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A B S T R A C T 

Several methods for calculating the electrical phase and modal parameters of 

overhead transmission lines are described in this thesis; then, a graphical method 

for evaluating communication frequency response of delta transmission lines -based 

on the guidelines given by W. H. Senn [12,13,14]- is developed. The graphical 

method, combined with the parameters calculation methods, obviates the need of 

large mainframe computers for the analysis of power line carrier (PLC) systems. 

A new technique for assessing coupling alternatives, based on Senn's method, is 

developed. The technique is applied to generate coupling recommendations; it is 

found that many of the current recommendations given elsewhere [21] are not 

reliable. 

Finally, future work to be done in this field is proposed. 
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CHAPTER 1. INTRODUCTION. 

The use of power lines as a medium for conveying communication signals goes 

as far back as the early 1920s. This technique known as "power line carrier" 

(PLC), when properly designed, is highly reliable; probably the most reliable 

communication system on a single link basis, because of the ruggedness of the 

power lines. 

The lack of understanding of the propagation phenomenon in multiconductor lines, 

on the other hand, previously precluded the better use of PLC systems. In the 

early days of power line communications, the conventional analytical tools of the 

power engineer were of no help in dealing with its analysis. Neither was the 

classical line theory, used by communication engineers, for it only considers 

unidimensional lines. In 1963, Wedepohl set the basis for dealing with 

multiconductor lines [1]; this led him and his coauthors [2,3,4,5] to developing a 

new multiconductor line theory. 

The multiconductor or modal line theory is able to explain the phenomenon of 

high frequency electromagnetic waves propagating in power lines; however, its 

practical application to P L C design is still not very generalized. One reason 

might be that the theory is fairly new and it is still spread over several dozens 

of papers. Another reason might be that the theory makes use of matrix 

calculus that may be intimidating for the uninitiated. As a consequence, several 

misconceptions, prior to the development of the theory, have persisted until this 

day; some of them, when pertinent, will be refuted in this thesis. Another source 
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of misunderstandings is the oversimplification of the modal theory; this has also 

led to fallacies. 

In this thesis, a series of results using multiconductor line theory are presented, 

with the intention of improving the understanding of the propagation phenomena 

in power lines and, at the same time, to providing a simpler way of analyzing 

power line carrier systems. Additionally, a new technique for assessing PLC 

couplings is proposed and -by means of it- new results are obtained. 

In chapter 2 recent advances in the calculation of electrical parameters of aerial 

lines [6,7,8,9,10] are presented. Then, in chapter 3, after a summary of the 

modal theory, some practical aspects concerning the calculation of the propagation 

modes of the line and their propagation constants are presented. Special emphasis 

is given to a set of formulae for calculating modal parameters of delta lines; 

they were first published in Wedepohl's 1963 paper [1] and, since then, they 

have been largely overlooked. The simplicity of these formulae, together with the 

procedures of chapter 2 for calculating electrical line parameters, suggests the 

possibility of performing line analysis by means of programmable calculators. 

It should be mentioned at this point, that the developements -either in modal 

theory or in electrical parameters calculation- are relevant to several other areas 

of power system analysis, such as: 

Transient behaviour of transmission systems [9,11]. 

Corona noise performance of power lines. 

Fault detection and location in transmission lines. 
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After chapter 3, the attention is focused on three-phase lines in delta 

configuration. There are two reasons for this. The first one is that this type of 

lines is, if not the most common, among the most commonly found in practice. 

The second reason is that the delta lines and specially the horizontal one, which 

is a particular case of the delta, are the ones that present the worst 

propagation problem -the so called modal cancellation effect [13]. 

A simplified, but powerful method, is the one proposed by Walter H. Senn 

[12,13,14]. The method presented in chapter 4 may be considered Senn's method, 

since there is a coincidence between the results derived from it and those 

published by Senn. Whereas the line analysis based on the general modal theory 

requires lengthy computer programs hosted on a mainframe, Senn's technique is 

graphical; therefore, it is more suitable for field engineering work. It will become 

apparent, further on in the thesis, that both methods are necesary. 

Senn's method is used as the basis for a technique, which is proposed in 

chapter 5, for comparing P L C coupling alternatives. The technique is applied 

there to make coupling recommendations for common line transposition schemes, 

as well as to analyze the performance of non-conventional couplings. 

Finally, the conclusion of the work is given in chapter 6. Suggestions concerning 

future work to be done in this field are also included there. 



C H A P T E R 2. ELECTRICAL CHARACTERISTICS OF O V E R H E A D 

TRANSMISSION LINES. 

The propagation of electromagnetic waves on overhead transmission lines is 

accurately described by means of the following differential equations: 

d V • , I I 
a* ' 

and 

- (2.2) 

d Y 

known as the Telegrapher's Equations. 

The propagation phenomenon in power lines involves usually several conductors as 

well as the earth plane; thus, equations 2 .1 and 2.2 are multidimensional 

relationships [1 ,2] . Z and Y are respectively the matrices of series impedance 

and of shunt admittance; both are given in per unit of length. V and I are 

vectors t composed of the voltages with the ground plane as reference and of 

the currents on each conductor of the line respectively. 

Before attempting to solve equations 2.1 and 2 .2 , the electrical parameter 

matrices of the line, Z and Y, must be obtained. 

t NOTE: The terms vector and column matrix are used here indistinctively. 

4 
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2 .1. ELECTRICAL PARAMETERS OF TRANSMISSION LINES. 

The series impedance per unit of length of a transmission line can be considered 

as composed by four terms as follows [8,9]: 

H = Zfr + l f +Zc + 2 e W (2.3) 

Zg depends only on the line geometry; it is therefore called geometrical 

impedance and it is related to the Maxwell's potential coefficients matrix "P" in 

the following way [2]: 

Z 0 - - J £ J £ P ; (2.4) 

Z e is the additional impedance due to the finite conductivity of the earth; Z c is 

the impedance due to the conductors; and Z ^ is a term due to the presence of 

grounded ground wires. 

The shunt admittance per unit of length of an aerial line depends practically 

only on the capacitance between the conductors and the ground plane. It is also 

related to the Maxwell potential coefficients matrix in the following way [2]: 

Y = j v l i r e P ' * (2.5) 

or, if the line has grounded ground wires: 

Y = jw 2 r re (p +JP GW) 
- l .(2.6) 
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The calculation of the electrical parameters of aerial lines is carried out in 

general as indicated in reference 2; however, some changes have been suggested 

recently; two of them will be presented here. One deals with the earth 

impedance calculation [6,7,16]; the other one consists in expressing the ground 

wires impedance explicitly, as in equation 2.3 [8,9,10]. 

2.2. E A R T H IMPEDANCE CALCULATION. 

The self and mutual impedance terms of two conductors above a perfectly 

conducting ground (see figure 2.1) are given respectively by the following 

expressions: 

(2.7) 

(2.8) 

These terms are readily obtained by means of the well known method of the 

images, which is illustrated by figure 2.1; they correspond to the elements of the 
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geometrical impedance matrix. 

2 r «m i~th conductor 

j-th conductor 

Ground plane 

hi 

x i 3 

Conductors images. 

FIGURE 2.1) Conductors above a perfect 
conducting ground. 

If the ground is not a perfect conductor, the above expressions have to be 

modified. Carson demonstrated [15] that the impedance could be expressed as the 

geometrical terms 2.1 and 2.2 plus correction terms; furthermore, he also found 

that -after several simplifying assumptions- the correction terms would be given, 

for the self impedance by the following integral: 

TT 
6&. 

•(2.9) 

and, for the mutual impedance: 
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1 ^ Jo « W o f 2 * ^ ^ (2.io) 

where " CP" is the earth conductivity in Siemens/m and ' V is an integrating 

parameter. 

Carson integrals cannot be solved analytically. Tables as well as series 

expansions have been used in the past to handle them; more recently, they have 

been dealt with by means of numerical integration. A remarkably good 

approximation to the Carson integral, which is also very simple to evaluate, was 

proposed by Dubanton in 1969 [6]. As the term 

\j jwp. cr 

that appears very often at skin effect studies, plays the role of a mean 

penetration depth for fields and for currents, it seemed logical to place the plane 

of symmetry of the images at a complex distance "p" underneath the earth 

plane in order to account for the effects of the finite ground conductivity; this is 

illustrated in figure 2.2. 

For the self impedance, the following expression is obtained: 

tit = i ^ i i V 
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.(2.11) 

2r 
d i j 

v Ground plane 

i ' 
Conductor images. 

Plane of symmetry 

j ' 

FIGURE 2 .2) Complex depth of penetration, 

Since the first term corresponds to the geometrical impedance (expression 2.7), 

the second term must account for the earth correction factor. Dubanton used this 

method only for the self impedance calculation. In 1976 C. Gary extended it to 

the calculation of the mutual impedances [7]: 

1 w 1 5~ J 
2-TT \dij J fcir |_ T)^ .(2.12) 

Gary made also comparisons between the above correction formulae and the 
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numerical calculation of the Carson integrals. The results from both methods 

were so similar that he suggested that the complex depth formulae could be the 

exact solution of the Carson integrals [6]. 

