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ABSTRACT

The mechanism of resistance of tumor cells to chemotherapeutic
agents is explored using probabilistic methods where it is assumed that
resistant cells arise spontaneously with a defined frequency. The
resistance process is embedded in a discrete time Markov branching
process which models the growth of the tumor and contains three seperate
cell types: stem, transitional and end cells. Using the asymptotic
properties of such models it is shown that the proportion of each type of
cell converge to constants almost surely. It is shown that the
parameters relating to stem cell behaviour determine the asymptotic
behaviour of the system. It is argued that for biologically 1likely
parameter values, cure of the tumor will occur if, and only if, all stem
cells are eliminated.

A model is developed for the acquisition of resistance by stem cells
to a single drug. Probability generating functions are derived which
describe the behaviour of the process after an arbitrary sequénce of drug
treatments. The probability of cure, defined as the probability of
ultimate extinction of the stem cell compartment, is characterised as the
central quantity reflecting the success of therapeutic intervention.
Expressions for this function are derived for a number of experimental
situations. The effects of variation in the parameter values are
examined.

The model is extended to the case where two anticancer drugs are
available and formulae for the probability of cure are developed. The
problem of therapeutic scheduling is examined and under situations where

drugs are of "equal” effectiveness, but may not be given together, it
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is shown that the mean number of tumor cells is minimised by sequential
alternation of the drugs.

The models are applied to data collected on the L1210 leukemia
treated by the drugs Cyclophosphamide and Arabinosylcytosine. 1In both
cases the analysis of the data provide evidence that resistant cells
arise spontaneously with a frequency of approximately 10~7 per division.
When applied to human breast cancer, the model indicates that neo-
ad juvant therapy is unlikely to greatly influence the likelihood that the

patient will die from the growth of drug-resistant cells.
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1. INTRODUCTION

Resistance is a general term in cancer therapy meaning
insensitivity to treatment [1]. This term can be applied to any of the
three arms of cancer therapy, surgery, radiotherapy and chemotherapy, but
it is usually reserved for the latter two. Here we will be concerned
primarily with resistance to chemotherapy which has recently assumed
greater importance with the increased use of this modality in clinical
cancer therapy. Resistance may be either absolute (no effect of the
drug) or partial (reduced effect of the drug). In the discussion which
follows we will consider the development of resistance, whether partial
or absolute, to chemotherapeutic agents.

Resistance to cancer chemotherapy is known to be multifactorial and
there is no reason to believe that all forms have yet been identified.
Probably the simplest way in which resistance can arise is that of
pharmacologic sanctuary. In this situation tumor cells arise, or are
transported to a site which is not accessible to the drug by the usual
route of administration. For examplé, a number of drugs administered
intravenously will not gain access to the brain. A second mechanism is
the metabolic conversion of the drug to a non—active form. For example,
the half life of 5-fluorouracil (5-FU), a drug commonly used in the
treatment of gastro—-instestinal malignancies, has a measured systemic
half-1ife of sig to twenty minutes [2]. Therefore, the tumor exposure
time to 5-FU administered by injection is 1likely to be short and many
cells may be expected to escape ﬁnaffected. Cells located distantly from
the capillary bed are known to experience lower drug levels than those

which are closer. Therefore, tumors may display resistance to
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chemotherapy because many cells are not exposed to therapeutic doses of
the drug. Another mechanism of tumor resistance can result from the
phase specific or preferential activity of a drug; Tumor cells, like
other dividing cells, move through the various phases of the cell cycle,
G

S (synthesis), G, and M (mitosis) where G, and G, are intervening

1’ 2 1 2

periods between the states of chromosomal synthesis and cell division.
In some cases drugs act preferentially or exclusively on the cells in
particular phases of the cell cycle and thus cells in other phases will
appear resistant. Related to this is the relative insensitivity of the
state Gy which is used to designate viable cells not actively in the
cell cycle. Cells in this state are non-proliferating and considerably
less sensitive to chemotherapeutic agents than actively proliferating
cells. Cells in Gy may later re-enter the cell cycle and continue to
proliferate. Therefore tumors with substantial numbers of cells in
protected phases Qill not respond to chemotherapy. This is the main
mechanism by which the normal hemopoietic system (which has many cells in
Gg) survives the effects of chemotherapy aimed at a tumor.

A further, and important type of resistance is the existence of a
subpopulation of cells within the tumor population on which
administration of an agent has no or reduced effect when compared to the
rest of the tumor cells. This resistance is intrinsic to the cells
themselves and persists when such cells are transferred to another host.
In-vitro studies of resistant cells have associated the development of
resistance with genetic and biochemical differences within these cells

when compared to the parent sensitive cells.

One other form of resistance should be mentioned. Certain drugs
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show virtually no effect in some types of tumor, whilst they are
extremely active in others. Similar variation in response is also seen
in different classes of non-tumor cells and it 1s worth emphasizing the
obvious that cells, whether normal or malignant, have varying biochemical
properties, and this can be expected to influence their sensitivity to a
drug.

It is our objective here to develop a mathematical model for the
growth of cell populations where individual cells show the intrinsic
differential sensitivity to chemotherapy. It is recognised that we will
have to use data from passaged animal tumors even though what we desire
to model is the therapy of human malignancy. This phenomenon is of
interest since the existence of resistant cells will obviously influence
the short term and long term behaviour of tumors treated with
chemotherapy. Before proceeding further it is wise to ask whether the
mechanism we intend to model is present in humanlmalignancy to any
significant extent.

Consider the following common clinical observation. A tumor is
treated with an agent (or several agents simultaneously) and appears to
shrink. It may even be no longer clinically detectable. Therapy is
continued, but it later becomes obvious that the tumor is growing again.
Experience indicates that continued therapy with the same agents is
fruitless as the tumor is now clinically resistant to these agents. Can
any of the previous mechanisms explain this observation?

If there are increaées in proportion of cells in Gg, or in the
average intermitotic time (the.time to go through the cell cycle), then

this would imply that the tumor has become resistant since cells will
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spend a longer time in resistant phases of the cell cycle. However, it
would also imply that the growth rate of the tumor would slow
considerably, which does not appear to be the case [3]. Also, if there
are fewer cycling cells or the cells have longer cycle times then
proportionately fewer cells are in a sensitive state but also fewer cells
need be killed to control growth. Although it is not necessarily true
that these two effects will move in tandem precisely compensating for one
another, they must tend to, to some degree. From this reasoning, and the
lack of observation of significantly slower growth rates, it seems
reasonable to conclude that this mechanism is not a major cause of tumor
regrowth during treatment.

Changes in the host, so that the drug is more rapidly metabolised,
also seems an unlikely explanation for tumor regrowth during treatment.
Such changes would also imply that the toxic effect frequently seen in
normal tissue should decline as the treatment continues, but this does
not seem to be the case. Neither the mechanism of pharmacologic
sanctuary or total resistance would seem to apply as the tumor responded
in tbe first instance and is regrowing at the original site. Both
distance from the capillary bed or the existence of resistant cells
provide a plausible self-consistent explanation for the observatidn of
relapse during (initially successful) therapy. Both predict the
existence of a subpopulation of resistant cells which upon the
application of therapy will be "revealed” and repopulate the tumor. The
regrowing tumor can then be expected to be resistant to the drug.

Studies of both experimental and human malignancy have shown that

resistant tumors contain cells which exhibit structural differences from



_5_
the original sensitive cells. Therefore intrinsic cellular resistance
provides a logical explanation of this commonly observed phenomenon which
is consistent with observation in passaged animal tumors.

Resistance to chemotherapy is thus an important concept whose
understanding may better explain the response of tumors to chemotherapy.
The variability in response (either survival time or proportion cured) to
a fixed treatment protocol of an inbred strain of animals implanted with
the same tumor line suggests that the development of resistance involves
some random process. In what follows we will thus use stochastic models
for tumor growth and the development of resistance.

Earlier work by Goldie and Coldman [4], in which drug resistant
mutants were assumed to arise spontaneousely, provided a basic model of
this phenomenoﬁ. This model provided "quantitative"” predictions about
the behaviour of tumors which are in broad agreement with experience from
experimental and clinical chemotherapy [5]. However, this basic model
could not be fit to much experimental data because it assumed: (i) that
there was no tumor cell differentiation or loss, (ii) that the drug was
only applied once, (iii) that all sensitive cells Qere killed by the drug
and (iv) that resistant cells were absolutely resistant. 1In Chapter 3 a
more general model will be presented in which these assumptions are
relaxed. This model will then be fitted to experimental'data and‘the
results presented in Chapter 5. For human cancer the age of the tumor is
seldom known. In order to use this model of resistance (which is para-
meterized by time) in human data this parameter must be removed and three
methods of accomplishing this, involving differing assumptions, are

discussed in Chapter 3.
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Experience with both experimental and clinical tumors has shown that
for almost all cases there exists a combined chemotherapy (the use of
several drugs) which is superior to a single drug in curing disease or
increasing survival time. This observation is not surprising since the
addition of further anti-cancer agents seems likely, a-priori, to
increase the efficacy of any single drug protocol. However, the reason
for such an improvement in response is not well understood. These
observations may be "explained” by assuming the various drugs in the
combination to have differing phase-specific activity so that the
combined therapy is more effective than any of the individual agents.
However protocols which have attempted to combine agents with differing
phase—-specific activity generally have not beep successful (in improving
response), suggesting that other factors may be responsible for the
benefits associated with comblnation chemotherapy. The superiority of
combination chemotherapy is "naturally” explained if we assume that the
tumor contains subpopulations of cells resistant to particular drugs.
The use of combination chemotherapy will thus lead to the preferential
selection of those cells which are resistant to all drugs in the
protocol, which will usually represent a smaller proportion of the total
tumor than that which are resistant to only one of the drugs. In
circumstances where the proportion of cells resistant to the combination
is smaller than the proportion resistant to any one of the drugs, use of
the combination will yield superior results. In order to further model
the response of tumors to several drugs it is necessary to consider the
joint distribution of multiple types of resigtant cells. In Chapter 4

the model developed in Chapter 3 is generalized to two drugs and measures
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of the effectiveness of protocols involving two drugs are developed.
This leads directly to considerations of maximizing the therapeutic
effect of protocols, and results are given indicating the increase in the
likelihood of cure obtained in two-drug protocols as compared to single-
drug protocols. Examples are developed in Chapter 5 where it is shown
that the effects of different protocols depend on the choice of the
outcome measure (survival time or proportion cured).

Before continuing, it is worthwhile to emphasize two points.
Firstly, in any complex biological system where many, possibly competing,
processes are at work, and where any one may produce the same crude end
point, it is unrealistic to believe that consideration of one process, no
matter how complete, will lead to a comprehensive description of the
observed phenomena. However, the consideration of a single process can
give important indications of expected behaviour and may provide a
framework for the incorporation of other mechanisms. Secondly,
mathematical models of processes are seldom, if ever, unique to that
process. 1In particular, the model we will develop can also be used for
some of the other resistance mechanisms discussed earlier in this
chapter.

1.1 Resistance in Other Biological Systems

Analogous processes were first observed in the study of bacteria
exposed to viral infection. In a series of experiments investigating the
infection of bacteria by viruses it was found that after chronic exposure
to a virus, a subpopulation of the initially sensitive bacterial
population, was no longer sensitive to infection by the same virus [6].

In most cases infection by the virus resulted in cell death. Furthermore
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although morphologic differences in the cells could sometimes be
detected, this was frequently not so, and these resistant bacteria seldom
displayed any resistance to infection by other viruses. This observation
led to two experimentally indistinguishable hypotheses regarding the
origin of resistant subtypes. It was not until 1943 that the pioneering
work of Luria and Delbruck [6] permitted the two main competing theories
to be compared and experimentally separated. These investigators
summarised these two hypotheses as follows:

"1l) First hypbthesis (mutation): There is a finite probability for
any bacterium to mutate during its lifetime from 'sensitive' to
'resistant'. Every offspring of such a mutant will be
resistant, unless reverse mutation occurs. The term 'resistant'
means here that the bacterium will not be killed (absolute
resistance) if exposed to virus, and the possibility of its
interaction with virus is left open.

2) Second hypothesis (acquired hereditary immunity): There is a
small finite probability for any bacterium to survive an attack
by the virus. Survival of an infection confers immunity not
only to the individual, but also to its offspring. The
probability of survival in the first instance does not run in
clones. If we find that a bacterium survives an attack, we
cannot from this information infer that close relatives to it,
other than descendants, are likely to survive the attack.”

Using simple mathematical analysis, Luria and Delbruck showed that

for both hypotheses the mean number of resistant cells was proportional

to the total number of cells, N, but that the variance of the number of
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resistant cells was proportional to N2 for hypothesis 1 and to N
for hypothesis 2. By constructing a suitable experimental method, known
as the fluctuation test, they were able to show that their data was
incompatible with hypothesis 2 and supportive of hypothesis 1. Assuming
hypothesis 1 to be true, they also discussed ways to estimate the
mutation rate, which they defined to be the probability that a cell would
become resistant.

The work of Luria and Delbruck spurred a great deal of research in
both experimental and mathematical analysis of this problem. Lea and
Coulson [7], using the probability gerating function and expanding in
powers, were the first to derive expressions for the distribution
function of the number of resistant cells. This derivation assumed that
the growth rates of sensitive and resistant cells were equal and
constant, that mutations only occurred from sensitivity to resistance,
and that the mutation rate was constant. An error in their derivation
was pointed out by Bartlett [8] and a correct solution was given by
Armitage [9], who permitted differential growth rates between sensitive
and resistant cells, and back mutations from resistance to sensitivity.

A theme also explored at this time was the possible effect of a phenomena
known as phenotypic delay. This effect related to a possible delay after
mutation until the resistance was expressed by the cell, which was
modelled by assuming this time to be either fixed, or to depend upon the
size of the resistant clone (population of cells from a single parent).
These processes were also examined by Kendall [10] who was interested in
their application to carcinogenesis.

Crump and Hoel [1l1] utilised the theory of filtered Poisson
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processes, and found analytic results similar to those previously
obtained. They also critically examined the properties of estimators for
the mutation rate which had been proposed elsewhere in the literature.
This approach was more recently extended by Tan [12] to explicitly model
mutants at the hypoxanthine-guanine phospheribosil transferase locus in
Chinese hamster ovary cells.

Considefable research has been conducted recently in the general
theory of branching processes, of which mutational processes are but one
special application. Much progress has been made in the asymptotic
theory of branching processes and limiting distributions have been
derived for cases of fixed transitional rates for both single and
multi-type branching processes. A comprehensive survey of results in
this area is contained in Athreya and Ney [13]. These results have found
wide application in physical problems where large numbers of particles
are présent (e.g. chemical and nuclear reactions). 1In this thesis we
will be concerned with the distribution of small numbers of resistant
cells where asymptotic analysis is not appropriate.

In the following chapters we present and explore the implications
of mutation to resistance on the treatment of patients with cancer.
Chapter 2 describes a model for tumor growth in order to establish a
framework for the development of resistance. Chapter 3 contains a
treatment of resistance to a single drug. Chapter 4 establishes a
framework for the consideration of more general cases and presents a
detailed analysis ofAthe situation when two drugs are available. Chapter
5 presents calculations based on the previously developed theory and

discusses some applications of this model both to experimental and human
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cancer. The final chapter summarizes the main results and discusses

areas for future research.



-12-

2. A MODEL FOR TUMOR GROWTH

In this chapter we will discuss a model for tumor growth in discrete
time. Results will be presented for the computation of the probability
generating function of the tumor growth model and its asymptotic
distribution will be derived. We will also discuss how the model
parameters can be estimated from experimental observations and indicate
how particular aspects of the model can be modelled in continuous time,
an idea that is used in subsequent chapters.

Despite (or perhaps because of) the extensive research on models for
tumor growth, there does not exist a single commonly accepted model.

This is due in part to the fact that two broad, and differing, approaches
we will refer to here as "empirical” and "biological" have been taken.

In the empirical approach, use is made of serial measurements of tumor
size and various mathematical functions are used to fit a model. In the
biological approach, assumed processes of cellular division and
interaction with the host are synthesized to give a model for the overall
tumor growth.

Empirical growth functions have great value in determining useful
treatment parameters which cannot be directly observed. For example,
knowledge of the growth curve permits the estimation of residual disease
after a therapeutic intervention by observing the time at which the
disease recurs. However, for human malignancy the requirement of a large
number of serial observations has severely limited their usefulness.
Further, these mathematical functions may contain parameters which have
no obvious biological interpretation.

Alternatively, the biological approach uses processes observed in
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severely limited their usefulness. Further, these mathematical functions
may contain parameters which have no obvious biological interpretation.

Alternatively, the biological approach uses processes observed in
dividing populations of cells and results in models where the effects of
single mechanisms can be examined and evaluated independently. However,
these models are frequently criticised for failing to take account of all
processes, giving results which do not adequately fit data, or yielding
models with so many parameters that they could be made to fit almost any
data. The latter criticism stems mainly from the fact that many
processes, while well-understood in general terms, are not uniquely
specified so that any attempt to use them requires the a-posteriori
specification of parameter values.

In this discussion we favour the blological approach since we are
interested in properties acting at the cellular level. Our aim is to
develop a model which will incorporate several known characteristics of
human malignant growth. In particular, we require a model which recog-
nises that not all tumors are a homogenous collection of cells with the
same proliferative capabilities. Examination of many solid tumors, both
experimental and clinical, has shown them to contain cells which are
functionally dead, i.e. cells which are incapable of division. Since
tumors are believed to grow from microscopic foci, these dead malignant
cells represent the descendents of dividing malignant cells. In many
populations of dividing cells it is recognised that not all cells are
capable of unlimited proliferation. Cells capable of unlimited
proliferation are referred to as stem cells and represent a variable

fraction (depending upon the tumor type) of the dividing cells in the
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tumor. The model we will use here is a slightly modified version of one
described by Mackillop et al [14], which is a stem cell model analogous
to that used to describe the growth of normal tissue systems such as the
hemopoietic system.

This model assumes that cells can be classified into one of three
mutually exclusive classes based on their proliferative potential. In
common with other work in this area, we will cast this model in a
discrete framework in which cells are assumed to divide with a fixed
intermitotic interval with division taking place at the beginning of each
interval. This biologically unrealistic assumption must be viewed as a
first approximation to a complex process in which the intermitotic time
can be expected to vary as a function of a large number of factors. Part
of this model will be recast in a continuous framework in subsequent
chapters, when the behaviour of stem cells alone are considered. The

three compartments consist of stem cells, transitional cells and end

cells defined as follows:

1. Stem cells denoted (Cy); cells capable of unlimited
proliferation. At each division a stem cell will give rise to
two stem cells with probability p, two transitional cells with
probability q and one of each with probability l-p—q.

2. Transitional cells (Cp,..,Ch41); cells capable of

limited proliferation. This class is comprised of disjoint
subclasses Cy, ..., Cu41 where n is referred to as the

clonal expansion number. Transitional cells which are the
immediate result of a stem cell division are entered in subclass

Cg. Upon division a single Cy cell gives rise to two
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C3 cells. These processes are repeated for C3,...,Ch4q.
3. End cells (Ch42); These are functionally dead cells
incapable of further proliferation. Two end cells are formed by
the divison of a single C,4; transitional cell.

Dividing cells (Cy,...,Ch4]) are assumed to divide with a
fixed and common interdivision interval. All cells are assumed to behave
independently.

For the purpose of this analysis the paramters p, q and n will be
considered to be fixed throughout the growth of the tumor, although it is
a relativeiy simple matter to calculate the quantities of interest if
these parameters are varied in a systematic way.

The occurrence of metastasis and measurement of experimental tumor
systems indicate that substantial numbers of tumor cells are lost from
the primary tumor. Cell loss from the primary tumor will be modelled by
assuming each cell in compartment Cj to have a fixed probability 2£i
(i=1,...,n+2) that it will be lost per intermiotic interval, where for
the purposes of calculation loss will be assumed to occur at the end of
the interval. Losses of cells will be assumed to occur independently and
at a fixed rate per intermitotic interval even for the non-dividing cells
i.e. Ch42- In this situation loss may be viewed to include lysis
of dead cells or migration outside the primary tumor. This model differs
from that of Mackillop et al [14] who assumed that p+q = 1. This
difference will be shown to have important implications when we later
consider stem cell resistance. An example where p+q<l had previously
been considered by Moolgavkar and Venzon [15] in their model of

carcinogenesis.
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Some constraints are placed on the choice of p, q and n by the
nature of malignant growth. Firstly, from the observation that few, if
any, clinically detectable malignancies ever spontaneously become
extinct, it seems reasonable to limit n to be less than 30. This is
chosen because 230 (=109) cells represents the lower limit of detection
of primary tumors and since spontaneous complete regression is almost
never seen, the likelihood of tumors of this size being composed of
totally transitional cells is remote. Similarly, observation of
experimental tumors indicates that single cells either have unlimited
proliferative potential (stem cells) or can grow to produce clones of no
more than 10® cells. However, there is in theory no upper limit on n
since for any value it is always possible to choose 2; (i=2,...,n+l) to
give a model that is consistent with the previous observations.

2.1 Properties of the Growth Model

For the tumor to continue to grow (on the average), the stem cell
compartment must grow. Thus the mean number of stem cells produced by a
division of a single stem cell must exceed one. ¥From this we have the
requirement

(1—11) (2p+l-p—q)>1

or P—q Rl/(l—ll). ee (2:1)

The growth model, although very simple to define, has a complex
structure. It is nevertheless a straightforward exercise to write
recursive relationships which will give the joint probability generating
function of the process.

Let Ci(t) i=1l,...,n+2, be random variables representing the number
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of cells in compartment Ci at time t where t is measured in units of
interdivision times.
Let &(s;t) be the joint probability generating function of the

random vector g(t)=(Cl(t),...,Cn+2(t)):

C.(t) C (t)
1 n+2
B(s;t) = E[s1 X seaXs_ o ,
where s = (Sl’ ey Sn+2)' Let
C.(D C (L
_ 1 n+2 _
¢i(i) = E[s1 X eeeX 8 o IQ(O)—gi]
where e;= (0,0,..,1,..,0) (the vector with 1 in the i-th position and O

elsewhere); ¢i(§) is the probabality generating function after one
division of a single cell in state Ci at time 0. Then it can be shown
that
0(8) = 2+(1=2)) [psoH(1-p-q)s 5 +ass |
1'% 1 1/1P%g 1°2718 1

b (8)

Xi+(1—ki)si+1 for i=2, ..., ntl,

¢n+2(§) = 1n+2+(l_ln+2)sn+2'
From this we obtain

@(5;t+1) = @(g(g);t), e (2.2)
where g(§)=(¢1(§), oeny ¢n+2(§)). Equatién (2.2) follows from a well
known result [16] for the probability generating function for the sum of
a random number of random variables. Let §1j=(xlij’°"’XJij)

(i=l,...,»,3=1,...,J), Xf(Yl,...,YJ) and g;(zl,...,zJ) be non-negative

J Y,
integer valued random vectors with Z = 2 ZJ §ij' Assuming
j=1 i=1

independent for all i,j, %ijare identically distributed for all i (for

§ij are

each j), §ij and Yj are independent for all i,j, then

b, (£)= ¢X(¢§<g>), cee (2:3)
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where,
Z Z
1 J
¢%(§) = E[ §) Xeee X 85 ],
Y Y
1 J
¢X(§) = E[ §p Xees X 87 ],
by (8) = (4y(8)s++ 50 (8)),
~ 1 J
and
X X
11j J1j
¢Xj(§) = E[ s, Ixevs x 55 1.

Equation (2.2) follows using (2.3) with X=g(t) and X, .=C(t+l) conditional

13

s
~

on g(t)=eJ (then unconditionally Z=C(t+1)).

After specificétion of &(s;0) it is possible to directly calculate
®(s;t) by recursive use of (2.2). However, this solution is not very
tractable and is of limited use since t is seldom, if ever, known for
human malignancy.

Three quantities of interest which are measurable for human cancer,
are the growth rate (GR) of the tumor, the proportion of stem cells
(Pg) and the proportion of dividing cells (Pp). Consider the

following definitions:

GR(t) = C(t)/C(t-1),
Po(t) = C (£)/C(t), v (2.4)
PD(t) = 1-Cn+2(t)/C(t)
n+2
and C(t) = ) c,(t)-
i=1

As defined these quantities are random variables which are functions

of a possibly unknown parameter t. Consider the limiting quantities:
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GR = lim GR(t),
t >

PS = lim Ps(t),
t >

PD = lim PD(t).
to

We will now show that the limits GR, Pg and Pp exist. In order
to do this we will use asymptotic theory developed for multitype
branching processes (of which the growth model considered here is one
example). Consider the matrix M, where

Mi’j = E[Cj(l)lg(0)=gi] for 1<i,j<n+2.

In this case M is given by

(1-2))(14p=q) (1-L)(1-p+q) O 0 .. 0 0
0 0 2(1-4,) 0 .. 0 0
0 0 0 2(1-2y) . . 0 0
M = D ; : oot :
0 0 0 0 ce2(1-8) 0

0 0 0 0 .. 0 2(1-2_ ;)

0 0 0 0 .. 0 (1-2_,)

et (2.6)

Let Mikg denote the (i,]j) eiement of Mk. Two compartments Ci and Cj

b

(1<i,j<n+2) are said to communicate if and only if there exist integers
k,m (>0) such that
w50 ana M{™) >o.
i,] j,1
By convention MO=I (the identity matrix) and thus every compartment

communicates with itself. Examination of (2.6) shows that the growth

model considered here consists of nt2 communicating classes each
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consisting of a single cell type. The eigenvalues, A, of M satisfy the

characteristic polynomial det|AI-M|=0, which in this case is
n —
=N (A=(1-4_,))=0,

where A = M1 1=(l—11)(l+p—q). The maximal eigenvalue is A=A>1 (from
(2.1)) which is of multiplicity ome. Let v be the left eigenvector of M

associated with A, that is,

v M=Av, e (2.7)
n+2
where iZlvi=1. Examination of (2.6) reveals that M1’1>0, Mn+2,n+2>0’
Mi i+1>O (i=1,...,n+l) and by Theorem 4.1, page 66 in Mode [17], for
3
9(0)=gl we have
Cc(t)
+ wy almost surely, «ee(2.8)
A

where w is a non—negative scalar random variable.

It is easily seen that E[Cj(l) log Cj(l)lg(0)=gi]<w for all i,j and
we thus have from Theorem 4.1, page 66, in Mode [17] that E[w|9(0)=gl]>0.
Thus for realizations of the process C of interest (i.e. those for which

C(t)»»= as t»») it follows from (2.7) that

C(t).1
Cc(t) _ *wyv.l =w a.s.,

At At ~

where 1 is the vector where each element is 1. Thus,

Cc(t)/C(t) » v a.s.
From this we see directly that Pg and Pp exist and are degenerate.
To see that GR exists consider

c(t) - C(t-1)
A !

Then we have a.s.
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0 = 1im (CCE) _ CCt-D)y

R
=+ 1an SLED (4 - SE)
tyo A c(t-1)

Thus for realizations of.interest we have GR = A a.s.

Notice that the asymptotic growth rate of the tumor is entirely
determined by parameters which control the growth of the stem cell
compartment, that is A. Furthermore, the random variable w relates to
the growth of the stem cell compartment. To see this, we note that if
g(0)=gi (i=2,...,n+2), then:

c(t)<2™ for all t,

where n is the clonal expansion number. Thus for A>1,
&) o,
At

Therefore for any realization C(t) with C(t~“)=C~”,

c(t)
lim ~ = W*y a.s.,
£rm At t

where w* depends only on C1(t”). Because of the independent behaviour
of tﬁe stem cells, w* is the convolution of w given in (2.8).

In attempting to fit this model to human disease we are faced with
situations where only comparatively crude data are available. The
fraction of dividing cells can be currently estimated with limited
precision [18]. Estimates of stem cell fraction are in the range of
0.001 and above [19]. Therefore when there are at least 10° cells, the
number of stem cells exceeds 10®. At the lower limit of the number of
stem ceils, one or both of the other compartments will be large. The
number of cells growing from a single cell (of any type) has a finite

mean and variance for a finite time period. Since cells behave inde-
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pendently, fluctuations in the proportion of cells in each of the
compartments will be small with high probability. In cases where the
proportion of stem cells is very high, the proportion of the non-stem
cells will be small in comparison to the precision with which it can be
measured. From these considerations, we expect the limiting values GR,
Psand PD will apply to a mature clinical or experimental tumor where we
will assume n<20. We can then use expressions for GR, Pg and Pp to

estimate the parameter values of the tumor. These expressions can be

directly calculated by solving (2.7), where M is given by (2.6), and lead

to:
= {1-p*q)
v, (T+p—q) Vis ve+(2.9.1)
2(1—11)
Vi+1 = —x Vi, for i=2,...,n, ...(2-9.2)
and
2(1_'Qn+l)
Vn+2 = _A—"‘_(T) \)n+1- ...(2-9.3)
n+2
n+2
The constraint z vi=1 and equations (2.9.1-3) yield:
i=1
n i 2(1-%,) nt+l 2(1-2.)
i 1 (1-p+q)A iyt
vi= (I+p=q) [2+(1-p+q){} ( T ) + 42 1 1
«..(2.10)

Using (2.9.1-3) and (2.10) we will now calculate Pg, Pp and GR
for several special cases of the nt2 element vector £ of loss rates. We

will not indicate the special cases which arise when both 2 =...=Xn=l and

2
2(1-2)=A.
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(I) 1f L = (11,1,2, ooy A, ln+2) then
GR = (1—21) (1+p—q) = A,
i, g y(Lmpte) 2(1-2)\"
. (2,70 + (-2 —— (57 |
D n
_ oy l-prq (2(1-4) 2(1-2)-A
(=) + (=) == (557) ()
n+2
(1-2) -(1-2)) (l+p-q)
and PS = 2 = PD.
_ _ 1-p+q 2(1-2)
(=0 + (1-2) =) (57)

(I1) If & = (2 & -++, &, X)) then

GR

(1-2) (l+p-q),
A-1+L o
D 2(1-2) -(1-2

n+2)
n
1 -—
P, = ( +2 1) .

(III) If & = (&, +.., &) then

and

GR = (1-%) (1+p—q),

and P = (1) p

(Iv) 1f . = (0,0, ..., O, &) then

n
1 —_

and P.= (—i%—i) P

(v) 1f 2=(& &, ..., £,0) then

G = (1-%) (1+p-q),

- (A=) (p=q) &
D 1-22

n

- (14p—q :
and PS— ( 5 ) PD .
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Example (I) represents the situation where the three types of cells
(stem, transitional and end) are lost at three different rates. Example
(II) represents the case where all dividing cells are lost at the same
rate, and non—-dividing cells are lost at a different rate. (III), (IV)
and (V) represent special cases where all cells are lost at the same
rate, dividing cells are not lost and end cells are not lost
respectively. In the absence of specific information for a particular
tumor system, example II seems to be a reasonable compromise between
complexity‘of the general case and the likely processes which cause cell
loss in a tumor. For example, all dividing cells can be expected to be
shed at similar rates into the blood and lymphatic systems because of
growth pressure. End cells will be lost at a different rate because-they
will die at a higher rate (than dividing cells) by their very nature.
However, even this ﬁodel contains five unknown parameters, (p, q, n, 2
and ln+2) which cannot be uniquely identified from GR, PD and PS. To
estimate the parameters of this model requires either the a-priori

Fsbecificétion of some of the parameters or the collection of data on
other tumor characteristics specified by the parameters of this model.
-Examinatioﬁ of (2.9.1-3) shows that the parameters p and q only appear as
the difference *(p—q)- Therefore even if % and n were known, p and g
cannot be inferred (except in the triviél case p—q=l) from experiments

measuring GR, P_ and PD. This problem is not easily resolved since the

S
identification of stem ceils, both theoretically and experimentally, is
based upon their proliferative potential, and at present it is not easy

to separate stem cells from other dividing cells and carry out

experiments on them. However, a closer analysis of experiments carried
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out to measure PS shows that further information can be gained.

In order to measure PS in a human .tumor, a biopsy specimen of the
tumor is first homogenized and then a sample, N, of cells, are plated out
individually onto a medium supplying nutrients and a suitable matrix for
growth. After an incubation period the number of cells, r say, which
have gone on to form colonies of cells greater than some fixed size, SM
say, are counted. Then the proportion r/N is reported as the fraction of
stem cells. If SM is chosen too small (as determined by n, the clonal
expansion number), some of the colonies generated may be the product of
transitional cells. If SM is chosen large enough, the counted colonies
will consist entirely of colonies generated by stem cells. However, if
SM is chosen too large many stem cells present will not form colonies of
size SM because the stem cell may initially (or subsequently) divide to
form only transitional cells. Thus to design experiments to measure PS
we must know (or have a good idea of) n. However, if SM is chosen very
large then it is possible to obtain an approximate expression for E[r/N]
as follows.

Using the same notation for colonies as previously used for tumors,

let Q}(t) be the state vector for the i-th colony at time t and set

, n+2
Cl(t) = 2 C?(t). In this experimental situation we will assume that
i=1

2=0, that is there is no loss from the colonies.

If SM is chosen very large then almost all sample paths for which

Cl(t’)>SM (for some t”) will grow arbitrarily large, that is, these paths

will satisfy

i
lim E_%El > 0. a.s.
ts > A



_26_
Since the proportion of stem cells approaches Vs we have for such paths

lim P{Ci(t)=k}=0 for finite non-zero k. Thus the probability
t o

K=P{Cl(t')>S }, is approximately given by k=1-6 where the extinction
M

probability 6 = lim P{Ci(t)=0}. The probability generating function for

t>o
stem cell growth ¢(s), is given by ¢1(s) in (2.2) with Xl=0 and s =
(s,0,...,0), that is
2 ,
¢(s) = q+(l-p-q)s+ps . eee(2.11)

It is a well known result (p. 397 in Karlin and Taylor [20]) that ©
is given by the minimum solution of 6=¢(8). Solving this equation yields
0=q/p and thus k=l-q/p. The proportion of stem cells will be
approximately given by PS(since the cells are sampled from a mature
tumor) and if SM is very large:

E[r/N]zPS(l-q/p). eee(2.12)

The right hand side of (2.12) depends on the value of p and not just
on the difference p—q. Thus by carrying out a series of experiments at

values of SM it is possible to obtain information on the values of p and

q-.

A further property of this model which is important in the
subsequent development is that the stem cell compartment functions
autonomously; that 1is, the size of the stem cell compartment is
determined by the history of stem cell divisions and not by any of the
other compartments. Assuming that disease is diagnosed at a relatively
early stage, then, except in extremely rare cases, elimination of the
stem cell compartment is a necessary and sufficient condition for cure of

the tumor. This statement is based on the following assumptions:
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(i) Diagnosis is made at approximately 1010 cells and death will
occur at no less than 1012 cells;

(ii) The proportionate kill of chemotherapy is the same for all

dividing cells (i.e. stem and transitional cells);
(iii) Ps(t)(zPS)>16'“ i.e. at least one in 10% cells are stem cells;
(iv) A clonal expansion number (n) in excess of 15 is unlikely;

(v) (q/p)<0.95, that is the ratio of stem cell divisions forming
only transitional cells compared to those forming only stem
cells, is not too large.

By (iii) and (i) there are at least 106(10'“X1010) stem cells in the
tumor. By assumption the stem cells are eliminated and this implies that
only sufficient numbers can survive the effects of treatment so that they
go sponﬁaneously extinct (yleld progeny which are transitional and end.
cells only). The probability a single stem cell will go spontaneously
extinct is (q/p) and because cells behave independently the probability
that k would go extinct is (q/p)k. By (v) (q/p)<0.95 and thus if n>100
then (q/p)100<0.01. This implies that the probability a stem cell will
survive therapy is <10‘“(105/102). Thus by (ii) the expected number of
surviving transitional cells is <10%(10~%x1019). By (iv) each
transitional cell can give rise to no more than 215=3.3x10"% cells. Thus
the maximum size the residual tumor can achieve (if all stem cells are
eliminated) is 106x3.3x104=3.3x1010 which 1s less than the minimum size
which can cause patient death by (i).

