

[ $ ] T [ K ] [«] [ C ] T (2.18) 

Carrying out the individual multiplications of equation (2.18) 

for i - j 

{<|,i}T [AK] {(4»1} - {cp ±} T [AM] {CV1} 0)2 = M± A(o)2) (2.19a) 

for i * j 

k,} 1 M {fj,±} - {ĉ }1 [AM] 0)2 = M j C 1 ; J (o>2 - 0)2) (2.19b) 

where M̂  is the generalized mass corresponding to the i'th mode. The C^j's a r e 

eliminated by using relations obtained from equation (2.14) 

A \ i = C i l * k l + Ci2*k2 + + C l A n = £ C i j ^kj ( 2' 2 0> 

Solving for C ^ in equation (2.19b) 

C H Z T~ H * , } 1 [AK] {d, } - 0)2 {cj, } T [AM] {d, }) (2.21) 
J M. (or; - o)2.) J 1 1 

Applying (2.21) to (2.20) gives an expression which directly relates the 

physical mode shape changes to the structural changes 
n <\>. 

A \ i - s ( r — r - <WT ^ K> - {<K}t M {*.})) 
J - l M. (0)2± - 0)2) 

(2.22) 
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The expression for A(a)2), the change in natural frequency squared due to 

structural changes, follows immediately from (2.19a). 

A(co2) - C {cP±}T [AK] {<|,1} - {c^}1 [AM] [*±} o>2 ) (2.23) 

Equations (2.22) and (2.23) are the linear perturbation equations originally 

developed by Sanstrom [13] and are used in the Predictor portion of the INSTRUM 

algorithm. These equations assume small changes and that the new mode shapes can 

be expressed as a linear combination of the baseline mode shapes. This last 

statement is correct only i f the complete set of baseline mode shapes is used. 

In practice this is not possible since only a small subset of the baseline mode 

shapes is usually available. 

2.1.2 Changes in Global Matrices as Structural Changes 

The previous section has related the changes in the frequencies and mode 

shapes to changes in the stiffness and mass matrices of the baseline system. 

These changes in the stiffness and mass matrices must s t i l l be expressed as 

actual physical structural changes. It is convenient to do this by constraining 

these structural changes to be changes in the properties of elements from the 

fini t e element model. Then the matrices that express the changes in elemental 

stiffness and mass properties can be individually assembled to form the global 

changes in stiffness and mass matrices of the baseline system. 

The global sized matrices [AK] and [AM] can be divided into elemental 

components as follows 
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NE qe 
[AK] = I Z a [k ] (2.24) 

e-1 p-1 eP e p 

NE qe 
[AM] = E Z a [m ] (2.25) 

e-1 p-1 e p e p 

where 

e = element number; 

NE = total number of elements; 

p = number of property being changed; 

q e = number of properties of element e being changed. 
a

e p = fractional change in property p of element e. 

[k gp] = matrix by which the change in the elemental stiffness matrix of element e 

due to structural change a is given by the product a ^ep^* 

[mep] = matrix by which the change in the elemental mass matrix of element e due 

to structural change a is given by the product I m
ep]* 

Precise definitions of ], [ m
e p] w i l l be given in Section (3.1). 

Substituting (2.24) and (2.25) into (2.22) and (2.23) 

n <\> NE qe 
A \ i = 1 ( — - 2 — r ~ ( { V ( s E % [ k e P

] ) { 4 ,i> 
k l j-1 M, (o)2 - co 2) J e-1 p-1 6 P 6 P 

j#i 

NE qe 
0)2 {cj, }l ( Z £ a [m ] ) {^J ) ) (2.26a) 

J e=l p=l v 
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ep l - e p ] ) {* ! } ) 

(2.26b) 

Equations (2.26a) and (2.26b) are the linear perturbation equations 

expressing the modal changes as a function of fractional change quantities a
ep* 

For a desired frequency shift the method is to specify the left hand side of 

equation (2.26b) and solve for these fractional change quantities a
ep* This 

gives i n i t i a l values for the a and comprises the predictor portion of the 

algorithm in INSTRUM. More accurate values for the a are then obtained by 

using these i n i t i a l o in the corrector portion of the algorithm explained in 

Section 2.1.4. 

2.1.3 Perturbation Influence Terms 

A quantity that arises from equation (2.26b) and can be used in choosing the 

structural changes that have the most effect in changing a certain frequency is 

the Perturbation Influence Term defined by 

This term measures by its relative magnitude the effect that changing property p 

of element e w i l l have on the i'th frequency. Thus for each property of each 

element there w i l l be a perturbation influence term for the i'th mode that w i l l 

show by its relative magnitude in comparison to the other terms how effective 

(2.27) 
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changing that property of that element w i l l be on shifting the i'th frequency. 

If the term is large and positive i t w i l l be effective in increasing the fre­

quency. If the term is large in magnitude but negative i t w i l l be effective in 

decreasing the frequency. 

2 . 1 . A General Perturbation Equation 

The corrector portion of the INSTRUM algorithm uses the general perturbation 

equation already developed as equation ( 2 . 1 5 ) . This equation multiplied out term 

by term is 

l*j}T
 [ A K ] foj} - [ A M ] {*•} co 2 ' = (c|,'} T [M] {*•} co 2 ' - {4,J}T

 [ K ] foj} 

i - 1 ... n ( 2 . 2 8 ) 

j = 1 ... n 

Applying the definitions for [AK] and [AM] in ( 2 . 2 4 ) and ( 2 . 2 5 ) 

NE qe NE qe 
{<\>\}L ( S Z a [k ]) {<\>\} - {ty'.}1 ( E S a [m ]) {(J,.'} co2 • 

J e - 1 p - 1 e p 8 p j e - 1 p - 1 6 P 6 P 

- {^} T [M] fo'} co 2 ' - [ < ^ } T [ K ] {<!,•} ( 2 . 2 9 ) 

i = 1 ... n 

j = 1 ... n 

These equations define exactly the relationship between the new mode shapes 

and frequencies and the structural changes required to produce the prescribed 
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frequency shift. In practice for the type of problems being considered here the 

changed frequency for a particular mode is known exactly. The modified modes 

w i l l have been approximated by the linear perturbation equation (2.26a) using the 

linear approximation to the required structural parameters solved from equation 

(2.26b). There are NE*qg unknown structural parameters and in general the system 

of equations w i l l be underconstrained and some optimizing procedure w i l l be 

required to choose a suitable solution vector, and the results obtained w i l l 

depend upon the a b i l i t i e s of the optimization algorithm. 

In order to investigate the characteristics of the equations developed in 

their simplest form consider problems in which only one structural parameter is 

allowed to change. In this case only one equation from (2.29) for a certain 

frequency constraint is required. The equation that should be used is that 

corresponding to the case i = j . In support of this is the fact that i f the 

exact mode shapes are used, the equations corresponding to i * j are satisfied 

identically by virtue of orthogonality and these equations are then independent 

of frequency. It is reasonable, then, to use only the i = j equations for a l l 

problens that involve frequency constraints. Thus the general perturbation equa­

tion used in INSTRUM is 

T NE qe NE qe 
( s s aeo [ k e p ^ t*j} " W[) ( 2 2 <* [m ]) {*•} u<[• 
e=l p-1 p p e-1 p-1 P P 

= {4»j}T [M] {«,'} 0)2 • - {c|,'}T [K] (2.30) 

The fractional change quantites a found by solving equation (2.30) wi l l be 

the f i n a l answer as given by the corrector portion of the algorithm in INSTRUM. 
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2.2 INSTRUM Algorithm 

The basic procedure is shown schematically in Figure 1.2 and proceeds as 

follows. Starting with a f i n i t e element analysis of the baseline structure the 

desired frequency objectives, the properties and elements allowed to change, as 

well as any bounds on these changes must be specified. A functional containing 

the information from the linear perturbation equations Is formed and minimized 

using an iterative equation solver. This gives a linear approximation to the 

required structural changes and comprises the predictor portion. The linear 

approximation to the changed mode shapes is used in the general perturbation 

equation for each frequency that is being constrained. A second functional 

containing this information is formed and again minimized using the iterative 

equation solver. This gives the f i n a l required structural changes and comprises 

the corrector portion. 

One complete analysis of the type mentioned above is sufficient for most 

problems. In addition to this, the option exists in INSTRUM to use the incre­

mental procedure developed by Hoff [16]. A flow chart describing this 

incremental procedure is shown In Figure 1.3. The procedure uses the structural 

changes as given by one complete predictor and corrector analysis of INSTRUM to 

update the elemental and global stiffness and mass matrices. Then Rayleigh's 

quotient is used on these matrices to approximate the new frequencies resulting 

from the structural changes. Then the predictor and corrector analyses are per­

formed on this updated system. An option is also included to perform one or more 

predictor analyses without u t i l i z i n g the corrector analysis portion. 

The perturbation equations are solved subject to the constraints mentioned 

above by means of a general purpose nonlinear equation solver employing the 
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simplex method with an exterior penalty function. It may be described as 

minimizing the functional 

g(o) - Bj. f(a) + B N { {B} - [A] {a}} + P n i h(a) (2.31) 

where 

[A] = Linear or general perturbation equations coefficient matrix. 

{B} = Solution vector of the perturbation equations, 

{a} = Vector of design variables. 

