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A bstract 

This thesis presents an experimental study and numerical predictions of the sepa-

rated-reattaching flow around a bluff rectangular section. Th i s laboratory con

figuration, chosen for its geometric simplicity, exhibits a l l main features of two-

dimensional flow separation w i th reattachment. 

Detai led turbulent flow measurements of the mean and fluctuating flow field are 

reported. The measurement techniques used are: hot-wire anemometry, pulsed-

wire anemometry and pulsed-wire surface shear stress probes. The separated shear 

layer appears to behave like a conventional mix ing layer over the first half of the 

separation bubble, but exhibits a lower growth rate and higher turbulent intensities 

in the second half. In the reattachment region, the flow is found to be highly 

turbulent and unsteady. 

A finite difference method is used, in conjunction wi th a modified version of 

the T E A C H code, to predict the mean flow field. T w o discretization schemes 

are used: the hybr id-upwind differencing (HD) scheme, and the bounded-skew-

hybr id differencing ( B S H D ) scheme. Laminar flow computations are performed for 

Reynolds numbers in the range 100 to 325. The H D computations underpredict the 

separation-bubble length by up to 35% as a result of false diffusion. The B S H D 

predictions, on the other hand, are in excellent agreement w i th the experimental 

results reported i n the literature. 

Turbulent flow computations using the k — e turbulence model and the B S H D 

scheme result in a reattachment length about 30% shorter than the present mea

sured value. W h e n a curvature correction is incorporated into the model , a reat

tachment length of 4.3.D, compared to the experimental value of 4.7D, is predicted. 

The predicted mean flow, turbulent kinetic energy field and pressure distr ibution 

are in good agreement w i th experimental observations. 

A n alternative method of analysis, based on the momentum integral technique, 

is presented. The method is not applied to the blunt-rectangular plate problem, 

but its use is i l lustrated for the simpler case of the flow in a sudden expansion, and 

promising results are obtained. 
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Chapter 1 

Intro duction 

Separated-reattaching flows, typical of flows around bluff bodies, occur in a large va

riety of environmental and engineering situations. The recirculating flow regions— 

known as separation bubbles—encountered in these flows have a significant impact 

on the performance of, for example, airfoils at higher angles of attack, turbine 

blades, diffusers and combustors. Separated flows determine, to a large extent, the 

drag of road vehicles and are the dominant feature of atmospheric flows over bui ld

ings, fences and hi l ls . They are also a cr i t ical factor in the design of structures, 

such as bridges, susceptible to potentially disastrous w i n d induced oscillations. 

W h i l e the importance of separated flows w i th reattachment has long been recog

nized, and much progress has been accomplished over the last twenty years, many 

aspects of these flows—particularly in the turbulent flow regime, remain poorly 

understood, because they are difficult to measure or predict. 

In an effort to isolate those flow features of fundamental importance, a num

ber of laboratory geometries have been devised to generate two-dimensional sepa

rated reattaching flows. Some of these geometries are shown in Figure 1.1. The 

1 
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Figure 1.1 (a-g). Configurations which exhibit two-dimensional flow separation wi th 

reattachment 
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flow around the blunt rectangular section (Figure 1.1 g) is one of the simplest two-

dimensional recirculating flows, yet it exhibits all the important characteristics of 

separated reattaching flows. It combines several of the advantages of the other 

geometries: fixed separation point , single pr imary recirculation zone and simple 

upstream boundary conditions which make it ideal as a test case for numerical 

methods. In addi t ion it is the simplest shape geometrically. 

The present work is a detailed experimental and computat ional study of the flow 

around a blunt rectangular section. The aims are first to provide a description of 

the structure of a separated reattaching flow, and secondly to model this flow using 

a numerical method. 

1.1 Schematic of the Flowfield 

The general features of the flow around a bluff rectangular plate are described in 

this section. The information is largely drawn from the relevant literature which is 

reviewed in the next section. 

The ma in characteristics of the flow around a rectangular plate are perhaps 

best described by breaking up the flowfield into several zones, each having distinct 

dominant features. A schematic view of the flow is shown in Figure 1.2. When the 

oncoming irrotat ional flow (I) impinges on the front face of the plate, a boundary 

layer (II) develops on either side of the stagnation point. Due to highly favourable 

pressure gradients, this boundary layer remains th in up to the sharp corner where 

it separates and forms a free shear layer (III) w i th a large streamline curvature. 

The separated shear layer is in i t ia l ly highly curved. In a first phase, the separated 

shear layer, as it proceeds downstream, grows under relatively constant pressure by 
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© 
Mean separation streamline 

v) /—(VI) 

I Irrotatlonal flow k 
II Boundary layer 
III Free shear layer 

IV Recirculating flow region 
V Reattachment region 
VI Relaxing shear layer and 

redeveloping boundary layer 

Figure 1.2. Schematic of the flow around a blunt plate. 

entraining fluid from bo th the "outer" irrotat ional flow and the "inner" recirculating 

flow regions. In the reattachment zone ( V ) , the shear layer curves towards and 

interacts strongly w i t h the wal l to which it eventually reattaches. Par t of the flow at 

reattachment is deflected upstream into the recirculation zone ( IV) , to compensate 

for the fluid drawn out by entrainment; the rest is deflected downstream into the 

recovery zone (VI) where a new boundary layer develops and merges w i t h the outer 

shear layer. 

The flow in the reattachment zone is characterized by large pressure gradients, 

low mean velocities, very large local turbulent intensities and instantaneous flow 

reversals. A n important length scale of this flow is the reattachment length xr. 

This length, which is a measure of the extent of the separation bubble, is defined 

as the distance from separation to the point of zero mean wal l shear stress. 
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F r o m this schematic description, it is clear that the flow around a bluff plate, 

though it is one of the simplest separated-reattaching flows, is quite complex. The 

high levels of turbulent intensities combined wi th fluctuations in flow direction make 

measurements in the recirculating flow region difficult, and conventional measure

ment techniques, such as hot-wire anemometry, are of l imi ted use there. 

1.2 Literature Review 

1.2.1 Experimental Studies 

In the last decade, experimental research in separated-reattaching flows has been 

greatly st imulated by the development of instruments suitable for measurements 

in recirculating flows, especially the laser-Doppler and pulsed-wire anemometers. 

General reviews of the literature have been undertaken by Bradshaw & Wong (1972) 

for earlier experimental work, and by Westphal et al. (1984) and Simpson (1981; 

1985) for more recent developments. The latter reference is a comprehensive survey 

of measurement techniques, experimental studies, as well as calculation methods. 

The following is an overview of the previous experimental studies directly rele

vant to this work. 

One of the earliest studies of the flow past a blunt rectangular section is due 

to Roshko &: L a u (1965), who also considered, in the same paper, the flow around 

various forebody shapes w i th splitter plates. A l though their study d id not involve 

any flowfield measurements, it gave important insight in the pressure recovery pro

cess in reattaching flows. A n important finding of Roshko Sz L a u was that the 
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pressure distributions for al l cases considered collapsed to a single curve when the 

pressure was normalized by the pressure at separation and the streamwise distance 

was normalized by the reattachment length. This suggested that some features of 

separated-reattaching flows are universal, and that the reattachment length is an 

important characteristic length scale of these flows. 

Extensive measurements were performed by O t a and co-workers in a series of 

experiments (Ota & K o n 1974; O t a & Itasaka 1976; O t a & N a r i t a 1978), and 

important observations were made: 

• In the separation bubble the pressure in the cross-stream direction remains 

nearly constant 

• M a x i m u m backflow velocities of about 25-30% of the free stream velocity 

occur in the middle of the bubble. 

• Peak turbulent intensities are of the order of 30% of the free stream velocity 

and occur around reattachment. 

• Reattachment occurs 4 to 5D downstream from separation. It was also noted 

that when the plate is heated, m a x i m u m heat transfer rates occur at reat

tachment. 

Whi l e these measurements give a good description of the gross features of the 

flow, their accuracy is dubious as a result of the following experimental procedures. 

F i r s t , the mean and turbulent velocities were measured using a P i to t tube and a 

hot-wire anemometer respectively. B o t h techniques are unreliable in this k ind of 

flow, and this is reflected by some inconsistencies reported in the near wall pro

files. Second, an aspect ratio (tunnel wid th /p la te thickness) of about 5 was used 
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in the experiments. Three-dimensional effects are, therefore, l ikely to have been 

important . F ina l l y the procedure for measuring the reattachment length was not 

explained in sufficient detail . 

K i y a et al. (1981) also used a hot-wire. Though they present measurements 

only outside the recirculation bubble, some of these measurements fall w i th in the 

highly turbulent flow region and should therefore be viewed wi th caution. A com

prehensive set of measurements were made by K i y a & Sasaki(1983). They used 

directionally sensitive spli t-f i lm sensors in conjunction w i th hot-wire anemometry 

to measure mean velocities, fluctuating velocities and forward flow fraction. They 

also presented a few measurements of the turbulent shear stresses around reattach

ment. Important aspects of the unsteady nature of the flow were also reported in 

this paper and are reviewed later. 

The effect of Reynolds number was investigated by O t a et al. (1981) who also 

considered the effect of separation angle. Us ing flow visual izat ion (water w i th alu

m i n i u m powder), they observed three flow regimes: 

i) The laminar separation-laminar reattachment regime in which the reattach

ment length increases w i th Reynolds number. A m a x i m u m reattachment 

length of about 4.5D was reported to occur at Re ~ 270. These observations 

are in qualitative agreement w i th those made by Lane & Loehrke (1980). Lane 

& Loehrke found, however, a max imum reattachment length of about 6.5D 

at Re = 325. Th i s difference is probably due to the larger aspect ratio used 

by Lane &; Loehrke (11.5 as opposed to 4.55). 

ii) The laminar separation-turbulent reattachment regime characterized by the 

appearance of instabilities in the shear layer near separation and transition 
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to turbulence before reattachment. In this regime, the reattachment length 

decreases w i th Reynolds number. 

iii) The turbulent separation-turbulent reattachment regime (Re ~ 2 x l 0 4 ) where 

the separated shear layer becomes turbulent very soon after separation. The 

Reynolds number is found to have no effect on the reattachment length in this 

flow regime. 

Th i s Reynolds-number-independent regime was also observed by Hi l l ie r & Cherry 

(1981a). They noted that the flow is essentially Reynolds number independent in 

the range 3.4 x l O 4 < Re < 8.0 x l O 4 , w i th a weak elongation appearing only when 

Re < 8.0 x 10 4 . In the same paper, Hi l l ie r & Cherry showed that the flow is very 

sensitive to grid-generated free-stream-turbulence levels. For example a shortening 

of the bubble from 4.88D to 2.12D was reported when the free stream turbulence 

intensity was increased from about 0.1% to 6.5%. 

The effect of free stream turbulence was also investigated by K i y a &: Sasaki 

(1983b). They used a rod upstream of the plate to generate the turbulence and 

obtained results s imilar to those of Hi l l ie r & Cherry. Dz iomba (1985) used wires 

on the front face of the plate to t r ip the boundary layer just before separation. 

He found this to have the same qualitative effect as an increase in free stream 

turbulence. He argued, however, that the shortening of the bubble was mostly due 

to an effective change in the angle of separation. 

The unsteady structure of the separation bubble has been the subject of a series 

of thorough studies by Hi l l ie r & Cherry (1981b), Cherry et al. (1983;1984) and K i y a 

& Sasaki (1983a). These studies, using a combination of flow visualization, mea

surements of fluctuating surface pressures and a judicious use of pressure-velocity 
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correlations, clearly demonstrated that: 

• The shear layer near separation exhibits a low-frequency flapping mot ion. The 

mechanisms for this low frequency unsteadiness are not clearly understood. 

• Downstream from separation, large scale vortices are shed in pseudoperiodic 

bursts. 

In an extension of these studies, K i y a & Sasaki (1985a) used condit ional sampling of 

the velocity field to deduce the structure of the large scale vortices. They concluded 

that these vortices have a ha i rp in structure. The unsteadiness of the reattachment 

process seems to be an inherent feature of separation bubbles in al l two dimen

sional geometries. For example, it has been observed in the backward facing step 

flow (Eaton & Johnston 1982) and in the flow around the flat plate/spl i t ter plate 

combinat ion (Gartshore &; Savi l l , 1982). Cherry et al. (1984) suggested that it is 

the large-scale shedding of vort ici ty that causes the m a x i m u m shear layer turbulent 

stresses and pressure fluctuations to occur in the v ic in i ty of reattachment. 

1.2.2 Theoretical studies 

The theoretical analysis of separated-reattaching flows poses many difficulties as a 

result of shear layer curvature, strong pressure gradients, and flow recirculation. 

A t higher Reynolds numbers, an addit ional difficulty is the varied and complex 

nature of the turbulence field. The prediction of these flows can be attempted by 

using either zonal modell ing or global modelling; both approaches rely on numer

ical solution methods. In zonal modell ing, one recognizes that different regions of 

the flow have different dominant features and a computat ional procedure is devel

oped accordingly. A n example of this approach is the viscous-inviscid interaction 
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procedure 1 . G loba l models, on the other hand, use the same set of equations for the 

entire flowfield. Amongst these, computationally intensive finite difference methods 

which solve the Navier-Stokes equations (in their time-averaged form in the case 

of turbulent flows) have gained a wider acceptance over the last two decades as a 

result of the availabili ty of more powerful computers. These methods have been 

used, w i t h varying degrees of success, to predict a number of recirculating flows. 

The laminar flow around the blunt flat plate was computed by G h i a &: Davis 

(1974) who used a finite difference method to solve the Navier-Stokes equations in 

their streamfunction-vorticity form. Thei r results were subsequently compared by 

Lane & Loehrke(1980) to their own experimental data and showed a large discrep

ancy. The possibil i ty that the numerical solutions had not attained true convergence 

was put forward as a possible explanation for this discrepancy. 

A related case, the laminar flow through a cascade formed by a stack of flat 

plates, was considered recently by M e i &: Plotk ins (1986). The i r formulation also 

used the streamfunction-vorticity formulation of the Navier-Stokes equations. B u t 

second order upwind differencing was used instead of the first order scheme of G h i a 

& Davis . Though their results cannot be compared directly to the experimental 

data of Lane & Loehrke, it is interesting to note that they reported similar trends: 

flow separation was first found to occur at Re ~ 110 and the reattachment length 

was found to vary linearly w i th Reynolds number up to Re ~ 300. Th i s was the 

largest Reynolds number for which convergence could be obtained. They noted that 

the first order differencing scheme resulted in shorter reattachment lengths than the 

second order scheme. Th i s was due to false diffusion 2 . 

X A brief account of this method for separated-reattaching flows is given in Appendix C . 
2False diffusion, or numerical diffusion, is the truncation error associated with the use of upwind 

differencing in a discretization scheme. 
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Us ing the discrete vortex method, K i y a & Sasaki (1982) carried out an inviscid 

s imulat ion of the turbulent flow on a blunt flat plate. The simulat ion consisted of 

t racking elemental vortices which were shed downstream from the separation corner. 

In order to represent the viscous/turbulent dissipation of vorticity, the circulat ion 

of elemental vortices was reduced as a function of their age. The model required 

some empirical input (pressure at separation and mean reattachment length) to 

determine some free parameters. In general, the predictions of the mean velocity and 

surface pressure were reasonable, except in the reattachment region. Remarkably, 

the unsteadiness of the flow was fairly well represented. Furthermore the fluctuating 

component of the surface pressure, a quantity which cannot be obtained at all 

w i th the steady state finite difference method, was in tolerable agreement wi th 

experiments. 

N o finite difference predictions of the turbulent flow around a flat plate are 

reported in the literature. M a n y such predictions have, however, been attempted 

for other geometries, a favourite being the downward facing step. A comprehensive 

and cr i t ical review of many of these predictions, al l based on the solution of the time-

averaged Navier-Stokes equations in conjunction wi th a turbulence closure model, 

can be found in a recent article by Nallassamy (1987). 

In the context of this study, it is of special interest to note that, in most com

putations, the equations were discretized using upstream differencing. The gross 

features of the recirculation zone were in general underpredicted, and discrepancies 

of up to 30% in the reattachment length were reported. This was par t ly due to 

false diffusion which is inherent to upstream differencing. M a n y authors, however, 

at t r ibuted the discrepancies to inadequate turbulence modell ing. Since errors due 

to modell ing cannot usually be dissociated from numerical errors, it was pointed 
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out by Castro (1977), among others, that prolonged arguments about turbulence 

model deficiencies were somewhat pointless unless false diffusion was reduced to 

negligible levels. This could be achieved, in principle, by refining the gr id . Bu t 

this is often impract ical because computing costs increase rapidly w i th the num

ber of computat ional nodes. A n alternative approach is the use of "higher order" 

differencing schemes such as the "skew-upwind differencing" of Rai thby (1976b) 

or the "quadratic upstream interpolation" of Leonard (1979). The applicat ion of 

these schemes to turbulent recirculating flows has, in general, resulted in improved 

predictions (e.g. Leschziner & R o d i 1981). 

1.3 Scope of the Present Investigation 

The literature survey has shown that despite the extensive information available on 

the large-scale unsteadiness of the flow around the blunt rectangular plate, there is 

relatively l i t t le reliable quantitative data on the flow wi th in the separation bubble. 

In part icular , al l available measurements in this region were made wi th instruments 

which are prone to measurement errors in turbulent recirculating flows. 

O n the theoretical side, the only turbulent flow computat ion available in the 

literature is a discrete vortex simulat ion, and though the gross features of the flow 

are reasonably well reproduced, the predictions of various mean flow quantities are 

only fair, indicat ing that other approaches are worth exploring. 
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The objectives of the experimental part of this investigation were (i) to gain 

further insight into the structure of a two-dimensional separation bubble, and (ii) 

to provide dependable data for comparison and evaluation of numerical predictions. 

To this end, detailed flowfield and surface measurements were performed using 

pulsed-wire anemometry as well as conventional hot-wire anemometry. 

The theoretical study had two objectives: (i) to devise and test a simple calcu

lat ion procedure based on a momentum integral technique, and (ii) to compute the 

flow using a finite difference method in conjunction w i th a two-equation turbulence 

model (A; — e). The first of these objectives was met only partially. Encouraging 

results were, however, obtained for the simpler case of a sudden expansion flow. The 

computat ional study was carried out successfully for bo th laminar and turbulent 

flow around a blunt rectangular plate. 



Chapter 2 

Exper imenta l Arrangement and 

Measurement Techniques 

In this chapter, the w i n d tunnel and wind tunnel model used for the turbulent 

flow experiments reported in the next chapter are described. The measurement 

techniques and related cal ibrat ion procedures are discussed. 

2.1 Experimental Facility and Equipment 

Wind Tunnel 

A l l experiments were performed in the U . B . C . low speed, blower type boundary layer 

w i n d tunnel shown schematically in Figure 2.1. This tunnel has a 2.4m wide, 1.6m 

high, 24.5m long test section, and a max imum design wind speed of 25 m/s . In the 

velocity range used for the present experiments (4-15 m / s ) , the velocity distr ibution 

in the empty test section was uniform wi th in 1%, w i th turbulent intensities in the 

range 0.25-0.4%. 

14 
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Wind Tunnel Model 

The model which was constructed for the tests consisted of a rectangular base 

section w i t h endplates and side extensions. This configuration, shown in Figure 2.2, 

was selected after prel iminary tests, carried out by Dz iomba (1985) and discussed 

in the next chapter, indicated that the use of endplates was crucial to the two-

dimensionality of the flow. The section had a chord of 800 m m , a thickness D of 

89.9 m m (3j")—corresponding to a solid blockage ratio D/H of 5.6%—and a span 

between end plates of 1000 m m , giving an aspect ratio S/D of 11.1. W i t h the side 

extensions mounted, the model spanned 2.2 m across the wind tunnel . In addi t ion, 

a t a i l was attached to the t ra i l ing edge of the model to suppress any periodic vortex 

shedding which might otherwise have "contaminated" the flow in the separation 

bubble. 

The model was mounted at a zero angle of incidence, w i th its front end located 

about 1.5 m downstream of the nozzle exit. It was held by eight 0.7 m m diameter 

piano wires, which were fastened to the roof and floor of the wind tunnel . The 

symmetry of the flow was ensured by adjusting the position of the model unt i l the 

difference in pressure coefficients at equivalent positions on the top and bot tom 

surfaces were wi th in 1% of the dynamic head. 

The base section was made of a luminium, and had a removable plexiglass top. 

The bo t tom surface of the model had a series of pressure taps at 20 m m intervals 

along the center line (x-direction), and at 100 m m intervals in the spanwise (z) 

direction. The angle a at which the shear layer separates from the plate could be 

altered (from 45 to 90°) by changing the shape of the leading edge of the plate. 

This was achieved by adding triangular front-pieces to the front face of the model. 
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1 honeycomb and 
4 screens in 4 « 4 m 

sellling section 

Figure 2.1. Boundary layer w i n d tunnel . 

F igure 2.2. M o d e l of blunt rectangular plate used in w i n d tunnel experiments. 
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Traverse Mechanism 

Measurements in the flowfield, using various probes, were carried out using a tra

verse mechanism designed and bui l t specifically for the project. The traverse was 

mounted on translat ion bearings and guided by two rails for horizontal traversing. 

