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ABSTRACT 

The mechanism of resistance of tumor c e l l s to chemotherapeutic 

agents i s explored using p r o b a b i l i s t i c methods where i t i s assumed that 

r e s i s t a n t c e l l s a r i s e spontaneously with a defined frequency. The 

resistance process i s embedded i n a discrete time Markov branching 

process which models the growth of the tumor and contains three seperate 

c e l l types: stem, t r a n s i t i o n a l and end c e l l s . Using the asymptotic 

properties of such models i t i s shown that the proportion of each type of 

c e l l converge to constants almost surely. It i s shown that the 

parameters r e l a t i n g to stem c e l l behaviour determine the asymptotic 

behaviour of the system. I t i s argued that for b i o l o g i c a l l y l i k e l y 

parameter values, cure of the tumor w i l l occur i f , and only i f , a l l stem 

c e l l s are eliminated. 

A model i s developed for the a c q u i s i t i o n of resistance by stem c e l l s 

to a single drug. P r o b a b i l i t y generating functions are derived which 

describe the behaviour of the process a f t e r an a r b i t r a r y sequence of drug 

treatments. The p r o b a b i l i t y of cure, defined as the p r o b a b i l i t y of 

ultimate e x t i n c t i o n of the stem c e l l compartment, i s characterised as the 

cen t r a l quantity r e f l e c t i n g the success of therapeutic intervention. 

Expressions for t h i s function are derived for a number of experimental 

s i t u a t i o n s . The e f f e c t s of v a r i a t i o n i n the parameter values are 

examined• 

The model i s extended to the case where two anticancer drugs are 

av a i l a b l e and formulae for the p r o b a b i l i t y of cure are developed. The 

problem of therapeutic scheduling i s examined and under s i t u a t i o n s where 

drugs are of "equal" effectiveness, but may not be given together, i t 
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i s shown that the mean number of tumor c e l l s i s minimised by sequential 

a l t e r n a t i o n of the drugs. 

The models are applied to data c o l l e c t e d on the L1210 leukemia 

treated by the drugs Cyclophosphamide and Arabinosylcytosine. In both 

cases the analysis of the data provide evidence that r e s i s t a n t c e l l s 

a r i s e spontaneously with a frequency of approximately I O - 7 per d i v i s i o n . 

When applied to human breast cancer, the model indicates that neo­

adjuvant therapy i s u n l i k e l y to greatly influence the l i k e l i h o o d that the 

patient w i l l die from the growth of drug-resistant c e l l s . 
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1. INTRODUCTION 

Resistance i s a general term i n cancer therapy meaning 

i n s e n s i t i v i t y to treatment [1]. This term can be applied to any of the 

three arms of cancer therapy, surgery, radiotherapy and chemotherapy, but 

i t i s usually reserved for the l a t t e r two. Here we w i l l be concerned 

pr i m a r i l y with resistance to chemotherapy which has recently assumed 

greater importance with the increased use of this modality i n c l i n i c a l 

cancer therapy. Resistance may be either absolute (no e f f e c t of the 

drug) or p a r t i a l (reduced e f f e c t of the drug). In the discussion which 

follows we w i l l consider the development of resistance, whether p a r t i a l 

or absolute, to chemotherapeutic agents. 

Resistance to cancer chemotherapy i s known to be m u l t i f a c t o r i a l and 

there i s no reason to believe that a l l forms have yet been i d e n t i f i e d . 

Probably the simplest way i n which resistance can a r i s e i s that of 

pharmacologic sanctuary. In t h i s s i t u a t i o n tumor c e l l s a r i s e , or are 

transported to a s i t e which i s not accessible to the drug by the usual 

route of administration. For example, a number of drugs administered 

intravenously w i l l not gain access to the brain. A second mechanism i s 

the metabolic conversion of the drug to a non-active form. For example, 

the half l i f e of 5 - f l u o r o u r a c i l (5-FU), a drug commonly used i n the 

treatment of g a s t r o - i n s t e s t i n a l malignancies, has a measured systemic 

h a l f - l i f e of six to twenty minutes [2]. Therefore, the tumor exposure 

time to 5-FU administered by i n j e c t i o n i s l i k e l y to be short and many 

c e l l s may be expected to escape unaffected. C e l l s located d i s t a n t l y from 

the c a p i l l a r y bed are known to experience lower drug l e v e l s than those 

which are c l o s e r . Therefore, tumors may display resistance to 
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chemotherapy because many c e l l s are not exposed to therapeutic doses of 

the drug. Another mechanism of tumor resistance can re s u l t from the 

phase s p e c i f i c or p r e f e r e n t i a l a c t i v i t y of a drug. Tumor c e l l s , l i k e 

other d i v i d i n g c e l l s , move through the various phases of the c e l l c ycle, 

G ^ , S (synthesis), and M (mitosis) where G ^ and G ^ are intervening 

periods between the states of chromosomal synthesis and c e l l d i v i s i o n . 

In some cases drugs act p r e f e r e n t i a l l y or exclus i v e l y on the c e l l s i n 

p a r t i c u l a r phases of the c e l l cycle and thus c e l l s i n other phases w i l l 

appear r e s i s t a n t . Related to this i s the r e l a t i v e i n s e n s i t i v i t y of the 

state Go which i s used to designate viable c e l l s not a c t i v e l y i n the 

c e l l c y c l e . C e l l s i n th i s state are non- p r o l i f e r a t i n g and considerably 

less s e n s i t i v e to chemotherapeutic agents than a c t i v e l y p r o l i f e r a t i n g 

c e l l s . C e l l s i n GQ may l a t e r re-enter the c e l l cycle and continue to 

p r o l i f e r a t e . Therefore tumors with substantial numbers of c e l l s i n 

protected phases w i l l not respond to chemotherapy. This i s the main 

mechanism by which the normal hemopoietic system (which has many c e l l s i n 

GQ) survives the e f f e c t s of chemotherapy aimed at a tumor. 

A further, and important type of resistance i s the existence of a 

subpopulation of c e l l s within the tumor population on which 

administration of an agent has no or reduced e f f e c t when compared to the 

rest of the tumor c e l l s . This resistance i s i n t r i n s i c to the c e l l s 

themselves and p e r s i s t s when such c e l l s are transferred to another host. 

In - v i t r o studies of r e s i s t a n t c e l l s have associated the development of 

resistance with genetic and biochemical differences within these c e l l s 

when compared to the parent s e n s i t i v e c e l l s . 

One other form of resistance should be mentioned. Certain drugs 
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show virtually no effect in some types of tumor, whilst they are 

extremely active in others. Similar variation in response is also seen 

in different classes of non-tumor cells and i t is worth emphasizing the 

obvious that cells, whether normal or malignant, have varying biochemical 

properties, and this can be expected to influence their sensitivity to a 

drug. 

It is our objective here to develop a mathematical model for the 

growth of c e l l populations where individual cells show the intrinsic 

differential sensitivity to chemotherapy. It is recognised that we w i l l 

have to use data from passaged animal tumors even though what we desire 

to model is the therapy of human malignancy. This phenomenon is of 

interest since the existence of resistant cells w i l l obviously influence 

the short term and long term behaviour of tumors treated with 

chemotherapy. Before proceeding further i t is wise to ask whether the 

mechanism we intend to model is present in human malignancy to any 

significant extent. 

Consider the following common c l i n i c a l observation. A tumor is 

treated with an agent (or several agents simultaneously) and appears to 

shrink. It may even be no longer c l i n i c a l l y detectable. Therapy is 

continued, but i t later becomes obvious that the tumor is growing again. 

Experience indicates that continued therapy with the same agents is 

fruitless as the tumor is now c l i n i c a l l y resistant to these agents. Can 

any of the previous mechanisms explain this observation? 

If there are increases in proportion of cells in Go, or in the 

average intermitotic time (the time to go through the c e l l cycle), then 

this would imply that the tumor has become resistant since cells w i l l 
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spend a longer time in resistant phases of the c e l l cycle. However, i t 

would also imply that the growth rate of the tumor would slow 

considerably, which does not appear to be the case [3]. Also, i f there 

are fewer cycling cells or the cells have longer cycle times then 

proportionately fewer cells are in a sensitive state but also fewer cells 

need be k i l l e d to control growth. Although i t is not necessarily true 

that these two effects w i l l move in tandem precisely compensating for one 

another, they must tend to, to some degree. From this reasoning, and the 

lack of observation of significantly slower growth rates, i t seems 

reasonable to conclude that this mechanism is not a major cause of tumor 

regrowth during treatment. 

Changes in the host, so that the drug is more rapidly metabolised, 

also seems an unlikely explanation for tumor regrowth during treatment. 

Such changes would also imply that the toxic effect frequently seen in 

normal tissue should decline as the treatment continues, but this does 

not seem to be the case. Neither the mechanism of pharmacologic 

sanctuary or total resistance would seem to apply as the tumor responded 

in the f i r s t instance and is regrowing at the original site. Both 

distance from the capillary bed or the existence of resistant cells 

provide a plausible self-consistent explanation for the observation of 

relapse during ( i n i t i a l l y successful) therapy. Both predict the 

existence of a subpopulation of resistant cells which upon the 

application of therapy w i l l be "revealed" and repopulate the tumor. The 

regrowing tumor can then be expected to be resistant to the drug. 

Studies of both experimental and human malignancy have shown that 

resistant tumors contain cells which exhibit structural differences from 
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the original sensitive c e l l s . Therefore intrinsic cellular resistance 

provides a logical explanation of this commonly observed phenomenon which 

is consistent with observation in passaged animal tumors. 

Resistance to chemotherapy is thus an important concept whose 

understanding may better explain the response of tumors to chemotherapy. 

The variability in response (either survival time or proportion cured) to 

a fixed treatment protocol of an inbred strain of animals implanted with 

the same tumor line suggests that the development of resistance involves 

some random process. In what follows we w i l l thus use stochastic models 

for tumor growth and the development of resistance. 

Earlier work by Goldie and Coldman [4], in which drug resistant 

mutants were assumed to arise spontaneousely, provided a basic model of 

this phenomenon. This model provided "quantitative" predictions about 

the behaviour of tumors which are in broad agreement with experience from 

experimental and c l i n i c a l chemotherapy [5]. However, this basic model 

could not be f i t to much experimental data because i t assumed: (i) that 

there was no tumor c e l l differentiation or loss, ( i i ) that the drug was 

only applied once, ( i i i ) that a l l sensitive cells were ki l l e d by the drug 

and (iv) that resistant cells were absolutely resistant. In Chapter 3 a 

more general model w i l l be presented in which these assumptions are 

relaxed. This model w i l l then be fitted to experimental data and the 

results presented in Chapter 5. For human cancer the age of the tumor is 

seldom known. In order to use this model of resistance (which is para­

meterized by time) in human data this parameter must be removed and three 

methods of accomplishing this, involving differing assumptions, are 

discussed in Chapter 3. 
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Experience with both experimental and c l i n i c a l tumors has shown that 

for almost a l l cases there exists a combined chemotherapy (the use of 

several drugs) which is superior to a single drug in curing disease or 

increasing survival time. This observation is not surprising since the 

addition of further anti-cancer agents seems likely, a-priori, to 

increase the efficacy of any single drug protocol. However, the reason 

for such an improvement in response is not well understood. These 

observations may be "explained" by assuming the various drugs in the 

combination to have differing phase-specific activity so that the 

combined therapy is more effective than any of the individual agents. 

However protocols which have attempted to combine agents with differing 

phase-specific activity generally have not been successful (in improving 

response), suggesting that other factors may be responsible for the 

benefits associated with combination chemotherapy. The superiority of 

combination chemotherapy is "naturally" explained i f we assume that the 

tumor contains subpopulations of cells resistant to particular drugs. 

The use of combination chemotherapy w i l l thus lead to the preferential 

selection of those cells which are resistant to a l l drugs in the 

protocol, which w i l l usually represent a smaller proportion of the total 

tumor than that which are resistant to only one of the drugs. In 

circumstances where the proportion of cells resistant to the combination 

is smaller than the proportion resistant to any one of the drugs, use of 

the combination w i l l yield superior results. In order to further model 

the response of tumors to several drugs i t is necessary to consider the 

joint distribution of multiple types of resistant c e l l s . In Chapter 4 

the model developed in Chapter 3 is generalized to two drugs and measures 
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of the effectiveness of protocols involving two drugs are developed. 

This leads directly to considerations of maximizing the therapeutic 

effect of protocols, and results are given indicating the increase in the 

likelihood of cure obtained in two-drug protocols as compared to single-

drug protocols. Examples are developed in Chapter 5 where i t is shown 

that the effects of different protocols depend on the choice of the 

outcome measure (survival time or proportion cured). 

Before continuing, i t is worthwhile to emphasize two points. 

F i r s t l y , in any complex biological system where many, possibly competing, 

processes are at work, and where any one may produce the same crude end 

point, i t is unrealistic to believe that consideration of one process, no 

matter how complete, w i l l lead to a comprehensive description of the 

observed phenomena. However, the consideration of a single process can 

give important indications of expected behaviour and may provide a 

framework for the incorporation of other mechanisms. Secondly, 

mathematical models of processes are seldom, i f ever, unique to that 

process. In particular, the model we w i l l develop can also be used for 

some of the other resistance mechanisms discussed earlier in this 

chapter. 

1.1 Resistance in Other Biological Systems 

Analogous processes were f i r s t observed in the study of bacteria 

exposed to v i r a l infection. In a series of experiments investigating the 

infection of bacteria by viruses i t was found that after chronic exposure 

to a virus, a subpopulation of the i n i t i a l l y sensitive bacterial 

population, was no longer sensitive to infection by the same virus [6]. 

In most cases infection by the virus resulted in c e l l death. Furthermore 



although morphologic differences i n the c e l l s could sometimes be 

detected, this was frequently not so, and these r e s i s t a n t bacteria seldom 

displayed any resistance to i n f e c t i o n by other viruses. This observation 

led to two experimentally i n d i s t i n g u i s h a b l e hypotheses regarding the 

o r i g i n of r e s i s t a n t subtypes. It was not u n t i l 1943 that the pioneering 

work of Luria and Delbruck [6] permitted the two main competing theories 

to be compared and experimentally separated. These investigators 

summarised these two hypotheses as follows: 

"1) F i r s t hypothesis (mutation): There i s a f i n i t e p r o b a b i l i t y f o r 

any bacterium to mutate during i t s l i f e t i m e from ' s e n s i t i v e ' to 

're s i s t a n t ' . Every o f f s p r i n g of such a mutant w i l l be 

r e s i s t a n t , unless reverse mutation occurs. The term ' r e s i s t a n t ' 

means here that the bacterium w i l l not be k i l l e d (absolute 

resistance) i f exposed to v i r u s , and the p o s s i b i l i t y of i t s 

i n t e r a c t i o n with virus i s l e f t open. 

2) Second hypothesis (acquired hereditary immunity): There i s a 

small f i n i t e p r o b a b i l i t y for any bacterium to survive an attack 

by the v i r u s . Survival of an i n f e c t i o n confers immunity not 

only to the i n d i v i d u a l , but also to i t s o f f s p r i n g . The 

p r o b a b i l i t y of s u r v i v a l i n the f i r s t instance does not run i n 

clones. If we f i n d that a bacterium survives an attack, we 

cannot from t h i s information i n f e r that close r e l a t i v e s to i t , 

other than descendants, are l i k e l y to survive the attack." 

Using simple mathematical analysis, Luria and Delbruck showed that 

for both hypotheses the mean number of r e s i s t a n t c e l l s was proportional 

to the t o t a l number of c e l l s , N, but that the variance of the number of 
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r e s i s t a n t c e l l s was proportional to for hypothesis 1 and to N 

for hypothesis 2. By constructing a suitable experimental method, known 

as the f l u c t u a t i o n t e s t , they were able to show that th e i r data was 

incompatible with hypothesis 2 and supportive of hypothesis 1. Assuming 

hypothesis 1 to be true, they also discussed ways to estimate the 

mutation rate, which they defined to be the p r o b a b i l i t y that a c e l l would 

become r e s i s t a n t . 

The work of Luria and Delbruck spurred a great deal of research i n 

both experimental and mathematical analysis of this problem. Lea and 

Coulson [7], using the p r o b a b i l i t y gerating function and expanding i n 

powers, were the f i r s t to derive expressions for the d i s t r i b u t i o n 

function of the number of r e s i s t a n t c e l l s . This derivation assumed that 

the growth rates of s e n s i t i v e and r e s i s t a n t c e l l s were equal and 

constant, that mutations only occurred from s e n s i t i v i t y to resistance, 

and that the mutation rate was constant. An error i n t h e i r d e r i v a t i o n 

was pointed out by B a r t l e t t [8] and a correct solution was given by 

Armitage [9], who permitted d i f f e r e n t i a l growth rates between s e n s i t i v e 

and r e s i s t a n t c e l l s , and back mutations from resistance to s e n s i t i v i t y . 

A theme also explored at t h i s time was the possible e f f e c t of a phenomena 

known as phenotypic delay. This e f f e c t related to a possible delay a f t e r 

mutation u n t i l the resistance was expressed by the c e l l , which was 

modelled by assuming this time to be either f i x e d , or to depend upon the 

size of the r e s i s t a n t clone (population of c e l l s from a single parent). 

These processes were also examined by Kendall [10] who was interested i n 

t h e i r a p p l i c a t i o n to carcinogenesis. 

Crump and Hoel [11] u t i l i s e d the theory of f i l t e r e d Poisson 
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processes, and found a n a l y t i c r e s u l t s s i m i l a r to those previously 

obtained. They also c r i t i c a l l y examined the properties of estimators for 

the mutation rate which had been proposed elsewhere i n the l i t e r a t u r e . 

This approach was more recently extended by Tan [12] to e x p l i c i t l y model 

mutants at the hypoxanthine-guanine phospheribosil transferase locus i n 

Chinese hamster ovary c e l l s . 

Considerable research has been conducted recently i n the general 

theory of branching processes, of which mutational processes are but one 

s p e c i a l a p p l i c a t i o n . Much progress has been made i n the asymptotic 

theory of branching processes and l i m i t i n g d i s t r i b u t i o n s have been 

derived for cases of fixed t r a n s i t i o n a l rates for both single and 

multi-type branching processes. A comprehensive survey of r e s u l t s i n 

t h i s area i s contained i n Athreya and Ney [13]. These re s u l t s have found 

wide a p p l i c a t i o n i n physical problems where large numbers of p a r t i c l e s 

are present (e.g. chemical and nuclear r e a c t i o n s ) . In this thesis we 

w i l l be concerned with the d i s t r i b u t i o n of small numbers of r e s i s t a n t 

c e l l s where asymptotic analysis i s not appropriate. 

In the following chapters we present and explore the implications 

of mutation to resistance on the treatment of patients with cancer. 

Chapter 2 describes a model for tumor growth i n order to e s t a b l i s h a 

framework for the development of resistance. Chapter 3 contains a 

treatment of resistance to a single drug. Chapter 4 establishes a 

framework for the consideration of more general cases and presents a 

deta i l e d analysis of the s i t u a t i o n when two drugs are a v a i l a b l e . Chapter 

5 presents cal c u l a t i o n s based on the previously developed theory and 

discusses some applications of this model both to experimental and human 
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cancer. The f i n a l chapter summarizes the main re s u l t s and discusses 

areas for future research. 
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2. A MODEL FOR TUMOR GROWTH 

In this chapter we w i l l discuss a model for tumor growth i n discrete 

time. Results w i l l be presented for the computation of the p r o b a b i l i t y 

generating function of the tumor growth model and i t s asymptotic 

d i s t r i b u t i o n w i l l be derived. We w i l l also discuss how the model 

parameters can be estimated from experimental observations and indic a t e 

how p a r t i c u l a r aspects of the model can be modelled i n continuous time, 

an idea that i s used i n subsequent chapters. 

Despite (or perhaps because of) the extensive research on models f o r 

tumor growth, there does not exist a single commonly accepted model. 

This i s due i n part to the fact that two broad, and d i f f e r i n g , approaches 

we w i l l r e fer to here as "empirical" and " b i o l o g i c a l " have been taken. 

In the empirical approach, use i s made of s e r i a l measurements of tumor 

size and various mathematical functions are used to f i t a model. In the 

b i o l o g i c a l approach, assumed processes of c e l l u l a r d i v i s i o n and 

i n t e r a c t i o n with the host are synthesized to give a model for the o v e r a l l 

tumor growth. 

Empirical growth functions have great value i n determining useful 

treatment parameters which cannot be d i r e c t l y observed. For example, 

knowledge of the growth curve permits the estimation of re s i d u a l disease 

a f t e r a therapeutic intervention by observing the time at which the 

disease recurs. However, for human malignancy the requirement of a large 

number of s e r i a l observations has severely l i m i t e d t h e i r usefulness. 

Further, these mathematical functions may contain parameters which have 

no obvious b i o l o g i c a l i n t e r p r e t a t i o n . 

A l t e r n a t i v e l y , the b i o l o g i c a l approach uses processes observed i n 
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severely l i m i t e d t h e i r usefulness. Further, these mathematical functions 

may contain parameters which have no obvious b i o l o g i c a l i n t e r p r e t a t i o n . 

A l t e r n a t i v e l y , the b i o l o g i c a l approach uses processes observed i n 

d i v i d i n g populations of c e l l s and re s u l t s i n models where the e f f e c t s of 

single mechanisms can be examined and evaluated independently. However, 

these models are frequently c r i t i c i s e d for f a i l i n g to take account of a l l 

processes, giving r e s u l t s which do not adequately f i t data, or y i e l d i n g 

models with so many parameters that they could be made to f i t almost any 

data. The l a t t e r c r i t i c i s m stems mainly from the fact that many 

processes, while well-understood i n general terms, are not uniquely 

s p e c i f i e d so that any attempt to use them requires the a - p o s t e r i o r i 

s p e c i f i c a t i o n of parameter values. 

In t h i s discussion we favour the b i o l o g i c a l approach since we are 

interested i n properties acting at the c e l l u l a r l e v e l . Our aim i s to 

develop a model which w i l l incorporate several known c h a r a c t e r i s t i c s of 

human malignant growth. In p a r t i c u l a r , we require a model which recog­

nises that not a l l tumors are a homogenous c o l l e c t i o n of c e l l s with the 

same p r o l i f e r a t i v e c a p a b i l i t i e s . Examination of many s o l i d tumors, both 

experimental and c l i n i c a l , has shown them to contain c e l l s which are 

fu n c t i o n a l l y dead, i . e . c e l l s which are incapable of d i v i s i o n . Since 

tumors are believed to grow from microscopic f o c i , these dead malignant 

c e l l s represent the descendents of d i v i d i n g malignant c e l l s . In many 

populations of d i v i d i n g c e l l s i t i s recognised that not a l l c e l l s are 

capable of unlimited p r o l i f e r a t i o n . C e l l s capable of unlimited 

p r o l i f e r a t i o n are referred to as stem c e l l s and represent a variable 

f r a c t i o n (depending upon the tumor type) of the d i v i d i n g c e l l s i n the 
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tumor. The model we w i l l use here i s a s l i g h t l y modified version of one 

described by Mackillop et a l [14], which i s a stem c e l l model analogous 

to that used to describe the growth of normal tissue systems such as the 

hemopoietic system. 

This model assumes that c e l l s can be c l a s s i f i e d into one of three 

mutually exclusive classes based on t h e i r p r o l i f e r a t i v e p o t e n t i a l . In 

common with other work i n this area, we w i l l cast this model i n a 

d i s c r e t e framework i n which c e l l s are assumed to divide with a f i x e d 

i n t e r m i t o t i c i n t e r v a l with d i v i s i o n taking place at the beginning of each 

i n t e r v a l . This b i o l o g i c a l l y u n r e a l i s t i c assumption must be viewed as a 

f i r s t approximation to a complex process i n which the i n t e r m i t o t i c time 

can be expected to vary as a function of a large number of f a c t o r s . Part 

of this model w i l l be recast i n a continuous framework i n subsequent 

chapters, when the behaviour of stem c e l l s alone are considered. The 

three compartments consist of stem c e l l s , t r a n s i t i o n a l c e l l s and end  

c e l l s defined as follows: 

1. Stem c e l l s denoted (C^); c e l l s capable of unlimited 

p r o l i f e r a t i o n . At each d i v i s i o n a stem c e l l w i l l give r i s e to 

two stem c e l l s with p r o b a b i l i t y p, two t r a n s i t i o n a l c e l l s with 

p r o b a b i l i t y q and one of each with p r o b a b i l i t y 1-p-q. 

2. T r a n s i t i o n a l c e l l s (C2,••,C n+i); c e l l s capable of 

l i m i t e d p r o l i f e r a t i o n . This class i s comprised of d i s j o i n t 

subclasses C2, Cn+1 where n i s referred to as the 

c l o n a l expansion number. T r a n s i t i o n a l c e l l s which are the 

immediate re s u l t of a stem c e l l d i v i s i o n are entered i n subclass 

C2« Upon d i v i s i o n a single C2 c e l l gives r i s e to two 
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C 3 c e l l s . These processes are repeated for C 3 , . . . , C n + i . 

3. End c e l l s (Cn+2)> These are f u n c t i o n a l l y dead c e l l s 

incapable of further p r o l i f e r a t i o n . Two end c e l l s are formed by 

the divison of a single C n +^ t r a n s i t i o n a l c e l l . 

D ividing c e l l s (C^,...,Cn+^) are assumed to divide with a 

fixed and common i n t e r d i v i s i o n i n t e r v a l . A l l c e l l s are assumed to behave 

independently. 

For the purpose of this analysis the paramters p, q and n w i l l be 

considered to be fixed throughout the growth of the tumor, although i t i s 

a r e l a t i v e l y simple matter to calculate the quantities of i n t e r e s t i f 

these parameters are varied i n a systematic way. 

The occurrence of metastasis and measurement of experimental tumor 

systems indicate that substantial numbers of tumor c e l l s are l o s t from 

the primary tumor. C e l l loss from the primary tumor w i l l be modelled by 

assuming each c e l l i n compartment C^ to have a fixed p r o b a b i l i t y 

(i=l,...,n+2) that i t w i l l be l o s t per i n t e r m i o t i c i n t e r v a l , where for 

the purposes of c a l c u l a t i o n loss w i l l be assumed to occur at the end of 

the i n t e r v a l . Losses of c e l l s w i l l be assumed to occur independently and 

at a fixed rate per i n t e r m i t o t i c i n t e r v a l even for the non-dividing c e l l s 

i . e . Cn+2- l n t h i s s i t u a t i o n loss may be viewed to include l y s i s 

of dead c e l l s or migration outside the primary tumor. This model d i f f e r s 

from that of Mackillop et a l [14] who assumed that p+q = 1. This 

difference w i l l be shown to have important implications when we l a t e r 

consider stem c e l l resistance. An example where p+q<l had previously 

been considered by Moolgavkar and Venzon [15] i n t h e i r model of 

carcinogenesis. 
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Some constraints are placed on the choice of p, q and n by the 

nature of malignant growth. F i r s t l y , from the observation that few, i f 

any, c l i n i c a l l y detectable malignancies ever spontaneously become 

ex t i n c t , i t seems reasonable to l i m i t n to be less than 30. This i s 

chosen because 2 3 0 (=10 9) c e l l s represents the lower l i m i t of detection 

of primary tumors and since spontaneous complete regression i s almost 

never seen, the l i k e l i h o o d of tumors of t h i s size being composed of 

t o t a l l y t r a n s i t i o n a l c e l l s i s remote. S i m i l a r l y , observation of 

experimental tumors indicates that single c e l l s either have unlimited 

p r o l i f e r a t i v e p o t e n t i a l (stem c e l l s ) or can grow to produce clones of no 

more than 10 6 c e l l s . However, there i s i n theory no upper l i m i t on n 

since for any value i t i s always possible to choose 1^ (i=2,...,n+l) to 

give a model that i s consistent with the previous observations. 

2.1 Properties of the Growth Model 

For the tumor to continue to grow (on the average), the stem c e l l 

compartment must grow. Thus the mean number of stem c e l l s produced by a 

d i v i s i o n of a single stem c e l l must exceed one. From t h i s we have the 

requirement 

(1-JLp (2p+l-p-q)>l 

or P-q> jya-^). ••• ( 2 , 1 ) 

The growth model, although very simple to define, has a complex 

structure. It i s nevertheless a straightforward exercise to write 

recursive r e l a t i o n s h i p s which w i l l give the j o i n t p r o b a b i l i t y generating 

function of the process. 

Let C (t) i=l,...,n+2, be random variables representing the number 



of c e l l s i n compartment at time t where t i s measured i n units of 

i n t e r d i v i s i o n times. 