{B} - [A]{OC} = Error in satisfying the linear or the general perturbation equa­

tions (depending on i f the predictor or corrector analysis is 

being performed). 

f(°0 = { 

N,E qp 
Z Z C a Minimum Weight Objective 
e-1 p-1 6 P 6 P 

or 
N,E qp 
E £ C a 2 Minimum Change Objective 

e-1 p-1 6 P 6 P 

where 

C = "Cost" of design variables (e.g. for minimum weight C ^ is usually the 

mass of element e). Can be user defined. 

h(oc) = Penalty function for exceeding the bounds on design variables. 

B^, ^11» ^III = ^ s e r defined constants which can emphasize one particular term of 

the functional. The default values are 1 and for most problems 

they should not be changed. The functional Is then balanced to 

satisfy the frequency constraint as the f i r s t priority, the 

optimization c r i t e r i a and penalty function being secondary 

pr i o r i t i e s . 
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2.3 Reformulation of General Perturbation Equation 

The general perturbation equation as given by the i=j equation of equation 

(2.28) can be derived using Rayleigh's Quotient instead of the perturbation 

approach used by Kim [14]. In doing so one can gain insight into the type of 

accuracy that can be expected and obtain bounds on the solutions for some types 

of problems. 

The eigenvalue problem that results from the equation of motion for an 

undamped unforced discrete linear system is given by equation (2.1a) as 

([K] - to2 [M]) M = {0} (2.32) 

The co2 that satisfy this equation are the squares of the natural frequencies of 

the system and the corresponding {c|>̂ } are the mode shapes. 

Multiplying equation (2.32) by {<\>} and rearranging 

MT [K] {«,} 
u2 ( ( 1 0 (2.33) 

{*}T [M] {*} 

Since [K], [M] are symmetric and positive definite the value of {<\>} that 

minimizes equation (2.33) corresponds to the fundamental mode shape of the system 

{c|>̂ } [20]. The corresponding value of the quotient to2 (4>) w i l l be the square of 

the fundamental frequency of the system c o 2 . The rest of the mode shapes and 

corresponding frequencies can be found by minimizing the quotient in equation 

(2.33) subject to the t r i a l functions {<\>} being orthogonal (with respect to the 

global stiffness and mass matrices) to the {c^} already solved for. In this way 

the co 2 , {cp }̂ can be found successively. 
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Using the same notation as the perturbation equation derivation let the 

primed quantities describe the mode shapes, frequencies, and the structural 

matrices of the changed system. Equation (2.33) then becomes 

W T
 [ K - ] M 

to2 (cJ,) = (2.34) 

The changed stiffness and mass matrices can be related to the baseline mass and 

stiffness matrices using equations (2.10) and (2.11). Substituting these 

relations into equation (2.34), 

M T [ K ] M + {4,}T [ A K ] {«,} 
= co2 (2.35) 

W T [M] {*} + { + } T [ A M ] {*} 

Thus for the i'th changed frequency and the i'th changed mode shape 

{*ilT [ K ] {+}} + t*i»T [ A K ] {*•} 
{*ilT [M] {*'} + {*i»T [AM] {*'} = co

2' i = 1 ... n (2.36) 

Rearranging 

[c|,'}T [AK] foj} - {4-'}T [AM] {r±} cu2' = 

{1>[}T [M] to2' - [cV'}T [K] {<,•} i = 1 ... n (2.37) 

This is precisely equation (2.28) for the i=j case. Thus the actual changed 

mode shapes that satisfy the quotient in equation (2.34) satisfy the general 

perturbation equation. 

This quotient in equation (2.34) w i l l be minimized by the changed mode shape 

that corresponds to the lowest frequency 
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{*[} [K] + {<!>[} [ A K ] {(J,'} 
(2.38) 

{*[} [ M ] {4>«} + {<,»} [ A M ] {<J,{} 

In practice the changed mode shape is unknown, but the fact that the changed 

mode shape minimizes the quotient allows bounds to be set on the solutions that 

w i l l result in certain situations. If i t is desired to change the fundamental 

frequency of a system by making one structural change then there w i l l be one 

equation and one unknown in the corresponding linear and general perturbation 

equations. There w i l l be no need to form a functional to be minimized since the 

linear and general perturbation equations can be solved directly. In these cases 

certain characteristics of the solution behaviour can be predicted, and these 

w i l l be discussed fully in Chapter Four. 
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CHAPTER 3 

INSTRUM ELEMENT IMPLEMENTATION 

This chapter describes the work involved in interfacing INSTRUM with the 

fi n i t e element program VAST. The [k^] and lm

e^] matricies are defined 

mathematically and i t is shown that there are two distinct types of property 

changes - a "linear" property change and a "non- linear" property change. 

Finally, the implementations of the various properties and elements from VAST are 

explained in detail. 

As previously mentioned INSTRUM has been developed from a program written at 

the University of Michigan called LDRUM. LDRUM was written so that i t interfaced 

with the fi n i t e element program NASTRAN. The elemental mass and stiffness 

matrices, the mode shapes, and the frequencies were a l l read into LDRUM from 

NASTRAN data f i l e s . In order to obtain the [k 1, [m 1 matrices i t was 
ep ep 

necessary to modify the NASTRAN data f i l e to include dummy elements whose s t i f f ­

ness and mass matrices would correspond to the required [k ep], [ m
ep] matrices. 

For example, i f the area property of a certain beam element was to be modified, 

the dummy element in the NASTRAN data f i l e would be a beam element at the same 

location as the original with 1/1000 of the area and zero moments of inertia. 

The 1/1000 is used so the extra beam element w i l l not significantly affect the 

results of the fin i t e element run, and the zero moments of inertia are used to 

ensure that the resulting stiffness matrix w i l l contain only the terms sensitive 

to a change in area - precisely the [k ] matrix corresponding to an area 
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change. (In this case to obtain the [^ epl matrix the dummy elements stiffness 

matrix would have to be multiplied by 1000 to account for the difference in area 

between the actual and dummy elements). 

Since INSTRUM was being used to interface with the fin i t e element program 

VAST, many modifications were made to the original program LDRUM. The f i l e s 

containing the stiffness and mass matrices, the mode shapes, and the frequencies 

are quite different in VAST than in NASTRAN. Besides this fact i t was seen that 

the method previously employed of determining the [k ], [m^] matrices by 

inserting dummy elements into the fi n i t e element data f i l e was inconvenient and 

limited in the kinds of properties and elements that could be included. It was 

thus decided to calculate the [k 1, [m ] matrices while in INSTRUM. The 
ep ep 

library of properties and elements was increased considerably in this way, while 

leaving the user free of the inconvenience of having to modify the original 

f i n i t e element data f i l e . 

3.1 Linear and Nonlinear Property Changes, Definition of [^Cp] Matrices 

For the INSTRUM algorithm the changes in elemental matrices that correspond 

to structural changes are expressed as: 

[Ak ] = a [k ] (3.1) 1 eJ ep 1 epJ 

[Am 1 - a [m ] (3.2) 1 eJ ep 1 epJ 

where 

[Ak g] = the change in the elemental stiffness matrix of element e due to the 

structural change a 
& ep 

[Amg] = the change in the elemental mass matrix of element e due to the 

structural change a 
ep 
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To more precisely see where the [k ], [ m
ep] matrices come from consider the 

following. The changed elemental stiffness matrix arising from a change in the 

property p from the original value of p Q is 

[k;i = [k e] + [Ake] 

9[k ] 
= [k ] + -1 eJ op 

5[k ] 
= [k ] + - e  

1 eJ op 

P ( P - P 0 ) +  

ro 5P 2 

( p a ) + P 0 o ep' op 2 

3[k e] 

(P " p j 2 — 2! 

(p a ) 2 \, + . P q
 ro ep 2! 

= [k ] + a (p — e ep v o op ep 
o 2[k e] 

9P2 
) 4 r + V 2 ! 

II, = [k 1 + a [k ] + a*1 [k ] + 1 e J ep epJ ep 1 ep 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

Thus i f the elemental stiffness matrix [k £] contains terms in p of no higher 

order than one then 

5 P
n 

= 0 n > 1 (3.8) 

and 

[k'l = [k 1 + a [k ] l e l e e p e p J (3.9) 

But i f the stiffness matrix [k g] contains terms in p of higher order than 

one then 

[k'l « [k 1 + a [k ] i g j l e e p e p J (3.10) 

A property change that satisfies equation (3.8) and can be expressed by 

equation (3.9) w i l l be referred to as a Linear Property Change. A property 

change that does not satisfy equation (3.8) and which must be expressed by 
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equation (3.10) w i l l be referred to as a Nonlinear Property Change. A table 

showing the properties and elements and whether the corresponding changed 

stiffness matrix can be calculated exactly or only approximately is shown in 

Table (3.1). 

3.2 Element Implementation for Linear Property Changes 

As mentioned, the [k 1 matrices are a l l calculated within INSTRUM. For the 
ep 

linear property changes, i.e. those in which [k g] = [k g] + [ 6̂p]» t n e [ k e p l 

matrices can be found from the original stiffness matrices by picking off the 

appropriate terms and zeroing the rest of the matrix. An example for a simple 6 

degree of freedom beam element is shown in Fig. 3.1. 

For a l l the properties implemented the [ m
ep] matrix is either the elemental 

mass matrix [tn ], or is identically equal to zero, thus every mass change is a 

linear property change. 