In 1981 Deri and Semlyen derived the above formulae as approximated solutions 

of the Carson integrals [16]. They evaluated also the figures of error, finding 

that the errors are negligible at most frequencies, except for a narrow band 

where they become more noticeable. Inside that band, however, in most practical 

cases the error will be below 3%, and in the worst case it will not exceed 9%. 

The error of the Dubanton-Gary formulae can be dismissed in most practical 

studies as, in general, it is smaller than the one introduced by the limited 

knowledge of the physical parameters of the transmission lines -specially the 

earth resistivity along a line. 

2.3. IMPEDANCE CORRECTION DUE TO GROUNDED GROUND WIRES. 

For a transmission line with " m " phase conductors and " n " ground wires, the 

matrix equations 2.1 and 2.2 can be partitioned as follows: 

1 2m « \rt\rn ( L rr> 
1 — 
I 

J U 

I* .(2.13) 

and 

file:///rt/rn
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dYIrr, 

d iv , 

m 

.(2.14) 

Usually, the ground wires are not directly involved in the transmission of either 

communication signals or of electric power; thus, the explicit knowledge of their 

voltages or currents may not be required; however, their influence must be taken 

into account. 

The ground wires are usually grounded at each tower. In most studies, it may 

be assumed that their voltage profile all along the line is zero (i. e., V n and 

dVn/dx = 0). Only when the separation between towers is close to an even 

multiple of half a wavelength, the assumption of zero voltage is not valid and a 

more complex solution due to Wedepohl and Wasley has to be used [17]. With 

the former approach the ground wire terms are easily eliminated from equation 

2.14 by erasing the last n columns, as they are multiplied by zero, as well as 

the last n rows, since they are not required: 

Ah. = Y M m V . (2.i5) 

The reduction of equation 2.13 requires some extra work. Under the assumption 

that dVn/dx = 0, the following expressions are obtained from 2.13: 
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m .(2.16). 

.(2.17) 

Expression 2.17 can be used to eliminate I n from equation 2.16 

die .(2.18) 

The term "Zgw" of expression 2.3 is thus: 

m .(2.19) 

It can be shown in a similar way that the term "Pgw of expression 2.6 is 

given by: 

m 

Another method for reducing the Z matrix consists in inverting it; then as the 

following relationship holds: 

1, 0 .(2.20) 

the last n columns and rows can be ehminated in the same way as it was done 
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for the admittance matrix; the inversion of the reduced matrix will yield the 

impedance matrix with the ground wires term implicitly incorporated. This method 

is the traditional one [2]. In the next chapter it will become apparent that the 

explicit method has more advantages. 

2.4. EXAMPLE OF ELECTRICAL PARAMETERS CALCULATION. 

As an example the electrical parameters corresponding to the line depicted in 

figure 2.3 are provided next. 

Phase conductors. 

Outer conductor medium 
height. 
Central conductor medium 
height. 
Horizontal distance between 
conductors. 
Conductors. 
Bundle diameter. 

15.24 m 

23.62 m 

6.248 m 

2xll52-ACSR 
0.45 m 

Ground wires. 

Medium height. 
Horizontal distance 
Radius. 
Material 
Ground resistivity. 

36.17 m 
7.874 m 
0.489 cm 
Alumoweld 
100.0 ohm-m 

Frequency. 500.0 kHz. 

FIGURE 2.3) Example of a 500 kV delta line. 



3571.89 

833.05 

609.02 

561.47 

509.96 . 

117.556 

94.818 

106.420 

75.922 

73.854 

"142.927 

110.457 

124.047 

85.918 

82.969 

Geometrical 

833.05 

3847.20 

833.05 

952.75 

952.75 

Earth Return 

94.818 

81.807 

94.818 

66.365 

66.365 

110.457 

93.522 

110.457 

73.896 

76.896 

Impedance. 

609.02 

833.05 

3571.89 

509.96 

561.47 

Impedance. 

106.420 

94.818 

117.556 

73.854 

75.922 

124.047 

110.457 

142.927 

82.969 

85.918 

(Ohm/km) 

561.47 

952.75 

509.96 

6033.09 

1397.19 

(Ohm/km) 

75.922 

66.365 

73.854 

56.134 

55.595 

85.918 

73.896 

82.969 

61.476 

60.774 

509.96 

952.75 

561.47 

1397.19 

6033.09 

73.854 

66.365 

75.922 

55.595 

56.134 

82.969 

76.896 

85.918 

60.774 

61.476 



1.330 

0.0 

0.0 

0.0 

0.0 

1.330 

0.0 

0.0 

0.0 

0.0 

Conductors 

0.0 

1.330 

0.0 

0.0 

0.0 

0.0 

1.330 

0.0 

0.0 

0.0 

Impedance. 

0.0 

0.0 

1.330 

0.0 

0.0 

0.0 

0.0 

1.330 

0.0 

0.0 

(Ohm/km) 

0.0 

0.0 

0.0 

12.756 

0.0 

0.0 

0.0 

0.0 

12.756 

0.0 

0.0 

0.0 

0.0 

0.0 

12.756 

0.0 

0.0 

0.0 

0.0 

12.756 

Ground Wires 

22.924 

28.450 

22.877 

Impedance. 

28.450 

31.450 

28.450 

(Ohm/km) 

22.877 

28.450 

22.924 

100.886 167.471 100.249 

167.471 277.995 167.471 

100.249 167.471 100.886 



Reduced Admittance, (milli-mhos/km) 

33.101 

-5.635 

-3.918 

-5.635 

32.613 

-5.635 

-3.918 

-5.635 

33.101 



C H A P T E R 3. MODAL ANALYSIS OF MULTICONDUCTOR TRANSMISSION 

LINES. 

The propagation equations 2.1 and 2.2 can be transformed as follows: 

2 Y V (3.1) 
dx1 

Y Z I 
(3.2) 

Each expression represents a system of n differential equations, where each 

equation involves all the n variables of voltage or of current. 

The modal approach for solving either 3.1 or 3.2 consists in transforming the 

systen of n coupled equations to an n unidimensional or uncoupled system whose 

solution is straightforward. This approach, apart of being convenient from the 

mathematical standpoint, provides a valuable physical interpretation of the 

propagation phenomenon. 

In the first section of this chapter the results of the modal theory, that are 

relevant to the thesis, will be summarized; for detailed explanations, as well as 

for the proofs of these results, references 1, 2, 3, 4, 5, 18 and 19 should be 

consulted. In section 3.2, practical aspects concerning the calculation of modal 

parameters are presented. Section 3.3 is devoted to the special case of modal 

parameters of delta lines, which is central to the thesis. 

17 



3.1. M O D A L S O L U T I O N O F T H E P R O P A G A T I O N E Q U A T I O N S . 

18 

3.1.1. Equat ion for voltage. 

Expression 3.1 is transformed into a decoupled system of equations by means of 

the matrix M , which diagonalizes the Z Y matrix product as follows: 

.(3.3) 

where ^ is a diagonal matrix, whose elements are the eigenvalues of Z Y and 

the columns of M are its eigenvectors - also known as modal vectors. 

Any vector V of phase voltages may be regarded as an assemblage of the 

eigenvectors. Let Mj the i-th column of M , then: 

where is the contribution of the i-th mode to V . It follows then that the 

transformation : 

converts any vector V from the phase domain to the modal domain. 

By applying 3.3 and 3.4 to 3.1: 
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dx 1  .(3.5) 

As A is diagonal, it is clear that expression 3.5 is already the desired system 

of n decoupled equations. Its solution may be written as follows: 

.(3.6) 

where exp(+/-X* x) is shorthand for: 

3t*,X O 

and 

V j j j and V m g are integration constant vectors, which can be determined by 

knowing the value of V m ( x ) at two different points. 

Yj plays the role of the propagation constant of the i-th mode; its real part 

" OC j " represents the attenuation, and its imaginary part j3 j represents its 

change of phase, which is related to the mode velocity. The presence of the 

positive exponential term in solution 3.6 is physically interpreted as a reflected 

wave traveling backwards. 

Expression 3.6 may be transformed to the phase domain by applying the inverse 
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of relation 3.4 to it 

(t) = M tit (-Fx) M ̂  V F +• jH e*f (uV)N~l V B (3.7) 

If the following definition is introduced: 

(3.8) 

it may be shown that expression 3.7 becomes: 

(3.9) 

which is the solution to equation 3.1. Expressions 3.6 and 3.9 make use of 

matrix functions and of matrix calculus concepts; details about them may be 

found in references 18 and 19. 

In the same way as in expression 3.6, the negative exponential term of 3.9 

represents a wave traveling forwards, and the positive one a reflected wave 

traveling backwards. Here also, the integration constant vectors may be 

determined from the knowledge of V(x) at two different points along the line. At 

the beginning of the line (x = 0) 3.9 becomes: 

At x = I 

(3.10) 



solving for Vg 

Now, for a semi-infinite line, taking the limit as : 

replacing this result in 3.10: 

V F =YCO) 

Thus for the semi-infinite line, expression 3.9 becomes: 

V(x) (3.11) 

This result is consistent with the physics of the propagation phenomenon, in the 

sense that an infinite fine does not produce reflected waves. 