Let $(s;t) be the j o i n t p r o b a b i l i t y generating function of the 

random vector C(t)=(C.(t),...,C , 0 ( t ) ) : 

C,(t) C
n + 2 ( t ) 

* ( s ; t ) = E [ S i x ...x s n + 2 ], 

where s = (s,, s ,„). Let ~ 1 n+2 
C (1) C (1) 

^ ( s ) = E [ S ] L x ...x s n + ^ Z |C(0)=e.] 

where e^= (0,0,..,1,..,0) (the vector with 1 i n the i - t h p o s i t i o n and 0 

elsewhere); <l^(s) i s the probabality generating function a f t e r one 

d i v i s i o n of a single c e l l i n state at time 0. Then i t can be shown 

that 
2 2 (^(s) = A 1 + ( l - A 1 ) [ p s 1 + ( l - p - q ) s 1 s 2 + q s 2 ] , 

^ ( s ) = V ( 1 " " V S i + l for i=2, n+1, 

From t h i s we obtain 

$(s;t+l) = $ ( ( K s);t), ... (2.2) 

where c|;(s )= f (J>, ( s ) , c|> l 0 ( s ) l . Equation (2.2) follows from a well ~ ~ i ~ n+z ~ 
known res u l t [16] for the p r o b a b i l i t y generating function for the sum of 

a random number of random v a r i a b l e s . Let X. .=(X... X T. .) 
~ i j l i j ' J i j ' 

(i = l ,...,<», j = l , . . . ,J) , Y=(Y1,...,Y ) and Z=(Z1,...,Z ) be non-negative 
J Y. 

integer valued random vectors with Z = \ p X... Assuming X.. are 
j-1 i - l ~ 1 J ^ 2 

independent for a l l i , j , X „ a r e i d e n t i c a l l y d i s t r i b u t e d for a l l i ( f o r 

each j ) , X̂ _. and Y^ are independent for a l l i , j , then 
cP z(s)= 4,Y(<J;x(s)), ... (2.3) 
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where, 

Z l Z J 
<\>z(s) = E[ SX x . . . x S j ] , 

Y l Y J 
c|>Y(s) = E[ s L x . . . x S j ] , 

and 
X X 

(Px (s) = E[ s ^ ^ x . . . x S j
J l j ] . 

j 

Equation (2.2) follows using (2.3) with Y=C(t) and X, .=C(t+l) condi t i o n a l 

on C(t)=ej (then unconditionally Z=C(t+l)). 

After s p e c i f i c a t i o n of $(s;0) i t i s possible to d i r e c t l y c a l c u l a t e 

$(s;t) by recursive use of (2.2). However, t h i s s o l u t i o n i s not very 

tractable and i s of l i m i t e d use since t i s seldom, i f ever, known for 

human malignancy. 

Three quantities of Interest which are measurable for human cancer, 

are the growth rate (GR) of the tumor, the proportion of stem c e l l s 

(Pg) and the p r o p o r t i o n of d i v i d i n g c e l l s (Prj)- Consider the 

following d e f i n i t i o n s : 

GR(t) = C(t) / C ( t - 1 ) , 

P s ( t ) = c l ( t ) / c ( t ) , _ ( 2 > 4 ) 

P D ( t ) = i - c n + 2 ( t ) / c ( t ) 
n+2 

and C(t) = I C ( t ) . 
i = l 

As defined these quantities are random variables which are functions 

of a possibly unknown parameter t. Consider the l i m i t i n g q u a n t i t i e s : 
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GR = l i m GR(t), 
t-*» 

P G = lim P ( t ) , 
t-*» 

P D = lim P ( t ) . 

We w i l l now show that the l i m i t s GR, Pg and PQ e x i s t . In order 

to do t h i s we w i l l use asymptotic theory developed for multitype 

branching processes (of which the growth model considered here i s one 

example). Consider the matrix M, where 

M. . = E[C.(l)|C(0)=e ] for Ki,j<n+2. 

In t h i s case M i s given by 

(1-A )(l+p-q) (1-A )(l-p+q) 0 0 . . 0 0 

0 0 2(1-Jl 2) 0 . . 0 0 

0 0 0 2(1-I 3) . . 0 0 

M = 
0 0 0 0 . . 2(1-A ) 0 

n 
0 0 0 0 . . 0 2(1-1 ) 

n+1 
0 0 0 0 . . 0 (1-A 

n+2 

...(2.6) 
(k) k Let ^ denote the ( i , j ) element of M . Two compartments C^ and C^ 

(Ki,j<n+2) are said to communicate i f and only i f there e x i s t integers 

k,m (>0) such that 

M,(k). >0 and M ( . M J >0. 

By convention M =1 (the i d e n t i t y matrix) and thus every compartment 

communicates with i t s e l f . Examination of (2.6) shows that the growth 

model considered here consists of n+2 communicating classes each 
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consi s t i n g of a single c e l l type. The eigenvalues, X, of M s a t i s f y the 

c h a r a c t e r i s t i c polynomial det|XI-M|=0, which i n th i s case i s 

( X - A ) \ n ( \ - ( l - A n + 2 ) ) = 0 , 

where A = M̂  ^=(l-£^)(1+p-q). The maximal eigenvalue i s X=A>1 (from 

(2.1)) which i s of m u l t i p l i c i t y one. Let v be the l e f t eigenvector of M 

associated with A, that i s , 

v M=Av, ...(2.7) 
n+2 

where Y v.=l. Examination of (2.6) reveals that Mn _>0, M l 0 ,„>0, l 1,1 n+Z,n+Z 

(1=1,...,n+l) and by Theorem 4.1, page 66 i n Mode [17], for 

C(0)=e 1 we have 

— — •* wv almost surely, ...(2.8) 
A 

where w i s a non-negative scalar random v a r i a b l e . 

It i s e a s i l y seen that E[C^.(1) log C..(1) |£(0)=^ ]<» for a l l i , j and 

we thus have from Theorem 4.1, page 66, i n Mode [17] that E[w|C(0)=e^]>0. 

Thus for r e a l i z a t i o n s of the process C of in t e r e s t ( i . e . those for which 

C(t)-*>° as t-*°) i t follows from (2.7) that 

c(t) 
= -> wv. 1 = w a. s., 

t t ~ ~ A A 

where 1̂  i s the vector where each element i s 1. Thus, 

C(t)/C(t) + v a.s. 

From t h i s we see d i r e c t l y that P $ and PQ exist and are degenerate. 

To see that GR exists consider 

C(t) - C ( t - l ) 
A t A ^ 1 ' 

Then we have a.s. 
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o = l i m (Sit! _ ccizii) 
t - H » A A 

-iii.a|=}i(A--aa-). 
t-*» A C ( t - l ) 

Thus for r e a l i z a t i o n s of in t e r e s t we have GR = A a.s. 

Notice that the asymptotic growth rate of the tumor i s e n t i r e l y 

determined by parameters which control the growth of the stem c e l l 

compartment, that i s A. Furthermore, the random variable w relates to 

the growth of the stem c e l l compartment. To see t h i s , we note that i f 

0 ( 0 ) = ^ (i=2,... ,n+2), then: 

C(t)<2 n for a l l t , 

where n i s the cl o n a l expansion number. Thus for A>1, 

A* 
Therefore for any r e a l i z a t i o n C(t) with C(t')=C', 

lim t - t " = W * ~ a • s • » 
t->ro A 

where w* depends only on C]_(t'). Because of the independent behaviour 

of the stem c e l l s , w* i s the convolution of w given i n (2.8). 

In attempting to f i t t h i s model to human disease we are faced with 

s i t u a t i o n s where only comparatively crude data are a v a i l a b l e . The 

f r a c t i o n of d i v i d i n g c e l l s can be currently estimated with l i m i t e d 

p r e c i s i o n [18]. Estimates of stem c e l l f r a c t i o n are i n the range of 

0.001 and above [19]. Therefore when there are at least 10 9 c e l l s , the 

number of stem c e l l s exceeds 10 6. At the lower l i m i t of the number of 

stem c e l l s , one or both of the other compartments w i l l be large. The 

number of c e l l s growing from a single c e l l (of any type) has a f i n i t e 

mean and variance for a f i n i t e time period. Since c e l l s behave inde-
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pendently, f l u c t u a t i o n s i n the proportion of c e l l s i n each of the 

compartments w i l l be small with high p r o b a b i l i t y . In cases where the 

proportion of stem c e l l s i s very high, the proportion of the non-stem 

c e l l s w i l l be small i n comparison to the pre c i s i o n with which i t can be 

measured. From these considerations, we expect the l i m i t i n g values GR, 

P and P w i l l apply to a mature c l i n i c a l or experimental tumor where we 

w i l l assume n<20. We can then use expressions for GR, Pg and Prj to 

estimate the parameter values of the tumor. These expressions can be 

d i r e c t l y calculated by solving (2.7), where M i s given by (2.6), and lead 

to: 

V2 d+p-q) V ...(2.9.1) 

2(1-1 ) 
Vi+1 = — A V f o r 1 = 2 n ' •••(2.9.2) 

and 

Vn+2 = A - ( l - l , 9) V i ' -..(2.9.3) 
n+2 

n+2 
The constraint £  vi~^ a n ( * equations (2.9.1-3) y i e l d : 

i-1 
n i 2(1-A.) . n+1 .2(1-1.) 

v 1 = (i+P-q) [2+(i-P+q){I ( n + i i = g l ) A n 
1 1=2 j-2 n+2 j=2 A 

-1 

.. .(2.10) 

Using (2.9.1-3) and (2.10) we w i l l now calculate P s , P D and GR 

for several s p e c i a l cases of the n+2 element vector 1 of loss rates. We 

w i l l not indicate the sp e c i a l cases which ar i s e when both !=...=! =1 and 
2 n 

2(1-!)=A. 
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(I) If A = (A A, ^ n + 2 ) then 

GR = ( 1 - 1 ^ (1+p-q) = A, 

p ( V A ) + ( 1 - A i ) M ( l ( i ^ ) n 

n+2 
(1-A) (1+p-q) 

and P g = - P . 
(j ^ - j l ) + rllp. ) ( 2 ( 1 ^ . ^ 

(II) If A = (A, 1, .... A, A n + 2 ) then 

GR = (1-A) (1+p-q), 

P 
A" 1 + An+2 

D 2(1-1) - ( l - A n + 2 ) 
n 

and P s - ( i ± F ) F D. 
(III) If A = (A, .... A) then 

GR = (1-A) (1+p-q), 

and P S - ( i ± p ) n P D . 
(IV) If A = (0,0, 0, A) then 

GR = (1+p-q), 

D 1+A > 

(V) If A = (A, A, •.•, A,0) then 

G = (1-A) (1+p-q), 

p = (l-A)(p-g) -A 
D 1-2A 

and P, 
n 

1 2 > D 
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Example (I) represents the s i t u a t i o n where the three types of c e l l s 

(stem, t r a n s i t i o n a l and end) are l o s t at three d i f f e r e n t rates. Example 

(II) represents the case where a l l d i v i d i n g c e l l s are l o s t at the same 

rate, and non-dividing c e l l s are l o s t at a d i f f e r e n t rate. ( I l l ) , (IV) 

and (V) represent s p e c i a l cases where a l l c e l l s are l o s t at the same 

rate, d i v i d i n g c e l l s are not l o s t and end c e l l s are not l o s t 

r e s p e c t i v e l y . In the absence of s p e c i f i c information for a p a r t i c u l a r 

tumor system, example II seems to be a reasonable compromise between 

complexity of the general case and the l i k e l y processes which cause c e l l 

loss i n a tumor. For example, a l l d i v i d i n g c e l l s can be expected to be 

shed at s i m i l a r rates into the blood and lymphatic systems because of 

growth pressure. End c e l l s w i l l be l o s t at a d i f f e r e n t rate because-they 

w i l l die at a higher rate (than d i v i d i n g c e l l s ) by t h e i r very nature. 

However, even t h i s model contains f i v e unknown parameters, (p, q, n, JL 

and 1 ,„) which cannot be uniquely i d e n t i f i e d from GR, P^ and P„. To n+2 D S 

estimate the parameters of t h i s model requires either the a - p r i o r i 

s p e c i f i c a t i o n of some of the parameters or the c o l l e c t i o n of data on 

other tumor c h a r a c t e r i s t i c s s p e c i f i e d by the parameters of t h i s model. 

Examination of (2 .9.1-3) shows that the parameters p and q only appear as 

the d i f f e r e n c e ±(p-q). Therefore even i f X and n were known, p and q 

cannot be i n f e r r e d (except i n the t r i v i a l case p-q=l) from experiments 

measuring GR, Pg and P Q. This problem i s not e a s i l y resolved since the 

i d e n t i f i c a t i o n of stem c e l l s , both t h e o r e t i c a l l y and experimentally, i s 

based upon t h e i r p r o l i f e r a t i v e p o t e n t i a l , and at present i t i s not easy 

to separate stem c e l l s from other d i v i d i n g c e l l s and carry out 

experiments on them. However, a closer analysis of experiments c a r r i e d 



out to measure Pg shows that further information can be gained. 

In order to measure Pg i n a human.tumor, a biopsy specimen of the 

tumor i s f i r s t homogenized and then a sample, N, of c e l l s , are plated out 

i n d i v i d u a l l y onto a medium supplying nutrients and a suitable matrix for 

growth. After an incubation period the number of c e l l s , r say, which 

have gone on to form colonies of c e l l s greater than some fixed s i z e , 

say, are counted. Then the proportion r/N i s reported as the f r a c t i o n of 

stem c e l l s . If i s chosen too small (as determined by n, the c l o n a l 

expansion number), some of the colonies generated may be the product of 

t r a n s i t i o n a l c e l l s . If i s chosen large enough, the counted colonies 

w i l l consist e n t i r e l y of colonies generated by stem c e l l s . However, i f 

i s chosen too large many stem c e l l s present w i l l not form colonies of 

size because the stem c e l l may i n i t i a l l y (or subsequently) divide to 

form only t r a n s i t i o n a l c e l l s . Thus to design experiments to measure Pg 

we must know (or have a good idea of) n. However, i f i s chosen very 

large then i t i s possible to obtain an approximate expression for E[r/N] 

as follows. 

Using the same notation for colonies as previously used for tumors, 

l e t C*(t) be the state vector for the i - t h colony at time t and set 
n+2 . 

i v i 
C (t) = I C . ( t ) . In t h i s experimental s i t u a t i o n we w i l l assume that 

j - i 3 

A=0, that i s there i s no loss from the colonies. 

If i s chosen very large then almost a l l sample paths for which 

C 1(t')>S M (for some t') w i l l grow a r b i t r a r i l y large, that i s , these paths 

w i l l s a t i s f y 

l i m C > 0. a.s. 
t-*» A 
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Since the proportion of stem c e l l s approaches v^, we have for such paths 

lim P{C*(t)=k}=0 for f i n i t e non-zero k. Thus the p r o b a b i l i t y 

K=P{C 1(t')>S M}, i s approximately given by K=1-9 where the e x t i n c t i o n 

p r o b a b i l i t y 6 = lim P{C^(t)=0}. The p r o b a b i l i t y generating function f o r 
t -XX) 

stem c e l l growth <)>(s), i s given by (s) i n (2.2) with SL =0 and s = 
l I ~ 

(s,0,...,0), that i s 

<t>(s) = q+(l-p-q)s+ps 2. ...(2.11) 

It i s a well known res u l t (p. 397 i n K a r l i n and Taylor [20]) that 9 

i s given by the minimum solution of 9=<j>(9). Solving t h i s equation y i e l d s 

9=q/p and thus K=l-q/p. The proportion of stem c e l l s w i l l be 

approximately given by Pg(since the c e l l s are sampled from a mature 

tumor) and i f S^ i s very large: 

E[r/N]-P s(l-q/p). ...(2.12) 

The righ t hand side of (2.12) depends on the value of p and not just 

on the difference p-q. Thus by carrying out a series of experiments at 

values of S M i t i s possible to obtain information on the values of p and 

q-

A further property of this model which i s important i n the 

subsequent development i s that the stem c e l l compartment functions 

autonomously; that i s , the size of the stem c e l l compartment i s 

determined by the h i s t o r y of stem c e l l d i v i s i o n s and not by any of the 

other compartments. Assuming that disease i s diagnosed at a r e l a t i v e l y 

early stage, then, except i n extremely rare cases, elimination of the 

stem c e l l compartment i s a necessary and s u f f i c i e n t condition for cure of 

the tumor. This statement i s based on the following assumptions: 
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( i ) Diagnosis i s made at approximately 1 0 1 0 c e l l s and death w i l l 

occur at no less than 1 0 1 2 c e l l s ; 

( i i ) The proportionate k i l l of chemotherapy i s the same for a l l 

d i v i d i n g c e l l s ( i . e . stem and t r a n s i t i o n a l c e l l s ) ; 

( i i i ) P s(t)(=P s)>10 - l + i . e . at least one i n I0k c e l l s are stem c e l l s ; 

( i v ) A c l o n a l expansion number (n) i n excess of 15 i s u n l i k e l y ; 

(v) (q/p)<0.95, that i s the r a t i o of stem c e l l d i v i s i o n s forming 

only t r a n s i t i o n a l c e l l s compared to those forming only stem 

c e l l s , i s not too large. 

By ( i i i ) and ( i ) there are at least 1 0 6 ( 1 0 - l t x l 0 1 0 ) stem c e l l s i n the 

tumor. By assumption the stem c e l l s are eliminated and th i s implies that 

only s u f f i c i e n t numbers can survive the e f f e c t s of treatment so that they 

go spontaneously extinct ( y i e l d progeny which are t r a n s i t i o n a l and end 

c e l l s only). The p r o b a b i l i t y a single stem c e l l w i l l go spontaneously 

extinct i s (q/p) and because c e l l s behave independently the p r o b a b i l i t y 

that k would go extinct i s (q/p) • By (v) (q/p)<0.95 and thus i f n>100 

then (q/p) 1 0 0<0.01. This implies that the p r o b a b i l i t y a stem c e l l w i l l 

survive therapy i s <10 - i t( 10 6/10 2). Thus by ( i i ) the expected number of 

surviving t r a n s i t i o n a l c e l l s i s < 1 0 6 ( 1 0 - l t x l 0 1 0 ) . By ( i v ) each 

t r a n s i t i o n a l c e l l can give r i s e to no more than 2 1 5=3.3xl0 1* c e l l s . Thus 

the maximum size the r e s i d u a l tumor can achieve ( i f a l l stem c e l l s are 

eliminated) i s 10 6x3.3xl0 1 +=3.3xl0 1 0 which i s less than the minimum s i z e 

which can cause patient death by ( i ) . 

As indicated i n the previous discussion, the long-term behaviour of 

the tumor (that i s whether i t i s curable or not) can be assessed by 

considering whether the stem c e l l compartment can be eliminated or not. 
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However, the short-term response of tumors to therapy w i l l n a t u r a l l y be a 

function of the response of a l l tumor c e l l s . In attempting to describe 

tumor behaviour i n terms of this model, we w i l l r e s t r i c t our analysis to 

considerations of long-term response, based on the behaviour of the stem 

c e l l compartment. 

By the nature of the growth model presented here, not every sample 

path passes through the point k (not every path s a t i s f i e s C(t)=k for some 

t ) . In p a r t i c u l a r i f C^(t')>k for a p a r t i c u l a r path we cannot conclude 

that there exists a t<t' such that C^(t)=k for the path. In l a t e r 

chapters we wish to consider t as a continuous parameter, to be able to 

condition on C^(t) and require that every path for which C^(t')>k s a t i s f y 

C^(t)=k for some t<t". In order to do th i s we require a model for growth 

which only changes by increments of +1 or -1. A convenient process which 

has this property i s the l i n e a r b i r t h and death process. 

In examining long-term response we w i l l u t i l i z e a b i r t h and death 

model for the stem c e l l compartment. In th i s model a l l losses from the 

stem c e l l compartment (to t r a n s i t i o n a l c e l l s , c e l l deaths, e t c ) w i l l be 

termed deaths. Additions of new stem c e l l s by d i v i s i o n w i l l be referred 

to as b i r t h s . We w i l l assume that for a single c e l l i n a time i n t e r v a l 

[t,t+At) d i v i s i o n s r e s u l t i n g i n two stem c e l l s occur with p r o b a b i l i t y 

bAt+o(At), d i v i s i o n s r e s u l t i n g i n one stem c e l l and one t r a n s i t i o n a l c e l l 

with p r o b a b i l i t y cAt+o(At) and deaths occur with p r o b a b i l i t y rate 

dAt+o(At). We make the correspondence between the discre t e and 

continuous models by requiring that b, c and d s a t i s f y the following 

con s t r a i n t s : 
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b ...(2.13.1) b+c+d 
c (1-p-q) ( 1 - ^ ) , ...(2.13.2) b+c+d 

and 

b-d i n [ ( 1 - 1 ^ (1+p-q)]. .. .(2.13.3) 

Conditions (2.13.1) and (2.13.2) re s u l t from requiring that the events 

associated with b, c and d occur i n the appropriate l i m i t i n g frequency 

with respect to each other. Equation (2.13.3) guarantees that the net 

mean growth rate w i l l be the same i n both formulations. A continuous 

Markov model i s a better, although imperfect, model of c e l l u l a r d i v i s i o n 

than one i n which the i n t e r - m i t o t i c times are constant. A more r e a l i s t i c 

model of i n t e r - d i v i s i o n times would have support on [x,=°] x>0, thus 

implying a non-zero mode. However the growth process i s of secondary 

i n t e r e s t i n t h i s analysis and the mathematically tractable exponential 

d i s t r i b u t i o n for i n t e r d i v i s i o n times w i l l be used. The relevance of the 

growth model considered here i s that i t i s b i o l o g i c a l l y plausible and 

contains parameters which allow the number of stem c e l l s to be varied f or 

a fixed t o t a l number of tumor c e l l s . This i s important since the 

porportion of stem c e l l s i s suspected to d i f f e r greatly between tumor 

systems. 

In the next chapter we w i l l consider the spontaneous evolution of 

variant stem c e l l s which display resistance to one or more 

chemotherapeutic agents. Relationships w i l l be developed which r e l a t e 

the c u r a b i l i t y by chemotherapy of the tumor to the k i n e t i c parameters of 

the tumor and other parameters r e f l e c t i n g the development of resistance. 

The growth model developed here w i l l not be e x p l i c i t l y considered i n 

l a t e r chapters but i s assumed to apply. In what follows we w i l l 
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concentrate on the stem c e l l development which, as has been shown, 

determines the growth and c u r a b i l i t y of tumor. 
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3. THE DEVELOPMENT OF RESISTANCE TO A SINGLE CHEMOTHERAPEUTIC AGENT 

In Chapter 1 we discussed various mechanisms which lead to 

resistance to chemotherapy used i n the treatment of cancer. In that 

chapter we discussed how drug r e s i s t a n t c e l l s are known to a r i s e i n 

experimental tumors where they are one of the p r i n c i p a l causes of 

treatment f a i l u r e . Resistant c e l l s are also thought to be a primary 

cause of treatment f a i l u r e i n human malignancy although the evidence i s 

not as strong as i n the experimental case. We w i l l now consider the 

development of permanently r e s i s t a n t stem c e l l s within the context of the 

growth model developed i n Chapter 2. 

In t h i s chapter we w i l l develop expressions which r e f l e c t the 

development of resistance and the long-term response of tumors treated 

with a single drug. We w i l l only consider the primary tumor and not 

the status of any c e l l s contained i n distant metastatic deposits. 

Because of the nature of the tumor growth model presented i n Chapter 2 we 

need only consider the behaviour of stem c e l l s since they alone influence 

the long-term c u r a b i l i t y of the tumor. Stem c e l l s w i l l be considered to 

be i n one of two states with respect to a drug: s e n s i t i v e or r e s i s t a n t . 

Resistant c e l l s w i l l not be assumed to necess a r i l y be t o t a l l y r e s i s t a n t , 

that i s , r e s i s t a n t c e l l s may show some response to the drug but t h i s 

response w i l l be q u a n t i t a t i v e l y less than that exhibited by s e n s i t i v e 

c e l l s . The two states are therefore defined with respect to one another 

and are generally not defined i n absolute terms. This d e f i n i t i o n 

i m p l i c i t l y involves a notion of the environment of the experiment, which 

includes the c e l l l i n e , the drug and the dosage under consideration. A 

more general d e s c r i p t i o n would include a number of states which show 
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varying s e n s i t i v i t y to the drug. For reasons, which w i l l l a t e r become 

apparent, such a multitype model i s d i f f i c u l t to analyze and we w i l l only 

consider a two state model. 

We w i l l assume that i n a time i n t e r v a l of length At the p r o b a b i l i t y 

that a single stem c e l l divides to form two stem c e l l s , i s bAt + o(At), 

that i t divides to form a stem and t r a n s i t i o n a l c e l l i s cAt + o(At) and 

that i t migrates, dies or forms two t r a n s i t i o n a l c e l l s i s dAt + o(At) 

(see Chapter 2). These events w i l l be referred to as b i r t h s , renewals 

and deaths r e s p e c t i v e l y . The p r o b a b i l i t y of two or more events occuring 

i n a time i n t e r v a l of length At w i l l be assumed to be o(At). In what 

follows b, c and d w i l l be assumed to be constants for a p a r t i c u l a r 

tumor. In common with the t h e o r e t i c a l model of Luria and Delbruck [6], 

we assume that there i s a fixed p r o b a b i l i t y a that a b i r t h event i n a 

s e n s i t i v e c e l l w i l l r e s u l t i n the addition of a single r e s i s t a n t c e l l and 

p r o b a b i l i t y 1-a that a s e n s i t i v e c e l l i s added. S i m i l a r l y , we assume 

that there i s a p r o b a b i l i t y B that a renewal event to a s e n s i t i v e c e l l 

w i l l r e s u l t i n the replacement of a s e n s i t i v e stem c e l l by a r e s i s t a n t 

stem c e l l and a p r o b a b i l i t y 1-8 that there i s no change i n the number of 

s e n s i t i v e stem c e l l s . We also assume that a s e n s i t i v e stem c e l l may 

spontaneously mutate from s e n s i t i v i t y to resistance with p r o b a b i l i t y yht 

+ o(At) i n an i n t e r v a l of length At. Resistant stem c e l l s are assumed to 

have the same parameters b, c and d but a l l progeny of r e s i s t a n t c e l l s 

are assumed to remain r e s i s t a n t , that i s t r a n s i t i o n s from the r e s i s t a n t 

to the s e n s i t i v e state are assumed not to occur. 

In the next section we derive the p r o b a b i l i t y generating function of 

the process and use i t to deduce some quantities which describe the 
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behaviour of the system. We then give a basic d e s c r i p t i o n of the e f f e c t 

of drugs on both normal and malignant c e l l s . These are then integrated 

into the model for the development of resistance and equations developed 

for the p r o b a b i l i t y generating function of the d i s t r i b u t i o n of stem c e l l s 

a f t e r an a r b i t r a r y sequence of treatments by a single drug. Subsequently 

we discuss three approaches to developing the p r o b a b i l i t y generating 

function for the numbers of s e n s i t i v e and r e s i s t a n t stem c e l l s when the 

time paramter t i s unknown. F i n a l l y , we examine the e f f e c t of random 

v a r i a t i o n i n the resistance parameters on the d i s t r i b u t i o n of r e s i s t a n t 

and s e n s i t i v e c e l l s . 

3.1 Calculating the Probability Generating Function 

Let 

Rg(t) = number of s e n s i t i v e stem c e l l s at time t, 

R^(t) = number of r e s i s t a n t stem c e l l s at time t, 

N(t) = R Q ( t ) + R 1 ( t ) 

and
 p

i > : j ( t ) = P{ V t ) = i > R l ( t ) = J 1' f o r t > 0 ' 

Table I indicates t r a n s i t i o n s between states and t h e i r associated 

p r o b a b i l i t i e s . Referring to Table I we may now use the Kolmogorov forward 

equations [21] to obtain the following family of d i f f e r e n t i a l equations 

for P. . ( t ) : 
1»2 

d P i , j ( t ) = - [(b+d)j + (b+d+c+y)!] P. .(t) + b(l-o) ( i - l ) 2 ( t ) 
dt ' J ' J 

+ c(l-B) i P , ,(t) + d(i+l) P... ,(t) + a b i P (t) 

+ (Bc+y)(i+l) P i + i ^ C t ) + b ( j - l ) P ^ ^ C t ) + d(j+l) P i > j + 1 ( t ) 

...(3.0) 
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TABLE I 

Transitions Occurring i n the Stem Cell Compartment i n the interval 
[t,t+At) which have Probability of Order At. 