As indicated in the previous discussion, the long—-term behaviour of
the tumor (that 1is whether it is curable or not) can be assessed by

considering whether the stem cell compartment can be eliminated or not.
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However, the short-term response of tumors to therapy will naturally be a
function of the response of all tumor cells. In attempting to describe
tumor behaviour in terms of this model, we will restrict our analysis to
considerations of long-term response, based on the behaviour of the stem
cell compartment.

By the nature of the growth model presented here, not every sample
path passes through the point k (not every path satisfies C(t)=k for some
t). In particular if Cl(t’)>k for a particuiar path we cannot conclude
that there exists a t<t” such that Cl(t)=k for the path. 1In later
chapters we wish to consider t as a continuous parameter, to be able to
condition on Cl(t) and require that every path for which Cl(t’)>k satisfy
Cl(t)=k for some t<t”. In order to do this we require a model for growth
which only changes by increments of +1 or -1. A convenient process which
has this property is the linear birth and death process.

In examining long-term response we will utilize a birth and death
model for the stem cell compartment. In this model all losses from the
stem cell compartment (to transitional cells, cell deaths, etc.) will be
termed deaths. Additions of new stem cells by division will be referred
to as births. We will assume that for a single cell in a time interval
[t,t+At) divisions resulting in two stem cells occur with probability
bAt+o(At), divisions resulting in one stem cell and one transitional cell
with probability cAt+o(At) and deaths occur with probability rate
dAt+o(At). We make the correspondence between the discrete and
continuous models by requiring that b, ¢ and d satisfy the following

constraints:



-29-

bTEJ,d— = p(1-2,), «..(2.13.1)
ﬁ = (I-p-q) (1-%)), 0. (2.13.2)

and
b-d = fa[(1-2)(l+p-q)]. cea(2.13.3)

Conditions (2.13.1) and (2.13.2) result from requiring that the events
associated with b, ¢ and d occur in the appropriate limiting frequency
with respect to each other. Equation (2.13.3) guarantees that the net
mean growth rate will be the same in both formulations. A continuous
Markov model is a better, although imperfect, model of cellular division
than one in which the inter-mitotic times are constant. A more realistic
model of inter-division times would have support on [x,»] x>0, thus
implying a non-zero mode. However the growth process is of secondary
interest in this analysis and the mathematically tractable exponential
distribution for interdivision times will be used. The relevance of the
growth model considered here is that it is biologically plausible and
contains parameters which allow the number of stem cells to be varied for
a fixed total number of tumor cells. This is important since the
porportion of stem cells is suspected to differ greatly between tumor
systems.

In the next chapter we will consider the spontaneous evolution of
variant stem cells which display resistance to one or more
chemotherapeutic agents. Relationships will be developed which relate
the curability by chemotherapy of the tumor to the kinetic parameters of
the tumor and other parameters reflecting the development of resistance.
The growth model developed here will not be explicitly considered in

later chapters but is assumed to apply. In what follows we will
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concentrate on the stem cell development which, as has been shown,

determines the growth and curability of tumor.
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3. THE DEVELOPMENT OF RESISTANCE TO A SINGLE CHEMOTHERAPEUTIC AGENT

In Chapter 1 we discussed various mechanisms which lead to
resistance to chemotherapy used in the treatment of cancer. In that
chapter we discussed how drug resistant cells are known to arise in
experimental tumors where they are one of the principal causes of
treatment failure. Resistant cells are also thought to be a primary
cause of treatment failure in human malignancy although the evidence is
not as strong as in the experimental case. We will now consider the
development of permanently resistant stem cells within the context of the
growth model developed in Chapter 2.

In this chapter we will develop expressions which reflect the
development of resistance and the long-term response of tumors treated
with a single drug. We ;ill only consider the primary tumor and not
the status of any cells contained in distant metastatic deposits.

Because of the nature of the tumor growth model presented in Chapter 2 we
need only consider the behaviour of stem cells since they alone influence
the long-term curability of the tumor. Stem cells will be considered to
be in one of two states with respect to a drug: sensitive or resistant.
Resistant cells will not be assumed to necessarily be totally resistant,
that is, resistant cells may show some response to the drug but this
response will be quantitatively less than that exhibited by sensitive
cells. The two states are therefore defined with respect to one another
and are genérélly not defined in absolute terms. This definition
implicitly involves a notion of the environment of the experiment, which
includes the cell line, the drug and the dosage under consideration. A

more general description would include a number of states which show
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varying sensitivity to the drug. For reasons, which will later become
apparent, such a multitype model is difficult to analyze and we will only
consider a two state model.

We will assume that in a time interval of'length At the probability
that a single stem cell divides to form two stem cells, is bAt + o(At),
that it divides to form a stem and transitional cell is cAt + o(At) and
that it migrates, dies or forms two transitional cells is dAt + o(At)
(see Chapter 2). These events will be referred to as births, renewals
and deaths respectively. The probability of two or more events occuring
in a time interval of length At will be assumed to be o(At). In what
follows b, ¢ and d will be assumed to be constants for a particular
tumor. In common with the theoretical model of Luria and Delbruck [6],
we assume that there is a fixed probability « that a birth event in a
sensitive cell will result in the addition of a single resistant cell and
probability l-a that a sensitive cell is added. Similarly, we assume
that there is a probability B that a renewal event to a sensitive cell
will result in the replacement of a sensitive stem cell by a resistant
stem cell and a probability 1-f that tﬁere is no change in the number of
sensitive stem cglls. We also assume that a sensitive stem cell may
spontaneously mutate from sensitivity to resistance with probability yAt
+ o(At) in an interval of length At. Resistant stem cells are assumed to
have the same parameters b, ¢ and d but all progeny of resistant cells
are assumed to remain resistant, that is transitions from the resistant
to the sensitive state are assumed not to occur.

In the next section we derive the probability generating function of

the process and use it to deduce some quantities which describe the
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behaviour of the system. We then give a basic description of the effect
of drugs on both normal and malignant cells. These are then integrated
into the model for the development of resistance and equations developed
for the probability generating function of the distribution of stem cells
after an arbitrary sequence of treatments by a single drug. Subsequently
" we discuss three approaches to developing the probability generating
function for the numbers of sensitive and resistant stem cells when the
time paramter t is unknown. Finally, we examine the effect of random
variation in the resistance parameters on the distribution of resistant
and sensitive cells.

3.1 Calculating the Probability Generating Function

Let
Ro(t) = number of sensitive stem cells at time t,

Rl(t) = number of resistant stem cells at time t,

N(t) = R (£)+R, (t)

and Pi’j(t) P{ Ry(t)=1, R (t)=] }, for t30.
Table I indicates transitions between states and thelr associated
probabilities. Referring to Table I we may now use the Kolmogorov forward

equations [21] to obtain the following family of differential equations

£ P, .(t):
or 1,3( )

APy 5(8) o L () + (bratety)i] Py () + b(l-a) (1-1) P

1 +€(B)

+ c(1-B) iPi,j(t) + d(i+l) Pi+1,j(t) + o bi Pi,j-l(t)
+ (Bety)(1+1) Pi+l,j—1(t) + b(j-1) Pi,j—l(t) + d(j+1) Pi,j+l(t)

...(3.0)
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TABLE I

Transitions Occurring in the Stem Cell Compartment in the interval
[t,t+At) which have Probability of Order At.

Initial State Final State Probability
(1,3 (i+1,3) ib(1-a)At+o( At)
(i:j) (isj) ic(l_B)At

+jcAt+o(At)
i, (1i-1,3) idAt+o(At)
(1,3) (i,3+1) 1 abAt+jbAt
+o(At)
(1,3) (i-1,j+1) i( Bety) Att+o(At)

(1,3 (1,3-1) jdAt+o(At)
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0,sl;t) be the
probability generating function of {Ro(t),Rl(t)}, that is

for i,3>0 where Pi j(t)E 0 for i<0 or j<0. Let ¢(s

[oo]

.¢(s s,3t) =) ) P,
071" 420 320 L

1.3
j(t) sy 8;7-

In what follows we will specify the initial distribution of cells by the
probability generating function at time 0, that is

¢(So)sl;0)=¢(sossl)‘
Then using (3.0) we can show (by multiplying by sssi and summing over i
and j and interchanging the order of differentiation and summation) that

the probability generating function satisfies,

0¢(s58,5t) 0¢(s,,8,3t) 00(s,5S,5L)
0’°1 _ _ _ 0°°1 _ 0°°1
— = [bs, d][s0 1] aSO + [abs *+v][s; SO]——EEE_—__—_
6¢(so,sl;t)

+ [bs;-d][s;~1]— cee(3.1)

®1
where v = fc + v.
Using the method of characteristics (see for example John, p. 9

[22]), solution of (3.1) can be reduced to solving the following set of

ordinary differential equations:

Q%égl =1, <..(3.2.1)
dxy(u)
o = [Xg(w)-1Jld-bxy(u)] = [abxy(u)+v][y; (u)=xy(w)], -0 (3.2.2)
dy, (u)
o = [x(u)-1][d-bx, (W], .. (3.2.3)

where xo(u) and xl(u) are dummy variables.
From (3.2.1) we have,
t=u, cee(3.3.1)

where, without loss of generality we have set the constant of integration
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to zero. Solving (3.2.3) we obtain

d[1-1,(0)] + [bx,(0)=d] exp(bu)
M) = B3 (0] + (5%, (0)-d] exp(60)

vee(3.3.2)

where 6=b-d and we assume that b>d so that the process 1s supercritical,
that is, it represents a growing tumor.

To solve the differential equation (3.2.2), first notice that
xo(u)=x1(u) is a particular solution. Substituting XO(U)=X1(U)+1/Y(U) in
(3.2.2) yields the following differential equation for y(u):

dy(u)
du

+ y(u)[b+d+v—b(2-a)xl(u)]= b(l-a).

The solution for y(u) is given by

{150, (O} " + b(1-0) [} F(x)dx
y(u) = F(a) ,

where F(x)=expfg g(v)dv and g(v)=b+d+v—b(2—a)xl(v). Writing y(u) =

]—1

X~ (u)=%, (u) yields the following expression for y.(u),
0 1 0

Xo(w) = %, () + F@) [ {x5(0-1,(0} 7" + b(1=a) [§ Fx)ax]"; +.(3.3.3)

where

&x . =2+a

- e(6+ad+v)x[b[l—xl(0)]+[bxl(0)—d]e ] . cee(3.4.1)

F(x)=6

It follows from the method of characteristics that if the substitutions
xo(u)=so, xl(u)=s1 and u=t eee(3.4.2)
are made in (3.3.2) and (3.3.3) then the solution of (3.1) is given by

0(s>813t) = 6(x(0),X;(0))- Le-(3.5)

Carrying out these substitutions leads to explicit expressions for XO(O)

s, and t. To emphasize the dependence of

and xl(O)'as functions of Sy» 81
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XO(O) and xl(O) on t we will write wo(t)=x0(0) and wl(t)=x1(0). Using
the substitutions (3.4.2) in (3.3.2) we obtain

d(1—sl)+(bsl-d)exp(-6t)
W) = %0 = b(1-s,)+(bs, ~d)exp(~5t)

.. .(3.6)

Similarly using the substitutions (3.4.2) in (3.3.3) yields, after some

algebra,

Wo(t) = X5(0) = W, (£)+ —5= £(t) , e (3.7)

[6° %(sgms )1 -b(1-a) [E£ (v)dv

where f(v)=exp{-(&+tad+v)v} [b(1'Sl)+(b51‘d)e'6v]—2+a.

Notice that (3.6) is the probability generating function for the
birth and death process with fixed parameters b and d. As expected, the

substitution of 878178 in (3.7) yields wO(t)= wl(t). Thus the

development of the stem cell compartment as a whole is a birth and death

process with parameters b and d. Similarly, substituition of Sl=1 in

(3.7) shows that the sensitive stem cell compartment grows as a birth and
death process with parameters b(l-a) and (d+v).

For future use we will now calculate some elementary properties of
the process {Ro(t),Rl(t)}. By differentiating (3.1) with respect to s

and S1» setting s.=s,=1 and interchanging the order of differentiation we

071

obtain the following ordinary differential equations for mo(t)=E[R0(t)]

and ml(t)=[R1(t)] respectively:

dmy(€) (8-ab-v)m (L),
dat
dml(t)

dt
which yields

= éml(t)+(ab+v)m0(t),
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mo(t) = m, exp{(é—ab—v)t},

e (3.8)

[ml+m0(1—exp{—(ab+v)t})]eét,

m, (t)

where m0=m0(0), m1=ml(0) are obtained directly from the probability
generating function at t=0, ¢(so,sl). From (3.8) we see
E[N(t)]=(m, +m_)e’F.
170
In a similar fashion we can derive ordinary differential equations
which the variances and covariance must satisfy. Let VO(t) and Vl(t) be

variances of Ro(t) and Rl(t) respectively and let VOl(t) be their

covariance. Then

dvo(t) = (b+d-ab+v)m0(t) + 2(6—ab—v)V0(t),
dt
dvo (v) _ my(£) + (28-ab=v)V, (£) + (ab+w)V (t),
dt
dv, (t) _ (ab+v)m(t) + (b+d)m (t) + 2(ab+v)Vy, (t) + 28V, ().
dt

These equations have the following solutions:

Vo(t) [V0 + Al(l—exp{—(é—ab—v)t}] exp{2(&-ab-v)t},
Vo, () = [v01+ [Vo + A, 1(L-exp{~(abt+v)t})
—Az(l—exp(—ét))]exp{(Zé—ab—v)t},

and

Vl(t) [Vl + 2[V01 + V., + A - Az](l—exp{—(ab+v)t})

0 1
- [V, + Al](l—exp{—Z(ab+v)t}) + (b+d) [m, + ml](1—exp(—6t))/5
m0 A

- ey [(b+d—ab—v)—2(ab+v)5%](1—exp{—(6+ab+v)t})]exp{Zét},

_ (b+d-ab+v) _ [Cabtv)(1-a) + (ad+v)]
1= (5-ab-v) Do > A7 5(5=ab=v) bm, and

where A

VO=V0(0), V1=V1(O) and V =V01(0) are calculated from ¢(so,sl).

01
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Finally we note that the probability that a single stem cell,
present at some time t=t“, will not have any surviving progeny at t==, is
given by e=d/b (see Karlin and Taylor p.l47 [20]). This event will be
referred to as spontaneous extinction. Similarly, since the stem cell
compartment grows as a birth and death process with parameters b(l-a) and
(d+v), the probability that a single sensitive stem cell will not any.
have any surviving sensitive progeny at time t=« is (d+v)/b(l-a). In
order to consider the behaviour of a tumor subject to therapy we must
first examine the effects of therapy on the tumor cells and on the normal
tissue.

3.2 Effects of Drug Treatment

As mentioned previously the development of resistance to a drug can
arise as a mutational process. Evidence for some drugs from experimental
tumors shows that resistance can be effectively absolute. An example of
this is resistance to Arabinosylcytosine in the L1210 mouse leukemia
system [23]. That is, treatment with any dosage of the drug on a cell
resistant to it will have no effect. 1In other cases this is not true,
and cells may be identified that show reduced sensitivity when compared
to the parent sensitive line. To model the resistance phenomenon we
first consider the response of a single cell to chemotherapy.

A large body.of experimention, notably by Skipper and his
associates [23], has indicated a linear relatiomship between a single
delivered dose and the logarithm of the fraction of cells over a large
range of dosages. Repeated courses of chemotherapy to the same
population of cells satisfy the same relationship with the same constant

of proportionality as long as resistant cells do not emerge. This
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relationship has been found to hold for a number of different (non-phase
specific) drugs, in several types of tumors and for a range of tumor
sizes [24]. From these observations, Skipper and his co-investigators
have postulated that tumor cells subject to chemotherapy at dose D have
an individual fixed probability, =n(D) say, of surviving chemotherapy,
which may be expressed as n(D)=exp{—kD} where k is a constant of
proportionality and that the response of each cell is independent of that
of the others. For drugs with phase specific effect this relationship
also applies providing cells are in the sensitive phase of the cell
cycle. We will use this model of chemotherapeutic action in the
development that follows.

Consider the binary random variable X, which indicates whether the
cell survives (X=1) administration of a single course of the drug or not
(X=0). If E(s) is the probability generating function of X, then

£(s)=1-r(D)+=(D)s «e+(3.9.1)
for a non—-phase specific agent, and

E(s)=1-pr(D)+pn(D)s eee(3.9.2)
for a phase specific agent where p 1s the probability that the cell is in
the sensitive phase of the cell cycle. This model for drug action was
constructed for agents administered over a short period where the drug is
rapidly degraded or excreted so that the effect of the drug may be
considered as an instantaneous one. In general the dose at some time ¢,

D(t), is defined as

D(t) = jg C(u)du .. .(3.10)

where the drug is introduced at time t=0 and C(t) is the concentration of
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the drug (at the tumor cell under consideration). We assume, without
loss of generality, that C(t)=0 for t<O.

If therapy 1s phase-specific and is given over an extended period
then the likelihood thét a cell is in the sensitive phase of the cell
cycle, at some time during the therapeutic period, will increase as the

duration of therapy is lengthened. Let

I(t) 1 if the cell is in the sensitive phase at time t,

0 otherwise.

Let C“(t) be the effective concentration for the cell at time t, then
C’(t) = C(t)I(t) and the effective dose experienced by the cell, D’(t),
is

D”(t)= ISC’(u)du .

Clearly the use of the indicator function I(t) represents an
idealization as the transition between phases of the cell cycle will not
be instantaneous. However, since the time spent in tramsition between
phases is small compared to the time spent within each phase this
approximation seems reasonable.

The form of C(t) is dependent on the method of administration of the
drug and will be strongly peaked for a single injection but will be
flatter for infusion therapy. A further practical problem to the
calculation of effective dose is that some agents tend to block cells
from proceeding through the cell cycle however this phenomena will not be
modelled here. 1In the calculation of drug dose it also may be that if
C(t)<k* (say) then the drug has no effect. This may be simply taken into

account by considering C*(t) in the calculation of dose where
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C*(t) C(t) if C(t) »>k*

1]

0 if C(t) <k*

It will be noticed that none of the these considerations alter the
form of E(s) given in (3.9.1-2). They affect the value of the binomial
parameter and induce a possible complex time dependency. Assuming that
the effect on a cell at time tj only depends on the dose prior to time
ti, and that the relationships known for instantaneous doses apply, we
may calculate the effect of drugs when C(t) varies slowly. To do this we

define the instantaneous doses at time t{ as follows:

t
i
D, = ftifiu)du where O=t <t ...<t =t.

Then

J
D(t) = ) D, -
i=1

Let E(s;t) be the probability generating function for the indicating
random variable of cell survival at time t and let ii(s) be the
probability generating functions for the indicator random variables of

cell survival for the instantaneous doses Di' Using (3.9.1) we have

E(s;t) = 1-wm(D(t)) + n(D(t))s

and
Ei(s) = l—x(Di)+n(Di)s.
Then
a(s;tj) = El(gz...gj(s)..) for j=1,...,J,
if
R
HP(ep) = T D) -

This condition holds if the logarithm of the probability of cell survival

is in proportion to dose as has been found for chemotherapeutic agents
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In cases where C(t) varies slowly in time, its effect may be computed
using a series of instantaneous effects. 1In what follows we will assume
a single 1instantaneous effect with the understanding that if this
assumption were not appropriate we would consider a series of
instantaneous doses as discussed above. This approach will be useful in
caseé additional different treatments are applied at times tj
(i=1,...,J).

In human malignancy the concentration of drug, C(t), 1s frequently
measured by noting the amount of drug in the serum and not at the tumor.
As noted before (Chapter 1) the exposure of a cell to the drug is a
function of its distance from the capillary bed and thus may vary between
cells. The model of tumor growth we use here does not account for such
an effect and incorporation of this feature must be deferred for further
research.

3.3 Effects on the Normal Tissue

The effects of treatment regimens are not necessarily specific to
the tumor system but can also include the host's normal tissue. To
account for these define a random variable:

T=T{(Di’ti)’ ieN} where,

T

"

1 if host suffers unacceptable toxicity for any t,

0 otherwise,

which reflects the toxicity of the regimen {(Di’ti)’ ieN} where Di is

the dose given at time t Unacceptable toxicity may reflect death when

i
considering animal experimentation and will reflect a (complex)

combination of objective and subjective measurements for human disease.

A common objective (althougn not necessarily theoretically optimal)
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in experimental and human disease is to select {(Di’ti)’ isN} so that

P{T=1}< P, for the whole population where P_ is some constant which

T T

depends on the experimenter or clinician. Frequently experimenters use
PT=0.1, the so-called LDlO.

An assumption commonly made in experimental research is that the
likelihood of toxicity depends upon the cumulative dose D=XiDi. We will
refer to this as a "cumulative dose toxicity model”.

The "model” of toxicity used for chemotherapy in clinical medicine
is less explicit. In general regimens are constructed so that the

Di(i=1,...J) and t —ti (i=1,.,J-1)are fixed for a pre—determined series

i+l
of J cycles of therapy. Here PT for the complete regimen may be chosen
to be quite high since the Di and t1 may be modified dynamically if
toxicity occurs. This will be referred to as the "clinical toxicity
model” and will be assumed when considering clinical disease. This
approach has its limitations since regimens are constructed using the
frequency of acute toxicity with escalating dose and the influence of the
timing on the toxicity response surface 1s not usually examined.

Having examined the effect of chemotherapy on tumor cells and how
doses are modified because of toxic side effects we will now discuss how
the tumoricidal effects of chemotherapy may be incorporated into the
process {Ro(t),Rl(t)}. We will assume that the dosage schedule has been

constructed so that toxicity is at an "acceptable” level.

3.4 Modelling Treatment Effects on the Tumor Cells

In modelling the effects of treatment it is necessary to separate
the primary from the secondary malignancies. By primary we refer to a

clinically detectable lesion which is subject to treatment. Secondary
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disease will refer to any disease present originating from the same
initial malignancy as the primary, but which is not clinically detect-
able. Primary and secondary disease may be located at multiple sites.

Radiation therapy is usually aimed at primary disease but in certain
situations it may be used upon secondary disease. The mathematical
description of the mechanism of action of radiation is similar to that of
chemotherapy. That is, cells behave independently and the survival of
each cell can be modelled as a Bernoulli trial. Tumors have been
identified which are termed radio-resistant and show a reduced
sensitivity to the application of therapy. Insensitivity to radiation is
believed to arise as a result of insufficlent oxygen because oxygen is
known to enhance the cell killing effect of radiation. Tumors with poor
vascular supply, or tumor cells within a region of poor vascularisation,
will tend to be resistant because of the lower oxygen tension in such
regions.

As we are mainly concerned with modelling chemotherapy we will not
be greatly concerned with the modelling of radio-resistant cells. We
will consider radiotherapy to be a non-selective treatment (i.e. act
equally on chemosensitive and chemoresistant cells) and model its effect
by considering it to act to increase d, the death rate of cells, over the
period of radiation treatment.

Surgery 1is almost exclusively concerned with the therapy of primary
disease. The response of individual cells to surgery may not be as
simple as for other modalities. For example, data on the surgery of
breast cancer indicates that the variance of the residual number of tumor

cells is much greater than would be expected using a binomial model [25].
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This "extra-binomial” variation may be modelled by assuming that the
number of surviving cells is a binomial variable where the parameter is a
random variable. 1In this case the binomial parameter will be a function
of the histology, location and extension of the tumor. This particular
model retains independence but offers great versatility. When modelling
the effect of surgery we will assume that the binomial parameter has been
observed, so that the model of this treatment regimen will be similar to
the others. We will use this model when we consider data from breast
cancer in Chapter 5.

When a single drug is given alone via injection, we will assume that
its effect is instantaneous and independent of other treatments (see
Section 3.2). 1If tj is the time of the j-th treatment (j=l,...,J),

then by (2.3) we have

B8 813t 5) = 8(EG(s),E,(s))5¢t ), £++(3-11.1)

where 50(30), gl(sl) are the probability generating functions for the
indicator random variables of cell survival for the sensitive and
resistant cells respectively and t} represents the time immediately

before treatment. At any time t* where tj<t*<tj the probability

+1f

generating function for the number of cells is given by
o %k == *— *— < e s e . .
0(s(s813E%) = o(wo(Th=t ) W, (th-t )5t ), (3-11.2)

where wo(t*—tj) and wl(t*—tj) are given respectively by (3.7) and (3.6).
In particular, the continuity of the functions ¢ and wi(t*—tj) (i=0,1) in

t* imply that ¢(so,sl;t ) is given by the right hand side of (3.11.2)

j+1

with t=t,

41 Notice that these equations also apply to phase specific

agents since the &i(si) are of the same form. In addition ¢(SO’Sl;tI) is
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given by (3.5) with t=t

1

These relationships may be used recursively to calculate the
probability generating function for {Ro(t),Rl(t)} after several
courses of the same agent. The expected number of resistant and
sensitive cells may be recursively calculated using
my(t ) = nO(Dj)mO(tg) and m, (t,) = nl(Dj)ml(t;).
From (3.8) we also have
mo(tj:_l) = mo(tj)exp{(a—ab—v) (tj+l—tj)}, e (3.12.1)
m (Eiqy) = [my (e )4mp (e, ) (1mexp {=(abtv)(t -t I D]exp {8Ce -t )]
«e0(3.12.2)
If chemotherapy is not injected but is given continuously over some
finite period, then its effect may be computed as discussed in Section
3.2 . The probability generating functions and expected values may be
calculated using (3.11.1-2) and (3.12.1-2) where now the tj are the times
of the approximating instantaneous doses as discussed in Section 3.2.
The effects of surgery or radiation on the joint probability generating
function can be assessed using the same techniques if it is assumed that
the survival of the individual cells are independent Bernoulli trials.
The complex form of (3.7) and (3.5) and the recursive nature of the

operation needed to determine ¢(so,s t), when treatments have been

1;
applied, indicate the need for some simple measure which summarizes the
effects of treatment. The expected values mo(t) and ml(t) provide one

such summary, however we will now develop a more useful summary measure.

3.5 Summarising Treatment Effects

Using the previously described recursive relationships it is

possible to calculate the probability generating function
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¢(sl,sz;t) for arbitary t. However, the relationships are difficult to
invert and in order to obtain the distribution of cell counts at time t.
We therefore consider some qﬁantities which will provide a useful summary
of the behaviour of the system at time t. The expected values mo(t),
ml(t) are two useful measures. Another quantity of some interest is
P{N(t)':'RO(t)+R1(t)=O} since this is the probability that there are no
stem cells at time t. Since the elimination of the stem cells implies
that the tumor will eventually become extinct (or not grow sufficiently
to kill the patient or>animal) this may be thought of as the probability
that the tumor can no longer cause the death of the patient. The
probability that there are no stem cells at time t is given by ¢(0,0;t)
and may be easily calculated from (3.11.1-2). However, ¢(0,0,;t) does
not represent the probability that the tumor has been cured by the
treatment regimen, for if tj is the time of the last treatment and

ti>t£>tJ then, for the model under consideration

¢(0,0;t1)=P{R0(t1)=0, Rl(t1)=0}>P{R0(t2)=0, Rl(t2)=0}=¢(0,0;t2)
with equality if d=0. This motivates consideration of

P " E[P{N(=)=0|N(t ) }]-

We will refer to Pt as the probability of cure, which will of course
J

depend on the regimen being used. Since each cell has a probability
e=d/b of spontaneous extinction (see the discussion in Section 3.1) and
cells behave independently, the probability n cells will go spontaneously
extinct is € .

It follows that

N(t.) R (t )R, (t.)
P = E[e J ] = E[e 0 Jm Lty ] = ¢(e,e;tJ). 0o (3.13)



-49-

At this point we should note that Pt will not correspond exactly to
J

the clinical likelihood of cure since it includes the contribution of
sample paths destined for extinction, which may nevertheless grow
sufficiently to cause patient death. Such paths occur with

insignificantly small probability in most practical situations and Pt
J

will be considered to be equal to the clinical probability of cure.

In some cases, as in the treatment of L1210 leukemia by the drug
Ara-C [26], resistance can be effectively absolute for any drug
concentration which does not result in animal death. 1In this case there
exists the possiblity that a tumor cannot be cured by the drug no matter
what dose is used. If we also assume that at the therapeutic dosage
nO(D)=0, then it is only necessary to apply a single course of the drug
(since subsequent courses will have no effect), and we have the

probability of cure, Pt , is given by
1

Pt1= ¢(€,e;t1)= ¢(1,e;t1). eeo(3.14)

This expression may be viewed as an approximation to the probability
of cure for cases in which nl(D)=l, no(D) =0 and the treatments are
applied frequently. Using equations (3.5), (3.6) and (3.7) we have

P, =¢(G(t,), ), .++(3.15)
t1 1
—(6+ad+v)t1

(1-¢)(6tad+v)e

where G(t1)=a +

(5+ad+v)-5 (l-a)[l-e (OTadtVIT

and q)(so)sl):q)(soasl;o)‘

1]

If (6+ad+v)t1>>l, then

P = d(e,€). ...(3.16)
!
Thus for sufficiently large t Pt is approximately equal to ¢(e,e), the

>
1 1
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probability, that the tumor will go spontaneously extinct. Equation
(3.15) may be used to assess the curability of an experimental tumor
where the number of cells implanted has probability generating function
¢(so,sl), the drug parameters are no(D)=O, nl(D)=1 and the tumor is
treated at time t1 where t1 is large. However it also illustrates that
the theory developed to this point is of limited use in describing the
treatment of large tumors (either clinical or experimental) since it
includes spontaneous extinctions (which will largely have occurred in the
early history of the neoplasm). This deficiency is especially marked for
human disease where the tumor originates with a single sensitive stem
cell i.e. ¢(so,sl)=s0 and thus the probability of spontaneous extinction
can be large (if € is large).

Before discussing modifications to exclude spontaneousiy extinct
tumors we will first consider an example which illustrates an application
of the theory developed to this point.

Example:

Consider the special case xl(D)=l for all D where the drug
considered is not phase specific. Let no(D)=exp{~kD} as in Section 3.2.
Consider a tumor system where v=d=0 which follows the cumulative dose

Consider the special case nl(D)=1 for all D where the drug
considered is not phase specific. Let ﬁO(D)=exp{—kD} as In Section 3.2.
Consider a tumor system where v=d=0 which follows the cumulative dose
toxicity model. We wish to determine whether it is better to give a
single dose of magnitude D at time t, or two doses D, and D, at times t

1 1 2 1

and t2 where D1+D2=D and t2>t1. A regimen is better 1f it has a higher

probability of cure.
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Since nl(D)=1 for all D we need not consider resistant cells present
at time t1 as these will be unaffected by either regimen. Thus we will
only consider ¢*(SO)=¢(SO’O;tI) and assume without loss of generality

that there are no resistant cells present at time t.. If all the drug is

1
given in a single dose at time tl’ then the probability of cure is

Ptl=¢*(1—ﬂO(D)). e (3.17)

For the second regimen where two doses are used we must consider the

intertreatment development of resistance. Using equations (3.6) and (3.7)

we have
-bu
s,e
wl(u) = 1. e_bu s «++(3.18.1)
1 1
-2+«
e bu [1—sl+sle—bu]
= >
wo(u) = wl(u) + o1 -1 S -~ —1+a_1 ...(3.18.2)
sy sl] S, [ s|ts e ) ]
where u=t2—t1. The probability of cure at time t2 is
Ptz = ¢(O,O;t2) = ¢(1~n0(D2):0;t2)

since spontaneous death does not occur (d=0). Now by (3.11.2) we have
0(ss813t,) = 0(wy(w), W, (u)st,),
where wo(u) and wl(u) are given by (3.18.1-2). Taking the 1limit as

s1+0 in (3.18.2) we have

[1-7,(D) 1 ™

P = ¢( — ,O;t )
2 1-[1-my(D,) ] (1=a) [1me Y] 1

-bu
(D, )(1-n,(D,))e
= gx(1-7y(D)) + 011 02 ) ..(3.19)

1-(1~7y(D,) ) (1-a) (1-e %)

after taking account of cell kill nO(Dl) at time tl.

Since ¢*(s) is a probability generating function it is monotomnic
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non—decreasing on [0,1] and we need only compare the arguments of ¢* in
equations (3.17) and (3.19). But by assumption nO(D)=nb(Dl)nb(D2), and
thus for u>0

mo(D1) (1= (D,))e

1-x . (D.) + .
01 —bu
1-(1-74(Dy)) (1~a)(1~e ")

-bu
e

= 1-n (D, )m (D) = =, (D,;)(1-%(D,))[1- — ]
or1770vY "2 o1 o2 1_(1_KO(D2)) (1~a) (1-e bu)

<1-75(D;) 7y (D,)=1=7, (D) - .. .(3.20)

Thus giving the total dose at t, results in a higher probability of

1

cure than splitting the dose into two parts given at t, and t2>t1. If

1

we set D1=0, D,=D we also see that giving the total dose later is

2
associated with a lower probability of cure. More generally it is
preferable to give a drug in the highest possible dose at the earliest
time rather than spread the same dose over a series of smaller doses.
This provides a partial justification for the strategy commonly employed
in clinical medicine of using the highest possible doses that are
tolerable. These observations may also be generalized to cases where
v>0,d>0 and nl(D)<1, since the underlying nature of the process is

unchanged although the computations become more complex. This completes

consideration of this example.

When observing a clinical or experimental tumor the number of
resistant stem cells at any point in time is usually unknown. The total
number of stem cells can be estimated either by direct experimentation or
by applying the appropriate formula for Pg (the proportion of stem

cells) developed in Chapter 2 to the observed overall tumor size. In
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both these situations we will refer to the number of stem cells as being
"observed” even though they may only have been inferred from the observed
tumor size. As previously mentioned the theory developed in Section 3.1
describes the growth of the sensitive and resistant stem cells and
includes cases where these cells go spontaneously extinct. By the time a
tumor has reached a size where it is clinically detectable the likelihood
of spontaneous extinction is small. This directly leads to the
consideration of P{Rl(t)IN(t)}. Unfortunately this distribution is not
easily obtained because the integral in (3.7) cannot be expressed in
terms of standard functions. A further problem in the consideration of
human tumors is ignorance of the age, t, of the tumor and it is therefore
desirable to construct expressions independent of this parameter. Since
these problems are of central importance in the construction of an
appropriate distribution for the number of resistant cells we will
outline three seperate approaches which provide approximate solutiomns to
this problem and will be of use in various experimental and clinical
situations.

3.6 Conditioning on N(t) — Approximation 1

As a first approximation to the problem of conditioning upon N(t) we
will examine the process where sample paths that correspond to tumors
which go spontaneously extinct (in the absence of treatment) are
excluded. The basic idea in this approximation will be to consider the
distribution P{Ro(t),Rl(t)|N(t)>0} and to approximate it by
P{Ro(t),Rl(t)IN(m)>O} and substitute a plausible value for t derived from
consideration of the observed distribution of stem cells. This approach

has previously been used elsewhere [27]. In the absence of treatment, we
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have for anx tl,t2 where t2>t1that

| ' N(t2)>0 > N(t1)>0.
Thus we may exclude realizations corresponding to tumors which go
spontaneously extinct at any time by conditioning on N(«)>0. This is
(approximately) equivalent to including only those realizations
corresponding to tumors which, if left untreated, could go on to result
in patient or animal death (if we exclude realizations which grow‘to a
sufficient size to cause death but are nevertheless destined for
extinction). We will now calculate the probability generating function
¢’(so,sl;t) of the process {Ra(t),R{(t)} which consists of all sample

paths {Ro(t),Rl(t)} for which N(=)>0. Let
. o« @ 3 ) i R
07(s,,s.3t) = ) Y P{ R (t)=1,R (£)=j|N(=)>0}s: s .
1’72 1=0 §=0 0 1 071
{1,3}#{0,0}
To evaluate this probability generating function we first note
P{Ry(t)=1, R (£)=] | N(=)>0}
. -1r . .
= (1-p{N(=)=0}) "[P{Ry(t)=1, R (D)=j} - P{Ry(t)=1, R;(t)=j, N(=)=0}].
Since the cells behave independently, the probability that a single cell

(either sensitive or resistant) will go spontaneously extinect is equal to

e=d/b and it follows that
i i+
P{Ro(£)=1,R, (t)=3,N(=)=0} = P{Ry(t)=1,R (t)=j}¢ .