3.1.2. Equation for the current. 

The equation of currents 3.2 may be solved either directly, as the voltage 

equation, or from the voltage solution. Both approaches are complementary. 

The first approach helps to establish the relationship between voltage modes and 

current modes. Let N be the matrix that diagonalizes YZ as follows: 
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In the same way as with the voltage equation, N is the matrix of modes of 

current, and 7\ ' is the diagonal matrix of eigenvalues. It may be proved [19] 

that: 

A ' = A ova E ' 1 =1MT 

The second approach leads to the concept of multidimensional characteristic 

admittance. Rewriting 2.1 as follows: 

and from the value of V(x) obtained in 3.9: 

1<*) = T ' f ' [ « p (- fx) V F - « p ( ^*)Va' 

Here, the term Z"^ {j/ plays the same role as the characteristic admittance in 

the unidimensional case; therefore it is refered to as "characteristic admittance" 

and it is denoted by Y c . Its inverse, the characteristic impedance, by Z c . 

3.1.3. Nonhomogeneous transmission systems representation. 

The solutions of the voltage propagation equation 3.1 and of the current equation 

3.2 lead to the two port representation of a homogeneous line section; for 

example, the chain matrix form: 
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(3.12) 

or, the nodal form: 

'lo' Vo' 

J 

.(3.13) 

Non-homogeneous transmission systems may be broken into homogeneous sections 

and inhomogeneities (such as, transpositions, faults, lumped elements, etc.), each 

part is represented as a two port network, and the two port sections are 

combined according to the system layout. 

It seems, at first glance, that the modeling of transmission systems composed 

mostly of cascaded sections is more conveniently done by means of the chain 

matrix representation; however, because of its poor numerical stability, the nodal 

form 3.13 is preferred [18]. 

3 . 2 . N U M E R I C A L C O M P U T A T I O N O F P O W E R L I N E E I G E N V A L U E S A N D 

E I G E N V E C T O R S . 

For a transmission line without ground wires, the ZY product can be expressed, 

from relation 2.3, as follows [2]: 
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zy »z»y +(z£+,Zc)Y (3.14) 

but from 2.4 and 2.5: 

7 Y --fflVeU" 
where U denotes the unit matrix. If instead of ZY, only the second term of 

expression 3.14 is diagonalized: 

(zE+zc)y= M"A7M")" \ 
it may be shown that the eigenvectors do not change [2]: 

IH" = Itt 
and that the new eigenvalues 7K-" are related to the ZY matrix eigenvalues 

as follows: 

A - A" - »>* U 

There are some numerical advantages on dealing with expression 3.15 rather 

than with ZY. As the elements of Zg are much larger than those of Z e and 

Zc- it is not recommendable to form the Z matrix, for the information conveyed 

by Z e and Z c may be lost by numerical truncation. The eigenvalues of ZY are 

all numerically close to -CO jo.6. The removal of Zg thus solves the numerical 

truncation problem as well as accelerating the convergence. 
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A lossless line has repeated eigenvalues 

and propagation constants: 

where c is the speed of light. It follows then that, in addition to the 

attenuation, the losses reduce the wave velocity slightly. 

Where ground wires are concerned, the expression analogous to 3.14 takes a 

somewhat more complicated form [8,9]: 

....(3.16) 

3.3. MODAL PARAMETERS OF DELTA TRANSMISSION LINE 

CONFIGURATION. 

One of the most common line configurations is the delta (see figure 2.3). The 

ZY product of this type of line is of the form: 

r 

1Y = 
a 
d 

b c 
e d 

b a .(3.17) 

This form is valid also when the line has one ground wire at the center, or 

two of them located symmetrically with respect to the vertical axis of symmetry 
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of the line. The horizontal configuration is a particular case where all conductors 

have the same height above ground. 

The delta configuration is a special case of "odd" symmetry as described in 

reference [1]; where the derivation of analytical formulae for the eigenvalues and 

eigenvectors of 3.17 are also given. It may be shown that: 

l 
p 

i 

o ^ 

i .(3.18) 

and corresponding: 

"fc, 0 0 

A = 0 U 0 

0 0 a 3 

with 

P = 
e - o - c - \ / ( a - r C - e ) ^ - f 8 b j i .(3.19) 

- a - c + \ / ( a t c - e ? - + 8 b d .(3.20) 

X = o 4 c + b .(3.21) 
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a - c (3.22) 

A 3 - a + c -+ (3.23) 

In the event that the line is completely symmetrical, with e = a and 

b = c = d: 

A i = X 2 ~ a — c, p = -2 and q = 1, 

M becomes then a true Clarke matrix. 

3.3.1. Example of eigenvalue/eigenvector calculation in a delta line. 

Consider the line depicted in figure 2.3. From the impedance and admittance 

matrices derived in section 2.4, the corresponding modal parameters are derived 

next by means of formulae 3.18 to 3.23. 

Matrix of eigenvectors of voltage. 

1.0 + 0.0 l.O + O.Oj 1.0 + O.Oj 

-3.559-0.062j 0.0 +O.Oj 0.812-0.006J 

1.0 + 0.0 -l.O + O.Oj 1.0 + O.Oj 

http://-3.559-0.062j
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Matrix of eigenvectors of current. 

0.0928 + 0.0005J 0.5 +O.Oj 0.4069+ 0.0123J 

-0.2287-0.0029J 0.0 + O.Oj -0.2287-0.0029J 

0.0928 + 0.0005J -0.5 + O.Oj 0.4069 + 0.0123J 

Modal propagation constants. 

attenuation 

(dB/km) 

velocity 

(km/s) 

Mode 1 0.1954 299,172. 

Mode 2 0.1904 298,984. 

Mode 3 2.1877 291,192. 

3.4. REMARKS. 

Whereas section 3.1 provides the concepts of modal analysis that are required 

further on in the thesis, section 3.2 focuses on practical aspects of modal 

parameters calculation. 

Delta lines occur very frequently in practice; from a practical point of view, the 

formulae for calculating modal parameters of delta lines given in section 3.3 are 

very valuable. In power line communications, the delta lines -and, specially the 

horizontal ones- are the most likely to present propagation problems; therefore, 

they require special consideration. In the field of frequency domain transient 

analysis, the modal parameters of lines have to be evaluated for different 

frequencies, typically from 128 to 1024 times; thus, when formulae 3.19 to 3.23 
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are applicable, substantial savings of computation time are possible [11]. 



CHAPTER 4. GRAPHICAL METHOD FOR PREDICTING FREQUENCY 

RESPONSE OF DELTA LINES. 

It was shown in the previous chapter that any vector of voltages or currents in 

a transmission line could be regarded as a linear combination of the line natural 

modes. Since the modal velocities generally differ, the relative phase angles 

between modes change as they propagate. These phase shifts cause fluctuations 

of the signal amplitude along the line. 

Sometimes the components of two modes, which were in phase on the coupled 

conductors at the sending end, arrive at the receiving end with phase reversal. 

In the worst case, the phase reversal occurs when the modulii of the components 

are equal and the signal is lost entirely. This phenomenon is refered to as 

"modal cancellation", and the frequencies where the signal is totally lost are 

known as "cancellation poles". 

When a coupling arrangement is selected, it is desirable to ensure that there are 

no poles in the PLC frequency band; this, however, may not be easy to achieve. 

Pole location is very sensitive to physical changes of the line, as for example 

the conductor sag variations due to temperature shifts; measurements thus fail in 

finding them. Computer programs, on the other hand, because of the number of 

parameters involved in the propagation phenomenon, are not a practical 

alternative for locating poles. 

In this chapter a graphical method for predicting delta line responses is 

30 
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presented. This method -first proposed by Senn et. al. [12,13,14], in addition to 

frequency response predictions, provides accurate information concerning the 

location of cancellation poles. Although Senn's method is restricted to delta lines, 

its importance is justified as these lines are perhaps the most commonly used, 

as well as by the fact that they are the ones that present the most severe 

modal cancellation effects. Since the method does not require a digital computer 

for its application, it is recommended for engineering work. 

4.1. REFLECTIONLESS W A V E PROPAGATION. 

The input/output relationship of a transmission line involves the voltage vectors 

as well as the current vectors. As has been pointed out in chapter 3, either the 

currents or the voltages may be eliminated by considering the line terminations. 

Senn's method assumes reflection-free propagation, which is equivalent to 

assuming that the line is terminated at both ends in its characteristic impedance. 

For most practical cases it may be considered that the line terminations are 

fairly close to this perfect matching condition; thus, for an homogeneous line of 

length 1, expression 3.20 becomes: 

v € - M L o y r ' v , (4.D 

were L stands for exp(- T 1). 

Except for perfectly symmetric lines, the transpositions always produce wave 

reflections; however, these may be neglected at carrier frequencies [13]. Therefore 

for a line divided by a transposition in two homogeneous sections of lengths 
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\l and I2, the following expression may be applied: 

V< = ML,«r,TMLiM"V. ..•(4.2) 

where L j = exp (-IP l j ) L £ = exp (- f l£. For a bigger number " m " of 

transpositions, expression 4.2 may be generalized as follows: 

V< - WL.MT'TT (TiMlLiM",|.V„ .(4.3) 

When dealing with P L C systems, one is interested in the voltage v r at the 

receiver's input as a function of the voltage v^ at the output of the transmitter. 