In i t i a l State Final State Probability 

( i , j ) (i+l,j) ib(l-a)At+o(At) 

ic(l-B)At 
+jcAt+o(At) 

( i , j ) (i-l,j) idAt+o(At) 

(i,j+l) iabAt+jbAt 
+o(At) 

(i,j) U-l,j+l) i(6c+ Y)At+o(At) 

( i , j ) (i,j~l) jdAt+o(At) 



for i,j>0 where P .(t) = 0 for i<0 or j<0. Let 4(s , s ;t) be the 
i > 3 u i 

p r o b a b i l i t y generating function of {R^(t),R^(t)}, that i s x 

00 00 

< D ( s Q , s ;t) = I I P (t) s 1 s J . 
u 1 i=0 j=0 1 , J u 1 

In what follows we w i l l specify the i n i t i a l d i s t r i b u t i o n of c e l l s by the 

p r o b a b i l i t y generating function at time 0, that i s 

4 ( s 0 , s 1 ; 0 ) = ( K s 0 , s 1 ) . 

Then using (3.0) we can show (by multiplying by SQS^ and summing over i 

and j and interchanging the order of d i f f e r e n t i a t i o n and summation) that 

the p r o b a b i l i t y generating function s a t i s f i e s , 

d K s Q . s ^ t ) d A C s ^ s ^ t ) 5 6 ( s 0 , s 1 ; t ) 
E = [ b S o - d ] [ s 0 - l ] - ^ - + [ a b s 0 + v ] [ S l - s 0 ] — ^ 

o 6 ( s n , s 1 ; t ) 
+ [ b S l - d ] [ S ; L - l ] ^ — i ...(3.1) 

where v = Be + y. 

Using the method of c h a r a c t e r i s t i c s (see for example John, p. 9 

[22]), s o l u t i o n of (3.1) can be reduced to solving the following set of 

ordinary d i f f e r e n t i a l equations: 

^ - = 1 , ...(3.2.1) 

dX n(u) 
[ X 0 ( u ) - l ] [ d - b X ( ) ( u ) ] - [abx 0(u)+v ] [ x 1(u ) - x 0(u)], ...(3.2.2) 

dx L(u) 
= [ X 1 ( u ) - l ] [ d - b X l ( u ) ] , ...(3.2.3) du I A ^ V - / 

where X Q ( U ) and X ^ ( U ) a r e dummy va r i a b l e s . 

From (3.2.1) we have, 

t=u, ...(3.3.1) 

where, without loss of generality we have set the constant of i n t e g r a t i o n 



to zero. Solving (3.2.3) we obtain 

cp(6u) 
.. .(3.3.2) 

d l l - X ^ O ) ] + [b X l(0)-d] exp(6u) 
X 1 ( U ) = b [ l - X l ( 0 ) ] + [b X l ( 0 ) - d ] exp(6u) ' 

where 6=b-d and we assume that b>d so that the process i s s u p e r c r i t i c a l , 

that i s , i t represents a growing tumor. 

To solve the d i f f e r e n t i a l equation (3.2.2), f i r s t notice that 

X Q ( U ) = X ^ ( U ) i s a p a r t i c u l a r s o l u t i o n . Substituting X Q ( U ) = X ^ ( u ) + 1 / V ( U ) i n 

(3.2.2) y i e l d s the following d i f f e r e n t i a l equation for y(u): 

y(u)[b+d+v-b(2-a ) x 1(u)]= b ( l - a ) . 

The so l u t i o n for y(u) i s given by 

{ X 0 ( 0 ) - X 1 ( 0 ) } _ 1 + b(l-o ) / J F(x)dx 

Y ( U ) = FOT) ' 

where F(x)=exp/Q g(v)dv and g(v)=b+d+v-b( 2-oc) x^(v). Writing y(u) = 

[ X Q ( u ) - X ^ ( U ) ] ^ y i e l d s the following expression for X Q ( U ) , 

X Q ( u ) - X L ( u ) + F ( u ) [ { x 0 ( 0 ) - x 1 ( 0 ) } " 1 + b(l-a ) / J F(x)dx]~} ..(3.3.3) 

where 

_,, . E2-a (&+ad+v)xr, ,, 6x -2+a ,„ . n. F(x)=6 e v [b[l - x 1(0 ) ] + [ b x 1(0)-d]e ] . ...(3.4.1) 

It follows from the method of c h a r a c t e r i s t i c s that i f the substitutions 

X 0 ( u ) = s Q , x 1 (u)=s 1 and u=t ...(3.4.2) 

are made i n (3.3.2) and (3.3.3) then the solu t i o n of (3.1) i s given by 

< K s 0, S l;t) = c K x 0 ( 0 ) , X 1 ( 0 ) ) . ...(3.5) 

Carrying out these substitutions leads to e x p l i c i t expressions f o r X Q(0) 

and x^(0) as functions of s^, s^ and t. To emphasize the dependence of 
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X Q(0) and X-̂ O) on t we w i l l write w Q(t)=x 0(0) and w 1(t)=x 1(0). Using 

the substitutions (3.4.2) i n (3.3.2) we obtain 

d(l-s 1)+(bs 1-d)exp(-6t) 
w i ( t ) = x n(0) = m N , T T ; — x * ...(3.6) 

l v ' * l v ' b(l-s 1)+(bs 1-d)exp(-6t) v ' 

S i m i l a r l y using the substitutions (3.4.2) i n (3.3.3) y i e l d s , a f t e r some 

algebra, 

w Q(t) = x Q(0) = W l ( t ) + , ...(3.7) 
1 [ 6 2 a ( s 0 - S l ) ]

 1-b(l-a)/Jf(v)dv ' 

where f(v)=exp{-(6+ad+v)v} [b(\-* )+(bs -d)e 6 v ] " 2 + a . 
Notice that (3.6) i s the p r o b a b i l i t y generating function for the 

b i r t h and death process with fixed parameters b and d. As expected, the 

su b s t i t u t i o n of S Q = S ^ = S i n (3.7) yi e l d s w^(t)= w^(t). Thus the 

development of the stem c e l l compartment as a whole i s a b i r t h and death 

process with parameters b and d. S i m i l a r l y , s u b s t i t u i t i o n of s^=l i n 

(3.7) shows that the s e n s i t i v e stem c e l l compartment grows as a b i r t h and 

death process with parameters b(l-oc) and (d+v). 

For future use we w i l l now calculate some elementary properties of 

the process {R ( t ) , R ^ ( t ) } . By d i f f e r e n t i a t i n g (3.1) with respect to s 

and s^, s e t t i n g S Q = S^=1 and interchanging the order of d i f f e r e n t i a t i o n we 

obtain the following ordinary d i f f e r e n t i a l equations for mQ(t)=E[RQ(t)] 

and m^(t)=[R^(t)] r e s p e c t i v e l y : 

d m 0 ( t ) = (6-ab-v)m f.(t), 
dt 

d m l ( t ) = 6m 1(t)+(ab+v)m 0(t), 
dt 

which y i e l d s 
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m 0(t) = m0 exp{(6-ab-v)t}, 
...(3.8) 

L ( t ) = [m 1+m 0(l-exp{-(ab+v)t})]e 6 t, m 

where m^^n^O), m^=m^(0) are obtained d i r e c t l y from the p r o b a b i l i t y 

generating function at t=0, 4>(SQ,S^). From (3.8) we see 

E[N(t)]=( m i+m 0)e 6 t. 

In a si m i l a r fashion we can derive ordinary d i f f e r e n t i a l equations 

which the variances and covariance must s a t i s f y . Let V^(t) and V^(t) be 

variances of R g ( t ) and R^(t) respectively and l e t V g i ^ O he t h e i r 

covariance. Then 

d V 0 ( t ) = (b+d-ab+v)m Q(t) + 2 ( 6 - a b - v ) V Q ( t ) , 
dt 

d V 0 1 ( t ) = -v m Q(t) + ( 2 6 - a b - v ) V Q 1 ( t ) + (ab+v)V 0(t), 
dt 

d V l ( t ) = (ab+v)m Q(t) + (b+d)m L(t) + 2(a b+v)V Q 1(t) + 26 V x ( t ) . 
dt 

These equations have the following s o l u t i o n s : 

V Q ( t ) - [V + A 1(l-exp{-(6-ab-v)t}] exp{2(6 -ab-v)t}, 

V Q 1 ( t ) = [V Q 1+ [V Q + A 1](l-exp { - ( a b+v)t}) 

-A 2(l-exp(-6t))]exp{(26 - a b-v)t}, 

and 

V 1 ( t ) = [V1 + 2 [ V Q 1 + V Q + A x - A 2](l-exp{-(ab+v)t}) 

- [V Q + A 1](l-exp{-2 ( a b+v)t}) + (b+d)[m Q + m 1](l-exp(-6t))/6 
mn A 

[(b+d -ab-v)-2(ab+v)—] (1-exp{-( 6+ab+v)t}) ]exp {26t}, (6+ab+v) m^ 

(b+d-ab+v) . [(ab+v)(l-a) + (ad+v)] . 
where A = -Vs—Z \ ™A » A o = 5 T 5 — Z — \ b m n » a n d 

1 (6-ab-v) 0 2 o(o-ab-v) 0 

V 0=V Q(0), V -V (0) and v
0 1

= v
0 1 ( ° ) a r e calculated from ( K s^s^. 
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F i n a l l y we note that the p r o b a b i l i t y that a single stem c e l l , 

present at some time t=t", w i l l not have any surviving progeny at t=°°, i s 

given by e=d/b (see K a r l i n and Taylor p.147 [20]). This event w i l l be 

referred to as spontaneous e x t i n c t i o n . S i m i l a r l y , since the stem c e l l 

compartment grows as a b i r t h and death process with parameters b(l-a) and 

(d+v), the p r o b a b i l i t y that a single s e n s i t i v e stem c e l l w i l l not any 

have any surviving s e n s i t i v e progeny at time t=<*> i s (d+v)/b(l-a) • In 

order to consider the behaviour of a tumor subject to therapy we must 

f i r s t examine the e f f e c t s of therapy on the tumor c e l l s and on the normal 

t i s s u e . 

3.2 E f f e c t s of Drug Treatment 

As mentioned previously the development of resistance to a drug can 

aris e as a mutational process. Evidence for some drugs from experimental 

tumors shows that resistance can be e f f e c t i v e l y absolute. An example of 

thi s i s resistance to Arabinosylcytosine i n the L1210 mouse leukemia 

system [23]. That i s , treatment with any dosage of the drug on a c e l l 

r e s i s t a n t to i t w i l l have no e f f e c t . In other cases t h i s i s not true, 

and c e l l s may be i d e n t i f i e d that show reduced s e n s i t i v i t y when compared 

to the parent s e n s i t i v e l i n e . To model the resistance phenomenon we 

f i r s t consider the response of a single c e l l to chemotherapy. 

A large body of experimention, notably by Skipper and h i s 

associates [23], has indicated a l i n e a r r e l a t i o n s h i p between a single 

delivered dose and the logarithm of the f r a c t i o n of c e l l s over a large 

range of dosages. Repeated courses of chemotherapy to the same 

population of c e l l s s a t i s f y the same r e l a t i o n s h i p with the same constant 

of p r o p o r t i o n a l i t y as long as re s i s t a n t c e l l s do not emerge. This 
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r e l a t i o n s h i p has been found to hold for a number of d i f f e r e n t (non-phase 

s p e c i f i c ) drugs, i n several types of tumors and for a range of tumor 

sizes [24]. From these observations, Skipper and his co-investigators 

have postulated that tumor c e l l s subject to chemotherapy at dose D have 

an i n d i v i d u a l fixed p r o b a b i l i t y , TC(D) say, of surviving chemotherapy, 

which may be expressed as 7i(D)=exp{-kD} where k i s a constant of 

p r o p o r t i o n a l i t y and that the response of each c e l l i s independent of that 

of the others. For drugs with phase s p e c i f i c e f f e c t t h i s r e l a t i o n s h i p 

also applies providing c e l l s are i n the s e n s i t i v e phase of the c e l l 

c y cle. We w i l l use t h i s model of chemotherapeutic action i n the 

development that follows. 

Consider the binary random variable X, which indicates whether the 

c e l l survives (X=l) administration of a single course of the drug or not 

(X=0). If £(s) i s the p r o b a b i l i t y generating function of X, then 

S(s)=l-n;(D)+T!(D)s ...(3.9.1) 

for a non-phase s p e c i f i c agent, and 

C(s)=l-pn(D)+p7t(D)s ...(3.9.2) 

for a phase s p e c i f i c agent where p i s the p r o b a b i l i t y that the c e l l i s i n 

the s e n s i t i v e phase of the c e l l c ycle. This model for drug action was 

constructed for agents administered over a short period where the drug i s 

r a p i d l y degraded or excreted so that the e f f e c t of the drug may be 

considered as an instantaneous one. In general the dose at some time t, 

D(t), i s defined as 

D(t) = C(u)du ...(3.10) 

where the drug i s introduced at time t=0 and C(t) i s the concentration of 
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the drug (at the tumor c e l l under consideration). We assume, without 

loss of generality, that C(t)=0 for t<0. 

If therapy i s phase-specific and i s given over an extended period 

then the l i k e l i h o o d that a c e l l i s i n the s e n s i t i v e phase of the c e l l 

cycle, at some time during the therapeutic period, w i l l increase as the 

duration of therapy i s lengthened. Let 

I ( t ) = 1 i f the c e l l i s i n the s e n s i t i v e phase at time t, 

= 0 otherwise. 

Let C'(t) be the e f f e c t i v e concentration for the c e l l at time t, then 

C'(t) = C ( t ) I ( t ) and the e f f e c t i v e dose experienced by the c e l l , D ' ( t ) , 

i s 

D'(t)= /QC'(u)du . 

C l e a r l y the use of the indica t o r function I ( t ) represents an 

i d e a l i z a t i o n as the t r a n s i t i o n between phases of the c e l l cycle w i l l not 

be instantaneous. However, since the time spent i n t r a n s i t i o n between 

phases i s small compared to the time spent within each phase t h i s 

approximation seems reasonable. 

The form of C(t) i s dependent on the method of administration of the 

drug and w i l l be strongly peaked for a single i n j e c t i o n but w i l l be 

f l a t t e r for i n f u s i o n therapy. A further p r a c t i c a l problem to the 

c a l c u l a t i o n of e f f e c t i v e dose i s that some agents tend to block c e l l s 

from proceeding through the c e l l cycle however this phenomena w i l l not be 

modelled here. In the c a l c u l a t i o n of drug dose i t also may be that i f 

C(t)<k* (say) then the drug has no e f f e c t . This may be simply taken into 

account by considering C*(t) i n the c a l c u l a t i o n of dose where 
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C*(t) = C(t) i f C(t) >k* 

= 0 i f C(t) <k* 

It w i l l be noticed that none of the these considerations a l t e r the 

form of £(s) given i n (3.9.1-2). They a f f e c t the value of the binomial 

parameter and induce a possible complex time dependency. Assuming that 

the e f f e c t on a c e l l at time t^ only depends on the dose p r i o r to time 

t^ , and that the re l a t i o n s h i p s known for instantaneous doses apply, we 

may calculate the e f f e c t of drugs when C(t) varies slowly. To do t h i s we 

define the instantaneous doses at time t^ as follows: 

t. 
D. = J\ C(u)du where 0=t n<t 1...<t =t. l Jt. , 0 1 J l - l 

Then 
J 

D(t) = I D . 
i = l 

Let £(s;t) be the p r o b a b i l i t y generating function for the i n d i c a t i n g 

random variable of c e l l s u r v i v a l at time t and l e t £^(s) be the 

pr o b a b i l i t y generating functions for the ind i c a t o r random variables of 

c e l l s u r v i v a l for the instantaneous doses . Using (3.9.1) we have 

£(s;t) = l - T t ( D ( t ) ) + T i(D(t))s 

and 

F,.(s) = l - T t(D . ) + 7 c(D i)s. 

Then 

5(s;tj) = S 1 ( S 2 - - ' C j ( s ) . . ) for j = l , . . . , J , 
i f 

j 
< D ( t ) ) = n TC(D ) . 

3 i = l 

This condition holds i f the logarithm of the p r o b a b i l i t y of c e l l s u r v i v a l 

i s i n proportion to dose as has been found for chemotherapeutic agents 
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In cases where C(t) varies slowly in time, i t s effect may be computed 

using a series of instantaneous effects. In what follows we w i l l assume 

a single instantaneous effect with the understanding that i f this 

assumption were not appropriate we would consider a series of 

instantaneous doses as discussed above. This approach w i l l be useful i n 

cases additional different treatments are applied at times t^ 

(i=l,...,J). 

In human malignancy the concentration of drug, C(t), is frequently 

measured by noting the amount of drug in the serum and not at the tumor. 

As noted before (Chapter 1) the exposure of a c e l l to the drug is a 

function of i t s distance from the capillary bed and thus may vary between 

cel l s . The model of tumor growth we use here does not account for such 

an effect and incorporation of this feature must be deferred for further 

research. 

3.3 E f f e c t s on the Normal Tissue 

The effects of treatment regimens are not necessarily specific to 

the tumor system but can also include the host's normal tissue. To 

account for these define a random variable: 

T=T{(D ,t ), ieN} where, 

T = 1 i f host suffers unacceptable toxicity for any t, 

= 0 otherwise, 

which reflects the toxicity of the regimen {(D^,t^), ieN} where is 

the dose given at time t^. Unacceptable toxicity may reflect death when 

considering animal experimentation and w i l l reflect a (complex) 

combination of objective and subjective measurements for human disease. 

A common objective (althougn not necessarily theoretically optimal) 
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i n experimental and human disease i s to select {(D^,t^), ieN} so that 

P{T=l}< P^ for the whole population where P^ i s some constant which 

depends on the experimenter or c l i n i c i a n . Frequently experimenters use 

PT=0.1, the so-called LD 1 Q' 

An assumption commonly made i n experimental research i s that the 

l i k e l i h o o d of t o x i c i t y depends upon the cumulative dose D=J^D^. We w i l l 

refer to t h i s as a "cumulative dose t o x i c i t y model". 

The "model" of t o x i c i t y used for chemotherapy i n c l i n i c a l medicine 

i s less e x p l i c i t . In general regimens are constructed so that the 

D^(i=l,...J) and t ^ + i - ^ ( i = l , • , J - l ) a r e fixed for a pre-determined series 

of J cycles of therapy. Here P^ for the complete regimen may be chosen 

to be quite high since the and t^ may be modified dynamically i f 

t o x i c i t y occurs. This w i l l be referred to as the " c l i n i c a l t o x i c i t y 

model" and w i l l be assumed when considering c l i n i c a l disease. This 

approach has i t s l i m i t a t i o n s since regimens are constructed using the 

frequency of acute t o x i c i t y with escalating dose and the influence of the 

timing on the t o x i c i t y response surface i s not usually examined. 

Having examined the e f f e c t of chemotherapy on tumor c e l l s and how 

doses are modified because of toxic side e f f e c t s we w i l l now discuss how 

the tumoricidal e f f e c t s of chemotherapy may be incorporated into the 

process (R^Ct),R^(t)}. We w i l l assume that the dosage schedule has been 

constructed so that t o x i c i t y i s at an "acceptable" l e v e l . 

3.4 Modelling Treatment E f f e c t s on the Tumor C e l l s 

In modelling the e f f e c t s of treatment i t i s necessary to separate 

the primary from the secondary malignancies. By primary we refer to a 

c l i n i c a l l y detectable l e s i o n which i s subject to treatment. Secondary 
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disease w i l l r e f e r to any disease present o r i g i n a t i n g from the same 

i n i t i a l malignancy as the primary, but which i s not c l i n i c a l l y detect­

able. Primary and secondary disease may be located at multiple s i t e s . 

Radiation therapy i s usually aimed at primary disease but i n c e r t a i n 

s i t u a t i o n s i t may be used upon secondary disease. The mathematical 

de s c r i p t i o n of the mechanism of action of ra d i a t i o n i s s i m i l a r to that of 

chemotherapy. That i s , c e l l s behave independently and the s u r v i v a l of 

each c e l l can be modelled as a Be r n o u l l i t r i a l . Tumors have been 

i d e n t i f i e d which are termed r a d i o - r e s i s t a n t and show a reduced 

s e n s i t i v i t y to the a p p l i c a t i o n of therapy. I n s e n s i t i v i t y to r a d i a t i o n i s 

believed to a r i s e as a r e s u l t of i n s u f f i c i e n t oxygen because oxygen i s 

known to enhance the c e l l k i l l i n g e f f e c t of r a d i a t i o n . Tumors with poor 

vascular supply, or tumor c e l l s within a region of poor v a s c u l a r i s a t i o n , 

w i l l tend to be re s i s t a n t because of the lower oxygen tension i n such 

regions. 

As we are mainly concerned with modelling chemotherapy we w i l l not 

be greatly concerned with the modelling of ra d i o - r e s i s t a n t c e l l s . We 

w i l l consider radiotherapy to be a non-selective treatment ( i . e . act 

equally on chemosensitive and chemoresistant c e l l s ) and model i t s e f f e c t 

by considering i t to act to increase d, the death rate of c e l l s , over the 

period of r a d i a t i o n treatment. 

Surgery i s almost exclu s i v e l y concerned with the therapy of primary 

disease. The response of i n d i v i d u a l c e l l s to surgery may not be as 

simple as for other modalities. For example, data on the surgery of 

breast cancer indicates that the variance of the res i d u a l number of tumor 

c e l l s i s much greater than would be expected using a binomial model [25]. 



This "extra-binomial" v a r i a t i o n may be modelled by assuming that the 

number of surviving c e l l s i s a binomial variable where the parameter i s a 

random v a r i a b l e . In t h i s case the binomial parameter w i l l be a function 

of the histology, l o c a t i o n and extension of the tumor. This p a r t i c u l a r 

model retains independence but offers great v e r s a t i l i t y . When modelling 

the e f f e c t of surgery we w i l l assume that the binomial parameter has been 

observed, so that the model of t h i s treatment regimen w i l l be s i m i l a r to 

the others. We w i l l use t h i s model when we consider data from breast 

cancer i n Chapter 5. 

When a single drug i s given alone v i a i n j e c t i o n , we w i l l assume that 

i t s e f f e c t i s instantaneous and independent of other treatments (see 

Section 3.2). If t j i s the time of the j-th treatment ( j = l , • • • , J ) , 

then by (2.3) we have 

<t>(s0,s1;tj) = * ( C 0 ( s 0 ) , C 1 ( s 1 ) ; t j ) , ...(3.11.1) 

where £ Q ( S Q ) , | ^ ( S ^ ) are the p r o b a b i l i t y generating functions for the 

i n d i c a t o r random variables of c e l l s u r v i v a l for the s e n s i t i v e and 

r e s i s t a n t c e l l s r e s p e c t i v e l y and t ^ represents the time immediately 

before treatment. At any time t * where tj<t*<t^ +^, the p r o b a b i l i t y 

generating function for the number of c e l l s i s given by 

<K8 ( J,8 1;t*) = * ( w ( ) ( t * - t j ) , w 1 ( t * - t j ) ; t j ) , ...(3.11.2) 

where w^(t*-t^) and w^(t*-t^) are given r e s p e c t i v e l y by (3.7) and (3.6). 

In p a r t i c u l a r , the continuity of the functions 6 and w^(t*-t^) (i=0,l) i n 

t* imply that 6 ( s Q , s ^ ; t I s given by the righ t hand side of (3.11.2) 

with t=t ^. Notice that these equations also apply to phase s p e c i f i c 

agents since the ^ ( s ^ ) a r e °f the same form. In addition <j>(sQ,s^;t^) i s 
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given by (3.5) with t=t^. 

These relationships may be used recursively to calculate the 

probability generating function for {Rrj(t) ,R^(t)} after several 

courses of the same agent. The expected number of resistant and 

sensitive cells may be recursively calculated using 

m Q(t ) = TI (D )m 0(t") and m^t ) = TC (DJm^t"). 

From (3.8) we also have 

m O ( t j + l ) = m
0 ( t

j ) e x P { ( ° - « b - v ) ( t j + 1 - t )}, ...(3.12.1) 
m l ( t j + l ) = [m 1(t j)+m 0(t : j)(l-exp{-(ab+v)(t j + 1-t j)})]exp{6(t j + 1-t j)}. 

...(3.12.2) 

If chemotherapy is not injected but is given continuously over some 

fi n i t e period, then i t s effect may be computed as discussed in Section 

3.2 . The probability generating functions and expected values may be 

calculated using (3.11.1-2) and (3.12.1-2) where now the t^ are the times 

of the approximating instantaneous doses as discussed in Section 3.2. 

The effects of surgery or radiation on the joint probability generating 

function can be assessed using the same techniques i f i t is assumed that 

the survival of the individual cells are independent Bernoulli t r i a l s . 

The complex form of (3.7) and (3.5) and the recursive nature of the 

operation needed to determine * ( S Q , S ^ ; t ) , when treatments have been 

applied, indicate the need for some simple measure which summarizes the 

effects of treatment. The expected values ^ ( t ) and m^(t) provide one 

such summary, however we w i l l now develop a more useful summary measure. 

3.5 Summarising Treatment Effects 

Using the previously described recursive relationships i t i s 

possible to calculate the probability generating function 
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A(s^,S2;t) for a r b i t a r y t. However, the relationships are d i f f i c u l t to 

i n v e r t and i n order to obtain the d i s t r i b u t i o n of c e l l counts at time t. 

We therefore consider some quantities which w i l l provide a useful summary 

of the behaviour of the system at time t. The expected values n ^ t ) , 

m^(t) are two useful measures. Another quantity of some i n t e r e s t i s 

p{N(t)=R Q(t)+R 1(t )=0} since this i s the p r o b a b i l i t y that there are no 

stem c e l l s at time t. Since the elimination of the stem c e l l s implies 

that the tumor w i l l eventually become extinct (or not grow s u f f i c i e n t l y 

to k i l l the patient or animal) t h i s may be thought of as the p r o b a b i l i t y 

that the tumor can no longer cause the death of the patient. The 

p r o b a b i l i t y that there are no stem c e l l s at time t i s given by 6 ( 0 , 0;t) 

and may be e a s i l y calculated from (3.11.1-2). However, 6 ( 0 , 0 ,;t) does 

not represent the p r o b a b i l i t y that the tumor has been cured by the 

treatment regimen, for i f t j i s the time of the l a s t treatment and 

t'>t'>t then, for the model under consideration 
x. Z. \j 

< K 0 , 0;tp=P{R 0(tp= 0 , R 1(tp= 0}>P{R ( )(tp= 0 , R 1(tp= 0 } = 6 ( 0 , 0 ; t p 

with equality i f d=0. This motivates consideration of 

P = E[P{N(~)=0|N(t )} ] . 
tJ J 

We w i l l r e f e r to P as the p r o b a b i l i t y of cure, which w i l l of course 
t J 

depend on the regimen being used. Since each c e l l has a p r o b a b i l i t y 

e=d/b of spontaneous e x t i n c t i o n (see the discussion i n Section 3.1) and 

c e l l s behave independently, the p r o b a b i l i t y n c e l l s w i l l go spontaneously 

extinct i s e • 

It follows that 
N(t ) R (t )+R (t ) 

P = E[e ] = E[e U ] = 6 ( e , e ; t T ) ...(3.13) 
fcJ J ' 
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At this point we should note that P w i l l not correspond exactly to 
J 

the c l i n i c a l l i k e l i h o o d of cure since i t includes the contribution of 

sample paths destined for e x t i n c t i o n , which may nevertheless grow 

s u f f i c i e n t l y to cause patient death. Such paths occur with 

i n s i g n i f i c a n t l y small p r o b a b i l i t y i n most p r a c t i c a l s i t u a t i o n s and P 
J 

w i l l be considered to be equal to the c l i n i c a l p r o b a b i l i t y of cure. 

In some cases, as i n the treatment of L1210 leukemia by the drug 

Ara-C [26], resistance can be e f f e c t i v e l y absolute for any drug 

concentration which does not r e s u l t i n animal death. In th i s case there 

exists the p o s s i b l i t y that a tumor cannot be cured by the drug no matter 

what dose i s used. If we also assume that at the therapeutic dosage 

H;Q(D)=0, then i t i s only necessary to apply a single course of the drug 

(since subsequent courses w i l l have no e f f e c t ) , and we have the 

p r o b a b i l i t y of cure, P , i s given by 
1 

P = 4(e,e;t )= <|>(l,e;t7). ...(3.14) 
1 

This expression may be viewed as an approximation to the p r o b a b i l i t y 

of cure for cases i n which ( D ) = l , ^ Q ( D ) =0 and the treatments are 

applied frequently. Using equations (3.5), (3.6) and (3.7) we have 
P. -<KG(t,),£), ...(3.15) 

1 

where G(t 1)=e + 
-(6+<xd+v)t 

(l-e)(6+ad+v)e _ 
, t, N K w i -(6+ad+v)t 1 1 (6+ad+v)-o ( l - a ) [ l - e 1] 

and (Ks 0 , s 1)=4 ( s 0 , s 1;0). 