After a little algebra we obtain

¢’(SO’Sl;t) =
: -1 NcEy=ol= T T PiR.(t)= eltigigd
(1-P {N(=)=0}) "(o(sy,s,;t)-P{N(t)=0}- 20 ZOP{RO(t)-i,Rl(t)=J}e 5457)
- 1=0 3=

Since P{N(m)=0}=¢(e,e)=¢(0,0;w) is the probability that the stem cell

compartment will go extinct, the desired probability generating function
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may be expressed as
, -1;
$°(s g8 3E)=[1-d(e, €)1 “{0(s 8 5t)=0(es, €8 5t) | ...(3.21)
We may calculate the first moments m6(t) and mi(t) of the process

by differentiating (3.21) with respect to 89 and 5y respectively and

evaluating at sg=sy=l. After some algebra we obtain

mg(t) = E[RS(£)] =

- ) [moeXp(é—ab—v)t—{QQQS,E) |

1-0(e, €) le exp{-(&tad+v)e}], ...(3.22.1)

0s sS=¢
and
m”(t) = mI(t) + m6 (t)
_ 1 r ot_;dd(s,€) d(e,s) -8t
= IZE‘(ETETL(m0+m1)e {""BE““"|s=e + |S=€} ge O], ...(3.22.2)

where mi(t) is given by the difference of these two expressions.

Equation (3.21) shows that the probability generating function for
the conditional (on N(=)>0) process may be expressed in terms of that of
the unconditional process, and thus may be calculated using formulae
(3.5) to (3.7). When modelling the effects of treatment we would use
(3.21) for the initial growth period and (3.11.2) for growth in the
intertreatment intervals. We do not use (3.21) for intertreatment growth,
as this‘would have the effect of assuming that the tumor could not be
cured.

If we again consider (as in the previous section) the special case

nO(D)=0, nl(D)=1 then we may calculate Pt , the probability of cure, for
1
this process with probability generating function given by (3.21). 1In

analogy to (3.14) we have Pt =¢’(1,e;tz) and thus using (3.21) we obtain
1

Pt1=[1-¢<e,e)1"1[¢(c<t1),e)—¢<e,e2;t1>1

where G(tl) is as specified in (3.15). For the case where ¢(so,sl)=so,
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as is likely in human disease, this simplifies to yield

[ e(1me) e 01 4 8(E(1me)(Sradty)
abt+v + 5(1-a)g(t1)

-1
P, = (1-¢) =
Y 1+e(1-eO1)

g(t Hh(t,)

— — 1, <e.(3.23)
e 1(1-¢) L -b(1-a) [C1e(vIn(v)dy

8t ]—2+<x

where g(t)=exp{—(6+ad+v)t} and h(t)=[l+a(1—e_ ) . Examination of

(3.23) shows that as expected

lim Pt =0,
t.» 1

1

that is, cure will occur with vanishingly small probability if treatment
is delayed too long. This may be contrasted with (3.16) where, for d>0,
the probability of cure was always greater than zero since this
expression included the likelihood that the tumor did not exist.

As indicated previously, the age of a tumor is only known in certain
experimental situations and is of course measured in arbitrary units.
For human disease we usually do not know the age of the tumor and thus we
do not know the time of the first (or any subsequent) treatment measured
on the scale where the tumor originated at time t=0. Once one treatment
time is specified on this scale then all other treatment times are known.
It seems most natural to specify treatment times in terms of tj, the
unknown time of first treatment. A reasonable approach in modelling
treatment effects on a specific tumor class is to choose tj so that the
distribution of stem cells (implicit in (3.21)) at the time of first
treatment approximates that observed in the tumor type. If we let N”“(t)
be the random variable with the distribution of N(t) conditional on

N(«<)>0, then we wish to choose t(=t}) so that the distribution of N”(t)

is similar to the observed distribution at diagnosis for the tumor class.
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For the special case ¢(so,sl)=s the probability generating function for

0

N°(t) is given by (3.21) with s =g; that is

051
8 (s,s;36)=[1-£] T[6(s,8;t)-d(es, es5t) ] cee(3-24)

Using ¢(s0,sl;t) as given by (3.5) with s =s, the right hand side of

0 °1
(3.24) may be expanded in powers of s to yleld the distribution for

N°(t):
i i -6t i-1 -6t
p{N“(t)=1} = {&=¢ )6(1_§t 111 for 1=1,2,+++  ++.(3.25)
(b-de )
For large i, such that e <<l we have
- 1 (1-e)e OFi-1 -5t
P‘l[‘]'(t)-ﬁi}= ——&t 2[1 - ———_EE ] (1—e)e ’
(1l-ce ) (l-€e )
and if t is also large, so that 6t>>1, then to leading order in e_ét,
P{N*(t)=1} ~(1-(1-e)e OH)y™1 (1-¢)e Ot .e.(3.26)

Examination of (3.26) shows that the distribution of N”“(t) is
approximately geometric and only depends upon b and d through m”(t).
This has three.implications for the modelling of "large™" tumors.
Firstly, the approximation to the distribution of N”(t) has only one
parameter, its mean value, and thus in attempting to determine an
appropriate value of t; (in terms of given b and d) one need only
employ one summary measure of the distribution. Secondly, whatever
summary measure is used (mean, median etc.) this will always result in
choosing t] to satisfy some relationship in terms of the mean m”(typ).
Thirdly, we may wish to compare the distribution of resistant cells for
different tumor models with differing b, ¢ and d but the same «, B and vy.
If the different tumor models are required to have the same mean numbers
of stem cells, then they will have approximately the same distribution of

stem cells. Thus differences in Pt between such models will not be due
1
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to differences in the distribution of the number of stem cells. The
conditional process (with probability generating function given by
(3.21)) thus provides a convenient framework for comparing the effects of
various parameters (including treatment) on the curability of the tumor
for a fixed distribution of stem cells at tl. However this approach will
not be suitable for the modelling of situations where the observed
distribution of stem cells at diagnosis is not well approximated by a
geometric distribution. We will now examine some eiementary properties
of this process.

Consider the expected fraction of resistant cells, which is

approximately given by mi(t)/m’(t). If we assume that ¢(so,sl)=s and,

0
using the mean as the summary measure, we choose t., so that

1
N*=[(l—e)-le6tl], (N* is the mean size of the tumor at diagnosis), then

from (3.22.1) and (3.22.2),

mi(t,) -(5)
E’(EI7 = 1-[(1-€)N*] . e (3.27)

From this it may be seen, as expected, that the fraction of resistant
cells increases as any of a, B, or y increase. Increases in ¢ (since
v=fc+y) or d also increase the fraction of resistant stem cells although

these parameters are also related to P the fraction of stem cells in

S)
the tumor (Chapter 2).
We can also examine the effect of the parameters a, B, y, b, c, and
d upon Pt given by (3.23), where nO(D)=0, nl(D)=1 and as before t1 is
1
chosen to be given at a fixed mean stem cell compartment size i.e.

N*=m’(tl). As expected, increases in «a, B or y decrease the value of

this function for fixed N*. Increases in ¢ are also found to decrease
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Ptl but the value of this function is not influenced by changes in d.
This function is plotted for various values of the parameters in Figure
1. Although increasing d increases the mean number of resistant cells it
does not change the probability that a fixed size stem cell compartment
will be curable because of the compensating effect of increases in the
spontaneous death rate of resistant cells.

The considerations presented here for the case nO(D)=0, nl(D)=1

carry over generally to the case nl(D)=1, ﬁO(D)=no>O except, of course,

that the magnitude of Pt will depend upon the effectiveness and timing
1

of subsequent treatments. We will now turn to consideration of a second
approximation for conditioning on N(t).

3.7 Conditioning on N(t) - Approximation 2

In most cases of practical interest ad<l and w<b (i.e. transitions
to resistance proceed slower than growth) so that, for the majority of
sample paths Rl(t)<<R0(t) and thus Ro(t)zN(t). This suggests that it may
be reasonable to approximate the distribution P{Rl(t)IN(t)} with the
distribution P{Rl(t)IRO(t)}. This calculation is complex for general
¢(so,sl) and we will only consider the special case ¢(so,sl)=so. Thus
¢(s0,sl;t)=w0(t) as given in equation (3.7). Since ¢(so,1;t) is the
probability generating function of the number of sensitive cells at time
t, the coefficient of sé in the expansion of wo(t) (evaluated at Sl=1)

in powers of s, gives the probability that there will be i sensitive

0
cells at time t.

Performing this expansion yields
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N
A2e M b(1-a) (1-e M)
[b(l--oc)—(d+\))e_)\t]j'+1

where A=6-ab-v. Similarly the coefficient of s

P{Ro(t)=i} = for i=1,2,..., ...(3.28)
i

0 in the expansion of

wo(t) (for general sl) yields

E ) } j 6—2+a
P{(R,(t)=1, R (t)=j}s7 = -
-0 0 1 1 (5 2+a + sll(t)]

£(t) (o)t
)

1=1,2, 000y ++0(3.29)

J
where f(t) is given in (3.7) and I(t)=b(1—a)f8 f(v)dv. Taking the ratio
of (3.29) to (3.28) and setting s)=s then yields the probability

generating function Ci(s;t) of the distribution P{Rl(t)IRO(t)=i} as

57 ()Mt

XZ [h(t)]i+1
where g(t) = I(t)/[b(l—a)(l—e-xt)] and

Ci(S;t) = «e+(3.30)

n(e) = [ 6 2 % s1(e)]/[b(1-a)-(d+v)e M.

We may use (3.30) to evaluate E[Rl(t)lRO(t)=i], by differentiating
with respect to s and setting s=1. However, the resulting expressions
are rather complex involving the difference of a number of exponential

functions. If &>>ab+v (which implies a<<1l) then we obtain

(2—a)(6—ab—v)2 (ab+v)t_1] + L +L

E[R, (t) R (t)=1] = i[

(1-a) (26—ab-v) 172
~ 1] PVt 174 L, +L, ... (3.31)
where
2
_ d+v (2-a) (6-ab-v) -(6-2ab-2v)t -(&=ab-v)t

L=1(1+ 505 (=) 5 (26-ab-v) )° + O(te )
and

L = b(2-a) (ab+v) &t + O(e(a§+v)t)_

2 8(28-ab-v)
For large t (&6t>>1), L1 is dominated by the first term in (3.31).

If 1> E(Ro(t)] then ie(ab+v)t2 e6t and L2 is dominated by the first term

of (3.31). 1If i<<E[R0(t)] then L, may be comparable or larger than the

2
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first term in (3.31) and the approximation Ro(t)zN(t) may not be a good
one. However, this occurs with small probability when ab+v<<{8. From

(3.8), when m1(0)=0, as here, we have

abt+v)t
B[E{R, ()[R () }] = B[R (£)1(e! )0
which shows that the terms Ll and L2 in (3.31) have expectation O
(approximately) with respect to RO. The first term of (3.31) will in

most cases (where i=<<E[R0(t)]) be a reasonable approximation to
E[Rl(t)IRo(t)] for large t except in situations where t is such that
E[Ro(t)]>>i.

For the special case nl(D)=l,n0(D)=0 we may calculate Pt (i), the
1

probability that a tumor with i sensitive stem cells will be cured by a

single course of therapy at time t Using the same argument as

L
previously used in deriving equation (3.14) we have

Ptl(i) = C;(e5ty)-

Using (3.30) we find

_(ab+ad+2v)t1[(6+ad+v)[b(1—a)_(d+v)e'(5-ab—v)t1 )

(8=ab=v)[b +v —d(l—a)e_(6+ad+v)t

(e (OFIHVIY) (h(1-gy-(atv)e OTHTVIE

(1-e(07TD™VIE ) (1 ymq(1-a)e " (OradtVIE
If (6-ab-v)t>>1l we obtain the approximation

-(ab+ad+2v)t[(6+ad+v)b(1-a)]2 [b(l—a)]i—l
(&—ab=~v) (b+v) b+v

C.(eg3t.) = e
i 1 1]

1)qi-1

1)

Pt§1)=ci(e;t1) ~ e . eee(3.32)

If in addition the individual mutation rates are small so that

(ab+d+2v)t<K1l and 6>>ab+v, then

-(abtad+2v)t _ (&+ad+v)b(l-a)
€ b (mab-v)(btv)

b(1l-a)
b+v

1, 1, =1-a-v/b

and thus

ci(e;t1)=Ptl(1)z [1-a-v/b} 1L, ...(3.33)
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This function is plotted for particular « and v/b in Figure 1.
The form of this relationship is very simple and makes intuitive

sense as follows. In Section 3.6 we found that Pt did not vary with d
1

(for the conditional process considered there) for fixed mean size N¥*.
We also found that the distribution of N”(t) was approximately geometric

and was independendent of d once the mean was fixed. Since Pt in Section
1

3.6 is the average probability of cure across the distribution
(approximately given by (3.26)) of the number of stem cells and both are
approximately independent of d for given mean size, it seems likely that
the individual terms representing the curability at a given size are also
independent of d. That is exactly what is indicated by equation (3.33)

for N(t)=R0(t). This suggests an approximation to Pt as given by (3.23)
1

can be obtained by taking the product of the right hand sides of

étl -1

equations (3.26) and (3.33) and summing. Letting m’=[(1—e)e— ] we

have

Pt =

P{cure|N’(t1)=i}P{N’(t1)=i}= ) P (i)P{N’(t1)=i}
1 i i=1 1

1

8 lic~18

—11-1

= ¥ -a-v/p)i 7t 27t el

i=1
= [1—a—v/b+(m+v/b)m’]—1. .. .(3.34)

The derivation of (3.34) uses (3.26) where N“(t) was assumed to be large.
If m“ is large the probability that N“(t) is small will be small and thus
(3.34) can be expected to be a reasonable approximation. Numerical
evaluation of (3.23) and (3.34) for «=10"3,107%,...,1078 and v/b=10q, a,
10~lq shows that the absolute difference between (3.34) énd (3.23) is

less than 0.01 for 10<N”, m”°<10%. Thus (3.34) provides a reasonable
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Figure 1

Probasility of Cure for Approximations 1 and 2.
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The function Pt plotted as a function of N* where t1 is selected to
1
6t, . -1 X
1] °, for various values of the mutation rates. The

satisfy N*=[(1—e)e—
solid curves are for equation (3.23) and dashed curves are for equation
(3.33). The two curves to the right have a=5x10"% and v/b=5x10"6, and those
to the left have a=5x10""%, v/b=5x10"". These curves do not depend on b

(which behaves as a constant for scaling time) and are essentially

coincident for all e=d/b.
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approximation to (3.23) and gives a deeper understanding of the nature of

Ptl.

Conditioning on Ro(t) appears to be reasonable if t is known,
however we are also interested in situations where it is not. The
expression for E[Rl(t)lRO(t)] which is approximated by (3.31), depends
upon t and thus its distribution depends upon the choice of t. Here we
will propose another more complex method for removing t than that which
was presented in Section 3.6 although this will again be approximate.

The basis of this approach is to observe that when there are many stem
cells present their growth is quite regular. The major contribution to
the distribution of the number of stem cells at time t (when grown up
from a single cell) results from the variability of growth when small
numbers of cells are present. This suggests that it should be reasonable
to approximate the growth process by a two phase model in which the
growth of sensitive stem cells is first stochastic and later
deterministic. A schema illustrating this approach is given in Figure 2.
Resistant cells will be assumed to grow stochastically in both phases.

In the stochastic phase, which is restricted to the interval [0,t”], we
use (3.30) and t“ is chosen so that the probabilities
P{Ro(t')>U|RO(t’)¢O} and P{Ro(t’)<LlR0(t’)¢0} are both small. L
represents a lower limit for which growth is sufficiently regular and U<N
where N is the observed size of the sensitive stem cell compartment that
we are interested in conditioning upon. For example, it is easy to show
(using (3.28)) that if the mean of the geometric distribution of Ro(t) is

mo(t)>>1 then we can choose U and L where U/L=103 so that

P{U>R0(t’)>L|RO(t’)¢0}>0.99. Thus in situations where the number of stem
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cells, N ( = number of sensitive stem cells), at diagnosis satisfies
N>10®, we may put U=10° and L=103 and choose t” so that
P{U>R0(t’)>L|R0(t’)¢0}>0.99. Thus even at the lower limit L, there will
be 1,000 sensitive stem cells and growth after t”“ can be expected to be
approximately regular. After time t”, sensitive stem cells will be
assumed to grow exponentially with parameter 6—-ab-v. We will now
calculate the probability generating function, ¢(s;t), for the number of
resistant cells in the deterministic phase and examine some basic
properties of this process.

Consider a model of this process where the sensitive stem cells

Aoe(é—ab-v)t

which is chosen to be the same as their expected growth under a

grow exponentially. In particular we will assume Ro(t) =

stochastic model; see (3.8). Using a result for filtered Poisson
processes [21], the probability generating function ¢(s;t), of the number

of resistant cells is given by ]

¢(s;t?=exp{fgk(u)[n(s;t-u)-l] du}, ees(3.35)

(6-ab-v)u

where ¢(s;0)=1, k(u)= Ao(ab+v)e is the rate at which new

mutations to resistance occur, and n(s;t) is the probability generating
function of the birth and death process with parameters b and d. n(s;t)
is given by wl(t) (equation (3.6)) with s,=s-

Equation (3.35) cannot be written in terms of standard fuhctions,

however the mean may be obtained by differentiating with respect to s and

setting s=1; this yields

e(6-ab—v)t(e(ccb+v)t (e(ab+v)t_1

E[Rl(t)] = A, -1) =Ry (t) ). ..+(3.36)
Further, evaluating (3.35) for s=¢ yields the probability of cure at

time t as
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Figure 2

Schematic Representation of the Two Phase Growth Process for Sensitive

Cell Growth Used in Approximation 2.
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) - R .(t)-A
o(est) = exp{- i%%;%%é%jf)(Ro(t) - A= (1-a-v/b) 0 0 . .(3.37)

for 6>>abtv. We see that this deterministic model yields similar
expressions for E[Rl(t)] and Pt(when no(D)=O,n1(D)=1) as for the process
conditioned on Ro(t) developed previously in this section; see (3.31) and
(3.33).

We will now construct a probability generating function for the
distribution of resistant cells for the two phase process which can then
be used as an approximation to the probability generating function for a
tumor (at diagnosis) of known size but unknown age. Let N be the number

of (sensitive) stem cells present when the tumor is observed. Let T, be

i
the time required for i sensitive cells present at time t” to grow
deterministically to size N (see Figure 2). That is

7, = (6-ab-v)"' fn (N/i)  for i=l,...,N. .. (3.38)

Then the probability génerating function for the number of new resistant
cells (i.e. mutations from sensitivity and their progeny) in the period
[t’,t’+ti],¢i(s;ri), is given by (3.35) with Ao=i. The number of
resistant cells already present at time t” when there are insensitive
cells has probability generating function Ci(s;t’) given by (3.30).
During the deterministic phase of (sensitive) cell growth these will grow
so that the distribution of the number of resistant cells present at
t’+'vi whose progenitor mutation occurred prior to t” will have
probability generating function Ci(n(s;ri);t’) where n(s;ri)=w1(11) is
given by (3.6). Thus the probability generating function of the number
of resistant cells at time t“+7t, in a tumor which has i sensitive cells

i

at time t~7 is
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FGICHIDHASL A CHIPE
Since there are 1 sensitive cells at time t“ with probability P{Ro(t’)=i}
we form the overall probability generating function for the number of

resistant cells at size N, ®&(s;N), as

U
B(s;N) = K ] L (n(s57,)5t7)0, (857 )P {Ry(e7)=1], £++(3-39)
i=L

where K is chosen so that ®(1;N)=1. In what follows we shall set U=N and
L=1 to simplify the evaluation of (3.39). Immediately we have K=
[1-P {R (e )=0}-R (R ()N}

A number of improvements can be suggested to increase the accuracy
of the approximation (for example include sample paths for which Ro(t’)>N
or adjust P{Ro(t’)=i} for spontaneous extinctions in the interval
[t’,t’+ri]) however these will not be discussed here as they complicate
an already difficult computation. We will now calculate approximate
expressions for the mean number of cells E[Rl(N)] and the probability of

cure PN for the random variable Rl(N) which has probability generating

function given by (3.39). The mean is then given by

BiR, 0] = R
N » £ -

) P{Ro(t,)=i} [6Ci(S;t ) on(s;ty) + 06,(s57) .
i=1 0s s=1 0s s=1 Os s=1

We will now evaluate the above function and in order to do this we will
assume that &>>ab+v and that t” is large. Then

P{Ro(t’)=0} = P{Ro(m)=0} = B%{};; = gtaetv/b

since the sensitive cells grow as a birth and death process with

paramters b(l-a) and (d+v) in the first phase. If N>>E[R0(t’)] then

K=(1—P{R0(t’)=0})_1 « (1-g-ae-v/b) L.
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Also we have,

oz, (85t7) = 1l from (3.31),
0s s=1
-1
st e TV Tl s rom (3.6),
0s s=1
and
] ot. (ab+v) T
0¢fs;T,) =ie e -1] from (3.36).
Os s=1
Thué we have
N

E[R,(M] =K zlP{RO(t’)=i}[N(e(ab+v)t'_1)+N(e(ab+v)ri -1)].
i=

In most cases R, (t)<<R,(t) and thus (e(ab+v)t

(ab+v)t

-1)<<1 and we will

approximate e -1 = (ab+v)t for t=t”“and t=t,. Then

1
N
E[R,(M]=K § P{R (£)=1} N(ab+v) {t +(s-ab-v) "aa(N¥/D)},
1=1
N -
[faN + K § [(6—ab—v)t’-1n(i)]P{RO(t’)=i}].
i=1

_ N(ab+v)
T (5-ab-v)

In this process we require that Ro(t’)>0 and we have
ma(t’)=E[R0(t')|R0(t')>0]=(1—s—ae—v/b)_1e(6_ab_v)t

and thus
(&~ab-v)t = ln[(l—e—ae—v/b)ma(t’)].
Using the above expression we obtain
E[R (N)] = ?§%§§§§%7§7 [fn {N(1-e-ae-v/b)} + D],
where D= Rn(E[RO(t’)iRO(t’)>0]) - E[{RnRO(t’)IRO(t’)>O}]. By analogy
with the discussion presented in Section 3.6, the distribution of
Ro(t’) conditional on Ro(t’)>0 is geometric, and thus D does not depend

on the parameters b, d, a and v after the mean is fixed. If E[Ro(t’)] =

106, then direct calculation yields D=1.15. Thus for N=107 and
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etaetv/b<0.99, then An[N(l-e-ae-v/b)]>12>10D and we may approximate

E[R ()] by

B[R, (M)] = L%%gé%lﬁ fn (N(l-€)). v (3.40)

This relationship will hold (approximately) for large N(>107) where
N>>E[R0(t’)|R0(t’)>0] as required by the original assumptions of the
development presented here. We will now calculate PN=®(E;N), the
probability the tumor is curable at size N for the special case nO(D)=0,

nl(D)=1. Using (3.37) and (3.33) we have

N
I (ma-v/b1 T 1w/t p{R (£ =1}
i=1

=[1-a-v/b] " L. e (3.41)

PN=<I(e;N)"—'(1—&:-055—\)/b)"1

The use of this approach is limited for the modelling of
experimental and human cancer because of the complex nature of the
resulting probability generating function: equ;tion (3.39). However, in
contrast with the previous approximation (Section 3.7) it does permit
calculation of the probability generating function conditional on a
single value of Ro(zN) rather than for a fixed distribution of N. We
notice that (3.41) is of the same form as (3.33). This is to be expected
since the right hand side of (3.33) 1s independent of t and thus the
curability when t is unknown will be the same.

It is interesting to note that if we use the deterministic model of
sensitive cell growth presented here for the whole period [O,t], we can
choose Ao_and t (see (3.35)) so that the mean number of resistant cells
and probability of cure 1s approximately the same as that for the process

with probability generating function &(s;N) given by (3.40) and (3.41)

respectively. Specifically this is achieved by setting AO=(1-s:)—1 and
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t=6_12n (N(1-€)). We will use this approximation of (deterministic)
sensitive stem cell growth when we consider drug resistance further in
Chapter 4. We will now consider our third approximation to the
distribution of resistant cells at diagnosis. This method is similar to
the first method, in that N(t) has a distribution at diagnosis, but
permits some flexibility in selecting this distribution.

3.8 Conditioning on N(t) — Approximation 3

The final approximation to be discussed here will consider not only
the growth of tumors but also the rate at which they are initiated. The
basic approach will be to 'integrate out' the time parameter present in
the previous discussions and develop formulae by summing across a
distribution for N(t). Again we will only consider the special case
¢(so,sl)=so. Consider the following idealization of the detection of a
tumor. An individual is selected at random and is found to be of age t.
The individual is examined and a tumor is diagnosed with a probability
which depends on the number, n, of stem cells present. Notice that t now
represents the age of the individual and not the age of the tumor (as
previously). We wish to calculéte Prln(t), the probability that there
are r resistant cells in a tumor containing n stem cells detected in an
individual of age t and will show that for values of t of interest it may
be well approximated by Prln(m)EPrIn.

We will assume that a tumor is created by the transformation of a

single normal cell and that the number of transformations (in an
individual) is a Poisson random variable, I(t), with mean u(t) (u(t)=0,
t<0). At time t, conditional on I(t)=1i, define i-dimensional random

vectors U(t), R(t), and N(t) with elements as follows:



-72-

Uj(t) = time of initiation of the j-th tumor, 1<j<i,

Rj(t) = number of resistant cells in j-th tumor, 1<j<i,
and

Nj(t) = number of cells in j-th tumor, 1<j<i.

Notice that t - Uj(t) is the (random) age of the j—-th tumor. For each t
the tumors are labelled randomly (the Uj(t) are not ordered).

Conditional upon I(t)=1 we have,

- t t -
P{N(t)=n|I(t)=i} = fé" jo P{N(t)=n|U(t)=u,I(t)=1} dFE(t)lI(t)(g).
Assuming that each cell grows independently,
i
P{N(t)=n|U(t)=u,I(t)=i} = 1 P{N(t-u, )—nJ}
j=1

where P{N(t—uj)=nj} is as defined in Section 3.1. Conditional on I(t)=i

we have
i 1
Fyolrey® 7 L wey Mo,y ey
where
X[O,t](u) =1 if u ¢ [0,t],

0 otherwise.

Combining the above equations we obtain,

P{N(t)=n|I(t)=i} Jl}lf: P{N(t-u )=} u(i) dpu ).
Similarly we have
P{R(t)=r,N(t)=n|I(t)=i}
1 (t
= jgl f Paor (509 5 dua,),

where Px y(t) is as defined in Section 3.1. If we assume that detection
3

of the tumor depends only upon the size (number of stem cells) of the
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largest tumor in the individual, Nm(t), then we will calculate the
conditional distribution of the number of resistant cells present, Rm(t).

Then conditional on I(t)=i,
P{R (t)=r,N_(t)=n|I(t)=1}
P{Nﬁ(t)=n|1(t)=i}

P{R_(£)=r|N_(t)=n,I(t)=1} =

[EB __ (t-u) du(u)
- 2 nox, X for 1>0,
fo P{N(t-u)=n} du(u)

X[O,O](r) for 1=0.

The above result follows from a simple consideration of the order
étatistics for independent identically distributed random variables. In
most cases arising in human disease, tumors arise quite infrequently so
that the likelihood of an individual having more than one cancer is
small.

The form of u(t) will naturally depend upon the animal and tumor
under consideration. We will assume here that u(t)=At. This form is
assumed since it leads to tractable results and is not an unreasonable
approximation for tumors which do not posess a strong age dependent
initiation rate. This form is also of interest since it provides a
contrast with the two previous approaches where the initiation time was
implicitly assumed to be fixed. Substituting for u(t) and letting v=t-u

we have,

. rt
0 0 Pn—r r(v)dv
Prln(t) = P{Rm(t)=rle(t)=n,I(t)>0} = 2 e eea(3.42)

fg P{N(v)=nl}dv

We now wish to remove the time parameter t in order to obtain
expressions for the distribution of the number of resistant cells

conditional on the observed number of stem cells, Prln' For any finite
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non-zero n wWe have,

lim f: P{N(v)=n}dv = 0

t >

and thus, if the age of the subject is great (t>>0), we may put
[ BIN(v)=n}av = [ P{N(v)=n}dv.
A similar argument yields

t o
J'O Pn—r,r(v)dv - fO Pn—r,r(v)dv'

Thus if the age of the animal is much greater than the likely time a

tumor has taken to grow to size n a reasonable approximation to Pr|n is

provided by

OPn—r r(v) dv
Pr|n= — for r<n, v0e(3.43)
foP{N(v)=n}dv

and PrInE 0 for r>n.

Unfortunately (3.43) may not be simply evaluated because Pn—r,r(v)
is complicated. However, as we will now show, if the number of stem
cells follows a particular distribution at the time of diagnosis for a
tumor class, it ié possible to obtain the probability generating function
for the number of resistant cells (at diagnosis). We will now specify
the form of the distribution for the number of stem cells at diagnosis
and derive expressions for the resultiﬂg probability generating function
of the number of resistant cells.

When modelling clinical disease there is no unique size, n, at which
a tumor is detected but rather a distribution of such sizes. If we let
g(n) be the probability that a tumor will be detected at size n (assuming

no dependence on t, the age of the patient);

g(3§) = P{N=j|Tumor is diagnosed}.
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The probability that a tumor will have r resistant cells at detection,

P , (where the dependence on g is suppressed) is given by

@

P= ) g(n)P
-1

r r|n
n=

where g(0) = O implies that a tumor will not be diagnosed if it has no
stem cells. We may pass g(n) through the integral sign in (3.43) to

obtain
_ ™ bt i Pn—r,r(t)
P=Jy 1 8 {—= } dt. cee(3.44)
= IOP{N(v)=n}dv

But P{N(v)=n} is given by equation (3.28) with o=v=0 and t=v, since
this is then the probability distribution for a birth and death process
with parameters b and d. Integration gives

JoR{N(v)=n}dv = (bn) "+ for m>O,

and thus

P = IO nzl bng(n)Pn_r’r(t) dt.

For general g(n), Pr is difficult to evaluate because Pn—r r(t) is
b
not easily evaluated. However, consider the special case (which is of

the same form as one previously considered by Day [34]),

J

g(n) = J aqu, ... (3.45)
j=1

J ©
where 2 a q >0 for all n, q <1, z a.=0 and Z a.qg, (l—q ) z g(n)=1.
j=1 J j=1 J j=1 173 n=l

If N is a random variable on the non-negative integers, where

P{N=n}=g(n) (of the form (3.45)), then it is easily shown that

J

E[N] = leanJ(l—q D

and
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J -3
E[N?] = ] aja,(1-q,) -
571
In particular if J=2 then
—_— (1-q,4,)
(1-9;)(1-q,)
and
q q
var(N) = 1 + 2 .

(1-q)°  (1-q?

If E[N]>>0 and J=2 then it is straightforward to show that
172
C.V.[N]>2 ,
where C.V. is-the coefficient of variation. Some examples of the
distribution g(n) (of the form (3.45) for J=2) are given in Table II.
Unfortunately distributions g(n) of the form (3.45) do not
constitute a sufficiently rich set to accurately model an abitrary

distribution at diagnosis. The major limitation arises because thesé

distributions cannot give enough weight (997 or more probablility) to.a

Nmax
Nmin

range of tumor stem cell sizes (Nmin,Nmax) where <102. This

corresponds to a relative difference of 5 fold in the linear dimensions
of a spherical tumor. However, for clinical neoplasms, data is fairly
coarse and we may use g(n) of this form to approximate the diagnostic

distribution. Let O(s) be the probability generating function for the

distribution Pr and let R, be the number of resistant cells, i.e. a

1

random variable where P{R1=r}=Pr. It may be shown from the definition

of the probability generating function that

E r % jw 6¢(so,sos;t)
o(s) = P s'= a.q.b _ dt, ee+(3.46)
=0 F j=1 ity ‘o0 aso S0 qj

where ¢(so,sos;t) is given by equation (3.5). We will only consider the
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TABLE II

g(n) = alq? + azq;= P{N=n}, where E[N]=1010.
Range of N Nmax-l Nmax_l
1-q, 1-q, [N ;o oN ] n_% g(n) nzogm) $.D.(N)
min
[ 1 ,5x108) 0.012 0.012
[5x108 ,1x109 ) 0.028 0.039
[1x109 ,5%107 ) 0.316 0.355  9.1x10°
1.111 1.000 [5x102 ,1x1010) 0.274 0.630
x10~10 x 102 [1x1010,5x1010) 0.366 0.996
[5x1010,1x1011) 0.004 1.000
[1x101l, = ) 0.000 1.000
[ 1 ,5x108) 0.005 0.005
[5x108 ,1x10% ) 0.013 0.018
[1x10% ,5x109 ) 0.251 0.269
1.667 2.500 [5x10% ,1x1010) 0.328 0.598 7.2x10°
x10~10 x10~ 10 [1x1010,5x1010) 0.402 0.999
[5x1010,1x1011) 0.001 1.000
[1x10ll, = ) 0.000 1.000
[ 1 ,5x108) 0.005 0.005
[5x108 ,1x107 ) 0.013 0.018
[1x10? ,5x107 ) 0.247 0.264
1.961 2.041 [5x10% ,1x1010) 0.330 0.594 7.1x10?
x10~10 x10~10 [1x1010,5x1010) 0.405 0.999
[5x1010,1x1011) 0.001 1.000
[1x1011, = ) 0.000 1.000
[ 1 ,5x108) 0.005 0.005
[5x108 ,1x10% ) 0.013 0.018
[1x10° ,5x107 ) 0.247 0.264
1.996 2.004 [5x10% ,1x1010) 0.330 0.594 7.1x10°
x10~10 x10~10 [1x1010,5x1010) 0.406 1.000
[5x1010,1x1011) 0.000 1.000
[1x1011, = ) 0.000 1.000
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case ¢(so,sl) =8, and we have by integrating (3.7) with Sl=SOS’

[ 00(sgs8483t) dt = G (s)+(s), eer(3.47)
0 aso so=qj

s ngj(S,t)Vj(s,t) dt

b(l-qjs)’

where Gj(s) = Hj(S) =

l—b(l—a)fg_vj(s,t) dt’

[1-ee O + qjs(l-a)(l—e_ét)]

b

U.(s,t) = — —
J qj[l—ee ot qjs(l—e 6t)]

and

6 -6t ]—2+a e—(6+ad+v)t

V(s,t) = qj(l—s)(1—e)2'“[1-se' t—qjs(l-e )

The term Gi(s) in (3.47) is obtained by direct integration of the
derivative (with respect to s) of the first term in (3.7). The second
term, Hj(s), is most simply obtained by interchanging the order of
differentiation and integration of the second term in (3.7).