3.3 Element Implementation for Nonlinear Property Changes 

There are three elements which can have nonlinear property changes, i.e. 

changes for which the changed stiffness matrix resulting from some fractional 

property change can not be calculated exactly. These elements are the triangular 

plate element (thickness property), the curved beam element (cross-sectional 

dimensions b,d), and the thick thin shell element (thickness property). Each of 

these w i l l be considered in turn. 
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Table 3.1. Vast Elements and Properties Included in INSTRUM 

Element IEC # Linear Property Nonlinear Property 

Thick Thin Shell 1 P, E t 

Beam 3 A, p, 11, 12, J, E 

Triangular Plate 4 p, E t 

Curved Beam 7 p, E b, d 

Rod 8 A, p, E 

Triangular 
Membrane 

9 t, p, E 

Curved Bar 10 p, E 

Stiffened 
Membrane 

11 p, E 

8 Node Brick 16 p, E 

10 Node 
Tetrahedron 

17 Pt E 

8 Node 
Quadralateral 

20 t, p, E 

Shear Web 23 Pt E 
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A,I 

i w. 

X = generalized coordinates = { 

u l 

w l 
e, 

Wo 

E A o o - E A 

0 

LT L 

12EI 6EI 0 _ 12EI 6EI 
L 3 L 2 L 3 L 2 

6EI 4EI _ 6EI 2EI 
L 2 L 2 

JA_ 0 0 - ^ f - 0 0 

0 - 1 2 E I _ 6 E I 0 12EI _ 6EI 
L 3 L 2 L 9 L 2 

6EI 2EI _ 6EI 4EI 

Figure 3.1(a) 

L 2 
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EA EA 

[k ] = 1 ep 1 EA EA 

p=area 

Figure 3.1(b) [ k
e p] matrix for the area property of a 6 d.o.f. beam. 
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3.3.1 Triangular Plate Element 

The thickness change in the triangular plate element is the only nonlinear 

change considered that can make use of the original stiffness matrix in order to 

calculate its [k 1. This is because the element formulation considers the bend-1 epJ 

ing and membrane actions of the element separately. 

The bending terms in a triangular plate element arise from the strain energy 

calculation [21] 

(3.11) U = -L. (d} T ( // B T D B dA) {d} 
A 

where 

xx 
{d} = { W y y } ; 

2w xy 

D = E t~ 
12 (1 - v 2) 

1 v 
v 1 
0 0 

0 
1-v 

w = transverse deflection of plate; 

B = strain - displacement matrix; 

t = thickness of plate. 

This results in a bending stiffness matrix of the form 
E t 3 r rr T>TT [k], [ // B!D B dA ] (3.12) 

'bending 1 2 ( 1 _ y 2 ) A " 
where 
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D = 
1 v 
v 1 
0 0 

0 
0 
1-v 

Thus a l l bending terms are proportional to the cube of the thickness of the 

plate. So for these terms 

[k ] ^ A 1 - t — bending_ = 
1 epJbending 5t 1 1 bending v ' 

The thickness change is a linear property change for the membrane action, 

and [k 1 , = [k] . . The total [k ] matrix is obtained from the 1 epJmembrane 1 1 membrane 1 epJ 

original stiffness matrix by transforming to local coordinates (where the 

terms that correspond to bending and those that correspond to membrane action can 

be distinguished), multiplying the bending terms by three, and transforming back 

to global coordinates. 

3.3.2 Curved Beam Element 

The curved beam element stiffness matrix used in VAST had to be 

reformulated for use in INSTRUM. 

The conventional stiffness matrix formulation as given by Buragohain, 

Agrawal, and Ayyar proceeds as follows [22]. 

Using Figure 3.2 for any nodal position i the half width vector V 2 in the n 

direction and half depth vector V 3 in the C direction can be expressed as 

V 2 i = U ^ z ^ - {x iy iz i} c (3.14) 
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Figure 3.2 Curved Beam Element 
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v 3 1 - { ^ l ^ t " < W l } c (3.15) 

The element geometry can be defined in terms of mid-surface nodal 

coordinates and vectors and V^^ as 
3 3 3 

{xyz} = Z N ± {x iy 1z 1> c + Z N ± n v " 2 1 + Z N £ C V 3 1 (3.16) 

The are the quadratic shape functions given by 

Nj - -y- I (1 + I) 

N 2 = -~ ( 1 - S2) (3.17) 

N 3 = - i - C (1 - I) 

Any line through node i , originally normal to the mid-surface and along 

can have three independent translations - u^, v^, In the global directions X, 

Y, Z and two independent rotations - and 6̂  about the two local axes £ and n. 

The complete 18 d.o.f. element displacement f i e l d is given by 

3 U i 3 b, a i 
{ v } = Z N { -v } + Z N T| [d*] { B } 

i=l 1=1 
W i Y i 

3 d ±
 a i 

+ Z N C V - t d?*J i P< 1 (3'18> i=l 1 

Y i 

Where the [d*] and [d**] are matrices of direction cosines given by 
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[d*] = 

— 

0 -h h 0 
= m3 0 [d**] = m l 0 

n3 0 -n 2 n l 0 
_ 

The strains {e} in global coordinates are expressed in terms of the 

derivatives in global coordinates as 

{e} = = { 

e 1 0 0 0 0 0 0 0 0 ~ u 
X y 
e 0 0 0 0 1 0 0 0 0 u 

y z 
e 0 0 0 0 0 0 0 0 1 v 

z 1 « - { x 

a ' 0 1 0 1 0 0 0 0 0 - 1 V 
xy y 

Y 0 0 0 0 0 1 0 1 0 V 
y z z 

Y 0 0 1 0 0 0 1 0 0 w 
zx X 

[S] { u u u v ... w} L 1 x y z x z 

w 
w 

(3.19) 

The derivatives with respect to n, C are related to the x, y, z 

derivatives by means of the Jacobian matrix [J]. 
,T 

thus 

{ u C U n U C } = [ J ] { u x U y U z } 

{ u x u y u z } = [ J " 1 ] { u t % U C } T 

(3.20) 

(3.21) 

and 
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{u u u ... w } = [AJ] {u_ u u r ... w,.} x y z z 1 J £ n C C (3.21) 

where 

[AJ] = 
[ J _ 1 ] 0 0 
0 [ J * 1 ] 0 
0 0 [ J - 1 ] 

Differentiating equation (3.18) gives 
3 T 

{u^ u^ U j . ... ŵ } = I [M^ {u± v i w± a± 6̂  y±} (3.23) 

where the [M^] are functions of £, n, £. 

Substitution of equation (3.23) into equation (3.22) and the resultant 

product into equation (19) results in 

{ E x Ey E z Yxy V Yzx> = }=l 'V { u i V i W i a i h VT (3'2A) 

where [B 1] = [S] [AJ] [M£] 

Expressing equation (3.24) in another way 

{ e x e y E z Y x y Y y z Y z x } = [ B ] W v l w l a l M l u 2 v 2 V ^ ^ ^ ^ s M s * 1 < 3 - 2 5 > 

where [B] is given by [B] = [Bx B 2 B 3 ] 

The elemental stiffness matrix [k] is given by 

+1 +1 +1 T 

[k] = / / / [B] [D] [B] det [J] d£ dn dC (3.26) 
-1 -1 -1 
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where [D] Is the elasticity matrix in global coordinates at the particular 

integration point. 

+1 +1 +1 
= / J / [k] dl dn dC (3.27) 

-1 -1 -1 

where [k] = [B] T [D] [B] det [J]. 

As mentioned above, for this particular reformulation i t is assumed that the 

b and d dimensions are identical at a l l three nodes of the element. Then the 

required derivatives of the stiffness matrix are given by 

a JLLM. 
5b ab 

+i +i +i 
( / / / [k] dl dn dC ) 
-1 -1 -1 

+1 +1 +1 
= / / / - P L del dn dC 

- l - l - l 

(3.28) 

(3.29) 

Thus, the terms containing various powers of b,d must be kept separate and 

so b,d must be treated as variables throughout the multiplications required to 

obtain [k]. These multiplications can be kept to a minimum by partitioning the 

matrices 

[B] [D] [B] det [J] = [Bj B 2 B 3 ] [D] h 
Br 

det [J] (3.30) 

T ! T ! T„„ B̂ DB, ; B [ D B 2 ', Bj.DB3 

T ', T ', T„ BjDB^ ; B2DB2 ; B 2 D B 3 

T ! T _B3DB, ; B 3 D B 2 ; B 3 D B 3 

det [J] (3.31) 
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1 _ 
k l l 1 k12 1 k13 

= k 2 1 ] k22 j k23 

_ k 3 1 J k32 '» k33 

(3.32) 

Thus only one k ^ matrix needs to be calculated in terms of the i , j quantities 

and the b,d variables. The symbolic Algebra program MAPLE was used to carry out 

the necessary multiplications [23]. The general form of the k ^ matrix for the 

curved beam element is shown in Appendix B. This 6 x 6 matrix is then 

differentiated with respect to b and d and then by substituting the appropriate 

5 f k 1 9 T k. 1 

values for the i , j quantities the total 18 x 18 matrices — , — c a n ^ 

calculated. 