If (6+ad+v)t 1»l, then 
P = <Ke,e). ...(3.16) 

1 
Thus for s u f f i c i e n t l y large t 1 , P i s approximately equal to <\>(e,e), the 

1 
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p r o b a b i l i t y , that the tumor w i l l go spontaneously e x t i n c t . Equation 

(3.15) may be used to assess the c u r a b i l i t y of an experimental tumor 

where the number of c e l l s implanted has p r o b a b i l i t y generating function 

I K S Q , S ^ ) , the drug parameters are HQ ( D)=0, TC^(D)=1 and the tumor i s 

treated at time t ^ where t ^ i s large. However i t also i l l u s t r a t e s that 

the theory developed to this point i s of lim i t e d use i n describing the 

treatment of large tumors (either c l i n i c a l or experimental) since i t 

includes spontaneous extinctions (which w i l l l a r g e l y have occurred i n the 

early h i s t o r y of the neoplasm). This deficiency i s e s p e c i a l l y marked f or 

human disease where the tumor originates with a single s e n s i t i v e stem 

c e l l i . e . 4 > ( S Q , S ^ ) = S Q and thus the p r o b a b i l i t y of spontaneous e x t i n c t i o n 

can be large ( i f e i s l a r g e ) . 

Before discussing modifications to exclude spontaneously extinct 

tumors we w i l l f i r s t consider an example which i l l u s t r a t e s an a p p l i c a t i o n 

of the theory developed to th i s point. 

Example: 

Consider the sp e c i a l case u^(D)=l for a l l D where the drug 

considered i s not phase s p e c i f i c . Let TiQ(D)=exp {-kD} as i n Section 3.2. 

Consider a tumor system where v=d=0 which follows the cumulative dose 

Consider the s p e c i a l case u^(D)=l for a l l D where the drug 

considered i s not phase s p e c i f i c . Let ̂ (D^exp{-kD} as i n Section 3.2. 

Consider a tumor system where v=d=0 which follows the cumulative dose 

t o x i c i t y model. We wish to determine whether i t i s better to give a 

single dose of magnitude D at time t ^ or two doses and at times t ^ 

and t ^ where D^+D2=D and ^ ^ j / A regimen i s better i f i t has a higher 

p r o b a b i l i t y of cure. 
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Since 7i^(D)=l for a l l D we need not consider r e s i s t a n t c e l l s present 

at time t^ as these w i l l be unaffected by either regimen. Thus we w i l l 

only consider 6*(sQ) = (|>(sQ,0;tp and assume without loss of generality 

that there are no re s i s t a n t c e l l s present at time t ^ . If a l l the drug i s 

given i n a single dose at time t ^ , then the p r o b a b i l i t y of cure i s 

P t ^ 6 * ( l - 7 t 0 ( D ) ) . . . . ( 3 . 1 7 ) 

For the second regimen where two doses are used we must consider the 

intertreatment development of resistance. Using equations ( 3 . 6 ) and ( 3 . 7 ) 

we have 

-bu 
S *3 

w x(u) = - - r - j - , . . . ( 3 . 1 8 . 1 ) 
l-s^+ s^e 

, , -2+a -bu r. , -bu, 6 I i. -s TS e I 
w Q(u) = w l (u) + * 1 _ B L K _ 1 + A ' . . - ( 3 . 1 8 . 2 ) r , -1 ~ l r / i . -bu.-l+a LSQ-SJ^] -S 1 [ ( 1 - S ^ S ^ ) - 1 ] 

where u=t 2-t^. The p r o b a b i l i t y of cure at time i s 

P = <D(0,0;t 2) = 6(l-7C 0(D 2),0;t2) 

since spontaneous death does not occur (d=0). Now by ( 3 . 1 1 . 2 ) we have 

* ( s ( ) , s 1 ; t 2 ) = 6(w 0(u),w 1(u);t 1), 

where w Q ( U ) and w^(u) are given by ( 3 . 1 8 . 1 - 2 ) . Taking the l i m i t as 

sL->0 i n ( 3 . 1 8 . 2 ) we have 

[ l - 7 C 0 ( D 2 ) ] e " b u 

p t - •( — ^T'0'^ 
Z2 l - [ l - 7 c 0 ( D 2 ) ] ( l - a ) [ l - e D U ] 

7L ( D 1 ) ( l - u N ( D ))e b U 

= ^ ( I - T E Q C D ^ + ^ — - — - ) . . ( 3 . 1 9 ) 

l - ( l - 7 c 0 ( D 2 ) ) ( l - a ) ( l - e " b u ) 

a f t e r taking account of c e l l k i l l TIQ(D^) at time t ^ . 

Since <t>*(s) i s a p r o b a b i l i t y generating function i t i s monotonic 
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non-decreasing on [ 0 , 1 ] and we need only compare the arguments of 6 * i n 

equations ( 3 . 1 7 ) and ( 3 . 1 9 ) . But by assumption 7 ! Q ( D ) = T C Q ( D ^ ) T I Q ( D 2 ), and 

thus for u> 0 

, 0 ( D l ) ( l - , 0 ( D 2 ) ) e - b u 

1 - V V + — 
l - ( l - 7 i 0 ( D 2 ) ) ( l - a ) ( l - e b U ) 

-bu 
= l - n 0 ( D 1 ) T i ( ) ( D 2 ) - n 0 ( D 1 ) ( l - T i 0 ( D 2 ) ) [ l - 6 

l - ( l - 7 t 0 ( D 2 ) ) ( 1-a) ( 1-e b u ) 

< 1 - U 0 ( D 1 ) U 0 ( D 2 ) = 1 - T X 0 ( D ) . . . . ( 3 . 2 0 ) 

Thus giving the t o t a l dose at t^ r e s u l t s i n a higher p r o b a b i l i t y of 

cure than s p l i t t i n g the dose into two parts given at t ^ and t ^ t ^ . ^ 

we set D ^ = 0 , D 2 = D we also see that giving the t o t a l dose l a t e r i s 

associated with a lower p r o b a b i l i t y of cure. More generally i t i s 

preferable to give a drug i n the highest possible dose at the e a r l i e s t 

time rather than spread the same dose over a series of smaller doses. 

This provides a p a r t i a l j u s t i f i c a t i o n for the strategy commonly employed 

i n c l i n i c a l medicine of using the highest possible doses that are 

t o l e r a b l e . These observations may also be generalized to cases where 

v>0,d>0 and 7 t ^ ( D)<l, since the underlying nature of the process Is 

unchanged although the computations become more complex. This completes 

consideration of t h i s example. 

When observing a c l i n i c a l or experimental tumor the number of 

r e s i s t a n t stem c e l l s at any point i n time i s usually unknown. The t o t a l 

number of stem c e l l s can be estimated either by d i r e c t experimentation or 

by applying the appropriate formula for Pg (the proportion of stem 

c e l l s ) developed i n Chapter 2 to the observed o v e r a l l tumor s i z e . In 



both these s i t u a t i o n s we w i l l refer to the number of stem c e l l s as being 

"observed" even though they may only have been i n f e r r e d from the observed 

tumor s i z e . As previously mentioned the theory developed i n Section 3.1 

describes the growth of the sen s i t i v e and r e s i s t a n t stem c e l l s and 

includes cases where these c e l l s go spontaneously e x t i n c t . By the time a 

tumor has reached a si z e where i t i s c l i n i c a l l y detectable the l i k e l i h o o d 

of spontaneous e x t i n c t i o n i s small. This d i r e c t l y leads to the 

consideration of P{R^(t)|N(t)}. Unfortunately t h i s d i s t r i b u t i o n i s not 

e a s i l y obtained because the i n t e g r a l i n (3.7) cannot be expressed i n 

terms of standard functions. A further problem i n the consideration of 

human tumors i s ignorance of the age, t, of the tumor and i t i s therefore 

desirable to construct expressions independent of t h i s parameter. Since 

these problems are of ce n t r a l importance i n the construction of an 

appropriate d i s t r i b u t i o n for the number of r e s i s t a n t c e l l s we w i l l 

o u tline three seperate approaches which provide approximate solutions to 

this problem and w i l l be of use i n various experimental and c l i n i c a l 

s i t u a t i o n s . 

3.6 Conditioning on N(t) - Approximation 1 

As a f i r s t approximation to the problem of conditioning upon N(t) we 

w i l l examine the process where sample paths that correspond to tumors 

which go spontaneously extinct ( i n the absence of treatment) are 

excluded. The basic idea i n t h i s approximation w i l l be to consider the 

d i s t r i b u t i o n P{R (t),R (t)|N(t)>0} and to approximate i t by 

P{R Q(t),R 1(t)|N(»)>0} and substitute a pl a u s i b l e value for t derived from 

consideration of the observed d i s t r i b u t i o n of stem c e l l s . This approach 

has previously been used elsewhere [27]. In the absence of treatment, we 



have for any t - ^ t ^ w n e r e t 2>t^that 

N(t2)>0 + N(t1)>0. 

Thus we may exclude r e a l i z a t i o n s corresponding to tumors which go 

spontaneously extinct at any time by conditioning on N(=°)>0. This i s 

(approximately) equivalent to including only those r e a l i z a t i o n s 

corresponding to tumors which, i f l e f t untreated, could go on to r e s u l t 

i n patient or animal death ( i f we exclude r e a l i z a t i o n s which grow to a 

s u f f i c i e n t size to cause death but are nevertheless destined for 

e x t i n c t i o n ) . We w i l l now calculate the p r o b a b i l i t y generating function 

6 " ( S Q , S ^ ;t) of the process {R^t) ,R^(t)} which consists of a l l sample 

paths {R Q(t) ,R 1(t) } for which N(°°)>0. Let 
CO oo 

<D'(s ,s ;t) = I l?{ R (t)=i,R (t)-j|N(«)>0}sJ . 
i=0 j=0 1 L 

{i,jM0,0} 
To evaluate t h i s p r o b a b i l i t y generating function we f i r s t note 

P{R Q(t)=i, R L ( t ) = j | N(»)>0} 

= (1-P{N(»)=0}) ~ 1 [ p { R 0 ( t ) = i , R L(t)=j} - p{R Q(t)=i, R t ( t ) = j , N(»)=0}]. 

Since the c e l l s behave independently, the p r o b a b i l i t y that a single c e l l 

(either s e n s i t i v e or r e s i s t a n t ) w i l l go spontaneously extinct i s equal to 

E=d/b and i t follows that 

p{R0(t)=i,R1(t)=j,N(o>)=0} = P { R 0 ( t ) = i , R 1 ( t ) = j } e i + j . 

After a l i t t l e algebra we obtain 

* ' ( s ( ) , s 1 ; t ) = 
CO CD 

(l-p{N(co)=0})" 1((D(s n,s 1;t)-P{N(t)=0}- I I P{R „(t)=i,R (t )=j } e ^ s j . s j) . 
i=0 j=0 

UJMo.o} 
Since P{N(<»)=0}=<Ke, e)=<K0,0;<=°) i s the p r o b a b i l i t y that the stem c e l l 

compartment w i l l go e x t i n c t , the desired p r o b a b i l i t y generating function 
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may be expressed as 

4 ' ( s 0 , s 1 ; t ) = [l - ( K e , e ) ] ~ 1 { ( t ) ( s 0 , s 1;t ) - ( | ) ( e s 0 , e s 1;t)}. ...(3.21) 

We may calculate the f i r s t moments m^Ct) and m^(t) of the process 

by d i f f e r e n t i a t i n g (3.21) with respect to s^ and resp e c t i v e l y and 

evaluating at S Q = S I = 1 . After some algebra we obtain 

m^(t) = E[RjJ(t)] = 

l - ^ e . e ) [m 0exp(6-ab-v)t-{^J^- | s = £ } e exp {-(6+ad+v)t} ], ...(3.22.1) 

and 

m'(t) = m£(t) + m£ (t) 
1 r, . •> 6t ;5((i(s,e) i , C 4 ( E , S ) . i -6tn .„ 

= 1-4, ( £ > e ) l ( W e " H t ^ ls= e

 + - i s — ~ lS= £} e e J' -.-(3.22.2) 

where m^(t) i s given by the difference of these two expressions. 

Equation (3.21) shows that the p r o b a b i l i t y generating function for 

the condi t i o n a l (on N(°°)>0) process may be expressed i n terms of that of 

the unconditional process, and thus may be calculated using formulae 

(3.5) to (3.7). When modelling the e f f e c t s of treatment we would use 

(3.21) for the i n i t i a l growth period and (3.11.2) for growth i n the 

intertreatment i n t e r v a l s . We do not use (3.21) for intertreatment growth, 

as t h i s would have the e f f e c t of assuming that the tumor could not be 

cured. 

If we again consider ( a s i n the previous section) the s p e c i a l case 

7 IQ(D)=0, I;^(D)=1 then we may cal c u l a t e P F C , the p r o b a b i l i t y of cure, for 

this process with p r o b a b i l i t y generating function given by (3.21). In 

analogy to (3.14) we have P =6'(l , e;t 1) and thus using (3.21) we obtain 
1 

P =[l - (Ke,e)] - 1 [<KG(t ),e)-<D(e,e2;t")] 
1 

where G(t^) i s a s s p e c i f i e d i n (3.15). For the case where I | ; ( S Q , S ^ ) = S Q , 



as i s l i k e l y i n human disease, t h i s s i m p l i f i e s to y i e l d 

h " L l + e ( l V 6 t l ) a b + v + fid-^Cti) 
g(t )h(t ) 

], ...(3.23) 
e 1 ( l - e ) 1 - b ( l - a ) /Jlg(v)h(v)dv 

where g(t)=exp{-(6+ad+v)t} and h ( t ) = [ l + e ( l - e ~ 6 t ) ] " 2 + < x . Examination of 

(3.23) shows that as expected 
lim P =0, 
t 1^° 1 

that i s , cure w i l l occur with vanishingly small p r o b a b i l i t y i f treatment 

i s delayed too long. This may be contrasted with (3.16) where, for d>0, 

the p r o b a b i l i t y of cure was always greater than zero since t h i s 

expression included the l i k e l i h o o d that the tumor did not e x i s t . 

As indicated previously, the age of a tumor i s only known i n c e r t a i n 

experimental s i t u a t i o n s and i s of course measured i n a r b i t r a r y u n i t s . 

For human disease we usually do not know the age of the tumor and thus we 

do not know the time of the f i r s t (or any subsequent) treatment measured 

on the scale where the tumor originated at time t=0. Once one treatment 

time i s s p e c i f i e d on t h i s scale then a l l other treatment times are known. 

It seems most natural to specify treatment times i n terms of t]., the 

unknown time of f i r s t treatment. A reasonable approach i n modelling 

treatment e f f e c t s on a s p e c i f i c tumor class i s to choose t]^ so that the 

d i s t r i b u t i o n of stem c e l l s ( i m p l i c i t i n (3.21)) at the time of f i r s t 

treatment approximates that observed i n the tumor type. If we l e t N'(t) 

be the random variable with the d i s t r i b u t i o n of N(t) condi t i o n a l on 

N(°°)>0, then we wish to choose t(=t^) so that the d i s t r i b u t i o n of N'(t) 

i s s i m i l a r to the observed d i s t r i b u t i o n at diagnosis for the tumor c l a s s . 
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For the s p e c i a l case < J ; ( S Q , S 1 ) = S Q the p r o b a b i l i t y generating function f or 

N'(t) i s given by (3.21) with s Q=s 1=s; that i s 

<t>'(s,s;t) = [l-£] - 1[ 6(s,s;t)-*(es, es;t)] .. .(3.24) 

Using A ( S Q , s ^ ;t) as given by (3.5) with S Q = S ^ = S , the right hand side of 

(3.24) may be expanded i n powers of s to y i e l d the d i s t r i b u t i o n for 

N'(t): 
, , i .1..,. - 6 t N i - l -6t 

P{N'(t)-l} = ( b " d ) 6 ( 1 " ^ > 6 for i-1,2, (3.25) 
(b-de o t ) 1 " r i 

For large i , such that e 1 « 1 we have 

P{N-(t)-i}- — ^ 2 [ 1 - ( l - ^ t ] i - 1 ( l - e ) e - 6 t , 
(1-ee 0Zy (1-ee 0 C ) 

and i f t i s also large, so that 6 t » l , then to leading order i n e 

p{N'(t)-i} = ( l - ( l - e ) e " 6 t ) i - 1 ( l - e ) e ~ 6 t . ...(3.26) 

Examination of (3.26) shows that the d i s t r i b u t i o n of N'(t) i s 

approximately geometric and only depends upon b and d through m'(t). 

This has three implications for the modelling of "large" tumors. 

F i r s t l y , the approximation to the d i s t r i b u t i o n of N'(t) has only one 

parameter, i t s mean value, and thus i n attempting to determine an 

appropriate value of t^ ( i n terms of given b and d) one need only 

employ one summary measure of the d i s t r i b u t i o n . Secondly, whatever 

summary measure i s used (mean, median e t c ) t h i s w i l l always r e s u l t i n 

choosing t ^ to s a t i s f y some r e l a t i o n s h i p i n terms of the mean m'(t^). 

Thir d l y , we may wish to compare the d i s t r i b u t i o n of r e s i s t a n t c e l l s f o r 

d i f f e r e n t tumor models with d i f f e r i n g b, c and d but the same a, 8 and y. 

If the d i f f e r e n t tumor models are required to have the same mean numbers 

of stem c e l l s , then they w i l l have approximately the same d i s t r i b u t i o n of 

stem c e l l s . Thus differences i n P between such models w i l l not be due 
1 
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to differences i n the d i s t r i b u t i o n of the number of stem c e l l s . The 

c o n d i t i o n a l process (with p r o b a b i l i t y generating function given by 

(3.21)) thus provides a convenient framework for comparing the e f f e c t s of 

various parameters (including treatment) on the c u r a b i l i t y of the tumor 

for a f i x e d d i s t r i b u t i o n of stem c e l l s at t ^ . However th i s approach w i l l 

not be suitable for the modelling of s i t u a t i o n s where the observed 

d i s t r i b u t i o n of stem c e l l s at diagnosis i s not well approximated by a 

geometric d i s t r i b u t i o n . We w i l l now examine some elementary properties 

of this process. 

Consider the expected f r a c t i o n of r e s i s t a n t c e l l s , which i s 

approximately given by m^(t)/m'(t). If we assume that 4 > ( S Q , S ^ ) = S Q and, 

using the mean as the summary measure, we choose t ^ so that 

N*=[(l-e) e l ] , (N* i s the mean size of the tumor at diagnosis), then 

from (3.22.1) and (3.22.2), 

m . ( t ^ = l - [ ( l - e ) N * ] ° . ...(3.27) 

From t h i s i t may be seen, as expected, that the f r a c t i o n of r e s i s t a n t 

c e l l s increases as any of a, 8, or y increase. Increases i n c (since 

v=Sc+y) or d also increase the f r a c t i o n of r e s i s t a n t stem c e l l s although 

these parameters are also related to P , the f r a c t i o n of stem c e l l s i n 

the tumor (Chapter 2). 

We can also examine the e f f e c t of the parameters a, 8, y» b, c, and 

d upon Pfc given by (3.23), where 7i;0(D)=0, n^{D)-l and as before t ^ i s 

chosen to be given at a fixed mean stem c e l l compartment size i . e . 

N*=m'(t^). As expected, increases i n a, 8 or y decrease the value of 

t h i s function for fixed N*. Increases i n c are also found to decrease 
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P but the value of t h i s function i s not influenced by changes i n d. 
1 

This function i s plotted for various values of the parameters i n Figure 

1. Although increasing d increases the mean number of r e s i s t a n t c e l l s i t 

does not change the p r o b a b i l i t y that a fixed size stem c e l l compartment 

w i l l be curable because of the compensating e f f e c t of increases i n the 

spontaneous death rate of r e s i s t a n t c e l l s . 

The considerations presented here for the case 7IQ(D)=0, TC^(D)=1 

carry over generally to the case TJ^(D)=1, IXQ(D)=TIQ>0 except, of course, 

that the magnitude of P w i l l depend upon the effectiveness and timing 
1 

of subsequent treatments. We w i l l now turn to consideration of a second 

approximation for conditioning on N(t). 

3.7 Conditioning on N(t) - Approximation 2 

In most cases of p r a c t i c a l i n t e r e s t a « l and v « b ( i . e . t r a n s i t i o n s 

to resistance proceed slower than growth) so that, for the majority of 

sample paths R (t)«R Q(t) and thus R Q(t)=N(t). This suggests that i t may 

be reasonable to approximate the d i s t r i b u t i o n P|R^(t)|N(t)} with the 

d i s t r i b u t i o n P|R^(t)|R^(t)}. This c a l c u l a t i o n i s complex for general 

( | » ( S Q , S ^ ) and we w i l l only consider the s p e c i a l case (|J (SQ,S^ )=SQ. Thus 

6(sQ,s^;t ) = W Q(t) as given i n equation (3.7). Since A(sQ,l;t) i s the 

p r o b a b i l i t y generating function of the number of s e n s i t i v e c e l l s at time 

t, the c o e f f i c i e n t of S Q i n the expansion of w^(t) (evaluated at s^=l) 

i n powers of s^ gives the p r o b a b i l i t y that there w i l l be i s e n s i t i v e 

c e l l s at time t . 

Performing t h i s expansion y i e l d s 
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P{R 0(t)=i} - ^ e ' X t [ b ( l - a ) ( l - e - X t ) ] f o r 1 - 1 > 2 f . . . , ... ( 3.28) 
[b(l-a)-(d+v)e A Z ] X ^ L 

where X=6-ab-v. S i m i l a r l y the c o e f f i c i e n t of s^ i n the expansion of 

W g ( t ) (for general s^) y i e l d s 
00 -2+cc i-1 
1 p { ( R 0 ( t ) - l , V O - j l B J - ' ^ ( t ) ^ ( ^ 1 + 1 i-1,2,..., ...(3.29) 

j=0 [6 + s 1 I ( t ) ] 

where f ( t ) i s given i n (3.7) and I ( t ) = b ( l - o c ) f ( v ) d v . Taking the r a t i o 

of (3.29) to (3.28) and setting s^=s then y i e l d s the p r o b a b i l i t y 

generating function C ±(s;t) of the d i s t r i b u t i o n P J R ^ t ) |R Q(t)=i} as 
.-2+a \tr ..,±-1 

C.(s;t) - 6
 2

£ ( t ) e . j f ( t " ' ...(3.30) 
\ A [ h ( t ) ] 1 + i 

where g(t) = I ( t ) / [ b ( l - a ) ( l - e _ X t ) ] and 

h(t) = [ 6~2+0t+ s I ( t ) ] / [ b ( l - a ) - ( d + v ) e " X t ] . 

We may use (3.30) to evaluate E [ R 1 ( t ) | R Q ( t ) = i ] , by d i f f e r e n t i a t i n g 

with respect to s and set t i n g s=l. However, the r e s u l t i n g expressions 

are rather complex involving the difference of a number of exponential 

functions. If 6»<xb+v (which implies a « l ) then we obtain 

E [ R 1 ( t , | R 0 ( t , . i 1 - l ^ l g ' f c ^ . ^ ' - l ] • H+H 
„ t [ e(«W-v)t . j j + ^ ^ ...(3.31) 

where 

L d±v j ((2-«) ( 6 - a b - v ) 2
} -( 6-2ab-2 v)t + - ( S - a b - v ) ^ 

1 v b(l-a) ; v ( l - a ) o ( 2 6 - a b - v ) ; ; 

and 

_ b(2-a) (ab+v) 6t (ab+v)t 
L 2 ~ 6(26-ab-v) e + U ( e ) -

For large t ( 6 t » l ) , i s dominated by the f i r s t term i n (3.31). 

If i> E(R_ ( t ) l then i e ^ < x b + V ^ t > e 6 t and L„ i s dominated by the f i r s t term 

of (3.31). If i«E[R^(t)] then may be comparable or larger than the 



f i r s t term i n (3.31) and the approximation Rg(t)=N(t) may not be a good 

one. However, th i s occurs with small p r o b a b i l i t y when a b + v « 5 . From 

(3.8), when m^(0)=0, as here, we have 

E [ E { R l ( t ) | R 0 ( t ) } ] = E [ R 0 ( t ) ] ( e ( a b + V ) t - l ) 

which shows that the terms and i n (3.31) have expectation 0 

(approximately) with respect to R^. The f i r s t term of (3.31) w i l l i n 

most cases (where i=«E[RQ(t)]) be a reasonable approximation to 

E[R^(t)|Rg(t)] for large t except i n situa t i o n s where t i s such that 

E[R Q(t)]»i. 

For the s p e c i a l case it^(D)=l,7r,Q(D)=0 we may cal c u l a t e Pfc ( i ) , the 

p r o b a b i l i t y that a tumor with i s e n s i t i v e stem c e l l s w i l l be cured by a 

single course of therapy at time t ^ . Using the same argument as 

previously used i n deriving equation (3.14) we have 

P t 1
( i ) = C i ^ V 

Using (3.30) we f i n d 

-(ab+ad+2v)t r(o+«d+v) [ b ( l - a ) - ( d + v ) e ~ ( 6 ~ g b " " v ) t l - . 2 
1 1 6 /* v v r-i , v - (6+ad+v)t 1 . J 

(6-ab-v)[b +v -d(l-a)e v 1] 
z-t - (6+ad+v)t 1 w . . . . . . - ( 6-ab-v)t 

r ( l - e 1) (b( l-a)-(d+v)e 1) -ii-1 
* L - ( 6-ab-v)t 1 w . . . . . v -(6+ad+v)t.. J 

(1-e ' l)(b+v-d(l-a)e 1) 
If ( 6-ab-v)t»l we obtain the approximation P . C D - C . U . O , e - ( ^ + o C d + 2 v ) t [ ( 6 + a d + v ) b ( l - o c ) ] 2 [ M ^ O ] - ! . _ 

T\ / ^>X\ Y' L (6-ab-v)(b+v) J L b+v J 

If i n addition the i n d i v i d u a l mutation rates are small so that 

(ab+d+2v)t«l and 6»<xb+v, then 
-(ctb+ocd+2v)t . e -1 

(o+ocd+v)b(l-a) b(l-tx) . 
' (6-ab-v)(b+v) ~l> b+v _ i a V / D 

and thus 

C,(e;t )=P ( i ) » [1-a-v/b] 1" 1. ...(3.33) 
1 
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This function i s plotted for p a r t i c u l a r a and v/b i n Figure 1. 

The form of this r e l a t i o n s h i p i s very simple and makes i n t u i t i v e 

sense as follows. In Section 3.6 we found that P did not vary with d 
1 

(for the co n d i t i o n a l process considered there) for f i x e d mean size N*. 

We also found that the d i s t r i b u t i o n of N'(t) was approximately geometric 

and was independendent of d once the mean was f i x e d . Since P i n Section 
1 

3.6 i s the average p r o b a b i l i t y of cure across the d i s t r i b u t i o n 

(approximately given by (3.26)) of the number of stem c e l l s and both are 

approximately independent of d for given mean s i z e , i t seems l i k e l y that 

the i n d i v i d u a l terms representing the c u r a b i l i t y at a given size are also 

independent of d. That i s exactly what i s indicated by equation (3.33) 

for N(t)=R n(t). This suggests an approximation to P as given by (3.23) 
1 

can be obtained by taking the product of the r i g h t hand sides of 

equations (3.26) and (3.33) and summing. Letting m'=[(l-e)e ^ 1 ] ^ we 

have 
CO CO 

P = I p{cure|N'(t )-i}p{N'(t ) - i } * I P (i)p{N'(t )-i} 
1 1-1 1-1 1 

CD 

= I ( l - a - v / b ) 1 " 1 m'"1 (1-m'" 1) 1" 1 

i = l 

= [l-a-v/b+(a+v/b)m'] - i. ...(3.34) 

The d e r i v a t i o n of (3.34) uses (3.26) where N'(t) was assumed to be large. 

If m' i s large the p r o b a b i l i t y that N'(t) i s small w i l l be small and thus 

(3.34) can be expected to be a reasonable approximation. Numerical 

evaluation of (3.23) and (3.34) for a=10" 3,10 _ 1 +,... ,10 - 8 and v/b=10a, a, 

1 0 - 1 a shows that the absolute difference between (3.34) and (3.23) i s 

less than 0.01 for 10<N', m'<109. Thus (3.34) provides a reasonable 
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Flgure 1 

Probability of Cure for Approximations 1 and 2. 