Automat ic vert ical traversing was obtained by a lead screw mechanism which was 

driven by a microcomputer controlled stepper motor. The posit ioning accuracy of 

the traverse mechanism was 1.5 m m in the horizontal direction, and 0.08 m m in the 

vert ical direction. 

The bulk of the traverse mechanism was placed under the floor of the wind 

tunnel . The only parts protruding into the flowfield were the probe and its support; 

their interference w i t h the flow was min imal : changes in pressure dis t r ibut ion were 

less than 0.01 in C p , and the reattachment length, as measured by surface flow 

visual izat ion remained unchanged when the traverse mechanism was introduced. 

The r igidi ty of the mechanism was also checked, and no flow induced vibrations 

were detected. 

Data Acquisition System 

A C B M S u p e r P E T microcomputer was used for sampling and processing of velocity 

and shear stress data, as well as for the control of the traverse mechanism. The 

pulsed-wire anemometer unit was interfaced directly to the computer parallel user 

port, and a 12-bit analogue to digital converter was used to sample the analogue 

signal from the hot-wire anemometer. A drive was connected to the parallel user 

port for direct control of the the traverse mechanism stepper motor. 
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2.2 Measurement Techniques 

2.2.1 Pressure Measurements 

The static pressure dis t r ibut ion on the surface of the bluff plate was measured us

ing a Barocel differential pressure transducer and a 48-port Scanivalve system. The 

Scanivalve was mounted inside the model and connected to the 0.5 m m diameter 

pressure taps by short lengths of Tygon tubing. Reference static and dynamic pres

sures were measured w i th a Pitot-stat ic probe located at a distance 10D upstream 

of the front face of the bluff body. 

The pressure transducer had a linear response and d id not require any calibra

t ion . However, the zero level (i.e. the output voltage for zero differential pressure) 

was found to oscillate slightly (with an amplitude of about 1.5% of the full scale 

reading), and therefore required frequent zero level checks. The output voltage from 

the transducer was measured using an integrating voltmeter; integration times of 

10 seconds were used for averaging. The uncertainty in the pressure measurements 

is estimated to be ± 0.03 m m water, corresponding to an uncertainty of ± 0.007 in 

the pressure coefficient C p . 

2.2.2 Velocity and Turbulence Measurements 

The velocity field measurements were made by traversing hot-wire and pulsed-wire 

probes at 10 streamwise stations; each traverse consisted of 20 to 34 points. The 

repeatabili ty of the measurements was usually w i th in 1% for the mean velocities 

and wi th in 2.5% for the fluctuating velocities. 
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H o t - W i r e Anemometer ( H W A ) 

Outside the recirculating flow region, streamwise mean and fluctuating velocities, 

correlations, and frequency spectra were measured using a hot-wire probe and a 

D I S A constant temperature anemometer system. The probes were standard D I S A 

single wire probes, w i t h 5 n diameter, 1.25 m m length platinum-coated tungsten 

wires. 

The hot-wire anemometer bridge was operated at a 1.6 overheat ratio, and the 

signal was low-pass filtered (10 K H z cut-off frequency). O n line cal ibrat ion, using 

K i n g ' s law w i t h an exponent of 0.45, was performed against a Pitot-stat ic probe 

in low turbulence conditions (u/U < 0.4%), and a digi tal sampling rate of 4 K H z 

was used for al l measurements. Correlat ion functions and frequency spectra were 

obtained using an analogue P A R correlator and a frequency spectrum analyser. The 

error estimates for the hot wire-anemometer measurements are given in table 2.1. 

Pulsed-Wire Anemometer ( P W A ) 

The high turbulence intensities and reversed flows encountered in recirculating flow 

regions require the use of special instrumentation. A pulsed-wire anemometer sys

tem, manufactured by P E L A Flow Instruments, was used in the present study. 

The general principle of the instrument, originally developed by Bradbury & 

Castro (1971), is based on the measurement of the flow velocity by t iming the 

passage of a heat tracer between two points. The pulsed-wire probe, shown in Figure 

2.3, consists of two sensor or "receiving" wires, and a th i rd pulsed or "transmitt ing" 

wire located between the two sensor wires. The central wire is heated periodically 

by short durat ion voltage pulses; the air passing the wire at that t ime is heated and 
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convected w i th the local instantaneous flow velocity. The time taken by the heated 

air to reach one of the two sensor wires, which operate as resistance thermometers, is 

a direct measure of the magnitude of the instantaneous velocity; the direction of this 

velocity is determined by the sensor wire which detects the tracer. The instrument 

has two drawbacks. Fi rs t it is relatively large and therefore measurements close 

to solid walls are not possible. Secondly small scale turbulence may influence the 

probe response. Th i s was not likely to be a problem in the present investigation 

since a relatively large scale experimental facili ty was used, as recommended by 

Bradbury & Castro (1971). 

The response of the instrument is not linear due to thermal diffusion and viscous 

wake effects. To take this into account, Bradbury & Castro recommend the use of 

an empir ical cal ibrat ion fit of the form 

Sensor wires 

Pulsed wire 

Figure 2.3. Pulsed-wire anemometer probe. 

(2-1) 
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where U is the flow velocity, A and B are cal ibrat ion constants, and T is the 

time of flight. The pulsed-wire probes were calibrated, using P E L A software, in a 

low turbulence flow against a Pitot-stat ic probe. The cal ibrat ion constants were 

determined by a least square fit procedure, wi th a resulting standard deviation of 

less than 2%. The cal ibrat ion was frequently checked and found to be very stable. 

Measurements were performed at a sampling rate of 50 H z , w i th the number of 

samples taken 5000 in the outer region and 7500 in the shear-layer/recirculating 

flow region. 

The accuracy of the pulsed-wire anemometer has been assessed quite thoroughly 

(Bradbury 1976; Castro & Cheun 1982; Westphal et al 1984), and its performance 

was found to be comparable to the hot-wire anemometer in regions where both 

instruments are applicable. It should be noted in this context that, due to electronic 

noise, there is a lower l imi t of 2% to the turbulent intensities that can be measured 

w i t h the instrument (Bradbury 1976). The estimated uncertainties quoted in Table 

2.1 are those given by Westphal et al (1984). 

2.2.3 Wall Shear Stress Measurements 

The dis t r ibut ion of the mean and fluctuating wall shear stresses, and of the forward-

flow-fraction were obtained w i th a pulsed wall-probe which was mounted on a sup

port ing block. The block fitted flush w i th the surface of the model , and could slide 

along a groove which was cut out along the centerline of the model . The groove was 

600 m m long and allowed positioning of the probe anywhere between x/D = 0.2 to 

1.8. 
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The pulsed wall-probe—also a time of flight type of instrument—is a recent 

development (Wesphal et al 1981; Castro & Dianat 1983) which has evolved from 

the P W A . The probe, shown in Figure 2.4, consists of an array of three wires 

mounted about 0.05 m m above a plug. The spacing between the wires is 0.75 m m ; 

the sensor wires are 2 m m in length w i th a 2.5 /z diameter, and the pulsed-wire 

is 3 m m in length w i th a 9.0 fi diameter. The measurement principle is based on 

the assumption that, in the proximity of a wal l , the instantaneous velocity profiles 

remain s imilar and scale on the wal l shear stress. 

The electronics used for the P W A was also used for the wall probe, and a 

cal ibrat ion function of the same form as equation (3.1) was used. The calibration 

procedure posed a few problems. Because of the non-linearity of the calibration 

function, cal ibrat ion of the probe in a turbulent boundary layer would lead to errors, 

even for moderate turbulent intensities. Nevertheless turbulent flow calibration 

Sensor wires Pulsed wire 

Figure 2.4. Wa l l shear stress probe. 
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facilities are easier to set up. Westphal et al. (1981) calibrated their probe in a 

turbulent flow apparatus and devised a correction procedure to compensate for the 

"nonlinear averaging error". A s imilar procedure was adopted in a recent study 

by Ruder ich &; Fernholz (1986). The nonlinear averaging errors can be avoided by 

cal ibrat ing the probe in a laminar flow, which is the procedure used by Castro & 

Dianat (1983) and Westphal et al (1984), who had high aspect ratio laminar channel 

facilities. 

Since no such facility was available, the cal ibrat ion for the present measurements 

was carried out in a two-dimensional laminar boundary layer generated on a flat 

plate. A slightly favourable pressure gradient was found to be necessary to pre

vent early t ransi t ion to turbulence. The near wal l velocity profiles were measured 

using a hot-wire anemometer, and the wal l shear stress was deduced from the re

sult ing gradient dU/dy at the wal l . Th i s cal ibrat ion procedure became increasingly 

uncertain w i t h higher wal l shear stress because of the decreasing thickness of the 

boundary layer at the highest velocities. Consequently, the cal ibrat ion of the probe 

was done in the range 0.0-0.10 N / m 2 . Th i s range covers adequately the max imum 

mean shear stresses encountered in the separation bubble (~ 0.09 N / m 2 ) , however 

instantaneous shear stresses larger than the upper cal ibrat ion l imi t are encountered 

because of the the highly turbulent nature of the flow. These were determined by 

assuming that the cal ibrat ion curve extrapolated correctly to these values. It is 

worth not ing that Castro Sz Dianat recommend a cal ibrat ion function of the form 

T = A/T + B/T2 + C/Ts for a better fit to values of r in excess of 0.3 N / m 2 . Since 

this is higher than the largest value used for the cal ibrat ion, the original calibration 
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function was retained. Considering the large uncertainties, due mostly to a narrow 

cal ibrat ion range and estimated to be ± 25% in r and ± 30% in r ' , the shear stress 

measurements presented here should be viewed wi th caution. 

The measurements of the surface forward-flow-fraction 7 were also made using 

the wa l l probe. A direct measure of 7 is given by the ratio of positive samples 

to the total number of samples. The number of positive samples was obtained by 

appropriately setting the measurement range to include positive samples only and 

-7 was then evaluated by 

N° of -t-ve samples 
Tota l n° of samples - n° of "zero" samples 

where the number of "zero" samples corresponds to heat tracers which fail to trigger 

either sensor wire. 
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Table 2.1. Measurement uncertainties 

Measured quantity Uncertainty estimate 

Cp (Pressure transducer) ± 0 . 0 0 7 

U/Uoo (Hot-wire) ± 2 % (for u/U < 0.3) 

U/Uoo (Pulsed-wire) ± 2 to 5% 

Vut/Un (Hot-wire) ± 4 % (for u/U < 0.3) 

y/vf/Uoo (Pulsed-wire) ± 2 to 5% (for u/U > 0.05) 

7 (Wal l probe) ± 0 . 0 2 

Cf (Wal l probe) ± 2 5 % 

yfcf (Wal l probe) ± 3 0 % 

xr ± 0 . 1 2 } 

X ± 0 . 0 1 5 2 ) 

y ±0 .0012? 



Chapter 3 

Exper imenta l Results 

The results of turbulent flow experiments are presented and discussed in this chap

ter. F i rs t , the results of surface flow visual izat ion experiments carried out to ex

amine the two-dimensionality of the flow for different model configurations are pre

sented. In the second section, wal l and flowfield measurements of various mean and 

fluctuating quantities are presented, comparisons are made w i t h data available in 

the literature, and some conclusions about the structure of the separation bubble 

are drawn. Further information about the structure of the free shear layer, deduced 

from frequency spectra and velocity autocorrelation measurements, are presented 

next. F ina l ly , the results of experiments to determine the effect of varying the angle 

of separation are discussed. 

3.1 Two-dimensionality 

Experimental ly , a reattaching flow region is difficult to make convincingly two-

dimensional: for example, most studies reviewed in Chapter one report a curved 

reattachment line which is symptomatic of three-dimensional effects. The main 

26 
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factors affecting two-dimensionality are aspect ratio (AR = S/D) and end condi

tions. Reattachment length data compiled from various sources by Cherry, Hil l ier 

&; La tour (1984), hereafter referred to as C H L , shows that the reattachment length 

increases gradually w i th aspect ratio. Th i s effect becomes negligible for aspect 

ratios greater than about ten, which is the m i n i m u m aspect ratio recommended 

by de Brederode (1975), in conjunction wi th the use of end plates, to avoid three-

dimensional effects. Though the use of endplates is advocated by most workers (e.g. 

C H L ) their use is by no means universal, because their usefulness is not clear. For 

instance, K i y a and Sasaki (1983), hereafter referred to as K S , d id not use endplates 

i n their experiments. 

In order to assess the influence of endplates and end-conditions on two-

dimensionality, Dziomba(l985) carried out a series of tests in the U B C aerody

namics laboratory. Us ing pressure measurements and the surface flow visualizat ion 

technique of Langstone & Boyle (1982), Dz iomba investigated the following config

urations for the degree of two-dimensionality: 

i) Base model (AR = 11.1). 

ii) M o d e l w i th endplates (AR = 11 . l ) . 

iii) M o d e l w i th endplates and side extensions (AR — 11.1). 

iv) M o d e l w i th endplates mounted on side extensions (AR = 24.4). 

The surface streamline pattern for configuration 1 is shown in Figure 3.1(a) and 

reveals a complex three dimensional structure. Dz iomba observed a highly curved 

reattachment line associated wi th two leading edge corner vortices. Large spanwise 
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X/D 

X / D 

X/D 

(a) 

(b) 

(c) 

Figure 3.1. Surface flow visualization patterns obtained by Dziomba (1985) for three 

configurations: (a) base model; (b) model wi th endplates; (c) model wi th endplates 

and side extensions. 
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variations in the pressure distr ibution were also reported. Th i s configuration yielded 

the longest reattachment length (xr = 5.7D). 

The addi t ion of endplates (configuration 2) reduced the centerline reattachment 

length to xT = 5.2D. Three-dimensional effects can s t i l l be seen (20% variation in 

xr in the spanwise direction) though they are much less pronounced because the 

corner vortex systems are weaker and the ventilation process which takes place at 

the extremities of the model is inhibi ted by the endplates. 

A much improved si tuat ion results from the addit ion of side extensions (configu

rat ion 3). G o o d spanwise uniformity and a straight reattachment line are obtained 

over the largest part of the model. The reattachment length is reduced further to 

i r = 4 .7D. Increasing the aspect ratio from 11.1 to 24.5 resulted in very similar 

flow characteristics. Configuration 3 was therefore retained for the present investi

gation since it resulted in a nominally two-dimensional separation region extending 

±3 .5Z) , or about ± 0 . 7 5 x r , either side of the midspan. 

3.2 Structure of the Separation Bubble 

Pre l iminary experiments indicated that both reattachment length and pressure dis

t r ibut ion remained unchanged over the Reynolds number range 2.5 x 10 4 to 9.0 x 10 4 

confirming the observation of Hi l l ier & Cherry (1981a) that the flow is essentially 

Reynolds number independent for Re ~ 2.7 X 10 4 . A l l present experiments were 

conducted at a Reynolds number of 5.0 x 10 4 ± 0.1 x 10 4 . 
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3.2.1 Reattachment Length and Wall Measurements 

The mean reattachment point, defined as the location where the time-averaged wall 

shear stress vanishes, can be determined from the location where the forward-

flow-fraction1 7 is equal to 0.5 as was shown by Westphal et al. (1981). The surface 

probe was used to measure the forward-flow-fraction dis tr ibut ion ( 7 vs. x) and 

the results are shown in Figure 3.2. The reattachment length deduced from these 

measurements, xr/D = 4.7, is in very good agreement w i th the value obtained from 

surface flow visual izat ion. 

It is interesting to note that 7 is never equal to zero; that is the flow is never fully 

reversed even in the middle of the separation bubble. Furthermore there is a broad 

region, extending about 2.5.D downstream of the mean reattachment point , where 

the near-wall flow can be moving instantaneously in either downstream or upstream 

direction. Th i s suggests that the instantaneous reattachment point wanders up and 

downstream in a region surrounding the time-averaged reattachment point; this 

view is consistent w i th the large scale unsteadiness of the flow observed by K S and 

C H L . If the reattachment zone is defined, somewhat arbitrarily, as a region where 

0.1 < 7 < 0.9, its w id th is then about 2AD or 0.5a; r. 

A comparison of the reattachment length obtained in the present experiments 

and in various other studies is shown in Figure 3.3; only data obtained in low free 

stream turbulence is included. The reattachment length is seen to decrease wi th 

increasing solid blockage, wi th the exception of the value reported by K S which is 

•"̂ This is the fraction of the time the flow moves in the downstream direction; it is equal to the 
ratio of the number of positive samples to the sum of all samples, i.e 

r+00 r + 00 
1= / P(rw)dTw/ / P{TW)CLTW 

JO J-co 

where P(TW) is the probability density of rw. 



CHAPTER 3. EXPERIMENTAL RESULTS 31 

X/Xr 
0 0.25 0.50 0.75 1 1.25 1.50 1.75 2 

0.75 

0.25 

• 
/ • 

7 ^ 

/ • 
/ 

• 

/ 
• 
/ 

• • 
\ • 

• : / • 

/ 

« 1 ' I ' I ' 1 ' 1 I 1 
0 2 4 6 8 10 

X/D 

Figure 3.2. Dis t r ibut ion of surface forward flow fraction. 
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Figure 3.3. Reattachment lengths found for various solid blockage ratios (data 

compiled by Cherry et al. 1984). 
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low compared to the trend of the remainder of the data. Th i s may be attr ibuted to 

slight differences in free stream turbulence, but it should also be pointed out that 

the nominal 0% blockage of K S was obtained by fitting the w i n d tunnel w i th false 

boundaries which might not have eliminated al l wal l effects. 

The mean pressure coefficient dis t r ibut ion is shown in Figure 3.4 and is found 

to compare well w i t h the Cp values reported by C H L . B o t h distributions are uncor

rected for blockage which accounts for the small differences (BR = 3.79% for C H L 

as opposed to 5.6% in the present experiments). We note that after a small in i t ia l 

dip of about 0.05 in Cp the pressure remains approximately constant up to about 

x = 0 .5x r , a rapid recovery takes place thereafter. This recovery continues beyond 

the reattachment point up to x ~ 1.4x r. 

Figure 3.5 shows the distr ibution of the mean and fluctuating shear stress coef

ficients. The posi t ion at which the mean shear stress is equal to zero corresponds 

to the posit ion where 7 = 0.5 as ant ic ipated 2 . Cj attains a m i n i m u m value of 

—2.4 x 10~ 3 at 1 = 0.63x r and rises rapidly afterwards. The r.m.s. value of the 

shear stress coefficient increases steadily throughout the reversed flow region and at

tains a plateau (Cj ~ 2.4 x 10~ 3) in the reattachment zone. The magnitudes of both 

mean and fluctuating shear stress coefficients are higher by a factor of (about) two 

than those encountered in the backward facing step geometry (see, e.g., Westphal 

et al. 1984). 

2 We note that the equivalence of TW = 0 and 7 = 0.5 is not always true. Examination of the data 
of Ruderich and Fernholz (1986) for the flat plate/splitter plate geometry reveals that the forward-
flow-fraction is equal to about 0 . 7 at the zero shear stress location associated with a secondary 
reseparation . 
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Figure 3.4. Dis t r ibut ion of surface pressure coefficient: # , present measurements; 

V , measurements of Cherry et al. (1984). 
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3.2.2 Mean Flow Properties 

The mean velocity profiles are presented in Figure 3.6(a) and(fc) for the reversed and 

reattached flow regions respectively. Hot-wire data are presented only in regions 

where 7 > 0.9 or 7 < 0.1. A l l velocity data are normalized by the free stream ve

locity UQO, and the or igin for y is the plate surface. The mean separation streamline 

is also plotted for reference. 

Backflow velocities as large as OSU^ are encountered in the reversed flow region. 

Th i s value is about 50% larger than that in the backward facing step geometry 

(Westphal et al. 1984) which accounts part ly for the higher wal l shear stresses 

presented earlier. We also note that the backflow velocities remain relatively high 

in the near-wall region. Loca l max ima in the velocity profiles are also apparent in 

the first half of the bubble. The velocities further away from the wal l remain higher 

than the free stream as a result of blockage effects. 

The recovery region profiles show an inflexion point as a result of the merging 

of a new boundary layer w i th the reattaching shear layer. We note also a rapid 

increase of the near-wall velocities w i th downstream distance. 

The mean streamline pattern obtained by integration of the velocity profiles is 

shown in Figure 3.7. The dimensionless streamfunction is defined as 

ry/D 
* = / (U/U^/diy/D) 

Jo 

The time-averaged streamlines are somewhat deceptive in that they disguise the 

highly unsteady nature of the reattachment process, i l lustrated earlier by the forward-

flow-fraction dis tr ibut ion. 
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Figure 3.8 shows the r.m.s. longitudinal velocity profiles. The consistently 

higher values of the P W A data are due to electronic noise which makes the in

strument unsuitable for measurements of turbulent intensities smaller than about 

2% (Bradbury 1976). The H W A data on the other hand appear reasonable only 

when the forward-flow-fraction 7 is outside the range 0.1 < 7 < 0.9 and when the 

local intensity is below 20%. The results show the same overall trends as the split-

f i lm sensor results of K S , w i t h the notable exception that the turbulent intensities 

obtained in the present measurements are generally higher by 15 to 20% 3 . 