These scalar voltages -vr and vt- may be related to V L = V ( 1 ) and V Q = V ( 0 ) 

respectively in the following form: 

tit, 

or 

.(4.4) 

and 

0 - 0 7 £ 

or 
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"V 0 = C t v t .(4.5) 

where C r and C t are vectors that describe the coupling connections at the 

receiving and transmitting ends respectively. From 4.4 and 4.5 expression 4.3 

yields: 

m 

(=1 1 J .(4.6) 

The line insertion loss may be already obtained from 4.6; however, before doing 

this, it is convenient to factorize the mode 1 loss term. This is acomplished by 

expressing each Lj in the following form: 

1 0 

0 O 

1 t eip K O L ' 
.(4.7) 

Recalling that "1" is the total length of the line: 

expression 4.6 becomes thus: 

17. =*rp('r*t) C T
T H L . t r , f i ^ T | l l l . ' i W : , } - C £ A r t .(4.8) 

Now, from the consideration that the receiving end coupling impedance is equal 
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.(4.9) 

to the one at the transmitting end, the line insertion loss is: 

t=l 

The first term of 4.9 is indeed the attenuation of a pure mode 1 signal; it is 

therefore refered to as theoretical minimum attenuation or as mode 1 attenuation; 

it will be represented, henceforth, by " A j " . 

The second term of expression 4.9, known as supplementary loss: 

As - 7jog^i0 | ( C l l l l L . K H ] T i { T i K L i M - " , ] c i | (4. 10) 

accounts for the coupling losses as well as for the modal interaction effects. As 

this is far more complicated than the mode 1 term, most of the attention is 

devoted to it. 

4.2. SUPPLEMENTARY LOSSES IN DELTA TRANSMISSION LINES. 

It was shown in section 3.4 that for delta transmission lines, the modal 

transformation matrices are the following: 
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P 0 

i 

9 
-2, 

2, -P 

where "p" and "q" are given by formulae 3.19 and 3.20. Within the PLC 

frequency range (from 30 to 500 kHz) and for horizontal lines: 

p = -2.0 and q = 1.0 

If these approximations are applied to M and M"* in 4.11, they become the 

Clarke transformation matrices. 

Whereas it is possible to approximate the modal vectors, their propagation 

constants have to be as accurate as possible, since it is the slight difference 

between them that determines the cancellation poles location. 

Since mode 3 attenuation is very high, it practically vanishes within the first 

few kilometers of line. Mode 3 may therefore be disregarded and M and M"l 

become: 

JH = - IT, 
i -i i 

5 0 - 3 
.(4.12) 
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4.2.1. Homogeneous lines. 

By applying the modal transformation matrices 4.12 to an homogeneous line, the 

supplementary loss term becomes: 

A s = -10 
1 i 
-% o 
1 - i 

~ i o " "1 -z r 
^ o - 3 

Two things should be noted here; the first is that as the third row and column 

of L' are not needed anymore, they have been eliminated; the second one is 

that the following definition has been used: 

(4.13) 

By performing the matrix products in 4.12, a first degree polynomial is obtained: 

(p , + P ,K ) / K As =-10(^, 0 .(4.14) 

As an example, consider the transmission system of figure 4.1. Here: 

As = 10 lo 
1 " T "1 1 " 
0 -2. 0 
0 

1 Ol [i -2 l i 
0 *] [> 0 -*J 

1' 

0 

0 

The matrix products yield: 
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It is clear that different couplings will produce different polynomials; table 4.1 

provides their coefficients for the most common couplings -phase to ground and 

phase to phase in differential mode (push-pull). 

4.2.2. Transposed lines. 

Consider first the case of a transposed line where the two homogeneous sections 

have equal length; the following expression may be deduced from 4.10: 

with 10 the length of each homogeneous section. Expression 4.15 yields a second 

degree polynomial in X: 

As = 2.06o 3 l o | <CT H Vo IM'"F JN to M H Cf (4.15) 

if the following definition is used: 

(4.16) 
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As an example, consider the system depicted in figure 4.2; here: 

' \ ~ 1 "i r 

0 - z 0 
0 

- — 
_1 

' 1 o] Ti -z l ~ | 
_o yj [3 o - 3 J 

O 4- O 
o o l 

LOO 

'1 1 " 

4. ' 1 

1 o 

o X 

£ -2 

3 O 

o 
o 
1 

"E- (x> = C- 1 -6X /i2 
It is possible to show that for a line divided in "m" homogeneous sections by 

"m-l" transpositions, the supplementary loss term involves an m-th degree 

polynomial: 

.(4.17) 

Very often in practice, transpositions are spaced at unequal distances; in these 

cases,a polynomial expression as 4.17 can also be obtained. This is shown next 

for a line consisting of two unequal sections; the generalization for a bigger 

number of sections is straightforward. 

Suppose that a line of length "l^t" is divided into two line sections of lengths 

\l and I2. Let the ratio I1/I2 be approximated by means of two integers "nj" 

and "n2" in the following manner: 



FIGURE 4.1) Example of c a r r i e r coupling on 
nontransposed l i n e . 

FIGURE 4 .2) Example of coupling on a s i n g l 
transposed l i n e . 
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.(4.18) 

where the common factors between n j and n£ have been already eliminated. 

Now, a section of length 

I - TOT 

n, + 

is chosen as basis. In a similar way as in 4.13, "X" may be defined as: 

.(4.19) 

X 4 exp[-£.(*»-*,\l 
For the first line section: 

1 0 

0 x ™1 

and, for the second one: 

i 

o ,"2. 

the supplementary loss term thus becomes: 

\ 0 " 1 o 

0 x o x n i 0 x 
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It is clear that this expression yields a polynomial whose degree is at most 

n l + n 2 • 

From expression 4.18, it is obvious that -in general- a better approximation to 

the I1/I2 ratio is achieved by choosing bigger values for nj and T12; this, 

however, is inconvenient from the numerical standpoint, for the degree of the 

polynomial will increase accordingly. It is clear then, that in these cases there 

has to be a trade off. 

Perhaps the most common case of lines with unequal section lengths are those 

where the transpositions are located at 1/6-th 3/6-ths and 5/6-ths of the line 

length; this transposition scheme is depicted in figure 4.3d. Figures 4.3a, 4.3b 

and 4.3c show, respectively, the most common layouts of lines with zero, one 

and two transpositions. The polynomials associated to all these line schemes, for 

the most conventional coupling arrangements, are provided in tables 4.1, 4.2, 4.3 

and 4.4 

4.2.3. Insertion loss calculation. 

Once the polynomial coefficients for a specific line layout are available, the line 

response to a frequency excitation can be obtained through the following steps: 

1. Obtain the electrical parameters Z and Y of the line by means of the 

methods given in reference 2 as well as in chapter 2. 

2. From the electrical parameters derive the modal propagation constants using 

the formulae given in section 3.4. Only 
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i / 2 

V 3 ^ 

l/t — - t f 

FIGURE 4.3) T r a n s m i s s i o n l i n e t r a n s p o s i t i o n l a y o u t s 
most commonly found i n p r a c t i c e , 

a) Untransposed l i n e . b) One t r a n s p o s i t i o n , 
c) Two t r a n s p o s i t i o n s , d) Three t r a n s p o s i t i o n s 
unequal s p a c i n g . 
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)f I = 0< i + jjf$i and Y 2 = + J ̂  2 8 1 1 - 6 required. 

3. Given the basic homogeneous section length "lo," obtain X: 

4. Calculate the supplementary loss term as: 

A s = - 2 0 « o g | o | ( Z : 
1=0 

5. Calculate the mode 1 attenuation: 

where "1" is the total line length. 

6. Obtain the total insertion loss: 

A = A , + A s (4-20) 

4.2.4. Modal cancellation poles. 

Since oc j as well as "1" (the total length of the line) are always non-negative 

and finite, the mode 1 term: 

A , - ^ o a o ^ i 0 o " ) • e 

can only take non-negative finite values. 

The supplementary loss term -on the other hand- may become infinite. It is 

apparent from expression 4.17 that this can only happen at the root values of 
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£py . 
1=0 

By recalling the definition of X: 

x £ t - M c » - 0 ] 

and the fact that: 

it becomes clear that not all the roots of P m(X) have physical meaning. Only 

those roots such that: 

o < |xl < 1 

are related to poles; these will be henceforth referred to as poles. 

Tables 4.1, 4.2, 4.3 and 4.4 include the poles corresponding to each polynomial. 

Their values are specified by means of two new variables: " Ac*. " and "AO ", 

that are related to "X" as indicated as follows: 

% ^ €^p (- A a 4 J ( 4 2 1 ) 

therefore: 

(4.22) 
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Ap *.C - ̂  ( 4 . 23) 

A © may be interpreted as the phase change suffered by mode 2 with respect 

to mode 1 as they travel through a basic line length "10". Acx thus represents 

the attenuation difference (in Nepers) between mode 2 and mode 1 for the basic 

line length. 