10° 101 102 103 104 105 106 107 

N u m b e r of S t e m C e l l s 

The function P plotted as a function of N* where t 1 i s selected to 
t l 

s a t i s f y N*=[(l-E)e ^ 1 ] \ for various values of the mutation ra t e s . The 

s o l i d curves are for equation (3.23) and dashed curves are for equation 

(3.33). The two curves to the righ t have a=5xl0~ 6 and v/b=5xl0 - 6, and those 

to the l e f t have a=5xl0 - l t, v/b=5xl0 - 1*. These curves do not depend on b 

(which behaves as a constant for s c a l i n g time) and are e s s e n t i a l l y 

coincident for a l l e=d/b. 



approximation to (3.23) and gives a deeper understanding of the nature of 

V 
Conditioning on R g ( t ) appears to be reasonable i f t i s known, 

however we are also interested i n situ a t i o n s where i t i s not. The 

expression for E[R^(t)|Rg(t)] which i s approximated by (3.31), depends 

upon t and thus i t s d i s t r i b u t i o n depends upon the choice of t. Here we 

w i l l propose another more complex method for removing t than that which 

was presented i n Section 3.6 although t h i s w i l l again be approximate. 

The basis of t h i s approach i s to observe that when there are many stem 

c e l l s present t h e i r growth i s quite regular. The major contribution to 

the d i s t r i b u t i o n of the number of stem c e l l s at time t (when grown up 

from a single c e l l ) r e s u l t s from the v a r i a b i l i t y of growth when small 

numbers of c e l l s are present. This suggests that i t should be reasonable 

to approximate the growth process by a two phase model i n which the 

growth of s e n s i t i v e stem c e l l s i s f i r s t stochastic and l a t e r 

d e t e r m i n i s t i c . A schema i l l u s t r a t i n g this approach i s given i n Figure 2. 

Resistant c e l l s w i l l be assumed to grow s t o c h a s t i c a l l y i n both phases. 

In the stochastic phase, which i s r e s t r i c t e d to the i n t e r v a l [ 0 , f ] , we 

use (3.30) and t " i s chosen so that the p r o b a b i l i t i e s 

p{R 0(t')>U|R 0(f)*0} and p{R 0 (O<L|R 0(t')*0} are both small. L 

represents a lower l i m i t for which growth i s s u f f i c i e n t l y regular and U<N 

where N i s the observed siz e of the s e n s i t i v e stem c e l l compartment that 

we are interested i n conditioning upon. For example, i t i s easy to show 

(using (3.28)) that i f the mean of the geometric d i s t r i b u t i o n of R g ( t ) i s 

mQ(t)»l then we can choose U and L where U/L=103 so that 

P{U>R (t')>L|R n(t')*0}>0.99. Thus i n situ a t i o n s where the number of stem 



c e l l s , N ( = number of s e n s i t i v e stem c e l l s ) , at diagnosis s a t i s f i e s 

N>106, we may put U=106 and L=10 3 and choose t" so that 

P{U>R 0(t')>L|R 0(t')^0}>0 .99. Thus even at the lower l i m i t L, there w i l l 

be 1,000 s e n s i t i v e stem c e l l s and growth af t e r t " can be expected to be 

approximately regular. After time t ' , s e n s i t i v e stem c e l l s w i l l be 

assumed to grow exponentially with parameter 6-ab-v. We w i l l now 

calculate the p r o b a b i l i t y generating function, 6(s;t), for the number of 

r e s i s t a n t c e l l s i n the deterministic phase and examine some basic 

properties of t h i s process. 

Consider a model of this process where the s e n s i t i v e stem c e l l s 

grow exponentially. In p a r t i c u l a r we w i l l assume R Q C O = A r j e ^ V ^ 

which i s chosen to be the same as t h e i r expected growth under a 

stochastic model; see (3.8). Using a r e s u l t for f i l t e r e d Poisson 

processes [21], the p r o b a b i l i t y generating function <t>(s;t), of the number 

of r e s i s t a n t c e l l s i s given by « 

6(s;t)=exp{/gk(u)[ri(s;t-u)-l] du}, ...(3.35) 

where 4(s;0)=l, k(u)= AQ(ab+v)e^ a b V ^ U i s the rate at which new 

mutations to resistance occur, and T|(s;t) i s the p r o b a b i l i t y generating 

function of the b i r t h and death process with parameters b and d. n(s;t) 

i s given by w^(t) (equation (3.6)) with s^=s. 

Equation (3.35) cannot be written i n terms of standard functions, 

however the mean may be obtained by d i f f e r e n t i a t i n g with respect to s and 

se t t i n g s=l; t h i s y i e l d s 

r r „ . (6-ob-v)t, (ab+v)t 1 N _, / 4 . w (ab+v)t 1 N / 0 E [ R x ( t ) J = A^e ( e v -1) = R Q ( t ) ( e v -1). ...(3.36) 

Further, evaluating (3.35) for s=e y i e l d s the p r o b a b i l i t y of cure at 

time t as 
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Flgure 2 

Schematic Representation of the Two Phase Growth Process for Sensitive 

C e l l Growth Used i n Approximation 2. 

Sensit ive Ce l l Growth: Sensi t ive Ce l l Growth: 
Stochast ic Determinist ic 

t' t'+Tj 

(Time) 
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4>(e;t) = exp{- i| b±^iili>(R 0(t) - A Q)} = ( l - a - v / b ) R ° ( t ) ^ . . . ( 3 . 3 7 ) 

for 6»ab+v. We see that this deterministic model y i e l d s s i m i l a r 

expressions for E[R^(t)] and P t(when T I Q ( D ) = 0 , ^ ( D ) = l ) as for the process 

conditioned on Rg(t) developed previously i n this section; see ( 3 . 3 1 ) and 

( 3 . 3 3 ) . 

We w i l l now construct a p r o b a b i l i t y generating function for the 

d i s t r i b u t i o n of r e s i s t a n t c e l l s for the two phase process which can then 

be used as an approximation to the p r o b a b i l i t y generating function for a 

tumor (at diagnosis) of known size but unknown age. Let N be the number 

of ( s e n s i t i v e ) stem c e l l s present when the tumor i s observed. Let be 

the time required for i s e n s i t i v e c e l l s present at time t " to grow 

d e t e r m i n i s t i c a l l y to size N (see Figure 2). That i s 

x = (6-ab-v)" 1 i n (N/i) for i = l N. . . . ( 3 . 3 8 ) 

Then the p r o b a b i l i t y generating function for the number of new re s i s t a n t 

c e l l s ( i . e . mutations from s e n s i t i v i t y and t h e i r progeny) i n the period 

[ t ' j t ' + T j J , <t>̂ (s; T ^ ) , i s given by ( 3 . 3 5 ) with Ag=i. The number of 

re s i s t a n t c e l l s already present at time t' when there are i n s e n s i t i v e 

c e l l s has p r o b a b i l i t y generating function C^(s;t') given by ( 3 . 3 0 ) . 

During the deterministic phase of (s e n s i t i v e ) c e l l growth these w i l l grow 

so that the d i s t r i b u t i o n of the number of re s i s t a n t c e l l s present at 

t ' + T w whose progenitor mutation occurred p r i o r to t ' w i l l have 

p r o b a b i l i t y generating function C^(n(s;^)»t") where n(s;T^)=W ^ ( T ^ ) i s 

given by ( 3 . 6 ) . Thus the p r o b a b i l i t y generating function of the number 

of r e s i s t a n t c e l l s at time t"+x^ i n a tumor which has i s e n s i t i v e c e l l s 

at time t' i s 
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C i(T)(s;-c j L);t')(|) i(s;T i). 

Since there are i s e n s i t i v e c e l l s at time t ' with p r o b a b i l i t y P{Rg(t')=i} 

we form the o v e r a l l p r o b a b i l i t y generating function for the number of 

r e s i s t a n t c e l l s at size N, $(s ; N ) , as 
U 

*(s ; N ) = K I C.(TI(S;X );tO<t>,(s;T.)P{R n(t')=i}, ...(3.39) 
i=L 

where K i s chosen so that 3?(1;N)=1. In what follows we s h a l l set U=N and 

L=l to simplify the evaluation of (3.39). Immediately we have K= 

[l-p{R 0(t-)=0}-P{R 0 (O>N}] - 1. 

A number of improvements can be suggested to increase the accuracy 

of the approximation (for example include sample paths for which R^(t ' ) > N 

or adjust p{RQ(t')=i} for spontaneous extinctions i n the i n t e r v a l 

[ t ' j t ' + T j J ) however these w i l l not be discussed here as they complicate 

an already d i f f i c u l t computation. We w i l l now calculate approximate 

expressions for the mean number of c e l l s E[R^(N)] and the p r o b a b i l i t y of 

cure P^ for the random variable R^(N) which has p r o b a b i l i t y generating 

function given by (3.39). The mean i s then given by 

E [ R i ( N ) ] . M g i f f i 
s=l 

N 
= K I P{R Q(t')=i} L Z i 

oC,(s;t') 
i - l os 

0 1 1 ( 8 ; ^ ) 

s=l 5 s 

+ 5 ^ ( 8 ; ^ ) 

s=i as 8 = 1 

We w i l l now evaluate the above function and i n order to do t h i s we w i l l 

assume that 6»ab+v and that t** i s large. Then 

P { R 0 ( 0 - 0 } - P{R 0(»)=0} = r ^ p j j = e+ae+v/b 

since the s e n s i t i v e c e l l s grow as a b i r t h and death process with 

paramters b(l-ct) and (d+v) i n the f i r s t phase. If N»E[R 0(t')] then 

K>(l-P{R 0(t')=0}) - 1 - (1-e-ae-v/b)" 1. 
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Also we have, 
dC.(s;t') 

5s 

S T I C S ; ^ ) 

- i ( e ( a b + v ) t - l ) from ( 3 . 3 1 ) , 

9s 

s=l 

s=l 

- 1 = ( N / i ) d - ( a b + v ) / 6 ) a N / i f r o m ( 3 > 6 ) > 

and 
j i * N 6t. (ab+v)x . 
5 ( " i S ; T l ) = i e X [ e * - l ] from (3.36). 

9s s=l 

Thus we have 

E[R.(N)] - K I P { R n ( t ' ) = i } [ N ( e ( 0 t b + v ) t ' - l ) + N ( e ( a b + v ) x i - 1 ) ] . 
1=1 

In most cases R (t ) « R Q ( t ) and thus ( e ( a b + v ) t - l ) « l and we w i l l 

approximate e ^ a b + V ^ t - l = (ab+v)t for t=t'and t=T^. Then 

N , 
E[R (N)]= K I P{R n(t')=i} N(ab+v) (t'+(6 -ab-v) to(N/i)}, 

1-1 
N 

= ^ N + K I [(6-«b-v)t'-Jta(l)]P{Ro(t')=!}]• 

In t h i s process we require that R ^ ( t ' ) > 0 and we have 

m*(t')=E[R 0(t')|R 0(tO>0]=(l- e-ae-v/b)" 1e ( 6" a b _ v ) t', 

and thus 

(6 - a b-v)t'= ln[(l-e-ae-v/b)m*(t')] • 

Using the above expression we obtain 

E [ R 1 ( N ) ] a (l-e"-«-v/b) [to{N(l-e-ae-v/b)} + D ] , 

where D= A n ( E [ R Q ( t ' ) | R Q ( t ' ) > 0 ] ) - E [ { * n R 0 ( t ' ) | R Q ( t ' ) > 0 } ] . By analogy 

with the discussion presented i n Section 3 . 6 , the d i s t r i b u t i o n of 

Rgtt') condi t i o n a l on Rg ( t ' ) > 0 i s geometric, and thus D does not depend 

on the parameters b, d, a and v a f t e r the mean i s f i x e d . If E[R^(t^)] = 

1 0 6 , then d i r e c t c a l c u l a t i o n y i e l d s D = 1 . 1 5 . Thus for N=10 7 and 
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£+ae+v/b< 0 . 9 9 , then An [ N ( 1-E-ae-v/b)]> 1 2 > 1 0 D and we may approximate 

E t R ^ N ) ] by 

E [ R i ( n ) ] = i | ^ g ) N A n ( N ( l - e ) ) . . . . ( 3 . 4 0 ) 

This r e l a t i o n s h i p w i l l hold (approximately) for large N ( > 1 0 7 ) where 

N » E [ R Q ( t ' ) | R Q ( t ' ) > 0 ] as required by the o r i g i n a l assumptions of the 

development presented here. We w i l l now calculate P^='l>(e;N), the 

pr o b a b i l i t y the tumor i s curable at size N for the s p e c i a l case H Q ( D ) = 0 , 

u 1 ( D ) = l . Using ( 3 . 3 7 ) and ( 3 . 3 3 ) we have 
N 

P =®(e ; N)=(l-e-ae-v/b)" 1 I [ l - a - v / b j ^ ^ l - a - v / b ] ^ 1 P(R (t')=i} 
1=1 

= [ l - a - v / b ] N - 1 . . . . ( 3 . 4 1 ) 

The use of t h i s approach i s l i m i t e d for the modelling of 

experimental and human cancer because of the complex nature of the 

re s u l t i n g p r o b a b i l i t y generating function: equation ( 3 . 3 9 ) . However, i n 

contrast with the previous approximation (Section 3 . 7 ) i t does permit 

c a l c u l a t i o n of the p r o b a b i l i t y generating function c o n d i t i o n a l on a 

single value of R Q ( = N ) rather than for a fixed d i s t r i b u t i o n of N . We 

notice that ( 3 . 4 1 ) i s of the same form as ( 3 . 3 3 ) . This i s to be expected 

since the right hand side of ( 3 . 3 3 ) i s independent of t and thus the 

c u r a b i l i t y when t i s unknown w i l l be the same. 

It i s i n t e r e s t i n g to note that i f we use the deterministic model of 

se n s i t i v e c e l l growth presented here for the whole period [ 0 , t ] , we can 

choose A Q and t (see ( 3 . 3 5 ) ) so that the mean number of res i s t a n t c e l l s 

and p r o b a b i l i t y of cure Is approximately the same as that for the process 

with p r o b a b i l i t y generating function <T?(s;N) given by ( 3 . 4 0 ) and ( 3 . 4 1 ) 

r e s p e c t i v e l y . S p e c i f i c a l l y t h i s i s achieved by s e t t i n g A =(l-e) * and 



t=6 An ( N ( l - e ) ) . We w i l l use t h i s approximation of (deterministic) 

s e n s i t i v e stem c e l l growth when we consider drug resistance further i n 

Chapter k . We w i l l now consider our t h i r d approximation to the 

d i s t r i b u t i o n of r e s i s t a n t c e l l s at diagnosis. This method i s s i m i l a r to 

the f i r s t method, In that N(t) has a d i s t r i b u t i o n at diagnosis, but 

permits some f l e x i b i l i t y i n s e l e c t i n g t h i s d i s t r i b u t i o n . 

3.8 Conditioning on N(t) - Approximation 3 

The f i n a l approximation to be discussed here w i l l consider not only 

the growth of tumors but also the rate at which they are i n i t i a t e d . The 

basic approach w i l l be to 'integrate out' the time parameter present i n 

the previous discussions and develop formulae by summing across a 

d i s t r i b u t i o n for N(t). Again we w i l l only consider the s p e c i a l case 

<1>(SQ ) = S Q • Consider the following i d e a l i z a t i o n of the detection of a 

tumor. An i n d i v i d u a l i s selected at random and i s found to be of age t. 

The i n d i v i d u a l i s examined and a tumor i s diagnosed with a p r o b a b i l i t y 

which depends on the number, n, of stem c e l l s present. Notice that t now 

represents the age of the i n d i v i d u a l and not the age of the tumor (as 

p r e v i o u s l y ) . We wish to calculate P r | n ( t ) > t n e p r o b a b i l i t y that there 

are r r e s i s t a n t c e l l s i n a tumor containing n stem c e l l s detected i n an 

Individual of age t and w i l l show that for values of t of i n t e r e s t i t may 

be well approximated by P r| n(°°)= p
r | n

-

We w i l l assume that a tumor i s created by the transformation of a 

single normal c e l l and that the number of transformations ( i n an 

i n d i v i d u a l ) i s a Poisson random v a r i a b l e , I ( t ) , with mean p.(t) (u{t)=0, 

t<0). At time t, co n d i t i o n a l on I ( t ) = i , define i-dimensional random 

vectors U(t), R(t), and N(t) with elements as follows: 
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U\(t) = time of i n i t i a t i o n of the j - t h tumor, K j < i , 

Rj ( t ) = number of re s i s t a n t c e l l s i n j-th tumor, K j < i , 

and 

Nj(t) = number of c e l l s i n j-th tumor, l<j<i. 

Notice that t - ^ ( t ) I s t n e (random) age of the j-th tumor. For each t 

the tumors are l a b e l l e d randomly (the u\.(t) are not ordered). 

Conditional upon I ( t ) = i we have, 
t t 

P{N(t)=n|l(t)=i} = J... J P{N(t)=n |u(t)=u,I(t)=i} d F u ( t ) | I ( t ) ( u ) . 

Assuming that each c e l l grows independently, 
i 

p{N(t)=n|U(t)=u,I(t)=i} - n P{N(t-u )=n }, 

where P[N(t-Uj)=n^} i s as defined i n Section 3.1. Conditional on I ( t ) = i 

we have 

d F u ( t ) | T ( 0
( u ; - x [ 0 j t ] ( u . ) d u ( U . ) , 

where 

X [ 0 , t ] ( u ) = 1 i f u e [ 0 , t ] ' 
= 0 otherwise. 

Combining the above equations we obtain, 
i t 1 

p{N(t)=n|l(t)=i} = II / P{N(t-u )=n } - — - d u ( u ). 
j=l 0 ^ J 3 

S i m i l a r l y we have 

p{R(t)=r,N(t)=n|l(t)=i} 

i t 
= n / P (t-u.) _ d n ( u . ) , 

j=l 0 n j r j ' r j J u(t) J 

where P (t) i s as defined i n Section 3.1. If we assume that detection 

of the tumor depends only upon the size (number of stem c e l l s ) of the 



largest tumor i n the i n d i v i d u a l , N ( t ) , then we w i l l c a l c u l a t e the 
m 

c o n d i t i o n a l d i s t r i b u t i o n of the number of r e s i s t a n t c e l l s present, R ( t ) . 
m 

Then conditional on I ( t ) = i , 
P{R (t)=r,N (t)=n|l(t)=i} 

PtR m(t)=r|N m(t)=n,I(t)=i} = " p ^ , ^ , I ( t ) = i }  

— '- for i>0, 

P{N(t-u)=n} du(u) 

= X [ 0 ) ( ) ] ( r ) for i - 0 . 

The above re s u l t follows from a simple consideration of the order 

s t a t i s t i c s for independent i d e n t i c a l l y d i s t r i b u t e d random v a r i a b l e s . In 

most cases a r i s i n g i n human disease, tumors ar i s e quite infrequently so 

that the l i k e l i h o o d of an i n d i v i d u a l having more than one cancer i s 

small• 

The form of u(t) w i l l n a t u r a l l y depend upon the animal and tumor 

under consideration. We w i l l assume here that u.(t)=\t. This form i s 

assumed since i t leads to tractable r e s u l t s and i s not an unreasonable 

approximation for tumors which do not posess a strong age dependent 

I n i t i a t i o n rate. This form i s also of i n t e r e s t since i t provides a 

contrast with the two previous approaches where the i n i t i a t i o n time was 

i m p l i c i t l y assumed to be f i x e d . Substituting for p.(t) and l e t t i n g v=t-u 

we have, 
j ' P (v)dv 

P I (t) = PlR (t)=r|N (t)=n,I(t)>Ol = " n ~ r , r . ...(3.42) r n v 1 mv 1 mv ' v ' rt .- x
 v ' 

1 J 0 P{N(v)=n}dv 

We now wish to remove the time parameter t i n order to obtain 

expressions for the d i s t r i b u t i o n of the number of r e s i s t a n t c e l l s 

c o n d i t i o n a l on the observed number of stem c e l l s , P . . For any f i n i t e 
r n 



non-zero n we have, 

lim J ™ P{N(v)=n}dv = 0 
t-x» 

and thus, i f the age of the subject i s great ( t » 0 ) , we may put 

P{N(v)=n}dv « P{N(v)=n}dv. 

A s i m i l a r argument y i e l d s 

P (v)dv = C P (v)dv. •'O n-r,r •'O n-r,r 

Thus i f the age of the animal i s much greater than the l i k e l y time a 

tumor has taken to grow to size n a reasonable approximation to P r| n * s 

provided by 

P | = _^_JL_Li£ f o r r < n > ...(3.43) 
r ' n /QP{N(v)=n}dv 

and P i = 0 for r>n. r | n 
Unfortunately (3.43) may not be simply evaluated because P (v) 

n-r ,r 

i s complicated. However, as we w i l l now show, i f the number of stem 

c e l l s follows a p a r t i c u l a r d i s t r i b u t i o n at the time of diagnosis for a 

tumor c l a s s , i t i s possible to obtain the p r o b a b i l i t y generating function 

for the number of r e s i s t a n t c e l l s (at diagnosis). We w i l l now specify 

the form of the d i s t r i b u t i o n for the number of stem c e l l s at diagnosis 

and derive expressions for the r e s u l t i n g p r o b a b i l i t y generating function 

of the number of r e s i s t a n t c e l l s . 

When modelling c l i n i c a l disease there i s no unique s i z e , n, at which 

a tumor i s detected but rather a d i s t r i b u t i o n of such s i z e s . If we l e t 

g(n) be the p r o b a b i l i t y that a tumor w i l l be detected at si z e n (assuming 

no dependence on t, the age of the p a t i e n t ) ; 
g(j) = P{N=j|Tumor i s diagnosed}. 



The probability that a tumor w i l l have r resistant cells at detection, 

?r» (where the dependence on g is suppressed) is given by 
oo 

P = y g(n) P i 
n=l 1 

where g(0) = 0 implies that a tumor w i l l not be diagnosed i f i t has no 

stem ce l l s . We may pass g(n) through the integral sign in (3.43) to 

obtain 
P _ (t) 

V SI I 8 0 0 I " r > r , } dt. ...(3.44) 

n-l J0P{N(v)=n}dv 

But P{N(v)=n} is given by equation (3.28) with <x=v=0 and t=v, since 

this is then the probability distribution for a birth and death process 

with parameters b and d. Integration gives 

/™P{N(v)=n}dv = (bn)" 1 for n>0, 

and thus 
oo 

. 0 0 n 

dt. 
p = J n I bng(n)P (t) r J0 L . 6 V ' n-r,r v ' n=l 

For general g(n), P is d i f f i c u l t to evaluate because P (t) is o a\ / r n-r,r v ' 
not easily evaluated. However, consider the special case (which is of 

the same form as one previously considered by Day [34]), 
J 

g(n) = I a q n, ...(3.45) 
J n J J -1 °° where I a q n >0 for a l l n, q.<l, I a =0 and I a q (1-q ) = I g(n)=l. 

j=l J j-1 3 j=l J J J n-l 
If N is a random variable on the non-negative integers, where 

P{N=n}=g(n) (of the form (3.45)), then i t is easily shown that 
J ? E[N] = I'a q (1-q ) 

j=l J 

and 
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J 

E[N 2] = J a,q,(l-q.) 3 . 

In p a r t i c u l a r i f J=2 then 
j = l J j J 

E[N] = 

and 

var(N) = 

( l - q i ) ( l - q 2 ) 

q l . q2 

( l - q i ) 2 ( l - q 2 ) 2 

If E [ N]»0 and J=2 then i t i s straightforward to show that 
_ l / 2 

C.V.[N]>2 , 

where C V. i s • the c o e f f i c i e n t of v a r i a t i o n . Some examples of the 

d i s t r i b u t i o n g(n) (of the form (3.45) for J=2) are given i n Table I I . 

Unfortunately d i s t r i b u t i o n s g(n) of the form (3.45) do not 

constitute a s u f f i c i e n t l y r i c h set to accurately model an ab i t r a r y 

d i s t r i b u t i o n at diagnosis. The major l i m i t a t i o n a r i s e s because these 

d i s t r i b u t i o n s cannot give enough weight (99% or more p r o b a b i l i t y ) to a 

range of tumor stem c e l l sizes (Nmin.Nmax) where <102. This 

corresponds to a r e l a t i v e difference of 5 f o l d i n the l i n e a r dimensions 

of a spher i c a l tumor. However, for c l i n i c a l neoplasms, data i s f a i r l y 

coarse and we may use g(n) of th i s form to approximate the diagnostic 

d i s t r i b u t i o n . Let 0(s) be the p r o b a b i l i t y generating function for the 

d i s t r i b u t i o n P and l e t be the number of res i s t a n t c e l l s , i . e . a r 1 ' 

random variable where p{R^=r}=P r« It may be shown from the d e f i n i t i o n 

of the p r o b a b i l i t y generating function that 
oo J 

9(s) = I P s r= I a q b J " 
r=0 j=l J J 

5<t>(s0,s0s;t) 

d S 0 "0 - j 
dt, ...(3.46) 

s n=q. 

where A(sQ,SQs;t) is given by equation (3.5). We will only consider the 
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TABLE II 

The Probablity of Diagnosis Distribution 

g(n) - a ^ " + P{N=n}, where E[N]=10 1 0. 

1-q. 
Range of N 

t N 4 »N ] 
L min maxJ 

N -1 max 
I 8(n) 

n=N min 

N -1 max 
I g(n) S.D.(N) 

n=0 

[ 1 ,5xl0 8 ) 0.012 0.012 
[5*10 8 l x l O 9 ) 0.028 0.039 
[1x10 9 5 x l 0 9 ) 0.316 0.355 9.1xl0 9 

1.111 1.000 j > 1 0 9 , l x l 0 1 0 ) 0.274 0.630 
x l O " 1 0 x IO" 9 [ l x l O 1 0 ,5xl0 1 0) 0.366 0.996 

[5x10 1 0 , l x l O n ) 0.004 1.000 
[ l x l O 1 1 00 ) 0.000 1.000 

[ 1 ,5xl0 8 ) 0.005 0.005 
[ 5 x l 0 8 , l x l 0 9 ) 0.013 0.018 
[ l x l O 9 ,5xl0 9 ) 0.251 0.269 

1.667 2.500 [5xlO 9 , l x l 0 1 0 ) 0.328 0.598 7.2xl0 9 

x i O " 1 0 x l O " 1 0 [ l x l O 1 0 ,5xl0 1 0) 0.402 0.999 
[ 5 x l 0 1 0 . l x l O 1 1 ) 0.001 1.000 
[ l x l O 1 1 oo ) 0.000 1.000 

[ 1 ,5x10s ) 0.005 0.005 
[5 x l 0 8 , l x l 0 9 ) 0.013 0.018 
[ l x l O 9 

( 5 x l 0 9 ) 0.247 0.264 
1.961 2.041 [5 x l 0 9 , l x l 0 1 0 ) 0.330 0.594 7.1xl0 9 

x l O " 1 0 x l O " 1 0 [ l x l O 1 0 ,5xl0 1 0) 0.405 0.999 
[ 5 x l 0 1 0 , l x l O n ) 0.001 1.000 
[ l x l O 1 1 00 ) 0.000 1.000 

[ 1 ,5xl0 8 ) 0.005 0.005 
[ 5 x l 0 8 , l x l 0 9 ) 0.013 0.018 
[ l x l O 9 ,5xl0 9 ) 0.247 0.264 

1.996 2.004 [5xlO 9 , l x l 0 1 0 ) 0.330 0.594 7.1xl0 9 

x l O " 1 0 x l O " 1 0 [ l x l O 1 0 , 5 x l 0 1 0 ) 0.406 1.000 
[ 5 x l 0 1 0 , l x l O U ) 0.000 1.000 
[ l x l O 1 1 oo ) 0.000 1.000 



case ( ) ; ( S Q , S ^ ) = S Q and we have by integra t i n g (3.7) with S ^ = S Q S , 

J o 4 ( s 0 , s 0 s ; t ) 
0 o s Q 

dt = G.(s)+H.(s), ...(3.47) 

J~U (s,t)V ( s , t ) dt 
-TT 5 »̂ H - ( s ) — ~ 

*l~hS) 2
 l-b(l-a)£ V.(s,t) c 

where G.(s) = 
J b ( * j 1 _T , / 1 _„N I T7 / jjj-

[ l - e e ~ 6 t + q s ( l - a ) ( l - e " 6 t ) ] 
J Ti - o t - 6 t , i q..|l-ee - q..s(l-e ) J 

and 
„ , , N W 1 .2-a f l -6t - 6 t . r 2 + a -(6+ad+v)t V j ( s , t ) = q..(l-s)(l-e) [1-ee -q..s(l-e ) J e 

The term G^(s) i n (3.47) i s obtained by d i r e c t i n t e g r a t i o n of the 

deriv a t i v e (with respect to s) of the f i r s t term i n (3.7). The second 

term, R\(s), i s most simply obtained by interchanging the order of 

d i f f e r e n t i a t i o n and inte g r a t i o n of the second term i n (3.7). 