The peak turbulence intensity ujU^ is observed to occur upstream of reattach

ment, probably as a result of the higher velocity difference across the shear layer. 

After a gradual decrease in the reattachment region, the m a x i m u m turbulent inten

sities fall rapidly i n the recovery region. We observe that the turbulent intensities 

decay fairly rapid ly in the outer region of the shear layer, but remain high next to 

the wal l . These near-wall intensities decrease much more slowly w i th streamwise 

distance than the m a x i m u m intensities. 

It is interesting to note that the peak turbulence intensity of about 30% mea

sured i n this flow is substantially higher than the value of about 18% found in the 

plane mix ing layer (Wygnansky & Fiedler 1970). A more appropriate comparison, 

however, can be made by using the velocity difference across the shear layer to 

normalize the present data. The max imum value of u/(Umax — c T m i n ) varies from 

about 22% at x/D = 3 to about 25% at x/D = 5. This is s t i l l higher by 20 to 40% 

than the plane mix ing layer value. 

3Young (quoted by Simpson 1985) indicates that fluctuating quantities that are up to 30% too 
low can be obtained with hot film probes; this would account for the discrepancy between the present 
measurements and those of KSA. 



Figure 3.8(a). Fluctuat ing (r.m.s.) longitudinal velocity profiles: O , 

pulsed-wire data; • , hot-wire data; , separation streamline ( * = 0); 
to 
CO 



Figure 3.8(b). Fluctuat ing (r.m.s.) longitudinal velocity profiles: O , pulsed-wire 

data; • , hot-wire data. 

O 
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The forward-flow-fraction profiles, measured using the P W A , are shown in Figure 

3.9 together w i th the loci of 7 = 0.1,0.5 and 0.9. The data points at y/D = 0 are 

from the surface probe measurements. Similar ly to the wal l data , the posit ion of 

7 = 0.5 is found to correspond to U = 0. A t x/D = 1 and 2, 7 reaches a m i n i m u m 

slightly away from the wa l l , but further downstream the m i n i m u m is reached at 

the wal l ; this is consistent w i t h the location of the m a x i m u m backflow velocities 

in Figure 3.6. In fact the shapes of the mean velocity and forward-flow-fraction 

profiles are s t r ikingly s imilar . 

Further insight into the structure of the separation bubble can be gained by 

examining the skewness, ST, and the flatness factor, FT, of the wa l l shear stress. 

These are the normalized th i rd and fourth moments of the probabil i ty density, PT, 

and are defined by 

The skewness and flatness factor distributions are shown in Figure 3.10, and they 

exhibit the same trends as reported by Ruder ich and Fernholz (1986) for the flat 

plate/spl i t ter plate geometry. 

B o t h skewness and flatness factors, are found to depart markedly from their 

respective Gaussian values of 0 and 3. High values of the flatness factor are usually 

indicative of a burst-type or large amplitude intermittent signal (Townsend 1976). 

Such behaviour of the fluctuating shear stress and near-wall velocity could be associ

ated wi th the large scale unsteadiness and bubble bursting phenomenon reported by 

both K S and C H L . The inrush of high velocity fluid resulting from this phenomenon 
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Figure 3.10. Skewness and flatness distributions of fluctuating wal l shear stress: 

• , ST; • , FT. 

would cause large amplitude fluctuations leading to probabil i ty distributions having 

a higher flatness factor. The observed increase of FT in the reattachment region is 

compatible w i th this explanation, since the act ivi ty associated w i th the large scale 

unsteadiness is most vigorous there. 

The skewness is negative in most of the reversed flow region, presumably because 

of the intermittent large amplitude negative fluctuations. After a local min imum in 

the middle of the separation bubble, the skewness rises steadily, crosses zero close 

to the mean reattachment point , and continues to rise thereafter due to increasing 

occurrences of large amplitude positive fluctuations. 
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3.3 Structure of the Shear Layer 

3.3.1 Growth of the Shear Layer 

The posit ion yc where the r.m.s. velocity u attains a max imum can be interpreted as 

representing the centre of the shear layer bounding the separation bubble (KS) since 

it corresponds closely to the position where the velocity profiles have an inflexion 

point . F igure 3.11 shows that the posit ion of yc changes very litt le w i th x even in 

the reattachment region (the shaded plot reflects the uncertainty in locating u m a x 

due to scatter in the data) . Figure 3.11 also shows the streamwise variat ion of an 

edge of the shear layer ye defined as the position of 2.5% local turbulent intensity. 

Th i s corresponds closely to the posit ion where an intermittent signal first appears. 

A n important parameter characterizing the shear layer is the growth rate which 

can be deduced from the shear layer wid th . One measure of this w id th is the 

vort ic i ty thickness 6U defined by (Brown & Roshko 1974) 

^ Umax Umin 

u (dU/dy) 
max 

The streamwise variat ion of the vort ic i ty thickness, plotted in Figure 3.12, shows 

that, in i t ia l ly , the shear layer grows in a linear fashion. The growth rate d6w/dx 

is found to be equal to 0.147, which is essentially identical to the value of 0.148 

reported by Ruder ich & Fernholz for the normal-plate/split ter-plate geometry. This 

is w i th in the range of values (0.145-0.22) reported by Brown & Roshko for the 

conventional single stream mix ing layer. The present results indicate that at about 

x/xr ~ 0.65 there is a sudden decrease in the growth rate (d6u/dx — 0.097), a 

feature not shown by the data of Ruderich & Fernholz. The sharp change in the 

slope after x/xr ~ 1.1 is due to the smaller {dU/dy)max gradients. C H L used 
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Figure 3.11. Representative shear layer positions: A , ye (location of u/U = 2.5%); 

zzzzz , yc (location of {u/U^naz). 
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Figure 3.12. Growth of the shear layer. Vor t ic i ty thickness 6U: - O , present; • , 

Ruder ich &; Fernholz (1986). M a x i m u m slope thickness 6ms: A , present; , 

Cherry et al. (1984). 
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the m a x i m u m slope thickness 6ma (defined in the same way as Su, but without 

incorporating a mean reversed flow velocity Umin) to represent the growth of the 

shear layer. The i r streamwise coordinate was corrected for the displacement of the 

v i r tua l or igin, therefore only the mean slope line of their data is shown in Figure 

3.12. 

3.3.2 Frequency Spectra and Autocorrelations 

Frequency spectra and autocorrelation functions of the longi tudinal fluctuating ve

locity were measured along ye. A t this posit ion, the velocity fluctuations are ir-

rotat ional most of the t ime, wi th very short high-frequency bursts occurring very 

occasionally, and most of the information contained in these fluctuations is therefore 

related to the large scale structure of the shear layer. 

The spectra at various streamwise positions along ye, presented in Figure 3.13, 

show the same features as the measurements of C H L . A t x/xr = 0.01 there is a 

distinct h igh frequency contribution w i th a peak at a reduced frequency / x r / ^ c o 

of about 34. A s we progress further downstream from separation, a progressive 

fall in the dominant frequency takes place. This fall ceases at x/xr = 0.64, where 

the spectra become dominated by a broader band contr ibut ion centered around 

fxr/Uoo cn 0.6. Th i s streamwise variat ion is i l lustrated in Figure 3.14 (the fre

quencies were taken from the corresponding peaks in Figure 3.13) which also shows 

the measurements of Dz iomba (1985) and C H L . A l l measurements show the same 

trends, and two regions can be observed. In the first region, extending from separa

t ion to about 60% of the separation bubble length, the frequency decreases linearly 

w i th x, indicat ing that the large scale structures grow linearly just as in a conven-
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t ional free shear layer. In the second region, which overlaps the first, starting at 

about 50% of the separation bubble length, the characteristic frequency remains 

essentially constant (decreasing values shown by the data of Dz iomba for x > 1.2 

are due to the contamination from the t ra i l ing edge of the model which was not 

equipped wi th a tai l ) . This characteristic frequency is associated w i th the pseudo-

periodic shedding of vort ic i ty from the bubble, a phenomenon observed by K S 

a n d C H L amongst others. 

Figure 3.15 shows the autocorrelation Ruu plotted as a function of the non-

dimensional t ime lag TUoo/xr. Close to separation, at x/xr = 0.01, the autocorrela

t ion exhibits a long t a i l . A similar observation was made by K S who at tr ibuted this 

t a i l to the flapping of the shear layer caused by the large scale unsteadiness of the 

bubble. The high frequency waviness of the ta i l is due to the contributions from 

the large scale structures of the shear layer. This waviness can s t i l l be detected, 

w i t h correspondingly lower frequencies, at x/xr — 0.108 and 0.216. A t x/xr = 0.86 

we note the reappearance of negative correlations which become even larger around 

reattachment. 

The streamwise dis tr ibut ion of the integral timescales Tu obtained by integrating 

the corresponding autocorrelation to the first zero crossing, are shown in Figure 3.16. 

Consistently w i t h earlier observations, the timescales increase in a linear fashion 

wi th x up to x/xr =: 0.85 and stabilize thereafter at a value of TuUoo/xr ~ 0.2. 



Figure 3.13. Frequency spectra of velocity fluctuations along shear layer edge yc. 
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Figure 3.15. Autocorre la t ion of velocity fluctuations along shear layer edge 



CHAPTER 3. EXPERIMENTAL RESULTS 

0 

0.2 

8 
^ 0.1 

0.0 

X / X r 
0.5 

2 3 4 5 

X / D 

1.5 

o o o o o 

-
o 

o 

o 
o 

I I I 1 I I I 

7 8 

Figure 3.16. Integral t ime scales deduced from autocorrelation measurements. 
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3.4 Effect of Angle of Separation 

The angle a at which the shear layer separates from the front face of the blunt 

plate has a significant impact on the pressure dis tr ibut ion, as shown in Figure 3.17. 

Decreasing the separation angle induces earlier recovery of the pressure, wi th a 

shift of the pressure distributions towards the leading edge and a corresponding 

shortening of the separation bubble length. There is also a decrease of the base 

pressure coefficient Cpb, and the pressure dip immediately downstream of separation 

becomes more pronounced. 

It is well known that separated reattaching flows have very similar pressure 

distr ibutions, and that a reasonable collapse of the data is obtained over a wide 

range of geometries when the pressure is plotted, as suggested by Roshko & L a u 

(1965), in terms of x/xr and the reduced pressure coefficient 

Cp* 
1 - c _ . . . 

The pressure distributions of Figure 3.17 were replotted using these reduced co

ordinates, and the result is shown in Figure 3.18, which also includes the flat 

plate/spl i t ter plate data of Ruderich&; Fernholz (1986) for comparison. The col

lapse of the data onto a single curve, wi th slight deviations of the flat plate/split ter 

plate data, is quite remarkable and confirms the assumption that the reattachment 

length xr is a basic length scale for separated-reattaching flows. 
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The recovery pressure rise coefficient Cpm*, which measures the difference be

tween the highest and the lowest pressure, was found to be equal to 0.4 as compared 

to an averaged value of 0.36 cited by Roshko &; L a u for a variety of configurations. 

Tan i (quoted by Westphal et al. 1984) noted that the ult imate pressure recovery is 

higher for thinner boundary layers at separation. In the present case the effective 

thickness of the boundary layer is quite small as a result of the strongly favourable 

pressure gradients at separation ( C H L estimated the momentum thickness 6sep to 

be about 0.004D). 

The var iat ion w i t h separation angle of base pressure (measured at x/D = 0.17, 

the location of the first tap) and reattachment length (measured using the wall 

probe) are shown in Figure 3.19. The reattachment length for a = 45° is about 

50% shorter than for the base model (a = 90°) , while the base pressure coefficient 

Cph is about 10% lower. It is interesting to note that these trends are qualitatively 

s imilar to the effect of either t r ipping the boundary layer on the front face before 

it separates (Dziomba 1985), or increasing the free-stream turbulence level (Hill ier 

& Cherry 1981a; K i y a & Sasaki 19836; Hi l l ie r & D u l a i 1985). Dz iomba reported 

reductions of up to 40% in the reattachment length w i t h a corresponding 15% drop 

in the base pressure coefficient. The shortening of the bubble was at tr ibuted to an 

effective change in the separation angle due to the formation of a smal l recirculation 

bubble between the t r ip wires and the sharp edge of the plate. 

The pressure distributions reported by Dz iomba were replotted in terms of re

duced coordinates for the basic undisturbed flow and two tr ipped flows. The results 

in Figure 3.20 show that, though reasonable, the collapse is not as good as that ob

tained w i th various separation angles. In particular, CPm* increases from about 

0.4 to 0.43 when the boundary layer is t r ipped, and the pressure recovery process 
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starts earlier, resulting in a shift of the data towards the left. Th i s , together wi th 

the proport ional ly higher decrease in Cph noticed earlier, indicates that the effects 

of the t r ip wire is perhaps part ly due, but not confined to an effective change in 

separation angle. Add i t i ona l factors to be considered are possible changes in the 

state of the separating boundary layer and in the growth rate of the shear layer. 

Th i s concludes the discussion of the experimental results. The modell ing of the 

mean properties of this flow is examined next. 
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Figure 3.19. Var ia t ion of reattachment length and base pressure w i th angle of 
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Chapter 4 

M a t h e m a t i c a l M o d e l 

T w o different approaches to the modelling of separated reattaching flows can be 

taken. The first, a zonal approach, consists of dividing the flow field into several 

regions, each having dominant features. The flow is then analyzed using the method 

which is op t imum for each of those regions. In the second approach the flow field 

is solved for globally using a set of equations which apply throughout the domain. 

B o t h these approaches are examined in this study. A solution of the bluff rectan

gular plate problem is not completed w i th the first approach, but examples of the 

use of zonal analyses are given in Appendices C and D . 

In this chapter, we present the background for the global modell ing of the flow. 

The averaging procedure of the Navier-Stokes equations is then briefly described, 

and the turbulence model used in this study, the k — e model, is reviewed. Next, to 

set the stage for the numerical method presented in the next chapter, the general 

form of the various transport equations to be solved is given. F ina l ly , the boundary 

conditions for the blunt rectangular plate geometry are described. 

58 
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4.1 Background 

The simplifying assumptions made in the derivation of the boundary layer equations 

are unfortunately not s tr ict ly val id for separated flows. A n accurate description 

of these flows requires the use of the exact equations expressing the principle of 

conservation of momentum: the Navier-Stokes equations. 

The numerical solution of these equations for laminar flows, although not a 

t r iv ia l task, is always possible. However, for turbulent flows, a numerical solution of 

the full set of equations in their three-dimensional t ime dependent form is not quite 

feasible at present—at least not for flows of pract ical importance. Th i s is because 

the exceedingly refined grids required to resolve the smallest scales of turbulent 

mot ion present at realistic Reynolds numbers (Re ~ 10 4) would tax the storage 

capacity and speed of present day computers. Consequently one has to resort to the 

ensemble or time-averaging procedure, first proposed by Reynolds over a hundred 

years ago. However, because the equations are non-linear, the averaging procedure 

produces extra unknown terms: the turbulent or Reynolds stresses. The net result 

is that one ends up w i t h more unknowns than equations, and addi t ional equations 

are required to "close" the problem. These addit ional equations are provided by 

modell ing the turbulent stresses. 

4.2 Conservation Equations and Time-Averaging 

For incompressible flow, the equations expressing the principle of conservation of 

mass and momentum are, in Cartesian tensor co-ordinates (see Reynolds 1974), 

dxj 
= 0 (4.1) 
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and 
dUi d , T T T T , dp d f (dUi dUj\\ , , 

these equations are val id for laminar and turbulent flow, w i th £7, = 1,2,3) and 

p representing instantaneous velocities and static pressure respectively. 

The instantaneous general variable (f> is decomposed into a mean, cf>, and a 

fluctuating component, <p , as follows 

<j> = j> + <p (4.3) 

where the time-averaged value, <f>, is defined as 

w i th an averaging t ime At long enough compared wi th the longest t ime scales of 

the turbulent mot ion . 

Introducing these definitions in equations (4.1) and (4.2) to decompose Ui and 

p into mean and fluctuating components, and time-averaging, we obtain, for a 

statist ically steady flow, 

It =0 <«> 
axj 

and 
d , x dp d [ (dUi dUA ) , . 

where the overbars for the mean variables have been dropped for convenience. 

Equat ion (4.6) contains six new unknowns, the turbulent or Reynolds stresses 

—pufuj, which arise from the averaging of the nonlinear convective terms in equa

t ion (4.2). Physical ly, the Reynolds stresses represent diffusion of momentum by 
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turbulent mot ion . In order to obtain a closed set of equations, some assumptions 

are necessary to relate the Reynolds stresses to other existing variables. The var

ious assumptions which can be made constitute the central theme of turbulence 

modell ing. 

4.3 k — e Turbulence Model 

Turbulence modell ing has been an active field of research for many years; although 

much progress has been made (see R o d i 1983, for a cr i t ical state of the art review), 

the models currently available are necessarily approximate and s t i l l rely on empirical 

information. 

The k — e model (Launder & Spalding 1974) used in this study, requires the 

solution of two addit ional transport equations: one for the turbulent kinetic energy, 

k, and another for its dissipation rate, e. This model seems, at present, to offer the 

best compromise between generality and computational economy. 

The framework of the k — e model is the eddy viscosity concept. This concept 

is expressed by an equation of the form 

fdUi dUA 2 , . . 
- pUiUj = fit — + -r— - -pkbij (4.7) 

\OXj OXi J 6 

where k is defined as 

* = ^ f u ! + ^ + ^ ) (4-8) 

The term involving the Kronecker delta on the r.h.s. of (4.7) ensures that the sum 

of the normal stresses is equal to 2k. This term is a scalar quantity which can be 

incorporated in the pressure gradient term of the momentum equation. 
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The next step is to determine the eddy or turbulent viscosity fit in terms of 

definable quantities. Th i s is done by first assuming fxt to be proport ional to a 

characteristic velocity V, and a length scale £: 

Ht cx VI (4.9) 

A physically meaningful scale characterizing turbulent velocity fluctuations is yfk\ 

using this scale in (4.9), results in the Kolmogorov-Prandt l relation 

oc py/kl (4.10) 

k and I are related to the dissipation rate of turbulent kinetic energy, e, by dimen

sional analysis (Rodi 1984) 

e oc — (4.11) 

Combin ing these two expressions, we obtain 

lit = G>fc 2 / e (4.12) 

where C M is an empirical ly determined constant of proportionality. 

The problem of determining the turbulent stresses has thus been reduced to 

determining k and e. Exac t transport equations for both k and e can be obtained 

by manipula t ing equation (4.2); the resulting equations are, however, of litt le use 

because they contain higher order correlation terms which are unknown. To obtain 

a closed set, these terms must be modelled. In the "standard" k — e model, the 

modelled transport equations for k and e, take the form (Launder & Spalding 1974): 

kdxk dxk 1 crk dxkJ e f f \dxk dx{) dxk 
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Table 4.1. k — e model constants 

c 2 

0.09 1.44 1.92 1.0 0.4187 0.09 1.44 1.92 1.0 0.4187 

and 

pUk— = — ( I + C i / x . / / 
dxk dxk \ o~e dxk J k \dxk dx{ J dxk 

The effective viscosity, / i e / / , is the sum of the laminar and eddy viscosities 

The values of the empirical constants appearing in equations (4.13) and (4.14) are 

listed in table 4.1. 

T w o variants of the standard k — e model which incorporate modifications ac

counting for streamline curvature are presented in Append ix D . 

4.4 General Transport Equation 

For steady two-dimensional flow, the equations presented in the previous section 

reduce to: 

continuity equation: 
ATT PiV 

(4.15) 
dU dV__Q 

dx dy 

rc-momentum equation: 

d ( au] d f (du av\\ , 
^ H & l + ^ W ' U " 1 " ^ ] } ( 4 - i 6 ) 
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where p* = p + 

y-momentum equation: 

/^-transport equation: 

e-transport equation: 

d (neffde\ ( 5 (ixeffde\ „ e„ „ e 
P d x ^ ^ P dy dx I <7e dx ) <9y V a £ dy 

+ d - G - C 2 p - (4.19) 

where G , which represents the generation of turbulent kinetic energy, is given by 

2 / ~ T J - \ 21 

dx \dyt 

G = /z t | 2 

and the effective viscosity is obtained from the two auxi l iary equations 

fdU dV\2 

\dy dx J 
(4.20) 

Veff = V- + ft 
k2 

e 

(4.21) 

(4.22) 

Note that the continuity and momentum equations are also va l id for steady lami

nar flow, Equations (4.15) to (4.19) can be conveniently represented for numerical 

purposes by the following general equation 

(4.23) 

T is a general diffusivity coefficient and <Ŝ  a general source term. The particular 

values taken by T and are given in Table 4.2. for each of the transport equations. 
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Table 4.2. Diffusion coefficients and source terms 

Conserved property 4> T s* 

Mass 1 0 0 

z-momentum u 

y-momentum V Peff 
§2± j_ a /„ au\ , a ( a v \ 

T . K . E . k 
Ok 

G- pe 

T . K . E dissipation e »eff C-J-G - C2p*— 
k k 
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4.5 Boundary Conditions 

To completely specify the problem, it is necessary to impose boundary conditions 

on a l l the boundaries of the flow domain. For the blunt rectangular plate geometry 

considered here, there are four types of boundaries. These are shown in Figure 4.1, 

and the corresponding boundary conditions are given below. 