4.3. SENN'S METHOD FOR EVALUATING INSERTION LOSSES. 

The steps required for evaluating a line response to a carrier signal are given 

in sub-section 4.2.3; alternatively, Senn [12,13,14] proposed a graphical method 

that is to be presented next. 

From the definitions 4.22 and 4.23 it follows that the supplementary loss may 

be regarded as a function of A CK. and of A© ; it may thus be plotted for a 

range of values of these two variables as it is shown in figure 4.4a. 

Since three-dimensional plots -as the one in figure 4.4a- are not very practical, 

Senn proposes the use of contour map representations instead. See for example 

the contour map in figure 4.4b which corresponds to figure 4.4a three 

dimensional graph. 

Relation 4.17 can be expressed as follows: 
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r 
FIGURE 4.4) Plot of the function 

A s = 201ogin|(X2-6X-3)/8| 
a) Three dimensional graph, b) Contour 
representation. 



47 

.(4.24) 

In order to generate the contours, a constant value (i. e., a level value) is 

asigned to Ag, then "X" has to be solved from 4.24; the absolute value bars 

there preclude its direct solution as a polynomial equation. The method here 

proposed makes use of the following definition: 

where z* is the complex conjugate of z. Equation 4.24 thus yields: 

By recalling 4.21,and after some algebraic manipulations: 

- K Z | 0 C A s / i 0 > ) (4.25) 

Assuming that /A.© is given and, if " exp(- A a )" is replaced by "Y", it 

becomes clear that 4.25 is a 2m degree polynomial A contour can thus be 

generated by assigning successive values to A © from 0° to 360°,and solving 

this 2m degree polynomial each time. 

In a similar way as with the poles, not all the roots of 4.25 have physical 

meaning; only those that are real and satisfy the inequality: 

0 < V < ± 
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belong to a contour segment. 

Since the contour maps are obtained for general values of A ex. and A© - , 

they do not depend on the specific dimensions or the electrical properties of the 

lines; therefore they are generic to delta lines with the same transposition 

scheme and coupling arrangements. 

Once the contours are available, specific values for AcX and A © must be 

determined. In figure 4.5a A & is plotted against Aa for the line described in 

figure 4.5b; the frequency is varied continuously and the earth resistivity 

assumes 5 different values. The supplementary loss term may be obtained easily 

by superposing figure 4.5a curve -also known as modal curve- to the 

corresponding contour map. 

Although the modal curve has to be elaborated usually for each particular case, 

the same curve may be used several times for evaluating different couplings by 

just superposing it with the contour maps corresponding to each coupling. An 

example is provided next. 

4.3.1. Example. 

For the line scheme of figure 4.6, it is desired to compare the following 

couplings providing metallic continuity: 

C j : C t=(l,0,0)/C r=(0,0,l) 
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Conductor radius 1.598 cm. 
Gnd. wire radius 0.489 cm. 
Gnd. wire material Alumoweld 
Earth re s i s t i v i t y 300 Ohm-m 
Line section length .... 30 km. 

fe) 

FIGURE 4.5) a) Graph of Aa -Ae for different . . . 
frequencies and different earth r e s i s t i v i t i e s , 
b) line data for the graph 4.5a. 



50 

C 2 : C t =(0,l,0)/C r = (l,0,0) " " 
0. 

C 3 : C t=(0,0,1)/C r = (0,1,0), 

|< 50krri5 >|< 50fcms —^| 
against the discontinuous one: 

C 4 : C t=(0,l,0)/C r=(0,l,0). F I G U R E 4 . 6 ) E x a m p l e . 

The line dimensions and conductors data are those of figure 4.5b; the earth 

resistivity is 300 Ohm-m. 

The theoretical minimum attenuation, as well as the modal curve are readily 

obtained from the line data; they are plotted, respectively, in figures 4.7a and 

4.7b. 

The contour maps corresponding to couplings and C 2 are given in figures 

4.8a and 4.8b, with the modal curve already superposed. The contour map of 

coupling C 3 is equal to that of C 2 . For C 4 a contour map is not required -the 

supplementary loss is a constant equal to 9.5424 dB. 

The total insertion loss for each coupling is obtained by adding the 

supplementary loss terms to the theoretical minimum attenuation; the results are 

plotted in figure 4.9. Note that -contrary to the common sense, the discontinuous 

metallic path is the best; it is, in fact, the only one free of poles. 
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© I 1 1 I— 1 1 1 1 ' 1 • 
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Frequency kHz. 

FIGURE 4.7) Example, a) Modal curve. 
b) theoretical minimum attenuation. 
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A © 

\ : 

1 \ 
MOO t o o l 

\ \ / 
Yl A-

• \ 
IB. SO Aa 

A © 

Aa-

F I G U R E 4 . 8 ) Contour maps with modal curve superposed, 
a) Coupling Ct=(1,0,0)/C r =(0,0,1) . 
a) Couplings Ct=(0,1,0)/C r=(1,0,0) 

and Ct=(0,0,1)/C r =(0,1,0) . 
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o 
0. 100. 200. 300. 400. 500. 

FREQUENCY (kHz) 

FIGURE 4 . 9 ) Line response for different couplings. 
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4.4. REMARKS. 

A simplified method for PLC response prediction has been presented in this 

chapter. 

By assuming reflectionless propagation, it was possible to express the insertion 

loss term as the sum of the theoretical minimum attenuation of the line and of 

a supplementary loss term. The further assumption of constant modal 

transformations led to expressing the supplementary loss in terms of a 

polynomial whose roots correspond to the modal cancellation poles of the line. 

With the supplementary loss term in analytical form, a set of contour maps 

may be derived. The contours, together with another type of curves - the modal 

curves, facilitate the line response calculation. 

The computer is required only to generate the contour maps. Afterwards it is 

not needed any longer; hence, the method is suitable for field applications. Two 

additional advantages of the graphical method are: 

1. A single modal curve may be used to evaluate different couplings. 

2. The proximity of poles, which may cause subsequent problems, is readily 

detected from the contour maps. 



TABLE 4 . 1 - POLYNOMIALS OF UNTRANSPOSED LINES. 

COUPLING 
Trnsm./rceiv. 

POLYNOMIAL POLES 

(1,0,0)/(1,0,0) 
(0,0,1)/(0,0,1) 

(3X+D/6 9.5424 <180o 

(1,0,0)/(0,0,1) 
(0,0,1)/(1,0,0) 

(3X-D/6 9.5424 <0o,<360o 

(1,0,0)/(0,1,0) 
(0,1,0)/(1,0,0) 
(0,1,0)/(0,0,1) 
(0,0,1)/(0,1,0) 

(-2)/6 none 

(0,1,0)/(0,1,0) (4)/6 none 

(1,-1,0)/(1,-1,0) 
(0,1,-1)/(0,1,-1) 

(X + 3)/4 none 

(1,-1,0)/(1,0,-1) 
(1,0,-1)/(1,-1,0) 
(0,1,-1)/(1,0,-1) 
(1,0,-1)/(0,1,-1) 

(X)/2 none 

(1,-1,0)/(0,1,-1) 
(0,1,-D/(1,-1,0) 

(X-3)/4 none 

(1,0,-1)/(1,0,-1) X none 



T A B L E 4.2- POLYNOMIALS OF SINGLE TRANSPOSED LINES 

COUPLING 
Trnsm./rceiv. 

POLYNOMIAL POLES 

(1,0,0)/(1,0,0) 
(0,0,1)/(0,0,1) 

(3X2+ 1)/12 4.77 000,2700 

(1,0,0)/(0,1,0) 
(0,1,0)/(0,0,1) 

(3X - l)/6 9.54 <0o,360o 

(1,0,0)/(0,0,1) (3X2 + 6X-D/12 16.21 <0o,360o 

(0,1,0)/(1,0,0) 
(0,0,1)/(0,1,0) 

(3X+D/6 9.5424 <180o 

(0,1,0)/(0,1,0) (-D/3 none 

(0,0,1)/(1,0,0) (3X2-6X-D/12 16.2102 <180o 

(1,-1,0)/(1,-1,0) 
(0,1,-1)/(0,1,-1) 

(X2 + 3)/8 none 

(1,-1,0)/(1,0,-1) 
(1,0,-1)/(0,1,-1) 

(X2 + 3X)/4 none 

(1,-1,0)7(0,1,-1) (X2 + 6X-3)/8 6.67<0o,360o 

(1,0,-1)/(1,-1,0) 
(0,1,-1)/(1,0,-1) 

(X2-3X)/4 none 

(1,0,-1)/(1,0,-1) (X2)/2 none 
(0,1,-1)/(1,-1,0) (X2-6X-3)/8 6.6677<180o 
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TABLE 4 . 3-POLYNOMIALS OF DOUBLE TRANSPOSED LINES. 

COUPLING 
Trnsm./rceiv. 