We may calculate the probability of cure, Pg (where g indicates
dependénce on the distribution g) for the special case ﬂO(D)=O,n1(D)=1
by evaluating (3.46) for s=e. This function must be evaluated by
numerical methods. E[R1] and E{Rf] may be calculated by differentiating

(3.46) with respect to s and evaluating at s=1. Carrying out this

operation and interchanging the order of differentiation and integration

yields
do(s) v 1 |

E[R,] = | ey = L @@ b[———5+ 1, ],

1 ds s=1 j=1 itj b(1-q )2 1j

2. _ d76(s) do(s)
E[RI] a 2 Is=1 + ds Is=1

ds
J 1+qj
= 3 a.q.b[———————7§-+ L+ Ty, + 2b(1—a)11j13.]

where
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I, = (v, NeWS Vylee )
J 0
® 2
L dU . (s,t V. (s,t 3V . (s,t
L, = 2230 50 s UL, 02 Y550 ae,
J 0 ds ds 2
0s
® av.(s,t
I, = i J(S )I )
J 0 Os s

For general d and v these integrals must be evaluated numerically.
When qj=1, (which 1is the usual case), close attention must be paid to the
accuracy with which these integrals are evaluated. This is necessary
since most of the integrals have large absolute value, however they do
not have the same sign, and the differences (in numeric value) are
comparatively small. Therefore it is of some practical interest to
determine whether special cases exist which lead to simple forms for
(3.46). Inspection of (3.47) shows that the special case d=0 (no stem
cell death) and v=0 (mutations occur only at.division) permits

considerable simplification yielding:

0(s) = 2 a q [ 5 s(i—s) .
=1 3737079ys) (1—qjs>2 “~(1-8) (145

Then we have the probability, 6(0), that the tumor is curable when

nO(D)=0, nl(D)=1, is

J

0(0) = ] aa,(1=(l-wa, Y= 7 g (-0l ... (3.48)
j=1 n=1

The mean and second moment are given by

J 194
E[R;] = 07°(1) = ] ———————[1 (1-q%]
j=1 (l-q )2
2 ] ajqj 1 a a a
and E[R]] = ] —I= {(+q.-2(1~q )T)(1-(1-q)") + 2aq.(1-q)"}.
3= (1=q) 3 3 3 it 3

Table III gives computed values of the probability of cure P and the
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mean and variance of the number of resistant cells for several cholces of
a, v and € where J=2, q1=0.99, q2=0.9. Table IITI also contains the
analogous quantities which would be obtained using the deterministic
model previously presented (see discussion following (3.41) in Section
3.7) when the constant A0=(1-e)—l as suggested there. The probability of
cure (written at Pg to emphasize its dependence on the distribution at
diagnosis), mean and variance are calculated using the deterministic
model for each tumor size n and are then averaged over g(n) so that these
quantities may be compared using the same underlying distribution of
tumor size.

We see from Table III that the deterministic model has greater
vafiance than the comparable "full” model; this result probably arises
from the condition R1< N which is not satisfied by the deterministic
model and the different distribution of initiation times implicit in each
model. On the other hand examination of this table shows that at least
for the examples considered, the coefficient of variation is quite
similar for both models.

We will now discuss the relative merits of the three approximations
presented in this chapter.

3.9 Comparing the Three Approximations

The main strength of the first approximation is that the resulting
probability generating function of the number of resistant cells is a
simple function of the probability generating function of the underlying
process. It provides a reasonable framework for the comparison of
treatment effects because of the approximate stability of the underlying

geometric distribution of the number of stem cells. However, because the



-81-
TABLE III
The Probability of Cure Pg’ Expected Number and Standard Deviation

of the Number of Resistant Cells.

J=2 q,=0.99 q,=0.9
€ a v/b Pg E(Rl) S.D.(Rl)
0.0 0.01 0.0 0.46 0.46 4.9 5.4 14.9 20.9
0.5 0.01 0.0 0.46 0.46 9.3 9.1 25.1 29.6
0.9 0.01 0.0 0.47 0.46 29.9 25.9 55.6 66.2
0.0 0.02 0.0 0.28 0.28 9.6 10.4 21.6 29.4
0.5 0.02 0.0 0.29 0.28 17.7 17.4 35.6 41.5
0.9 0.02 0.0 0.31 0.28 50.8 45.2 72.7 90.6
0.0 0.01 0.01 0.28 0.28 10.6 10.4 25.7 29.4
0.5 0.01 0.01 . 0.29 0.28 18.6 17.4 37.9 41.5
0.9 0.01 0.01 0.31 0.28 51.2 45.2 73.2 90.6

The 1left hand column represents calculations based on the
probability generating function given by (3.46) and right hand colummn is
that based on the deterministic model given by (3.35) averaged over g(n);
see (3.45). Pg is the probability of cure for the distribution at

diagnosis g(n).



_82_
underlying distribution 1s approximately fixed it does not provide a
suitable framework for estimating the distribution of resistant cells
when the true distribution of stem cells is not geometric. This method
is the simplest of the three and for this reason it is probably the most
useful for estimating the effects of different treatment regimens
(differing timing and dosages) when the distribution of the number of
stem cells .at diagnosis is unspecified.

The second approximation provides the probability generating
function when the number of stem cells is fixed and addresses the problem
of conditional distribution of resistant cells most directly. However,
it is approximate and its calculation is quite complex. This hybrid
stochastic—deterministic model of sensitive cell growth may be
approximated (to give the same mean number of resistant cells and
probability of cure) by a purely deterministic model. 1In this case the
deterministic growth curve for the number of sensitive stem cells is
approximately the same as the mean value function of the number of stem
cells found for the first approximation. This suggests one can
reasonably approximate the distribution of resistant cells using a
deterministic model of sensitive stem cell growth, and that the
deterministic growth function should be the expected growth function
under a stochastic model where extinction has been eliminated. We will
use the purely deterministic model of sensitive stem cell growth in
Chapter 4.

The third approximation presents the most realistic model for the
distribution of resistant cells in spontaneously occurring human or

animal tumors since it implicitly incorporates the spontaneous incidence
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rate of the tumor. However the calculation of the probability generating
function represents a considerable problem for cases other than the one
considered, where u(t)=At ; even in this case the probability generating
function of the process is complex when cell loss is present. Table III
shows that the third approximation and (a modified form of) the second
approximation do not yield the same distribution of resistant cells for
the same distribution of stem cell burden. The main contributor to this
difference is, of course, the assumption (in the third approximation)
that new tumors are being initiated uniformly in time. In most
experiments cells are implanted and thus the third approximation will not
be suitable. Human tumors appear to be initiated throughout life and
thus to accurately model resistance in such tumors it is necessary to
consider the appropriate distribution of initiation times.

In conclusion, each approximation has its strengths and weaknesses
and the choice of one of these will depend upon the experimental or
clinical situation to be modelled and on the ultimafe object of the
modelling. In Chapter 4 we will use a deterministic model of sensitive
cell growth in order to facilitate further development of this theory.
Before completing our description of single drug resistance we will
consider the possible effect of variation in the paramters «, B and Y.

3.10 Variation in the Resistance Parameters a, f and y

Up to this point we have assuﬁed that a, B and y are fixed. In
passaged animal tumor systems this assumption appears reasonable and has
been assumed In all analyses of these systems. These tumor systems also
possess little variation in a number of other physical properties. This

is not unexpected since the process by which these tumors are chosen for
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study tends to select those which maintain their characteristics after
serial passaging. Spontaneous tumors, whether animal or human, do not
undergo such a selection process and exhibit a greater variability in a
number of physical characteristics than do passaged tumors. For example,
experimental tumors display quite regular growth rates especially when
many cells are present. In contrast, human tumors of almost every type
display considerable variation in growth rates. Possible variation in «a,.
B and y can be thought of as occurring in two distinct ways. Firstly,
these parameters may be considered to "evolve" (either deterministically
or stochastically) as a tumor grows. One special case of this would be
the possible effects of treatment on these parameters. Radiation and
many drugs used in cancer therapy are known to be mutagenic and the
values of o, B and y may be expected to increase subsequent to treatment.
Secondly, the parameters @, B and y may vary between tumors within the
same class with each class having some distinct distribution of «, B and
Y

Modelling the effect of mutagenicity of treatment is relatively
straight-forward i1f we assume that the effect of treatment brings about a
deterministic change in the value of the mutation rates for all the tumor
cells. Since the probability generating function for the appearance of
new mutations to resistance 1s independent for disjoint time intervals,
we may use recursive relationships such as (3.11.1-2) to determine the
probability generating function after treatment. If the effect of
treatment is to induce a random change in the mutation rates of all the
cells in a tumor (for a finlte or an infinite time period) then this is

extremely complex to model. Here we will only examine the effects of
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variations in the mutation rates between tumors of a given class which
are constant in time. As we know little regarding“the relative magnitude
of a, B and Yy (most experiments measure the quantity oa+v/b) it is not
necessary to consider their joint distribution. If we let ¢(s;t,a) be
the probability generating function of the distribution of the number of
resistant cells (computed using the second of the three approximations
previously presented) now viewed as conditional on a=a+v/b, we have that
the unconditional probability generating function, ¥(s;t), is given by

¥Y(s;t) = f¢(s;t,a)dF(a), e es(3.49)
where F(a) is the cumulative distribution function for a.

Little is known about the distribution F(a), since almost all
experiments have assumed a to be fixed. We will therefore choose a
convenient distribution which has support on a subset of [0,1]. An
obvious choice for the distribution of a is to use the conjugate of
P{R(t)IN(t),a}; however, this probability distribution function has not
been determined. We propose to use the beta distribution which has
support [0,1] and is conjugate to the Bernoulli distribution. We have
already shown that the probability of cure at size N for fixed a where
nO(D)=O, Rl(D)=1, is PN(a)=(1—a)N—1; see equation (3.41). Then the cure

probability, P for the class of tumors is given by

N,
1 N-1
Py [o(l-a)" "B(aju,v)da,
where {u,v} are the parameters of the beta distribution, and we assume

that a and N are independent. It follows that

_ D(utv)I(vN-1) _ V-2 (v )

N TWT(utv+l-1) o ‘ubvix

where ' is the gamma function.

P

«..(3.50)
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It is a simple matter to evaluate (3.50). 1In order to estimate the
significance of variations in a on this PN’ it is necessary to fix a
frame of reference. We choose here to assume that for some specified
reference size there is a constant cure rate. Then we explore the effect
of different choices of u and v at sizes other than the reference point.
Examples are presented in Figure 3, where it may be seen that the values
of u and v can effect the shape of the curve considerably.

Figure 3 shows that variation in a will affect the probability of no
resistant cells and thus affect the likelihood that the tumor will be
curable as a function of size. This observation seems important since
not only does this formula relate to the probability of cure in clinical
disease but it also relates to current methods used to estimate (assumed
fixed) mutation rates in animal tumors. Experimental estimation of
mutation rates is frequently based on destructive testing where it is
assumed that no(D)=0, nl(D) =1l. The percentage of surviving animals is
measured for various tumor burdens, and the mutation rate is estimated
using an equation like (3.41). Thus the fitting of this type of data to
equation (3.49) allows one to estimate the variability present in the
mutation rates. However, other factors which affect curability may also
cause similar departures from the form (3.41) and thus 1t is not possible
to uniquely identify variability in mutation rates as the only cause.

The curves in Figure 3 are, of course, strongly dependent upon the
assumption of the beta-distribution. If the distribution of a is not
adequately approximated by a beta distribution the curves of PN may be
quite different. The effect of variation of a in the mean number of

resistant cells is easily calculated. From (3.40) the corresponding
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Figure 3

Probability of Cure when Variation in the Mutation Rate is Present.
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number of resistant cells is given by

N u N
(1-¢) (utv) (1-¢)

/
This concludes our treatment of single drug resistance. In the next

n(N(1l-€)) jé af(aju,v)da = fn (N(1l-¢)).

chapter we will consider the problem of resistance to two drugs.
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4. RESISTANCE TO TWO OR MORE CHEMOTHERAPEUTIC AGENTS

The previous chapter considered the development of resistance to a
single drug by tumor stem cells. In the chemotherapy of many human
malignancies several active drugs are available. Where possible these
drugs méy be combined to form regimens which are more effective than
either of their individual constituents. Here we will consider the
development of resistance to two drugs.

The possible combinations (individual drugs and thelr dosages) are
limited because of thelr effects on the host normal tissue systems. The
construction of combined regimens depends on a variety of considerations,
which include consideration of the activity of potential drugs on each
component of the normal system of the host, pharmacokinetics of the drugs
and other factors which relate to the "acceptability” of the resulting
regimen. The final regimen may also include radiation or surgery. The
constructlion of regimens (especially in the light of the restricted and
imperfect information available) requires consideration of factors which
we do not propose to model here. Therefore, we will consider that the
drugs, their dosages and the timings of administration are fixed. We
will consider a general framework for the development of resistance in
stem cells and will provide a detailed examination of the case of two
drugs.

Consider the case where there are n different antitumor agents
available , Tl’ ceey Tn' An individual tumor cell may then be character-
ized as being in one of 2" mutually exclusive states with respect to
these agents, according to which therapies it is resistant to and which

not. As before a cell will be defined as resistant if the probability of
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cell death after administration of chemotherapy is lower than in the
parent (sensitive) line.

Let Rij m(t) be the number of stem cells at time t which are

resistant to the set of drugs {Ti, Tj’ ceey Tm} and not resistant to any

in the set {Tl, coes Tn} iT Tj’ ceey Tm} and refer to such cells as

i’

being in the state R . Those stem cells sensitive to all drugs will

ijeoom

be identified as members of R¢, (¢ is the empty set), which will be
written RO. The possible states for the individual tumor cells will be

written as Ry , where Q;, 1=0, 1,..., 2% (Q=0) are the 2™ distinct
1

subsets of {1,2,...,n}.

We will assume that when a stem cell in R divides to form two new

Qi
stem cells, one of them will be in RQ and the other will be in RQ with
i j
2"-1
probability « where I « = 1. As in the single drug case
Q; 0 o0 40

these probabilities will depend on the tumor type, the drug
concentration, and the length of time the drug is administered.

Q as the probability that a stem cell
3

transits from R, to R, when the cell divides forming a stem cell and a

Q, % ",

transitional cell. Also let YQ

Similarly, we will define BQ
i,

Q At + o(At) be the probability that a
1274

stem cell mutates from RQ to RQ in the interval [t, t+At). Transitions
i A

from the sensitive state RO to the resistant state R.Q will have as
' k|

parameters o for the three different types of

s B and vy
¢1Qj d)’Qj ¢,Qj

transition. We will write these rates o B

and respectively.
Q;, ' YQj P y

J
To simplify notation we will omit braces in the rate parameters and
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use 0 to represent the empty set. For example a{l},{12} will be written
a1,12’ B{l} as Bl’ Y{l},¢ as Yl,O’ etc. We will now concentrate
attention on the special case n=2, that is, two drugs. This case is both
tractable and informative. As before we will assume that the probability
of two transitions between states occurring in a time interval of length
At is of the order o(At). As in Chapter 3 we will assume that the

acquisition of resistance is permanent. This implies « 0,

1,0 P1,0"71,0"
% 07P2,0772,0°% %12,07P12,07Y12,0700 %1, 27 B1,2771,2°%,17F2, 172,170
and a12’1=312,1=712’1=a12’2=812,2=712,2=0. As in Chapter 3 we will only
"keep track” of stem cells and the development of transitional and end
cells (irrespective of their resistance status) will not be considered
explicitly. Similarly we will assume that the growth parameters of all
cells are the same. This assumption appears reasonable for some drugs
and tumor types but others display differential growth rates for the
sensitive and resistant cells. We will now discuss the calculation of

the probability generating function for the process.

4.1 Probability Generating Function for Double Resistance

Define Ei,j,k,x(t) = PR (t)=1, R () = j, R (t) =k, R () = 1}
and
N(t) = Ro(t)+R1(t)+R2(t)+R12(t).
Table IV indicates the permitted transitions with their associated
probabilities. We continue by writing down the Kolmogorov forward
equations [21] for the process which yields the following family of
differential equations:

Oy, 4k, 00"

ot
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TABLE IV

Transitions Occurring in the Stem Cell Compartment in the interval
[t,t+At) which have Probability of Order At.

Initial State Final State Probability
(i,3,k, ) (i+1,3,k, ) ib(l—az—az—alz)At+o(At)
(i’jsk)l) (i’j,k’l) ic(l_ﬁl_BZ_Blz)At

+jc(1—Bl’12)At+RcAt
+kc(1—B2 12)At+o(At)
3

(1,3,k, ) (i-1, §,k, 2) 1d At+o(At)
(1i,3,k,R) (1, j+1,k, ) ibalAt
+ib(1-a, |,)At+o(At)
(i’jak’k) (i—lyj+1’k,l) i(BIC+Yl)At+O(At)
(i,3,k, ) (1,3,kt+1,2R) ibaZAt
+kb(l—a2’12)At+o(At)
(i’j>k:£) (i—l’j’k+1:£) i(BZC+Y2)At+O(At)
(1,3,k, ) (i,j,k, 1) 1ba12At+Jba1’12At
+kboc2 let+£bAt+o(At)
. s
(i,j,k, ) (i-1,3j,k, 1) 1(6120+Y12)At+0(At)
(i,j,k,l) (1,3-1,k, %) jdAt+0(At)
(1,3, ) (4,5-1,k, 2+1) 3(By 12047, ) AtHo(AL)
(i,3,k, ) (i,j,k-1,2) kdAt+o( At)
(i,3,k,R) (i,j,k-1,2+1) k(B2’12c+Y2,12)At+O(At)

(1,3,k, ) (i,j,k,2-1) 2d At+o( At)
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= —[(b+d+c) (1+j+k+2) + Yi123 Y10kt (Yl+y2+ylz)i] 5.k, 240
+ b(moyma, e, )A1By )  o(6) + abiBy ()

+ “zbipi i, k-1, Jl(t) + d(i+1)Pi+1 ik, l(t)

o178y 76y7B1p) Py 51,2 () F (Byot YD EFDR 4 k2 (8)
T (Byety )AL, g k-1, 2(8) F P iRy s 9 ()
+ Bty ) DR 5k, 0-1(8) F DUy 1) G DB Sy i, (D)

+ ba l(t:) + d(j+1)P

1,121, 3,k, 2- 1,5+1,k, 205
+e(1-By 1938y 5 g (6) + (eBy obyy ()P g o (8)

+ b(1l- a2 12)(k 1)P l(t) + ba kP

i,k-1, 2,12°%1, 3,1k, 2-1()
+a(H)Ry x(t) * 1By, 19KPy 5k, (8

+(eBy 1oty 1) (RFDRY o0 (6) + b1, o (E)

+ d(l+l)Pi’j,k’x+1(t) + Clpi,j,k,k(t) .. (4.1)
for all of i,j,k,% »0 and where P, |, (t) =0 for any of 1i,j,k or 2<0.
i’J’k’x‘

We will ass that P, . 0) is known.
ume 1,,k,2(%

Let ¢(s;t) be the probability generating function for the process,
that is

0(s;t) = ¢(s;,8,,8,,843t)

o]

- i 3 k 2
= ¥ z ) ) P (t) s, s7 s, sg.
120 §=0 k=0 20 i,3,k, 4 0 "1 2 73
Then multiplying (4.1) by sé { sg s§ and summing i,j,k,% over 0 to «
yields
d6(s;t) % 6¢(s t)
—_— = (bs —d) (s, —1) —_—
dt 120
%_ d¢(s;t)
+ ){(a bs ity ) (s ) ——
1=1 i, 12 i,12 81 6si
d6(s;t) 3¢ (s;t)
+ (a bso+vi) (s O)——Sga——} + (alzbs0+v12) (s3—so) __558_—_

cen(422)
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where vi=cBi+Yi’ for 1i=1,2 and v

Vi,127%B5 1275 10 127%Bo% Y00

We may use the method of characteristics [22] to reduce the solution
of (4.2) to the solution of the following set of five ordinary

differential equations:

dt(u) _ 1
du ’

dxzi“) = (L=xg (W) (bxy (w)=d) + (g (W)=xg(u))(bay o3 (u)+vy 45),

for i=1,2,
0D 2 (1 () (bry (w)-d),
du
X008 = (1-x, () (bxy ()-d)
du
2
+iZl(aibx0(u)+vi)(xo(u)-xi(u)) + (@b (u)Hv ) (X (w)=x5(u)),

where u, xl(u), xz(u), x3(u) and x4(u) are dummy variables.
Unfortunately, although the first four equations are straightforward to
solve, the final equation (involving xo(u)) is complicated and a closed
form solution is not apparent. However, we have already shown (in the
case of single resistance) that if t and Rg(t) are known, then the
distribution of the number of resistant cells can be reasonably well
approximated (Section 3.7) by using a continuous deterministic function
for the growth of the sensitive cells. From this point on in this
chapter we will assume that sensitive stem cells grow deterministically

R, and

and to emphasize this we will set Ro(t)=B(t); the compartments Rl’ 2

R12 will grow as before. A less general form of this model has

previously been considered by Coldman et al [27]. Let

*
Py

5.(8) = PR (E)=1,R,(£)=3,R , (£)=K R} (0)=0,R,(0)=0,R, (0)=0}

and
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B(s;t) = B(S,S,,8,58,3t) = ) ) ) P¥
0712 1=0 j=0 k=0 ¥’

be the joint probability generating function for the number of resistant
(Rl’ R2 and R12) cells derived from sensitive stem cells (RO) after time

t=0, excluding cells in R., R, or R12 present at time t=0, that is

1° 72

P600(0)=1 and thus &(s;0)=1. This generating function is dependant on

the function B(t), but this dependence will not be explicitly indicated.
The assumption of deterministic sensitive cell growth alters the

form of the transition probabilities given in Table IV and thus in (4.1).

The effect is to delete the state Rgp and set to zero all probabilities

which applied to changes in the numbers of cells in Rg alone (i.e.

1’ R2 or R12 as

well). The probabilities for tramsition involving the number of cells in

those without changes in the numbers of cells in either R

RO and the numbers in either Rl’ R2 or R12 are unchanged except that i is
replaced by B(t). Transitions between other states are as before. We
may then derive the following partial differential equation for &(s;t) in

the same way as (4.2) was obtained:

0®(s;t) % 2®(s;t)
—_— = [bs,-d] [s;-1] ——
ot 121 i i bsi
2 3e(s;t)
+izli(ai,12bsi+vi’12)(s3—si) "EE;f“’+ (o b+v ) (s,-1) B(E)(s;t)}
+ (a12b+v12) (s3—1) B(t)®(s;t). eee(4.3)
The result can also be obtained by setting so=1, ¢(s;t)=0(s;t) and
d4(s;t)
v B(t)®(s;t) in (4.2).
$g ~

Using the method of characteristics [22] the solution of (4.3) is

obtained by solving the following series of differential equatioms:
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é%ﬁEl . eeo(b.4.1)
dy; (w) (1-x; (W) (by; (u)-d)
du
+A(xi(U)'X3(“)) (b“1,1zxi(u)+vi,12)’ i=1,2, ...(4.4.2)
_dxg(u) - (1“X3(u)) (bx3(u)—d), cee(4.4.3)
u

. 2
a(g(wsw) By (g brv) (g ()-1)
‘ du i=1

+ (ay,b+v, ) (x3(u)-1)}B(u). e (b4
Now we note that the equation (4.4.3) for x3(u) is simply solved as
before (see equation (3.2.3)):
Su
gy (0= S7X(D] + [bx5(0)-dje™ o (h.5)

b[1-x;(0)] + [bxy(0)-d]e®™

Noting that xi(u)= x3(u) is a particular solution for (4.4.2) we have (in

analogy to the solution of (3.2.2))

F ()
Xy (0) =x3(u) + , for 1=1,2 ...(4.6)

u
[ (0=%3(0 17" + bl-a; )] F, (x)dx
? 0

where
2705 19
—_ }) T,
Fi(x) =8 exp{(6+ai’12d+vi,12)x}

~2+a
x[b[lfx3(0)] + [bx3(0)-d]eéx] 12

Equation (4.4.4) may then be solved directly by substituting (4.6) for
xi(u)(i=1,2) and (4.5) for x3(u) and integrating the left and right hand
sides directly. The required solution &(s;t) 1s then obtained by setting
u=t and xi(u)=si (for i=1,2,3) and inverting (4.5) and (4.6) so that
xi(O) (1=1,2,3) are expressed in terms of s and t. These values are then

substituted into the expression obtained by integration of the right hand

side of (4.4.4). Carrying out this substitution we obtain, after some
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simplification, the following expression for @(s;t):

2

In (g;t) = IB,+ Boizl(aib+vi)li(si) , ced(4.7)

where

2 t

10={a12b+v12+i§§aib+vi)} 5(33_1) f B(t-v) dv

0 b(l-sy) + (bs3—d)e’5v
t B“(t-u) gi(u) du
Ii(s) = IO 2-ai 12 -1 u ?
*"7(s=8,)] - b(l-a ) f g.(v) dv
3 i,12 o 1

with

-(6+a d+v, WV _ -2+
gi(v) - e i, 12 i,12 [b(l—sB) + (bs3-d)e 6v] i,12’

B (u) = B(u)/B0 and B0 = B(0). Equation (4.7) generalizes a previous
result found by Coldman et al [27].

The function @(i;t), given by (4.7), is the probability generating
function for the number of singly and doubly resistant cells derived from
the growth of the sensitive cells over the interval [0,t] conditional on
R1(0)=R2(0)=R12(O)=0. Our objective is to derive ¥(s;t) the
unconditional probability generating function for an arbitrary
distribution of sensitive and resistant cells at t=0. We will now
examine the development of resistant cells from singly resistant cells
present at t=0. This is quite straightforward since the development of
double resistance in cells already resistant to one agent is analogous to
the development of single resistance in sensitive cells considered in
Chapter 3.

Let ¢i(§;t), i=1,2, be the probability generating functions of the
number of resistant cells derived from (progeny of) a single cell in Ri

at time t=0, i.e. conditional on Ro(t)=0, Ri(0)=1’ R3—i(0)=0 and



_98_
R12(0)=0. Then |
¢i(g;t) = wo(t), i=1,2, oo (4.8)

where wo(t) is given by (3.7) with s =84, 0=« and v=v .
b}

0 °1> 51 1,12 1,12
Similarly, let ¢3(§;t) be the probability generating function of the
number of resistant cells derived from (progeny of) a single cell in R12
at time t=0, i.e. conditional on Ro(t)=0, R1(0)=0, RZ(O) and R12(0)=1.
Then

¢3(§;t) = wl(t), eeo(4.9)
where wl(t) is given by (3.6) with §,84-

For future use it 1is convenient to include a term in the

unconditional generating function reflecting the number of sensitive
cells at time t. To do this we will multiply the generating function by
séB(t)], which may be viewed as the approximate generating function for

the number of sensitive cells. Using the general result (2.3), ¥(s5t),

the unconditional probability generating function of

{B(t),R (£),R,(t),R;,(t) },1s given by

W(55t) =0(L, 0, (856)5 0, (85),05(85£))0(sg;£)sL>¢F)] ce2(4:10)
where ¢(1,sl,sz,s3)= Y(l,sl,sz,s3;0) is the probability generating
function for the distribution of {Rl(O), RZ(O)’ R12(0)}'

For future reference we will now calculate ml(t)=E[R1(t)],
mz(t)=E[R2(t)] and mlz(t)=E[R12(t)]. Differentiating (4.10) with respect
to Si’ (i=1,2,3) and setting s = (1,1,1,1) yields the following

relationships:

(6-a
mi(t) = e

t -(6
mi(O) + aifo e

1,12)t( 8y 1208

B(u)du), i=1,2, ...(4.11.1)
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where ai=aib+vi, ai,12=boc],_’12+v]..’12 and
2 ~a t
5t i,12
m,(t) =e " {m,(0) + 121 m (0) [l-e 7777 ]
2 t ~ -a t t -(6-a Ju
+ ) ai[f B(u)e Su du - e 1,12 [ B(u)e 1,12 du]
i=1 0 0
t -6u
+a,,/ B(u)e ~du}, cee(4.11.2)
1274

where a12=a12b+v12.

The special case B(u)=Boexp(ku), (k#é-—ai 12) is of particular
b4
interest since it is the mean growth function for a birth and death

process with fixed rates. In this case the expected values are

(k-&+a
[e

[k-&+a,
1,

)t
a B, 1277 4,

m, (t) = exp{(é—ai’lz)t} (m; (0) + " )y eee(4.12.1)
and

Tay,12t

I o~

m () = et {m ,(0) + m, (0)[1-e

i=1

381,12 O (1.
b T8, 10 &) a
B, a

[2—5}2 NGO

The choice k=6—a1—a

2
+ B, )
+ cee(4.12.2)

278, yields the same expected numbers of singly

resistant cells as in the fully stochastic case, i.e. that with joint
probability generating function satisfying (4.2). This may be shown by
differentiating (4.2) with respect to s, (1=0,1,2,3) setting s=1 and
obtaining differential equations for mo(t), ml(t)’ mz(t) and mlz(t). In
particular the ordinary differential equation for mo(t) = E[Ro(t)]

obtained from (4.2) is

dmy(E) _ (5-a

-a,-a.,)m_ (t),
it 172 712770
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which has solution mo(t) = moexp{(é-al—az—alz)}t. Repeating the
procedure for ml(t), mz(t) and le(t) shows that (4.12.1-2) are solutions
to the appropriate differential equations when k=6—al—a2—a12. In the
following analysis of the two drug case we will assume that B(u) =B0eku
where k=6—a1—a2—a12.

As discussed in Chapter 3 we will be interested in situations of
growth from a single sensitive stem cell where the tumor size (stem
cells) N is observed, bqt t is unknown. We will then use the
approximation suggested in Section 3.7, equations (3.38) and (3.40), and
assume that the overall growth of the stem cell compartment is given by
Boe(St where B0=(1—e)_l. Thus we will set

t=5"tan (N(1-¢€)), eeo(4.13)
where the term (1-¢) arises from excluding tumor growth paths in which
the stem cell compartment goes spontaneously extinct. This factér is
»retained since, although the stem cell compartment cannot go extinct
(because the sensitive cells are growing deterministically), it yields a
better approximation to the fully stochastic model. Now 1f we observe Rs
sensitive cells at some time t (which may not be known on the scale where
t=0 is the origin time of the progenitor stem cell) then we would use t
given by (4.13) in (4.10) and set the last factor on the right hand side
of (4.10) to be,

séB(t)] = sgs cee(b4.14)

In most cases of practical interest N is observed and Rg is unknown.
In such cases we will set RB =[N—m1(t)—m2(t)—m12(t)] (=N) where t is

given by (4.14). We will now consider the modelling of treatment effects

in the two drug case.
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4.2 Modelling Treatment Effects

~Radiotherapy and surgery will be modelled in the same way (with cell
survival as Bernoulli random variables) as presented in Section 3.4 and
the effect of each will be the same for all resistant subtypes. To model
the effects of chemotherapy upon stem cells we will assume that the drugs
obey the same laws of kill as outlined in Section 3.2 [26] and define the
following quantities for Qe{{0},{1},{2},{12}}:
| (D) = P{a cell in R, will survive administration of a single

Q

course of the drug T

,

1,Q

g at dose D} for i=1,2.

We will generally omit the dependence of L2 Q(D) on D where it is
’

understood to relate to some fixed but possibly unspecified dose.

We define the variable X as follows:

i,Q
Xi Q = 1 if a cell in R.Q survives administration of Ti’
b4
= 0 otherwise.
Then 51 Q(s), the probability generating function for Xi Q is given by
’ ’

s) = 1l-mx, + 7 S.

&1,0(®) 1,0 7 ™1,Q

For simplicity, as before, we will write = as m etc. Now if
i,{1} i, 1

treatment Ti is given at time t1 then

¥ssty) = ¥(E;(8)5t)), v (4.15)
where

gi(i) = (gi,o(so)r gi,l(sl), 51’2(32), gi,12(53)). "'(4'16)
This result follows from (2.3) and is similar to result (3.11.1) for the
single drug case.

Equation (4.15) deserves some comment since Y(g;tl) contains one
part in which the number of sensitive cells is deterministic and another

in which it is random. This arose because we assumed Ro(t)=B(t) in order
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to derive the probability generating function for the number of
resistance cells derived from sensitive cells. We have also written a
probability generating function for the number of sensitive cells at time
t1, (4.14), and used it to derive the probability generating function
of the number of sensitive cells after treatment, (4.15). We have done
this to obtain a bettgr approximation to the behaviour of the fully
stochastic model. In intertreatment intervals we may consider stem cell
growth to be stochastic, but to calculate the distribution of resistant
cells which arise from sensitive cells (in that interval) we use the
deterministic growth model for Ro(t). We know from Section 3.1 that in
the case of single resistance the stem cell éompartment grovs
(stochastically) as a birth and death process with parameters b(l-a) and
vtd. Since the ultimate destination of cells leaving the sensitive
compartment is irrelevant to the growth of this compartment we deduce
that, in the fully stochastic model for resistance to two agents, the
sensitive cell compartment will grow as a birth and death process with

parameters b(l-a;-a alz) and (d+vl+v +v

9 12). If we let ¢0(g;t) be the

2_.
probability generating function of the number of sensitive stem cells in
this fully stochastic model
¢0(g;t) = wl(t), eoe(4.17)

where wl(t) is given by (3.6) with 8,784 b replaced by b(l—al—az-alz)
and d by (d+vl+v2+v12).

We may use the stochastic model for the growth of the sensitive cell
compartment to "update" the probability generating function for newly
resistant stem cells as follows. In deriving the probability generating

function (4.7) we assumed that BO was a counstant. If instead we consider
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B0 to be a random variable with distribution not dependent on t, then

®(s;t) can be viewed as being conditional on BO. If we emphasize this by
writing ¢h (s;t), then we see from (4.7) that

0
B

0
o, (s3t)=[2 (s5t)] .
B 1
0
Furthermore if By has a distribution with support on the non-negative
integers with probability generating function O(s) say, then the
unconditional probability generating function of the number of cells is
given by O(@l(i;t)).

In particular this will be useful here since after treatment the
number of stem cells is random. Using (2.3), we may write an expression
for the probability generating function in an intertreatment interval as

‘l’(s~§tj+V)=‘I’(®1(§,;V)¢0(§;V),¢1(§,;V),¢2(§;V),¢3(§,;V);tj), e.-(4.18)

where tj<tj+v<t tj(j=1,...,J) are treatment times, @1(§;v) is given

j+L°

by (4.7) with B_ =1, ¢i(§;v) (i=1,2) is given by (4.8), ¢3(§;v) is given

0
by (4.9), and ¢0(§;v) is given by (4.17).

We may therefore use equations (4.15) and (4.18) to calculate
recursively the resulting probability generating function for the growth
process corresponding to various treatment sequences by setting v=tj+1—tj
for the interval [tj’tj+1) where the initial probability generating
function at time tz is given by (4.10).

Notice that we may use (4.18) recursively at times where treatment
is not given in order to improve the approximation to the fully
stochastic model. 1In general we would not do this prior to t1 as this
would then induce (a non-degenerate) distribution for Ro(tl) with all the

attendant problems this produces (as extensively discussed in Chapter 3).
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In the situation to be considered later (Chapter 5) we will only use
(4.18) at times of treatment, that is v=tj+l—tj. We will use (4.10) for

the interval [O,tl), chose t. as given in (4.13) and use (4.14) with

1
R6=[N—m1(tI)—mz(tI)—mlz(tI)] (the integer part) where mi(t;) (1i=1,2),
mlz(tz) are calculated from (4.11.1-2) and N is the "observed” stem cell
compartment size.

The inéorporation of a stochastic element to the growth of the
sensitive stem cells 1is somewhat 'artificial' however it does improve the
approximation of the model to the fully stochastic one. It also allows a
reasonable determination of P{N(t)=0} which would otherwise be
identically zero if Rg(t) were left purely deterministic. The model
can be expected to be a reasonable reflection of reality since when there
are large numbers of sensitive stem cells, growth can be expected to be
quite regular and thus well approximated by the deterministic assumption.
When the number of sensitive cells is small, the likelihood that new
resistant cells will arise (from Rg) is small and thus the assumption
of deterministic growth should not cause a great distortion to the
distribution of the number of resistant cells. As in Chapter 3 we will
now consider some special cases which illustrate the behaviour of the
model.