We may cal c u l a t e the p r o b a b i l i t y of cure, P (where g indicates 

dependence on the d i s t r i b u t i o n g) for the s p e c i a l case H Q (D)=0, i t ^ ( D ) = l 

by evaluating (3.46) for s=e. This function must be evaluated by 
2 

numerical methods. E[R^] and E[R^] may be calculated by d i f f e r e n t i a t i n g 

(3.46) with respect to s and evaluating at s=l. Carrying out this 

operation and interchanging the order of d i f f e r e n t i a t i o n and i n t e g r a t i o n 

y i e l d s 

l as s l j = 1 j j b ( l - q j ) / i J 

E [ R 2] = d W + M 5 l | 
1 1 J ,2 's=l ds 's=l ds 

J 1+q. 
- I a q b[ L + i + i + 2 b ( l - a ) I I ], 

j-1 2 2 b(l-q^) 2 2 2 2 

where 
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" ( l . t ) !Vll!ll s = 1dt, 
i J o J as s i 

. f { 2 a u . ( s > t ) | ^ a v . ( s > t ) | ^ + „ d . t j ^ ^ t ) , } d t i 

J 0 as 3s J . 2 
as 

o aT 
For general d and v these i n t e g r a l s must be evaluated numerically. 

I - J jy-*-/ Q t < 
3 J J n — L 8 = 1 

When Q j - l * (which i s the usual case), close attention must be paid to the 

accuracy with which these i n t e g r a l s are evaluated. This i s necessary 

since most of the in t e g r a l s have large absolute value, however they do 

not have the same sign, and the differences ( i n numeric value) are 

comparatively small. Therefore i t i s of some p r a c t i c a l i n t e r e s t to 

determine whether s p e c i a l cases exist which lead to simple forms for 

(3.46). Inspection of (3.47) shows that the sp e c i a l case d=0 (no stem 

c e l l death) and v=0 (mutations occur only at d i v i s i o n ) permits 

considerable s i m p l i f i c a t i o n y i e l d i n g : 

9(a) = 1 a q [ T I = ^ y + ^ ]. 
j = 1 J J U qjS) ( 1 _ q . s ) ^ a - ( i - s ) ( i - q . s ) 

Then we have the p r o b a b i l i t y , 9(0), that the tumor i s curable when 

TC Q (D)=0, T I^(D) = 1, i s 

J - i 0 0 - i 
9(0) - I a q ( l - ( l - a ) q ) = £ g(n) ( l - a ) n \ ...(3.48) 

j=l J n-1 
The mean and second moment are given by 

J a .q . 
: [ R ] = e'(i) = I 2 3 [ i - ( i - q ) a ] 

j - i d - q J 3 

[R?] - I a j q j , { ( l + q , - 2 ( 1 " < l ^ a ^ 1 " ^ 1 " < l l > a > + 2aq (1-q )"}. 
j - i ( i -q , ) 3 3 

and E[ 
L' i - i a-c.. 

j 
Table III gives computed values of the p r o b a b i l i t y of cure P and the 



-80-

mean and variance of the number of resistant cells for several choices of 

a, v and e where J=2, q^=0.99, q^-0.9. Table III also contains the 

analogous quantities which would be obtained using the deterministic 

model previously presented (see discussion following (3.41) in Section 

3.7) when the constant AQ=(1-E) ^ as suggested there. The probability of 

cure (written at P̂  to emphasize its dependence on the distribution at 

diagnosis), mean and variance are calculated using the deterministic 

model for each tumor size n and are then averaged over g(n) so that these 

quantities may be compared using the same underlying distribution of 

tumor size. 

We see from Table III that the deterministic model has greater 

variance than the comparable " f u l l " model; this result probably arises 

from the condition R̂ < N which is not satisfied by the deterministic 

model and the different distribution of i n i t i a t i o n times implicit in each 

model. On the other hand examination of this table shows that at least 

for the examples considered, the coefficient of variation is quite 

similar for both models. 

We w i l l now discuss the relative merits of the three approximations 

presented in this chapter. 

3.9 Comparing the Three Approximations 

The main strength of the f i r s t approximation is that the resulting 

probability generating function of the number of resistant cells is a 

simple function of the probability generating function of the underlying 

process. It provides a reasonable framework for the comparison of 

treatment effects because of the approximate stability of the underlying 

geometric distribution of the number of stem c e l l s . However, because the 
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TABLE I I I 

The P r o b a b i l i t y of Cure P , Expected Number and Standard Deviation 
s of the Number of Resistant C e l l s . 

J=2 q1=0.99 q2=0.9 

e a v/b P E(R ) S.D.(R.) 

0.0 0.01 0.0 0.46 0.46 4.9 5.4 14.9 20.9 

0.5 0.01 0.0 0.46 0.46 9.3 9.1 25.1 29.6 

0.9 0.01 0.0 0.47 0.46 29.9 25.9 55.6 66.2 

0.0 0.02 0.0 0.28 0.28 9.6 10.4 21.6 29.4 

0.5 0.02 0.0 0.29 0.28 17.7 17.4 35.6 41.5 

0.9 0.02 0.0 0.31 0.28 50.8 45.2 72.7 90.6 

0.0 0.01 0.01 0.28 0.28 10.6 10.4 25.7 29.4 

0.5 0.01 0.01 0.29 0.28 18.6 17.4 37.9 41.5 

0.9 0.01 0.01 0.31 0.28 51.2 45.2 73.2 90.6 

The l e f t hand column r e p r e s e n t s c a l c u l a t i o n s based on 

p r o b a b i l i t y generating function given by (3.46) and right hand column i s 

that based on the deterministic model given by (3.35) averaged over g(n); 

see (3.45). Pg i s the p r o b a b i l i t y of cure for the d i s t r i b u t i o n at 

diagnosis g(n). 
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underlying d i s t r i b u t i o n i s approximately fixed i t does not provide a 

s u i t a b l e framework for estimating the d i s t r i b u t i o n of r e s i s t a n t c e l l s 

when the true d i s t r i b u t i o n of stem c e l l s i s not geometric. This method 

i s the simplest of the three and for t h i s reason i t i s probably the most 

useful for estimating the e f f e c t s of d i f f e r e n t treatment regimens 

( d i f f e r i n g timing and dosages) when the d i s t r i b u t i o n of the number of 

stem c e l l s at diagnosis i s unspecified. 

The second approximation provides the p r o b a b i l i t y generating 

function when the number of stem c e l l s i s fixed and addresses the problem 

of conditional d i s t r i b u t i o n of r e s i s t a n t c e l l s most d i r e c t l y . However, 

i t i s approximate and i t s c a l c u l a t i o n i s quite complex. This hybrid 

s t o c h a s t i c - d e t e r m i n i s t i c model of s e n s i t i v e c e l l growth may be 

approximated (to give the same mean number of r e s i s t a n t c e l l s and 

p r o b a b i l i t y of cure) by a purely deterministic model. In t h i s case the 

deterministic growth curve for the number of s e n s i t i v e stem c e l l s i s 

approximately the same as the mean value function of the number of stem 

c e l l s found for the f i r s t approximation. This suggests one can 

reasonably approximate the d i s t r i b u t i o n of r e s i s t a n t c e l l s using a 

deterministic model of s e n s i t i v e stem c e l l growth, and that the 

deterministic growth function should be the expected growth function 

under a stochastic model where e x t i n c t i o n has been eliminated. We w i l l 

use the purely deterministic model of s e n s i t i v e stem c e l l growth i n 

Chapter 4. 

The t h i r d approximation presents the most r e a l i s t i c model for the 

d i s t r i b u t i o n of r e s i s t a n t c e l l s i n spontaneously occurring human or 

animal tumors since i t i m p l i c i t l y incorporates the spontaneous incidence 
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rate of the tumor. However the c a l c u l a t i o n of the p r o b a b i l i t y generating 

function represents a considerable problem for cases other than the one 

considered, where u(t)=Xt ; even i n t h i s case the p r o b a b i l i t y generating 

function of the process i s complex when c e l l loss i s present. Table III 

shows that the t h i r d approximation and (a modified form of) the second 

approximation do not y i e l d the same d i s t r i b u t i o n of r e s i s t a n t c e l l s for 

the same d i s t r i b u t i o n of stem c e l l burden. The main contributor to t h i s 

difference i s , of course, the assumption ( i n the t h i r d approximation) 

that new tumors are being i n i t i a t e d uniformly i n time. In most 

experiments c e l l s are implanted and thus the t h i r d approximation w i l l not 

be s u i t a b l e . Human tumors appear to be i n i t i a t e d throughout l i f e and 

thus to accurately model resistance i n such tumors i t i s necessary to 

consider the appropriate d i s t r i b u t i o n of i n i t i a t i o n times. 

In conclusion, each approximation has i t s strengths and weaknesses 

and the choice of one of these w i l l depend upon the experimental or 

c l i n i c a l s i t u a t i o n to be modelled and on the ultimate object of the 

modelling. In Chapter 4 we w i l l use a deterministic model of s e n s i t i v e 

c e l l growth i n order to f a c i l i t a t e further development of this theory. 

Before completing our d e s c r i p t i o n of single drug resistance we w i l l 

consider the possible e f f e c t of v a r i a t i o n i n the paramters a, B and y. 

3.10 V a r i a t i o n i n the Resistance Parameters a, 8 and y 

Up to this point we have assumed that a, B and y are f i x e d . In 

passaged animal tumor systems this assumption appears reasonable and has 

been assumed In a l l analyses of these systems. These tumor systems also 

possess l i t t l e v a r i a t i o n i n a number of other physical properties. This 

i s not unexpected since the process by which these tumors are chosen f o r 
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study tends to select those which maintain their characteristics after 

ser ia l passaging. Spontaneous tumors, whether animal or human, do not 

undergo such a selection process and exhibit a greater var iab i l i ty in a 

number of physical characteristics than do passaged tumors. For example, 

experimental tumors display quite regular growth rates especially when 

many cel ls are present. In contrast, human tumors of almost every type 

display considerable variation in growth rates. Possible variation in a,. 

8 and y can be thought of as occurring in two distinct ways. F i r s t l y , 

these parameters may be considered to "evolve" (either deterministically 

or stochastically) as a tumor grows. One special case of this would be 

the possible effects of treatment on these parameters. Radiation and 

many drugs used in cancer therapy are known to be mutagenic and the 

values of a, 6 and y be expected to increase subsequent to treatment. 

Secondly, the parameters a, B and y may vary between tumors within the 

same class with each class having some distinct distribution of a, B and 

Y-

Modelling the effect of mutagenicity of treatment is relat ively 

straight-forward i f we assume that the effect of treatment brings about a 

deterministic change in the value of the mutation rates for a l l the tumor 

ce l l s . Since the probability generating function for the appearance of 

new mutations to resistance is independent for disjoint time intervals , 

we may use recursive relationships such as (3.11.1-2) to determine the 

probability generating function after treatment. If the effect of 

treatment is to induce a random change in the mutation rates of a l l the 

cel ls in a tumor (for a f in i te or an inf in i te time period) then this is 

extremely complex to model. Here we w i l l only examine the effects of 
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v a r i a t i o n s i n the mutation rates between tumors of a given class which 

are constant i n time. As we know l i t t l e regarding the r e l a t i v e magnitude 

of a, 6 and y (most experiments measure the quantity a+v/b) i t i s not 

necessary to consider t h e i r j o i n t d i s t r i b u t i o n . If we l e t 6(s;t,a) be 

the p r o b a b i l i t y generating function of the d i s t r i b u t i o n of the number of 

r e s i s t a n t c e l l s (computed using the second of the three approximations 

previously presented) now viewed as con d i t i o n a l on a=a+v/b, we have that 

the unconditional p r o b a b i l i t y generating function, ¥(s;t), i s given by 

where F(a) i s the cumulative d i s t r i b u t i o n function for a. 

L i t t l e i s known about the d i s t r i b u t i o n F(a), since almost a l l 

experiments have assumed a to be f i x e d . We w i l l therefore choose a 

convenient d i s t r i b u t i o n which has support on a subset of [0,1]. An 

obvious choice for the d i s t r i b u t i o n of a i s to use the conjugate of 

p{R(t)|N(t),a}; however, t h i s p r o b a b i l i t y d i s t r i b u t i o n function has not 

been determined. We propose to use the beta d i s t r i b u t i o n which has 

support [0,1] and i s conjugate to the B e r n o u l l i d i s t r i b u t i o n . We have 

already shown that the p r o b a b i l i t y of cure at size N for fixed a where 

¥(s;t) = /<D(s;t,a)dF(a), ...(3.49) 

u Q(D)=0, ^ ( D ) - ! , i s P N(a) = ( l - a ) N-l ; see equation (3.41). Then the cure 

p r o b a b i l i t y , P , for the class of tumors i s given by 

PN= J o ( l ~ a ) N 18(a;u,v)da, 

where {u,v} are the parameters of the beta d i s t r i b u t i o n , and we assume 

that a and N are independent. It follows that 

r(u+v)r(v+N-l) 
r(v)r(u+v+N-i) 

N-2 v+x - n (; u+v+x .. .(3.50) 
x=0 

where T i s the gamma function. 
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It i s a simple matter to evaluate ( 3 . 5 0 ) . In order to estimate the 

s i g n i f i c a n c e of v a r i a t i o n s i n a on t h i s P^, i t i s necessary to f i x a 

frame of reference. We choose here to assume that for some s p e c i f i e d 

reference size there i s a constant cure rate. Then we explore the e f f e c t 

of d i f f e r e n t choices of u and v at sizes other than the reference point. 

Examples are presented i n Figure 3 , where i t may be seen that the values 

of u and v can e f f e c t the shape of the curve considerably. 

Figure 3 shows that v a r i a t i o n i n a w i l l a f f e c t the p r o b a b i l i t y of no 

r e s i s t a n t c e l l s and thus a f f e c t the l i k e l i h o o d that the tumor w i l l be 

curable as a function of s i z e . This observation seems important since 

not only does t h i s formula r e l a t e to the p r o b a b i l i t y of cure i n c l i n i c a l 

disease but i t also relates to current methods used to estimate (assumed 

fixed) mutation rates i n animal tumors. Experimental estimation of 

mutation rates i s frequently based on destructive t e s t i n g where i t i s 

assumed that H Q ( D ) = 0 , U ^ ( D ) = 1 . The percentage of surviving animals i s 

measured for various tumor burdens, and the mutation rate i s estimated 

using an equation l i k e ( 3 . 4 1 ) . Thus the f i t t i n g of t h i s type of data to 

equation ( 3 . 4 9 ) allows one to estimate the v a r i a b i l i t y present i n the 

mutation rates. However, other factors which a f f e c t c u r a b i l i t y may also 

cause s i m i l a r departures from the form ( 3 . 4 1 ) and thus i t i s not possible 

to uniquely i d e n t i f y v a r i a b i l i t y i n mutation rates as the only cause. 

The curves i n Figure 3 are, of course, strongly dependent upon the 

assumption of the b e t a - d i s t r i b u t i o n . If the d i s t r i b u t i o n of a i s not 

adequately approximated by a beta d i s t r i b u t i o n the curves of P N may be 

quite d i f f e r e n t . The e f f e c t of v a r i a t i o n of a i n the mean number of 

r e s i s t a n t c e l l s i s e a s i l y c a l c u l a t e d . From ( 3 . 4 0 ) the corresponding 
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Flgure 3 

Probability of Cure when Variation i n the Mutation. Rate i s Present. 

Number of Stem Cells 

Plots of the probability of cure, P J J , as a function of the number of 

stem cel ls where the mutation rates are assumed to follow a distr ibut ion 

(3.50). The parameters were chosen so that the mean and standard deviation 

of a were as given. Each curve has been constructed to pass through the 

point N=10\ P N =0.25. 
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number of r e s i s t a n t c e l l s i s given by 

( 1 JL ) A r i ( N ( l - e ) ) /J aB(a;u,v)da = Jul ( N ( l - e ) ) . 

This concludes our treatment of single drug resistance. In the next 

chapter we w i l l consider the problem of resistance to two drugs. 
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4. RESISTANCE TO TWO OR MORE CHEMOTHERAPEUTIC AGENTS 

The previous chapter considered the development of resistance to a 

single drug by tumor stem c e l l s . In the chemotherapy of many human 

malignancies several active drugs are a v a i l a b l e . Where possible these 

drugs may be combined to form regimens which are more e f f e c t i v e than 

eit h e r of t h e i r i n d i v i d u a l constituents. Here we w i l l consider the 

development of resistance to two drugs. 

The possible combinations ( i n d i v i d u a l drugs and t h e i r dosages) are 

li m i t e d because of t h e i r e f f e c t s on the host normal tissue systems. The 

construction of combined regimens depends on a var i e t y of considerations, 

which include consideration of the a c t i v i t y of p o t e n t i a l drugs on each 

component of the normal system of the host, pharmacokinetics of the drugs 

and other factors which r e l a t e to the " a c c e p t a b i l i t y " of the r e s u l t i n g 

regimen. The f i n a l regimen may also include r a d i a t i o n or surgery. The 

construction of regimens ( e s p e c i a l l y i n the l i g h t of the r e s t r i c t e d and 

imperfect information a v a i l a b l e ) requires consideration of factors which 

we do not propose to model here. Therefore, we w i l l consider that the 

drugs, t h e i r dosages and the timings of administration are f i x e d . We 

w i l l consider a general framework for the development of resistance i n 

stem c e l l s and w i l l provide a detailed examination of the case of two 

drugs. 

Consider the case where there are n d i f f e r e n t antitumor agents 

ava i l a b l e , T^, T^. An i n d i v i d u a l tumor c e l l may then be character­

ized as being i n one of 2 n mutually exclusive states with respect to 

these agents, according to which therapies i t i s r e s i s t a n t to and which 

not. As before a c e l l w i l l be defined as re s i s t a n t i f the p r o b a b i l i t y of 
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c e l l death a f t e r administration of chemotherapy i s lower than i n the 

parent ( s e n s i t i v e ) l i n e . 

Let R . . ( t ) be the number of stem c e l l s at time t which are ij...m 
r e s i s t a n t to the set of drugs {T^, T\, T^} and not r e s i s t a n t to any 

i n the set {T. T } {T., T T } and refer to such c e l l s as 
1 1 n J 1 i 2 m 

being i n the state R . . . Those stem c e l l s s e n s i t i v e to a l l drugs w i l l 
i j . . .m 

be i d e n t i f i e d as members of R ^ , (6 i s the empty s e t ) , which w i l l be 

written R Q . The possible states for the i n d i v i d u a l tumor c e l l s w i l l be 

written as R ^ , where Q ^ , i=0, 1,..., 2 n - l (QQ=6) are the 2 n d i s t i n c t 

subsets of {l,2,...,n}. 

We w i l l assume that when a stem c e l l i n R ^ divides to form two new 

stem c e l l s , one of them w i l l be i n R and the other w i l l be i n R with 
i j 

2 n - l 
p r o b a b i l i t y a where E a =1. As i n the single drug case 

these p r o b a b i l i t i e s w i l l depend on the tumor type, the drug 

concentration, and the length of time the drug i s administered. 

S i m i l a r l y , we w i l l define 8 as the p r o b a b i l i t y that a stem c e l l 
i» j 

t r a n s i t s from R to R when the c e l l divides forming a stem c e l l and a 
Q i Q j 

t r a n s i t i o n a l c e l l . Also l e t y At + o(At) be the p r o b a b i l i t y that a 

stem c e l l mutates from R to R i n the i n t e r v a l [t, t+At). Transitions 
i j 

from the s e n s i t i v e state RQ to the r e s i s t a n t state R _ w i l l have as 
j 

parameters a. _ , 8, _ and v. n for the three d i f f e r e n t types of 

t r a n s i t i o n . We w i l l write these rates a 8 and y r e s p e c t i v e l y . 
3 3 3 

To si m p l i f y notation we w i l l omit braces i n the rate parameters and 
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use 0 to represent the empty set. For example a ^ - j . {12} be written 

a l 12' ^{1} a s ^1' Y{1} 4 a S Y l 0' e t c * ^ e vm n o w concentrate 
attention on the special case n=2, that i s , two drugs. This case is both 

tractable and informative. As before we w i l l assume that the probability 

of two transitions between states occurring in a time interval of length 

At is of the order o(At). As in Chapter 3 we w i l l assume that the 

acquisition of resistance is permanent. This implies 0̂  Q=P-J_ 0 = Y1 0=^' 

a2,0 = P2,0 = Y2,0 = O' a12,0 = P12,0 = Y12,0 = 0 , al,2 = Pl,2 = Y1,2 = a2,1 = P2,1 = Y2,1 = 0 

and a 1 2 1 = P 1 2 1=Y 1 2 l = a i 2 2=^12 2 = Y12 2 =°' ^ i n C n a P t e r 3 w e w i l 1 o n l y 

"keep track" of stem cells and the development of transitional and end 

cells (irrespective of their resistance status) w i l l not be considered 

ex p l i c i t l y . Similarly we w i l l assume that the growth parameters of a l l 

cells are the same. This assumption appears reasonable for some drugs 

and tumor types but others display differential growth rates for the 

sensitive and resistant c e l l s . We w i l l now discuss the calculation of 

the probability generating function for the process. 

4.1 Probability Generating Function for Double Resistance 

Define P^ j ( k > = P{R 0(t)-i, R^t) = j , R £(t) = k, R 1 2 ( t ) = Jl} 

and 

N(t) = R ( )(t)+R 1(t)+R 2(t)+R 1 2(t). 

Table IV indicates the permitted transitions with their associated 

probabilities. We continue by writing down the Kolmogorov forward 

equations [21] for the process which yields the following family of 

differential equations: 

a F i . . i . k . » ( t ) 

d t 
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TABLE IV 

Transitions Occurring i n the Stem C e l l Compartment i n the i n t e r v a l 
[t,t+At) which have P r o b a b i l i t y of Order At. 

I n i t i a l State F i n a l State P r o b a b i l i t y 

( i . j . k . A ) (i+l.j.k.A) i b ( l - a 2 - a 2 - a 1 2 ) A t + o ( A t ) 
( i , j , k , A ) (i.J.k.A) i c ( l - p 1 - p 2 - p i 2 ) A t 

+ j c ( l - p i 1 2)At+AcAt 
+kc(l-p 2' 1 2)At+o(At) 

(i , j , k , A ) (i-1,j,k,A) idAt+o(At) 
(i , j , k , A ) ( i , j + l , k , i ) i b a At 

+ j b ( l - a l j l 2 ) A t + o ( A t ) 
(i . j . k . A ) ( i - l , j + l , k , A ) i ( P l C + Y l ) A t + o ( A t ) 
(i, j , k , A ) ( i , j , k + l , I ) i b a 2 A t 

+kb(l-a 2 1 2)At+o(At) 
(l. j . k . A ) ( i - l , j , k + l , J l ) i ( P 2c+Y 2)At+o(At) 
(l . j . k . A ) ( i , j , k , i + l ) i b a 1 2 A t + j b a 1 At 

+kba 2 1 2At+ibAt+o(At) 
(i, j , k , A ) ( l - l , j , k , J t f l ) i ( P 1 2c+Y 1 2)At+o(At) 
(i. j . k . A ) ( i , j - l , k , J l ) jdAt+o(At) 
( i . j . k . A ) ( i , j - l , k , ! + l ) 

j ( P l , 1 2 C + Y l , 1 2 ) A t + ° ( A t ) 

(I,j,k,A) ( i , j , k - l , A ) kdAt+o(At) 
(1, j,k,A) ( i . j . k - l . A + l ) k ( P 2 , 1 2 C + Y 2 , 1 2 ) A t + 0 ( A t ) 

( i , j.k.A) ( i , j , k , A - l ) MAt+o( At) 



= -[( b +d+c)(i+j+k+A) + y 1 > 1 2 j + Y 2 > 1 2 k + ( Y ^ n ) 1 ^ , j , k , A ( t ) 

+ b ( l - V a 2 - a 1 2 ) ( i - l ) P i _ 1 > j > k > A ( t ) + ^ b i P ^ . _ 1 > k > A ( t ) 

+ « 2 b i P l f J . k - l . A ^ + ^ ^ i + l . j . k . j ^ 

+ c ( l - 6 1 - B 2 - B 1 2 ) i P l i j > k f A ( t ) + (8,0+ Y ^ C i + D P ^ ^ . ! ^ , ACt) 

+ (P 2 c+Y 2 )( i+DP 1 + l f J f k _ l t J l ( t ) + ^ " i . J . k . X - l ^ 

+ ( 8 1 2 c + y 1 2 ) ( i + l ) P . + 1 ^ ^ ( t ) + b ( l - « l f l 2 ) ( j - l ) P l f j . l f k f A ( t ) 

+ b a l , 1 2 3 P i , j , k ^ - l ( t > + d ( J + 1 ) P i , j + l , k , J l ( t ) 

+ b ( l - a 2 f l 2 ) ( k - l ) P l f J f k _ l j J l ( t ) + b a ^ k P . ^ . ^ ^ ( t ) 

+ ^ ^ i . j . k + l , * ^
 + «l-h,U>**l,SM™ 

+ ( c P 2 , 1 2 ^ 2 , 1 2>( k + 1 ) Pi,j,k,A-l ( t) + b ^ - 1 ) P i , 3 , k , A - l ( t ) 

+ ^ ^ i . j . k . A + l ^ + ' " i . j . k . A ^ • • • ( 4 ' 1 ) 

f o r a l l of i,j,k,£ >0 and where P . , 0 ( t ) = 0 for any of i , j , k or KO. 

We w i l l assume that P . , (0) i s known. 

Let <(>(s;t) be the p r o b a b i l i t y generating function for the process, 

that i s 

<t>(s;t) = 6 ( s 0 , s 1 , s 2 , s 3 ; t ) 
CO 00 CO 00 

, i 1 k X I I I I P ± j k A ( t ) s j s s* s j . 
L= 0 j-0 k=0 A=0 1»J» l t» J t u 1 z 

i i k A 

Then multiplying (4.1) by SQ s, S 2 S-J and summing i,j,k,£ over 0 to 

yi e l d s 
a*(s;t) 3 o<t>(s;t) 

=

 ±l0

 (bSi_d) <Si_1) 

2 o*(s;t) 
+ J j C ^ b s ^ v ^ ) ( s 3 - s . ) — g - r — 

S4(s;t) a* ( s ; t ) 
+ ( ^ b s ^ ) ( S ; L - s 0 ) - ^ - — } + ( a 1 2 b s 0 + v 1 2 ) ( s 3 - s 0 ) 5 S q 

(4.2) 



where v ^ c P ^ , \il2

=ch,U+y±,l2 f o r i = 1 > 2 a n d V 1 2 = C p 1 2 + Y 1 2 ' 

We may use the method of c h a r a c t e r i s t i c s [22] to reduce the so l u t i o n 

of (4.2) to the so l u t i o n of the following set of f i v e ordinary 

d i f f e r e n t i a l equations: 
dt(u) _ 
du L t 

d X l ( U ) - d - X i ( u ) ) ( b x i ( u ) - d ) + ( X i ( u ) - X 3 ( u ) ) ( b a i ) 1 2 x i ( u ) + v i ) 1 2 ) , 
du ' ' • 

for i-1,2, 

d X 3 ( u ) = ( l - x 3 ( u ) ) ( b x 3 ( u ) - d ) , 
du 

d X 0 ( u ) = (l-X 0(u))(bx 0(u)-d) 
du 

2 
+ I ( a i b x 0 ( u ) + v j L ) ( x 0 ( u ) - x i ( u ) ) + ( a 1 2 b x Q ( u ) + v 1 2 ) ( x Q ( u ) - x 3 ( u ) ) , 

where u, x ^ ( u ) > X 2 ( u ) i ^3^ u) a n d X ^ ( u ) a r e dummy v a r i a b l e s . 