The result of the calculations is a very long fortran subroutine that 
a L M ak\ calculates l j  

ob ' od 
l j This subroutine must be called six times with the 

i , j values ranging i : i = l ... 3, j : j = i ••• 3 in order to evaluate the 

complete , matrices. Since a numerical integration is required 

these two matrices are calculated at each gauss point in order to determine the 

f i n a l d [ k ] — 0 | k l — matrices. Finally the [k ] matrices are calculated using ob od ep 
the definitions provided by equations (3.6) and (3.7). 
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3.3.3 Thick Thin Shell Element 

The formulation of the thick thin shell element stiffness matrix parallels 

the curved beam derivation quite closely [24]. There is an additional constraint 

imposed here in that the element is required to have uniform thickness. 

For the thick thin shell element there are 8 nodes and 5 degrees of freedom 

per node. The [B^] matrix is thus a 5 x 5 matrix, as is the elasticity matrix 

[D]. The stiffness matrix again comes from a numerical integration of the form 
+1 +1 +1 rp 

[k] = / / / [B] [D] [B] det [J] dl dn dC (3.37) 
-1 -1 -1 

+1 +1 +1 
= J J J [k] dl dn dC (3.38) 
-1 -1 -1 

In this case the nonlinear property being considered is the thickness 

property, so the required derivative is 
.... +1 +1 +1 . r5-. 

= 1 1 1 dl dn dC (3.39) 
o z -1 -1 -1 

where t = thickness of the element. 

The total [B] matrix In this case is a 40 x 5 matrix containing 8 5x5 [B^J 

matrices corresponding to the 8 nodes. 
[B] = [Bx B2 B3 B4 B5 B6 B7 Bg ] (3.40) 
T 

The [B] [D] [B] det [J] matrix can then be partitioned into the form 
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T 
B[DB1 

, B£DB2 ] B J ^ i B^DB,, ' T 
DB5 

B I T D B 6 j T ! 
BX DB7 ; 

B^DBg 

T T 
B2DB2 

T 
' B2DB3 

J B 2
TDB 4 B 2

TDB 5 B2
TDB6 j T ! 

B2 DB7 ; 
B2DB8 

T 
B3 D B1 

B 3 D B 2 < B3DB3 i BgDB^ ' BJDB5 BJnBg i B̂ DBy j B̂ DBg 

T 
Bl4DB1 

BJDB2 : BJDB3 J BJDB̂  BJDB5 BJDB6 j BJ"DB7 i B̂ DBg 

T B^DB2 r B5DB3 B5DB5 B 5 D B 6 ! B*DB7 ; B̂ DBg 

T BgDB2 

i T 
j B6DB3 BJDB5 

T ! 
B6DB7 j 

BJDB8 

T 
ByDBj ' 

T 
, ByDB2 

, B7DB3 .' T 
1 B7DB4 

B7DB5 BJDB6 j T ! 
B7DB7 ; 

B7DB8 

T 
BfTDB1 

T 
' B8DB2 

i BJDB3 J BgDB̂  BJDB5 ' BgDBg J T ! 
BgDBy J 

BsDBg 

det[J] 

— 
k l l 1 k12 t • • • k18 

; k22 f • • • k28 (3.42) 
• 

• 

. k81 

• • 

' k82 t • • • 

• 
• 
• 

k88 _ 

As for the case of the curved beam element only one matrix B^DB^detfJ] need be 

multiplied out in terms of variables. The computational savings of performing 

only one k. . calculation is especially obvious in this case. The symbolic 



algebra program is again used to perform the multiplications necessary to obtain 

this matrix and to take i t s derivative. The general form of the k ^ matrix 

for the thick thin shell element is shown in Appendix B. Finally, once again the 

[k gp] matrix is calculated using the definitions provided by equations ( 3 . 6 ) and 

( 3 . 7 ) . 
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CHAPTER 4 

SOLUTION BEHAVIOUR 

This chapter w i l l consider the behaviour and accuracy of INSTRUM solutions 

for various problems by examining the linear and general perturbation equations 

that are involved. In particular a discussion is presented of solutions to 

problems where i t is desired to change the fundamental frequency of a system by 

making one structural change (which must be a linear property change). Under 

these conditions bounds can be imposed on both the linear and general perturba­

tion equation solutions that w i l l result. It w i l l also be shown that linear 

perturbation solution accuracy is better i f the structural change is to the 

stiffness properties rather than the mass properties of the system. Finally i t 

w i l l be shown that exact general perturbation equation solutions w i l l result for 

a l l problems in which the structural change does not alter the baseline mode 

shapes. 

The following results make use of Rayleighs quotient, which calls for the 

stiffness and mass matricies involved to be positive definite. Theoretically 

this is an easy condition to meet, but in practice i t is often deemed necessary 

to transform matricies from local to global coordinates and sometimes this can 

destroy the positive definiteness of the stiffness and mass matrices. An example 

from VAST Is the thick thin shell element. It has five local degrees of freedom 

per node and in INSTRUM the stiffness and mass matricies are a r t i f i c i a l l y trans­

formed to six global degrees of freedom per node - destroying positive definite­

ness. Also the use of lumped mass matrices can lead to a mass matrix which is 

positive semi-definite If there are zeros on the diagonal, again violating the 

conditions for Rayleighs quotient. Thus caution must be used when applying the 
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following results to ensure the problem in question satisfies the conditions for 

a Rayleigh's quotient result. 

4.1 Linear Property Change, One Frequency Constraint 

Consider the problem of changing the fundamental frequency of a system by 

having one structural change that can affect either the mass and/or stiffness of 

the system. In this case there is only one unknown and one equation for each of 

the linear and general perturbation equations. Thus the functional Is not used 

and a closed form solution exists. 

It w i l l be assumed here that the change in stiffness and the change in mass 

wi l l be linear property changes, i.e., they can be exactly represented by the 

linear products a [k 1, a [ m l such that v ep 1 ep J' ep 1 epJ 

tAKl E aep I V ( 4 - 1 } 

t A M ) 5 aep I V ( 4 ' 2 ) 

As explained in Chapter 3, this is always true for mass changes but not for every 

stiffness change. 

4.1.1 Linear and General Perturbation Equations 

The linear and general perturbation equations for the type of problem 

mentioned above w i l l be 

( [ k
e p] { 9 1 } T " <4 { e i } T t mepl { 9 1 } T ) aep = M W K ' " <4> 

(4.3) 

( {*\}T [k e p] {^} T - co* {0^} T [mep] {9^}T) a° p = 

{^} T [M] {$} co*' - [K] [$} (4.4) 

respectively. 
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4.1.2 Linear Equation for Stiffness Change 

For a stiffness change i t can be shown (see Appendix C) that when 

constraining the fundamental frequency 

c t L < a e x a c t (4.5) ep ep 

and i f {cp|} = {<\>^} then when constraining the i'th frequency 

L exact ,, , N a = a (4.6) ep ep 

The result (4.6) comes about since i f there Is no mass change and no change 

in mode shape the linear perturbation equation is an exact equation. 

4.1.3 Linear Equation for Mass Change 

For a mass change i t can be shown (see Appendix C) that when constraining 

the fundamental frequency 

a L < a e x a c t (4.7) ep ep 
but that i f {cpj} = {̂ }̂ then when constraining the i'th frequency 

a L < a
e x a c t (4.8) ep ep 

The result (4.8) comes about since even i f there is no change in mode shape 

and \<\>^\ = [<\>j] then equation (4.4) w i l l s t i l l not be an exact equation because 

of the frequency term on the lef t hand side. 
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4.1.4 General Equation for Stiffness or Mass Changes 

For a structural change involving either a stiffness and/or mass change i t 

can be shown (see Appendix C) that when constraining the fundamental frequency 

a G < a e x a c t (4.9) ep ep 
and that i f {tŷ } = {<\>^} then when constraining the i'th frequency 

a G = a e x a c t (4.10) ep ep 
The result (4.10) comes about because i f there is no change in mode shape 

then equation (4.4) is an exact equation no matter i f the change is to the 

stiffness or the mass properties of the system. 
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CHAPTER 5 

INSTRUM EVALUATION 

This chapter contains an evaluation of INSTRUM. The examples show the 

various features of INSTRUM and discuss the effectiveness of the program when 

presented with different types of problems. To begin an example in which the 

perturbation influence terms are calculated is shown. Then a series of problems 

is shown corresponding to the type of problem discussed in chapter 4 where i t is 

desired to change the frequency of a system with one structural change. In these 

types of problems there is no need to form a functional to be minimized because 

in both the linear and general equations there w i l l be one equation and one 

unknown. Problems involving non-linear property changes and higher frequencies 

are also discussed. Finally a problem with many structural parameters is shown 

which evaluates the equation solver used in INSTRUM along with Its many options. 

5.1 Perturbation Influence Terms 

The following problem is an example of the usefulness of the perturbation 

influence terms defined by equation (2.27). INSTRUM can be run with an option to 

do nothing more than return the perturbation influence terms that correspond to a 

certain property change and to a certain mode. Each element (or group of 

elements, i f i t is desired to change a group of elements uniformly) w i l l have a 

perturbation influence term which w i l l show by i t s relative magnitude how 

effective changing a particular property of that element w i l l be on changing the 

natural frequency in question. 

- 45 -



The structural f i n i t e element model, which consists of a frame composed of 5 

curved beam elements, is shown in Fig. 5.1 along with the f i r s t mode shape. It 

is desired to find the structural changes that have the greatest effect on 

increasing or decreasing the f i r s t natural frequency. 