In many cases two drugs may not be given together because of their
overlapping toxicity on normal tissue. Consider the special case where
the drugs act indgpendently and can be given together, with N(O)=RO(0)=1

(the tumor originates from a single sensitive stem cell), 1,

T1,127%2,127

and % are arbitrary) i1.e. when the two

and =« 2,2

1,07%2,07%1,2°%2,170 (71 4

drugs are given together all stem cells are killed except those in R12'
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When N(O)= R0(0)=1 we will set B0=(l-e)—'1 as described in the discussion

leading to (4.13). If both drugs are given at t, then the probability

1

the tumor will be cured, Pt , 1s given by Y(l,l,l,e;tz), (see (3.14)),
1

where ¥(s;t) is given by (4.10). This reduces to

Pt = @(191a1,€;t1)9
1
since ¢(1,s1,s2,s3) = 1. To simplify notation we will write Pt for Pt .
. 1
Examining the terms in (4.7) we have for 8y = € that
u -2+a -(6+a, d+v, Ju
f gi(v)dv -5 i,12 [1-e i,12 i,12 .
0 (&+a; 15 4+v4 12)
For i=1,2 and s4=€ we also have
I,(1) =
<S(‘c’+"‘1,12d+"1,12’)} B“(t-u) du
b (6ta d+v Ju _
0 (ai,12b+vi’12)e i,12 i, 1277 + &1 “1,12)

After some simplification we obtain

*
2 aja; 150t ((81] 150U 1) B(t-u) du
l1n P =- ) —=2=_
- =1 " ° (6+af 1209 4 501
84,12¢ ’ (1-a; 1)
a,,b t
_ %127 | B(t-u) du, cee(4.19)
b 0 |
where a;, ai’12(1=1,2), a, are as given in (4.11.1-2) and

% 127%1,127%,12%

Using B(t) = BO exp {(é—al—az—alz)t}, the formula for Pt may be
numerically evaluated. As we are primarily interested in treatment
applied at some fixed size but unknown time, we will restrict attention
to the calculation of Pt where t = 6_1£n [N(1l-€)] and in this éase we
will designate the probability of cure as PN. PN is plotted as a

function of N for various mutatlon rates in Figure 4. In most cases of
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interest we will have 6>>al+a +a and 6>>ai
>

sta, for i=1,2. Figure 4

12

shows that for some sample values of 215 895 355 @ 9 (i=1,2) the shape

i,1

of the resulting curves of P_ against N are similar to those obtained for

N
the analogous case in single resistance (Figure 1). This suggests that
in analogy to (3.37) and (3.41) it may be possible to approximate PN by a
function of the form (1—a*)N-1, or exp{—a*(N—l)}, (which are numerically

similar for a*<<{1l) where a* is a function of a;, a d

2> 212> 1,12 2"
a2,12' We will thus attempt to approximate (4.19) for fixed N; to do
this we will first bound Py.

To simplify further presentation we note that the scale of
measurement of t is unimportant in the calculation of Py. Thus we will
choose a scale for which b=1 and assume that the other rates are all
relative to this time scale. This will be emphasized by writing e(=d/b)

rather than d. Thus using

B(t) = (1-5)_1exp{(1—e—a1—a2—alz)t} and a=a.+a +a., in (4.19) we obtain

17227212

1nPN =

2 -1t (a+a? 12)u_ —(1—s+a? 12)u
- Va,a, , N[N(l-e)] 278 * o fli-e AN S

L3334 12 0 .
i=1 (1-8)-18 e(1—€+ai 12)u + l-a

1,12 ’ 1,12
-1
- %12 [Naee)rdTe) oy, ve.(4.20)
(l-e-a)

where t=(1—e)_1kn [N(1-g)]}. We will now bound XnPN.
For i=1,2 let hi(u) be the integrand on the right hand side of

(4.20). Then 1if

0 (o = {1_e—2(1-s—a)u}
i ?
(1-8)_1ai,12 e(l—s—a)u + (1-a =(l-e-a)u

1,12)e
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Figure 4
Probability of Cure when Loss is Present.
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where T, and T, are given simultaneously at that time, = 0, arbitrary,

1 2
=] for 1=1,2 =

1,0 02 Fi4
= = -3 = =].
0, «a +vi/b a +vi’12/b 1072 for i=1,2 and b=1

a

5,12 1,2 72,17

= -2 =
For Xy ai+vi/b<10 and xi,lZ

fourth decimal place) on X, and x

i, 12

-2
i,12+vi,12/b<10 , PN depends (up to the

1,12 only and not on the individual ai,v

etc. that sum to X PN as given in (4.19) with t=6—1ln[N(1—s)] is plotted

i

for three values of €:

(1) ————— =0

(111) — — — — €=0.9



- —— %
Ui(u) hi(u)>0, if u>0 and 1l-¢ 2a>ai,12,

Li(u) - hi(u)<0, if u>0,

and thus
- * . e e o .
Ui(u)>hi(u)>Li(u) for u»0 and l1l-¢ 2a>ai’12 (4.21)
By integrating the bounding functions over [0,t] we obtain
k 172 k. 172
t 1 ;-1 -1 0 -1,1
JoUs (wydu= 3 {(ky™+ k™) (EI) [tan (Eg)
kl 1/72
-1 -\t 1 -\t
- tan [(——) e )] + = [e —1]}
k k
0 1
and
k.+ k k + k
t 1 ;7,1 "0 0 1 1 r -\t
foLy (wydu= = {( ) —] + % [e"-1]},
071 A 2 At k
k k. + k.e 1
1. 0 1
=] - g— = -— —1 = - = — —1 -—
where A=l-g-a, ko ai,lZ(l €) ~, and k1 1 ai,lZ' Now t=(1l-€) "An(N(l-g))
and thus
At 1-a(l-¢) *
e =[N(1-¢)] .
-\t
For large N, e =0. If also (l—e)>>a1’12+.=‘12,12 then ko is small and
k,=1. If in addition kal/ze_Xt is small then,
t PP U A 1 _\-l.-1/2_
oUs(wdu = (1-e-a) {3 [ag 1,(1-8) 7] 1}

and
foL, (wau = (1—e—a)-1{ln[(l~e)/ai,12]—1}.

To this order of approximation, we have

(1-e-) " { F 13, (-0 72

> fghi(u)du > (l—e—a)_l{Xn[(l—s)/a e (4.22)

1,121t}
In Chapter 3 we found that Py (N fixed, single resistance) did not
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depend upon €. However fghi(u)du does depend upon & since if e=0, a<<1l,

we have
t . 0w -1/2 _
IOUi(u)du = 35 [31,12] 1,
whereas if l—e<[a ]1/2, we have
i,12
t B -1/2._ 1 _
ol () = [a; o] "7l 5 M (ay 150711
Since a; 12<<1, the lower bound can exceed the upper bound (for different
b4

€). For example consider the inequalities for the two cases e=1-10"3 and

e=0 where a,

=10"6, a=1075. Equation (4.22) implies fth (u)du, and
i, 12 01

therefore PN’ varies with € (in contrast to what was found for single
resistance). Numeric evaluation of (4.20) for 10“9<a<10'1, 10<N<10°
reveals that the lower bound fgLi(u)du is close to fghi(ujdu, and can be
used in approximating PN for most cases arising in practice. Using the

1—6(1-8)_1

right hand side of (4.22) and approximating N by N,

—a(l—&:)“1

(1-¢) by 1, and 1-e—-a by l-¢ and using (4.20) in the resulting

expression for lnPNin (4.20) we obtain

2
fnPy x =(1-€) lN{a12(1—8)+iZIaiai’lz[ln((l—e)/ai’12)—1]}. oo (4.23)

This approximation is of the form expected i.e. PN= exp{—a*N},

where

2

= a,+ (1—e)-1iZlaiai,12 [4n((1-e)/a; ;,)-1]. oo (ha20)

a*

A similar approximation has been derived previously in a less general
setting [27]. Note that a* depends upon € (i.e. d). If € is large, say
0.9, the effect on PN can be considerable. A similar effect on PN would

be seen for cases in which % ,7n,,% s T are not necessarily 0 although
1*72°71,2* 72,1

the curability of the tumor will then depend upon the total treatment
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protocol.

The structure exhibited in equation (4.23) has implications for the
general analysis of these processes. Resistance to some drugs appears to
arise from a single discrete change in the genetic material. In such
cases resistance may be almost absolute. In other cases resistance may
arise incrementally, such as in processes involving gene amplification
[28]. In these circumstances the acquisition of each gene copy may be
viewed as a separate stage. Therefore the distribution of the numbers of
cells possessing a specified level of resistance (i.e. some minimum
number of gene copies) will be that of a multistage process and not that
of a single stage process. This clearly represents a diffficult problem
when attempting to analyze experiments designed to estimate mutation
rates to drug resistance. Indeed in a multistage process there is no
single parameter to estimate but rather a variable number depending on
the number of stages involved. The number of stages would also be needed
to be estimated (if not known) from such experiments and given the
extremely variable nature of the basic process, it seems that estimation
of parameters will be quite difficult. Furthermore, even when the number
of stages is known, it 1is not possible (in general) to write down
expressions for the distribution functions for the multistage process.
This problem is in need of much more detailed exploration.

We will now consider the problem of planning treatment and how this
model may be used in this context.

4.3 Optimal Scheduling

In attempting to find an optimal treatment plan it 1is necessary to

consider two factors: a criteria which quantitatively measures the value
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of a treatment plan, and the set of treatment regimens which are to be
considered. 1Ideally the criterion would include measurement of both the
therapeutic and toxic effects of a treatment plan on the subject.
Unfortunately, the side effects of various treatment regimens are often
difficult to describe in a quantitative form. We shall assuﬁe that each
regimen to be considered has acceptable side effects and that the "value”
of the therapy may be measured by its (tumor specific) therapeutic
effects. A natural criterion for the value of any regimen is the
probability of cure, since cure 1s the usual object of therapy. In this
case Py, the probability of cure for a tumor first treated at size N,
will be defined as the limit too if P{N(t)=0|N(tl)=N}. When all the
tumor and drug parameters are known it is possible to examine the effect
of various dosages and schedules of administration on the probability of
cure for the tumor using equations (4.10), (4.15) and (4.18). In cases
where cure is unlikely another "natural criterion"” is the expected number
of cells at some time after the completion of therapy E[N(t)], t>tj
where tj is the time of the last treatment in the regimen. This
quantity may be simply evaluated using (4.12.1-2) in conjunction with
equations generalizing (3.12.1-2). For a given set of therapeutic
regimens it seems desirable that the optimal regimen be the same for
either criterion (Py or E[N(t)]). Unfortunately this is not always the
case, although In many cases of interest the optimal strategies are the
same (as will be discussed later).

One way to restrict the set of possible protocols is to consider
those of some fixed length, that is, those where there are a fixed number

of times at which treatments are applied (protocols of fixed length).
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Notice that it is always possible to "improve" a protocol, that is,
increase Py or decrease E[N(t)], by adding further treatment
applications to the end of the regimen. By this reasoning any protocol
of length J-1 (number of cycles of therapy) will be no better than at
least two protocols of length J (i.e. those which add a single cycle of
either T; or Ty to the protocol of length J-1). The length of the
regimen will therefore depend on a decision about the value of any
further increase in the probability of cure versus the "costs"” (both
human and financlal) associated with extra cycles of treatment.
Protocols of fixed length are of some interest since they correspond to
the structure of many clinical protocols.

Another way to restrict the set of possible treatment regimens is to
consider only those which satisfy some constraint placed on the measure
of the therapeutic effect. That 1is, we can restrict attention to
protocols for which Py>A (0<A<1) or E[N(t)]<k (k>0, where care must be
taken in the selection of t used in this case). Sets of protocols (when
not empty) satisfying such a condition are of some interest when it is
desired to reduce the duration and quantity of therapy without unduly
influencing therapeutic results. The optimal regimen will then be one
where the number of treatments J is minimal, among regimens satisfying
the condition imposed. Notice, that once J is determined then the
optimal protocol of length J (determined from the set of protocols of
length J) will be an optimal protocol by this criterion. Thus the
optimal protocol of length J is of quite general interest. Examination
of the efficacy of the optimal protocol of length J, for a range of

values of J, is thus useful for determining both the length and "content"
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of the protocol of clinical interest.

In principle the specification of the criterion for efficacy and the
set of permissable protocols permit identification of the optimum regimen
for a given set of tumor parameters, although this will usually be rather
a lengthy exercise. Many tumor parameters are not under control either
in the laboratory or in the clinic and thus it is not necessary to
analyze the effect of changing these parameters on the optimal regimen
(for a particular type of tumor). One parameter which is under control
in the experimental setting is the size of the tumor at first treatment.
In the clinic individual patients, with tumors of the same type, present
with differing tumor burdens. It is thus of some interest to know
whether regimens which are optimal for one size (at first treatment) are
optimal at other sizes. In general the optimal regimen depends upon the
size of the tumor when the first treatment is applied. Thus when
identifying the optimal treatment plan for a particular situation, care
must be taken to verify that the plan is optimal at all sizes likely to
be encountered.

A practical problem arises in the therapy of clinical disease when
few of the relevant tumor parameters are known with any accuracy.

Clearly ignorance of the parameters makes it difficult to evaluate
optimal strategies. ﬁowever, it is possible to derive optimal rules in
the particular case, where two drugs are of equal effectiveness. Since
this case is of some practical interest, we will now examine it in some
detail.

4.4 Optimum Scheduling for Two Equivalent Agents

One special case which is of some practical interest is the
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situation where two drugs (or combinations) are available which are of
approximately equal efficacy. This appears to arise in the treatment of
Hodgkin's Disease where two combinations, MOPP (Nitrogen Mustard,
Oncovin, Procarbazine and Prednisone) and ABVD (Adriamycin, Bleomycin,
Vinblastine and Dacarbazine) produce similar cure rates and remiésion
rates when delivered over the same time interval [29]. These
observations suggest that the development of resistance to each
combination proceeds at the same rate and that cell kills of each
combination are similar. The available evidence also suggests that each
combination is equally successful in producing remissions and cures in
tumors which have previously failed with the other therapy. This implies
that each combination's effect is approximately the same in cells
resistant to fhe other. As a first approximation we may consider the two
drug combinations as having equal values for the model parameters. In
this situation we will refer to the two combination as being equivalent,
and by that we will mean that each drug has identical values for all |
parameters.

In what follows we will model two agents as two individual drugs.
When an agent consists of a combination of drugs this model must be
considered a first approximation since resistance to multiple agents is
more complex than that to a single agent (see discussion in Section 4.2).
Explicitly two agents will be said to be equivalent 1if =

1,0 %2,0°

o, =0 and the

M1 2,20 1,127,120 1,27 ,10 M7 % Y

17 V22 V1,127 2,12

intertreatment times t —tj, j=1,...,J-1 are constant. In this case, if

j+1
T(so,sl,sz,s3;0) = Y(so,sz,sl,s3;0), ees(4.25)

that is
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P{R,(0)=1,R,(0)=3]|R(0),R ,(0) }=P{R, (0)=3,R,(0)=1]|R(0),R ,(0)}
then for t<ty] (the time of first treatment), we have

Y(so,sl,sz,s3;t) = Y(so,sz,sl,SB;t). eee(4.26)
Here we will assume (4.25) holds, which is reasonable since otherwise we
would expect the response of the tumor to therapy by T; (alone) to be
different from the response to T2 (alone) and thus the agents would not
appear equivalent.

This definition of equivalent agents has been used previously in the
consideration of the effects of cancer therapy [30,31]. Intertreatment
times are usually selected to be the minimum times necessary for the
recovery of normal tissues between cycles of treatment. By assuming that
intertreatment times are the same for each treatment we indicate that the
minimum recovery time for each treatment is the same. The term
"equivalent”™ is motivated by the observation that if either of the drugs
is used alonme then the distribution of the total number of cells will be
the same for each drug. Note that from the general definition of the

and %, <

resistant states, we have 7, <% .
i i,3-1

,0 i,i<ni,12 for i=1,2. The

"1
tumor parameters b, ¢ and d are fixed and will not be explicitly
specified.

As noted before (Section 3.3), chemotherapy is given in reﬁeating
cycles for clinical disease in which the doses and drugs used are fixed
in advance [32]. The intervening time between repeat applications is
determined by the recovery time of the patients' normal tissues. This
recovery time 1is selected to be the minimum time for the necessary

recovery. Protocols which administer the cycles at greater than the

minimum interval will be less effective than those giving the same drugs
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at the same dose in the same sequence as frequently as permissable, since
longer intertreatment times allow more time for regrowth.

We will now consider the construction of optimal rules for
sequencing the administration of two equivalent agents. In this section
we will consider the construction of the optimal treatment regimen within
the set of protocols of fixed length J (number of times a treatment is
applied). We will refer to the treatment plan as a strategy, which
represents the sequence in which treatments are administered (the times
of administration being already specified).

First we will fix J, the number of times of administration of
treatments in the regimen. A therapeutic strategy, S, will be
represented by a vector which consists of a sequence of J 1's or 2's with
each number refefring to the subscript of the treatment given (either
Ty or Ty), and the sequence indicating the order in which they are
given. There will be ZJ such strategies and we will write S(v) when we
wish to refer to a particular strategy in the set. A solution to the
fixed length problem, which of course will depend on J, will be referred
to as an optimal strategy for each criteria of treatment efficacy. At
least one optimal strategy exists because the number of strategies of
fixed length J is finite. When a tumor is treated with strategy S(v) we
will write the probability of cure as PN(S(V)) and the expected number of

cells as E[N (t)1].

S(v)

Having defined the set of strategies to be considered it remains to
specify the criterion for the efficacy of the therapy. As before, two
natural candidates are Py and E[N(t)]. From (4.25) and general

considerations of the behaviour of the process, at least two distinct
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strategies have the same value of Py because the drugs are equivalent
and each strategy has a "mirror image” (i.e. l's and 2's interchanged).
Similar considerations apply to E[N(t)] and to any symmetric functional
(with respect to Rl(t) and Rz(t)) of the distribution of
{RO(t)’Rl(t)’RZ(t)’Rlz(t)}' We wish to show that there exist optimal
strategies which are independent of the drug and tumor parameters for any
pair of equivalent drugs. Such optimal strategies do exist for the
criterion E[N(t)] as we will show subsequently. Unfortunately these
strategies are not necessarily optimal for Py, as will be shown by
producing a counterexample (see Chapter 5).

We may formally link minimizing E[N(t)] and maximizing Py under
particular circumstances as follows. For two strategies S(i) and S(j),
if

P{ )(t)>k}>P{N )(t)>k} for all k, ...(4.27)

Ns(1 s(j
then it follows immediately that

B[Ng ;) ()] > E[Ng 1 (£)] and Py(S(1)) € Bu(S(I))-

Thus the intuitive idea of minimising E[N(t)] will also be formally
equivalent to maximising Pyn(S) in situations where the rather strong
condition (4.27) of stochastic ordering applies. However, it is doubtful
that this condition could ever be verified in practice.

The pgrticular situation of equivalent drugs permits the
consideration of criteria of efficacy other than PN and E[N(t)]. A
second quantity which can be minimized may be motivated by the
consideration of the resistant subcompartments of the tumor. Initially
we observe that cells in Rgp "see only” one drug, since each drug

has the same effect on Ry cells. Thus the only component of the
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strategy which affects the distribution of the number of cells in Rp at

time t>t is the length J of the strategy. Similarly the effect of the

J’

strategy on cells already in R 2 at ty depends only on the length J and

1
not on the order in which the drugs are given. Therefore the “"value of"
strategies result from their differential effect on the cells in Rj

and Rj.

For any strategy to be of some value it must be capable of causing a
net overall decline in the mean number of singly resistant cells. This,
of course, does not follow from any formal constraints placed on this
model but from a consideration of what this would imply about the
regrowth of the resistant cells. It is possible for treatments to
eliminate singly resistant compartments (when treatment is given) with a
non-negligible probability, even though the net mean growth of these
cells may be positive because of a very large regrowth between.
treatments. There is no evidence to suggest that this occurs in clinical
disease although there are probably many cases where small cell kills are
'balanced' by regrowth between treatments. An interesting case of this
has been identified by Skipper in his analysis of the response of a mouse
mammary tumor to treatment by the CAF (Cyclophosphamide, Adriamycin and
5-Fluorouracil) regimen [33].

The objective of the therapeutic strategy is to cause a net decline
(to extinction) of the singly resistant cells in such a way as to
minimize the number of transitions to double resistance. Clearly, the
cases of greatest importance are those where the growth of the cells
already in Rjj cannot be made subcritical and it is necessary to

plan the strategy so that the likelihood of transitions from the singly
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resistant to the doubly resistant state is minimized. Even in cases
where the chemotherapy can make the growth of doubly resistant cells
subcritical (over the treatment plan) one would wish to minimize the
number of new doubly resistant cells since they are by definition the
most difficult to treat. We will now develop an expression for the mean
number of transitions from single to double resistance during the
treatment period and subsquently derive the form of strategies which
minimize this quantity.

Consider the number of cells in R1 at any time te(tj,

are derived from cells in R1 at time tj. Conditional on Rl(tj) the

tj+1) which

expected number of such cells at time t, gl(tj, t), 1s given by the first
term on the right hand side of (4.12.1) with mi(0)=R1(tj):

g (t5t) = Ry(e)) exp {(8-a; 1))(t-t )}
Conditional on Rl(tj), the expected number of transitions to double

resistance in the interval (t,,t) by these cells, e (tj,t), is given by
1

h
(t.,t) = a ft g.(t,,u)du.
“Rl i’ 1,127¢ 51075
The simplest way to obtain the above relationship is to consider cells in

R, as being sensitive (to T2) and in R

1 as being resistant (to Tz) and

12
use the differential equations leading to (3.8) as follows. Set

mo(t)=g1(tj,t), ozb+v=al,12 and ml(t)=pRl(tj,t). Then solve the
differential equation for g (t.,t) noting that the term buR (t,.,t)=0
1 J 1 3

because here we are counting the number of transitions (which have no

intrinsic growth). Letting ul(tj,t)=E[pR (tj,t)], it follows that
1

t (6-a1’12)(u-tj)

ul(tj,t) =a; 1y jtjml(tj)e du. veo(4.28)
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Similarly we may define uz(tj,t) for transitions from R, to R

2 12°

The expected number of transitions to double resistance in [tj’tj+1) from
singly resistant cells at tj is thus ul(tj,tj+1)+u2(tj,tj+l). Thus the
mean number of those events which occur in some [tj, tj+l) for j=0,...,J

(t0=0) is given by

J
M= ) 2 by (t ), ceo(4.29)
=0 1=1 g

where for simplicity we set t =t +(t We seek strategies which

J+1 J J 1)

ninimize (4.29). In seeking to minimize (4.29) we may minimize any
function of the form KM“+C where K (>0) and C are not dependent upon the

strategy. In particular we may replace each term pi(tj’tj+1) of the form

(4.28) by

_ (k—6+ai 12)(u-t.)

a,m.(t.)[e ’ 3.1y (5-a, L )(u-t))
I, L ey 4 1000 e L1277 73,

24,12 [k-&+a ]

%5 1,12

a; 19¢ J+l m, (u)du
h

from (4.12.1). The added terms do not depend upon the strategy and thus
minimizing M” is°equivalént to minimizing M*, where

J t.+1
e = ) [ 3T [ (w4, (u)]du. ver(4.29)
. t, 1 2
j=1 3
Minimization of this quantity has previously been considered for the

special case ¢=d=0, = =1 [31]. We will now proceed to

i, i i 12

characterize the strategies which minimize (4.29) and then show that

these strategies also minimize E[N(t)], t>tJ.

In order to do thils we now define some new quantities. Let Ei J,(t)
b

be the expected number of cells resistant to Ti alone at time t, which

derive from (have grown from, including the effects of treatment) new
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mutations” (transitions from RO to Ri) in the interval [tj~1’ tj) for
j=l,+..,J+1l. Define Ei,j(t)=0 if t<tj_1. Singly resistant cells present
at t=0 will be included in the interval [to,t1)=[0,t1). Then for i=1,2

and u<tJ+1
JEl
m, (u)= E.  (u),
i oy Bk
and we may then write (4.29) as

J ti41 j+1
me= ) L[] ()48, | (w)]du,
=1 t k=1 ’
j \
which gives
J i t.
+1
we 3 ) [ (B} (0)+E) | (u)]du
j=1 k=1 t, ’
] h|
J t3+1
+ ) [E, j+1(u)+E2 j+1(u)]du. cee(4.30)
j=1 t ? ?

3

The second term on the right hand side of (4.30) represents "new
mutations” arising from cells in Ry between cycles of treatment which
have not been exposed to either drug. Conditional on the treatment times
and the number of treatment cycles, the distribution of cells in Rg is
the same for all treatment strategies (because the two drugs are
equivalent) for abitrary t, and thus the second term is the same for all
such strategies. Thus minimizing M* is equivalent to minimizing the
first term on the right hand side of (4.30).

The growth of Ei,k(u) over [tj’tj+1] for all j, k where j>k is
exponential with parameter (é_ai,lz) (see first term in (4.12.1)). Thus

[P e (uyde = B, (68, () {exp{Cs-a, 1)t -t.)]-L).

. i,k i,k*7j i, 12 i, 12 j+l 73

J
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Using (4.30) we have
_1 .
* = - - - -
M (8 31,12> exp{ (6 31’12)(t2 t;) 1 JM+K

(since a and t. —tj is constant for j=l,...,J) where K 1is a

1,12722,12 j+1

constant given by the second term of (4.30) and

A
M= E,  (t,). oo (4.31)
=1 k=1 im1 DRI

Thus minimizing M* is equivalent to minimizing M.
We will now proceed to develop our notation in order to explicitly

minimize M and thus minimize M”. Define

2 J

C.(S(v) =) ] E  (t),
k i-1 j=k kI

where the Eik(t) are calculated for the treatment strategy S(v); then

J
M= ) €, (S(v) -
k=1

1 if the j-th treatment in S(v) is T

Define éj(v) 1

0 otherwise, vee(4.32)

and let

2
X, (S(V),2) =] T 8.(v) - [1-6,(Vv)] |, for 1 <k<&<J,
k . J J
i=k
the modulus of the number of times T; is given minus the number of
times T2 is given between the k-th and 2-th times of treatment. For

k=1l,...,J, let

{S(v)}= {1:X_(5(v),1) = max X (S(v),)}, ..;(4.33)'
“ , & k<x<JXk

the indices of treatment times where the modulus of the difference in the
number of Ty's and Ty's is maximized commencing at k. Let

Bk={S(v): max Xk(S(v),2)=1} for k=1,...,J, cee(4.34)
k<2<J

the set of strategies where, commencing at the k-th time of treatment,



-123-

the maximum modulus of the difference in the number of times T1 and Tzare

given equals 1. Let

g = exp{(6-a for j=1, ..., J.

1,120 (517 tj)}
As before,

1

T Q P{a cell in RQ will survive one cycle of Ti} for 1 = 1,2
b

To simplify notation, let Ty = n1’1(=n2’2) and ™ o= n1’2(=n2’1) where

n1<n from the general definition of resistance. By equivalence

0
E. .(t.) = E. .(t.) and we will let E.=E, .(t.). Define
1,3( J) 2,3( J) h| i,J( J)

E
n.(k) = o) (V)s
3 1=

(see 4.32), the number of times T, is given between the j-th and k-th

1
cycles of therapy where reference to the strategy, indexed by v, is

supressed for simplicity.

Using this notation it is then straightforward to show

nj(k) k—j+1—nj(k) k—j+1—nj(k) nj(k)

I s
) g T % + 7y 7 ]o o..(4.35)

Cj(S(v))= Ejk=j
We see from (4.35) that; as expected, mirror image strategles (i.e. 1 and
2's interchanged) have the same value of Cj(S(v)) since Ej does not
depend on S(v).

Having developed the required notation we will now show that M given
by (4.31) and thus M” given by (4.29) is minimized by the alternating
strategies {1,2,1,2,...},{2,1,2,1,...} amongst those of fixed length J.

THEOREM 1

J
Among all strategies of fixed length J, M = X Cj(S(v)) is minimized only
j=1

by the two strategies which alternate therapy at each cycle.

Proof:
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The proof will be achieved by characterizing the strategies S(v)
which minimize Cj(S(v)) for abitrary j. We will then show that the
alternating strategies minimize Cj(S(v)) for all j. The proof will
consist of three parts:

(1) Choose arbitrary j. For any S(v) not in Bj (see (4.34)), there

exists S(v*) ¢ Bj such that Cj(S(v*)) < Cj(S(v)).
(ii) 1If S(v), S(v*¥) ¢ Bj then Cj(S(v)) = Cj(S(v*)).

(1i1) If s(1) = (1,2,1,2,...) and S(2) = (2,1,2,1,...) then S(l) and

J
S(2) minimize E Cj(S(v)) among all strategies of length J.
j=1

(1) Choose arbitrary j. If S(v) is not in Bj choose one k ¢ Kj(S(v)),

as defined in (4.33). Consider first the case k<J and ék(v)=1, that is

the k-th cycle is T.. Let o_ be the operator which interchanges the k-th

k
and k+l-st elements of a strategy. Now k ¢ Kj(S(v)) and k<J implies that

1

Sk+1(v)=2. Consider the strategy ckS(v). Using (4.35) we have
C.(S5(v))- C.(g, 5(v
$(8CV)= €,(a,5()
k-j n,.(k)-1 k-j+l-n,(k)
73 i J (n.,=%,)
0 1 0 "1
k—j+1-nj(k) nj(k)—l
T (nl—no)]

jg

+ no

where nj(k) is calculated for S(v). Thus we may write

Cj(S(V))—Cj(GkS(v))

. (k)~1 k-j+l-n.(k) k-j+l-n,.(k) n,(k)-1
g ki 3% i j
= Ejg [no T Ty 2 ]

where Ejgk_J does not depend on S(v).

Now since S(v) is not in Bj and ék(v)=1, we have nj(k) > (k-3+2)/2,

n.(k)-1  k=j+l-n_ (k) k=j+1l-n_ (k) n,(k)-1
T J > T J 2 J

Since no>n1 we have 7 0

0
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and thus
Cj(S(v)) - Cj(okS(v))>0.
For k<J and 6k(v)=0 then we can also show the above result using similar
considerations. For {J}=Kj(S(v)) consider the strategy S(v”) where the
J-th treatment 1s replaced by the other treatment and obtain a similar
inequality for Cj(S(v))—Cj(S(v’)).

We may now apply the same considerations to the new strategy which
we have created (either ckS(v) or S(v”)) and obtain a sequence of
distinct strategies, {S(v)} say, which have strictly decreasing Cj(S(v)).
Now the number of possible strategiles is finite (for finite J), and this
process of producing new strategies must terminate since each strategy is
distinct. Since there is at least one v such that S(v) € Bj (and the
process of improving strategies is valid for all v such that S(v) is not
in Bj) we conclude that the sequence of strategies terminates with the

last member being contained in B This proves the desired result.

i .
(ii) For all j, 1<£j<J, Bj contains ZJ+[(J_J)/2] elements and
therefore consider the non-trivial case S(v)#S(v*). Using (4.35) we have

¢, (M) - cj<5(v*>> -
J k-3 nj(k) k—j+l—nj(k)

E 2 g T T

k-j+l-n (k) n,(k)
+ % J J
3 s

0 ™

nk(k)  k-j+l-nd (k)

k-j+l-n*(k)  n*(k)
u _ 3 3

0 1 0 ™
where ng(k) is calculated for strategy S(v¥). Since S(v), S(v*) ¢ Bj we

- «e+(4.36)

have

ny (k) = LanLE n%(k) for k-J+l even,

and

nj(k) ng(k) or nj(k) = k—j+1—n§(k) for k—-j+1 odd.



-126~
Thus each term in the sum (4.36) is zero, and therefore Cj(S(v)) =
Cj(S(v*)), proving the required result.
(1ii) Now S(1), S(2) ¢ Bj for all 1<j<J. Furthermore only S(1) and
S(2) have this property. But S5(1) and S(2) minimize Cj(S(v)) for all j
and thus only S(1) and S(2) minimize

J .
M= ) C,(S(v))-
=1

The proof is complete.

The proof of a special case of this theorem (¢=d=0, %=, .==

i,17%,12°0)

has been presented previously [31]. We will now show that the
alternating strategies minimize E[N(t)] for t>tJ.
Theorem 2

Among the strategies of fixed length J, S(1) and S(2) minimize
E[N(t)] for arbitrary t>tj.
Proof :

We will evaluate E[N(t)] at time t +(tJ-tJ_1) (as before)

4175
without loss of generality. Consider the development of doubly resistant

cells in the interval [tj, t 1) for j=0,...J from cells which were not

jt+

doubly resistant at time tj. Each such cell must have grown from one of

three types of progenitor at time tj’ i.e. either a RO, a R1 or a R2

cell. The treatment sequence does not affect the distribution of Ro(t)

(only the length does because of equivalent treatments), so the number of

doubly resistant cells at t3+

1 derived from RO cells at tj does not

depend on the treatment sequence. Thus the differential effect of

various strategies on the number of doubly resistant cells at time t,

tj<t<tj+1, results from its differential effect on singly resistant cells
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t.. We will now calculate the

present at the treatment times tl"" j

expected number of doubly resistant cells which have arisen from singly
resistant cells present at treatment times.

Let Rlz(t,t’,t”)_(t”>t’, t>t”) be the number of doubly resistant
cells present at time t whose progenitor (first doubly resistant cell)
originated as a mutation from a singly resistant cell (either Rj or

Rp) in [t%, t°7). Using (4.12.2) we can write

E[R p(tars G Eepp) IRp(EDS Ry(E)]

= [Rl(tk) + Rz(tk)] h, for k=1,...,J, e (4.37)
&5(t, .-t ) -a (t,.,-t)
_ k+1 "k T L12 7kl Tk _ _
where h=e (1l-e ). Let n2_n1,12 (—nz’lz) then
E[R12(tj)] = T, E[RIZ(tj)] for j=1,...J.
&(t, .-t )
If we let g*=e k+l Tk then we have by (4.12.2)

B[R 5(tphys B b)) [R1(EDS Ry(e)]
J-k
= [Rl(tk)+R2(tk)] h (nzg*) , for k=1,...J. ... (4.38)
From the same considerations used in deducing (4.35) we have
E[R (t,) + Ry(£)]
k k-j nj(k) k=j+i-n, (k) k—j+1—nj(k) nj(k)

= |
Yy E.g {no T +x "

bo oo e(4.39)
=1 °

where Ej and nj(k) are the same as in the proof of Theorem 1. Thus using

(4.37), (4.38) and (4.39) we have

HE P REL AR
J k k=3  n,(k) k-j+l-n, (k)
J-k
= I b (5" I Eie {my Y m ’
k=1 =1
R NORERE
+ Ty Ty J . ees(4.40)

Now E[Rlz(tJ+1)] = E[Rlz(tj+1,t1’tJ+1)] + E[Rlz(tJ+1,t0,t1)], where

E[R ’tO’tl)] does not depend on the strategy S(v). Also from (4.39)

12(E 341
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we have
B[Ry (Egq) F Ry(tgyy)]
J+1 n,(J) J-j+l-n.(J) J-§+1-n,(J) n,(J)
= J=3+1; ] j j 3
jzl Ej 8 iz, 7y + 7 3 b, eei(ba41)

where nj(k)=0 if j>k. Using (4.40) and (4.41) we obtain
E[N(t = E[Ry(t 5, )] + E[R (€, )] + E[Ry(E )] + E[R (£, )]
J+1 J-j+l  n,(J) J-j+1—nj(J) J-j+1—nj(J) nj(J)

= j
= K+ jzl Ejg {no T + T Ty

g+

Jk k k=3 ny(k) k-ftlon(k)

) J

k=f+lon, (k) 0, (k)
Ej g {ﬁo T + %

J
+ ] h (me*) 0 %)

k=1 j=1

eee(b4.42)
where K does not depend on the strategy S(v).
The terms within the summations in (4.42) have both been seen to be
minimized by strategies belonging to By it follows that the summations
are uniquely minimized by S(1) and S(2). Thus S(1l) and S(2) minimize

E[N(t)] for t>tj. This completes the proof of the theorem.