Unfortunately, although the f i r s t four equations are straightforward to 

solve, the f i n a l equation (involving X Q ( u ) ) i s complicated and a closed 

form s o l u t i o n i s not apparent. However, we have already shown ( i n the 

case of single resistance) that i f t and Rrj(t) are known, then the 

d i s t r i b u t i o n of the number of re s i s t a n t c e l l s can be reasonably well 

approximated (Section 3.7) by using a continuous deterministic function 

for the growth of the sen s i t i v e c e l l s . From t h i s point on i n t h i s 

chapter we w i l l assume that s e n s i t i v e stem c e l l s grow d e t e r m i n i s t i c a l l y 

and to emphasize t h i s we w i l l set Rg(t)=B(t); the compartments R^, R 2 and 

R^2 w i l l grow as before. A less general form of th i s model has 

previously been considered by Coldman et a l [27]. Let 

P i , j , k ( t ) = P{R 1(t)=i,R 2(t)=j,R 1 2(t)=k|R 1(0)=0,R 2(0)=0,R 1 2(0)=0} 

and 
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a oo 

, i J > 
00 00 00 

«(s;t) = «(s ,s ,s ,s ;t) = £ £ I P * . ( t ) a s 
u 1 ^ J i-0 j=0 k=0 ' J ' 

be the j o i n t p r o b a b i l i t y generating function for the number of r e s i s t a n t 

( R ^ , R ^ and R ^ 2 ) c e l l s derived from s e n s i t i v e stem c e l l s ( R Q ) a f t e r time 

t=0, excluding c e l l s i n R ^ , R 2

 O R R^2 P r e s e n t a t t i m e t = 0 , that i s 

PJ^QQ(0)=1 and thus $(s;0)=l. This generating function i s dependant on 

the function B ( t ) , but this dependence w i l l not be e x p l i c i t l y indicated-

The assumption of deterministic s e n s i t i v e c e l l growth a l t e r s the 

form of the t r a n s i t i o n p r o b a b i l i t i e s given i n Table IV and thus i n (4.1). 

The e f f e c t i s to delete the state R Q and set to zero a l l p r o b a b i l i t i e s 

which applied to changes i n the numbers of c e l l s i n R Q alone ( i . e . 

those without changes i n the numbers of c e l l s i n ei t h e r R ^ , R ^ or R ^ as 

w e l l ) . The p r o b a b i l i t i e s for t r a n s i t i o n involving the number of c e l l s i n 

R Q and the numbers i n either R ^ , R ^ or R ^ are unchanged except that i i s 

replaced by B ( t ) . Transitions between other states are as before. We 

may then derive the following p a r t i a l d i f f e r e n t i a l equation for $(s;t) i n 

the same way as (4.2) was obtained: 
3<£(s;t) 3 9$(s;t) 
- o T — = JL [ b s i " d l I V 1 ! - O q -

2 o$(s;t) 
+ J 1 ^ a i , 1 2 b s i + V i , 1 2 ) ( s 3 - S i > - ^ ~ + ( " l ^ l X V 1 ) W O C ^ D } 

+ ( a 1 2 b + v 1 2 ) ( s 3 - l ) B ( t ) * ( s ; t ) . ...(4.3) 

si 

S4(s;t) 
The r e s u l t can also be obtained by s e t t i n g S Q ^ ' <t)(g,;t)=®(s;t) and 

as 0 

= B(t) $ ( s ; t ) i n (4.2), 

Using the method of c h a r a c t e r i s t i c s [22] the sol u t i o n of (4.3) i s 

obtained by solving the following s e r i e s of d i f f e r e n t i a l equations: 
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...(4.4.1) 

d X i ( U ) - d-X,(u)) (b X.(u)-d) 
du 

+ ( X i ( u ) - x 3 ( u ) ) ( b a
i ) 1 2 ^ i ( u ) + v

i , i 2 ) ' i = 1' 2> •••(4.4.2) 
dX 3(u) , ( 1 _ x ( u ) ) ( b ( u ) _ d ) > ...(4.4.3) 

du 
2 

^ ( ^ ( u ) ; u ) _ 1 d ^ ( ^ ( u ) ; u ) = {E (a ib+v i) ( ^00-1) 
du 1=1 

+ ( a 1 2 b + v 1 2 ) ( x 3(u)-l)}B(u). ...(4.4.4) 

Now we note that the equation (4.4.3) for X 3 ( u ) i s simply solved as 

before (see equation (3.2.3)): 

X 3(u)= d H - X 3 ( 0 ) ] + [ b X 3 ( 0 ) - d ] e 5 u
 m _ ( 4 > 5 ) 

b [ l " X 3 ( 0 ) ] + [ b x 3(0)-d]e 6 u 

Noting that x ^ ( u ) = X 3 ( u ) i s a p a r t i c u l a r s o l u t i o n for (4.4.2) we have ( i n 

analogy to the solu t i o n of (3.2.2)) 

X ±(u) =X 3(u) + , for i-1,2 ...(4.6) 
.-1 [X i(0)-X 3(0)] + b ( l - a i > 1 2 ) J F ±(x)dx 

where 
2-a. 1 0 x,12 F 1 ( x ) - 6 X > exp{(6+a 1 > 1 2d+v. ) 1 2)x} 

. -2+a 

*[b [ l - X 3 ( 0 ) ] + [ b x 3(0)-d]e O X] 1 , i Z . 

Equation (4.4.4) may then be solved d i r e c t l y by sub s t i t u t i n g (4.6) for 

X i(u)(i=l,2) and (4.5) for X 3 ( u ) a n d int e g r a t i n g the l e f t and ri g h t hand 

sides d i r e c t l y . The required s o l u t i o n 5>(s;t) i s then obtained by se t t i n g 

u=t and x i(u)=s i (for 1=1,2,3) and in v e r t i n g (4.5) and (4.6) so that 

X^(0) (i=l,2,3) are expressed i n terms of ŝ  and t. These values are then 

substituted into the expression obtained by integ r a t i o n of the ri g h t hand 

side of (4.4.4). Carrying out this s u b s t i t u t i o n we obtain, a f t e r some 



s i m p l i f i c a t i o n , the following expression for $ ( s j t ) : 
2 

In S(s;t) = I 0 B Q + B Q £ ( o i b+v i)I 1 ( s 1 ) , ...(4.7) 
i = l 

where 

I 0 = { « 1 2 b + v 1 2 + I^b+v.)} 5 ( s 3 - l ) /' ^ ( t ~ V ) d V _ 6 v . 
l L i-1 1 J 0 b ( l - s 3 ) + (bs 3-d)e o v 

t B'(t-u) g i(u) du 
I i ( 8 ) = =L u ' 

0 [6 i ' 1 2 ( s - s 3 ) ] - b ( l - a ± ) 1 2 ) / g.(v) dv 

with 
-(6+a 1 0d+v. )v . -2+a, 1 0 / \ 1>12 i,12 r, ,, N . -ov. i,12 g ±(v) = e [ b ( l - s 3 ) + (bs 3-d)e ] 

B'(u) = B ( U ) / B Q and B ^ = B ( 0 ) . Equation (4.7) generalizes a previous 

r e s u l t found by Coldman et a l [27]. 

The function $ ( s ; t ) , given by (4.7), i s the p r o b a b i l i t y generating 

function for the number of s i n g l y and doubly r e s i s t a n t c e l l s derived from 

the growth of the s e n s i t i v e c e l l s over the i n t e r v a l [0,t] conditional on 

R (0)=R o(0)=R (0)=0. Our objective i s to derive ¥(s;t) the 

unconditional p r o b a b i l i t y generating function for an a r b i t r a r y 

d i s t r i b u t i o n of s e n s i t i v e and r e s i s t a n t c e l l s at t=0. We w i l l now 

examine the development of r e s i s t a n t c e l l s from s i n g l y r e s i s t a n t c e l l s 

present at t=0. This i s quite straightforward since the development of 

double resistance i n c e l l s already r e s i s t a n t to one agent i s analogous to 

the development of single resistance i n s e n s i t i v e c e l l s considered i n 

Chapter 3. 

Let <l>^(s;t), i=l,2, be the p r o b a b i l i t y generating functions of the 

number of r e s i s t a n t c e l l s derived from (progeny of) a single c e l l i n R̂, 

at time t=0, i . e . c o n d i t i o n a l on R Q(t)=0, R i(0)=l, R 3_ i(0)=0 and 
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^ ( s ; t ) = w Q ( t ) , 1=1,2, ...(4.8) 

where w Q(t) i s given by (3.7) with s Q=s i, s^-s^, 0=0^ ^ and v-v^ 1 2 « 

S i m i l a r l y , l e t <}>3(s;t) be the p r o b a b i l i t y generating function of the 

number of r e s i s t a n t c e l l s derived from (progeny of) a single c e l l i n R , 2 

at time t=0, i . e . c o n d i t i o n a l on R Q(t)=0, R 1(0)=0, R 2 ( ° ) a n d R 1 2 ^ = 1 " 

Then 

<J»3(s;t) = w L ( t ) , ...(4.9) 

where w,(t) i s given by (3.6) with s^-s^. 

For future use i t i s convenient to include a term i n the 

unconditional generating function r e f l e c t i n g the number of s e n s i t i v e 

c e l l s at time t. To do t h i s we w i l l multiply the generating function by 

s 0 ^ ^ t ^ ' w n ^ c n "^y be viewed as the approximate generating function for 

the number of s e n s i t i v e c e l l s . Using the general r e s u l t (2.3), Y ( s ; t ) , 

the unconditional p r o b a b i l i t y generating function of 

{ B ( t ) , R 1 ( t ) , R 2 ( t ) , R 1 2 ( t ) } , i s given by 

¥(s;t) =(),(l,(|) 1(s;t),<)) 2(s;t ) , ( t. 3(s;t))$(s;t)s^ B ( t ) ] ...(4.10) 

where i K l , s , , s 2 , s 3 ) = ¥(l,s,,s 2 >s 3;0) i s the p r o b a b i l i t y generating 

function for the d i s t r i b u t i o n of { R ^ O ) , R 2 ( 0 ) , R 1 2 ( 0 ) } . 

For future reference we w i l l now c a lculate m,(t)=E [ R,(t)], 

m 2 ( t ) = E [ R 2 ( t ) ] and m 1 2 ( t ) = E [ R 1 2 ( t ) ] . D i f f e r e n t i a t i n g (4.10) with respect 

to s , (i=l,2,3) and s e t t i n g s = (1,1,1,1) y i e l d s the following i ~ 
r e l a t i o n s h i p s : 

(6-a „)t t -(6-a ? ) u 
m (t) = e ' (m.(0) + a J e ' B(u)du), 1=1,2, ...(4.11.1) 

0 
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where a =a.b+v., a. ,~=ba. 1 0+v. 1 0 and i i i i,12 i,12 i,12 
2 - a t 

m ( t ) = e 6 t (m (0) + \ m,(0) [1-e 1 , 1 2 ] 
i = l 

2 t . -a. 1 0 t t _ ( 6 - a . 1 0 ) u 
+ I a [ J B(u)e du - e 1 , 1 2 / B(u)e 1 , 1 2 du] 
i-1 0 0 

t 
+ a J B(u)e du}, ...(4.11.2) 

0 

where a
1 2 = < X 1 2 b + V 1 2 * 

The s p e c i a l case B(u)=Bgexp(ku), (k^S-a^ ^ 2) i s of p a r t i c u l a r 

i n t e r e s t since i t i s the mean growth function for a b i r t h and death 

process with fixed rates. In t h i s case the expected values are 
(k-6+a )t 

a B [e 1 , i Z -1] 
m^t) = e x p { ( 6 - a i j l 2 ) t } (m^O) + [ k - 5 + a . j ), -..(4.12.1) 

i , 12 
and 

m (t) = e 6 t {m (0) + £ m (0) [ l - e ̂ ' " ' j 
Li. i = 1 1 

-a, 
+ B Y a i a i , 1 2 r e ^ ' - l (1-e i > 1 2 ) ]  

B 0 J 1 [ k - 6 ^ l f l 2 ] L (k-6) " a 1 § 1 2 J 

+ T&4r [ e ( k " 6 ) t - 1 ] } ' ...(4.12.2) 

The choice k=6-a^-a 2-a^ 2 y i e l d s the same expected numbers of sin g l y 

r e s i s t a n t c e l l s as i n the f u l l y stochastic case, i . e . that with j o i n t 

p r o b a b i l i t y generating function s a t i s f y i n g (4.2). This may be shown by 

d i f f e r e n t i a t i n g (4.2) with respect to s^ (1=0,1,2,3) s e t t i n g s=l and 

obtaining d i f f e r e n t i a l equations for m ^ t ) , m^(t), m 2(t) and m^ 2 ( t ) . In 

p a r t i c u l a r the ordinary d i f f e r e n t i a l equation for ̂ ( t ) = E[Rg(t)] 

obtained from (4.2) i s 

d m 0 ^ = ( 6 - a 1 - a 2 - a 1 2 ) m ( ) ( t ) , 
dt 
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which has s o l u t i o n ^ ( t ) = mgexp {( 6-a,-a2_a,2) }t • Repeating the 

procedure for m,(t), ^ ( t ) and m^Ct) shows that (4.12.1-2) are solutions 

to the appropriate d i f f e r e n t i a l equations when k=6-a,-a2_a,2* I n the 

0 e 

ku 
following analysis of the two drug case we w i l l assume that B(u) =Bne 

where k=6-a,-a2_a,2* 

As discussed i n Chapter 3 we w i l l be interested i n s i t u a t i o n s of 

growth from a single s e n s i t i v e stem c e l l where the tumor siz e (stem 

c e l l s ) N i s observed, but t i s unknown. We w i l l then use the 

approximation suggested i n Section 3.7, equations (3.38) and (3.40), and 

assume that the o v e r a l l growth of the stem c e l l compartment i s given by 

BQe^ where Bg=(l-e) Thus we w i l l set 

t-S ^ J l n ( N ( l - e ) ) , ...(4.13) 

where the term (1-e) arises from excluding tumor growth paths i n which 

the stem c e l l compartment goes spontaneously e x t i n c t . This factor i s 

retained since, although the stem c e l l compartment cannot go extinct 

(because the s e n s i t i v e c e l l s are growing d e t e r m i n i s t i c a l l y ) , i t y i e l d s a 

better approximation to the f u l l y stochastic model. Now i f we observe R* 

s e n s i t i v e c e l l s at some time t (which may not be known on the scale where 

t=0 i s the o r i g i n time of the progenitor stem c e l l ) then we would use t 

given by (4.13) i n (4.10) and set the l a s t factor on the righ t hand side 

of (4.10) to be, 
[B(t)] R* ,, 

s0 s0 ...(4.14) 

In most cases of p r a c t i c a l i n t e r e s t N i s observed and R* i s unknown. 

In such cases we w i l l set R* -[N-m^ O-n^ O-m^t)] (=N) where t i s 

given by (4.14). We w i l l now consider the modelling of treatment e f f e c t s 

i n the two drug case. 
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4.2 Modelling Treatment E f f e c t s 

Radiotherapy and surgery w i l l be modelled i n the same way (with c e l l 

s u r v i v a l as B e r n o u l l i random variables) as presented i n Section 3.4 and 

the e f f e c t of each w i l l be the same for a l l r e s i s t a n t subtypes. To model 

the e f f e c t s of chemotherapy upon stem c e l l s we w i l l assume that the drugs 

obey the same laws of k i l l as outlined i n Section 3.2 [26] and define the 

following quantities for Qe{{0},{1},{2},{12}}: 

TZ. n(D) = Pja c e l l i n R w i l l survive administration of a single 
1 > X X 

course of the drug T^ at dose D} for i=l,2. 

We w i l l generally omit the dependence of %. n(D) on D where i t i s 
1 » X 

understood to rel a t e to some fixed but possibly unspecified dose. 
We define the variable X as follows: 

I » x 

X. = 1 i f a c e l l i n R survives administration of T , 
I > X X I 

= 0 otherwise. 

Then £ n ( s ) , the p r o b a b i l i t y generating function for X , i s given by 

^i,Q ( s> = ^ i . Q * *i.Q S ' 
For s i m p l i c i t y , as before, we w i l l write TZ ,.. , as 7t e t c Now i f 

treatment T^ i s given at time t ^ then 

Y ( s ; t 1 ) = n^CsJjt"), ...(4.15) 

where 

h& = «i , 0 < 8 0 > » 5 l , l < 8 l > ' ^i,2 ( s2>' h t 1 2 < s 3 » ' .-.(4.16) 

This r e s u l t follows from (2.3) and i s s i m i l a r to re s u l t (3.11.1) for the 

single drug case. 

Equation (4.15) deserves some comment since Y ( s j t p contains one 

part i n which the number of se n s i t i v e c e l l s i s deterministic and another 

i n which i t i s random. This arose because we assumed Rg(t)=B(t) i n order 
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to derive the p r o b a b i l i t y generating function for the number of 

resistance c e l l s derived from s e n s i t i v e c e l l s . We have also written a 

p r o b a b i l i t y generating function for the number of s e n s i t i v e c e l l s at time 

t]_, (4.14), and used i t to derive the p r o b a b i l i t y generating function 

of the number of s e n s i t i v e c e l l s a f t e r treatment, (4.15). We have done 

t h i s to obtain a better approximation to the behaviour of the f u l l y 

stochastic model. In intertreatment i n t e r v a l s we may consider stem c e l l 

growth to be stochastic, but to calculate the d i s t r i b u t i o n of r e s i s t a n t 

c e l l s which a r i s e from s e n s i t i v e c e l l s ( i n that i n t e r v a l ) we use the 

deterministic growth model for R ( t ) . We know from Section 3.1 that i n 

the case of single resistance the stem c e l l compartment grows 

( s t o c h a s t i c a l l y ) as a b i r t h and death process with parameters b(l-a) and 

v+d. Since the ultimate destination of c e l l s leaving the s e n s i t i v e 

compartment i s i r r e l e v a n t to the growth of this compartment we deduce 

that, i n the f u l l y stochastic model for resistance to two agents, the 

s e n s i t i v e c e l l compartment w i l l grow as a b i r t h and death process with 

parameters b(l-ai-a2 _a,2) and (d+v^+v^+v,^)• If we l e t ^ ( s j t ) be the 

p r o b a b i l i t y generating function of the number of s e n s i t i v e stem c e l l s i n 

t h i s f u l l y stochastic model 

* 0 ( s ; t ) = w L ( t ) , ...(4.17) 

where w,(t) i s given by (3.6) with S , = S Q , b replaced by b ( l - a ^ - c ^ - a ^ ) 

and d by (d+v^+v^+v,^)• 

We may use the stochastic model for the growth of the s e n s i t i v e c e l l 

compartment to "update" the p r o b a b i l i t y generating function for newly 

r e s i s t a n t stem c e l l s as follows. In deriving the p r o b a b i l i t y generating 

function (4.7) we assumed that B was a constant. If instead we consider 
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B Q to be a random variable with d i s t r i b u t i o n not dependent on t, then 

$(s;t) can be viewed as being condi t i o n a l on B Q. If we emphasize t h i s by 

wr i t i n g ( s ; t ) , then we see from ( 4 . 7 ) that 
B 0 ~ 

B 0 

4 (sjO-I^Cs;!:)] U. 
Furthermore i f BQ has a d i s t r i b u t i o n with support on the non-negative 

integers with p r o b a b i l i t y generating function 0(s) say, then the 

unconditional p r o b a b i l i t y generating function of the number of c e l l s i s 

given by 0(<&,(s;t)). 

In p a r t i c u l a r t h i s w i l l be useful here since a f t e r treatment the 

number of stem c e l l s i s random. Using ( 2 . 3 ) , we may write an expression 

for the p r o b a b i l i t y generating function i n an intertreatment i n t e r v a l as 

n s;t j 4^)=¥($ 1(s;v)* 0(s;v),A 1(s;v), * 2 ( s ; v ) , < t ) 3 ( s ; v ) ; t j ) , . . . ( 4 . 1 8 ) 

where t^<t^+v<t^ +,, t ^ ( j = l , . . . , J ) are treatment times, <£,(s;v) i s given 

by ( 4 . 7 ) with B = 1 , A.(s;v) ( 1 = 1 , 2 ) i s given by ( 4 . 8 ) , A,(s;v) i s given 

by ( 4 . 9 ) , and 6 n ( s ; v ) i s given by ( 4 . 1 7 ) . 

u ^ 

We may therefore use equations ( 4 . 1 5 ) and ( 4 . 1 8 ) to calculate 

r e c u r s i v e l y the r e s u l t i n g p r o b a b i l i t y generating function for the growth 

process corresponding to various treatment sequences by s e t t i n g v=t 

for the i n t e r v a l [t..,t^ +,) w n e r e the i n i t i a l p r o b a b i l i t y generating 

function at time t , i s given by ( 4 . 1 0 ) . 

Notice that we may use ( 4 . 1 8 ) r e c u r s i v e l y at times where treatment 

i s not given i n order to improve the approximation to the f u l l y 

s tochastic model. In general we would not do t h i s p r i o r to t , as t h i s 

would then induce (a non-degenerate) d i s t r i b u t i o n for Rg(t^) with a l l the 

attendant problems t h i s produces (as extensively discussed i n Chapter 3 ) . 
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In the s i t u a t i o n to be considered l a t e r (Chapter 5) we w i l l only use 

(4.18) at times of treatment, that i s v = t ^ + ^ - t j . We w i l l use (4.10) for 

the i n t e r v a l [ 0 , t ^ ) , chose t ^ as given i n (4.13) and use (4.14) with 

R * = [ N - m 1 ( t ~ ) - m 2 ( t ~ ) - m 1 2 ( t ~ ) ] (the integer part) where m^t") (1-1,2), 

m ^ 2 ( t j ) are calculated from (4.11.1-2) and N i s the "observed" stem c e l l 

compartment s i z e . 

The incorporation of a stochastic element to the growth of the 

s e n s i t i v e stem c e l l s i s somewhat ' a r t i f i c i a l ' however i t does improve the 

approximation of the model to the f u l l y stochastic one. It also allows a 

reasonable determination of P {N(t)=0} which would otherwise be 

i d e n t i c a l l y zero i f R()(t) were l e f t purely dete r m i n i s t i c . The model 

can be expected to be a reasonable r e f l e c t i o n of r e a l i t y since when there 

are large numbers of s e n s i t i v e stem c e l l s , growth can be expected to be 

quite regular and thus well approximated by the deterministic assumption. 

When the number of s e n s i t i v e c e l l s i s small, the l i k e l i h o o d that new 

r e s i s t a n t c e l l s w i l l a r i s e (from R Q ) i s small and thus the assumption 

of deterministic growth should not cause a great d i s t o r t i o n to the 

d i s t r i b u t i o n of the number of r e s i s t a n t c e l l s . As i n Chapter 3 we w i l l 

now consider some s p e c i a l cases which i l l u s t r a t e the behaviour of the 

model• 

In many cases two drugs may not be given together because of t h e i r 

overlapping t o x i c i t y on normal t i s s u e . Consider the s p e c i a l case where 

the drugs act independently and can be given together, with N(0)=RQ(0)=1 

(the tumor originates from a single s e n s i t i v e stem c e l l ) , ic^ i 2 ~ n 2 12 =^' 

and %^ Q=ll2 0 = K1 2~T"2 1 =^ ^ 1 i a n ( * T"2 2 a r e a r b i t r a r y ) i«e. when the two 

drugs are given together a l l stem c e l l s are k i l l e d except those i n R 1 0 . 
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When N(0)= RQ(0)=1 we w i l l set B Q=(1-E ) ^ as described i n the discussion 

leading to (4.13). If both drugs are given at t , then the p r o b a b i l i t y 

the tumor w i l l be cured, P , i s given by ¥(1,1,1,e;t 1), (see (3.14)), 
1 

where ¥(s;t) i s given by (4.10). This reduces to 

P = $ ( l , l , l , e ; t ~ ) , 
1 

since (Kl,s,,s 2,s.j) = !• To simplify notation we w i l l write P F C for P F C . 

Examining the terms i n (4.7) we have for s^ = e that 

u -2+<x. ,„ -(6+a. 1 0d+v. ,„)u 
/ g.(v)dv = 6 [1-e x » 1 2 x ' 1 2 ]• 
0 ( o + a l i l 2 d + v l f l 2 ) 

For 1=1,2 and s^=e we also have 

^ ( 1 ) = 
6(c+a. 1 0d+v. 1 0 ) t -a*/* \ A 

i,12 i,12 r B (t-u) du . 
b Jr> / \ (6+a. 1 0 d+v. 1 0 ) u , E / 1 N 

0 ( a
i ) 1 2

b + v i , i 2 ^ e 1 , 1 2 1 , 1 2 + 6 ^ 1 - a i , 1 2 ^ 
After some s i m p l i f i c a t i o n we obtain 

2 a.a 6 t . (6+a* 1 0 ) u 
l n P = - I ' j (e i ' 1 2 ~1) B(t~u) du 

C 1=1 k ^ (6+a* n ) u , ./., N 

a i , 1 2 e 1 , 1 2 + 6 ( 1 - < X i , 1 2 ) 

, t 
a12 / B ( t - u ) du, ...(4.19) 
b 0 

where a^, a^ ^(i=l,2), a,^ are as given i n (4.11.1-2) and 

a l , 1 2 = a i , 1 2 _ a i , 1 2 6 -

Using B ( t ) = B Q exp {( 6-a,-a 2-a, 2)t}, the formula for P F C may be 

numerically evaluated. As we are primarily interested i n treatment 

applied at some fixed s i z e but unknown time, we w i l l r e s t r i c t attention 

to the c a l c u l a t i o n of P where t = 6 '''Jin [N(l-e)] and i n th i s case we 

w i l l designate the p r o b a b i l i t y of cure as P N » P ^ i s plotted as a 

function of N for various mutation rates i n Figure 4. In most cases of 
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i n t e r e s t we w i l l have 6»a^+a2+a^2 a n d 6 » a ^ ^ f ° r 1=1»2. Figure 4 

shows that for some sample values of a^, a^, ai2> a ± 12 ^ = ^ ' ^ t n e s n a P e 

of the r e s u l t i n g curves of against N are s i m i l a r to those obtained f o r 

the analogous case i n single resistance (Figure 1). This suggests that 

i n analogy to (3.37) and (3.41) i t may be possible to approximate ?^ by a 
N—1 - l function of the form (1-a*) , or exp{-a*(N-l)}, (which are numerically 

s i m i l a r for a * « l ) where a* i s a function of a^, a^, a ^ . a ^ ^ a r u * 

a„ 1 9 . We w i l l thus attempt to approximate (4.19) for fixed N; to do 2,1/ 

t h i s we w i l l f i r s t bound P^. 

To simplify further presentation we note that the scale of 

measurement of t i s unimportant i n the c a l c u l a t i o n of Pjj. Thus we w i l l 

choose a scale for which b=l and assume that the other rates are a l l 

r e l a t i v e to this time scale. This w i l l be emphasized by writing e(=d/b) 

rather than d. Thus using 

B(t) = (1-e) *exp {(l-e-a^-a2~a :| L2) t} and a^a^ra^ra^ i n (4.19) we obtain 

- I a±a± 1 2 N [ N ( l - £ ) ] - a ( 1 - £ ) J Q - ± ^ 1 — du 
1-1 * .-1 (1-e+a* 1 0 ) u . . 

(1-e) a i ) 1 2 e ^ 1,12' + 

- _ a l _ 2 _ _ { [ N ( l - e ) ] 1 " a ( 1 " e ) -1}, ...(4.20) 
(1-e-a) 

where t = ( l - e ) - 1 A n [ N ( l - e ) ] . We w i l l now bound AnP N« 

For i=l,2 l e t h^(u) be the integrand on the righ t hand side of 

(4.20). Then i f 

U-e- 2 ( 1- £- a ) u}  
U ±(u) = , -1 (l-e-a)u , ,, v - ( l - e - a ) u (1-e) a ± i l 2 + ( l - a ± f l 2 ) e 
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Flgure 4 

Probability of Cure when Loss i s Present. 
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P r o b a b i l i t y of cure Pfj as a function of stem c e l l burden at diagnosis 

where and are given simultaneously at that time, %^ Q=0> ^ ^ a r b i t r a r y , 

\ 1 2 = 1 f ° r 1 = 1 , 2 \ 2 ="2 1 = 0 , a i + v i / b = a i i 2 + v i 1 2
/ b = 1 0 ~ 3 f o r i = 1 » 2 a n d b = 1 * 

For x i = = a £ + v
i / b < 1 0 - 2 and x.̂  i 2 = a ± 1 2 + V i i 2 ^ ^ ® ~ 2 > P N D E P E N D S ( U P T O T B E 

fourth decimal place) on x. and x. , „ only and not on the i n d i v i d u a l <x.,v, r i i , 12 i i 

etc. that sum to x^. P N as given i n (4.19) with t=6 1 l n [ N ( l - e ) ] i s pl o t t e d 

for three values of e: 

( i ) e=0 ( i i ) E==0.5 

( i i i ) e=0.9 
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{ 1 _ e - ( l - e - a ) u } 

( l e; a . j l 2 e +i a±^2 

U^u) - h^u)>0, i f u>0 and l-e-2a>a* 1 2 > 

L ±(u) - h i(u)<0, i f u>0, 

and thus 

U i(u)>h 1(u)>L i(u) for u>0 and l-e-2a>a* 1 2 « ...(4.21) 

By integr a t i n g the bounding functions over [0,t] we obtain 
k 1 / 2 k 1 / 2 

k 1 / 2 

- t a n " 1 ^ ) e " X t ) ] + i [ e " X t - l ] } 
K0 K l 

and 

^ L i ( u ) d u = i { ( - ^ ) *n [ ° ^ + i [ e " X t - l ] } , 
u 1 K k Q+ kje 1 

where \=l-e-a, ̂ Q=a^ \ and k,= l - ^ ,2> Now t=(l-e) 1An(N(l-e)) 

and thus 

r x T / i \ i l ~ a ( l - e ) 1 

e =[N(1-e)] v ' 

For large N, e X t=0. If also (l-e)»a, ^ 2
+ a

2 ^ 2 then k^ i s small and 

k ^ - l . I f i n addition k ^ ^ e X t i s small then, 

J 0 u i v u , , a u = ^J-~t-a> 

and 

J^U 1(u)du - (1-e-a) l{ | [ a i ) 1 2 d - e ) "l} 

jJjl̂ OOdu » (1-e-a) 1 { A n [ ( l - e ) / a ± j u]-l }. 
To this order of approximation, we have 

( 1 - e - a f M | [ a 1 ) 1 2 ( l - £ ) " l ] " l / 2 - l ) 

> /Qh i(u)du > ( l - e - a ) _ 1 { A n [ ( l - e ) / a i ) 1 2 ] - l } . ...(4.22) 

In Chapter 3 we found that P J J ( N f i x e d , single resistance) did not 
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depend upon e. However J Q I K C U ^ U does depend upon e since i f e=0, a « l , 

we have 

j j u l ( » > d . . i [a l j l 2r1 / 2 - 1 . 