The perturbation influence terms for this problem are given in Table 5.1 and 

show the effect of changing 4 properties of each element on the f i r s t natural 

frequency of the frame. 

Table 5.1. Perturbation Influence Terms for Curved Beam Frame - First 

Natural Frequency. 

ELEMENT # P.I.T. 
b DIMENSION 

P.I.T. 
d DIMENSION 

P.I.T. 
E 

P.I.T. 
DENSITY 

1 27,600 8,720 9,450 - 732 

2 6,720 - 3,800 5,260 - 9,060 

3 - 1,270 - 9,850 4,290 -14,100 

4 6,720 - 3,800 5,260 - 9,060 

5 27,600 8,720 9,450 - 732 

A positive value implies that the structural change would tend to increase the 

frequency and a negative value implies that the structural change would tend to 

decrease the frequency. It can be seen that the change that would have the 
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Figure 5.1 Curved Beam Frame Structural Model and First Mode Shape 

- 47 -



greatest effect on increasing the f i r s t frequency would be to increase the b 

dimension of either element 1 or 5. The change that would have the greatest 

effect on decreasing the f i r s t frequency would be to increase the density of 

element 3. This information is shown graphically in Fig. 5.2. Similarly the 

perturbation influence terms can be calculated for other modes. 

5.2 Linear and General Perturbation Equation Accuracy 

A series of problems w i l l be presented which show the behaviour of the 

linear and general perturbation equations for different situations. These 

problems w i l l a l l have one thing In common - one desired frequency constraint and 

one possible structural change. In these types of problems there is no need to 

form a functional to be minimized because in both the predictor and corrector 

analyses there w i l l be one equation and one unknown. 

Three general types of problems w i l l be considered. One type is linear 

and general equation accuracy for a stiffness or mass change when the mode shape 

does not appreciably change. The other two types are when either the mode shape 

does not change appreciably or when the mode shape changes drastically. It w i l l 

be seen that the results w i l l differ considerably for each case. 

The following results and graphs were produced by running INSTRUM for a 

range of desired frequency shifts with a certain structural element being allowed 

to change. The results are a l l for one complete predictor and corrector 

analysis. The intermediate predictor results are graphed for comparison with the 

corrector solutions. In general, the number of modes supplied to INSTRUM from 

VAST has an effect on the linear approximation to the changed mode shapes and so 
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the general equation solution usually depends on the mode shapes supplied. 

Using the general equation with one mode only does not allow the mode shape to be 

updated using equation (2.26a) and so the original mode shape is used. The 

linear equation in a l l cases uses the original mode shape corresponding to the 

frequency being changed. 

Each graph w i l l correspond to one type of structural change. The predictor 

analysis results and the corrector analysis results for various numbers of modes 

are shown along with the exact answers. The exact answers are obtained by re­

running VAST with various values of the structural changes. The x axis w i l l be 

normalized as the ratio of the desired value of a certain frequency to the orig­

inal value of that frequency. The y axis w i l l then show the fractional change 

required to bring about the frequency shift. A y value of 0.5 indicates the 

property in question is to be Increased by 50%, while a value of 3 indicates the 

property is to be increased to 4 times what i t was originally. The error in the 

results should be taken to be the horizontal distance between an INSTRUM result 

and the exact answer, because this distance indicates the difference in the 

prescribed frequency and that resulting from implementation of the changes 

calculated by INSTRUM. 

5.2.1 Curved Beam Cantilever Model 

A cantilever beam made up of two curved beam elements is shown in Fig. 5.3 

along with the f i r s t three mode shapes. Figure 5.4 shows the results for 

changing the density of element 2 on shifting the f i r s t natural frequency. 

Figure 5.5 shows the results for changing E of element 1 and Figure 5.6 shows the 

results for changing the b dimension for element 1. 
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Figure 5.3 Cantilever Beam Model Composed of 2 Curved Beam Elements 
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Investigating the effect of changing the density of element 2 on the f i r s t 

mode shows that the mode shape does not change in this case. This Is reflected 

in the general equation results In that they are exact when INSTRUM is given 

either 1 or 3 modes. The linear equation results are poor, but for structural 

changes that change the mass of the system this is typically the case as 

explained in Chapter 4. 

Investigating the effect of changing E of element 1 on the f i r s t mode shows 

that the f i r s t mode shape does not change appreciably for this type of structural 

change. This is reflected in the relatively high accuracy of the one mode 

solution. As would be expected the 3 mode solution gives improved accuracy and 

as shown in Fig. 5.5 provides extremely reliable results for large frequency 

changes. The predictor and the one mode corrector solution coincide as in this 

case only a stiffness modification is made and in a l l such cases the linear 

perturbation equation and the general perturbation equation are identical. 

It may also be noted that for the above two property changes the INSTRUM 

solutions are less than or equal to the exact solutions In every case. These are 

two examples of linear property changes, I.e. the [AK] that comes about as a 

result of a certain fractional change a which can be represented identically as 

[AK] = O [k ] . ep 1 epJ 

Changing the b dimension of element 1 comprises a nonlinear change, i.e. a change 

in which the [AK] that comes about as a result of a certain fractional change o 

can only be approximated as 

[AK] - O [k ] . ep 1 epJ 

As can be seen, this has a great effect on the possible accuracy that can be 

obtained. 
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No longer are a l l the INSTRUM results less than or equal to the exact 

result. In fact a l l are greater than the exact result. Also no longer does the 

general equation provide Improved accuracy over the linear result. Investigation 

into this problem shows that the linear approximation to the changed mode shape 

is quite accurate, and so is not to blame for the inaccuracy. 

The general perturbation equation used in INSTRUM for this type of problem 

is shown in Chapter 4 by equation (4.4). As mentioned in Chapter 4 this equation 

is exact i f the exact changed mode shape is used and i f the [AK] given by a 

structural change is given exactly by a [k ]. The general perturbation equa­

tion was shown to come from a Rayleighs quotient approach in Chapter 2, and thus 

the equation is expected to give a good result as long as a good approximation to 

the changed mode shape is used. The only possible conclusion is that the error 

results from the fact that this structural change is a nonlinear stiffness 

property change which cannot be expressed accurately by a [k
ep]« 

5.2.2 Battery Pack Solid Element Model 

This problem shows the exceptional accuracy that can be obtained for a large 

problem when the mode shape corresponding to the frequency being shifted does not 

change as a result of the structural change. The structural model of a battery 

pack is shown in Fig. 5.7. It consists of 4 solid elements comprising a 

cylindrical shape (the battery) surrounded by 32 solid elements representing the 

potting compound. The outside nodes are constricted to be fixed and the battery 

nodes inside are free to move. There are 68 nodes in a l l with 408 total degrees 

of freedom. The f i r s t three mode shapes are shown in Fig. 5.8. 
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Figure 5.7 Structural Model of Solid Element Battery Pack 
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The INSTRUM problem is to increase the f i r s t natural frequency by varying 

Young's Modulus of the potting compound. The INSTRUM results are shown in Fig. 

5.9. Changing E of the potting compound does not change the mode shapes, and 

since changing E affects only the stiffness properties of the system the linear 

and general equation solutions a l l give the exact answer for any sized frequency 

shift. 

5.2.3 Box Model with Superstructure 

This problem shows the performance of INSTRUM on a large problem when the 

structural change affects predominently the mass properties of the system. 

Figure 5.10 shows a box model made up of 19 quadrilateral membrane elements 

consisting of 56 nodes and 336 total degrees of freedom. Also shown is the f i r s t 

vertical bending mode of the model. Figure 5.11 shows the INSTRUM results for 

changing this mode by Increasing the thickness of the 5 elements comprising the 

superstructure (INSTRUM f i l t e r s out the rigid body modes and so they are not used 

in the calculation). 

The linear equation results are not good but they are not expected to be 

since the thickness change involves a change in mass properties of the system 

(see Chapter 4). The general equation results, however, show good accuracy 

reflecting the improvement that is expected when using the general equation for 

structural changes that affect the mass properties of a system. 
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Figure 5 .9 Effect of Changing First Frequency by Changing E of Potting Compound 



Figure 5.10 Structural Model of Box with Superstructure and Fundamental 
Vertical Mode 
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Figure 5.11 Effect of Changing Fundamental Mode by Changing Thickness of Superstructure Elements 



5.2.4 Thick Thin Shell Model 

This problem shows the behaviour of INSTRUM when a structural change 

drastically affects the mode shape in question. Figure 5.12 shows the structural 

model for a curved shell consisting of 4 thick thin shell elements which is 

simply supported at the corners. 

Figure 5.13 shows the INSTRUM results for changing E of a l l 4 elements uni­

formly. The mode shapes do not change for this type of structural change and as 

expected the linear and general results are a l l exact. 

Figure 5.14 shows the INSTRUM results for changing E of element 1 on chang­

ing the lowest natural frequency. Investigation shows that the f i r s t mode shape 

changes drastically in this case. The INSTRUM results are inaccurate. This is 

due to the fact that the mode shape change is such that equation (2.26a) can not 

approximate i t no matter how many mode shapes i t is given originally. 

5.2.5 Ten Element Cantilever Beam Model 

This problem shows the care that must be taken when using INSTRUM to 

increase the lowest frequency of a system. Consider the problem of increasing 

the lowest frequency of a cantilever beam by changing the bending moment of 

inertia of the whole beam. The structural model Is composed of 10 general beam 

elements. From experience i t could be assumed that a uniform stiffness change 

such as this w i l l not affect the mode shape and that only the f i r s t mode shape 

need be used in INSTRUM. 