We have found that there is one "pattern” of strategies which is
optimal (in terms of minimizing E[N(t)]) for any treatment parameters
providing the two drugs are equivalent. This property is extremely
convenient since in any situation where treatment must be stopped early
(i.e. patient toxicity or refusal), the truncated regimen is then optimal
for the number of treatments given. Similarly if it is decided to
increase the treatment regimen we may still construct the optimal plan of
the required length by adding cycles of the drugs to the pre—existing
regimen.

As previously indicated, however, the probability of cure P is not

N’
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necessarily maximized by those strategies which minimize E[N(t)] for
t>ty (or minimize M”) when treatments are equivalent. An example of
this is given in Chapter 5 and the accompanying discussion suggests that
this phenomena will only occur in the particular set of circumstances
when regrowth between treatments is large and the composite process of
treatment and regrowth (for singly resistant cells) is not strongly
subcritical. This situation is unlikely to be encountered in human
disease since growth over periods of one month (which is greater than
most intertrea£ment intervals) is modest for the majority of human
tumors. However, such conditions may be encountered in several
experimental cancers where doubling times in the order of twelve hours
are not uncommon.

The two theorems, with the preceding discussion, indicate that in
cases of human cancer where two equivalent agents are available, which
may not be used concurrently, the best way to use these two will be in an
~alternating strategy. This result is of interest both because of its
generality (it does not depend on the particular parameter values) and
because it 1s not current clinical practice.

In clinical medicine protocols are developed whereby active agents
are combined, as much as possible, into regimens which are then repeated
a fixed number of cycles. Where two such regimens are available the
common practice is to use one continuously until there 1is evidence of
relapse when the otherbregimen is employed. Conversely, although
alternating strategies represent a departure from clinical practice, they
are compatible with the clinical concept of combination chemotherapy.

Combination chemotherapy uses drugs given at constant times during a
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cycle and this cycle is repeated a fixed number of times. 1In each
regimen the drugs are frequently not given simultaneously but on
different days. An alternating regimen can be viewed as combination

chemotherapy with repeated cycles of the regimen TlTZ (or T ) over a

2
longer intertreatment interval.
4.5 Discussion

The identification of optimal strategies (i.e. those which maximize
PN) represents a considerable problem in computation when the parameters
are known. For example, when J=12 there are 212 possible strategies.
Thus it is desirable to seek heuristics to reduce the set of strategies
which must be considered. For a strategy to be effective the treatments
must be able to make the net growth of Ro(t), Rl(t) and Rz(t) sﬁbcritical
(over the treatment period); otherwise no cure is possible. 1In
particular the cells present at time tl in RO’ R1 and R2 must be
eliminated with a "large" probability. Following this reasoning we infer
that the expected number of these cells should be small at completion of

the treatment regimen. That 1s, “"reasonable” strategies would be

expected to satisfy,

nl(J) J-nl(J)
E[Ri(tl)] [151’i n2,i ] < k, eoe(4.43)

for i=0,1,2 where k is chosen as a function of d (i.e. it will be larger
if the death rate is larger; a possible choice is k=0.5(1—s)_1). In
certain cases the set of inequalities (4.43) may provide useful lower and
upper bounds on nl(J) (i.e. not 0 and J), thus eliminating some
strategles from consideration. These inequalities may also indicate that
J is too small so that the search for an optimal rule of length J may not

be of great use.
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The search for optimal strategles, using PN as the criterion, has
been examined in considerable detail by Day [34], who considered 16
strategies (chosen to "span" the set of possible strategies) for the case
J=12, and calculated their effect on the probability of cure for 256
different combinations of drug and tumor parameters. He showed that it
is possible to identify certain patterns in the best (of the 16)
treatment strategies as the degree of asymmetry in the parameters of the
two drugs increases. In a particular clinical problem strategies "close”
to the best of the 16 determined by Day could be examined. The details
of such a search remain to be worked out and we will return to this
problem in Chapter 5.

It should be remarked that the assumption of a fixed number of
treatments may not be a reasonable model for the clinical situation when
the two drugs have different recovery times before further therapy is
possible. In such cases it may be more reasonable to fix the total
treatment interval [tl,t‘] where J will be chosen so that tJ<t’. If the
tumor parameters are known then it is straightforward, although
computationally demanding, to calculate the optimum strategy. In order
to treat the problem of optimizing strategies comprehensively, we need a
precise statement of the relationship between dose and toxicity for each
of the drugs. If this were specified then it would be possible to
construct optimum dosages as well as optimum schedules. However little
theoretical work has been undertaken in this area and at present it is
not possible to include considerationms of toxicity in modelling the
effects of treatment. This concludes the consideration of optimizing

treatment strategies. We will now consider variation in mutation rates
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on the development of double resistance.

4.6 Variation in the Mutation Rates

In the previous chapter dealing with resistance to a single agent we
examined the effect of variation in the rate a=a+v/b (Section 3.10).
Here (in analogy to the case of single resistance) we will consider
variations in mutation rates where the rates for an individual tumor are
fixed but follow a distribution for tumors of that type. In particular
we will consider variations in the vector of parameters A*, where

% =
A% = (A),A),A5,4,,AL)

~

(a1b+v1,a2b+v b+v12).

20%,12%™V1 127 %, 1271V, 120 %12

We will assume a12b+v12 =0 since we are primarily interested in examining
the effect of variation in rates on the two step development of double
resistance; the one step process having been essentially covered in
Section 3.10. Thus we will consider A, the first four elements of A*, at
this point although we will consider A* later in a different context.
Also, because the distribution function of {Ro(t), R (£), R,(t), Rlz(t)}
cannot be obtained in explicit form, we will (as in Section 3.10)
consider the effect of variations in A on the probability of cure. The
scale of measurement of t is, of course, arbitrary. In order to simplify
presentation we will assume, without any loss of generality, that t is
measured on a scale for which b=l.

The probability of cure depends on the treatment strategy for

arbitrary = In analogy with the case for single resistance we will

1,Q

only consider the special case = o, n1,12=n2,12=1 (nl,l

are arbitrary) and assume that both drugs are given together.

1,0 2,0 1,2 "2,1"

and ﬂz’z

Thus all cells, except the doubly resistant ones, are eliminated by the
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first application of the combination of the two dfugs. In this case the
probability of cure depends only on the first time of administration of
the combination since subsequent application has no effect on the
remaining doubly resistant stem cells. Even in this case the probability
of cure is a complicated function (involving integrals) and thus we will
use the approximation given by (4.23). 1In what follows we will assume
that A is random and will indicate the dependence of PN on A by writing
writing PN(Q). We wish to select a distribution for A which leads to an
expression for E[PN(é)] which is reasonably simple to calculate. We
assume that there exists a density function for the random variable A,
f(a) say. Unfortunately, little information is available as to the form
of f(a) since no experiments have been undertaken to attempt to identify
it.

Given our ignorance on the form of f(g) it seems reasonable to
require that f(a) have structure which accords with our physical
understanding about the nature of the processes'involved. We have,
generally,

£(a) = glay,a,la;,a,) hia;,a,),
where g (a3,a4|al,a2) is the density of (A3,A4) conditional on

(A =a_,A.=a,) and h(a, a,) is the marginal density of (A,,A ). We
1 2 1,2 1°72

1’72

postulate here that (A3,A4) are conditionally (on (Al’AZ)) independent:
g(a3)a4la1)a2) = gl(a3|al’a2) gz(a4la1’a2))

where gl(a3|al,a2) and gz(a4|al,a2) are the marginal densities of A3 and

A4 respectively, conditional upon (A1=a1,A2=a2). Also we postulate that

gl(a3|a1,a2)=g1(a3la2), 8,(a,la;,a,)=g,(a,la)),

that is, the development of resistance to Tj in cells resistant to Tj
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is dependent only on the realized parameter for the acquisition of
resistance to Tj in sensitive cells. Combining the above postulates we
have,
f(a) = gl(a3|a2) gz(a4|al) h(a,,a,). coo(bbb)
This implies that if Aj; and Aj are marginally independent then
(AZ’AS) and (Al’Aa) are independent. The structure for f(g)
expressed in (4.44) seems a reasonable simplification to impose since it
implies that the pairs (A2,A3) and (Al’A4) are independent if, and only
if, A1 and A2 are independent. Also the distribution of rates to double
resistance depends only on the analogous rates to single resistance. In
common with the single resistance case (section 3.10) we will use a beta
distribution to model variation in the mutation rates as detailed below.
Reference to (4.44) shows that there are three seperate densities
whose form must be specified. We would like to model h(al,az) by a
bivariate beta distribtuion. The "natural” bivariate beta distribution
(which is obtained by conditioning on sums of gamma random variables) has
a negative correlation for all parameter values. Since instability in
the stem cell genome is likely to lead to higher mutation rates of all
kinds, mutation rates to drug resistance are more likely to be
positiveiy, than negatively correlated. Rather than attempt to construct
a positively correlated bivariate distribution with beta marginals, we
will consider two particular forms for h(al,az) as follows:
(1) .independence: h(al,az) = hl(al)hz(az) where hl(al),hz(az) are
both univariate beta-distributions. . oo (4.45)
(ii) dependence: A=A, with probability 1 where A, has a beta

271 1
distribution. eoe(b4.46)
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To motivate the choice of the densities gl(a3|a2) and gz(a4|al), it
is helpful to consider some underlying structure for their expected

values. A convenient form is the linear model, that is
E[Ai+2|Aj=aj] = pi+2+kj(aj—pj) i=1,2, j=3-1, ceo(4.47)

where uj= E[Aj] and thus E[A Since we must have

14217142
0<E[Ai+2|Aj=aj]<l, we require that
U Be o ol
i+2 i+2
T - ) <kj<min ( p
j 3 3 3

We will consider two different forms for the distributions gl(.) and

max

L) u1+2)

gz(.) which exhibit this linear structure as follows.
(1) First Form

Ajpg = Ptk (A mpy) with probability 1.

This may be viewed as the limit of a beta distribution (for the
conditional distribution given Aj=aj) with parameters (u,v) where u-e,

v»>» in such a way that

U
v H142

Letting

+kj(aj—pj), i=1,2, j=3-i.

Py = E[By(A)] = [ Py(a) £(a)da ,

then from (4.24) we have
P epfamo™n ]
P = exp{-(l-g) N a, (1, o tk.(a,~p.))
N 0 0 g=1 & i+2 733 73
n [(1—8)/e(ui+2+kj(aj—uj))]} h(a,,a,)da da,, ceo(4.48)

where j=3-i. As previously mentioned, two forms for h(al,az) will be -
used: (4.45) and (4.46). In calculating (4.48) we will be concerned
mainly with cases where the standard deviations of A1 and A2 are small,

since it 1s clear (by analogy with the case of single resistance, Section

3.10) that when the standard deviation is large, Py will vary slowly
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with N. By examining the cases where S.D.(Aj) is small, we will be
able to examine the effects upon curability of variability in the
mutation rates which lie close to the level of detectability even in
experimental systems. Figures 5 and 6 plot equation (4.48) as a function
of N for d=0,u3=u4=ul=u2=10'3, S.D.(Al)=S.D.(A2)=10"3 and where k1=k2=0

and k1=k2=1 respectively. As may be seen the most marked effect of
variability in the rates is to produce a pronounced tail in Py (for
increasing N) which is not evident when the rates are fixed.
(ii) Second Form
Here we will assume that Ai+2 (i=1,2) have beta distributions (for the
conditional distributions given Aj= aj) where
E[Ai+2|Aj=aj] = pi+2+kj(aj—p,j) for i=1,2, j=3-i.
This does not uniquely specify the beta distribution (which has two
parameters) and thus we will also require that the coefficients of
variation are the same, that is,
C.V.[Ai+2|Aj] = C.V. [Aj], for i=1,2, j=3-i. ce e (4.49)
We assume that the conditional coefficient of variation is constant since
variation in mutation rates are likely to be proportional to their
absolute magnitude. The integrals to be calculated to evaluate PN for
the second form are more complex than the first form and involve the
numerical calculation of one more nested integral. Examples are

presented in Figures 7 and 8. Examination of these figures shows a

similar tail for P to that seen previously where A

N i+2(1=1,2) was a

degenerate function of Aj (j=3-1i). For the most pronounced case, where
kl= k

2=1, a considerable change is produced from the case where the rates

are fixed (Figure 8).
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In summary we can conclude that even modest variations
(S.D.(§)=p(é)) in the mutation rates can lead to substantial changes in
=0,

the function P_ for the special case 1

=0 (i#j d
N i (i#j) an

%0 oy ",127

(i=1,2). Clearly these effects will apply to other situations where the
n's are arbitrary, however the effects are then more difficult to
calculate because they depend on the full treatment protocol. An example

(with further discussion) of a case where %, .#0 and

1,0 ﬁi,j*o (i,j=1,2) is

given in Chapter 5. However if we assume that we may use the example
presented as a model for the (more complex) situations encountered in
real tumor systems, we may make some tentative observations. If a
particular tumor type has a small, but significant, cure rate when
treated at an advanced stage (large bulk of tumor), then the predicted
curability at lesser tumor burdens (of the same type) will be a function
of the amount of variablity in the mutation rates. For example a five-
fold reduction in size would imply a large increase in curablity and the
size of this increment will decrease as the degree of variablity in the
rates increases. This observation has implications for the therapy of
human disease where the curablity of a regimen is observed and little is
known of the mutation rates.

The effect of variation in A on the meén number of doubly resistant
cells is more easily evaluated. Using (4.12.2) and approximating all
exponentials (except eét) by the first three terms in their expansion

yields

2 2
&t ; t 2 . 2
w ,(t)=e" {my,(0)+ 121 mi(O)t[ai’lz 7 83 191 ¥ Byt /2121 aiai,lz}.

Taking the expected value of this expression (with respect to A) and
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Figure 5
Probability of Cure when Variation is Present - 1.
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function is plotted for three separate cases where k1=k2=0 in (4.48):

(i ——-- Al;A2=A3=A4=10‘3, mutation rates fixed.

(i1) - - --- A_=A =10'3, A, and A, independent with B-distribution
374 1 2
with E[A,]= S.D.[Ai]=10‘3 for i=1,2.
—— — _ =A =10-3 -
(111) A3 A4 1077, A1 A2 with probability 1, where A1 has

a p-distribution with E[A1]=S.D.[A1]=1O’3.
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Figure 6
Probability of Cure when Variation is Present - 2.
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function is plotted for three separate cases where'kl=k2=1 in (4.48):
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(i) —————— A1=A2=A3=A4=10'3, mutation rates fixed.

Ai+2=A3-i with probability 1 for i=1,2, A1 and AZ

independent and follow a B-distribution with

E[Ai]=S.D.[Ai]=10‘3 for i=1,2.
A1) — === A3y

where A1 has a B distribution with E[A1]=S.D.[A1]=10"3

and A1=A2 with probability 1 for i=1,2,
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assuming the structure expressed by (4.44), (4.47) and (4.49) we have

var (A.)
t 2 _ _ £, 2 2
Elay 107 7 25,12) = By ity var (A9 | 2 +1]
B
and
) )
E[ a, a, 1 = [p.u, ,,+ k.(cov (A,,A)]-
i=1 i 71,12 421 1 i+2 j 1272
From this we have
ot ;
E[R ,(£)] = e {m,(0)
2 var(A.)
t 2 2 3
+ t'z mi(O) [“i+2 > (“i+2 + kjvar (Aj))L_TT_——'+1]]
i=1 M.
]
2 :
+ B t2/2 Y [uu +k cov (A,,A)]} where j=3-i.
0" 7. HiFie 1’72 J

For clinical disease, where we assume ml(O) = mz(O) = m12(0) = 0,
the net effect of variation in mutation rates on E[R12(t)] will depend on
kl’ k2 and cov(A AZ) Thus even when A1 and A2 have a small
correlation, if their variance is. large the mean number of doubly
resistant cells may be quite different from when the rates are fixed.

It is natural to consider whether it is possible to generalize the
notion of equivalent agents (where each component of A* is fixed, as in

Section 4.3) to include the situation where A* (A5¢0) has a

nondegenerate distribution. Assuming A* to have a density function

fA A LALLA ,A(x) say, then a natural definition of equivalent agents is
27324275
£ (x) = f (x) , v e (4250)
AlsAg,A0LA, A AysAl A, A AN

T =7 7 =7 and

where as before 11 0~ 2 0° n1,1=n2’2, 27T 10 1,127%2,12

(tj+1—tj) are fixed for j=1,...,J-1. We may extend Theorem 2 to this
situation. However, Theorem 1 may not be simply extended (in general)

since the rationale behind its construction (minimizing transitions from
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Figure 7
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———— = = = = -3 .
1) A1 A2 A3 A4 1077, mutation rates fixed
(i1) - - - - - A3 and A4 independent and follow a beta distribution
=S.D. = -3 =
where E[Ai+2] S.D [Ai+2] 10 for i=1,2, A1 and A2

independent with beta distribution and E[Ai]=S.D.[Ai)=10“3,
for i=1,2. (A3,A4) are independent of (Al’AZ)'
(ii1) — — — A3 and AA independent and follow a beta distribution where

=D . = _3 = - =
E[A:H-Z] S.D [Ai+2] 1077 for i=1,2 Al A2 with probability 1

where A, has a beta distribution with E[Al]=S.D.[A1]=10'3.

(A 3’A4) are independent of (Al,Az}.
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Figure 8

Probability of Cure when Variation is Present - 4.
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(1) A1 A2 A3 A4 1077, mutation rates fixed
(1) - - - - - A3 and A4 follow a B—~distribution where
E[Aj 54y y=ag ;1735 ;,S-D-[4;,[Ay 1=y ;]

=a; 4 for i=1,2. A1=A2 with probability 1 where A

has a B-distribution with E[A1]=S.D.[A1]=10’3.

1
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= A, with probability 1.

R, and R, to R12) implicitly assumed that A3 4

1 2
Corollary 1 (to Theorem 2)

For strategies of fixed length J, if

£ (x) = f (x),
ALsAyAq,A AL R LYV WY VIV VY

then the alternating strategies S(1) and S(2) minimize E[N(t)] for
arbitrary t)tJ

Without loss of generality assume that t is measured on a scale
where b=1. To proceed we will first condition on é}=gﬁ. Firstly we
note
that Ei,j(tg) (i=1,2, j=1,...,J) depends upon a* and thus in general
E, .=E, (t;)¢E2,j(tg)=E2 ., for j=1,...,J. Similarly the terms g and h

i,j 1,3 y ]

(used in Theorem 2) depend on a* and are not in general the same for Rl

and RZ. Thus define

gy=exp {(8may ) (tyy 7t )
and

&(t -t,) -a,, ., (t -t. )
home  FHL ETrg_ 142707 Ty

: for k=1,...,J, i=1,2.

Examining (4.42) we see that the constant K depends on a* but is not
dependent on the treatment strategy. The two summations in (4.42) only
depend on a* through Ei 5 8; and hi. Carrying out the appropriate

b

substitutions of E, ., 84 and hi for Ej’ g and h in (4.42) we have

i,]
k=g*] = *
E[N(t [, ) [A%=a*] = K(a¥)
J+1 J=-j+1 n.(3) J-jtl-n.(J) J=-j+1 J=-j+l-n.(J) n.(J)
+ 3y {E g .3 = I+ g 18 T 3 g
=1 1,5 °1 0 1 2,j°2 0 1
J J-k k k-] n (k) k—3+1—n (k) k=j k-j+l-n(k) n (k)
*
+kz§“2g ) JX}EI,J 181 T T By a8y T m

ee.(4.51)
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where g* is as used in (4.38). Conditional on A*=a* we may use (4.12.1)
to calculate Ei,j' In order to do this we use k=6-a 173725 and notice
that mi(0)=0 (by the definition of Ei,j)’ which gives

. _ o B(tj-l) eéAt[ o "3ogq Ot _ e—(a1+a2+aS)At]
1,3 a, +a, +a_~-a
1 2 5 241
i= .e = *
where j=1,..,J, At t2 1 and i=1,2 for all a* such that a +a2+a5 94 #0.
We will assume that a +a2+a5 2+i¢0 with probability 1 and thus from the
definition of equivalence (4.50),
J-3+1, J-j+1
E[El,jgl ] = E[Ez,jg2 ] +..(4.52.1)
and
k-3, _ k-]
E[El,jhlgl ] = E[Ez,jhzg2 1. e (4.52.2)

From (4.51) and (4.52.1-2) we have E[N(t, )] = E[E[N(tJ+1)]é]] is of the

same form as (4.42) and thus the corollary is proved.

Notice that the proofs of Theorems 1 and 2 and Corollary 1 do not
require the assumption of deterministic growth of sensitive stem cells
since (conditional on a*) the Eij have the same values under the fully
stochastic model.

This concludes our consideration of variation in mutation rates. We
will now briefly consider extensions of the proposed model.

4.7 Extensions

Generalizing this model to n drugs is possible in principle, however
the complexity of the process increases rapidly as a function of n. For
n drugs there are 2" resistant states and 3n2n_1 parameters. Thus

explicit solution of the full problem will likely be of little practical
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value in human disease for n>2 because of the large number of paramaters
which must be specified.

Even in the case where n=2, the large number of parameters require
that we simplify the problem and carry out sensitivity analyses to assess
the effects of assuming different choices of these parameters [34].
Under the strong assumption of equivalent agents (using the natural
extension of its definition to multiple agents) the specification of 3mn
parameters would be required. A fruitful approach therefore seems to
examine multidrug therapies and determine whether it is possible to
consider them as two drugs. 1In multidrug regimens (n>2) for clinical
cancer it is frequently possible to identify one of the drugs as being
much more effective than the others. We may thus attempt to model the
regimen by considering it to be composed of two drugs (the most effective
and the others) and try to approximate the effect of the regimen using
the case n=2. We would argue that this approach is reasonable,
especially in light of the possibility that resistance to any one of the
drugs may arise in a series of stages anyway.

This approach is not of great use in the construction of protocols
where it is desired to choose drugs and the dosages that are to be used.
However, the major obstacle to using these models in the planning of
protocols is a comprehensive description of the nature of toxicity
associated with drug combinations and how this depends on the individual
dosages used. This is an extremely important problem which has not been
extensively explored. Moreover, since most drugs overlap in toxicity on
only two or three normal tissue systems (i.e. hemopoietic, gastro—

intestinal, etec.), it may be possible to summarize the toxic effects of
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drugs using a vector with as little as two or three elements (one for
each system).
This completes the consideration of multitype drug resistance. In
the next chapter we will present some applications of the theory

developed in Chapter 3 and 4 to experimental and clinical cancer.
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5. APPLICATIONS OF THE THEORY

In the previous chapters we have presented theory for the
development of resistance to one or two drugs as a result of spontaneous
transitions from the sensitive state. As remarked in Chapter 1, this is
one of many mechanisms which can lead to clinical resistance and thus the
model presented here can only be considered to be tentative for the
response of clinical disease to chemotherapy. Nevertheless, it is
possible to examine observations on clinical and experimental cancer in
the context of this model and assess their "fit". The model presented 1is
clearly not comprehensive, since it ignores many processes, but it is
intended to be of general applicability to a large variety of
experimental and clinical tumor systems. However, even within the
context of the process of resistance considered, further generalization
may still be required in order to accurately model the process in
clinical and experimental cancer. For example, we have assumed that the
rates o and v do not vary with time. If these rates vary continuously in
time, we may approximate the resulting process by partitioning the growth
and treatment periods into a number of intervals and assuming that the
rates are fixed within each interval. The resulting overall probability
generating function may then be constructed using the recursive
relationships presented in Chapters 3 and 4. The interdivision time of
cells has been assumed to be exponentially distributed with a common
parameter. This is not an accurate reflection of reality where very
small divisions times (in relation to the mean) may not occur. Although
we may vary the values of b, ¢ and d throughout the growth period (in the
same way as for a« and v), we cannot relax the distributional assumption

\
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included in this model. Furthermore we have assumed that the growth
parameters for sensitive and resistant cells are the same.

Keeping these limitations in mind, we now propose to examine the
application of the model presented in three different cases. Firstly,
using the theory presented in Chapter 4, we will present calculations of
the effect of various treatment strategies on curability. Secondly, we
will examine experimental data collected on the treatment of a mouse
leukemia with two chemotherapeutic agents. Thirdly, we will examine the
concept of neo-adjuvant chemotherapy in the light of this model.

5.1 The Effect of Treatment Strategies on Curability

A computer program was written which incorporates the relationships
presented in (4.11), (4.17) and (4.18). Numerical integration is
performed using Simpson's rule. The integrals are generally well-behaved
and may be evaluated to 8 figure accuracy by partitioning the interval of
integration into no more than 100 subintervals. Input consists of
parameters which define the behaviour of the tumor and of the drugs and
are described in more detail below.

The basic treatment parameters are T the probability of a cell

i,Q’

in compartment R, surviving administration of treatment. i, and T(i), the

Q

recovery time after treatment i, i.e. the minimum time before any further
treatment may be "safely" administered. Five treatments are considered
as follows: i=1,2 correspond to specific chemotherapeutic agents T; and

TZ’ i=3 corresponds to the two agents (T3) being given together Ty Q =
b
121 Qﬁz Q i=4 represents a non-chemotherapeutic treatment (T4) which
b b

affects all stem cells equally, that is m, =k (ngsl) for all Q, and i=5

»Q

‘"represents a null treatment (TS) where . .=1.0 for all Q. It is assumed

5,Q
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that no treatment may be administered within the (minimum) recovery time
for the preceding treatment. T5 is included so that other treatments may
be applied at arbitrary times after the minimum recovery time. In the
examples which follow treatments will be applied at the minimum recovery
times. The following parameters are also input:

N = number of stem cells at diagnosis,

DT = the doubling time of the tumor,

€ = d/b the relative rate of cell death,

¢c* = c/b the relative rate of cell renewal,

B

a ’ transition parameters for resistance to the drug T,

Q0" "0, i
J 1°7]

(i=1,2) where Qi,Qj e {0, 1, 2, 12},

Y*Q Q =YQ Q /b = relative rates for spontaneous development of
1275 17
resistance Qi’Qj £ {O, 1, 2, 12},

J = number of times treatments are administered.

There is no implicit time scale used but each parameter reflecting
times (DT and T(i)) must be entered using the same scale i.e. days, hours
etc. In all cases the tumor is assumed to have grown from a single stem
cell.

The output from the program includes E[Ro(t)], E[Rl(t)], E[Rz(t)],
E[Rlz(t)] evaluated at t;, and tj’ for j=1,...,J. The following
probabilities are also calculated: Po(tj)=¢(e,1,l,l;tj),

Pl(tj)=¢(1,8,1,1;tj), Pz(tj)?¢(1,1,€,1;tj), P )=¢(1,1,1,€;tj) and

12t
P(tj)=¢(e,s,s,s;tj), (the probability of cure after the j-th treatment),

for j=l,...,J. The first four of these quantities correspond to the
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marginal probabilities that cells in R R, and R1

o Ri» By 2

time tj will go spontaneously extinct at some later time. P(tj) is the

respectively at

probability of cure. Notice that Po(tj) is the probability that the
sensitive cells at time tj will go spontaneously extinct (all cells
derived from these cells go extinct) and not the probability that there
will be no sensitive stem cells at time t=~. This observation also
applies (for the appropriate states) to Pl(tj), P2(tj) and Plz(tj)'

We will present an example with parameters chosen to be in the range
of those seen in passaged experimental tumors. The parameter values are
indicated in Table V. The parameters € and c* were chosen to be zero,
implying that all cells are stem cells which seems to be approximately
true for a number of experimental tumors. The doubling times (DT) and
intertreatment times (T(i)) were chosen to be 5 and 3 days respectively.
This doubling time represents the upper limit for most experimental
tumors and the lower limit of those measured for human disease. However,
as noted previously, the unit of measurement is irrelevant to these
computations and it is only the ratio (5/3) of the quantities which is

important. As noted in Chapter 4, when +v /b is fixed, the

a
Q ;"9

various values of « and v have little real effect on the

probability of cure. Thus for simplicity we have chosen v =0 and

Qi’Qj
g

. For simplicity we have assumed that a,,=v,,=0, that 1is

12 '12

direct transitions from sensitivity to double resistance do not occur.
The therapeutic parameters have been chosen so that resistant cells are
absolutely resistant to the particular drug. The number of times therapy

is administered, J, has been set to 8. Parameters were chosen so that
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the drugs satisfy the definition of equivalence given in Section 4.4. In
all simulations which follow the intertreatment interval has been assumed
to be the minimum permitted by the recovery time of the previous
treatment (in this case 3 days).

Tables VI, VII and VIII show the effect of three treatment
strategies on curability: S(1)=(1,1,1,1,1,1,1,1), S(2)=(1,1,1,1,2,2,2,2)
and S(3)=(1,2,1,2,1,2,1,2). That is, S(1l), represents eight cycles of T1
given at 3 day intervals with the first cycle being given when the tumor
consists of 107 stem cells etc. Since the treatments are equivalent,
each strategy has its mirror image which has the same probability of
cure. Figures 9, 10 and 11 plot the expected number of cells for the
treatment strategies S(1), S(2) and S(3).

Tables VI, VII, and VIII show, for this example, that among the
three strategies of length J=8 which give a single drug per treatment,
the probability of cure is maximized by the alternating strategy S(3).

As can be seen by referring to Tables VI-VIII, all three strategies
control (eliminate with high probability) the sensitive cells but the
strategles have differential effect in controlling the various resistant
compartments. S(2) and S(3) successfully control both the singly
resistant compartments but have a differential effect on cells in R

12°

Furthermore since neither T, or T, have any effect on cells in R

1 2 12

further treatment (after t8 with either T1 or T2) cannot Increase the

probability of cure to a value which exceeds P The question

12{tg)"
arises as to whether S(3) is best, in the sense that it maximizes P(tg)
over all strategies with J=8 which use either T; or Ty at the minimum

permissable treatment times? Since the treatments are equivalent there
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are at most 27=128 strategies with distinct probabilities of cure (since
each strategy has a mirror image). We will now consider general
arguments to reduce the set of strategies which must be considered, in
order to determine the optimal one.

We have assumed, in this example, that = =1 and we have for

1,127 72,12
any strategy that P(t)<P12(t’) where t»>t”. Examining Table VIII we see

that the alternating strategies of length J=8 have Plz(t8)=o°569' The
strategies considered in Table VI and Table VII are not optimal since
after 3 consecutive applications of the same drug,

Plz(t3)=0.487<0.568. When =« the value of P12(tj) does not

1,12 2,12

or T2) but only

depend on which drug is given at time tj (either Tl

depends on preceding applications of therapy. Thus a strategy whose
first three cycles are (1,1,2) have the same value for Plz(t3) as that of
12(t3)=0.487 if T1 (or T2) is

given as the first two cycles of the strategy. From this we conclude

a strategy commencing with (1,1,1). Thus P

that the optimum strategy must begin with the alternation of T1 and T2.

Examination of Tables VI and VII also show that strategies which include

four cycles of T, and four cycles of T, are sufficient to eliminate the

1 2

singly resistant stem cells with probability »0.999. If there are only
three cycles of T2 (T 1) then the likelihood that the R1 (RZ) cells will
be eliminated is significantly reduced; for example compare Pl(t7) and

Pl(tS) in Tables VII or VIII. Thus we need only consider (6)=20

3
strategies to determine the best of length J=8, i.e. those that begin

. Simulations of these 20

with (1,2) and have four cycles of T1

strategies indicates that there is little to choose between strategies

which commence with either (1,2,1,2) or (1,2,2,1) and have four cycles of
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T1 in the total treatment strategy. Although these considerations only
apply to the model with the particular values of the parameters
specified, arguments similar to these may usually be applied to reduce
the number of strategies which must be considered to determine the
optimal one.

Figures 9-11 present plots of the mean number of cells (for each of
the resistant subcompartments and overall) for the tumor model with
parameters given in Table V for the three strategies S(1), S(2) and S(3)
respectively. Judged by E[N(ts)], S(1) is clearly inferior to S(2) and
S(3), however there is little difference between the latter two

(E[N(t_,)]=131.6 and 122.5 respectively). The relatively small difference

g)
in E[N(t8)] for the two strategies can be contrasted with the large
difference in predicted curability between S(2) and S(3) (Tables VII

and VIII). This indicates that the effects of strategies on curability
may not be reflected by similar proportionate changes in E[N(t8)] and
this has clinical implications as follows.

In the analysis of clinical and experimental chemotherapy two
measures of efficacy are in common use: cure rate (probability of cure)
and survival time or time to relapse. Time to relapse (or survival time)
depends on the growth rate of the neoplasm and the post-treatment tumor
burden. If the effects of treatment are.similar on the two proliferative
compartments of the tumor (i.e. stem cells and transitional cells) and
produce a large net reduction in the number of tumor cells, then the
tumor will regrow at the rate determined in Chapter 2 and the time taken

for it to reach some predetermined size will depend on the post—treatment

stem cell burden. Thus in an experiment where recurrence times are
S
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measured in genetically identical animals, the times will be a function
of the post-treatment stem cell burden. It is common to view these two
measures of treatment efficacy (cure rate and relapse time) as measuring
the same underlying efficacy of the treatment protocol. Indeed we have
argued in Chapter 4 that this is likely to be so, that is, P(S(v)) is
maximized and E[NS(v)(t)] is minimized by the same strategy. However,
even when these two criteria do induce a similar ordering on the set of
strategies, this does not imply that differences between strategies will
be quantitatively similar using either measure of efficacy. 1In the
previous example we saw that the P(ts) for S(3) was 0.569 and for S(2)
was 0.275 whereas the corresponding values of E[N(t8)] were 122.5 and
131.6 respectively. 1In an experiment carried out on a tumor where this
model was appropriate and the parameter values were as given in Table V
the large difference in cure probabilities would be readily apparent.
Howeyer, consider the same example except that al=5x10"+
(=a2=a1,12=a2’12). In this case the probability of cure is negligible
and/or T

for all strategies which use T only, since for =% 1

1 2 1,127 2,127
we have for t>t1, P(t)<P12(t1)<10‘1°. If we apply S(2) and S(3) we find

that E[N(t8)] = 13,064 and 12,158 respectively. The effective extension

of the time to felapse is

An [13,064/12,158]
o [2]

x Doubling time 0.10 x 5 days

0.5 day

When this is compared agaiﬁst an estimated 86 days from time of
first treatment to relapse (at 108 cells) we see that improvements of the
order of 0.5 day will be very difficult to detect. Thus even in cases

where Theorem 2 applies (i.e. treatments are equivalent), increases in
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disease—free survival may be difficult to distinguish experimentally.

We may continue this example and consider the survival time under
various strategles. If, for simplicity, we assume that death occurs at
1010 cells, then we still have a mean difference of 0.5 day (between S(2)
and S(3)) and a mean survival time of approximately 119 days. We may
contrast this with the protocol where Tj is given until relapse (at 108
cells) when the treatment is switched to T, which is continued until
death (at 1010 cells). In this case an animal has an approximate mean
survival time (from first treatment) of 120 days. Thus the approximate
difference in mean survival time between the last strategy and S(3) (the
best strategy) is 1 day. Given possible uncontrolled variations in
experimental conditions, variations in the number of resistant cells and
the intrinsic precision of measurement, it will be extremely difficult to
detect differences of this order in real systems. From consideration of
this example we see that the value of strategies as reflected by their
ability to produce cures (in cases where this is possible) may not be
equally reflected in mean disease-free intervals or survival times when
cure is unlikely.