POLYNOMIAL POLES 

(1,0,0)/(1,0,0) 
(0,0,1)/(0,0,1) 

(3X3-9X2-3X+l)/24 6.29 <180o 
13.55<0o,360o 

(1,0,0)/(0,1,0) 
(0,1,0)/(0,0,1) 

(3X2 + 6X-D/12 1 16.21 <0o,360o 

(1,0,0)/(0,0,1) (3X3-3X2 + 9X-D/24 18.79 <0o,360o 

(0,1,0)/(1,0,0) 
(0,0,1)/(0,1,0) 

(3X2 + 1)/12 4.77 <90o,270o 

(0,1,0)/(0,1,0) (3X-D/6 9.54<0o,360o 

(0,0,1)/(1,0,0) (3X3-15X2-3X-D/24 11.94 < 1800+/-66.18o 

(1,-1,0)/(1,-1,0) 
(0,1,-1)/(0,1,-1) 

(X3-3X2-9X + 3V16 10.30<0o,360o 

(1,-1,0)/(1,0,-1) 
(1,0,-1)/(0,1,-1) 

(X3 + 3X)/8 none 

(1,-1,0)/(0,1,-1) (X3 + 3X2 + 15X-3V16 14.33<0o,360o 

(1,0,-1)/(1,-1,0) 
(0,1,-1)/(1,0,-1) 

(X3-6X2-3X)/8 6.67<180o 

(1,0,-1)/(1,0,-1) (X3-3X2)/4 none 

(0,1,-1)/(1,-1,0) (X3-9X2 + 3X-3)/16 4.62<180+/-105.07o 



TABLE 4.4-POLYNOMIALS OF THREE TRANSPOSED LINES. 

COUPLING 
Trnsm./rceiv. 

POLYNOMIAL POLES 

(1,0,0)/(1,0,0) 
(0,0,1)/(0,0,1) 

(3X6-21X4-15X2 +1)/48 1.49 < 900,2700 
12.115<0o,180o,360o 

(1,0,0)/(0,1,0) 

(0,1,0)/(0,0,1) 
(3X5 + 3X4-6X3 + 6X2 + 3X-l)/24 5.7 <180o 

12.36<0o,360o 

(1,0,0)/(0,0,1) (3X6 + 6X5-15X4-12X3-3X2 + 6X-1)/48 1.40 < 135.50,224.50 
8.857<Oo,360o 
13.4<Oo,360o 

(0,1,0)/(1,0,0) 
(0,0,1)/(0,1,0) 

(3X5-3X4-6X3-6X2 + 3X +1)/24 5.7 <0o,360o 
12.36<1800 

(0,1,0)/(0,1,0) (3X4 + 6X2-1)/12 8.106<0o,180o,360o 

(0,0,1)/(1,0,0) (3X6-6X5-15X4+ 12X3-3X2-6X-D/48 1.4046 <44.509o,315.49o 
8.857<180o 
13.4<180o 

(1,-1,0)/(1,-1,0) 
(0,1,-D/(0,1,-1) 

(X6-154-21X2+ 3)/32 8.835<0o,180o,360o 

(1,-1,0)/(1,0,-1) 
(1,0,-1)/(0,1,-1) 

(X6 + 3X5-6X4-6X3-3X2 + 3X>)/16 0.8189< 132.560,227.440 
6.882<0o,360o 

(1,-1,0)/(0,1,-1) (X6 + 6X5 + 3X4- 12X3 + 5X2 + 6X-3)/32 1.2<35.40,324.60 
2.5475<180o 
6.46<0o,360o 

(1,0,-1)/(1,-1,0) 
(0,1,-1)/(1,0,-1) 

(X6-3X5-6X4 + 6X3-3X2-3X)/16 0.8189<47.44o,312.56o 
6.88<180o 

(1,0,-1)/(1,0,-1) (X6-6X4-3X2)/8 3.333<90o,270o 

(0,1,-1)/(1,-1,0) (X6-6X5 + 3X4+ 12X3-15X2-6X-3)/32 5.375<0o,360o 
10.15<180o 



CHAPTER 5. COUPLING RECOMMENDATIONS. 

Although the modal theory or - in the case of delta lines Senn's graphical 

method may be used for comparing coupling alternatives, it is desirable to have 

a set of general recommendations or guidelines for selecting adequate line 

couplings. 

Prior to the development of the modal theory, coupling recommendations were 

based on simplistic line concepts. It was found, afterwards, that most of them 

were incorrect; however, the recommendations are still widespread. One of these 

rules, for instance, advises the use of the couplings that provide a continuous 

metallic path between the transmitter and the receiver; a counter-example to this 

rule was presented in section 4.3.1. 

Conductor 1_ c:ond. 2 

FIGURE 5.1) a) Transmission line layout example. 
b) Coupling alternative 1. c) Alternative 2. 
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Another rule recommends that, for phase to phase couplings, the two conductors 

which stay closest to each other for most of the distance along the line be 

chosen; for example, according to this rule, in figure 5.1a conductors 2 and 3 

must be selected. This coupling, represented in figure 5.2b, hereafter referred to 

as coupling 1, is to be compared against coupling 2 on figure 5.2c. 

By assuming the fine data provided in Figure 4.5b, a modal plot is obtained. In 

figures 5.2a and 5.2b, this plot is superposed to the contour maps corresponding 

to coupling 1 and coupling 2. The resulting line responses are plotted in figure 

5.2c; it is clear there that coupling 2 is much better than coupling 1. It may 

be concluded, thus, that the abovementioned rule is unfounded. 

Some more recent studies [20,21] introduce the concept of optimum coupling; 

however, in a strict sense, optimum couplings very seldom exist. In reference 21, 

coupling 2 of the previous example is presented as the optimum phase to phase 

arrangement for single transposed lines. This coupling is indeed the most 

recommendable in that case for, among other things it is free of poles; however, 

it cannot be said that it is optimum. For instance, in figure 5.2c, coupling 1 

performance is much better at frequencies below 120 kHz and slightly better 

above 320 kHz. 

The purpose of the first section is to introduce the concept of recommended 

couplings along with a technique for generating the recommendations; this 

technique is based on Senn's graphical method. In section 5.2 coupling 

recommendations are produced for the transposition schemes that are supposed to 
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FIGURE 5.2) a) Coupling 1 contour, b) Coupling 2 contour. 
c) Frequency responses. 
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be the most commonly found in practice. Finally, in section 5.3 the performance 

of non-conventional couplings is analyzed. 

5.1. PROPOSED METHOD FOR ASSESSING COUPLING ALTERNATIVES. 

The type of recommended couplings of concern here is the one that, in addition 

to providing low losses, minimizes the risk of modal cancellation. 

It was shown in chapter 4 that the line insertion loss is composed by two 

terms: 

A = A x + A s 

Whereas the supplementary loss term changes from one coupling to the other, 

the mode 1 term remains equal; thus, coupling comparisons can be based on 

their supplementary loss terms solely. Here, it is proposed that, in order to 

compare two couplings, their corresponding supplementary loss terms be 

subtracted: 

-^(coupling 1) " A s ( C 0 U p i m g 2) 

The difference may be represented in the Ao--A0 plane by means of two 

colors; one color indicating that the difference is positive, i. e., coupling 2 is 

better than coupling 1, and the other color indicating the opposite. As an 

example, for the two color plot of figure 5.3a, the coupling of figure 5.1b has 

been chosen as coupling 1 and that on figure 5.1c as coupling 2. 

The two color plot provides a quick overview of the comparative performance 

between two couplings; however, it may be misleading. In figure 5.3, for 



10.0 20.0 

ATTENUATION DIFFERENCE Aa 
30.0 

I 1 1 I • I >• ! 1 
0.0 10.0 20.0 30.0 

ATTENUATION DIFFERENCE Aa 

FIGURE 5 . 3 ) a) Example of a two color plot. 
b) Example of a three color plot. 
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instance,the black region covers more than half of the A a - A © plane; it may 

seem then, that coupling 1 is better than coupling 2. A look at their frequency 

responses in figure 5.2c shows that this appreciation is incorrect. The first point 

to notice is that some of the differences between the two couplings may be 

irrelevant; it can be seen at figure 5.2c that above 300 kHz both responses are 

very similar. Another point to consider is that not all regions of the A a - A© 

plane are equally important; in the current example, the central region containing 

the pole of coupling 1 seems to have a high probability of occurrence in the 

practice. 

As in PLC communications a difference of 3 dB is considered as unimportant, a 

three color plot -as the one in figure 5.3b, is introduced in order to remove the 

irrelevant differences. There, the third region in gray color may be considered as 

a neutral zone where the response differences are comprised in the +/- 3 dB 

range. The black and white regions designate thus only meaningful differences. 

In order to establish the regions of the Ao-A© plane that are relevant for the 

coupling comparisons, a second type of plot, which henceforth will be referred to 

as "feasible regions map", is introduced. An example is provided in figure 5.4. 

The shaded region of figure 5.4 was produced by varying three of the line 

physical parameters -frequency, earth resistivity and conductors medium height. 

It is important in practice to consider the variations of the earth resistivity and 

of the conductor height for two reasons. Firstly, these two parameters are 



0.0 10.0 20.0 30.0 
ATTENUATION DIFFERENCE Aa 

LINE DATA: 
-Medium heights of 
phase conductors 12-18m 

-Horizontal distance 
-between conductors 9.0 m 
-Conductor radius 4x1.05 cm. 
-Gnd. wires None 
-Earth resistivities ... 30-3000 Ohm-m 
-Frequencies 50-450 kHz 
-Line section length .... 30 km. 