The INSTRUM results are shown in Figure 5.15. Note the exact answer becomes 

a vertical line at a certain point. This corresponds to the fact that increasing 

the moment of inertia increases a l l the bending modes proportionally, but does 
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Figure 5.12 Curved Shell Model Composed of Thick Thin Shell Elements and First 

Mode Shape. 
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not affect the axial modes. At a certain point the f i r s t axial mode becomes 

the fundamental mode and no change in inertia w i l l affect i t . INSTRUM w i l l not 

predict this occurrence and i t keeps on predicting the structural change required 

to increase the original bending frequency. Thus for this type of problem care 

must be exercised to understand the effects of structural changes in considera­

tion of the physical mechanism determining the mode shapes. 

5.3 Equation Solver Behaviour 

A 10 element cantilever beam problem is used to evaluate the performance of 

the equation solver in INSTRUM. Recall that the equation solver is used when the 

number of possible structural changes is different than the number of frequency 

constraints. The incremental features of INSTRUM w i l l also be applied to this 

problem and the property change considered w i l l be the density. 

INSTRUM has several user Input parameters that affect how a solution is 

determined using the iterative equation solver. As explained in Chapter 2 the 

user can specify either a minimum weight or minimum change (default) optimization 

c r i t e r i a . The user can also emphasize any of the three terms of the functional 

by manually inputing values of the coefficients of these terms p^, ^n* o r 

(default = 1). These terms are the optimization term (minimum weight or minimum 

change - emphasized by increasing P-r)> the modal objective term (either the 

linear or general equation error - emphasized by increasing Pjj)> and the penalty 

function term (decides i f any bounds on the changes are violated - emphasized by 

increasing P T T T )« 
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The problem posed was to change the f i r s t frequency from .557 Hz to .3 Hz by 

changing the density of a l l 10 elements individually. Only one mode was used in 

VAST, and in a series of runs the equation solver parameters were varied and the 

incremental algorithm used. The series of structural changes as returned by 

INSTRUM were applied to the original f i n i t e element model and the fin i t e element 

program VAST was run on these models to determine the actual frequencies that 

would result. 

Table 5.2 shows the values of f l obtained from the VAST runs using the 

INSTRUM results - recall the desired answer is f l = 0.3 Hz. The results for 1 

linear increment are in general poor, but this is to be expected since from 

Chapter 4 the linear equation tends to give poor results when mass changes are 

involved. It is interesting to note, though, that 2 linear increments give good 

results. This is due to the updating procedure explained in Chapter 2 which 

lessens the error that comes from the frequency term in the linear equation. The 

general incremental solution is excellent when the minimum change or the minimum 

weight solver is used and the frequency constraint term is emphasized. Emphasiz­

ing the optimization term 8^ has the effect of decreasing the accuracy of the 

answer by shifting the emphasis away from satisfying the perturbation equations. 
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Table 5.2 Effect of INSTRUM and Solver Parameters on 

Frequency Prediction. 

Predictor 
Phase 

Corrector 
Phase 

2 Predictor 
Phase Increments 

2 Corrector 
Phase Increments 

Default Values 
(MC, 8 = 1) 

.425959 .299982 .309866 .299982 

MW Solver 
6 - 1000 

.425953 1.27636 .329831 NO SOLUTION 
,cguld. be, determined 

MC Solver 
Bj = 100 .425961 .448279 .372135 .354967 

MW Solver 
B n = 1000 .425963 .299980 .309867 .299980 

MC Solver 
B n = 100 .425959 .299982 .309866 .299982 

Tables 5.3 and 5.4 show the value of the optimization terms. The weight 

c r i t e r i a is defined as the sum of a l l 10 fractional changes and the change 

cr i t e r i a is defined as the sum of the squares of a l l 10 fractional changes. 
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Table 5.3 Sum of Structural Changes Showing the Effect of 

the Minimum Weight Criteria 

Predictor 
Phase 

Corrector 
Phase 

2 Predictor 
Phase Increments 

2 Corrector 
Phase Increments 

Default Values 5.60740 19.3507 17.5198 19.3507 

MW Solver 
Bj = 1000 

3.53060 -8.17230 3.44230 

MC Solver 
Bj = 100 4.66470 2.35730 9.33870 6.20200 

MW Solver 
B n = 1000 5.29640 18.8919 17.2261 18.8919 

MC Solver 
B n = 100 5.60740 19.3507 17.5198 19.3507 
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Table 5.4 Sum of Squares of Structural Changes Showing Effect of 

Minimum Change Criteria 

Predictor 
Phase 

Corrector 
Phase 

2 Predictor 
Phase Increments 

2 Corrector 
Phase Increments 

Default Values 4.19300 49.9738 44.2683 49.9738 

MW Solver 
= 1000 

2.88030 6.85850 33.4527 

MC Solver 
B - 100 3.44360 1.35656 12.6189 1.35656 

MW Solver 
B n = 100 4.19190 49.9711 44.2779 49.9711 

MC Solver 
B n = 100 4.19300 49.9738 44.2683 49.9738 

The results show that the minimum change or the minimum weight cr i t e r i a are 

best satisfied when B^ is increased, but from Table 5.2 this occurs at the 

expense of an accurate answer. The one exception to that is the two predictor 

phase solution for the minimum weight solver, which provides a good minimum 

weight with a small loss in accuracy. For both the mimimum change and the 

minimum weight the best optimized solution that also provides a completely 
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accurate answer Is given by the two predictor phase increments. The one and two 

increment corrector phase solutions are identical in a l l cases. 

The mass distributions that come about from implementing the INSTRUM results 

are shown in Figure 5.16. The results are in general disappointing. The 

distribution for the minimum weight solution with 2 predictor phase increments 

and 8j = 1000 is of the general form that would be expected for a minimum weight 

solution of this problem but is physically unrealizable in that most sections are 

reduced to almost zero. 
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1 2 3 4 5 6 7 8 9 10 

a) Minimum weight solver, 2 predictor increments 
b) Minimum weight solver, Bj. = 1000, 2 predictor increments 
c) Minimum change solver, 2 predictor increments 
d) Minimum change solver, 1 predictor-corrector analysis 

Figure 5.16 Mass Distributions for Cantilever Beam 
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CHAPTER 6 

CONCLUSIONS 

A perturbation based dynamic redesign method has been developed as the 

computer program INSTRUM. INSTRUM can be used to solve redesign problems which 

have been traditionally solved using a t r i a l and error approach. INSTRUM is most 

effective for problems involving frequency constraints and which have a small 

(<5) number of structural parameters. Mode shape constraint problems can be 

solved using INSTRUM but this aspect was not investigated. 

There are two distinct types of property changes that can occur and INSTRUM 

performs differently for each. Problems that involve linear property changes 

receive the most accurate results from INSTRUM. INSTRUM gives less accurate 

results for nonlinear property changes and in such cases the predictor analysis 

solution can be more accurate than the corrector analysis solution. A more 

accurate means of approximating the change in elemental stiffness that arises 

from a nonlinear property change is needed. 

The following applies to problems involving linear property changes. In 

general for problems In which the structural change does not affect the mode 

shapes of the system the INSTRUM corrector phase results w i l l be exact for any 

desired frequency sh i f t . For problems in which the mode shapes are not affected 

drastically INSTRUM proves to be accurate for large frequency shifts ("large" 

being between 10% upwards of 100% or even higher, depending on the problem). For 

problems in which the mode shapes are affected drastically INSTRUM w i l l not be 

able to predict the new mode shapes and the answers w i l l not be accurate for 

large frequency shifts. 
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The general perturbation equation used in INSTRUM can be derived using a 

variational approach. This allows bounds to be imposed on the solutions of 

problems in which i t is desired to change the fundamental frequency of a system 

by making one linear property change. 

The equation solver used in INSTRUM is not adequate for problems that 

involve many more structural change parameters than the number of frequency 

constraints. The equation solver gave either poorly optimized or physically 

unrealizable results for a problem with ten structural parameters and one 

frequency constraint. Changing the values of the coefficients of the three terms 

of the functional does not improve the result. In particular increasing 8^ may 

make the equation solver satisfy the optimizing c r i t e r i a without satisfying the 

frequency constraint. 
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APPENDIX A 

PERTURBATION TERMS FOR TWO ELEMENT CANTILEVER BEAM 

From equation (2.16) the 24 perturbation terms that result before the 

nonlinear terms are cancelled are 

[ft]T [AK] [ft] + [ft]T [AK] [A«] + [ A $ ] T [AK] [ft] + 

[A$] T [AK] [Aft] - [ft] T [AM] [ft] [ co2 ] - [ft] T [AM] [ft] [ Aco2 ] -

[ft] T [AM] [Aft] [ co2 ] - [ft] T [AM] [Aft] [ Aco2 ] -

[Aft] T [AM] [ft] [ co2 ] - [Aft] T [AM] [ft] [ Aco2 ] -

[Aft] T [AM] [Aft] [ co2 ] - [Aft] T [AM] [Aft] [ Aco2 ] = 

[ft] T [ M] [ft] [ co2 ] + [ft] T [M] [ft] [ Aco2 ] + 

[ft] T [ M] [Aft] [ co2 ] + [ft] T [M] [Aft] [ Aco2 ] + 

[Aft] T [M] [ft] [ co2 ] + [Aft] T [M] [ft] [ Aco2 ] + 

[Aft] T [M] [Aft] [ co2 ] + [Aft] T [M] [Aft] [ Aco2 ] - [ $ ] T [K] [ft] -

[ft] T [ K] [Aft] - [Aft] T [K] [ft] - [Aft] T [K] [Aft] (A.l) 

The purpose of this section is to determine the magnitude of these terms for a 

simple problem to see i f i t is justifiable to cancel the terms that are higher 

order in A than one. Note that the terms in equation (A.l) are actually n x n 

matrices, and so when examining these matrices i t is necessary to compare the 

individual i , j elements. 