/ / / / / \ \ / / / / / / / / / / / / / / / / / / / \ \ / / / x p 

OJ 

B 

CM 

-t-> 
OJ 
+J 
O 

Figure 4.1. F low domain. 

i) I n f l o w ( A B ) : Values of a l l the variables, pressure excepted 1 , are specified. 

For the present flow configuration, uniform profiles for U, k and e2 are im

posed; V is set to zero. The turbulent kinetic energy, k, is determined from 

the experimentally measured free stream turbulence intensity, whereas e has 

to be estimated from k and a characteristic length scale. 

1The pressure need not be specified when the normal velocity is imposed. 
2Conditions on k and e are only required for turbulent flow computations 
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ii) O u t f l o w ( E F ) : Ideally, the outflow boundary should be located in a region 

where the flow is fully developed; a zero streamwise gradient condit ion across 
d() 

the outflow boundary, —— = 0, is then applicable to a l l variables. Locat ing 
ox 

this boundary in the fully developed flow region is, however, not practical 

because a very large computat ional domain, extending far beyond the region 

of interest, would be required. 

However, because the flow after reattachment is everywhere in the downstream 

direction it is not very sensitive to downstream conditions. It is therefore per

missible to locate the outflow boundary closer to reattachment, i.e. in a region 

where the flow is not fully developed, providing this location is sufficiently far 

downstream from the recirculating flow region to ensure that the flow in the 

upstream region is not affected by downstream conditions. The zero stream-

wise gradient condit ion is then applied to a l l variables at this location. The 

penalty for this inexact treatment is a local distort ion of the flow field near 

the outflow which, anyhow, is not a region of prime interest. 

iii) S y m m e t r y A x i s ( B C ) : The normal velocity, V, is set to zero along the axis 
d( 1 

of symmetry, and a zero cross-stream gradient condit ion, —— = 0, is imposed 
oy 

for a l l variables. 

iv) S o l i d W a l l s ( A F , C D a n d D E ) : The no-slip boundary condit ion is imposed 

at a l l solid boundaries. In addit ion, a special treatment of the near-wall region 
k2 

is required, because the turbulent Reynolds number, Ret = — , is often suffi
ce 

ciently small in the v ic in i ty of solid boundaries for viscous effects to become 

important . The k — e model, which was devised for high Reynolds number 

fully turbulent flows, neglects these effects; consequently, it is not val id in 
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near-wall regions. A n alternative to devising a low Reynolds number model 

which would take viscous effects into account, is the use of wal l functions, 

as proposed by Launder and Spalding (1974). The wall function treatment, 

presented in Append ix E , connects the wa l l shear stress to the velocity just 

outside the viscous sublayer by assuming one dimensional Couette flow and 

local equi l ibr ium. A bonus of this treatment is computat ional economy : it is 

no longer necessary to have the high concentration of grids normally required 

to resolve the very steep gradients prevailing in the viscous sublayer. 



Chapter 5 

C o m p u t a t i o n a l Procedure 

The governing equations presented in the previous chapter were discretized using a 

finite volume method, and the resulting set of algebraic equations were solved by 

an iterative procedure using a modified version of the T E A C H - I I code developed 

by Benodekar, Gossman & Issa (1983). 

In this chapter, an overview of the method of solution is given. The staggered 

gr id system used to discretize the solution domain is first described. Th i s is fol

lowed (Section 5.2) by a summarized account of the finite volume method, hybrid 

differencing and the associated problem of false diffusion; a remedy to this problem, 

a variant of the skewed differencing scheme of Ra i thby (1976), is also introduced. 

In Section 5.3, the implementation of the boundary conditions is discussed. A n 

outline of the iterative solution procedure is given in Section 5.4. The results of 

prel iminary computations, carried out to determine various parameters (extent of 

the solution domain, op t imum grid distr ibution, convergence criteria) are presented 

in the last section. 

69 



CHAPTER 5. COMPUTATIONAL PROCEDURE 70 

5.1 Finite Volume Formulation 

5.1.1 Grid Layout and Variables Location 

The computat ional domain is divided into a number of adjacent control volumes 

(or cells), w i th their centres located at the nodes of a Cartesian grid system as 

shown in Figure 5.1. The location of the nodes at which the variables are to be 

calculated differs, depending on the variable in question as shown in Figure 5.2. 

Scalar variables (p, k, and e) are evaluated at the main gr id nodes (shown as • ) , 

whereas the velocities U and V are evaluated at staggered locations (shown by —• 

and 1") w i th respect to the ma in gr id nodes 1 . 

The gr id is arranged so that the faces of the scalar cells coincide w i th the faces 

of the physical boundaries. Add i t iona l "fictitious" cells are located on the periphery 

of the domain to facilitate the implementation of the boundary conditions. 

The nodes surrounding a central node P are identified by (using the compass 

convention) N, S, E, W, NE, NW, SE and SW; the faces of a control volume are 

identified by n , s, e and w. 

5.1.2 Integration of General Transport Equation 

The finite volume form of equation (4.47) is obtained by integration over the control 

volume shown in Figure 5.2(b), i.e 

dxdy (5-1) 

1The staggered grid arrangement is used almost universally in finite difference calculations be
cause it has the advantage of locating the velocities where they are required to evaluate the convective 
fluxes, i.e at the faces of the control volume. Additionally, the velocity-pressure staggering averts 
physically unrealistic "wiggles" in the solution domain (see Patankar 1980). 
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Figure 5.1. G r i d layout. 
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Figure 5.2: (a) Loca t ion of scalar and velocity cells, (b) Typ ica l control volume 
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using Gauss ' divergence theorem, the volume integrals can be transformed into 

surface integrals: 

where Fe,...,Fe represent the sums of convective and diffusive fluxes across the 

faces e , . . . , s. For example: 

Fe = Ce + De 

w i t h 

C e = r{pU<t>)Xedy 

and 

5.2 Finite Difference Discretization 

5.2.1 Hybrid Differencing 

So far, the terms in the integral equation (5.2) are exact. The first step in re

ducing the equations to an algebraic form is to express, by using finite difference 

approximations, the convective and diffusive fluxes (Ce,De etc . . . ) in terms of the 

nodal values of the variable (f>. The hybr id differencing scheme ( H D ) , presented in 

(5.3) 

(5.4) 
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this subsection, is the combination of two types of finite difference approximations: 

central difference (CD) and upwind difference ( U D ) . 

The C D approximation assumes that <f> varies linearly between E and P. For 

example, applying central differencing to approximate Ce (equation 5.3) yields: 

C. = ,,V, p*±4=) A y , (5.5) 

Similar ly for the diffusive flux (equation 5.4) 

Centra l differencing, which is formally second order accurate in 6x, is quite 

satisfactory for problems where diffusion is the dominant feature. However, for 

higher Reynolds number convection dominated flows, the use of central differencing 

for the convective terms leads to numerical instabilities when the cell Reynolds or 

Peclet number Pe = \pU6/T\ is larger than 2. The most widely used method to 

counteract this type of instabil i ty is upwind differencing. Taking the example of Ce 

again, at e the upwind value of <f> is assumed to prevail , i.e. 

Ce = peUe<f>pAyj for Ue>0 

Ct = ptUt(j>EAyj for Ue<0 

This amounts to replacing the linear variat ion of <f> assumed previously in central 

differencing by a stepwise variat ion; this leads to an approximation which is un

condit ional ly stable, but only first order accurate in 6x. To take advantage of the 

superior accuracy of the central differencing scheme at low Peclet numbers, the 

C D and U D schemes are combined to form the hybr id central-upwind differencing 

scheme ( H D ) : C D is always used for the diffusive terms, while for the convective 

terms C D is used when \Pe\ < 2 and U D is used when \Pe\ > 2. 
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Table 5.1. Linearized source terms 

Conserved property s} St 

i -momen tum U 0 p*\?Ay + A y 

+ ( * / / £ ) | > * 

y-momentum V 0 P*\>nAx+ ( M . / / i J ) > y 

+ ("«//1r) l>* 

T . K . E . k _£Jl£kpAxA G Ax Ay 

T . K . E dissipation e - ^ A x A y dj^GAxAy 

To complete the discretization procedure the source te rm is linearized as 

follows (Patankar 1980): 

fj S+dx dy = SUP + St (5.8) 

Sp and Si are derived using C D approximations; the various expressions are given 

in Table 5.1. 

Subst i tut ing for the source and flux terms into equation (5.2) yields the general 

finite volume equation 2 (see Patankar 1980): 

(ap — Sp)<f>p = a,N<t>N + a>s<t>s + O>E4>E + aw4>w + <Sy (5.9) 

w i t h 

aP=^2ai (i = N,S,E,W) 
i 

2Also referred to as finite difference equation. 
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and 

aN = m a x ( | C „ / 2 | , D n ) - C n / 2 

as = max{\C,/2\,D.) + C./2 

aE = m a x ( | C , / 2 | , 2 ? e ) - C e / 2 

aw = m a x ( | C w / 2 | , 1?^) + Cw/2 

The algebraic equations (5.9) are solved by the iterative procedure described in 

Section 5.4. 

5.2.2 False Diffusion 

The simple upwinding procedure just described improves numerical stability, but 

it does so at a cost. Because it is only first order accurate, upwind differencing 

introduces a potentially damaging truncation error commonly known as artificial 

or false diffusion. 

-1 

6 X 1 - 1 6 x •} 

Figure 5.3. F in i te difference nodes. 

The t runcat ion error of a finite difference approximation can be evaluated using 

a Taylor series expansion; hence 

^ = ^ ( - ^ - ) g ) , ^ ( - ^ ) ! ( 0 ) , + -
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the convective term U— can therefore be expressed as 
ox 

+ ... 

d4> 
The first term on the R H S is the upwind difference approximation of U—— (for 

ox 

U > 0); the second term is the leading t runcat ion error, and has the form of a 

diffusion te rm w i t h an effective diffusion coefficient 

The effect of false diffusion is to artificially increase the (physical) diffusion coeffi

cients; this results in smearing of the gradients in the flowfield. 

The question of how important is false diffusion was addressed by Rai thby (1976) 

who showed that false diffusion is negligible in situations where either the local flow 

direction is closely aligned wi th gr id lines or in the absence of strong cross-stream 

gradients in <f>. However, in the presence of both skewness and strong gradients, 

Rai thby showed that artificial diffusion can become comparable to, or even larger 

than physical diffusion, and can lead to significant errors. 

It is important to note that skewness and strong gradients are often prevail

ing conditions in recirculating flows .in general and turbulent ones in particular. 

Further, in turbulent flows, as a consequence of false diffusion, it is not possible 

to properly assess the performance of a given turbulence model because it is diffi

cult to dissociate errors due to modelling deficiencies from those arising from false 

diffusion. 

In principle, the errors due to false diffusion can be reduced to an acceptable 

level by increasing the number of computational nodes in cr i t ical regions of the 

6x; i-l 
2 



CHAPTER 5. COMPUTATIONAL PROCEDURE 78 

flow. Aside from this "brute force", computat ionally expensive and often imprac

t ical prescription, two remedies to false diffusion have been proposed: the skew 

upwind differencing (SUD) scheme of Ra i thby (1976b), which uses flow oriented 

differencing, and the quadratic upstream weighted interpolation ( Q U I C K ) scheme 

of Leonard (1977), which uses higher order differencing. However, bo th schemes 

suffer from nonphysical oscillations or "wiggles" as well as solution undershoots 

and overshoots. These are a consequence of negative coefficients appearing in the 

finite difference equations, a problem referred to as unboundedness3. L a i & Goss-

man (1982) developed a variant of the skew scheme, the bounded skew hybr id 

differencing scheme ( B S H D ) , which eliminates negative coefficients and is therefore 

uncondit ionally stable . This scheme was used in this study, and is outl ined next. 

5.2.3 Skew Differencing 

The basic cause of false diffusion lies in the practice of treating the flow across 

a control volume face as locally one-dimensional, which results in errors in the 

dis t r ibut ion of <j>. The skew upwind differencing (SUD) scheme of Rai thby (1976b) 

reduces this error substantially by taking into account the local flow direction. 

In this scheme, the value of <f> required to evaluate the convective term is deter

mined by back projecting the local velocity vector unt i l it intersects a grid line, as 

i l lustrated in Figure 5.4(a); <f> is then obtained by either linear or stepwise interpo

lation between the two neighbouring nodes lying on the same gr id line. Examples 

for each type of interpolation follow. 

3 The problem of unboundedness which can result in numerical instability and poor convergence 
is discussed in some details by Lai (1982). 
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W h e n the projection intersects wi th a vert ical grid line, as shown in Figure 

5.4(b), then the value of <j> at face w is given by: 

where kw is a linear interpolation factor. 

W h e n the intersection lies on a horizontal grid line, as shown in Figure 5.4(c), 

a stepwise interpolation is used, and <$>w takes the nearest nodal value, (f>sw in this 

case. 

To account for a l l possible flow directions and the two types of interpolations, 

the interpolation factor is given by (for Uw > 0 and Vw > 0) 

The S U D reduces false diffusion substantially, but can result in negative coef

ficients in the finite difference equations. To suppress these negative coefficients, 

L a i & Gossman (1982) developed a flux blending technique which results in the 

bounded skew upwind differencing ( B S U D ) scheme: the S U D and U D schemes are 

blended in such a fashion as to maximize the contribution from the more accu

rate S U D while maintaining posi t ivi ty of a l l coefficients. Th i s is done through an 

opt imizat ion procedure described by L a i (1982) (see Benodekar et al. 1985 for a 

summarized account). 

F ina l ly , the bounded skew hybr id differencing ( B S H D ) scheme is, as its name 

implies, a hybr id combination of the B S U D and C D schemes: the B S U D is used to 

approximate the convective terms for \Pe\ > 2, and C D is invoked for \Pe\ < 2. 

4>w = (1 — kw)<t>w + kw<f>sw 
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Figure 5.4. F in i t e difference computat ional star and i l lustrat ion of linear and step

wise interpolation ranges for skew upwind differencing scheme. 
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Discret izat ion of equation (5.2) using the B S H D results in a finite volume equa

t ion of the form: 

(ap — Sp)(j)p = aN<j>N + cts<f>s + o-E<i>E + a-w<i>w + 

O-NE^NE + 0-Nw4>NW + O-SE^SE + ^SW^SW + S$ (5.10) 

the expressions for the coefficients a,- can be found in Benodekar et al. (1982). 

5.3 Treatment of Boundary Conditions 

The finite difference representation of the boundary conditions (discussed previously 

in Section 4.3.) is given in this section. 

5.3.1 Types of Boundaries 

i) I n f l o w : A n example of a cell at the inflow boundary is shown in Figure 5.5. 

The profiles were assumed to be uniform for a l l variables. This corresponds 

closely to experimentally observed conditions. 

Uw = t /oo 

Vw 
- 0 

kw 
= A-oo 

= «oo 

Uoo was the experimentally measured free stream velocity. The turbulent 

kinetic energy was estimated, assuming isotropy, from the experimentally 
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Figure 5.5. Inflow boundary cells. 

measured free stream turbulent intensity V t ? ; it was taken as 

fcoo = 9.375 X 1 0 _ 6 £ / ^ 

The dissipation rate, €<„ cannot be measured experimentally and has to be 

estimated. The generally accepted practice of estimating e as a function of 

the local value of k and a characteristic length scale \H was followed; i.e. 

Coo = k^/{\H) 

It should be noted that a judicious choice of A is required to ensure a realistic 

dis tr ibut ion of k upstream of the bluff body, since too smal l or too large a 

value of too would cause unrealistic growth or decay of the turbulent kinetic 

energy. A value of A = 0.09 was chosen to ensure that the turbulent kinetic 

energy was maintained at its free stream level at x/D ~ —4 as is observed 
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experimentally. The choice of A was otherwise not cr i t ical : changing A by a 

factor of five had v i r tua l ly no effect on the results (less than 0.2% change in 

Xr). 

ii) O u t f l o w : The zero gradient condit ion at the outflow boundary is obtained 

OUTFLOW 

BOUNDARY 

Figure 5.6.Outflow boundary cells. 

by setting 

UP 

VE 

kE 

tE 

Uw + Uipfc 

VP 

kp 

UJNC is an incremental value which ensures that continuity is satisfied at the 

outlet after each iteration. A t convergence UINC becomes equal to zero. 
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iii) S y m m e t r y A x i s : The symmetry condit ion is implemented as follows 

Us = UP 

Vs = 0 

ks — kP 

es = eP 

In addi t ion it is necessary to ensure that the fluxes across the symmetry axis 

are equal to zero; this is done by setting the appropriate a,- coefficients to zero: 

as — 0 , for Up,kp,ep 

iv) S o l i d W a l l s : The impermeabili ty condit ion is s imply obtained by put t ing 

Vs = 0 

The boundary conditions for U,k and e are implemented by first cancelling 

the fluxes through the boundary side of the cells, i.e. 

as = 0 , for Up,kp,eP, 

and then by evaluating the diffusive fluxes at the wa l l using wa l l functions as 

described in Append ix D . 
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Figure 5.7. Symmetry axis cells. 
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Figure 5.8. Sol id wal l boundary cells. 
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5.3.2 Special Case: Corner Nodes 

The corner cells of the bluff body warrant special attention because of the staggered 

gr id arrangement. This arrangement results in corner cells w i th only a half-face in 

contact w i th the wa l l as i l lustrated in Figure 5.9; this raises the question of how are 

the convective fluxes through these half-faces to be calculated. 

The convective fluxes across each of these two half-faces are evaluated by: 

a) Assuming a normal velocity across these half faces equal to that at the outer 

edge of the half cell (i.e. Vs is used for the normal velocity across the half-face 

of the U-ce\\ and vice-versa) 

b) Taking an effective area for the flux calculations equal to A y / 2 x l and A x / 2 x 1 

for U and V respectively. 

The above treatment of the corner cells was found to have a drastic effect on the 

solution: H D turbulent flow calculations without this special treatment resulted in 

a 40% shorter reattachment length (for a 80 x 40 grid) . 

5.4 Solution Procedure 

The solution method in the T E A C H - I I code uses the P I S O (Pressure Implici t Split 

Operator) a lgori thm, described in detail by Benodekar et al. (1983). This algori thm 

consists of a two-stage predictor corrector procedure, which involves the spl i t t ing 

of operations to deal wi th the coupling between velocity and pressure variables so 

that at each stage of the solution procedure, a set of algebraic equations in terms 

of a single unknown variable is obtained. 
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Figure 5.9. Cells near plate corner. 
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In the P I S O procedure, the algebraic equations in question are solved by a 

series of "guess and correct" operations. F i r s t , the velocities are calculated from 

the momentum equation using the pressure field prevailing at the nth i teration. The 

velocity and pressure fields are then adjusted through two corrector steps to ensure 

that mass conservation is satisfied. The procedure is repeated unt i l convergence. 

For turbulent flow calculations, the algebraic equations for k and e are solved in the 

i teration loop, just after the second corrector step. 

A t each stage of the above procedure, the set of algebraic equations is solved 

using a line by line method in conjunction w i th a tri-diagonal mat r ix solution algo

r i t hm. 

5.5 Preliminary computations 

In this section, we discuss the results of prel iminary runs made to determine: the 

effect of the location of the inlet and outlet boundaries, the op t imum grid distr ibu

t ion, and the appropriate convergence cri teria. 

5.5.1 Location of Inlet and Outlet Boundaries 

Specifying the extent of the computational domain is an important consideration. 

Too large a domain results in unnecessarily large arrays; too smal l a domain can 

affect the accuracy of the solution in the region of interest. Several computations 

were therefore carried out to determine the appropriate location of the inlet and 

outlet boundaries. The distance from the front face of the plate to the inlet bound

ary (Figure 5.10) was gradually reduced from Lu = 15Z> to 7.5D. The location of 

this boundary was found to have no noticeable effect on the flow in the recircula-
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t ion region, provided that Lu > 9D. For Lu < 9D a small increase (typically about 

0.3% for Lu = 7.5J9) in the separation bubble was observed. 

//// / \ \ / / / / / / / / / / / / / / / / / / / \ \/ //^ 

Figure 5.10. Computa t ional domain. 

The effect of the location of the downstream boundary was noted for Ld = 15D to 

8D. The effect was negligible for Ld ~ 11D. Computat ions w i th smaller Ld resulted 

in gradually longer bubbles (typically about 1.0% for Ld = 81?). A l l subsequent 

computations were therefore performed wi th 

12D < Lu < 10D 

14D < Ld < 12D 

5.5.2 Non-uniform Grid Arrangement 

A number of gr id distributions were investigated. Non-uniform grids were found to 

be the most efficient way of obtaining the fine gr id arrangements required in regions 

of steep gradients. 
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A proper resolution of the region immediately upstream of and around the sharp 

corner was found to be par t icular ly cr i t ical to the accuracy of the solutions. Conse

quently, a cluster of fine equally spaced grids was located there. The gr id spacings 

were expanded on either side of this sharp corner, in both x and y-directions, as 

shown i n Figure 5.11. In addit ion the x—direction gr id was refined locally around 

the reattachment region. This local refinement was not cr i t ical to the computat ion, 

but allowed a more precise location of the reattachment lengths, which were deter

mined by linear interpolation from the computed wal l shear stress distributions. A 

prel iminary gr id refinement study showed that the solutions are more sensitive to 

gr id refinements in the y- direction than in the x-direction, and that op t imum array 

sizes are obtained when the mesh at the corner has a ratio A x / A y ~ 2.5. 