FIGURE 5 . 4 ) a) Example of a feasible regions map. 
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affected by the climate -the conductor sag depends on the temperature and the 

earth resistivity on the humidity. Secondly, the earth resistivity parameter, due 

to its nature, involves a considerable uncertainty. Figure 5.5a shows the influence 

of the earth resistivity on the modal curves of the line specified by table 5.1, 

and figure 5.5b shows the effects of varying the conductors medium height. 

The feasible regions maps, in addition to establishing the meaningful 

regions for the coupling comparisons, help to detect the possibility of falling into 

a cancellation pole; this this is very important since, as it will become apparent 

in the next section, it is not always possible to find pole-free couplings. 

5.2. COUPLING CONSIDERATIONS FOR COMMON LINE CASES. 

The method described in the previous section is applied here to the selection of 

couplings for the most common transposition schemes; i . e., those depicted in 

figure 4.3. 

It is found here that only in the most simple case -untransposed line phase to 

ground coupling, the recommended arrangement is optimum. It is also found that, 

for lines with two or more transpositions it may not be possible to find pole-free 

couplings; for these cases, obviously, the recommendations cannot be considered of 

general validity, and the use of feasible region maps is strongly recommended. 

The contour maps for all the couplings mentioned along this section are provided 

in the appendix. 



FIGURE 5 . 5 ) a) Effect of the earth resis t i v i t y 
on the modal plots. 
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0.0 10.0 20 0 
ATTENUATION DIFFERENCE Aa 

FIGURE 5.5)b) Effect of the conductors medium height 
on the modal plots. 
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5.2.1. Untransposed lines. 

5.2.1.1. Phase to ground coupling. 

As it was mentioned before, this is the most simple case found in practice. The 

following coupling arrangement: 

( 0 , 1 , 0 ) / ( 0 , 1 , 0 ) 

depicted in figure 5.6, is the recommended one. This coupling is optimum; its 

supplementary losses -according to Senn's simplified method- are constant and 

equal to: 

As = 3.5218. 

These losses are due only to mode conversion at both end of the line. 

F I G U R E 5.6) Recommended phase to ground coupling 
for untransposed lines. 
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5.2.1.2. Phase to phase coupling. 

For phase to phase differential mode coupling (push-pull), the arrangement: 

( 1 , -1 , 0 ) / ( 1 , -1 , 0 ), 

represented in figure 5.7a, is the recommended one. This coupling cannot be 

considered optimum. It may be seen from the two and three color plots in 

figures 5.8a and 5.8b, that the coupling: 

( 1 , -1 , 0 ) { ( 0 , 1 , -1 ), 

represented in figure 5.7b, has a very similar performance and in some regions, 

small though, it is better. 

FIGURE 5.7) a) Recommended phase to phase coupling on 
untransposed lines, b) Second best coupling. 



FIGURE 5 . 8 ) Comparison of the couplings depicted in 
figures 5 .7a and 5 . 7 b . a) Two color plot, 
b) Three color plot. 
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5.2.2. Single transposed lines. 

5.2.2.1. Phase to ground coupling. 

The coupling of figure 5.9 is the best recommended, mainly because it is 

pole-free. The other alternatives may have better performance in small regions of 

the A a - A 6 plane which correspond to low frequencies and/or very high earth 

resistivities; additionally alll them present cancellation poles. 

0 0 
F I G U R E 5.9) Recommended phase to ground coupling 

for single transposed lines. 

Note that section 4.3 provides a specific example of this coupling. 
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5.2.2.2. Phase to phase cooupling. 

The arrangement depicted in Figure 5.10 is the recommended differential mode 

coupling for single transposed lines. There are some other alternatives that are 

also free of poles; however, the two color plots indicate that Figure 5.10 

coupling has a better performance in most of the A a - A 0 plane; moreover, the 

small regions where the other alternatives are better, correspond to low 

frequencies and/or to very high earth resistivities. The two couplings depicted in 

figure 5.11 should be avoided. The coupling on Figure 5.11a has been already 

analyzed in the example at the beginning of the chapter. 

FIGURE 5.10) Phase to phase recommended coupling for 
single transposed lines. 

FIGURE 5.11) Couplings that should be avoided. 
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5.2.3. Lines with two transpositions. 

5.2.3.1. Phase to ground coupling. 

As it may be seen from table 4.3, in this case none of the couplings is free of 

poles; for this reason, the coupling recommended here (figure 5.12) cannot be 

considered as generally valid, t Before choosing a carrier frequency, it is thus 

convenient to check, by means of a feasible regions map, that there is no 

danger of modal cancellation. 

As an example, the coupling of figure 5.13 is the one whose performance is the 

closest to that of the recommended one.The two color plot comparing these two 

couplings is shown in figure 5.14. Apart from the fact that the white area 

where the recommended coupling performs better is bigger, its poles are slightly 

closer to the rigth hand side of the Act-A© plane; this means that they are 

less likely to happen. 

5.2.4. Phase to phase coupling. 

Here the selection of a coupling is much more difficoult than in the previous 

cases. There are actually two pole-free couplings: 

( 1 , -1 , 0 ) / ( 1 , 0 , -1 ) 

which is equivalent to: 

( 1 , 0 , -1 ) / ( 0 , 1 , -1 ), 

tNote: Reference [21] refers to this coupling as optimum. 



FIGURE 5.12) Recommended phase to ground coupling 
in a double transposed line. 

0.0 10.0 20.0 30.0 
ATTENUATION DIFFERENCE Aa 

FIGURE 5.14) Two color plot comparing couplings 
depicted in figures 5.12 and 5.13. 
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and 

( 1 , 0 , -1 ) / ( 1 , 0 , -1 ); 

Unfortunatelly, their losses grow very quickly as increases. The first coupling, 

depicted in figure 5.15, is better than the second one. 

The coupling of figure 5.16 has the smallest losses for most of the A a-A© 

plane; however, it is not pole-free, t The coupling of figure 5.17 is similar in 

performance to that of 5.16. With these two couplings the possibility of modal 

cancellation exists for high earth resistivities and for long lines with medium 

earth resistivities. For figure 5.17 coupling, this danger also exists at low 

frequencies. As the supplementary losses of figure 5.15 coupling are small at the 

region on the left hand side of the Aa-A© plane -which is precisely where 

couplings 5.16 and 5.17 have their poles, it is possible to consider the former as 

the complement of the latter ones; however, it is strongly recommended that 

every application be supported by means of its corresponding feasible regions 

map. 

5.2.5. Lines with three transpositions. 

It may be seen from table 4.5 that all the three-transposed line couplings 

present cancellation poles; thus, the selection of frequencies should be aided by a 

feasible regions map. 

For phase to ground coupling, the recommended arrangement is represented in 

tNOTE: At reference 21 this coupling is refered to as optimum coupling without 
warning about the possibility of modal cancellation. 



FIGURE 5.15) Complementary phase to phase coupling 
on a double transposed line. 

FIGURE 5.16) Recommended phase to phase coupling 
for a double transposed line. 

FIGURE 5.17) Second best phase to phase coupling 
for a double transposed line. 
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figure 5.18; the recommended one for phase to phase coupling is the one given 

in figure 5.19a; although, the coupling of figure 5.19b is as nearly as good as 

that in figure 5.19a. 

The three suggested couplings have the common characteristic that their poles lie 

close to the left hand side of the ^ a - A 0 plane, which means that the possibility 

of modal cancellation exists for lines with high earth resistivity or for very long 

lines with medium earth resistivity. '• 

5.3. NONCONVENTIONAL COUPLINGS. 

The coupling arrangements analyzed in the previous section are the ones 

traditionally used in the power sector. However, other arrangements are possible 

-they are referred to here as nonconventional couplings. 

ln order to find better couplings (i. e., pole-free) in lines with two and three 

transpositions, two nonconventional phase to phase alternatives were analyzed: 

1. Common mode (push-push) transmission with differential mode (push-pull) 

reception 

2. Differential mode transmission with common mode reception. 

Tables 5.1 and 5.2 provide the polynomials of the analyzed couplings together 

with their cancellation poles. None of the analyzed alternatives resulted as 

attractive as to justify the departure from the conventional practices. 
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FIGURE 5.18) Phase to ground recommended coupling 
for a three transposed line. 

FIGURE 5.19) Phase to phase recommended couplings for 
a three transposed line, a) Best coupling, 
b) Second best coupling. 
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Another nonconventional coupling arrangement that was analyzed is the so called 

mode 1 coupling. This is an alternative several carrier equipment manufacturers 

advocate for. In mode 1 coupling the carrier signal is injected to the three phase 

conductors of the line with the following current (or voltage) distribution: 

( 1 , - 2 , 1 ) . 

The intention with this coupling is to put as much energy as possible into mode 

1 form, which is usually the mode with the least losses. 

Figure 5.20 shows the contour map of mode 1 coupling on a double-transposed 

line. Note that it has cancellation poles. This map can be compared with the 

one of the recommended phase to ground coupling given in the appendix; the 

difference between them is a constant value of 3.52 dB. The insertion loss 

difference between mode 1 coupling and the recommended phase to phase coupling 

-although it is not constant- may be approximated to the figure of 2.5 dB, 

which is very accurate for most of the A a-A© plane. 