A cantilever beam composed of 2 general beam elements was the model 

considered. Using fi n i t e element theory this problem was solved for the baseline 

case, as well as for a range of problems In which the moment of inertia or the 
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area of the free element was modified. In each case four mode shapes were solved 

for, and the 24 matricies of equation (A.l) were evaluated. 

It is convenient to group terms since many of the terms in the matricies on 

the left and right hand sides of equation (A.l) cancel. The following 8 groups 

together comprise 24 terms corresponding to the i'th, j'th elements of the 

matricies in equation (A.l) 

1. ([K] - ^ [M]) 

2. ([K] - ^ [M]) {ACVJ} 

3. R ([K] - ^ [M]) [*J 

4. R ([K] - ^ [M]) { * J 

5. A([K] - ^ [M]) 

6. {*/ A([K] " ^ [M]) W 4 } 

7. {A4>±} A([K] - «^ [M]) 

8. ' A([K] - [M: ) 

The sum of groups 1 ... 8 should be zero for i , j = 1 ... 4 by equation 

(A.l). For these 8 groups the linear approximation assumes that groups 4, 6, 7, 

8 are a l l zero, since these groups a l l contain only terms of higher order in A 

than 1. Group 1 is just the free vibration equation of the baseline system and 

so is always identically equal to zero. Groups 2 and 3 contain purely linear 

terms in A. Group 5 contains terms linear in A except for the Aco2 (<l>i}T [AM] 

{<!>,} term. 
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Figures A.l to A.4 show the magnitudes of these 8 groups as designated by 

the hashed bars. The structural modification is changing either the moment of 

inertia or the area of the free element. Each graph corresponds to a certain 

structural change, and a certain value of i , j . Graphed beside each of these 8 

groups Is its corresponding linearized value found by ignoring a l l terms of 

higher order in A than one. These linearized values are designated by the solid 

bars. 

Figures A.l and A.2 show the magnitudes of the 8 groups for changing the 

moment of inertia of element 2. It can be seen from Figure A.l that for the i=l, 

j=l terms the non-linear terms of groups 4,6 and 7 are important. What that 

corresponds to In the INSTRUM algorithm is the linear portion trying to 

approximate {4>[}̂  [AK] {<\>^\ by {<^}^ [AK] {C|>̂ }. An interesting result regarding 

this approximation is seen in Appendix D. The effect is that for structural 

changes that cause severe mode shape changes the nonlinear terms become the same 

order as the linear terms and the approximation mentioned above is invalid. For 

the 1=1, j=2 terms the nonlinear terms of groups 4, 6, 8 are important. 

Figures A.3 and A.4 show the magnitudes of the 8 groups for changing the 

area of element 2. Figure A.3 shows how important neglecting the non-linear 

term in group 5 i s . Neglecting that non-linear term is the reason for the result 

(4.8) and the reason that the linear perturbation equations w i l l not give an 

exact answer in the case of a mass change even when the mode shapes do not 

change. The i=l, 3=2 graph again reflects the importance of that same non-linear 

term as well as the nonlinear terms of groups 4, 6 and 7. 
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APPENDIX B 

FORM OF k, A MATRICIES FOR CURVED BEAM AND THICK THIN SHELL ELEMENTS 

The general form of the stiffness matricies for the curved beam and the 

thick thin shell elements are shown here as they were calculated using the 

symbolic algebra program MAPLE discussed in Chapter 3. 

B.1 Curved Beam Element 

For the curved beam element the k ^ matrix turns out to be the following 

once a l l the necessary multiplications are carried out: 

Al A2 A3 Bl B2 B3 
A4 A5 A6 B4 B5 B6 
A7 A8 A9 B7 B8 B9 
BIO Bl l B12 CI C2 C3 
B13 B14 B15 C4 C5 C6 
B16 B17 B18 C7 C8 C9 

(B.l) 

Where the A, B, C terms are of the general form 
An^ bd 

A n = Dl + D2 b + D3 d ( B * 2 ) 

Bn^ b 2d + Bn 2. bd 2 + Bn3 bd 
B n = Dl + D2 b + D3 d ( B * 3 ) 

Cn = 
Cn* ̂  b 3d + Cn2^ b 2d 2 + Cn3 j b 2d + Cn^ bd3 + Cn^ bd2 + C n 6

l j bd 
Dl + D2 b + D3 d 

(B.4) 
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where An^, B n ^ j ••• B nij» G n i j "** G n l j a r e ^ u n c t l ° n s °f n» £ a s well as i,j< 

Dl, D2, D3 are functions of £, n, £. 

B.2 Thick Thin Shell Element 

For the Thick Thin shell element the individual components of the k 

matrices are 

Al A2 A3 Bl B2 
A4 A5 A6 B3 B3 
A7 A8 A9 B5 B6 
B7 B8 B9 CI C2 
BIO Bl l B12 C3 C4 

where the A, B, C terms are of the following form 

An} . t 3 + An2, t 2 + An3 t 
An ^ ^ LJ (B.6) 

Dl t 2 + D2 t + D3 

Bn} t** + Bn2 t 3 + Bn3 t 2 + Bn* t 
Bn = ^ ^ U U (B.7) 

Dl t 2 + D2 t + D3 

Cni . t 5 + Cn2 . t1* + Cn3 . t 3 + Cnt . t 2 + Cn^ , t 
Cn = — ^ i - i - (B.8) 

Dl t 2 + D2 t + D3 

where ••• ̂ n|j> B n l j *** B n i j ' G n i . j *** G n i j a r e f u n c t : * - o n s °f ^» £ a s 

well as i , j . Dl, D2, D3 are functions of £, n, £. 
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APPENDIX C 

PROOFS OF RESULTS FROM CHAPTER 4 

The results stated in Chapter 4 are proved here using a Rayleigh's quotient 

approach. 

C.1 Linear Equation for Stiffness Change 

For a structural change that affects only the stiffness properties of the 

system It can be shown that when constraining the fundamental frequency 

a L < a e x a c t (C.l) ep ep 

and i f {<\>̂} = {<|>̂} then when constraining the i'th frequency 
L _ exact , 0. a = a (C.2) ep ep v ' 

PROOF 

From equation (2.33) for a structural change In stiffness with no change in mass 

(<4}T [K«] {*•} 
1 1 =0)2/ (C.3) 

t+{} T [M] {+{} 1 

Since minimizes the quotient in equation (C.3) 

{^} T [K'] {4J 

{+ L} T [M] {^J 
> to2' (C.4) 

or 

i^V [K] {^} + {* }A [AK] {«, } 
> u i i ( C 5 ) 

[ t ^ [M] {+J 1 
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aexact { Q }T { 0 } 

u2 + _ e P _ i ^ l- > W2. (C.6) 
1 { ^ } T [M] 

exact , {^} (coy - 0)2) 
a > = a (C. /) 

e p { e , } 1
 tk ] { e , } e p 

1 ep 1 
aexact > aL ( c g ) 

ep ep 
If there is no change in mode shape and {<\>̂} = {<\>̂} then the inequality sign 

In equation (C.4) w i l l be an equal sign. This equation w i l l then be true for 

the i'th mode so that 
exact L 

a = a (C.9) ep ep 
when constraining the i'th frequency. 

C.2 Linear Equation for Mass Change 

For a structural change that only affects the mass properties of the system 

i t can be shown that when constraining the fundamental frequency 

<xL < aexact (CIO) ep ep 

but that i f {<\>^} = {<i>^} then when constraining the i'th frequency 

ccL < a e x a c t . ( C l l ) ep ep 

PROOF 

From equation (2.33) for a structural change in mass with no change in stiffness 

is 
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k;}T
 [ K ] {*;} 

^ to2' (C.12) 
M • 

Since <\>̂  minimizes the quotient in equation (C12) 

or 

MT
 [K ] {+ } 

> co2' (C.13) 
f ^ } T [ M « ] {^} 

M {̂ } 1 

[ K ] {̂ 1 to 2' 

[M] + [ * / [AM] {^} 

< (C14) 

l^} 1
 [ K ] co2 

< — (C.15) 
2 t 

aexact { }T { } 

+ _ e p 1 ep^ 1 < _ 1 _ 

i^}1 M {̂ } 

aexact { }T { } , 
1 + u 2 _ £ E eP J 1 < - J — (C.17) 

1 } T [ K ] {* } co2' 

exact ,„ ,1 
a {9.}1 [m ] {9,} to2 

i + 1 e P J 1 < - L _ ( c . 1 8 ) 

{^} T [M] {^J co2' 

exact c [M] 1̂ 1 «*» -«•$') 
a < =; (C19) 

{ 6 1 } [»epl {91> »l' 
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exact f< V [ M ] K ' " - aexact > 1 i 1 1 — (C.20) 

< V l 9 i > 

exact „ <*1>T t » l < « ! » K ' ' "j) 
a > = (C21) 

- { 9 1 } f mepl { 9 1 } 

From equation (C.17) to2 > to2* for a positive a and nonzero m and so 

exact • 1*1? M C4' - "j) a > - (C.22) 
e p - i e / [« e p] {G l } to2 

The same inequality holds i f a is negative since then co2^ < co2 '̂ and both sides of 

equation C.22 would be negative with the right hand side being larger in 

magnitude. Thus, i t follows that 

aexact > a L (C.23) 
ep ep 

If there is no change in mode shape and {c|>̂ } = {<\>^} then because of the 

frequency term in equation (C.22) when constraining the i'th frequency the exact 

answer w i l l s t i l l be greater than the linear equation solution. 