To minimize the t runcat ion errors associated w i th non-uniform gr id distr ibu

tions, the effect of the gr id expansion factors Ex — A x , / A x , _ i and Ev = A y y / A y ; _ i 

was investigated. A comparison was made w i th solutions obtained using uniform 

grids in selected regions of the domain. It was found that an economy in computa

t ional cells (compared to a uniform distribution) can be obtained w i th no noticeable 

loss in accuracy, provided that the expansion factors are kept w i th in the following 

ranges: 

x < —D and x > x r 

0.8 < Ex,Ey < 1.2 for { 

0.9 < Ex,Ey < 1.1 for « 

y > D 

-D < x <xr 

-0.5D < y <D 

A l l the computations presented in the next chapter were performed wi th expansion 

factors w i th in these ranges. 
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5.5.3 Convergence Criterion 

Since an iterative solution procedure is used to solve the equations, it is necessary 

to establish a convergence criterion which measures the degree to which a computed 

solution satisfies the finite difference equations. In the present computations this 

convergence cri terion was based on the values of the absolute residual errors of the 

continuity and momentum equations. When the sums of these residual errors were 

less than 0.2% of the inlet mass flow and momentum respectively, the solution was 

considered converged, and the iteration cycle was terminated. Th i s convergence 

cri terion is expressed by 

where X) \R<p\ is the sum of the absolute residuals over the entire field. The residuals 

are defined, from equation (5.9), by 

The value of £max = 2 x 10~ 3 was considered to be acceptable since a reduction 

of this value by a factor of five d id not result in any appreciable change in the 

computed reattachment length (less than 0.25%). 

max 

R<t> — iap - Sp)<f>p - ^2 difa - Si 
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N u m e r i c a l Results 

The accuracy of a numerical method, which is part icular ly important when assessing 

a given turbulence model , is best established in laminar flows. In this chapter we 

present the results of a systematic gr id dependence study for the laminar flow past 

a bluff rectangular plate. The superiority of the B S H D scheme over the H D scheme 

is clearly demonstrated. The laminar flow computations, besides providing a check 

on the accuracy of the method, yielded results which are interesting in their own 

right, and a selection of these is presented and discussed. 

The second part of this chapter is devoted to the results of turbulent flow com

putations. Some important numerical aspects of the solutions are first discussed, 

and the results of a comprehensive grid dependence study are presented. The k — e 

turbulence model is found to perform rather poorly in its standard form, but results 

in substantially improved predictions when the preferential dissipation modification 

is incorporated. Detai led comparisons of the predicted flow field (velocity, turbu

lent kinetic energy, pressure, wal l shear stress) are made wi th the experimental data 

presented earlier in Chapter 3. A s an i l lustrat ion of the usefulness of the numerical 

method for parametric studies, predictions of the effect of solid blockage are pre-

93 
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sented. In the last section, computat ional costs and the relative performance of the 

various schemes are discussed. 

6.1 Laminar Flow 

The parameters for the laminar flow computations were chosen to correspond to 

the measurements of Lane & Loehrke (1980) for comparison purposes 1 . The solid 

blockage ratio was equal to 8.36%. The bulk of the computations were performed 

in the Reynolds number range 100-325, since it was observed experimentally, and 

confirmed in our prel iminary computations, that no separation occurs for Reynolds 

numbers below about 100, and that the flow becomes unsteady for values higher 

than about 325. 

6.1.1 Grid Independence 

The effect of gr id refinement on the solution was investigated systematically, using 

both H D and B S H D schemes, for three Reynolds numbers: i?e = 125,225 and 325. 

The number of grids used ranged from 41 x 2 6 (corresponding to A z m t - n / Z ? = 35% 

and Aymin/D = 12.5%) to 7 0 x 5 5 [Axmin/D = 8%,Aymin/D = 3.7%). A typical 

gr id layout was shown in Section 5.3. The reattachment length xT was found to be 

a good measure of the sensitivity of the solution to gr id spacing, therefore al l grid 

refinement results are conveniently presented in terms of the variat ion of xr. 

The results of the three series of tests, presented in Figures 6.1(a) to (c), show 

a significant difference between the reattachment lengths predicted w i th the two 

1The only other measurements available (Ota et al. 1981), were not considered here because 
the experiments were carried out with a low aspect ratio of 4.55, and three-dimensional effects are 
therefore likely to have been important. 



CHAPTER 6. NUMERICAL RESULTS 

1.5-
X 

c 

c I" 
E .c o o 
"5 

0.5-

Laminar Flow, Re=125 

—o- -o-

O BSHD 

A HD 

1 1 , ! ! 
1000 1500 2000 2500 3000 3500 4000 

No. of Computa t iona l Nodes NIxNJ 

x 

c 

C 

E 
o 
p £ 2-
"o 
or 

Laminar Flow, Re=225 

O BSHD 

A HD 

i i I I I 
1000 1500 2000 2500 3000 3500 4000 

No. of Computa t iona l Nodes NIxNJ 

7 

2 1 i 1 i 1 i 
1000 1500 2000 2500 3000 3500 4000 

No. of Computa t iona l Nodes NIxNJ 

Figure 6 .1. Effect o f gr id refinement on reattachment length. 
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discretization schemes. A t Re — 125, the B S H D solution is essentially grid inde

pendent for NIxNJ — 1728, whereas the H D solutions remain sensitive to grid 

refinement even for the finest gr id and tend asymptotical ly—from below— towards 

the gr id independent B S H D solution. A t higher Reynolds number, the B S H D solu

tions show more sensitivity to gr id refinement, and more computat ional nodes are 

required to reach gr id independence. The H D solutions remain sensitive to grid 

spacing throughout the range and respond rather sluggishly to gr id refinement. 

Increasing Reynolds number causes the H D predictions to deteriorate further. Con

sidering, for example, the fine grid results, we see that while the H D reattachment 

length is 9% shorter than the B S H D result at Re = 125, this discrepancy increases 

to 35% at i2e = 325. Th i s can be at tr ibuted directly to the inherent false diffusion 

of the H D scheme which, for a given grid spacing, is expected to increase wi th 

Reynolds number. 

6.1.2 Effect of Reynolds Number and Comparison with 

Experiments 

In view of the results of the gr id dependence study, further computations were only 

performed using the B S H D scheme. G r i d distributions of 70 x 43 to 78 x 43 were 

used,and the solutions can therefore be regarded as grid independent. 

The predicted variat ion of the reattachment length w i th Reynolds number is 

plotted in Figure 6.2. Considering the experimental uncertainties (reported to be 

about 10% in Re and 0.15D in xr) the agreement between predicted and measured 

values is excellent. In common wi th other reattaching flows, the reattachment length 

is seen to increase linearly w i th Reynolds number. Separation is first observed 
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Reynolds Number Re 

Figure 6.2. Var ia t ion of reattachment length w i th Reynolds number: —O— , B S H D 

computations; V , measurements of Lane &: Loehrke (1980). 

at Re = 100 and, remarkably, it is predicted to occur slightly downstream of the 

corner in agreement w i th the experimental observations of Lane & Loehrke. A s the 

Reynolds number increases the separation point moves upstream and remains fixed 

at the sharp corner, while the bubble grows in both length and height as illustrated 

by the predicted streamline patterns shown in Figure 6.3. We also observe in these 

plots that the eddy centre is always located upstream of the middle of the bubble, at 

about x / x r = 0.35. Though separation actually occurs at the corner for Re > 100, 

this is not clearly shown in the streamline plots as a result of the interpolation 

procedure used to determine the streamfunction contours. 
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( 0 ) R E Y N O L D S NUMBER = 100 . 

(.D) R E Y N O L D S NUMBER = 150 . 

( C ) R E Y N O L D S NUMBER = 2 0 0 . 
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(d ) R E Y N O L D S NUMBER = 2 5 0 . 

( e ) R E Y N O L D S NUMBER = 3 0 0 . 

Figure 6.3(a to d). Streamlines for laminar flow (For * > 0: A * = 0.125. For 

# < 0: (b) A * = 0.00075; (c) A * = 0.0017; (d) A # = 0.0026; (e) A * = 0.0034). 
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R E Y N O L D S NUMBER = 2 0 0 . 
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R E Y N O L D S NUMBER = 2 5 0 . 

R E Y N O L D S NUMBER = 3 0 0 . 

Figure 6.4(a to d). Velocity field for laminar flow. 
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The velocity field plots (Figure 6.4) show that the largest backflow velocities 

encountered in the recirculating flow region are very small , increasing from about 

1% of the freestream velocity at J?e = 100 to about 10% at .Re = 300. After reattach

ment the boundary layer recovers relatively quickly. A linear region is established 

near the wa l l , and the velocity profiles look very similar to those of a classical flat 

plate boundary layer. It is also interesting to note that, in the region surrounding 

the corner of the plate, the cross-stream velocities are of the same order as the 

streamwise velocities. Th i s results in velocity vectors which are highly inclined, or 

skewed, w i th respect to the grid-lines. It is the combination of this skewness w i th 

the important gradients also present in this region that is responsible for the large 

false diffusion errors associated w i th the H D scheme. 

Figure 6.5 shows the predicted pressure distr ibution along the surface of the 

plate. The pressure coefficient at separation Cpt is equal to about —2.4 at .Re = 100 

and increases, as a result of a reduced curvature of the separating shear layer, to 

about —1.5 at Re = 300. In a l l cases, an immediate and rapid pressure recovery 

takes place. Th i s recovery process is slower, and is spread out over a larger region 

for the higher Reynolds number. Another point of interest is the constant pressure 

gradient through most of the separation bubble at Re = 300 and the higher pressure 

coefficient after recovery. We note that the flow is confined by solid walls. The 

boundary layers which develop on these walls, in combination wi th the reattached 

boundary layers on the plate, result in the favourable pressure gradients observed 

after reattachment. 
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Figure 6.5. Pressure distr ibution along top surface of the plate (laminar flow). 
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6.2 Turbulent Flow 

6.2.1 Preamble and Effect of Grid Refinement 

The turbulent flow calculations were carried out at a Reynolds number of 5 x l 0 4 for a 

blockage rat io of 5.6%; these conditions correspond to the measurements described 

in Chapter 3. 

A s in the laminar flow case, bo th H D and B S H D schemes were used. In the 

course of prel iminary computations using the B S H D scheme, the stagnation flow 

in the region immediately upstream of the bluff plate was found to be inaccurately 

predicted, w i t h stagnation pressure coefficients reaching a m a x i m u m of about 0.92 

instead of 1.0. Th i s type of problem has also been observed by L a i (1983) who 

showed that the performance of skewed based schemes deteriorates in the presence 

of strong adverse pressure gradients 2 . To rectify the deficiency of the B S H D scheme 

in the stagnation region, the computat ional domain was spli t , w i t h H D being used 

upstream of the plate leading edge and B S H D downstream of i t . Th i s split , though 

it may seem arbitrary, was in fact based on Lai ' s conclusions that, in situations 

of strong pressure gradients, the hybr id differencing scheme performs better than 

the skewed differencing scheme, because numerical diffusion is less significant under 

these circumstances. 

The use of a split domain produced differences of less than 7% in computed 

values of xr, the split domain resulting in the longest separation bubble and a 

stagnation pressure coefficient of essentially unity. This technique was used in al l 

subsequent B S H D calculations. 

2 A similar problem was reported by Castro et al. 1981 when using a vector differencing scheme 
for the flow over a normal flat plate. 
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The turbulence models used in the present computations were the standard 

k — e model (see Section 4.3) and a variant of it w i th a preferential dissipation 

modification ( P D M ) described in Append ix D . 

A th i rd model , involving a streamline curvature correction (Appendix D ) , was 

also investigated. Its use was, however, inconclusive because it led to numerical 

instabilities (in the form of random oscillations in the computed flowfield) and a 

converged solution could not be obtained; the problem persisted even wi th severe 

under-relaxation. Implementing the correction on a converged solution obtained 

w i t h the standard k — e model proved equally fruitless. Similar difficulties were 

encountered by Hackman (1982) for the backward facing step, indicat ing a possible 

deficiency in the modification, though it should be pointed out that Benodekar et 

al. (1985) d id not report any difficulties in using the modification to solve for the 

flow over a surface -mounted r ib . 

The results of the gr id refinement studies are shown in figure 6.6 for three cases: 

H D scheme wi th standard k — e model , B S H D wi th standard k — e model , and B S H D 

wi th standard k — e model and preferential dissipation modification. These wi l l 

s imply be referred to as H D , B S H D and P D M respectively. The gr id distributions 

which were used ranged from 49x34 (Axmin/D = 20%, A y m i n / Z > = 5.6%) to 82x66 

{Axmin/D = 3.6%, Aymin/D = 0.9%). 

The H D scheme was expected to yield a shorter reattachment length than the 

experimentally observed value, and while this is borne out by the results, the mag

nitude of the discrepancy (44% wi th a fine 82x62 grid) was somewhat of a surprise. 

The discrepancies reported in the literature for various other geometries are much 

smaller even though coarser grids were used. For example, Durs t & Rastogi (1977) 

reported a 30% underprediction of xr for the flow around a surface mounted block; 
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Figure 6.6. Turbulent flow: effect of gr id refinement on computed reattachment 

length; A , H D scheme wi th k — c model; O , B S H D scheme wi th k — e model; 

• , B S H D scheme w i t h P D M . 

they used a 50x27 gr id . For the backward facing step flow, Hackman (1982) reported 

a 12% underprediction w i th a 5 0 x 5 0 gr id . 

The B S H D scheme results in a substantial lengthening of the predicted reat

tachment length as shown in Figure 6.6, but the discrepancy w i th the experimental 

value is s t i l l large at 30%. In view of the good agreement found in the laminar 

flow case this rather disappointing result can, w i th confidence, be blamed on tur

bulence model deficiencies. The use of the modified turbulence model , which was 

in fact prompted by these results, leads to an encouraging improvement of the pre

dictions. The P D M solutions appear to be independent of gr id refinement for a 

7 5 x 5 7 gr id and a reattachment length of 4 .3D is produced—this is w i th in 10% of 

the experimentally observed value of 4.7D. 
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U/Uref 

Figure 6.7. Effect of gr id refinement on computed velocity profile at x/D = 2 ( P D M 

computat ion) . 

A s a further check of gr id independence, Figure 6.7 shows streamwise velocity 

profiles at x/D — 2 predicted by the P D M using two different gr id distributions. 

These profiles are, for al l intents and purposes, identical. It was however disturbing 

to find that this gr id independence, demonstrated both in terms of the reattachment 

length and in the flowfield, d id not extend to the computed wal l shear stress. Figure 

6.8 shows that the computed wal l shear stresses change by as much as 10% when 

refining the gr id from 7 5 x 5 7 to 8 2 x 6 2 nodes. 

We recall that in the wal l function treatment (Appendix E) different assump

tions are made for the near-wall velocity, depending on the value taken by the wall 

coordinate y+ = pC^y/kyp/fj,. The near-wall velocity is assumed to either vary l i n 

early (y+ < 11.63) or according to the logarithmic law of the wal l ( y + > 11.63). 

Figure 6.9 shows that for the 82x62 grid y+ is always less than 11.63 and therefore 
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the computat ional nodes adjacent to the wa l l are w i th in the viscous sublayer. For 

the 7 5 x 5 7 gr id , however, y+ becomes larger than 11.63 for x/D ~ 2 and there

fore the logarithmic law is invoked to calculate the near-wall flow. It was ini t ia l ly 

thought that the change in computed shear stress was due to the inadequacy of the 

logarithmic law of the wall in this flow3. Further computations showed, however, 

that even when the nodes adjacent to the wal l are w i th in the viscous sublayer, 

further gr id refinement results in changes of the computed wal l shear stress. 

The reasons for these changes in wall shear stress are not clear, but they ind i 

cate possible inconsistencies in the wal l function treatment. A l though the present 

computations suggest that the flow field is not sensitive to the details of the near-

wall flow—and this is substantiated by the results of Hackman (1982) who found 

different wal l function treatments to have litt le impact on the backward facing step 

flow—this matter clearly deserves further investigation. 

6.2.2 Predictions and Comparison with Experimental Data 

In the following we shall concentrate on the results obtained using the B S H D 

scheme. Complete results of the computations w i th the modified k — e model are 

presented, together w i th a selection of the results obtained w i th the standard k — e 

model to illustrate the effect of the turbulence model modification. 

Figure 6.10 and 6.11 show a comparison of the computed velocity profiles wi th 

experimental measurements at various streamwise locations. The B S H D results 

show that size of the separation bubble is underpredicted not only in length but also 

in height. A l though the gross features of the flow are reasonably well reproduced, 

3There is some experimental evidence suggesting that the law of the wall is not valid in reattaching 
flows (Adams et al. 1984; Ruderich & Fernholz 1986). 
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Figure 6.10. M e a n longitudinal velocity profiles: , B S H D com

putat ion; O , P W A measurements. Separation streamlines: — — - — , 

computed; , experimental. 
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Figure 6.11. 
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quantitative agreement is poor. For example, the max imum backfiow velocity is 

predicted to be about 0 . 2 6 J 7 o o and occurs at x/D = 1.0 as opposed to an experimental 

value of about 0 . 3 2 C / O Q occurring at x/D = 2.0. The P D M predictions, on the other 

hand, are in very good agreement w i th the experimental data in the recirculating 

flow region. After reattachment, however, they start to deteriorate as a result 

of a slower rate of recovery of the reattached boundary layer. It is interesting 

to note the fortuitious agreement of the B S H D predictions w i th experiments at 

x/D = 5.Q and 6 . 0 . This is due to the earlier reattachment which provides a longer 

distance for the boundary layer to recover. The deterioration of the predicted 

velocity profiles in the recovery region is a common feature of many reattaching 

flow calculations (see Nallasamy 1 9 8 7 ) and is perhaps not surprising in view of the 

complex and unsteady nature of the reattachment process. We note in conjunction 

w i t h the laminar flow results presented earlier that the backflow velocities are much 

higher in the turbulent flow case, and the near-wall velocities remain relatively high 

compared to laminar flow. 

Figure 6 . 1 2 shows the effective viscosity contours. Compared to the standard 

model the P D M reduces the eddy viscosity not only upstream of the plate but also 

along a region corresponding roughly to the centre of the separated shear-layer. The 

improved velocity field predictions are a direct result of the reduced eddy viscosities 

which contribute to a slower growth rate of the separated shear layer and hence a 

longer separation bubble. We observe that the highest eddy viscosities occur in 

both cases slightly downstream of the reattachment point . 

The predicted turbulent kinetic energy profiles are presented in Figures 6 . 1 3 and 

6 . 1 4 . Since no experimental measurements of the turbulent kinetic energy k were 

available, this was estimated from the measured longitudinal r.m.s. velocity using 
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( a ) 

Figure 6.12. Contours of constant effective viscosity: (a) B S H D computat ion; (b) 

P D M computat ion. 
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Figure 6.13. Turbulent kinetic energy profiles: 

O , estimated from P W A measurements. 
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Figure 6.14. Turbulent kinetic energy profiles: 

estimated from P W A measurements. 

, computed ( P D M ) ; Q , 
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the relation k = u2/a, where a is a measure of the degree of anisotropy of the flow. 

A n average value of a = 1.1 was estimated from the flat plate/spl i t ter plate data 

of Ruder ich & Fernholz (1986). This is of course a rather crude estimate, but a 

useful one in the present context. The T . K . E . profiles predicted using B S H D show 

higher peaks than the estimated values up to x/D = 2 and lower ones thereafter; 

these peaks are observed to occur closer to the wal l . The unrealistically high T . K . E . 

observed near separation contribute to the poor performance of the standard k — e 

model in this part icular flow. In part icular we note that an excessive value of k 

results in an overestimated eddy viscosity (fit oc k2/e). 

The P D M profiles show a remarkable s imilar i ty wi th the estimated values both 

in recirculating flow and recovery regions. We note in part icular that the highest 

T . K . E . is predicted to occur at the same streamwise location as the estimated value 

(x/D — 3). The preferential dissipation modification, by increasing the dissipation 

rate of T . K . E . in the high streamline curvature region close to separation, results in 

more realistic values of k. There is one important feature of the estimated T . K . E . 

which is not wel l reproduced, that is the spread of T . K . E . into the outer region. This 

indicates a possible inadequacy of the modelled diffusion term of the fc-equation. 

The remainder of this discussion is confined to the P D M results. The predicted 

pressure field shown in Figure 6.15 brings to light some interesting points. The 

pressure is observed to remain fairly uniform wi th in the first half of the separation 

bubble. We also observe that large cross-stream gradients are present along a re

gion corresponding roughly to the outer part of the shear layer. These gradients 

are more pronounced near separation, probably as a result of the higher streamline 

curvature. The corresponding pressure dis t r ibut ion along the surface of the plate is 

shown in Figure 6.16. This pressure dis tr ibut ion—which, incidentally, is markedly 
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different than that in the laminar flow case—reproduces fairly wel l the trends of 

the experimental data. In part icular we note the broad region of relatively con

stant pressure w i t h a smal l dip before recovery. The m i n i m u m pressure coefficient, 

excluding the separation value, is underpredicted by about 10%, probably as a re

sult of the shorter bubble. The unrealistically low pressure coefficient predicted at 

separation is due to the singularity associated w i th the sharp corner. In the actual 

flow, this corner is slightly rounded, since in practice it is not possible to machine 

a model w i th a perfectly sharp corner. 