The strategies considered up to this point have all assumed that
Ty and T9 may not be given simultaneously. We will now consider
cases where they can be given together. In each of the following two
cases the parameters values are as given in Table V except as indicated.
Table IX and Figure 12 contain details of the effect of the strategy

S$(4)=(3,3,3,3,3,3,3,3) where = and T(3)=T(1)=T(2). Table X

3,Q"1,Q72,Q

and Figure 13 contain the same information for the strategy S(4) where

%, = 1072, & =107, =

3.0 =1 and T(3)=T(1)=T(2). The parameter
3

3,1°%3,2 3,12
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values chosen for treatment 3 in the calculations presented in Table IX
correspond to a case where T; and Ty have no overlapping toxicity and
thus may be given in full dose together. The parameter values chosen for
treatment 3 in Table X correspond to a case where toxicity overlaps on
one or more normal tissues and in order to give them together the drug
dose of each is halved.

As expected, when there is no overlapping toxicity, S(4) has the
highest probability of cure (of all strategles considered); this
indicates that where possible active drugs should be combined (Table
IX). Comparison of Tables VIII and X indicates that when the individual
drug dosages are reduced (in order to combine them) the resulting
strategy can be better than cyclic administration of the two agents
singly. Notice that in this case we have assumed that the net-kill per
cycle of the combination is the same to sensitive cells as that of either
of the drugs given alone in full dose. If this were not true then such
regimens might not be superior to one or more strategies involving cyclic
administration of each drug at full dose.

As discussed in Chapter 4 minimizing E[N(t)] is not necessarily
equivalent to maximizing the probability of cure, P(t). We will now
present an example where P(t) is not maximised by alternation of two
equivalent drugs (where of couse E[N(t)] is minimized). Table XI
contains the parameter values and Table XII the results of three
strategies $°(1)=(1,2,1,2), $°(2)=(1,2,2,1) and $°(3)=(1,2,2,2) for this
example. It can be seen that the alternating strategy is clearly
inferior and that S“(3) is a superior strategy. Calculation shows, as

expected, that the alternating strategy S”(l) minimizes the expected
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tumor size at time ty: Calculation also shows that S“(3) is the best of
the sixteen strategies of length J=4, i.e. that which maximizes P(ty).
Examination of Table XII shows that extending the length of the

strategies may improve the curability of the regimens since P 4)>P(t

12t 4

for each of the three strategies. However, notice that P 4) for S7(1)

12(t
is much less than P(t4) for either §°(2) or S°(3), and thus all
alternating regimens (of length J»4) will have a lower probability of
cure P(t) than at least two other strategies (those that begin with
either S$7(2) or S°(3)). Examination of Table XII shows that the reason
the alternating strategy does not maximise P(ty) is because the Ry

cells are eliminated, with probability 0.912, by the first course of

T;. Because of the fast regrowth of the cells several courses of To
must be given to eliminate cells in R;. This combination of
circumstances seems unlikely to occur in the treatment of human cancer,
but could arise in the therapy of experimental neoplasms.

In Chapter 4 we examined the effects of variability in mutation
rates on the probability of cure, for the special case where both drugs
were given together and eliminated all but the R12 cells. We will now
examine the effects on more general treatment strategies. In this
example we will use the parameter values as given in Table V except that
the mutation rates follow a distribution. We will assume that A (A5=0)
satisfies A1=A2=A3=A4
follows a beta distribution with E(Ai)=S.D.(Ai). This corresponds to a

with probability 1 (see Section 4.6) where Ai

particular example of the dependent case (4.46) for gj(.) and ga(.)
of the second form (4.49). This single specialized example is considered

because of the complexity of the calculations involved. Even in this
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situation where A is essentially a scalar random variable, it is
necessary to approximate its true distribution. In order to provide
comparability with the previous example (Table V) we will assume that

\Y =0 for i=1,2, v12=0 and E[Ai]=5x10"5 for i=1,...,4. The effect

171,12
of variation in A is difficult to compute exactly because of the
recursive nature 6f the relationships involved (see (4.11), (4.17) and
(4.18)) where E[¢(s;t,a)] is not of closed form. We will therefore
approximate the beta distribution by a set of 10 discrete mass points of
weight 0.1 placed at the 5,15,...,95 percentiles of the beta
distribution. The points are given in Table XIII. Tables XIV-XVI give
the results of applying the strategies S(l), S(2) and S(3) to the tumor
system. A similar calculation using 20 mass points (at the 2.5,...,97.5
percentiles) yielded results which were the same (to four decimel places)
as those presented and thus the discrete approximation to the beta
distribution can be expected to be reasonable for the puposes of this
calculation.

As is to be expected, the probability of no doubly resistant cells
at the commencement of therapy, P12(tI)’ is different from the situation
when the mutation rates Qere fixed. However, the difference is quite
small. We find that, as when mutation rates were fixed, the alternating
regimen S(3) is superior to either S(1l) or S(2); in fact it maximizes
P(tg) among the strategies which only give one treatment per treatment
time. However, there are differences in the effects of the strategies on
the two different tumor systems. Comparison of Tables VI-VIII and Tables
XIV-XVI, shows that the probability of extinction of the sensitive stem

cells is virtually the same in the two series of computations.
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Similarly, differences in the probability of extinction of the singly
resistant cells are small and of the type expected (see Figure 3). That
is, when the mutation rates are variable, Py(t) and Pp(t) increase
earlier in the treatment regimen but require approximately the same
number of treatments to approach unity. Comparison of Tables VII and XV
shows that changes in P12(t) occur more slowly during the treatment
period when variation is present. This behaviour is to be expected as
may be seen from the following observation. From (4.24) we may
approximate the probability of no doubly resistant cells prior to
treatment, Plz(tz), in the form exp (-a*N). Thus the effect on Plz(tz)
of any variation in a* will have the same effect as an analogous
variation in N when a* is fixed. Thus we may consider Plz(tI) as the
weighted sum of points of the function PN given in Figure 4. As time
increases (and the tumor grows) each point will experience a different
rate of change of Py. In the example considered, the fixed mutation
rate case experiences a high (in absolute value) rate of change of PN and
PN will decline comparatively quickly. For the variable mutation rate
Plz(tI) may be considered to decline as a mixture of variable rates of
change in Py (some large and some small in absolute value), and thus
Plz(tI) will decline more slowly than when the mutation rates are fixed.
This argument also indicates that the probability of cure will not always
change more slowly (during the treatment period) when variability in
mutation rates is present than when it is not. When the mutation rates

are fixed and the rate of change in P_ is small then P12 (tI) may decline

N

at a faster rate when mutation rates have considerable variability.

This behaviour may be of some practical interest. Consider a class
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TABLE V

Parameter Values for Simulations Presented in
Tables VI-X.

Parameter Value

N 107

DT 5 days

€ 0

c* 0

a (=a =a =a ) 5x 1073

1 2 1,12 2,12

v (=v =V =y ) 0
1 2 1,12 2,12

a 0
12
v 0
12
T (=% =% =n ) 1072

1,0 2,0 1,2 2,1

T (=r == =% ) 1
1,1 2,2 1,12 2,12

T(1)(=T(2)) 3 days

J 8
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TABLE VI

Probability of Extinction of Cells at Times of Treatment

for Parameter Values given in Table V for
Strategy S(1)=(1,1,1,1,1,1,1,1).

Time t Treatment Po(t) Pl(t) Pz(t) Plz(t) P(t)

t] 0 0 0 0.641 0
ty T 0 0 0 0.641 0
ty T, 0 0 0.500 0.573 0
ty Ty 0 0 0.984 0.487 0
t, T, 0.707 0 1.000 0.386 0
ts T, 0.995 0 1.000 0.277 0
te T, 1.000 0 1.000 0.172 0
ty T, 1.000 0 1.000 0.087 0

tg T 1.000 0 1.000 0.033 0
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TABLE VII

for Parameter Values given in Table V for

Strategy S(2)=(1,1,1,1,2,2,2,2).

Time t Treatment Py(t) Pi(t) Py(t) P1o(t) P(t)
t] 0 0 0 0.641 0

t1 T, 0 0 0 0.641 0

ty T, 0 0 0.500 0.573 0

tg T, 0 0 0.984 0.487 0

t, T, 0.707 0 1.000 0.386 0

tg T, 0;995 0 1.000 0.277 0

te T, 1.000 0.059 1.000 0.275 0.022
ty T, 1.000 0.934 1.000 0.275 0.263
tg T, 1.000 0.999 1.000 0.275 0.275
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TABLE VIII

for Parameter Values given in Table V for

Strategy S(3)=(1,2,1,2,1,2,1,2).

Time t Treatment Po(t) Pl(t) Pz(t) P12(t) P(t)
t] 0 0 0 0.641 0

ty T, 0 0 0 0.641 0

ty T, 0 0 0 0.573 0

tg Ty 0 0 0.369 0.571 0

t, T, 0.707 0.254 0.368 0.569 0.044
tg T, 0.995 0.254 0.968 0.569 0.155
tg T, 1.000 0.955 0.968 0.569 0.537
ty T, 1.000 0.955 0.999 0.569 0.550
tg T, 1.000 0.999 0.999 0.569 0.568
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TABLE IX

for Parameter Values given in Table V for

Strategy S$(4)=(3,3,3,3,3,3,3,3) and
K3’0=10- > ﬂ3’1=1§3’2=10—2, 153,12=1-

Time t Treatment Po(t) Pl(t) Pz(t) Plz(t) P(t)
t] 0 0 0 0.641 0
t T3 0 0 0 0.641 0
ty T3 0.859 0.515 0.515 0.640 0.163
tg T3 1.000 0.985 0.985 0.640 0.627
t, T4 1.000 1.000 1.000 0.640 0.639
tg T3 1.000 1.000 1.000 0.640 0.640
te T4 1.000 1.000 1.000 0.640 0.640
t% T4 1.000 1.000 1.000 0.640 0.640
tg T3 1.000 1.000 1.000 0.640 0.640
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TABLE X

Probability of Extinction of Cells at Times of Treatment
for Parameter Values given in Table V for

Strategy S(4)=(3,3,3,3, 3 3,3,3) and
1:3 0=10 > 1‘3 1—‘“3 2"‘10 > 1:3 12=1c

Time t Treatment Po(t) Pl(t) Pz(t) PlZ(t) P(t)
t] 0 0 0 0.641 0

ty Tq 0 0 0 0.641 0

ty Ty 0 0 0 0.627 0

tg Ty 0 0 0 0.624 0

t, Tq 0.707 0.266 0.266 0.624 0.036
tg Tq 0.995 0.781 0.781 0.624 0.406
te T, 1.000 0.956 0.956 0.624 0.584
ty T, 1.000 0.992 0.992 0.624 0.618

tg T4 1.000 0.999 0.999 0.624 0.623
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TABLE XI

Parameter Values for Simulations
Presented in Table XII.

Parameter Value
N 107

DT ‘ 0.3 days
€ 0

c* 0

oy (=23=a1,19%%,12) 107°
vi(=vo=vy 12%V2 12) 0

aqp 0

V12 0

"1,0 (=72,0) 107
Ty p (57 1) 107"
7,1 (5% 2=%q 1272, 12) 1
T(1)(=T(2)) 3 days

J 4
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TABLE XII

Probability of Extinction of Cells at Times of Treatment
for Parameter Values given in Table XI for the Strategies

§°(1)=(1,2,1,2), $7(2)=(1,2,2,1) and §7(3)=(1,2,2,2).

Strategy Time t Treatment Po(t) Pl(t) Pz(t) PlZ(t) P(t)
t] 0 0 0 0.979 0.0
$°(1)  ty T, 0 0 0.912  0.979 0.0
t, T, 0.363  2.7x107!! 0.329  0.009 7.5x10713
tg T, 0.990 2.7x107!} 0.712  0.005 4.3x10712
ty, T, 1.000 2.7x10"!! 0.712  1.9x107!} 4.3x10712
$°(2) 1t T, 0 0 0.912  0.979 0.0
t, T, 0.363 2.7x10"!1 0.329  0.009 7.5x10713
ty T, 0.990 0.012 0.326  0.005 1.0x10™"
ty T, 1.000 0.012 0.326  0.002 1.1x107"
$°(3) t; T, 0 0 0.912  0.979 0.0
t, T, -0.363 2.7x10"!1 0.329 0.009 7.5%x10713
ty T, 0.990  0.012 0.326  0.005 1.0x107"%
ty T, 1.000  0.512 0.326  0.002 0.001
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Figure 9

Expected Numbers of Cells for Treatment Strategy S(1).

107

Expected Number of Cells
o
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Plot of expected number of stem cells in each of the resistant

compartments for the tumor with parameters given in Table V treated with

s(1)={1,1,1,1,1,1,1,1}.
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Figure 10

Expected Numbers of Cells for Treatment Strategy §(2).

Expected Number of Cells

Time in Days

Plot of expected number of stem cells in each of the resistant
compartments for the tumor with parameters given in Table V treated with

s(2)={1,1,1,1,2,2,2,2}.
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Figure 11

Expected Number of Cells for Treatment Strategy S(3).
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Plot of expected number of stem cells in each of the resistant

compartments for the tumor with parameters given in Table V treated with

$(3)={1,2,1,2,1,2,1,2}.
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Figure 12

Expected Number of Cells for Treatment Strategy S(4) - 1.
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Plot of expected number of stem cells 1in each of the resistant

compartments for the tumor with parameters given in Table V treated with

$(4)=1{3,3,3,3,3,3,3,3} where 3,0°™,q%2,q"
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Figure 13

Expected Number of Cells for Treatment Strategy S(4) - 2.
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Time in Days

Plot of expected number of stem cells in each of the resistant
compartments for the tumor with parameters given in Table V treated with

= = -2 = = -1 =
s(4)=1{3,3,3,3,3,3,3,3} where ™5 0 10-2, T3 17739 10~} and T3 12 1
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TABLE XII11

Mass Points for the Approximation to the Beta Distribution with
E[A;]=5x10"3, S.D. [A;]=5x10"5.

The parameters of the beta distribution B(a;u,v) are
u=1-10"%, v=(1-10"%)(2x107"% -1).

Point Percentile Mass
2.6x1076 0.05 0.10
8.1x1076 0.15 0.10
1.4x1073 0.25 0.10
2.2x107° 0.35 0.10
3.0x107° 0.45 0.10
4.0x10™3 0.55 0.10
5.3x107° 0.65 0.10
6.9x107° 0.75 0.10
9.5x107°> 0.85 0.10

1.5x10™" 0.95 0.10
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TABLE XIV

Probability of Extinction of Cells at Times of Treatment
for Parameter Values given in Table V for the Strategy
S(1)=(1,1,1,1,1,1,1,1) where the Mutation Rates are Equal with
Probability 1 and have the Distribution Given in Table XIII.

Time t Treatment Po(t) Pl(t) P2(t) Plz(t) P(t)
ty 0 0 0 0.676 0
ty T, 0 0 0.032 0.676 0
t) T, 0 0 0.591 0.639 0
t, T1 0 0 0.985 0.597 0
t, T1 0.707 0 1.000 0.551 0
tg T, 0.995 0 1.0 0.501 0
te T1 1.000 0 1.0 0.449 0
ty T1 1.000 0. 1.0 0.398 0

tg T, 1.000 0 1.0 0.349 0
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TABLE XV

Probability of Extinction of Cells at Times of Treatment
for Parameter Values given in Table V for the Strategy
s(2)=(1,1,1,1,2,2,2,2) where the Mutation Rates are Equal with

Probability 1 and have the Distribution Given in Table XIII.

Time t Treatment Po(t) Pl(t) Pz(t) PlZ(t) P(t)
ty 0 0 0 0.676 0

3] T, 0 0 0.032 0.676 0

ty T, 0 0 0.591 0.639 0

tg T, 0 0 0.985 0.597 0

t, T, 0.707 0 1.000 0.551 0

tg T, 0.995 0.002 1.000 0.501 0.002
tg T, 1.000 0.259 1.000 0.500 0.232
ty T, 1.000 0.938 1.000 0.500 0.491
tg Ty 1.000 0.999 1.000 0.500 0.500
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TABLE XVI1

Probability of Extinction of Cells at Times of Treatment
for Parameter Values given in Table V for the Strategy
$(3)=(1,2,1,2,1,2,1,2) where the Mutation Rates are Equal with

Probability 1 and have the Distribution Given in Table XIII.

Time t Treatment v Po(t) Pl(t) Pz(t) P12(t) P(t)
t] 0 0 0 0.676 0

ty T, . 0 0 0.032 0.676 0

ty T, 0 0.019 0.028 0.639 0

ty T, 0 0.019 0.500 0.638 0

t, T, 0.707 0.421 0.500 0.638 0.197
to T, 0.995 0.421 0.969 0.638 0.366
to T, 1.000 0.957 0.969 0.638 0.619
ty T, 1.000 0.957 0.999 0.638 0.626
tg T, 1.000 0.999 0.999 0.638 0.637
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of tumors treated with two agents, Tl and Tz; where the doubly resistant
cells are absolutely resistant and mutation rates are fixed. 1If qg is
the probability that an individual tumor will contain no doubly resistant
cells at the time of first treatment, then the effectiveness (as judged
by the probability of cure) of various treatment strategies result from
their ability (or lack of it) to décrease the likelihood that double
resistance will develop in the remaining proportion (l-qg) of tumors.
Consider the same situation, where again a proportion qg of tumors
contain no doubly resistant cells, where now the mutation rates are
nondegenerate random variables. In this case the tumors with existing
doubly resistant cells at diagnosis tend to contain a greater proportion
of tumors with higher mutation rates and vice-versa. As before the
effect of the treatment strategies, which use only T; and Tp, is on
those tumors where doubly resistant cells have not emerged prior to the
commencement of treatment. Since these tumours will .tend to have lower.
mutation rates the rate of development of double resistance will be
"slower”. This will result in the differences in curability between
various strategies being diminished (compared to the situation where
rates are fixed). For example, in the most extreme case, the mutation
rates among the tumors without existing resistant cells at the time of
first treatment may be all identically zero. In this extreme case all
strategies of fixed length which give T} the same number of times will
be of equal effectiveness. Thus as the variability in mutation rates
increases the differences in the probability of cure for strategies of
the same length will decline, possibly to the point where they become

experimentally indistinguisable. Similar arguements apply to the effects



-178-

of variation in the size of the tumor, N, at first treatment, which will
cause a similar reduction in the relative benefits of various strategies
when compared to the case where N is fixed. In summary, random variation
in parameters may act to decrease the differences in effectiveness among
strategies and thus it is necessary to consider such variation in the
modelling of real systems.

This completes our examination of response when two drugs are
available. We will now examine some experimental data to determine the
appropriateness of the model presented here.

5.2 Fitting the Model to Experimental Data

We will examine experimental data collected by H. Skipper, F.
Schabel and co-workers on the treatment of L1210 (mouse) leukemia by two
drugs: Cyclophosphamide (Cyc) and Arabinosylcytosine (Ara-C)[26]. This
tumor and these drugs were chosen because of the extensive data collected
on them by a single group of investigators in the same laboratory using
the same breed of mouse. These drugs are also representative of two of
the major types of drugs used in cancer chemotherapy, the alkylating
agents (Cyc) and the antimetabolites (Ara—-C). The data to be used in the
examination of response to Cyclophosphamide alone is given in Table XVII;
all data is for single doses given up to the LDjp which occurs at
about 300 mg/kg.

This information has been compiled from a number of clinical trials
carried out by the investigators for intraperitoneally (IP) and
intravenously (IV) implanted L1210 leukemia. The data is collected from
experiments in which a fixed number (usually in the range of 100-1000) of

cells are implanted in an animal. The growth of the tumor is known to be



-179-
regular (for innoculums in this range) and the size at any later time can
be accurately estimated given the size of the original innoculum [3].
Autopsies of animals indicate that 45 day survivors (after the completion
of any treatment) are free of any measurable L1210 leukemia [3]. The
data presented in Table XVII gives the number of 45 day survivors.

The L1210 leukemia has been extensively studied and many of its
physical properties are well known. Observation of the tumor (using
thymidine labelling) suggests that the median intermitotic time of the
tumor is close to the median doubling time [26]. This implies that most
cells are actively dividing and consequently that the end cell
compartment 1s small, and that cell loss is small. Limiting dilution
assays (where a liquid suspension of cells are successively diluted and
then injected into animals) suggests that a single cell is sufficient to
cause animal death (from the leukemia) [26]. This implies that almost
all the cells are stem cells. We will assume that all cells are stem
cells and thus we have a model in which c¢=d=0 (and there are no
transitional cells). Data on cells from this tumor which have been
selected for Cyclophosphamide resistance suggests that such resistance is
effectively absolute (resistant cells survive administration of the drug
with probability 1), that is nl(D)=1.0 for all achievable doses D (see
Section 3.1). Data on the mode of therapeutic action of Cyclophosphamide
shows that it has general activity on all phases of the cell cycle (see
Section 3.2). 1If the cells behave independently we see that the
probability a tumor of size S sensitive stem cells will be cured by
administfation of the drug at dose D is [1—n0(D)]S, where nO(D) is the

probability that a single sensitive cell will survive administration of
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the drug.

The form of nO(D) may be estimated from observation on growth
delay curves (time taken to reach some fixed size after treatments of
varying dosages carried out at a common initial size). These
observations indicate (assuming cells behave independently) that

nO(D)=exp{—kD}, eeo(5.1)

for a range of doses up to the LDjg (Section 3.2). There is some
indication that (5.1) may not be accurate for doses approaching the
LDy1g, where the therapeutic effect may be less than predicted by
(5.1) [26]. This observation may be explained in at least two ways.
Firstly, it may be that the form of (5.1) should be modified at high
doses because some mechanism (possibly drug transport into the cell)
becomes saturated so that the effect of increasingly large doses is
limited. Secondly, we note that estimates of mg(D) are based on
observations of the whole tumor and not just on sensitive cells. Since
large therapeutic effects can only be measured in large tumors, it is
possible that resistant cells have emerged in these large tumors and
contribute to the regrowth of the tumor. Thus a deviation from (5.1)
would be expected in large tumors where estimates of nO(D) are based on
the response of the total tumor. Since it is known that resistant cells
are present in large tumors, we will assume that the second explanation
is the true one.

Let t1 be the time of treatment (only one cycle is given) and N
the number of stem cells (all the tumor in this case). Then since c¢=0,

d=0 we have

P\E P{curelN(tI)=N} = P{Ro(t1)=0,R1(t1)=0|N(tI)=N}-
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Since nl(D)=1.0 we have

Py P{Ro(tl)=0,R1(t1)=0|N(t1)=N},

= P{Ro(t1)=0|R0(tl)=N} P{Rl(t1)=O|N(tl)=N}. eee(5.2)
Assuming that the effect of therapy in each cell is independent, the
first term of (5.2) is given by
: - N

P{Ry(t)=0|Ry(t])=N} = [1-% (D)]",
since the probability a single stem cell will survive therapy is nO(D).
Using the approximation suggested in Section 3.7, that is replacing N(tI)
by RO(tI) in the second term in (5.2), we have

P{R, (t7)=0|N(t])=N}=P{R. (t)=0|R .(tT)=N} = (l-a=v/b)"

1Yl L 1'\71 0*1
from (3.33). Since we cannot distinguish a and v from one another
(without further information) we set a=a+v/b and obtain
N-1 N
Py=[1-a]” [1-7y(D)]" -
From (5.1) we have
PN=[1—a]N_1[l—exp(—kD)]N.
Equation (3.33) was derived under the assumption that the tumor grew from
a single sensitive stem cell. 1In.the situation under consideration a
number (100-1000) of cells are implanted and this formula must be viewed
as approximate. We will set
PN=[l—a]N[l—exp(—kD)]N vee(5.3)

since N=N(tI) is large in all cases.

The approximate log-likelihood, L(a,k), for the data is given by

I J
L(a,k) = ) .E nij[finnPij+(l—fij)ln(l—Pij)] eee(5.4)
i=1 j=1
where Ni = gize of tumor at treatment i=l,...,I,
D = dosage of treatment applied j=1,...,J,

3
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nij = number of animals tested at size Ni and dosage Dj’
sij = number of animals cured among the nij treated,
fij = Sij/nij’ the observed proportion of animals cured,
and Pij = probability of cure at size Ni and dose Dj’ where,
N N

i : i
Pij = [1-a] [l—exp{—ij}] .

We may then differentiate (5.4) to obtain equations in a and k, which the

maximum likelihood estimators a* and k* must satisfy:

da 1=1 j=1 ij Pij (I—Pij) da
. i % . [fij _ (1—fij)] NiPij %
1=1 j=1 1j Pij (l-Pij) (1-a) ?
ok i=1 j=1 ij Pij (l-Pij) ok ‘
I J £, . 1-f,.) N,D.exp{-kD,|P,.
=1 Iyl - EH,TJi] [{_gxpj’fkn,ﬂ 1 - o.
i=1 j=1 ij ij j

The data for IP innoculation in Table XVII were first modelled using
the previous equations with a=0 which yielded a maximum likelihood
estimate k*=0.0678 and a corresponding log-likelihood of L(O,k*)
=-1262.94. The full model was then fit and the maximum likelihood
estimates were a*=1.04x10'7, k*=0.0780 with L(a*,k*)=-530.20. Using the
aéymptotic x2 distribution for twice the difference in the log-
likelihoods a test of H.:a=0 versus H,:a#0 has x§=1465.48 providing

0 1

strong evidence that a#0. The predicted values of P using the maximum

i3
likelihood estimates a* and k* are given in Table XVIII. The fit of the
model to this data is not good, as judged by a log—likelihood goodness-

of~fit statistic of x%5= 453.26. Nevertheless the data analysis provides

evidence for the development of drug resistant mutants. Coupled with

observational evidence that drug (Cyclophosphamide) resistant cells may
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be selected from this tumor, we conclude that this analysis is compatible
with the idea that these drug resistant cells arise via spontaneous
mutations although the goodness—of-fit indicates that this model is not a
complete description of the data.

Calculations based on growth delay curves indicate that the
therapeutic effect (probability of sensitive cell survival) of
cyclophosphamide is greater for IV implanted tumors than for IP implanted
tumors [26]. Repeating the preceeding analysis for the data on IV
implanted tumors in Table XVII, we find that when a=0 that the maximum
likelihood estimate is k*=0.0648 with a log-likelihood of
L(0,k*)=-478.01. Fitting the full model we find a*=1.06x10"7, k*=0.0802
and L(a*,k*)=-175.65. A test of HO:a=O has associated xi=604.72
providing strong evidence that a#0. Again the fit of the model is not
good as assessed by the log- likelihood goodness—of-fit of x%3= 141.99.

The predicted values of P

15 for the full model are presented in Table

XVIII.

The analysis presented thus provides some evidence that the
therapeutic effect on sensitive cells, k, is increased in the IV
innoculated tumors but the estimated values of a are almost identical.
By combining the data sets we may test whether the parameters a and k

vary with route of implantation. Let a ki (i=1 for IP and i=2 for IV)

i’

be the parameters for the two groups. We will first fit the model

al,az,k1=k2=k. Proceeding as before we obtain the maximum likelihood

estimates a?=1.06x10'7, a3=1.01x10'7, k*=0.0784 with associated

log—-likelihood L(af,a*,k*,k*)=—706.82. Using the log-likelihoods

calculated from the separate models presented previously we have an
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asymptotic test for HO:k1=k2 versus Hl:k1¢k This yields xi = 1.94 and

9
thus we may conclude that there is no evidence (from this analysis) that
the parameter k is affected by the route of implantation of the tumor.
A-priori we would postulate that the mutation rate, a, should be the same
for both IP and IV innoculated tumors since it has been assumed to be a
property of the tumor cells. This hypothesis may be tested by fitting

the model a,=a,=a and k1=k2=k. Fitting this model we obtain the maximum

likelihood estimates a*=1.048x10~7 and k*=0.0784 with L(a*,a* k*,k*)=
-706.89. Comparing this with the previous model we have a test for the

hypothesis H_ :a.=a, versus H.:a #a, with associated x§=0.14. On the

0 2 1771 72

basis of this analysis (and data), we conclude that the mutation rate

1

does not vary with the route of implantation.

The analysis presented so far has assumed that the mutation rates
are fixed. 1In Sectlon 3.10 we presented theory which modelled the
mutation rates as random variables with beta distributions. We may use
that development to determine whether this data provides evidence for
variability in the mutation rates (of a type which may be approximated by
the beta distribution) and estimate the parameters of the distribution.

A technical problem arises because the probability of no resistant cells
is given by (3.50), which requires computing the product of 8x107 terms

(the largest size in the data), that is

N-2

i - i vtx
P{Rl(t1)=O|R0(t1)—N}— XEO ( ).

ut+v+x

where (u,v) are the parameters of the beta distribution. In the
preceeding analysis, when rates were fixed we found a=10"7. We would

therefore expect that the mean of this beta distribution, u/(u+v), would
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be small and thus that ud<{v. If this is indeed the case, then we may

approximate the product as follows:
N-2 N-2

m{ T ()} =- ] o+
x=0 x=0
N-2 -1
=z - q Z (v+x)
x=0
v+N-2
= - u f QH-= ~-u n [Xig:g].
v

Using this approximation to (3.50),then from (5.3) we have

-u

v+N-2 ]

- [l—exp(-kD)]N. «..(5.5)

Py [
Fitting this model to the IP data using the log-likelihood function
(5.4) with

v+Ni—2 -u Ni
ij = [—‘7—] [1-exp(_ij)] ’

yielded the maximum likelihood estimates u*=0.301, v*=0.578x10° and
k*¥=0.0857 with associated log-likelihood L(u*,v¥* k*)=-347.42. The fixed
mutation rate model is a special case (u+e, v»>= such that u/(u+v)+a) of
the variable mutation rate model and we may construct a test assessing
whether the fit of the model is improved by permitting variability. This
yields x§=365.56 which provides evidence that the fit of the model is
considerably improved by permitting variability. Despite this
improvement there still remains considerable residual variation as judged
by the log-likelihood goodness—-of-fit statistic of xf4= 87.70.

Repeating this analysis for the data on IV implanted tumors yields
u*=0.633, v*=4.912x105, k*=0.0846 with a log—likelihood L(u*,v¥*,k*) =
-117.41. As in the IP case we find that permitting the rates to vary
(with a beta distribution) improves the fit of the model with an

associated xi =116.48. However, as before we find that this model does
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not adequately fit the data as judged by the log-likelihood goodness-of-
fit statistic of XiZ = 25.49.

If we let 1 (=1 for IP and =2 for IV) index the route of
implantation, we may analyse the combined data set and test whether
k1=k2=k. Fitting this model yields L(uT,v*,ug,vg,k*)=—464.95 and thus a
test of HO:k1= 2 has x§=0.24 providing no evidence for a difference in

=k

the therapeutic parameters. Fitting the model u, =u 9=

1 2=u, v

=v,=V, k1=k

1 72

we obtain L(u*,v*,k*)=-470.24 and a test of H.:u =u,,V

0'Yy =v, (assuming

1
k1=k2) is given by x§=10.58 thus providing some evidence that the
distributions of a may not be the same for IV and IP implanted tumors.
The estimated values of the cure rates for the IP and IV implanted tumors
using the maximum likelihood estimators u;, v? and k? (i=1,2) are given
in Table XVIII.

Interpretinghﬁhese results is not straightforward since if
variability in mutation rates exists we would not expect it to vary with
route of implantation. The evidence that variability exists must remain
hypothetical and we can only say that the analysis of the data presented
here is compatible with this idea. This subject is worthy of future
(experimental) study although this will not be easy.

Data on survival of animals having L1210 tumors treated with Ara-C
is given in Table XIX. Ara-C is especially active against cells in the
S-phase of the cell cycle and thus its effect is limited by the
proportion of cells in this phase during treatment [26]. This drug is
best administered in doses far below the LD10 since large doses have no

greater tumoricidal effect. After much experimentation with this drug,

Skipper and his associates have found that doses of 15mg/kg may be



-187-
repeated every 3 hours up to 8 times without resulting in undue
toxicity [26]. Observations on the growth delay of tumors treated with
between 1 and 8 cycles of Ara-C (every 3 hours) suggest that the log of
the fraction of surviving cells is linearly proportional to the number of
cycles given. This would imply that the effect of each cycle of Ara-C is
the same (assuming independence) and that the cells sufficiently
redistribute themselves about the cell cycle so that, approximately, a
constant proportion of cells are in the S phase at each application of
the drug. Further cycles of therapy beyond 8 (every 3 hours) produce
considerable toxicity, however, if therapy 1s not given for three days
the animal's normal tissues recover sufficiently for therapy to be
applied again. A regimen of 8 cycles of Ara—-C given every 3 hours will
be referred to as a céurse [26]-

Up to four courses may be given, with intervening three day recovery
periods, without undue toxicity. Data from éxperiments using between one
and four courses, for various initial tumor burdens, are given in Table
XIX. We propose to model this data using the model presented in Section
3.7. 1In what follows j=l,...,4 will index the number of courses of Ara-C
given. As earlier the log-likelihood, L, is given by (5.4).

In this caée, however, P is of a more complex form. Here we will

ij
use the approximation developed in Section 3.7 where we assumed that

Ro(tl)= N(tl) where t., is the time of the first cycle of the first

1

course. Since the death rate for this tumor is assumed to be zero, the
tumor is cured if, and only if, {RO(tJ)=0,R1(tJ)=O} where tJ is the time
of the last cycle of therapy. For simplicity we will assume that v=0 and

estimate « only, that is we will assume that transitions to resistance



-188-
occur only at cell division. Observation on Ara—-C resistant cells
suggest that this resistance is effectively absolute, i.e. nl(D)=1 for
the doses of Ara-C used.

If ¢(s 1;t) is the probability generating function for the

0°®
distribution of sensitive and resistant cells in the tumor, then the
probability of cure is ¢(0,O;tJ); see (3.13). Since nl(D)=1, from
(3.11.1) we have

85505t 5) = 6(Eq(s(),05¢ ), for j=1,...,J,
where from (3.9.1),

§0(50)=1‘RO(D)+RO(D)SO.
From (3.11.2) we have,

¢(so,0;tj+1) = ¢(w0(tj+1—tj),0;tj) for j=1,...,J-1,
where Wl(t)=0 for Sl=0 and

-bt

s .e

0
bt

wo(t) = -
. [1-30(1—a) (l-e )]

since sl=0 and v=0 (see (3.6) and (3.7)). Using (3.30) we may write
- RO -
0(sy,8,3t1) = 8, CRO(sl;tl),
where RO is the "observed” number of sensitive stem cells at time tI and
we will set R, =N, the total tumor size at first treatment. From (3.33)

0
we have
- N N-1
¢(SO’0;tl)=SO (l_a) .
Using the above equations we may estimate the probability of cure
for various values of the parameters a and nO(D). Notice that the drug

is only given at a single dose level (15 mg/kg) so it is not necessary to

specify the form of nO(D). The complex form of Pij makes it infeasible
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to set up equations for the maximum likelihood estimates of a and
n0(15)=n0. Thus a direct approach was taken by selecting "likely” values
of the parameters and iterating in directions so that the log-likelihood
increases. Initially this method was used on a version of this model in
which a=0. In this case it proved difficult to compute the log-
likelihood since for all choices of T either Pijzl or Pij=0 for some
i,j. When the log-likelihood was calculated at least one term in the sum
overflowed yielding the following inequality for the log-likelihood:
L(O,n6)<—1038. However, joint estimation of « and 2 did produce
easily computed likelihoods for a range of these two parameters. Maximum
likelihood estimates were obtained for a number of starting values
(10'9<a<10'5, 0.1<n0<0.3) and in all cases (in which the log-likelihood
did not overflow) each sequence converged to the same estimates. The
maximum likelihood estimates were given by a*=1.791x1077, n6=0.186 with
L(a*,n6)=~209.41. The log-likelihood goodness—of-fit of x%0= 22.38
indicates that variation exists which is not explained by the model. The

predicted estimates of P, using this model are given in Table XIX.