C.3 General Equation for Stiffness or Mass Changes 

For a structural change Involving either a stiffness and/or a mass change i t 

can be shown that when constraining the fundamental frequency 

a G < a e x a c t (C.24) ep ep 
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and that i f {<\>̂} = then when constraining the i'th frequency 

a G = a e x a c t (C.25) ep ep 

PROOF 

From Equation (2.33) for a structural change involving both a stiffness and a 

mass change 

{<M} T [K'] {*[} 
. T r . . . - , r. , " 4 ' ( C ' 2 6 ) 

W[V M {*{} 

<1>J minimizes thi 

{^} T [K'] {*\) 
L i T r „ . l r . L i 

Since <1>J minimizes the quotient in equation (C.26) 

> co? ' (C.27) 

> co2 (C.28) 

[M«] 

expanding [K'] and [M'] 

t^}T [K] 4- {^} T [AK] 

{*\}T [M] {^} + {^} T [AM] {^} 

Rearranging 

{^} T [AK] [*\] - co 2 ' {*\} [AM] {«# 

<4' i*\}T [M] " {^} T [K] {^} (C.29) 

Substituting for [AK] and [AM] 

( {9^}T [k e p] {9^}T - to2 {e^}1 [mep] { B \ } T ) a e x a c t > 

u>2' {^} T [M] {^} - {^} T [ K] \*\) (C.30) 
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„ , , , exact Solving for a 

a > — - Y~T r — (C.Jl) 
e p { eh T [k ] {eh - to2' {eh T [m ] {eh 

1 1 ep 1 1 1 epJ 1 
or 

aexact > aG (C.32) 
ep ep 

From equation (C.26) i f {<\>̂} = {^^ the inequality sign in equation (C.27) 

is replaced by an equal sign and this equation w i l l then be true for the i'th 

mode. Thus i f {<\>̂} = {<\>̂\ then when constraining the I'th frequency 
G exact ,„ a = a (C.33) ep ep 
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APPENDIX D 

PROOFS OF WORK INEQUALITIES 

D.1 For a Structural Change Involving Stiffness Properties Only 

{c }̂1 [AK] {Ĉ } > {c|̂ }T [AK] {«,•} (D.l) 
And for linear property changes 

c ] (e.) > {e;}T t _ 
epJ 1 1 ep 

{ 9 1 } T [ kep ] { 9 1 } > { 9 i } T t k e P
] { 9 1 } ( D ' 2 ) 

PROOF 

Part 1 

By Rayleigh's Principle the baseline, frequency is given by 

[ K ] {^} (4>j}T [K] 

1 = { ^ } T [M] {^} < { * [ } T [M] {+»} ( D ' 3 ) 

and the changed frequency is given by 

to2/ i-= — (D.4) 
1 { ^ } T [M] {*•} 

It can be assumed that the eigenvectors are normalized with respect to [M] such 

that 

{d^}1 [M] {Ĉ } = 1 (D.5) 

{4>[}T [M] fa'} = 1 (D.6) 

Then from equation (D.3) using (D.5) and (D.6) 

l^P [K] faj < i^}1 [ K ] {<]>[} (D.7) 
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From equation (D.4) using (D.5) and (D.6) 

..IT {*[} [K«] {<!>•} = to2' (D.8) 

ding 

k [ } T [K] {C|>[} + {4>[}T [AK] = to2' (D.9) 

or 

{^[}T [K] {<|,'} = 0)2 • - {cp«}T [AK] {cb»} (D.10) 

Substitution of equation (D.10) into equation (D.7) 

[K] {cl^l < co2!* - ̂ { } T [AK] {((,•} (D.ll) 

rearranging 

{<^}T [AK] < co2' - {c^} 1 [ K ] {C^} (D.12) 

using equations (D.3) and (D.5) the result from part 1 i s 

{c|^}T [AK] {*•} < co2' - co2 (D.13) 

Part 2 

From equation (D.4) using Rayleigh's Principle 

{^} T [K'] {*•} {* }T [K«] {* } 
co2' l— ^ < L_- ( D.14) 

1 i^}T [ M ] { ^ } T [ M ] 

Since the eigenvectors are assumed normalized with respect to [M] then 

{<4}T [K'] {*•}•< {cPx}T [K'] (D.15) 

or 

k [ } T [K] {*•} + {^[}T [AK] (4,'} < {c^} 1 [K] {C }̂ + {c^} 1 [AK] [4 -^ (D.16) 

using equation (D.10) 
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or 

{^} T [K] {*•} + a)2' - {^} T [K] {*•} < { ^ J 1 [K] + [AK] [tj 
(D.17) 

< f ^ } 1 [K] + {< 1̂}T [AK] {d^} (D.18) 

using equations (D.3) and (D.5) the result from part 2 i s 

o)2' - o)2
L < {(J^} 1 [AK] {d^} (D.19) 

Combining equations (D.13) and (D.19) 

(d>[}T [AK] {*[} < o)2/ - u2 < {d,^1 [AK] {C^} (D.20) 

which implies 

{(^} T [AK] {cp»} < {c^}1 [AK] {4̂ } (D.21) 

and i f there is a linear property change 

aexact { Q t } T { Q I } aexact { }T { } 

ep 1 1 epJ 1 ep 1 1 epJ 1 v ' 
or 

{ 9 1 } T t kep ] { 9 1 } < { 6 1 } T [ k e p ] { 6 1 } ( D , 2 3 ) 

D.2 For a Structural Change Involving Mass Properties Only 

{d^} 1 [AM] {C^} < (d,[}T [AM] (D.24) 

and 

{ ° 1 } T [ mep ] { 9 1 } < { e i } T [ m e p ] ( 9 i } ( D ' 2 5 ) 
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PROOF 

Part 1 

By Rayleigh's Principle the baseline frequency is given by 

{^V [K] {^} [K] {»{} 

{*1}T [M] < {*'}T [M] {*•} 
2̂ 1 L _ < L _ ( D.26) 

and the changed frequency is given by 

W[}T [K] {+;} 
0)2' l— i (D.27) 

1 ki} T [M«] {*•} 

It can be assumed that the eigenvectors are normalized with respect to [K] such 

that 

{^P [K] {tj = 1 (D.28) 

{^[}T [K] fo'} = 1 (D.29) 

Then from equation (D.26) using (D.28) and (D.29) 

{ c ^ } 1 [M] {^} > {*{}T [M] {<!,»} (D.30) 

From equation (D.27) using (D.29) 

{<!>;}T [M'] {<M} (D.31) 

expanding 

k[}T [M] + {4>[}T [AM] = -j— (D.32) 

or 

w l 

(<4} T [M] {<.»} = {<|»[}T [AM] {(^} (D.33) 
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substitution of equation (D.33) into equation (D.30) 

l ^ } 1 [M] WJ) > — J h { } T [AM] {<̂ } (D.34) 
" l 

rearranging 

{<|>[}T [AM] {(!>'} > — J {* } T [M] {4, } (D.35) 

using equations (D.26) and (D.28) the result from part 1 is 

(4>'}T [AM] {<|,'} > — J i — (D.36) 

Part 2 

From equation (D.27) using Rayleigh's Principal 

{*[}* [K] {*{} [K ] {* } 
w2' — > i-Ts — (D.37) 

1 [MV] {*{} {^}T [M«] 

Since the eigenvectors are assumed normalized with respect to [K] then 

[ * i l T [M»] {cP!} > { ^ J 1 [M«] {cl̂ } (D.38) 

or 

[M] {<P!} + {<I>:}T [AM] {4,:} > { ^ j 1 [M] {q }̂ + [ c p ^ 1 [AM] {4̂ } (D.39) 

using equation (D.33) 

{+{}T [M] {+!} + - J {+j}T [M] {4,:} > { * l ) T [M] {«, } + } T [AM] {<, } 
w i ' 

(D.40) 

or 
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*1 

> l ^ } 1 [M] 1*!) + I*!) 1 [AM] 

using equations (D.26) and (D.28) the result from part 2 is 

c o ! ' CO* 

l— > {^} T [AM] {^} 

Combining equations (D.36) and (D.42) 

(<4} T [AM] {*•} > - i ^ — > f ^ } 1 [AM] {* } 

which implies 

k ' } 1 [AM] foj} > { q ^ } 1 [AM] { d , ^ 

and since a l l mass changes are linear property changes 
aexact { e, }T ^ > aexact ^ { ^ } 

or 

{ 0 1 } T t mepJ { 6 i } > { 9 1 } T [ mep ] { 9 1 } 
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