It may be concluded from the above results that, since mode 1 coupling does not 

eliminate the possibility of modal cancellation, an improvement of 2.5 dB would 

hardly justify the additional expense of the three-phase coupling. 

Figure 5.21 shows the contour map for the mode 1 coupling on a 

three-transposed line; note that this coupling presents more poles than the 

recommended phase to ground coupling of figure 5.18, or than the phase to 

phase coupling of figure 5.19. As Aa increases the supplementary loss difference 

between mode 1 coupling and the recommended phase to ground one tends to 
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FIGURE 5.20) Contour map of mode 1 coupling on a double 
transposed line. 

FIGURE 5.21 Contour map of mode 1 coupling on a three 
transposed line. 
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3.5; whereas its difference with respect to figure 5.19a coupling tends to 2.5 dB. 

By the same token as with double-transposed lines, mode 1 coupling does not 

seem that atractive for three-transposed lines. 
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T A B L E 5 .1-POLYNOMIALS OF DOUBLE TRANSPOSED LINES. 
NONCONVENTIONAL COUPLINGS. 

COUPLING 
Trnsm./rceiv. 

POLYNOMIAL POLES 

(1,1,0)/(1,1,0) 
(0,1,1)/(0,1,1) 

(3X3-9X2-3X+ l)/48 6.29 <180o 
13.55<0o,360o 

(1,1,0)/(1,0,1) 
(1,0,1)/(0,1,1) 

(3X2+D/24 4.77 <90o,270o 

(1,1,0)/(0,1,1) (3X3-15X2-3X-D/48 11.93 < 113.820,246.180 

(1,0,1)/(1,1,0) 
(0,1,1)/(1,0,1) 

(3X2 + 6X-D/24 16.21 <0o,360o 

(1,0,1)/(1,0,1) (3X-D/12 9.54<0o,360o 

(0,1,D/(1,1,0) (3X3-3X2 + 9X-D/48 18.78 <0o,360o 
(1,-1,0)/(1,1,0) (X3 + X2 + 7X-D/16 8.46< 100.90,259.10 

(0,1,-1)/(0,1,1) (X3-7X2-X-U/16 17.1< 00,3600 

(1,-1,0)/(1,0,1) (X2 + 4X-D/8 12.54<180o 

(1,0,-1)/(0,1,1) (X3-4X2-X)/8 12.54<0o,360o 
(1,-1,0)/(0,1,1) (X3-X2-X+D/16 0<0o,180o,360o 
(1,0,-1)/(1,1,0) (X3-2X2 + X)/8 0< 0o,360o 
(0,1,-1)/(1,0,1) (X2-2X+U/8 0< 0o,360o 

(1,0,-1)/(1,0,1) (X2+X)/4 0<180o 

(0,1,-1)/(1,1,0) (X3-5X2-5X-1)/16 0<180o 
15.3<0o:360o 
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TABLE 5.2-POLYNOMIALS OF THREE TRANSPOSED LINES. 
NONCONVENTIONAL COUPLINGS. 

COUPLING 
Trnsm./rceiv. 

POLYNOMIAL POLES 

(1,1,0)/(1,1,0) 
(1,0,1)/(0,1,1) 

(3X6-21X4-15X2+l)/96 1.49 <90o,270o 
12.116<0o,180o,360o 

(1,1,0)/(1,0,1) 
(1,0,1)/(0,1,D 

(3X5-3X4-6X3-6X2 + 3X +1)/48 5.7 <0o,360o 
12.36<180o 

(1,1,0)/(0,1,1) (3X6-6X5-15X4+ 12X3-3X2-6X-l)/96 1.40 <44.48o,315.52o 
8.857<180o 
13.4<180o 

(1,0,1)/(1,1,0) 
(0,1,D/(1,0,1) 

(3X5 + 3X4-6X3 + 6X2 + 3X-D/48 5.7 <180o 
12.36< 00,3600 

(1,0,1)/(1,0,D (3X4 + 6X2-l)/24 8.106<0o,180o,360o 

(0,1,1)/(1,1,0) (3X6 + 6X5-15X4-12X3-3X2 + 6X-D/96 1.4046 < 135.50,224.50 
8.857<0o,360o 
13.4<0o,360o 

(1,-1,0)/(1,1,0) (X6-4X5-3X4 + 8X3 + 3X2-4X-1)/32 0< Oo, 1800,3600 
12.54<180o 

(0,1,-1)/(0,1,1) (X6 + 4X5-3X4-8X3 + 3X2 + 4X-l)/32 0<0o,180o,360o 
12.54<0o,360o 

(1,-1,0)/(1,0,1) (X6-X5-6X4 + 2X3-3X2-X> )/16 2.33<67.73o,292.27o 
11.8<180o 

(1,0,-1)/(0,1,1) (X5 +3X4-2X3 +6X2+ X-1»/16 7 .K180O 
9.37<0o,360o 

(1,-1,0)/(0,1,1) (X6 + 2X5-9X4-4X3-9X2 + 2X +1)/32 0< 108.10,251.20 
8.21<0o,360o 
12.24<180o 

(1,0,-1)/(1,1,0) (X5-3X4-2X3-6X2 + X+D/16 5.7<180o 
12.36< 0o,360o 

(o,i,-i)/(i,o,i) (X6 + X5-6X4-2X3-3X2 + X)/16 2.33< 112.270,247.73 
11.8<0o,360o 

(1,0,-1)/(1,1,0) (X5-2X3 + X)/8 0< 0o,180o,360o 

(0,1,-1)/(1,-1,0) (X6-2X5-9X4 + 4X3-9X2-2X+ l)/32 12.25<0o,360o 
8.2K180O 



CHAPTER 6. CONCLUSIONS 

A new method for comparing coupling alternatives in power line carrier 

communication systems has been proposed. 

The method has been applied to practical cases, and a new set of coupling 

recommendations has been generated. In general, the coupling recommendations 

coincide with those proposed by the IEC in reference [21]; however, the TEC 

guide does not mention that some of these couplings are not 100% safe, nor 

does it provide alternatives; furthermore it is suggested there that these couplings 

are optimum. 

To the best of the author's knowledge, coupling recommendations for three 

transposed lines have not been produced before. 

The method has been applied also to the study of non-conventional couplings. As 

it is mentioned in chapter 5, none of the considered couplings resulted as 

attractive as to justify its adoption. This conclusion applies also to the so called 

mode 1 coupling, which is in its way of becoming a standard practice in North 

America [22]. Mode 1 is considerably more expensive than the conventional phase 

to ground or phase to phase couplings. 

The method for comparing coupling alternatives is based on a graphical technique 

for evaluating power line frequency responses proposed by Senn [12]. Senn's 

technique has been wholy developedin chapter 4. Several gaps that were left out 

84 



85 

in the related publications [12,13,14,20] are presented in detail in chapter 4. The 

results obtained with the method therein described coincide with those published 

by Senn. 

In chapters 2 and 3, a series of procedures for calculating phase and modal 

parameters are presented. These procedures simplify the computations so much 

that it seems that it is possible now to perform line analysis by means of 

programmable calculators. It should be mentioned that this type of analysis 

usually requires a mainframe. 

6.1. F U T U R E R E S E A R C H 

Along the research reported in this thesis, several topics that require further 

work became apparent. Three of them are mentioned next; one deals with 

constant modal transformation matrices, the other two with improvements to 

Senn's method. 

6.1.0.1. Constant modal transformation matrices 

The possibility of using frequency invariant transformation matrices has been 

always attractive, specially for transient studies of transmission lines. This has 

drawn some attention recently [23]. 

From the studies done for this thesis, it became evident that, whereas the 
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transformation matrices of aerial lines are fairly independent of frequency, they 

depend heavily on the line geometry, t The methods proposed in references 2 and 

3, and in section 3.2 of the thesis, may be applied to substantiate the use of 

constant transformations as well as to generate them. 

6.1.0.2. Coupling vectors in Senn's method 

The way in which the coupling vectors C r and C t have been implemented -up 

to now- in Senn's method, assumes implicitly that the unused phases are 

grounded (at carrier frequencies); accurate modeling of line terminating impedances 

at high frequencies -on the other hand- is out of question in most practical 

cases. As an alternative, it is suggested here that the coupling vectors and their 

associated polynomials be obtained under the assumptions that the unused phases 

are, first, terminated in the line characteristic impedance and, second, in open 

circuit; the contour maps can then be elaborated from the three resulting 

polynomials on a worst case basis. 

6.1.0.3. Pole trajectories in the &a-A0 plane. 

In delta lines, the bigger the height of the central conductor is with respect to 

the external conductors, the less accurately the line modes resemble the Clarke 

components. In the example given in sections 2.3 and 3.4, for instance, p 

becomes closer to -3.5 instead of -2.0 and q becomes 0.8 instead of 1.0. Since 

the value of p affects the line polynomials, it is suggested here that the range 

t N O T E : Recalling that the studies here deal with carrier frequencies 
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of feasible values for p be determined and, from it, pole trajectories in the 

6 Q-A0 plane be plotted. 
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Contour maps of the couplings considered in chapters 4 and 5 
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