Figure 6.17 shows the wal l shear stress dis tr ibut ion. A g a i n the experimental 

trends are well reproduced and the max ima and min ima compare well considering 

the large uncertainty in the measured values. A n interesting feature of the wal l shear 

stress is the hump which occurs near separation, outside the measurements range. 

A possible interpretation of this hump is a small secondary recirculating flow region 

(with one or several vortices) just downstream of separation. Th i s interpretation is 

supported by the streamline pattern shown in Figure 6.18. 
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Figure 6.16. Comparison of computed and experimental pressure distributions on 

top surface of the the plate: , computed ( P D M ) ; O , measured. 
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X / D 

Figure 6.17. Compar ison of computed and experimental wal l shear stress 

distributions: , computed ( P D M ) ; O , measured. 

Figure 6.18. Predicted streamline pattern ( P D M computation): for # > 0, 

A * = 0.143; for # < 0, A * = 0.01. 
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6.2.3 Effect of Solid Blockage 

F i n a l P D M computations were performed for blockage ratios in the range 1.5% to 

20%. The predicted reattachment lengths are compared in Figure 6.19 to measured 

values reported in the literature. The experimental trends are well reproduced and 

the computed values are wi th in 10% of the measured ones. Va ry ing departures 

from strict two-dimensionality in the measured case could account, in part , for the 

generally higher experimental values of xr. It should also be noted that a l l calcula

tions were carried out assuming the boundary layers originated at the inlet of the 

computat ional domain, and in i t ia l profiles for k and e were kept unchanged. These 

assumptions do not necessarily correspond to the actual experimental conditions, 

but the resulting errors are expected to be small—at least for smal l blockage and 

low free-stream turbulence conditions. 

The predicted pressure distributions are shown in Figure 6.20 for a few blockage 

ratios. A t higher blockage ratios, there is a substantial decrease in the m i n i m u m 

pressure coefficient w i th increasing blockage, and the pressure starts recovering 

sooner. Th i s is consistent w i th the shorter separation bubbles predicted at higher 

blockage ratios. The m a x i m u m pressure coefficient after recovery is lower at higher 

blockage ratios as would be expected from a simple application of Bernoul l i ' s equa

t ion wh ich gives: 

C - 1 1  

P m a x (1 - BR)2 

The predicted pressure recovery is of course lower than this "ideal" value not only 

as a a result of head loss, but also because the effective blockage is increased due 

to the growth of the boundary layers on the solid wa l l and on the blunt plate. 
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Figure 6.19. Effect of blockage on turbulent flow reattachment lengths. 
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Figure 6.20. Predicted pressure distributions for various blockage ratios. 
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6.3 Computational costs 

Most of the present computations were performed on a V A X 11/750 computer. For 

laminar flow calculations the computational effort ranged from 28 iterations and 19 

minutes of C P U time, for a 4 1 x 2 6 gr id , to 63 iterations and 131 minutes of C P U 

time, for a 7 8 x 4 5 gr id . 

Turbulent flow calculations converged much more slowly. They required from 

45 minutes of C P U t ime and 83 iterations, for a 49x34 gr id , to 545 minutes and 329 

iterations, for a 8 2 x 6 2 gr id . A comparison of computing costs for the H D , B S H D 

and P D M is shown in Figure 6.21. The P D M scheme is the most expensive of the 

three schemes as a result of its slower convergence rate. For a l l schemes, the costs 

rise rapidly w i th increasing size of the computat ional array. 

The generally large C P U time requirements are due to the relatively small size 

and slow execution speed of the V A X 11/750. For comparison purposes, some 

test runs were made on the U B C Comput ing Centre mainframe computer (Amdah l 

5850). The execution time was found to be shorter by a factor of about 25. A tur

bulent flow computat ion using the P D M scheme wi th a 75x57 gr id would therefore 

require about 18 minutes of C P U time on the A m d a h l (c/. 439 minutes on V A X ) . 
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Figure 6.21. Comput ing time on V A X 11/750 computer as a function of computa

t ional array size (Turbulent flow). 



Chapter 7 

C onclusions 

Experimental ly , it is difficult to establish an accurately two-dimensional mean flow 

field in a separated reattaching flow region. Considerable effort has been expended 

in this study to approximate these ideal conditions over the central part of the bluff 

rectangular plate. A mean reattachment length of 4.7D is obtained from both wall 

shear stress measurements and surface streamline visual izat ion. 

W i t h i n the separation bubble, the mean wall shear stress is found to be of the 

same order of magnitude as in the reattached flow, and backflow velocities of the 

order of 30% of the free-stream velocity are encountered. Over the first 60% or so of 

the bubble, the separated shear-layer bounding the reversed flow region has similar 

characteristics to those of a plane mix ing layer. The growth rate of the shear-layer 

is linear, and both characteristic frequencies and integral scales vary linearly wi th 

streamwise distance. 

A t about x ~ 0 .6x r , the shear-layer appears to undergo a fairly abrupt change 

in structure: the shear-layer growth rate becomes significantly lower and the maxi 

m u m turbulent intensities become substantially higher than the corresponding plane 

124 
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mixing-layer values. In the reattachment region, the linear variat ion of the charac

teristic frequencies and integral scales ceases. Consistently w i t h the observations of 

K i y a & Sasaki (1983) and Cherry et al. (1984), the shear layer is characterized by 

a low-frequency unsteadiness. This unsteadiness of the reattachment process is fur

ther i l lustrated by the forward-flow-fraction measurements which suggest that the 

instantaneous reattachment point moves around the time-averaged reattachment 

point over a distance of about 0 .5x r . 

In addi t ion to the carefully established two-dimensionality of the flow, a number 

of precautions have been taken to ensure the rel iabil i ty of the present data and its 

sui tabil i ty as a test case for numerical predictions. The measurements have been 

made in a large scale facility, and probe interference effects have been assessed and 

minimized. Where possible, measurements of the same quantities have been made 

using different experimental methods. A complete pulsed-wire anemometer data 

set is given in Append ix A for reference. 

In the numerical predictions, there is some uncertainty in the in i t i a l conditions 

for the boundary layers developing on the w i n d tunnel walls. The errors arising 

from this uncertainty are expected to be small for the low blockage ratios considered 

in this study. Otherwise, the boundary conditions for the flow around the blunt 

rectangular plate are clearly defined. 

Lamina r flow predictions show that the hybr id differencing scheme (HD) leads to 

significantly underpredicted reattachment lengths as a result of false diffusion. The 

skewed differencing scheme ( B S H D ) yields markedly improved predictions. These 

predictions are in excellent agreement w i th experimental observations, indicating 

that errors due to false diffusion are effectively eliminated w i t h the B S H D scheme. 
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A t higher Reynolds numbers, however, the performance of the B S H D scheme 

is found to deteriorate in the stagnation region. This problem, which has also 

been noted elsewhere, is due to a deficiency of the B S H D scheme in the presence 

of strong adverse pressure gradients. In the present turbulent flow computations, 

this deficiency is "corrected" by reverting to lower order hybr id differencing in the 

stagnation region. 

The use of H D differencing i n conjunction w i t h the standard k — e model is 

inadequate for this flow. E v e n w i t h fine grids (82 x 62), this combination leads to a 

separation bubble 44% shorter than observed experimentally. This discrepancy is 

much larger than the values reported in the literature for other types of separated 

reattaching flows. 

The results of the the B S H D computations show that the standard k — e model 

fails to represent accurately the effects of turbulence in the region around separa

t ion . The use of the preferential dissipation modification ( P D M ) leads to signifi

cantly improved predictions. A reattachment length of 4 .3D is obtained. Detailed 

predictions in the separation bubble compare well w i th experiments, and are much 

more satisfactory than those obtained w i th the discrete vortex method ( K i y a et 

al. 1982). Downstream of reattachment, however, a gradual deterioration of the 

predictions is observed as the wall boundary layer redevelops. 

A disturbing feature of the predictions is that although the flowfield results are 

found to be essentially gr id independent for a 75 x 57 gr id , this gr id independence 

does not extend to the computed wal l shear stress. The wal l shear stress is found to 

change by as much as 10% wi th subsequent gr id refinements. These changes indicate 

possible inconsistencies in the near-wall treatment. The impact of these changes on 
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the predictions seems to be min imal in the present case because the flowfield appears 

to be insensitive to the details of the near-wall flow. Th i s problem, however, could 

be significant in other flow situations. 

A n alternative method of analysis, based on a novel use of the momentum inte

gral technique in flows wi th separation and reattachment has been proposed. The 

method leads to encouraging results for the case of a sudden expansion flow, but 

problems of convergence exist when the method is applied to external flows using a 

direct viscous-inviscid interaction procedure. 

A few suggested areas of future research and some recommendations follow: 

1. Exper imenta l information to elucidate the structure of the flow in the near-

wal l region is needed to guide the modell ing of this region. A step in this 

direction has been taken by Adams et al. (1984) for the turbulent flow over 

a backward facing step. The i r results suggest that the near-wall flow has a 

laminar-like structure, but more information is required part icular ly for high 

Reynolds number flows. Because the scale of the wal l region is very small com

pared w i th the overall scale of the separation bubble, experiments should be 

conducted on large scale models and miniaturized pulsed-wire probes and/or 

laser-Doppler anemometry should be used.' 

2. M o r e definitive wal l shear stress measurements should be made. The large 

uncertainty in the present measurements is due to the cal ibrat ion procedure. 

A better—though not ideal (see Castro & Dianat 1985)—procedure would 

be to calibrate the probe in an ordinary turbulent boundary layer against a 

Preston tube. 
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3. Measurements of the turbulent stresses uv, and of the r.m.s. velocities v and w 

should be made. These measurements would not only give further insight into 

the structure of the flow, but would also enable a more thorough assessment 

of turbulence models. 

4. The extension of the momentum integral analysis to external separated-reattaching 

flows is wor th pursuing. The use of an inverse or semi-inverse interaction 

procedure of the type used by Wi l l i ams (1985) should be explored for the 

matching of the viscous flow to the external inviscid flow. 

5. A cri terion to assess the suitabil i ty of the B S H D scheme in regions of strong 

pressure gradients should be devised. Based on this cri terion, a "switch

ing" technique from bounded-skew-upwind differencing to upwind differencing 

should be considered. A t a more fundamental level, consideration should be 

given to the development of a skewed scheme which allows for strong pressure 

gradients. 

6. The present results show that the blunt rectangular plate flow constitutes a 

severe test for discretization schemes as well as turbulence models. In both, 

inadequacies appear to be magnified as a result of the high streamline cur

vatures, large gradients, and the stagnation flow region. These features, as 

well as the simple uniform flow upstream boundary conditions, suggest the 

adoption of this flow configuration as a benchmark test for numerical methods 

and turbulence models. 
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Final ly , the present predictions of the mean flow field using the modified k — e 

model are quite remarkable, considering the unsteadiness of the actual flow and 

the complexity of its turbulence structure in the reattachment region. A time-

dependent numerical solution which takes into account this large-scale unsteadiness 

would be a logical and, undoubtedly, challenging extension of this work. Such an 

approach should also prove useful as a first step towards the computat ion of the 

high Reynolds number unsteady flows about prismatic sections—a class of flows 

which is of great pract ical importance to many wind engineering applications. 
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Appendix A 

Tabulated D a t a 

A complete set of mean velocity (U), r.m.s. velocity ( V r ) , and forward flow fraction 

( 7 ) profiles are given for reference. A l l measurements were made wi th a pulsed-wire 

anemometer at a Reynolds number of 5 x 10 4 . The tabulated values are presented 

in non-dimensional form; the reference quantities are the free-stream velocity [T^, 

(= Uref) and the plate thickness D (= 89.9 m m ) . 
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Table A . l ( a to j ) . Experimental data. 

FILE NU.PW.JAN85A 
STATION X/D= 0.000 X/Xr= 0.000 
Uref= 8.38 M/SEC 

Y/D Y / X r U/Uref u/Uref GAMMA 

0. 0759 0 .0163 0.9508 0. 0276 1 .0000 
0. 0843 0 .0182 0.9479 0. 0251 1 .0000 
0. 1 1 24 0 .0242 0.9473 0. 0207 1 .0000 
0. 1687 0 .0364 0.9584 0. 0203 1 .0000 
0. 2249 0 .0485 0.9654 0. 0209 1 .0000 
0. 2812 0 .0607 0.9797 0. 0204 1 .0000 
0. 3374 0 .0728 0.9878 0. 0198 1 .0000 
0. 3937 0 .0850 0.9907 0. 0196 1 .0000 
0. 4499 0 .0971 0.9932 0. 0196 1 .0000 
0. 5624 0 .1214 1.0046 0. 0197 1 .0000 
0. 6749 0 . 1457 1.0109 0. 0191 1 .0000 
0. 7874 0 . 1700 1.0176 0. 0196 1 .0000 
0. 8998 0 . 1 943 1.0258 0. 01 97 1 .0000 
1. 0123 0 .2186 1.0291 0. 0198 1.0000 
1. 1811 0 .2550 1.0231 0. 0205 1 .0000 
1. 3498 0 .291 5 1.0287 0. 0198 1 .0000 
1. 5185 0 .3279 1.0353 0. 0202 1 .0000 
1. 6872 0 . 3644 1.0414 0. 0212 1 .0000 
1. 8560 0 .4008 1.0483 0. 021 1 1 .0000 
2. 0247 0 . 4373 1.0539 0. 0201 1.0000 

FILE NU.PW.JAN85B 
STATION X/D= 1.000 X/Xr= 0.216 
Uref= 8.36 M/SEC 

Y/D Y / X r U/Uref u /Uref GAMMA 

0 .0758 0. 0163 -0 .2404 0. 1 543 0.0250 
0 .0843 0. 0182 -0 .2421 0. 1614 0.0240 
0 .1124 0. 0242 -0 .2296 0. 1 604 0.0390 
0 .1406 0. 0303 -0 .2225 0. 1717 0.0480 
0 . 1 687 0. 0364 -0 .2006 0. 1846 0.0680 
0 .1968 0. 0425 -0 .1823 0. 1895 0.1050 
0 .2249 0. 0485 -0 .1516 0. 2091 0. 1730 
0 .2530 0. 0544 -0 .1099 0. 2133 0.2760 
0 .281 2 0. 0607 -0 .0404 0. 2297 0.4220 
0 .3093 0. 0668 0 .0385 0. 2355 0.5760 
0 .3374 0. 0728 0 . 1 535 0. 2388 0.7590 
0 .3655 0. 0789 0 .2853 0. 2453 0.8770 
0 .3937 0. 0850 0 .4087 0. 2525 0.9560 
0 .4218 0. 091 1 0 .5505 0. 2606 0.9870 
0 .4499 0. 0971 0 .7148 0. 2728 0.9970 
0 .4780 0. 1032 0 .8664 0. 2664 1.0000 
0 .5061 0. 1093 1 .0319 0. 2478 1 .0000 
0 .5343 0. 1 1 54 1 . 1 623 0. 2041 1 .0000 
0 .5624 0. 1214 1 .2434 0. 1578 1 .0000 
0 .6186 0. 1336 1 .2919 0. 0792 1.0000 
0 .6749 0. 1457 1 .2828 0. 0555 1.0000 
0 .7311 0. 1 579 1 .2662 0. 0456 1.0000 
0 .7874 0. 1700 1 .2541 0. 0424 1.0000 
0 .8998 0. 1943 1 .2266 0. 0369 1.0000 
1 .0123 0. 2186 1 .2069 0. 0338 1.0000 
1 .1248 0. 2429 1 . 1 949 0. 0324 1.0000 
1 .2373 0. 2672 1 .1823 0. 0295 1.0000 
1 .3498 0. 291 5 1 .1693 0. 0266 1.0000 
1 .5185 0. 3275 1 .1517 0. 0246 1.0000 
1 .6872 0. 3644 1 .1417 0. 0244 1.0000 
1 .8560 0. 4008 1 .1395 0. 0249 1.0000 
2 .0247 0. 4373 1 . 1 332 0. 0246 1.0000 



F I L E N U . P W . J A N 8 5 C 
S T A T I O N X/D= 2 . 0 0 0 X/Xr= 0 . 4 3 2 
Uref= 8 . 3 2 M / S E C 

Y / D Y / X r U/Uref u /Uref GAMMA 

0 . 0 7 5 9 0 . 0 1 6 3 - 0 . 3 2 5 8 0 . 1731 0 . 0 3 9 0 
0 . 0 8 4 3 0 . 0 1 8 2 - 0 . 3 2 3 9 0 . 1774 0 . 0 3 7 0 
0 . 11 24 0 . 0 2 4 2 - 0 . 2 9 6 3 0 . 1915 0 . 0 7 1 0 
0 . 1 4 0 6 0 . 0 3 0 3 - 0 . 2 6 7 0 0 . 2 0 7 3 0 . 0 9 6 0 
0 . 1 687 0 . 0 3 6 4 - 0 . 2342 0 . 2 2 1 7 0 . 1 420 
0 . 1 9 6 8 0 . 0 4 2 5 - 0 . 1 994 0 . 2 3 7 6 0 . 1 920 
0 . 2 2 4 9 0 . 0 4 8 5 - 0 . 1 508 0 . 2521 0 . 2 4 8 0 
0 . 2 5 3 0 0 . 0 5 4 6 - 0 . 1016 0 . 2 6 3 3 0 . 3 2 5 0 
0 . 2 8 1 2 0 . 0 6 0 7 - 0 . 0 5 4 5 0 . 271 1 0 . 4 0 6 0 
0 . 3 0 9 3 0 . 0 6 6 8 - 0 . 0051 0 . 2 8 3 8 0 . 5 1 5 0 
0 . 3 3 7 4 0 . 0 7 2 8 0 . 0 6 7 9 0 . 2 8 6 4 0 . 6 2 4 0 
0 . 3 6 5 5 0 . 0 7 8 9 0 . 1 302 0 . 2 8 8 8 0 . 6 9 7 0 
0 . 3 9 3 7 0 . 0 8 5 0 0 . 221 1 0 . 2 8 8 6 0 . 7 8 6 0 
0 . 4 2 1 8 0 . 0 9 1 1 0 . 2982 0 . 2 8 7 9 0 . 8 5 4 0 
0 . 4 4 9 9 0 . 0 9 7 1 0 . 381 1 0 . 2 8 7 7 0 . 9 0 9 0 
0 . 4 7 8 0 0 . 1 0 3 2 0 . 4 6 1 2 0 . 2 8 8 8 0 . 9 4 2 0 
0 . 5 0 6 1 0 . 1 0 9 3 0 . 5531 0 . 2 9 5 6 0 . 9 7 1 0 
0 . 5 3 4 3 0 . 11 54 0 . 6 6 4 0 0 . 2931 0 . 9 8 6 0 
0 . 5 6 2 4 0 . 1 2 1 4 0 . 7 4 2 2 0 . 2 9 1 5 0 . 9 9 4 0 
0 . 6 1 8 6 0 . 1 336 0 . 9 4 7 8 0 . 2 7 6 2 0 . 9 9 9 0 
0 . 6 7 4 9 0 . 1 4 5 7 1 . 1 147 0 . 2341 1 . 0 0 0 0 
0 . 7 3 1 1 0 . 1 5 7 9 1. 2 3 2 2 0 . 1804 1 . 0 0 0 0 
0 . 7 8 7 4 0 . 1 7 0 0 1. 2882 0 . 1 223 1 . 0 0 0 0 
0 . 8 9 9 8 0 . 1 9 4 3 1. 2 9 2 5 0 . 0 6 8 6 1 . 0 0 0 0 
1 . 0 1 2 3 0 . 2 1 8 6 1. 2 7 3 7 0 . 0 4 9 3 1 . 0 0 0 0 
1 . 1 2 4 8 0 . 2 4 2 9 1. 2551 0 . 0431 1 . 0 0 0 0 
1 . 2 3 7 3 0 . 2 6 7 2 1. 2 4 1 3 0 . 0 3 9 7 1 . 0 0 0 0 
1 . 3 4 9 8 0 . 2 9 1 5 1. 2 2 9 3 0 . 0 3 6 8 1 . 0 0 0 0 
1 . 5 1 8 5 0 . 3 2 7 9 1. 2041 0 . 0 3 3 4 1 . 0 0 0 0 
1 . 6 8 7 2 0 . 3 6 4 4 1. 1843 0 . 0 2 7 7 1 . 0 0 0 0 
1 . 8 5 6 0 0 . 4 0 0 8 1. 1776 0 . 0261 1 . 0 0 0 0 
2 . 0 2 4 7 0 . 4 3 7 3 1. 1702 0 . 0 2 6 0 1 . 0 0 0 0 