13
There is thus considerable evidence that spontaneously resistant cells do
- arise with a frequency of the order of 1077,

Fitting a model incorporating variable mutation rates poses a
considerable technical problem since the recursive nature of the
relationships involved do not permit an approximation of the type used in
(5.5). We will approximate the effect of variation in « (following a
beta distribution) using a discrete distribution similar to that used in

Section 5.1. The number of mass points used in the approximation was

was varied (5,10 and 20) and each lead to essentially the same result (to
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six significant figures in the likelihood). Using the same notation as
in the analysis of Cyclophosphamide, the maximum likelihood estimates
were u*=3.298, v*=1.574x108 (where u and v are the parameters of the beta
distribution which generate the percentiles used in the discrete
approximation) and n6=0.186 with L(u*,v*,n6)=—209.15. The asymptotic x2
distribution of the difference in log-likelihoods yielded a test for the
presence of variability in a of xf=0.52 providing no evidence for
variation in o (following an approximate beté distribution).

The analysis of the data on two quite different drugs (one phase
specific and one not) appear to provide evidence compatible with the
hypothesis that drug resistant cells do arise as a result of random
mutations. In one case (Cyc) there was evidence that the mutation rate
may be random, whereas the analysis of the data for Ara-C provided no
evidence for this. We cannot conclude that the mutation rate has been
demonstrated to be random for resistance to Cyc in the L1210 leukemia
because there still exists considerable unexplained variation in the
data. The existence of random variation in mutation rates for
spontaneous tumors cannot be determined from the analysis of passaged
animal tumors because each spontaneous tumor is unique whereas each
animal implanted with a passaged tumor (L1210) should be considered to
have a sample of a single tumor. By testing for random variation in
mutation rates in a single type of experimental tumor we are testing
whether these rates spontaneously evolve during the serial passaging of
the tumor. In summary the presence of variation in mutation rates can
properly be determined only by analyzing data from a series of de—novo

spontaneous tumors. Since variation can influence the value of various
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TABLE XVIL

Response of Intraperitoneally (IP) and Intravenously (IV)
Innoculated L1210 Leukemia to Single Doses of Cyclophosphamide.*

Dose Size at # of AnimaliP # of # of animaliV # of
mg/kg treatment Treated Survivors Treated Survivors

300 8x107 94 7 80 4
8x10° 148 60 30 10

8x10° 39 30 20 14

250 8x107 - - 66 1
8x10° - - 30 3

8x10° - - 30 17

230 8x10° 50 7 - -
8x10° 40 10 - -

8x10" 50 41 - -

200 8x107 109 3 60 0
8x10°© 160 11 40 3

8x10° 60 11 10 0

8x10" 10 8 - -

8x103 10 10 - -

150 8x107 30 0 245 0
8x10° 19 0 60 0

8x10° 20 1 50 3

100 8x107 10 0 130 0
8x10° 20 0 30 0

8x10° 144 0 20 0

* Abstracted from reference [26].
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TABLE XVIII

Observed (Obs) and Predicted values for the Probability of Cure for
IP and IV 1Innoculated L1210 Leukemia Treated with Cyclophosphamide
Using the Maximum Likelihood Parameter Estimates for Fixed Rates

(Predl) and for Variable Rates (Pred2).

Dose Size at _t IP v

mg/kg treatment Obs Predl  Pred2 Obs Predl Pred2
300 8x107 0.074 0.000 0.109 0.050 0.000 0.040
8x10° 0.405 0.435 0.223 0.333  0.428 0.165
8x10° 0.769 0.920  0.446 0.700 0.919  0.544
250 8x107 - - - 0.015 0.000 0.038
8x10° - - - 0.100 0.422 0.164
8x10° - - - 0.567 0.917  0.544

230 8x10° 0.140 0.393 0.218 - - -

8x10° 0.250 0.911  0.445 - - -

8x10" 0.820 0.992 0.778 - - -
200 8x107 0.028 0.000 0.008 0.000 0.000 0.001
8x10° 0.069 0.145 0.173 0.075 0.180 0.115
8x10° 0.183 0.824  0.435 0.000 0.843 0.524

8x10" 0.800 0.981 0.776 - - -

8x103 1.000 0.998 0.964 - - -
150 8x107 0.000 0.000 0.000 0.000 0.000 0.000
8x10° 0.000 0.000 0.000 0.000 0.000 0.000
8x10° 0.050 0.003 0.066 0.060 0.008 0.045
100 8x107 0.000 0.000 0.000 0.000 0.000 0.000
8x10° 0.000 0.000 0.000 0.000 0.000 0.000

8x10° 0.000 0.000 0.000 0.000 0.000 0.000
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TABLE XIX

Observed and Predicted Rates of Cure for Intravenously Innoculated L1210
Leukemia Treated with Repetitive Courses of Ara-C.*

Dose Size at # of Animals # of Observed Predicted
mg/kg Schedule treatment Treated Survivors Cure Rate Cure Rate
15 q 3hr (x8) 8x10° 10 0 0.000 0.000

1 course

8x10° 60 2 0.033 0.021

8x10" 20 11 0.550 0.681
q 3hr (x8) 8x107 20 0 0.000 0.000
2 courses

8x106 40 3 0.075 0.223

8x10° 19 11 0.579 0.860
q 3 hr (x8) 8x10° 9 3 0.333 0.224
3 courses ’

8x105 30 25 0.833 0.861
q 3 hr (x8) 8x107 59 0 0.000 0.000
4 courses

8x106 80 25 0.313 0.224

8x10° 215 187 0.870 0.861

8x10% 30 30 1.000 0.985

*Data abstracted from reference [26].
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therapeutic interventions this subject is worthy of further study.

5.3 Neo-Adjuvant Chemotherapy

Adjuvant is a term applied to chemotherapy which is used in addition
to other forms of therapy (i.e. radiotherapy or surgery) [32]. Adjuvant
chemotherapy is commonly used in a large number of solid human tumors and
has proven successful in increasing the curability of several of these
tumors (i.e. breast cancer) [35]. The use of adjuvant chemotherapy has
been particularly successful (and initially somewhat controversial) when
used in individuals with no observable disease (perhaps after surgery),
but who are believed to have microscoplic disease present (based on the
experience of individuals with similar disease). 1In all these cases
chemotherapy is given subsequent to "curative" therapy (usually
surgery).

For some types of tumor, individuals may present with advanced
disease where surgery, although desirable, is not possible. In
particular tumors (initially head and neck cancer) a new concept has been
proposed, that of neo—adjuvant (or pre-—operative) chemotherapy [36]. 1In
this approach chemotherapy is given first in order to shrink the primary
tumor so that surgery is possible. After surgery the patient then
recelves the appropriate therapy. Like any good idea it has been applied
to a variety of cases where it is more or less appropriate. In
particular neo—adjuvant chemotherapy has been advocated, and is currently
being tested, in situations where surgery is already possible without the
neo—ad juvant chemotherapy.. In breast cancer, which is one such case,
neo—ad juvant chemotherapy amounts to starting the programme of adjuvant

therapy at a time prior to surgery rather than after [37].
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In this section we will consider the case of human breast cancer in
some detail. Many advantages are espoused for the neo—adjuvant
application of therapy, however, we will be concerned with only one of
them here; that neo-adjuvant therapy reduces the likelihood of treatment
failure from drug resistance. At this point we will provide an overview
of the approach to be taken. We will assume that prior to diagnosis the
distribution of tumor cells is given by the approximation of Sectiomn 3.6.
We will set up an ad-hoc model for the effect of surgery on the
distribution of tumor cells and fit it to observations from human breast
cancer. We will not assume that we have a particular drug (with given a,
v, etc.), but require that the drug used is "reasonably” effective
(against the sensitive cells) and examine the curability for various
values of the mutation rates. Using the models developed for the effect
of surgery and chemotherapy (Chapter 3) we will then examine the effect
on curability of an extra neo-adjuvant cycle of therapy.

We know, from the example considered in Section 3.5, that for a
given treatment strategy the earlier the treatment is begun the greater
will be the probability of cure. The critical question is the magnitude
of the increase in the probability of cure produced by an extra
neo—-ad juvant cycle of therapy. We will use breast cancer as an example
although this approach can, in principle, be extended to other tumor
types. The adjuvant therapy will be assumed to be a single drug which is
given in a fixed number of cycles. This application of the theory
differs from those considered previously since we are now considering the
effect of two modalities of therapy (chemotherapy and surgery) rather

than chemotherapy alone.
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As mentioned before (Chapter 3), the effect of surgery (in terms of
tumor reduction) is complex and depends on many factors. One of the
principal difficulties 1s that metastasis of the tumor to other sites
may not be apparent at diagnosis. For example in breast cancer, the
finding of lymph node involvement is strongly indicative of tumor
dissemination to other sites. This is the idea implicit in the clinical
and pathological stagling systems for tumors although other prognostic
factors not included in these systems have been identified. In breast
cancer two prognostic factors which have been identified are commonly
used in the planning of clinical trials: menopausal status
(pre-menopausal or post-—menopausal) and lymph node status (0 positive
nodes, 1-3 positive nodes, 4+ positive nodes) [25]. We will consider
separately the six groups defined by menopausal status and nodal status
for women with breast cancer.

In order to estimate the effects of surgery within each of these
groups it is necessary to analyse data on recurrence times of individuals
with breast cancer treated by surgery. Ideally such data would include
individual measurement of recurrence times and growth rates for women
treated surgically (using a standard procedure) for breast cancer.
Unfortunately such data does not appear to be available since individual
growth rates are seldom reported. Here we propose to use the results of
an analysis by Skipper [38] of data of Valagussa et al consisting of
women treated surgically for breast cancer [25]. In that analysis the
following assumptions were made:

(1) All premenopausal disease grows at a fixed rate,

(ii) All postmenopausal disease grows at a fixed rate,
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(iii) Recurrence occurs when the tumor burden at a single site exceeds
10° cells,

(iv) Individuals not recurring within 10 years after surgery are
cured,

(v) All cells are stem cells.

The first four assumptions are certainly not precisely true but are
not unreasonable approximations. The fifth assumption is not explicitly
»stated by the author but is implicit in the development of the estimates
of residual tumor burden. In this development we would have preferred
not to make this assumption however the raw data was not available for
analysis. TFor consistency, we have thus assumed that c¢=d=0 in what
follows although this is not required by the subsequent development. The
estimates of residual tumor burden (stem cell burden) subsequent to
surgery are given in Table XX. We will also require the following
further assumptions to continue with this analysis:

(vi) The removal of cells by surgery is a random process and does not
distinguish between cell types i.e. drug sensitive and drug
resistant,

(vii) The failure of drug therapy is solely due to the presence of
drug resistant cells arising by the process described in Chapter
3,

(viii) The two modalities (chemotherapy and surgery) do not interact
with one another i.e. the effect of each modality for an
individual is independent of the time at which it is given,

(ix) The number of tumor cells at the site of the first recurrence

(if it occurs) is much greater than the number of tumor cells at
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any other sites in the same individual,
(x) The resistant cells survive chemotherapy with probability 1,

(xi) The sensitive cell kill of the chemotherapy is sufficiently
large and the therapy is applied sufficiently frequently so that
the net growth of the sensitive cells during the treatment
period is strongly sub-critical,

(xii) The distribution of the number of tumor cells after surgery is
not related to the pre-surgery tumor burden.

It seems appropriate, at this point, to indicate the reasons for
these further assumptions. Assumption (vi) seems reasonable and
considerably simplifies the later development. Assumption (vii) relates
to the intended objective of this section which is to examine the effect
of neo—adjuvant chemotherapy in preventing the development of drug
resistance. Assumption (viii) permits analysis of the effect of timing
and is a reasonable simplification of the behaviour of these two very
different modalities. ‘Assumption (1x) implies that we may approximate
the total tumor burden of the individual by the number of tumor cells at
the site of recurrence. We may then approximate the post-surgical
probability generating function for the total number of cells by the
probability generating function for the number of cells at the site of
recurrence. Also from (i) and (ii) we may make the preceeding
approximation at all times after the time of surgery. Assumptions (x)
and (xi) are are simplifying assumptions which imply that the probability
of cure for the chemotherapy is approximately equal to the probability of
cure at the first cycle of therapy. Thus the probability of cure is only

weakly dependent on the details of the way in which the chemotherapy is
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applied (after the first cycle). Assumption (xiil) is clearly incorrect,
however we are forced to make this assumption because of a lack of
detailed information on the pre-surgical tumor burden.

We will approximate the post—-surgical distribution of tumor cells
seperately for each of the six prognostic groups (menopausal x nodal
combinations). Approximation (xii) may not be as bad as it first seems
since the relative difference in initial tumor burden before surgery is
likely to be much smaller than the relative difference in tumor burden
after surgery. This assertion is based on the assumption that the
ma jority of the tumor burden prior to therapy is located in the breast
lesion which is (almost totally) excised in all cases, thus leaving the
more variable metastatic burden in place. We are now in a position to
determine analytic expressions which summarise the effects of applying
the chemotherapy early (neo-adjuvant).

The estimates of tumor burden after surgery (in the absence of
neo—adjuvant therapy) derived by H. Skipper are given in Table XX for the
six prognostic groups. Clearly.the variation in residual tumor burden is
quite large. We can now proceed to fit a distribution to the data given
in Table XX, however, the possible mathematical form of the distribution
which can be used in subsequent analysis is limited. The reason is that
we do not have the distribution function for the number of sensitive and
resistant cells in explicit form. The natural model for the response
(removal or not) of a single cell to surgery is a Bernoulli variable,
where the parameter, 06, is a function of the individual (tumor) and the
surgical technique. The parameter is unknown and cannot be estimated

reliably since we only have one observation per individual. We will
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assume that the parameters {9} only take a finite number of values and
then fit this model to the observed data. This model is quite ad-hoc,
but our aim here is to estimate the post-surgical distribution of
sensitive and resistant cells and thus we only need to calculate the
effect of surgery and not construct a valid model of the mechanism of
action. We will set

-1

e, = 10
i

which spans the likely range of {0}. Let j(=1,2) and k(=1,2,3) index the

i=1,...,11,

prognostic groups and define

Cijk=P{9=ei| individual is in prognostic group j,k}.

We will assume that the distribution of the number of stem cells
prior to surgery has probability generating function, {(s;t), given by
(3.24). The probability generating function of the number of cells after

surgery .given at time t, in prognostic group j,k ,C. (s;t,), is given by
* jk *

11 - .
FNCH L 121 C; s C(Ej(8)st,) for 3=1,2, k=1,2,3,
where gi(s)=1—ei+9is for i=1,...,11.
Let Njk(t*) be the post-surgical number of stem cells for

individuals in prognostic group j,k. Then P{Njk(t*)=n} is given by the
coefficient of s" in the above expression. Expanding and identifying the

coefficient of sn, we have

n-1
-bt -bt ’
1 Gie *[Gi(l—e *)]

1
Z Cijk 1 for n>0,

[0,+(1 -8, )e °T¥]

P{Njk(t*)=n} =

and

-bt
- *
(1 ei)e

11
P{N. (t,)=0} = ) cC,. —~
JeetE 1=1 1% [0 +(1-0,)e " ¥]
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§1 (1—ei)e”bt*
C.. )
51 1% [0 +(1-0,)e %)

PNy (e=0) =

Assuming that the mean number of cells prior to surgery is 1010
(approximately a 2 cm. diameter spherical tumor), we set ebt*=1010. Then
values of Cijk may be chosen and the post-surgical tumor burden examined
and compared with the "observed” values (Table XX). The values selected
for Cijk are given in Table XXI and the predicted post-surgical
distribution is given in Table XXII. These values are not unique and
their "fit" is not perfect as may be seen by comparing Tables XXI and
XXII. These values were selected by an informal procedure of trial and
error until the fitted values were within *1%7 of the observed values.
Given that the observed distribution of post—sufgical tumor burden has
considerable random error (since it was estimated from data on 716 cases)
the fitted model seems adequate.

Let ¢(s 1;t) be the probability generating function for the number

0’8

of sensitive and resistant cells in the tumor at time t (see Section
3.1). For the neo-adjuvant approach, chemotherapy is applied first, at

time t1 say. Then from (3.9.1) we have:

(s s 3t)) = 0(Ey(s4)s8y5t) ),

where Eo(s)=1~n +n0s0. If surgery is applied at time t2, we have

0
0(55815E,) = 6wy (E,=t ) ,w, (E,=t )5t ),
where wo(t) is given by (3.7), wl(t) by (3.6) with c¢=d=0. The effect of

surgery on the probability generating function of the number of cells for

a tumor in the prognostic group j, k is then given by

11 -

for j=1,2, k=1,2,3.
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To analyse the effect of neo—adjuvant therapy we must consider the
parameters which are related to the chemotherapy. We will assume that
v=0 and calculate the curability for a number of values of a. From
assumptions (x) and (xi), if the protocol is sufficiently long (i.e. J
large), the curability of the regimen will not depend very strongly on
the parameter my (the probability of sensitive cell survival for a
cycle of chemotherapy). 1In his analysis of this data, Skipper.found that
the doubling time was 56 days for premenopausal disease and 69 days for
postmenopausal disease. We will model conventional adjuvant chemotherapy
as consisting of six cycles of chemotherapy where the f;rs; cycle is
given 28 days after surgery and then given in cycles with 21 day
interval. Calculations based on this model show that the curability is
approximately the same for all cases where noso.l, J>4 (the number of
treatment times) and the interval between cycles of chemotherapy is less
then thirty days. Neo-adjuvant therapy will be modelled by assuming that
an single extra cycle of therapy is given two days before surgery and
then followed by the same post-surgical adjuvant therapy as above. 1In
both cases the date of surgery is the same, that 1is, the inclusion of the
neo—ad juvant cycle does not affect the timing of other therapy. Tables
XXIII-XXIV give the estimated curability of the tumor as a function of
the mutation rate to resistance, a, for the conventional adjuvant
protocol and the increase in the probability of cure associated with a
neo—ad juvant cycle of therapy added to the same protocol for each of the
prognostic groups.

The most obvious result which may be seen from examination of Tables

XXIII-XXIV is that in no case does the calculated increase in curability
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exceed 0.0l. Thus the likelihood of any measurable affect of neo-
ad juvant therapy of the type described here for the development of
resistance to a single drug for breast cancer is negligible. The
modelling procedure is not ideal, as has already been described, however
it would seem that inaccuracies in the modelling of surgery or the
effects of chemotherapy are unlikely to cause an order of magnitude
change in the advantage of neo-adjuvant therapy. Secondly, it can be
seen that the curability of the tumor (in any of the prognostic groups)
varies quite slowly with the mutation rate. Large improvements in the
cure rates obtained with adjuvant chemotherapy will thus require
significant reductions in the overall mutation rate. For example, an
improvement in curability of 0.10 in premenopausal negative node group
requires a chemotherapy with a mutation rate of 10~%. A further
improvement in curablity of 0.10 would require a chemotherapy with a
mutation rate of 10~7. The principle reason that neo-adjuvant therapy is
predicted to have little effect (on the development of resistance) in
this tumor is the highly variable post-surgical tumor burden. If the
post-surgical tumor burden lies in a narrow range then the relationship
between curability and mutation rate will be quite different from that
displayed in Tables XXIII-XXIV. 1In this situation curability will
rapidly change (as a function of the mutation rate) in the region where
the inverse of the mutation rate is approximately equal to the mean
residual tumor burden. In such situations an extra neo-adjuvant cycle of
may have considerable impact in preventing the develoﬁment of
resistance.

In conclusion, if neo—adjuvant chemotherapy is to have any
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measurable effect in this tumor, its primary effect must be on other
mecﬁanisms of treatment failure and not on the development of spontaneous
resistance. This completes the consideration of applications of this

model.
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TABLE XX

Distribution of Post-Surgical Tumor Burden
for 716 Cases of Breast Cancer as a Function of Nodal Status
and Menopausal Classification.*

Premenopausal . Postmenopausal
Number of Positive Nodes Number of Positive Nodes
Tumor Burden 0 1-3 4+ 0 1-3 4+
[0] 0.69 0.31 0.12 0.74 0.35 0.15
(109, 10ly 0.07 0.22 0.11 0.05 0.10 0.08
(10}, 102) 0.00  0.07 0.03 0.01 0.03  0.04
[102, 103) 0.04  0.02  0.03 0.02  0.00  0.03
[103, 10%) 0.03 0.04 0.09 0.02 0.08 0.04
[10%, 10%) 0.01 0.07 0.14 0.02 0.06 0.05
[103, 10°) 0.04 0.07 0.13 0.03 0.08 0.08
(108, 107) 0.08 0.09 0.07 0.04 0.09 0.20
[107, 10%) 0.03  0.11 0.18 0.03 0.11 0.20
[108, =) 0.00 0.01 0.11 0.04 0.08 . 0.1l4
TOTAL 1.00 1.00 1.00 1.00 1.00 1.00

* Abstracted from reference [38].
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TABLE XXI

Table of Values of Cijk’ the Probability of Bernoulli parameter 6y,
for the Six Prognostic Categories.

Premenopausal Postmenopausal

Bernoulli

Parameter Number of Positive Nodes Number of Positive Nodes
04 _ 0 1-3 bt 0 1-3 4t
10-11 0.64 0.00  0.00 0.75 0.34 0.04
10-10 0.12 0.44  0.16 0.03 0.00 0.17
1072 0.00 0.07 0.09 10.00 0.13 0.02
10-8 0.00  0.08  0.02 0.01 0.01 0.05
10-7 0.05 0.00 0.01 0.02 0.00 0.01
10-% 0.04 0.00 0.09 0.02 0.11 0.05
103 0.00 0.04 0.15 0.02 0.04 0.05
10— 0.03 0.07 0.15 0.03 0.09 0.05
1073 0.11 0.07  0.02 0.04 0.08 6.22
10~2 0.01 0.08 0.23 0.03 0.12 0.22
10-1 0.00 0.14 0.09 0.05 0.08 0.13

TOTAL 1.00 1.00 1.00 1.00 1.00 1.00
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TABLE XXII1

Predicted Distribution of Residual Tumor Burden after Surgery
using the values of 6; and Cijk in Table XXI.

Premenopausal Postmenopausal
Number of Positive Nodes Number of Positive Nodes

Tumor Burden 0 1-3 4+ 0 1-3 4+

[0] 0.688 0.310 0.121 0.736 0.344 0.154
[109, 101) 0.072 0.208 0.114 0.048 0.106 0.079
(10!, 102) 0.009 0.068 0.029 0.012 0.030 0.041
[102, 103) 0.041 0.019 0.028 0.017 0.020*% 0.024
[103, 10%) 0.032 0.041 0.088 0.018 0.085 0.042
[10%, 10%) 0.012 0.068 0.140 0.023  0.057 0.051
(103, 10%) 0.039 0.072 0.130 0.034 0.081 0.077
[108, 107) 0.083 0.088 0.070 0.037 0.088 0.194
(107, 109) 0.022 0.107 0.174 0.032 0.107 0.203
[108, =) 0.001 0.019 0.106 0.044 0.082 0.134
TOTAL 1.000 1.000 1.000 1.000 1.000 1.000

* Observed and predicted tumor burden distribution differ by more than
0.01.
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TABLE XXIII

Predicted Curability of Breast Cancer for Premenopausal
Disease as a Function of a and the Increase in
Curability Associated with an Extra (Neo—adjuvant) Cycle.

Mutation Rate Probability of cure for Increase in Probability of

a adjuvant Chemotherapy Cure with Neo-adjuvant Therapy
Number of Nodes Number of Nodes
0 1-3 4t 0 1-3 4t

109 0.994 0.968 0.897 4x10~ "%t 22x10™% 70x10™%
108 0.960 0.872 0.736 16x10~% 43x10™% 47x10°%
1077 0.891 0.773 0.616 15x10~% 22x10~% 29x10~%
10-6 0.851 0.694 0.475 4x10™% 13x10™% 26x107%
103 0.828 0.631 0.347 4x10~%  8x10~% 15x10~*
10" 0.791 0.594 0.279 5x10~%  4x10™%  5x1074
103 0.763 0.545 0.246 2x10~%  7x10™%  4x10™“
10~2 0.742  0.447 0.189 3x10"4 1l4x10~%  7x10~*
101 0.693 0.319 0.125 3x10"4  6x10™%  3x10~*“

Observed when
no chemotherapy 0.692 0.309 0.120
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TABLE XXIV

Predicted Curability of Breast Cancer for Postmenopausal
Disease as a Function of a and the Increase in Curability
Associated with an Extra (Neo—adjuvant) Cycle.

Mutation Rate
a

Probability of cure for

ad juvant Chemotherapy
Number of Nodes

Increase in Probability of
Cure with Neo-adjuvant Therapy
Number of Nodes

0 1-3 4+ 0 1-3 4+

10~? 0.965  0.924  0.872 19x10~"* 40x10~" 68xlof“
10-8 0.923 0.812 0.660 12x10™"% 33x10™% 65x10™%
10~7 0.882 0.708 0.470 8x10~% 19x10~% 30x10~%
10-6 0.848 0.625 0.379 4x10~"% 11x10~% 10x107%
10—° 0.824 0.551 0.325 2x10™% 9x10™%  6x107%
10— 0.805 0.490 0.287 2x10~" 4x10~%  3x10~"%
10-3 0.790 0.462 0.252 1x10~% 3x10~%*  3x107"
10-2 0.773 0.402 0.207 2x10~% 6x10~%  4x107"
10~} 0.740 0.347 0.158 2x10~% 2x10~%  2x10™%

Observed when

no chemotherapy 0.736 0.353 0.154
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6. CONCLUSION

In the previous chapters we developed a model for the resistance of
tumor cells to chemotherapeutic agents. This model is predicated on the
assumption that tumor cells spontaneously acquire resistance to drugs as
these cells grow. This model uses a growth model (developed in Chapter
2) which assumes that tumors, in analogy to normal tissues, are composed
of three types of cells: stem cells, transitional cells and end cells.
The growth of these cells is described by a discrete-time Markov model
with constant transition probabilities for each cell. Using known
results the asymptotic distribution of the number of cells at time t was
derived. For unbounded realisations of tumor growth, it was shown that
the asymptotic distribution depends only on the number of stem cells at
time tg. For all unbounded realisations, having the same growth
parameters, the proportion of each type of cell converges almost surely
to a fixed limit. It was argued that, for most parameter values which
are likely to arise in practice, this asymptotic distribution would
approximate the true distribution for tumors of clinical dimensions. In
this case, the number of cells of each type can be estimated from a
knowledge of the parameter values and the observed size of the tumor. In
particular the number of stem cells can be estimated and curability of
the tumor reduces to consideration of the stem cells alone.

The preceding model of tumor growth must be regarded as approximate
since it takes no account of local and systemic conditions which
influence growth. Furthermore, the assumption that cells grow
independently must be considered a first approximation since

interactions between cells have been demonstrated in a number of systems.
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Further work is needed to develop models describing the growth of tumoré
which preserve the discrete nature of the process and incorporate the
random nature of individual cellular events. It is unlikely that such
models will strongly influence the distribution of resistant cells unless
there is some, presently unrecognised, relationship between parameters
governing growth and those governing the development of resistance.

In Chapter 3 a model was constructed for the development of stem
cell resistance to a single drug. It was assumed that stem cells behave
independently and grow as a birth and death process with fixed
parameters. The probability generating function of the number of
sensitive and resistant stem cells was derived for a tumor of known
parameters that began with a single cell. It was shown that the mean
proportion of résistant cells increases in time. Recursive relationships
were developed for the calculation of the probability generating function
of the process after an arbitrary sequence of treatments. The
formulation assumes that all cells behave independently and that their
interdivision times are exponentially distributed with the same
parameters. To model situations where the growth rate of resistant and
sensitive cells are different, it could be necessary to use a model in
which this is permitted: such a model has been described by Day [34].
Models which permit cells to have interdivision times which are not
exponentially distributed are of interest. However these models will
generally not have the simple Markov structure of the one used here and
their devélopment will be more complicated.

Using the model deQeloped in Chapter 3 it was shown that the best

strategy for maximizing the probability of cure for a given total dosage,



-212-
D, of a drug over a period [t},») is to give the whole dose at time
t1. Therapies which best approximate this strategy (in real systems)
have previously been recommended, as a result of empirical research, on
the basis that they maximise P{Ro(m)=0}. In particular the knowledge
that such a dosage schedule also maximizes P{Rl(w)=0} mandates its use
(or the clinically feasible regimen which best "approximates” it). This
may be of particular importance since a number of different regimens may

have similar values for P{R_(«)=0} but divergent values for P{Rl(M)=0}

of

whereas the reverse is not true (since R.(«)>0 implies Rl(m)>0).

of

A central problem arising in the analysis of spontaneous tumors is
the specification of the age of the tumor when first seen. Coupled to
this 1s the fact that certain realisations of the growth model have zero
stem cells at t=w and should not be inciuded in the consideration of
large tumors. Three possible approaches were developed to address these
problems:

1) Delete sample paths where N(t)»>0 and choose t“ so that the
distribution {N(t’)lN(w)>0} approximates that observed,

2) Approximate the distribution {Rl(t)IN(t)} by the distribution
{Rl(t)lRo(t)} over the early period of growth of the tumor,
assume that the subsequent growth of Ry cells is deterministic
and derive the resulting distribution of Rj(t*) for some
observed Rg(t¥*),

3) Assume that tumors are initiated uniformly in time and then
calculate the resulting distribution of resistant cells for a
tumor distribution at diagnosis of a particular prescribed form.

Each of these approaches represent solutions to different problems
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and as such are generally not directly comparable to one another. Each
case is of use for a particular situation. In terms of the model
developed, the first two solutions can be generalized by redefining the
concept of the size at diagnosis. One approach is to define the critical
tumor burden to have a distribution across individuals (with that tumor)
and assume that diagnosis will occur when the size of the tumor first
exceeds the criticial size in that individual. This would require the
consideration of first passage times and would be quite complex. The
third approach can be generalised in several directions. The resulting
distribution of resistant cells can be examined for a variety of mean
incidence functions, u(t), which do not have the simple form (i.e.
constant) assumed in Chapter 3. Possible forms of this function are
available from the mathematical modelling of carcinogenesis [15]. 1Imn
such cases the modelling of resistance is unlikely to yield simple
expressions for the probability generating function and numerical
evaluation will be necessary. The use of incidence functions of this
type will permit the examination of the distribution of resistant cells
as a function of the age of the subject. 1In advance it does not seem
likely that a strong relationship will exist, however, it is worthy of
exploration. The major conclusion from the analysis of the three
approaches 1s that the quantitative description of resistance depends
upon the description of the system under consideration and that
attention must be paid to the particular experimental situation.
However, qualitatively the systems behave similarly and one or other of
the approaches presented is likely to be of use in most situations.

In the last section of Chapter 3 we introduce the concept of
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intrinsic variability in the mutation. There is little direct evideance
for such variability however given the experimental complexity involved
in testing for such variation we analysed its effect assuming that the
appropriate parameters to follow a beta distribution. It was shown that
variability in the mutation rates affect the form of the probability of
cure and thus it may be possible to identify this phenomenon in
experimental systems. This phenomena was examined in Chapter 5 for the
experimental data on the L1210 leukemia treated with Cyclophosphamide and
Arabinosylcytosine. Initially a model was fit where all cells were
considered sensitive and the logarithm of the probability of cell
survival, after treatment, was proportional to the dose used. This model
did not fit the data well for either drug. Generalising this model to
permit the existence of resistant cells considerably improved the fit to
the data for each drug. Allowing the mutation rates to vary improved the
fit of the model for the data on treatment with Cyclophosphamide, but not
for Arabinosylcytosine. 1In both cases there still remained unexplained
variation. These considerations apply only to a single well behaved
tumor system treated with two drugs. It is quite possible that
spontaneous tumors may have more variable mutation rates. 1In particular,
we have analysed data on a single tumor, the L1210 leukemia, and we
cannot generalise results from a particular leukemia to all leukemias (in
the same animal). To determine whether variation in mutation rates
exists is necessary to compare estimates of the mutation rates for a
variety of experimental tumors of the same type.

In addition, the data used in the preceding analysis did not include

the cause of death (whether due to resistant or sensitive cells). The
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analysis of similar data with cause of death information would allow more
accurate determination of mutation and pharmacokinetic parameters. Such
an analysis may also be useful in determining the source of the residual
variation unexplained by the present model. Further analysis of such
data is desirable since the concepts developed from such experiments are
used in the construction of protocols for the treatment of human cancer.

In Chapter 4 a model was developed for resistance to two drugs.
Expressions were developed which enabled the joint probability generating
function of the number of stem cells to be calculated for an arbitrary
treatment regimen. Although not explicitly detailed, the effects on the
probability of cure of the timing and dosage of a single drug are seen to
carry over to this situation. However, the optimum use of two drugs
remains an unresolved problem. The major problem is that there is no
common scale of measurement for the effects of drugs on normal tissue.
There is a need for models of toxicity since the construction of
protocols critically depends on them (bothbin theory and practice).
However, given that such a dosage and timing schedule have been described
then it is possible to examine how the ordering of treatments may effect
the probability of cure. In particular, it was shown that if the
treatments are "equivalent” (i.e. each has the same effect on sensitive
cells and cells resistant to it and are given at the same times) then the
expected number of stem cells is minimized by giving these drugs in an
alternating fashion. It was also argued that, in most cases of practical
interest, the probability of cure will also be maximized by such
strategies. Although equivalence may not usually arise in practice, its

examination leads to the conclusion that treatments must be interspersed
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to maximize the probability of cure. For non-equivalent drugs the
pattern of interspersement will depend on a number of parameters which
reflect the effectiveness of the drugs in each of the stem cell
sub—compartments. This problem has been extensively studied by Day [34]
who has examined the relationship between the tumor and drug parameters
and the pattern of application of each drug in the "optimal"” strategies.
In cases where the parameters are known the optimal strategy may be
determined. In cases where some parameters are not accurately known it
seems reasonable to give these parameters a distribution reflecting the
precision with which they are known. Optimal strategies may then be
determined for this system. Such a calculation was presented for
equivalent agents (using the generalized definition) in Chapter 5 where
the mutation rates follow a distribution. It was shown (in Section 4.6)
that the optimal strategy (for E[N(t)]) is the same as for the fixed
mutation rate case (that is, the drugs should be alternated). However,
in other cases the optimal strategy may depend on the amount of
variability (or lack of precision). This problem is worthy of further
exploration.

The generalization of this model to more than two drugs represents a
considerable technical problem. This situation is probably best
approached using a model similar to that developed by Day [34]. As in
the example of two drugs, an unresolved question is the way in which
drugs may be combined. This requires a knowledge of their joint effect
on toxicity.

Chapter 5 presented applications of the theory developed in

preceding chapters to experimental and clinical tumors. In additiom to
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those situations already discussed, the model was applied to the
neo—-ad juvant chemotherapy of breast cancer. Using an ad-hoc model for
the effect of surgery on the distribution of stem cells, we assessed the
influence of an extra neo-adjuvant cycle of chemotherapy on the
probability of cure. Chemotherapy was assumed to consist of a single
drug with unspecified pharmacokinetic and mutation parameters. Generally
it is found that the application of the extra neo-adjuvant cycle had
litﬁle effect on the probability that the tumor is cured. This lack of
improvement results mainly from the high variability in the post-surgical
tumor burden as estimated by Skipper [38]. In situations where the
variation in burden is much smaller, the effect of neo—adjuvant therapy
can be expected to be greater. However, it should be emphasized that
this conclusion only applies to the development of spontaneous drug
resistant cells and if other mechanisms of tumor sensitivity are
influenced by this early cycle of therapy, then the resultant effect may
be considerably larger. Of more general interest, this analysis
illustrates the sensitivity of this model to variation in the overall
stem cell burden. This is not surprising, at least in retrospect, but it
does illustrate that the quantitative effect of therapeutic strategies
determined for animal models may not translate simply to human disease
where the variation in tumor burden at treatment is much greater.
Further work in modelling human disease is desirable, since an
understanding of the parameters which influence the clinical therapy of
cancer is the ultimate objective of such research. The greatest obstacle
to such research is the relative paucity of quantitative information

available for human disease. At present a most fruitful approach would
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seem to be to model clinical systems where the parameters have
considerable variation which may be taken to reflect the heterogeneity or

imprecision in their specification.
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