F I L E N U . P W . J A N 8 5 D 
S T A T I O N X/D= 3 . 0 0 0 X/Xr= 0 . 6 4 8 
Uref= 8 . 3 4 M / S E C 

Y/D Y / X r U /Ure f u /Uref GAMMA 

0 . 0 7 5 9 0 . 0 1 6 3 - 0 . 2 6 6 3 0 . 2 1 2 0 0 . 1020 
0 . 0 8 4 3 0 . 0 1 8 2 - 0 . 2 5 8 0 0 . 2 1 4 6 0 . 1 1 20 
0 . 1 124 0 . 0 2 4 2 - 0 . 2 1 5 4 0 . 2 3 7 5 0 . 1570 
0 . 1 4 0 6 0 . 0 3 0 3 - 0 . 1 8 4 5 0 . 2 4 8 0 0 . 2 2 9 0 
0 . 1 687 0 . 0 3 6 4 - 0 . 1 4 1 3 0 . 2 6 8 8 0 . 2 8 5 0 
0 . 1 9 6 8 0 . 0 4 2 5 - 0 . 0 9 9 2 0 . 2 7 7 6 0 . 3 4 5 0 
0 . 2 2 4 9 0 . 0 4 8 5 - 0 . 0 5 6 9 0 . 2 9 3 9 0 . 4 2 9 0 
0 . 2 5 3 0 0 . 0 5 4 6 - 0 . 0 0 9 1 0 . 2 9 7 8 0 . 4 8 1 0 
0 . 2 8 1 2 0 . 0 6 0 7 0 . 0 6 1 4 0 . 3 0 4 1 0 . 5 7 3 0 
0 . 3 0 9 3 0 . 0 6 6 8 0 . 1 1 5 7 0 . 3 1 6 6 0 . 6 5 2 0 
0 . 3 3 7 4 0 . 0 7 2 8 0 . 1 7 7 7 0 . 3 1 5 0 0 . 7 1 1 0 
0 . 3 6 5 5 0 . 0 7 8 9 0 . 2 4 4 1 0 . 3 1 4 6 0 . 7 9 0 0 
0 . 3 9 3 7 0 . 0 8 5 0 0 . 3 0 4 1 0 . 3 1 3 9 0 . 8 4 1 0 
0 . 4 2 1 8 0 . 091 1 0 . 3 7 6 5 0 . 3 1 3 9 0 . 8 9 4 0 
0 . 4 4 9 9 0 . 0971 0 . 4 4 8 9 0 . 3 0 9 1 0 . 9 3 2 0 
0 . 4 7 8 0 0 . 1 0 3 2 0 . 5 1 2 2 0 . 3 1 0 2 0 . 9 5 5 0 
0 . 5 0 6 1 0 . 1093 0 . 5 9 7 6 0 . 3 0 4 0 0 . 9 7 0 0 
0 . 5343 0 . 1 1 54 0 . 6 5 8 0 0 . 3 0 2 1 0 . 9 8 5 0 
0 . 5 6 2 4 0 . 1 241 0 . 7 3 4 8 0 . 2 9 9 7 0 . 9 8 9 0 
0 . 6 1 8 6 0 . 1 3 3 6 0 . 8 8 3 9 0 . 2 7 9 6 0 . 9 9 8 0 
0 . 6 7 4 9 0 . 1 4 5 7 1 . 0 0 5 3 0 . 2 4 7 2 1 . 0 0 0 0 
0 . 7 3 1 1 0 . 1 5 7 9 1 . 1 0 5 8 0 . 2 1 0 7 1 . 0 0 0 0 
0 . 7 8 7 4 0 . 1700 1 . 1 7 3 0 0 . 1672 1 . 0 0 0 0 
0 . 8 4 3 6 0 . 1822 1 . 2 0 2 0 0 . 1 3 4 2 1 . 0 0 0 0 
0 . 8 9 9 8 0 . 1943 1 . 2 2 1 7 0 . 0 9 7 8 1 . 0 0 0 0 
0 . 9 5 6 1 0 . 2 0 6 5 1 . 2 1 7 0 0 . 0 8 1 9 1 . 0 0 0 0 
1 . 0 1 2 3 0 . 2 1 8 6 1 . 2 2 1 9 0 . 0 6 6 6 1 . 0 0 0 0 
1 . 1 2 4 8 0 . 2 4 2 9 1 . 2 0 9 3 0 . 0 4 6 4 1 . 0 0 0 0 
1 . 2 3 7 3 0 . 2 6 7 2 1 . 2 0 0 3 0 . 0 3 7 9 1 . 0 0 0 0 
1 . 3 4 9 8 0 . 2 9 1 5 1 . 1 9 3 1 0 . 0 3 3 4 1 . 0 0 0 0 
1 . 5 1 8 5 0 . 3 2 7 9 1 . 1 8 0 8 0 . 0 2 9 8 1 . 0 0 0 0 
1 . 6 8 7 2 0 . 3 6 4 4 1 . 1 6 9 1 0 . 0 2 8 6 1 . 0 0 0 0 
1 . 8 5 6 0 0 . 4 0 0 8 1 . 1 6 1 9 0 . 0 2 7 2 1 . 0 0 0 0 
2 . 0 2 4 7 0 . 4 3 7 3 1 . 1582 0 . 0 2 6 8 1 . 0 0 0 0 



FILE NU.PW.JAN85E 
STATION X/D= 4.000 X/Xr= 0.864 
Uref= 8.31 M/SEC 

FILE NU.PW.JAN85F 
STATION X/D= 4.500 X/Xr= 0.972 
Uref= 8.34 M/SEC 

y/D Y / X r U/Uref u/Uref GAMMA y/D Y / X r U/Uref u /Uref GAMMA 

0.0759 0.0163 -0.0193 0.2450 0.4690 0.0759 0.0163 0.1413 0.2395 0.7340 
0.0843 0.0182 -0.0001 0.2516 0.4870 0.0843 0.0182 0.1518 0.2413 0.7600 
0.1124 0.0242 0.0239 0.2547 0.5110 0.1124 0.0242 0.1718 0.2415 0.7790 
0.1406 0.0303 0.0597 0.2621 0.5850 0.1406 0.0303 0.2034 0.2470 0.8070 
0.1687 0.0364 0.0898 0.2706 0.6270 0. 1687 0.0364 0.2296 0.2506 0.8330 
0.1968 0.0425 0.1251 0.2799 0.6820 0. 1968 0.0425 0.2557 0.2570 0.8420 
0.2249 0.0485 0.1647 0.2828 0.7210 0.2249 0.0485 0.2757 0.2619 0.8760 
0.2530 0.0546 0.2120 0.2879 0.7710 0.2530 0.0546 0.3224 0.2685 0.8980 
0.281 2 0.0607 0.2590 0.2850 0.8160 0.2812 0.0607 0.3537 0.2721 0.9140 
0.3093 0.0668 0.2942 0.2888 0.8510 0.3093 0.0668 0.3892 0.2739 0.9330 
0.3374 0.0728 0.3350 0.2959 0.8980 0.3374 0.0726 0.4171 0.2742 0.9500 
0.3655 0.0789 0.3890 0.2964 0.9120 0.3655 0.0789 0.4652 0.2762 0.9620 
0.3937 0.0850 0.4392 0.3015 0.9380 0.3937 0.0850 0.5005 0.2774 0.9700 
0.4218 0.091 1 0.4934 0.3003 0.9510 0.4218 0.0911 0.5372 0.2764 0.9760 
0.4499 0.0971 0.5408 0.2966 0.9720 0.4499 0.0971 0.581 1 0.2792 0.9820 
0.47B0 0.1032 0.5932 0.2960 0.9810 0.4780 0.1032 0.6405 0.2802 0.9870 
0.5061 0.1093 0.6454 0.2894 0.9860 0.5061 0.1093 0.6722 0.2799 0.9920 
0.5343 0.1154 0.6918 0.2882 0.9890 0.5343 0.1154 0.7159 0.2733 0.9940 
0.5624 0.1214 0.7443 0.2783 0.9930 0.5624 0.1214 0.7515 0.2665 0.9960 
0.6186 0. 1336 0.8341 0.2631 0.9970 0.6186 0.1336 0.8334 0.2523 0.9970 
0.6749 0. 1457 0.9308 0.2366 0.9980 0.6749 0.1456 0.8979 0.2312 0.9990 
0.731 1 0.1579 0.9951 0.2125 1.0000 0.731 1 0. 1579 0.9601 0.2061 1.0000 
0.7874 0.1700 1.0569 0.1791 1.0000 0.7874 0.1700 1.0099 0.1839 1.0000 
0.8436 0.1822 1 .0908 0.1550 1.0000 0.8436 0. 1822 1 .0503 0.1499 1.0000 
0.8998 0.1943 1.1163 0.1247 1.0000 0.8998 0.1943 1.0700 0.1304 1.0000 
0.9561 0.2065 1.1265 0.1013 1.0000 0.9561 0.2065 1.0812 0.1084 1.0000 
1.0123 0.2186 1 . 1326 0.0813 1.0000 1.0123 0.2186 1 .0902 0.0872 1 .0000 
1 . 1248 0.2429 1 . 1346 0.0588 1.0000 1 .1248 0.2429 1.1008 0.0648 1.0000 
1 .2373 0.2672 1 . 1349 0.0484 1.0000 1 .2373 0.2672 1.1001 0.0532 1 .0000 
1 . 3498 0.2915 1.1319 0.0416 1.0000 1.3498 0.2915 1.0907 0.0446 1 .0000 
1.5185 0.3279 1.1242 0.0357 1.0000 1.5185 0.3279 1.0935 0.0381 1 .0000 
1.6872 0.3644 1.1199 0.0313 1.0000 1.6872 0.3644 1 .0880 0.0333 1 .0000 
1.8560 0.4008 1.1169 0.0309 1.0000 1.8560 0.4008 1.0878 0.0315 1 .0000 
2.0247 0.4373 1.1215 0.0284 1.0000 2.0247 0.4373 1 .0944 0.0313 1 .0000 



FILE NU.PW.JAN8 5G 
STATION X/D= 5.000 X/Xr= 1.080 
U r e £ = 8.35 M/SEC 

Y / D Y / X r U/Uref u/Uref GAMMA 

0 .0759 0 .0163 0.2831 0. 2191 0. 9240 
0 .0843 0 .0182 0.2927 0. 2199 0. 9310 
0 . 1 124 0 .0242 0.3058 0. 2197 0. 9400 
0 . 1 406 0 .0303 0.3302 0. 2240 0. 9520 
0 .1687 0 .0364 0.3505 0. 2282 0. 9530 
0 .1968 0 .0425 0.3762 0. 2292 0. 9610 
0 .2249 0 .0485 0.3971 0. 2358 0. 9680 
0 .2530 0 .0546 0.4300 0. 2448 0. 9710 
0 .2812 0 .0607 0.4540 0. 2482 0. 9730 
0 .3093 0 .0668 0.4804 0. 2515 0. 9740 
0 .3374 0 .0728 0.5132 0. 2595 0. 9850 
0 .3655 0 .0789 0.5534 0. 2624 0. 9880 
0 .3937 0 .0850 0.5864 0. 2655 0. 9900 
0 .4218 0 .091 1 0.6231 0. 2646 0. 9900 
0 .4499 0 .0971 0.6573 0. 2670 0. 9940 
0 .4780 0 .1032 0.6863 0. 2618 0. 9960 
0 .5061 0 .1093 0.721 3 0. 2564 0. 9970 
0 .5343 0 . 1 1 54 0.7671 0. 2537 0. 9980 
0 .5624 0 .1214 0.7981 0. 2466 0. 9980 
0 .6186 0 .1336 0.8591 0. 2362 0. 9990 
0 .6749 0 .1457 0.9097 0. 2210 1. 0000 
0 .731 1 0 .1579 0.9551 0. 1 948 1 . 0000 
0 .7874 0 .1700 1.0018 0. 1725 1 . 0000 
0 .8436 0 .1822 1.0257 0. 1 523 1 . 0000 
0 .8998 0 .1943 1.0531 0. 1 281 1. 0000 
0 .9561 0 .2065 1.0648 0. 1024 1 . 0000 
1 .0123 0 .2186 1.0743 0. 091 1 1 . 0000 
1 . 1 248 0 .2429 1.0863 0. 0628 1 . 0000 
1 .2373 0 .2672 1.0857 0. 0536 1 . 0000 
1 .3498 0 .2915 1.0862 0. 0422 1 . 0000 
1 .5185 0 .3279 1.0921 0. 0355 1. 0000 
1 .6872 0 .3644 1.0885 0. 0303 1 . 0000 
1 .8560 0 .4008 1.0877 0. 0289 1 . 0000 
2 .0247 0 .4373 1.091 3 0. 0276 1. 0000 

FILE NU.PW.JAN85H 
STATION X/D= 6.000 X/Xr= 0.296 
Uref= 8.39 M/SEC 

Y/D Y / X r U/Uref u/Uref GAMMA 

0 .0675 0. 0145 0.4623 0 .2018 0 . 9960 
0 .0758 0. 0163 0.4707 0 .2031 0 .9970 
0 .0842 0. 0182 0.4753 0 .2007 0 .9970 
0 . 1 1 24 0. 0241 0.4976 0 .2032 0 .9980 
0 . 1 406 0. 0302 0.5081 0 .2073 0 .9980 
0 .1685 0. 0364 0.5243 0 .2091 0 .9980 
0 . 1 967 0. 0425 0.5423 0 .2113 0 .9980 
0 .2248 0. 0485 0.5614 0 .2175 0 .9980 
0 .2530 0. 0545 0.5778 0 .2214 0 . 9990 
0 .2812 0. 0607 0.5958 0 .2255 0 .9980 
0 .3092 0. 0668 0.6183 0 .2301 0 .9980 
0 .3373 0. 0728 0.6383 0 .2332 0 .9990 
0 .3654 0. 0789 0.6573 0 .2353 0 .9990 
0 .3937 0. 0850 0.6864 0 .2385 0 .9990 
0 .4217 0. 0910 0.7070 0 .2383 0 .9990 
0 .4499 0. 0971 0.7274 0 .2346 1 .0000 
0 .4780 0. 1 032 0.7459 0 .2312 1 .0000 
0 .5061 0. 1 091 0.7730 0 .2305 .9990 
0 .5342 0. 1 154 0.7983 0 .2281 1 .0000 
0 .5624 0. 1214 0.8202 0 .2242 .9990 
0 .5904 0. 1 275 0.8378 0 .2228 1 .0000 
0 .6185 0. 1 336 0.8621 0 .2171 1 .0000 
0 .6749 0. 1 456 0.9035 0 .2031 1 .0000 
0 .7310 0. 1 578 0.9372 0 .1879 1 .0000 
0 .7874 0. 1700 0.965B 0 .1698 1 .0000 
0 .8435 0. 1 821 0.9906 0 .1519 1 .0000 
0 .8998 0. 1942 1.0155 0 . 1 322 1 .0000 
0 .9560 0. 2064 1 .0320 0 .1161 1 .0000 
1 .0123 0. 2185 1 .0428 0 .1038 1 .0000 
1 . 1 248 0. 2428 1.0555 0 .0717 1 .0000 
1 .2373 0. 2672 1.0627 0 .0565 1 .0000 
1 .3498 0. 2915 1.0661 0 .0502 1 .0000 
1 .5185 0. 3278 1.0660 0 .0374 1 .0000 
1 .6871 0. 3643 1.0673 0 .0318 1 .0000 
1 .8560 0. 4007 1.0657 0 .0281 1 .0000 
2 .0246 0. 4371 1.0656 0 .0253 1 .0000 



FILE NU.PW.JAN85I 
STATION X/D= 7.000 X/Xr= 1.512 
Uref= 8.42 M/SEC 

Y/D Y / X r U/Uref u /Uref GAMMA 

0. 0673 0. 0145 0. 5762 0. 1885 0.9990 
0. 0758 0. 0163 0. 5769 0. 1881 1.0000 
0. 0842 0. 0182 0. 5848 0. 1884 1 .0000 
0. 1 1 24 0. 024 1 0. 6022 0. 1895 0.9990 
0. 1 406 0. 0302 0. 6095 0. 1898 1 .0000 
0. 1 686 0. 0364 0. 6250 0. 1913 1.0000 
0. 1 967 0. 0425 0. 6409 0. 1972 0.9990 
0. 2248 0. 0485 0. 6544 0. 1 982 1.0000 
0. 2530 0. 0545 0. 6628 0. 2004 1.0000 
0. 2812 0. 0607 0. 6836 0. 2003 1 .0000 
0. 3373 0. 0728 0. 7074 0. 2030 1 .0000 
0. 3937 0. 0850 0. 7375 0. 2071 1.0000 
0. 4499 0. 0971 0. 7642 0. 2116 1.0000 
0. 5061 0. 1 091 0. 7965 0. 207 1 1.0000 
0. 5624 0. 1214 0. 8284 0. 2051 1.0000 
0. 6185 0. 1336 0. 8674 0. 1955 1.0000 
0. 6749 0. 1456 0. 8958 0. 1876 1 .0000 
0. 7310 0. 1578 0. 9146 0. 1794 1.0000 
0. 7874 0. 1700 0. 9437 0. 1654 1.0000 
0. 8435 0. 1821 0. 9587 0. 1 566 1.0000 
0. 8998 0. 1942 0. 9806 0. 1412 1.0000 
1 . 0123 0. 2185 1 . 0087 0. 1 136 1 .0000 
1 . 1248 0. 2428 1 . 0241 0. 0936 1.0000 
1 . 2373 0. 2672 1 . 0373 0. 0697 1.0000 
1 . 3498 0. 2915 1 . 0497 0. 0538 1.0000 
1 . 51B5 0. 3278 1 . 0529 0. 0426 1.0000 
1 . 6871 0. 3643 1 . 0529 0. 0340 1.0000 
1. 8560 0. 4007 1 . 0479 0. 0312 1.0000 
2. 0247 0. 4371 1 . 0539 0. 0268 1.0000 

FILE NU.PW.JAN85J 
STATION X/D= 8.500 X/Xr= 1.836 
Uref= 8.40 M/SEC 

Y/D Y / X r U/Uref u /Uref GAMMA 

0 0759 0.0163 0.6784 0. 1679 1.0000 
0 0843 0.0182 0.6836 0. 1701 1.0000 
0 1 124 0.0242 0.7030 0. 1693 1.0000 
0 1 406 0.0303 0.7207 0. 1716 1.0000 
0 1 687 0.0364 0.7343 0. 1724 1.0000 
0 1968 0.0425 0.7414 0. 1733 1.0000 
0 2249 0.0485 0.7515 0. 1757 1 .0000 
0 2530 0.0546 0.7568 0. 1 761 1.0000 
0 2812 0.0607 0.7735 0. 1746 1.0000 
0 3093 0.0668 0.7740 0. 1743 1.0000 
0 3374 0.0728 0.7795 0. 1756 1.0000 
0 3937 0.0850 0.8052 0. 1780 1.0000 
0 4499 0.0971 0.8199 0. 1784 1.0000 
0 5061 0.1093 0.8455 0. 1757 1 .0000 
0 5624 0.1214 0.8617 0. 1753 1.0000 
0 6186 0.1336 0.8808 0. 1716 1.0000 
0 6749 0.1457 0.9049 0. 1675 1.0000 
0 7874 0.1700 0.9431 0. 1546 1.0000 
0 8998 0.1943 0.9820 0. 1403 1 .0000 
1 0123 0.2186 1.0141 0. 1 198 1.0000 
1 1248 0.2429 1.0292 0. 0965 1.0000 
1 2373 0.2672 1.0408 0. 0782 1.0000 
1 3498 0.2915 1.0486 0. 0692 1.0000 
1 5185 0.3279 1.0514 0. 0509 1.0000 
1 6872 0.3644 1.0522 0. 0399 1.0000 
1 8560 0.4008 1.0508 0. 0324 1.0000 
2 0247 0.4373 1.0499 0. 0279 1.0000 



Appendix B 

Potential Flow Analys is 

B . l Theory 

The simple model outl ined in this section is inspired directly from Parkinson's wake 

source model (Parkinson and Jandal i 1970). 

The separated shear layer is, in a first approximation, replaced by a streamline 

bounding an external i rrotat ional flow region on its upper side (Figure B . l ) . The 

irrotational flow can be modelled by introducing a surface point source, the strength 

and location of which are determined by applying two conditions: 

i) Specified base pressure at A. 

ii) Tangential separation. 

Since the body is a polygon, the flowfield in the physical plane (2-plane) can 

be mapped conformally onto the upper half of the transform plane (f-plane) using 

a Schwarz-Christoffel transformation. The solution of the flow is then readily ob

tained, once the free parameters of the problem are determined from the imposed 

conditions. 

142 
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U. Q / v V 1  

Figure B . l . Wake source model . 
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Figure B . 2 . Physical and transform planes. 
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The tangential separation condit ion, however, presents some difficulties. B u t 

these difficulties can be avoided by the introduction of a small teat in the physical 

plane at point A, as shown in figure B . 2 . 

A p p l y i n g the Schwarz-Christoffel transformation: 

dz K( , 

A t the cr i t ical point A , dz/d$ has a simple zero; angles are therefore doubled through 

the transformation. Hence, to a stagnation streamline at A in the f- plane corre

sponds a tangential separation streamline at A in the 2-plane. The relative height 

of the teat 8/h can be made suitably small by appropriately choosing e. 

In the f-plane, we have a uniform flow past a source; the resulting complex 

potential is: 

Voof + I; ln(£ - &) (B.2) 

and the velocity potential in the and 2-planes are given, respectively, by 

W(t) = ^ (B .3 ) 

and 

In the outer flow region bounded by the separation streamline, Bernoul l i ' s equation 

applies: 

p+lp\W(z)\2 = p0O + 1-pU2

oo (B.5) 

or 

ir1 oo oo 
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A p p l y i n g the first condit ion (i.e. given base pressure pj, at A) to equation (B.8) , we 

obtain: 

W{z) = (i-cPbyi2 = k (B.7) 

evaluating W(z) at A gives the following relation: 

(B.8) 

and requiring A to be a stagnation point in the f-plane (2 condition) leads to 

Q 
2hU k(l - e) 

(B.9) 

G iven k and e, the source strength, Q, and its posit ion, are determined by 

(B.8) and (B.9). The pressure distr ibution along the streamline can be evaluated 

using (B.7) , and the shape of the separating streamline is obtained by solving for 

the f co-ordinates satisfying 

9 [ F ( f ) ] = 0 (B.10) 

the corresponding physical plane co-ordinates are then found using 

and 

z 
h 

h 

- In [ 2 > / ( f + l ) ( f - 6 ) + ( ? + 1) + (f - e) 

2 
7T 1 - e 

— tan 1y/e . 

+ i ( B . l l ) 

(B.12) 

which are obtained by integrating equation ( B . l ) . 
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B.2 Results 

Figure B .3 shows the calculated position of the separation streamline for three differ

ent base pressures, chosen in a range corresponding to the experimentally measured 

base pressure coefficient of about -0.8. The calculated and measured positions are 

in reasonable agreement over some distance downstream from separation. This 

agreement is of course not expected to extend much beyond i / Z ? ~ 2.0, where the 

reattachment process starts taking place. Calculations w i th a smal l value of e re

sult in a streamline which is too close to the wal l . In order to obtain a streamline 

which is more representative of the actual flow, it is necessary to use large values 

for e (i.e. close to 1). Al though this corresponds to large teats, this is of lit t le 

consequence because the region below the bounding streamline is outside the scope 

of the potential flow model. The results presented here are for e = 0.99. 

The calculated pressure dis t r ibut ion along the separated streamline is shown 

in Figure B .4 . A sharp dip in pressure associated w i t h the high in i t ia l curvature 

of the separating streamline , occurs immediately after separation, and is followed 

by a rapid recovery. These calculated distributions bear lit t le resemblance to the 

measured surface pressure distributions which exhibit a much broader region of 

almost constant pressure extending from separation to about x/D = 2.0. This 

indicates that the diffusive effects, necessarily ignored by the potential flow analysis, 

are very important in establishing the pressure in the actual turbulent flow, even 

at separation where the shear layer is very th in . 
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Figure B .4 . Calculated pressure distributions for different specified base pressures. 



Appendix C 

M o m e n t u m Integral A naly sis 

In this appendix, we consider the modelling of a separated shear layer using the 

boundary layer equations in their momentum integral form . The method is assessed 

for the fully developed flow in a sudden expansion (Figure C . l ) , which is, in this 

context, a simpler flow than the bluff plate flow: this flow does not have a potential 

flow core, and therefore does not require a viscous-inviscid matching procedure. 

Before discussing the assumptions which were made in this analysis, it should 

be pointed out that, strictly, the val idi ty of the boundary layer equations is based 

on the condit ion that d6 jdx <C 1. This condit ion is not met in reattaching flows as 

pointed out by, amongst others, Bradshaw & Wong (1972). 

It appears, nevertheless, that for small separation regions, the boundary layer 

or th in shear layer approximation retains its val idi ty: for instance, the boundary 

layer calculations of G h i a et al. (1975) and Br i ley & M c D o n a l d (1975) were found 

to compare well w i th numerical solutions using the full Navier-Stokes equations. 

One of the main attractions of the boundary layer equations is the relative sim

plici ty w i th which they can be solved numerically. Because they are parabolic, 

computat ional ly inexpensive forward marching algorithms can be used. However, 
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when marching against the streamwise velocity, which is the case in the backflow 

region, it is no longer possible to use a simple forward marching technique, and an 

iterative procedure is required. Tha t is unless the culprit for this added complica

t ion , namely the streamwise convective term in the inner region, is removed. 

Th i s step, which may seem radical at first sight, was first proposed by Reyhner &; 

FKigge-Lotz (1969) and is known as the F L A R E approximation. The implications of 

this approximation are examined in some detail by M c D o n a l d & Br i l ey (1983) who 

conclude that the approximation is, in general, only acceptable when the magnitude 

of the reversed flow velocities do not exceed O . I Z / O Q . Th i s , based on experimental 

observations, implies that the approximation is val id for laminar flows. 

Th i s conclusion is borne out by the results of K w o n et al. (1984), who com

puted a laminar sudden expansion flow, using the boundary layer equations and the 

F L A R E approximation. They obtained results which are in good agreement w i th 

Navier-Stokes predictions as well as experimental observations. A major difference 

of the present formulation wi th that of K w o n et al, is the use of an integral method 

as opposed to a finite difference method. 

C . l Formulation 

The variables for the model are i l lustrated in Figure C . l . The flow is fully developed 

at separation, and, for the purpose of the analysis, is divided into two regions. The 

boundary layer equation in its momentum integral form is used for both regions, 

but w i th different assumptions. In the "outer" region, corresponding to U > 0, the 

velocity profiles are assumed to be self-similar; whereas in the backflow region, the 

wal l shear stress and the fluid momentum are neglected ( F L A R E approximation). 
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Figure C . l . Mode l l ing of 2-D sudden expansion flow. 

The separation streamline is therefore identical to the line of zero velocity. A brief 

outline of the formulation is given below. 

In the case of steady two-dimensional laminar flow, the boundary layer equations 

take the form (Schlichting 1968) 

ox oy 
dU dV 
dx dy 

ldp d2U 
p dx dy2 

= 0 

( C . l ) 

(C.2) 

Equa t ion ( C . l ) is integrated in the outer region between y = 0 and y = 6(x), 

yielding 

± [ * ) V i l l — f s £ + * n (C.3) 
ax Jo ax p 

The outer region velocity profiles are assumed to be of the form 

^ = /(r?) + A f f(r ?) (C.4) 
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where /(??) and g(n) are polynomial functions in term of the dimensionless co

ordinate n = y/6(x), and A is a dimensionless pressure gradient parameter defined 

by 

' 1 2 D " ( C . 5 ) pvU0 dx 

Subst i tut ing for U using (C .4) and (C.5), equation (C.3) yields, for a cubic polyno

m i a l profile, 

(Cx + 2 A C 2 + A 2 C 3 )[Ul6)> + 2 ( C 2 + AC 3)t/ 0

2<5A' = - (J + ±) ^ ( C .6 ) 

where primes denote differentiation w.r.t . i and C\, C 2 and C 3 are constants deter

mined by the chosen velocity profile. These constants are listed at the end of this 

appendix. 

Similar ly, integration of the continuity equation (C.2) through the outer region, 

gives 

d /"*(*) 
-T Udy = 0 
dx Jo 

or, replacing for U 

{C4 + KC5){U0S)' + C5U0A' = 0 (C.7) 

F ina l ly , using the F L A R E approximation and neglecting the wa l l shear stress, in

tegration of equation ( C . l ) through the inner region yields 

pdx p 

using (C.5) and subst i tut ing for r$, this gives 

A (4j - 3) = - 6 (C.8) 
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The set of equations (C.6),(C.7) and (C.8) were solved numerically for UQ, 6 and A , 

using a Runge -Kut t a routine, subject to the in i t ia l conditions 

U0{0) = U. 

6{0) = H - h 
(C.9) 

A similar set of equations is obtained when a quartic polynomial instead of a cubic 

is chosen for the velocity profile. 

C.2 Turbulent Flow 

The formulation of the turbulent flow problem proceeds in essentially the same 

fashion, using the t ime averaged form of the boundary layer equations 1 . 

U ^ + V— - - - ^ - — ( — - uv) (CIO) 
dx dy pdx p dy ^ dy Puv> 

dU dV , 
<te + a ? = 0 < c - n > 

The addit ional turbulent or Reynolds stress terms, —puv which appears in equa

t ion (C.10) is modelled using the well known eddy viscosity concept. This assumes 

that the mean turbulent stress is, in analogy to laminar stresses, proport ional to 

the mean velocity gradient, i.e. 

dU 
- puv - put —— (C12) 

dy 

where ut, the apparent or eddy viscosity, is a coefficient for the turbulent diffusivity 

of momentum. Add i t i ona l assumptions are required to determine ut. 

1The rationale for the time averaging procedure and turbulence modelling are discussed in Chap
ter 4. 
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Since we observed in section 3.5 that the separated shear layer appears to have a 

structure s imilar to a 2-D free mix ing layer in the region extending from separation 

to about half the length of the separation bubble, Prandt l ' s free shear layer model 

for ut was used over the first half of bubble. The model , which assumes ut to be 

constant across the shear layer, takes the form 

ut = ab{Ui - U2) (C.13) 

where a is an empir ical constant, b a characteristic w id th , and U\ — U2 is the 

velocity difference across the layer. In the case of a two-dimensional mix ing layer, 

w i t h Ui = UQ and U2 = 0 , Schlichting (1968) defines a w id th 6 0 . i measured between 

the positions where (u /E / ) 2 = 0.1 and (u/U)2 = 0 .9, and gives a = 0.014. Hence 

ut = .0146 0 .i^o 

The rate of growth of the shear layer is given by 

or, after integration, 

Therefore 

dbn i 
—r1 = .098 

ax 

6 0 . i = .098(x + x 0 ) 

ut = .00137(x + x0)U0 (C.14) 

where the v i r tua l or igin, x0, is determined from 

„ _ M o ) 
Xn — 

.098 

A simple way of accounting for the experimentally observed behaviour of the 

separated shear layer in Section 3.5, is to apply equation (C.14) for 0 < x/xr < 0.5 
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and then "freeze" the value of vt for x/xr > 0.5. Because xr is not known a priori, 

an iterative procedure is required. 

Us ing a modest under-relaxation (0.9), a solution was obtained after 3 to 6 

iterations, depending how good—or bad—the in i t ia l guess for x r was. A convergence 

cri terion of less than 0.5% change in xT between two successive iterations was used. 

C.3 Results 

Acr ivos & Schrader (1982) noted, for laminar flow, that the non-dimensionalisation 

of the boundary layer equations by the Reynolds number leads to a reattachment 

length wh ich w i l l always be proport ional to the Reynolds number. Th i s expected 

linear variat ion is clearly demonstrated in Figure C.2 , which shows the predictions of 

the present method and other more detailed calculations. The momentum integral 

method gives, w i t h a fourth order polynomial , results which compare well wi th 

those obtained from finite difference solutions. 

Figure C.3 shows the effect of varying the expansion ratio on reattachment length 

(note the non-dimensionalisation by Re) . For ER > 2, the results show a decrease 

in reattachment length w i t h increasing ER in agreement w i th the predictions of 

Acr ivos & Schrader. The i r results, however, show a reversal of this trend for ER < 

2. They at tr ibuted this to larger wa l l shear stresses associated w i th the smaller 

expansion ratios. The integral method cannot be expected to represent this effect 

since it assumes the wa l l shear stress to be negligible. 

The calculated pressure dis tr ibut ion for a 5:2 expansion ratio is shown in Figure 

C.4 . A g a i n reasonable agreement is obtained, apart from the first part of the curve 

where the differences are probably due to the omission of the wal l shear stress. 
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Figure C.2 . Var ia t ion of reattachment length w i th Reynolds number. 
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Figure C .3 . Effect of expansion ratio on reattachment length. 
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Figure C.4 . Pressure distr ibution for a 5:2 expansion ratio. 
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Turbulent flow calculations were carried out over a range of expansion ratios, and 

the resulting reattachment lengths, which are independent of Reynolds number, are 

shown in Figure C.5 compared w i th experimental results available in the literature. 

The agreement is surprisingly good, considering the sweeping assumptions made in 

the integral method and the eddy viscosity model. 

Figure C.6 shows the calculated pressure distr ibution for ER = 1.25 compared 

to the experimental results of Adams et al. (1984). Though the pressures recover 

to a s imilar value at reattachment, the discrepancy between the two distributions 

is rather large. Th i s confirms the inadequacy of the F L A R E approximation for 

turbulent flows wi th large backflow velocities (Adams et al. reported max imum 

backflow velocities of the order of 0.2U}. 

C.4 Closing Remarks 

The applicat ion of the momentum integral analysis to the sudden expansion flow 

was intended to be the first step towards the application of this method to the blunt 

plate problem. For this type of external flow an iterative viscous-inviscid matching 

procedure is required. In the classical matching scheme, the displacement thickness 

is specified for an inviscid calculat ion, and the resulting pressure dis tr ibut ion. This 

scheme was applied to the backward facing step flow, but convergence could not be 

obtained. It was found subsequently that a similar problem has been encountered in 

many studies involving separation, and that an inverse viscous-inviscid interaction 

procedure should be adopted for such problems (see Wi l l i ams 1985). Because of 

t ime constraints, this procedure was not tr ied. 
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Figure C .5 . Effect of expansion ratio on reattachment length for turbulent flow 
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turbulent flow. 
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Table C . l . Integral constants for cubic velocity profile 

Constant Integral term Value 

cx rpdrj 17/35 

c2 

1 
/ fgdn Jo 

19/1680 

C 3 flg2dn 
Jo 
Cfdr, 
Jo 

1/1680 

c4 

flg2dn 
Jo 
Cfdr, 
Jo 

5/8 

c5 9dn 
Jo 

1/48 



Appendix D 

Modif ied k - e M o d e l 

The k-e model does not account for streamline curvature effects. Modifications to 

the model which attempt to take into account these effects have led to improved 

predictions of recirculating flows in some cases. T w o such modifications were used 

in this study, and are reviewed here. 

Streamline Curvature Modification 

Exper imenta l observations (see Bradshaw 1973) show that turbulent shear stresses 

and the degree of anisotropy between the normal stresses are very sensitive to 

streamline curvature. The k-e model does not, in its "standard" form, reflect this 

sensitivity. 

Leschziner and R o d i (1981) developed an ad hoc modification, based on an 

algebraic stress model , which attempts to take these effects into account. They 

isolated the effect on the coefficient C M of extra strain rates due to curvature and 

arrived at the following correction: 

(D.l) 
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where Us is the velocity tangential to the streamline, n is the normal coordinate, 

and Rc is the radius of curvature. A n arbitrary lower l imi t of 0.025 on was im

posed to ensure, for physical realism, that C M does not take very smal l or negative 

values. 

Preferential Dissipation Modification 

The second modification was originally proposed by Hanjalic and Launder (1979). 

It accounts for the preferential influence of normal stresses (over shear stresses) in 

promoting the transfer of turbulent energy from large to small eddies and thus the 

rate of dissipation. The modification replaces the term representing "production of 

generation" in the e transport equation, i.e. 

'dJT 
dx, 

(dU_ dV^ 
\ dy dx 

(D.2) 

by 

P! = C[G - CiVt ( 
dU dVs 

(D.3) 
dy dx J 

Leschziner and R o d i noted that in recirculating flows the vort ic i ty (dU/dy—dV/dx) 

in the above expression, bears no relation to the shear strain, and, therefore, the 

modification loses its intended purpose. To overcome this problem, they suggested 

the use of streamline coordinates to define the stresses. Th i s results in a corrected 

te rm which reads: 

P[ = i [ C x G - (D.4) 

where C[ = 2.24 and C" — 0.8 (giving, consistently w i th the standard k-e model, 
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C[ — C" = Ci). The shear strain in the direction of the streamline, Sna, is given by 

Sns = 0.5(Syy - Sxx) sin26 + Sxy cos 20 (D.5) 

where 6 is the angle between the velocity vector and the z-axis , and 

S „ = 2dfx (D.6) 
dV 

Syy = 2 — (D.7) 

W dV e n , 
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Wal l Funct ion Treatment 

The k — e turbulence model neglects low Reynolds number effects which are impor

tant in the v ic in i ty of solid boundaries. A computat ionally efficient way of account

ing for these effects is to use wa l l functions to determine the near wal l turbulent 

kinetic energy and its rate of dissipation. 

The wal l function method, due to Launder & Spalding (1974), is based on two 

assumptions: first, the flow in the vicini ty of a solid boundary behaves locally as 

a one dimensional Couette flow; secondly, the near wa l l turbulence characteristics 

are those associated w i t h the inertial sublayer. 

Following Launder and Spalding, we consider a gr id point P adjacent to a wall 

(Figure E . I . ) , the point P is assumed to be sufficiently close to the wall for the 

shear stress to be approximately constant and equal to the wall shear stress. In 

terms of the non-dimensional distance y+, this implies that: 

y+ ~ 200 ( E . l ) 

where V+ = UTyPlu (E.2) 

and 
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t P 

VP 

\ W \ \ \ \ \ \ \ \ \ \ \ \ \ 

F igure E . l . Near wal l control volume 

V, = ^ (E .3) 

For negligible pressure gradients, the momentum equation reduces to: 

1, . dU T rw , 
- (M + Mt) = ~ — — E.4 
p dy p p 

or, in non-dimensional form, 

( »t\ dU+ , , 

where U+ = ^- (E.6) 

The near wal l region can be subdivided into a viscous sublayer, where molecular 

viscosity is dominant, and an inertial sublayer, where turbulent effects are dominant: 

— < 1 for y+ < 11.63 

— > 1 for y+ > 11.63 

Integrating (E.6), we obtain, for y+ < 11.63, 

U+ = y+ (E.7) 
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When y+ > 11.63, the flow is fully turbulent, and the mix ing length argument 

(Hinze 1959) gives: 

Ut = KpUTy (E.8) 

Replacing for fit, and integrating (E.5), we obtain the familiar logarithmic law of 

the wal l : 

U+ = -ln{Ey+) (E.9) 
/C 

where K is von Karman ' s constant (/c = 0.4187), and E is a constant of integration 

(E = 9.0). 

Wall shear stress 

In the inert ial sublayer, the flow is assumed to be in local equi l ibr ium, i.e. the pro

duction and the dissipation rate of turbulent kinetic energy are locally in balance. 

Th i s implies: 
dU ,„ . 

- utJ—- ~ e (E.10) 
dy 

7 U J = e ( E - n ) 

but ^ K ! • = VI (E.12) 
p dy p 

therefore f / T

2 ^ ~ e (E.13) 
dy 

then mul t ip ly ing (E.13) by (E.12) we obtain: 

Uj = (E.14) 

Replacing for nt by (equation 4.12) 

lh = C^p- (E.15) 
e 
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equation (E.14) gives: 

UT (E.16) 

N o w , from equation (E.9) 

UUT -ln(Ey+) (E.17) 

or, replacing for UT and rearranging, 

rw = pKc)/*k1/2U/]n{Ey+) for y+ > 11.63 (E.18) 

W h e n the node P lies in the viscous sublayer, an expression for the shear stress is 

obtained directly from (E.7): 

Tw = M — for y+ < 11.63 (E.19) 
yp 

Equations (E.18) and (E.19) are used to evaluate the near wal l diffusive fluxes in 

the momentum equations. 

Turbulent kinetic energy 

B o t h the source and generation terms of the /^-equation are modified for near wall 

computations. 

The wa l l shear stress is given by (see E.4) 

dU 
(E.20) 

or, using (E.8) , Tw = KpUTy— 
dy 

dU_UL 

dy Ky 
but rw/p = U2, therefore (E.21) 
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Fina l ly , subst i tut ing for dU/dy from (E.13), 

U? 
(E.22) 

Ky 

W h e n calculating kp, it is necessary to assign a value for the average rate of 

energy dissipation over the control volume. Hence, using (E.22), 

"VP [VP U rvp [VP u 
/ edy = —dy 

Jo Jo Ky 

Jo Ky+ Kyi 

Us 

= — In y+ + constant 
K 

Us 

* ^ M n ( £ y + ) /c 

Now using (E.9) and (E.16), this expression can be re-written as 

[VP 
/ tdy 
Jo 

c 3 / 4 j t 3 / 2 f / H 

Therefore 
C 3 / 4 f c 3 / 2 r / + 

edxdy = -« Ax Ay (E.23) 
yp II-

this expression is used, in combination w i th (E.7) or (E.9), to evaluate the source 

te rm — pe in the fc-equation (4.44). 

{ -3/4,3/2 

pc* k \n(Ey+)AxAy for y+ > 11.63 
+ " ( E - 2 4 ) 

pC"yp* y+AxAy for y+ < 11.63 

In addi t ion, the term representing the generation of k is modified to ensure that 

the shear stress TW given by the wal l function is used instead of its finite difference 

counterpart. The generation term reads (equation 4.46): 
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Near the wa l l dV/dx ~ 0, and fj,t dU/dy = rw, therefore 

2 
w 

dU_ 
dy 

(E.25) 

Dissipation of T . K . E . 

F r o m equation E.15 , e is l inked to k by 

subst i tut ing for <̂ from equation (E.8), and making use of (E.16) gives: 

KyP 

This expression is used directly to evaluate e next to solid boundaries. 

(E.26) 