1/2 
whereas i f l-e<[a^ ^ ] , we have 

'oVU> = t a i , l 2 r 1 / 2 [ - I ^ ^±,12^' 
Since â , ^2«1» the lower bound can exceed the upper bound (for d i f f e r e n t 

e). For example consider the i n e q u a l i t i e s for the two cases e=l-10 - 3 and 

e=0 where a± 1 2 = 1 0 - 6 , a = 1 0 ~ 5 * Equation (4.22) implies / ^ h ^ u ^ u , and 

therefore P^, varies with e ( i n contrast to what was found for s i n g l e 

r e s i s t a n c e ) . Numeric evaluation of (4.20) for 10~ 9<a<10 - 1, 10<N<109 

reveals that the lower bound JgL^(u)du i s close to / ^ ^ ( u j d u , and can be 

used i n approximating P N for most cases a r i s i n g i n p r a c t i c e . Using the 

l-a( l-e)"''" 

r i g h t hand side of (4.22) and approximating N v ' by N, 

- a ( l - e ) " 1 

(1-e) ^ ' by 1, and 1-e-a by 1-e and using (4.20) i n the r e s u l t i n g 

expression for AnP Nin (4.20) we obtain 
AnP N « -(1-e) N { a 1 2 ( l - e ) + ^ ^ a i a j L > 1 2 [ A n ( ( l - e ) / a i j l 2 ) - l ] } . ...(4.23) 
This approximation i s of the form expected i . e . P^= exp{-a*N}, 

where 

-1 ? 
a* = a 1 2+ (1-e) X [ A n ( ( l - e ) / a 1 > 1 2 ) - l ] . ...(4.24) 

A s i m i l a r approximation has been derived previously i n a less general 

se t t i n g [27]. Note that a* depends upon e ( i . e . d). If e i s large, say 

0.9, the e f f e c t on P„ can be considerable. A s i m i l a r e f f e c t on P„ would 
N N 

be seen for cases i n which it^, n;2, rc^ 2'^2 1 a r e n 0 t n e c e s s a r i l v 0 although 

the c u r a b i l i t y of the tumor w i l l then depend upon the t o t a l treatment 
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protocol. 

The structure exhibited i n equation (4.23) has implications for the 

general analysis of these processes. Resistance to some drugs appears to 

a r i s e from a single d i s c r e t e change i n the genetic material. In such 

cases resistance may be almost absolute. In other cases resistance may 

a r i s e incrementally, such as i n processes involving gene a m p l i f i c a t i o n 

[28]. In these circumstances the a c q u i s i t i o n of each gene copy may be 

viewed as a separate stage. Therefore the d i s t r i b u t i o n of the numbers of 

c e l l s possessing a s p e c i f i e d l e v e l of resistance ( i . e . some minimum 

number of gene copies) w i l l be that of a multistage process and not that 

of a single stage process. This c l e a r l y represents a d i f f f i c u l t problem 

when attempting to analyze experiments designed to estimate mutation 

rates to drug resistance. Indeed i n a multistage process there i s no 

single parameter to estimate but rather a variable number depending on 

the number of stages involved. The number of stages would also be needed 

to be estimated ( i f not known) from such experiments and given the 

extremely variable nature of the basic process, i t seems that estimation 

of parameters w i l l be quite d i f f i c u l t . Furthermore, even when the number 

of stages i s known, i t i s not possible ( i n general) to write down 

expressions for the d i s t r i b u t i o n functions for the multistage process. 

This problem i s i n need of much more d e t a i l e d exploration. 

We w i l l now consider the problem of planning treatment and how this 

model may be used i n th i s context. 

4.3 Optimal Scheduling 

In attempting to f i n d an optimal treatment plan i t i s necessary to 

consider two fa c t o r s : a c r i t e r i a which q u a n t i t a t i v e l y measures the value 
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of a treatment plan, and the set of treatment regimens which are to be 

considered. Ideally the c r i t e r i o n would include measurement of both the 

therapeutic and toxic e f f e c t s of a treatment plan on the subject. 

Unfortunately, the side e f f e c t s of various treatment regimens are often 

d i f f i c u l t to describe i n a quantitative form. We s h a l l assume that each 

regimen to be considered has acceptable side e f f e c t s and that the "value" 

of the therapy may be measured by i t s (tumor s p e c i f i c ) therapeutic 

e f f e c t s . A natural c r i t e r i o n for the value of any regimen i s the 

p r o b a b i l i t y of cure, since cure i s the usual object of therapy. In t h i s 

case P J J , the p r o b a b i l i t y of cure for a tumor f i r s t treated at size N, 

w i l l be defined as the l i m i t t-*» i f P{N(t)=0|N(t 1)=N}. When a l l the 

tumor and drug parameters are known i t i s possible to examine the e f f e c t 

of various dosages and schedules of administration on the p r o b a b i l i t y of 

cure for the tumor using equations (4.10), (4.15) and (4.18). In cases 

where cure i s u n l i k e l y another "natural c r i t e r i o n " i s the expected number 

of c e l l s at some time a f t e r the completion of therapy E[N(t)], t>tj 

where t j i s the time of the l a s t treatment i n the regimen. This 

quantity may be simply evaluated using (4.12.1-2) i n conjunction with 

equations generalizing (3.12.1-2). For a given set of therapeutic 

regimens i t seems desirable that the optimal regimen be the same for 

e i t h e r c r i t e r i o n (Pjj or E [ N ( t ) ] ) . Unfortunately this i s not always the 

case, although i n many cases of i n t e r e s t the optimal strategies are the 

same (as w i l l be discussed l a t e r ) . 

One way to r e s t r i c t the set of possible protocols i s to consider 

those of some fixed length, that i s , those where there are a f i x e d number 

of times at which treatments are applied (protocols of fixed length). 
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Notice that i t i s always possible to "improve" a protocol, that i s , 

increase P J J or decrease E[N(t)], by adding further treatment 

applications to the end of the regimen. By th i s reasoning any protocol 

of length J - l (number of cycles of therapy) w i l l be no better than at 

least two protocols of length J ( i . e . those which add a single cycle of 

eith e r or T 2 to the protocol of length J - l ) . The length of the 

regimen w i l l therefore depend on a decision about the value of any 

further increase i n the p r o b a b i l i t y of cure versus the "costs" (both 

human and f i n a n c i a l ) associated with extra cycles of treatment. 

Protocols of fixed length are of some i n t e r e s t since they correspond to 

the structure of many c l i n i c a l protocols. 

Another way to r e s t r i c t the set of possible treatment regimens i s to 

consider only those which s a t i s f y some constraint placed on the measure 

of the therapeutic e f f e c t . That i s , we can r e s t r i c t attention to 

protocols for which Pfl>A (0<A<1) or E[N(t)]<k (k>0, where care must be 

taken i n the s e l e c t i o n of t used i n t h i s case). Sets of protocols (when 

not empty) s a t i s f y i n g such a condition are of some i n t e r e s t when i t i s 

desired to reduce the duration and quantity of therapy without unduly 

in f l u e n c i n g therapeutic r e s u l t s . The optimal regimen w i l l then be one 

where the number of treatments J i s minimal, among regimens s a t i s f y i n g 

the condition imposed. Notice, that once J i s determined then the 

optimal protocol of length J (determined from the set of protocols of 

length J) w i l l be an optimal protocol by th i s c r i t e r i o n . Thus the 

optimal protocol of length J i s of quite general i n t e r e s t . Examination 

of the e f f i c a c y of the optimal protocol of length J, for a range of 

values of J, i s thus useful for determining both the length and "content" 
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of the protocol of c l i n i c a l i n t e r e s t . 

In p r i n c i p l e the s p e c i f i c a t i o n of the c r i t e r i o n for e f f i c a c y and the 

set of permissable protocols permit i d e n t i f i c a t i o n of the optimum regimen 

for a given set of tumor parameters, although this w i l l usually be rather 

a lengthy exercise. Many tumor parameters are not under con t r o l either 

i n the laboratory or i n the c l i n i c and thus i t i s not necessary to 

analyze the ef f e c t of changing these parameters on the optimal regimen 

(for a p a r t i c u l a r type of tumor). One parameter which i s under control 

i n the experimental s e t t i n g i s the size of the tumor at f i r s t treatment. 

In the c l i n i c i n d i v i d u a l patients, with tumors of the same type, present 

with d i f f e r i n g tumor burdens. It i s thus of some i n t e r e s t to know 

whether regimens which are optimal for one size (at f i r s t treatment) are 

optimal at other s i z e s . In general the optimal regimen depends upon the 

size of the tumor when the f i r s t treatment i s applied. Thus when 

i d e n t i f y i n g the optimal treatment plan for a p a r t i c u l a r s i t u a t i o n , care 

must be taken to v e r i f y that the plan i s optimal at a l l sizes l i k e l y to 

be encountered. 

A p r a c t i c a l problem a r i s e s i n the therapy of c l i n i c a l disease when 

few of the relevant tumor parameters are known with any accuracy. 

C l e a r l y ignorance of the parameters makes i t d i f f i c u l t to evaluate 

optimal s t r a t e g i e s . However, i t i s possible to derive optimal rules i n 

the p a r t i c u l a r case, where two drugs are of equal ef f e c t i v e n e s s . Since 

this case i s of some p r a c t i c a l Interest, we w i l l now examine i t i n some 

d e t a i l . 

4.4 Optimum Scheduling f o r Two Equivalent Agents 

One s p e c i a l case which i s of some p r a c t i c a l i n t e r e s t i s the 
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s i t u a t i o n where two drugs (or combinations) are a v a i l a b l e which are of 

approximately equal e f f i c a c y . This appears to a r i s e i n the treatment of 

Hodgkin's Disease where two combinations, MOPP (Nitrogen Mustard, 

Oncovin, Procarbazine and Prednisone) and ABVD (Adriamycin, Bleomycin, 

Vinblastine and Dacarbazine) produce s i m i l a r cure rates and remission 

rates when delivered over the same time i n t e r v a l [29]. These 

observations suggest that the development of resistance to each 

combination proceeds at the same rate and that c e l l k i l l s of each 

combination are s i m i l a r . The a v a i l a b l e evidence also suggests that each 

combination i s equally successful i n producing remissions and cures i n 

tumors which have previously f a i l e d with the other therapy. This implies 

that each combination's e f f e c t i s approximately the same i n c e l l s 

r e s i s t a n t to the other. As a f i r s t approximation we may consider the two 

drug combinations as having equal values for the model parameters. In 

th i s s i t u a t i o n we w i l l r e f e r to the two combination as being equivalent, 

and by that we w i l l mean that each drug has i d e n t i c a l values for a l l 

parameters. 

In what follows we w i l l model two agents as two i n d i v i d u a l drugs. 

When an agent consists of a combination of drugs this model must be 

considered a f i r s t approximation since resistance to multiple agents i s 

more complex than that to a single agent (see discussion i n Section 4.2). 

E x p l i c i t l y two agents w i l l be said to be equivalent i f Q~%2 0' 

\,l=%2,2> %l, 12=^2,12' r l , 2 = 7 t 2 , l ' W W V1,12 = V2,12 a n d t h e 

intertreatment times t^+^-ty j = l , . . . , J - l are constant. In t h i s case, i f 

¥(s ( ),s 1,s 2,s 3;0) = ¥ ( s Q , s 2 , s 1 , s 3 ; 0 ) , ...(4.25) 

that i s 
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p{R 1(0)=i,R 2(0)=j|R ( )(0),R 1 2(0)}=P{R 1(0)=j >R 2(0)=l|R 0(0),R 1 2(0)} 

then for t<t^ (the time of f i r s t treatment), we have 

¥(s Q,s 1,s 2,s 3;t) = ¥(s ( ),s 2,s 1,s 3;t). ...(4.26) 

Here we w i l l assume (4.25) holds, which i s reasonable since otherwise we 

would expect the response of the tumor to therapy by (alone) to be 

d i f f e r e n t from the response to T2 (alone) and thus the agents would not 

appear equivalent. 

This d e f i n i t i o n of equivalent agents has been used previously i n the 

consideration of the e f f e c t s of cancer therapy [30,31]. Intertreatment 

times are usually selected to be the minimum times necessary for the 

recovery of normal tissues between cycles of treatment. By assuming that 

intertreatment times are the same for each treatment we indicate that the 

minimum recovery time for each treatment i s the same. The term 

"equivalent" i s motivated by the observation that i f either of the drugs 

i s used alone then the d i s t r i b u t i o n of the t o t a l number of c e l l s w i l l be 

the same for each drug. Note that from the general d e f i n i t i o n of the 

re s i s t a n t states, we have it. „<7i. 1 0 and %. ~ .<n. . for i=l,2. The 
i,0 i , i i,12 i»3-i i , i 

tumor parameters b, c and d are fixed and w i l l not be e x p l i c i t l y 

s p e c i f i e d . 

As noted before (Section 3.3), chemotherapy i s given i n repeating 

cycles for c l i n i c a l disease i n which the doses and drugs used are fi x e d 

i n advance [32]. The intervening time between repeat applications i s 

determined by the recovery time of the patients' normal t i s s u e s . This 

recovery time i s selected to be the minimum time for the necessary 

recovery. Protocols which administer the cycles at greater than the 

minimum i n t e r v a l w i l l be less e f f e c t i v e than those giving the same drugs 
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at the same dose i n the same sequence as frequently as permissable, since 

longer intertreatment times allow more time for regrowth. 

We w i l l now consider the construction of optimal rules f o r 

sequencing the administration of two equivalent agents. In th i s section 

we w i l l consider the construction of the optimal treatment regimen within 

the set of protocols of fixed length J (number of times a treatment i s 

applied). We w i l l r e f e r to the treatment plan as a strategy, which 

represents the sequence i n which treatments are administered (the times 

of administration being already s p e c i f i e d ) . 

F i r s t we w i l l f i x J, the number of times of administration of 

treatments i n the regimen. A therapeutic strategy, S, w i l l be 

represented by a vector which consists of a sequence of J l ' s or 2's with 

each number r e f e r r i n g to the subscript of the treatment given (either 

or T2), and the sequence i n d i c a t i n g the order i n which they are 

given. There w i l l be 2 3 such strategies and we w i l l write S(v) when we 

wish to refer to a p a r t i c u l a r strategy i n the set. A sol u t i o n to the 

fixed length problem, which of course w i l l depend on J , w i l l be referred 

to as an optimal strategy for each c r i t e r i a of treatment e f f i c a c y . At 

least one optimal strategy e x i s t s because the number of strategies of 

fix e d length J Is f i n i t e . When a tumor i s treated with strategy S(v) we 

w i l l write the p r o b a b i l i t y of cure as P ^ ( S ( v ) ) and the expected number of 

c e l l s as E [ N s ( v ) ( t ) ] . 

Having defined the set of strategies to be considered i t remains to 

specify the c r i t e r i o n for the e f f i c a c y of the therapy. As before, two 

natural candidates are PJJ and E [ N ( t ) ] . From ( 4 . 2 5 ) and general 

considerations of the behaviour of the process, at least two d i s t i n c t 
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s t r a t e g i e s have the same value of because the drugs are equivalent 

and each strategy has a "mirror image" ( i . e . l ' s and 2's interchanged). 

Similar considerations apply to E[N(t)] and to any symmetric functional 

(with respect to R ^ ( t ) and R ^ ( t ) ) of the d i s t r i b u t i o n of 

{ R 0 ( t ) , R 1 ( t ) , R 2 ( t ) , R 1 2 ( t ) } . We wish to show that there e x i s t optimal 

strategies which are independent of the drug and tumor parameters for any 

pair of equivalent drugs. Such optimal strategies do e x i s t for the 

c r i t e r i o n E[N(t)] as we w i l l show subsequently. Unfortunately these 

s t r a t e g i e s are not necessarily optimal for P J J , as w i l l be shown by 

producing a counterexample (see Chapter 5). 

We may formally l i n k minimizing E[N(t)] and maximizing under 

p a r t i c u l a r circumstances as follows. For two strategies S ( i ) and S ( j ) , 

i f 

P{N s ( i )(t)>k}>P{N s ( j )(t)>k} for a l l k, ...(4.27) 

then i t follows immediately that 

E[N ( t ) ] > E[N ( t ) ] and P N<S(i)) < P N ( S ( j ) ) . 

Thus the i n t u i t i v e idea of minimising E[N(t)] w i l l also be formally 

equivalent to maximising Pfl(S) i n s i t u a t i o n s where the rather strong 

condition (4.27) of stochastic ordering a p p l i e s . However, i t i s doubtful 

that t h i s condition could ever be v e r i f i e d i n p r a c t i c e . 

The p a r t i c u l a r s i t u a t i o n of equivalent drugs permits the 

consideration of c r i t e r i a of e f f i c a c y other than P^ and E [ N ( t ) ] . A 

second quantity which can be minimized may be motivated by the 

consideration of the r e s i s t a n t subcompartments of the tumor. I n i t i a l l y 

we observe that c e l l s i n RQ "see only" one drug, since each drug 

has the same e f f e c t on RQ c e l l s . Thus the only component of the 
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strategy which a f f e c t s the d i s t r i b u t i o n of the number of c e l l s i n R Q at 

time t > t : j > i s the length J of the strategy. S i m i l a r l y the e f f e c t of the 

strategy on c e l l s already i n R , 2 at t , depends only on the length J and 

not on the order i n which the drugs are given. Therefore the "value of" 

s t r a t e g i e s r e s u l t from t h e i r d i f f e r e n t i a l e f f e c t on the c e l l s i n R ^ 

and R 2 » 

For any strategy to be of some value i t must be capable of causing a 

net o v e r a l l decline i n the mean number of singly r e s i s t a n t c e l l s . This, 

of course, does not follow from any formal constraints placed on t h i s 

model but from a consideration of what this would imply about the 

regrowth of the r e s i s t a n t c e l l s . It i s possible for treatments to 

eliminate s i n g l y r e s i s t a n t compartments (when treatment i s given) with a 

non-negligible p r o b a b i l i t y , even though the net mean growth of these 

c e l l s may be p o s i t i v e because of a very large regrowth between 

treatments. There i s no evidence to suggest that this occurs i n c l i n i c a l 

disease although there are probably many cases where small c e l l k i l l s are 

'balanced' by regrowth between treatments. An i n t e r e s t i n g case of t h i s 

has been i d e n t i f i e d by Skipper i n his analysis of the response of a mouse 

mammary tumor to treatment by the CAF (Cyclophosphamide, Adriamycin and 

5-Fluorouracil) regimen [33]. 

The objective of the therapeutic strategy i s to cause a net decline 

(to e x t i n c t i o n ) of the s i n g l y r e s i s t a n t c e l l s i n such a way as to 

minimize the number of t r a n s i t i o n s to double resistance. C l e a r l y , the 

cases of greatest importance are those where the growth of the c e l l s 

already i n R ^ 2 cannot be made s u b c r i t i c a l and i t i s necessary to 

plan the strategy so that the l i k e l i h o o d of t r a n s i t i o n s from the s i n g l y 
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r e s i s t a n t to the doubly r e s i s t a n t state i s minimized. Even i n cases 

where the chemotherapy can make the growth of doubly r e s i s t a n t c e l l s 

s u b c r i t i c a l (over the treatment plan) one would wish to minimize the 

number of new doubly r e s i s t a n t c e l l s since they are by d e f i n i t i o n the 

most d i f f i c u l t to tr e a t . We w i l l now develop an expression for the mean 

number of tr a n s i t i o n s from single to double resistance during the 

treatment period and subsquently derive the form of strategies which 

minimize this quantity. 

Consider the number of c e l l s i n at any time tz(ty which 

are derived from c e l l s i n R, at time t . . Conditional on R,(t.) the 
1 J 1 3 

expected number of such c e l l s at time t, g^(t^, t ) , i s given by the f i r s t 

term on the right hand side of (4.12.1) with m^O^R^t..): 

g 1 ( t j , t ) = R ^ t j ) exp { ( 6 - a 1 ) 1 2 ) ( t - t j ) } . 

Conditional on R^ ( t ^ ) , the expected number of t r a n s i t i o n s to double 

resistance i n the i n t e r v a l ( t ^ , t ) by these c e l l s , ( t ^ . t ) , i s given by 
u ^ ( t .,t) = a 1 ) 1 2 / ^ g l ( t .,u)du. 

The simplest way to obtain the above r e l a t i o n s h i p i s to consider c e l l s i n 

R^ as being s e n s i t i v e (to T 2) and i n R^2 as being r e s i s t a n t (to T 2) and 

use the d i f f e r e n t i a l equations leading to (3.8) as follows. Set 

mQ(t)=g^(tj , t ) , <xb+v=â  ^ 2 and m^(t)=u^ ( t j , t ) . Then solve the 

d i f f e r e n t i a l equation f o r ( t ^ , t ) noting that the term 6u^ (t_.,t)sO 

because here we are counting the number of tr a n s i t i o n s (which have no 

i n t r i n s i c growth). L e t t i n g |i-(t . ,t)=E[ ( t . , t ) ] , i t follows that 

t (6-a ) (u-t ) 
u x ( t , t ) - ax J m (t )e L * L * J du. . . . ( 4 . 2 8 ) 
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S i m i l a r l y we may define \i^{tyt) for t r a n s i t i o n s from to R,2' 

The expected number of t r a n s i t i o n s to double resistance i n [ t . , t . ,) from 
J J + l 

s i n g l y r e s i s t a n t c e l l s at t . i s thus u . ( t . , t . , - )+u„(t.,t.., ). Thus the 
J 1 j J+l 2 V j ' j + l ' 

mean number of those events which occur i n some [t.., f ° r j =0»...»J 

(t^-0) i s given by 
J 2 

M'" I I U.(t ,t ), ...(4.29) 
j-0 i - l J J 

where for s i m p l i c i t y we set t j + , = t y K t j ~ t j_,) • We seek strategies which 

minimize (4.29). In seeking to minimize (4.29) we may minimize any 

function of the form KM'+C where K (>0) and C are not dependent upon the 

strategy. In p a r t i c u l a r we may replace each term u ^ ( t j , t ,) of the form 

(4.28) by 
(k-6+a )(u-t ) 

t a l M o ( t )[e ' 3 -1] (6-a )(u-t ) 
a i , l 2 J t . K(tj> +

 [k-6+a, > e d u 

j I»1^ 

= a i , 1 2 ^ t J + l m i ( u ) d u 

3 
from (4.12.1). The added terms do not depend upon the strategy and thus 

minimizing M' is'equivalent to minimizing M*, where 

J t ~ 
M* ml / J [m 1(u)+m 2(u)]du. ...(4.29) 

j-1 J 

Minimization of this quantity has previously been considered for the 

s p e c i a l case c=d=0, it, ±~1Z± 1 2 = 1 [^1' ^ e W H 1 n o w proceed to 

characterize the strategies which minimize (4.29) and then show that 

these strategies also minimize E[N(t)], t>t . 
J 

In order to do t h i s we now define some new q u a n t i t i e s . Let E, .(t) 

be the expected number of c e l l s r e s i s t a n t to T^ alone at time t, which 

derive from (have grown from, including the e f f e c t s of treatment) "new 
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mutations" ( t r a n s i t i o n s from Rn to ) i n the i n t e r v a l [ t . ,, t.) f o r 
0 V j - l ' y 

j=l,...,J+l. Define E .(t)=0 i f t<t . Singly r e s i s t a n t c e l l s present 
1>J J — i 

at t=0 w i l l be included i n the i n t e r v a l [ t Q , t 1 ) = [ 0 , t 1 ) . Then for i=l,2 

and u < t J + 1 

J+l 
m (u)= I E (u), 

i k=l 1 , K 

and we may then write (4.29) as 

J t ~ j+l 
M*= I J 2 I [\ k(u)+E (u)]du, 

j=l t , k=l l ' K Z ' K 

which gives 

M*= I I / t j + 1 [E, k(u)+E (u)]du 
j=l k=l t . L'* l , K 

J 
J t ~ 

+ I S 3 t E l , j + l < u ) + E
2 , j + l ( u ) ] d u ' ...(4.30) 

The second term on the right hand side of (4.30) represents "new 

mutations" a r i s i n g from c e l l s i n RQ between cycles of treatment which 

have not been exposed to either drug. Conditional on the treatment times 

and the number of treatment cycles, the d i s t r i b u t i o n of c e l l s i n R Q i s 

the same for a l l treatment strategies (because the two drugs are 

equivalent) for ab i t r a r y t, and thus the second term i s the same for a l l 

such s t r a t e g i e s . Thus minimizing M* i s equivalent to minimizing the 

f i r s t term on the right hand side of (4.30). 

The growth of E ,(u) over [ t . , t . .] for a l l j , k where j>k i s i>k j j+l 

exponential with parameter (6-a^ ̂ ) (see f i r s t term i n (4.12.1)). Thus 

E i , k < u > d u " Ei,k (V< 6- ai,12> - 1 i - P [ ( 6 - a i ) 1 2 ) ( t j + 1 - t j ) ] - l } . 
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Using (4.30) we have 

M* = ( 6 - a 1 ) 1 2 ) - 1 e x p { ( 6 - a 1 ) 1 2 ) ( t 2 - t 1 ) - l } M + K 

(since a, , 0=a 0 1 0 and t . . , - t . i s constant for j=l,...,J) where K i s a 1,12 2,12 j+l j 
constant given by the second term of (4.30) and 

J j 2 
M = I I I E (t ). ...(4.31). 

j=l k=l i = l 1 , K J 

Thus minimizing M* i s equivalent to minimizing M. 

We w i l l now proceed to develop our notation i n order to e x p l i c i t l y 

minimize M and thus minimize M". Define 
2 J 

: (S(v)) = I I E (t ), 
* i = l j=k 1 , 1 C 3 

where the E,^(t) are calculated for the treatment strategy S(v); then 
J 

M = I C (S(v)) . 
k=l fc 

Define 6j(v) = 1 i f the j - t h treatment i n S(v) i s T,, 

= 0 otherwise, ...(4.32) 

and l e t 
I 

X k(S(v),A) = | I 6 (v) - [1-6 (v)] |, for 1 <k<KJ, 
j=k J J 

the modulus of the number of times T^ i s given minus the number of 

times T^ i s given between the k-th and A-th times of treatment. For 

k = l ) • • • y J y l e t 

K {S(v)}= {i:JL ( S ( v ) , i ) = max 3C (S( v), I) }, ...(4.33) 
K K k<KJ K 

the indices of treatment times where the modulus of the difference i n the 

number of T]_'s and T2*s i s maximized commencing at k. Let 

B ={S(v): max X, (S(v),A)=l} for k=l,...,J, ...(4.34) 
fc k<KJ K 

the set of strategies where, commencing at the k-th time of treatment, 
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the maximum modulus of the difference i n the number of times and T^are 

given equals 1. Let 

g = expiCS^ 1 2 ) t^)} for j = l , ..., J . 

As before, 

.̂r ^ = P{a c e l l i n R . w i l l survive one cycle of T. } for i = 1,2 i ,Q 1 Q l ' 

To s i m p l i f y notation, l e t TCQ = i ( = 7 t 2 2^ a n d %l = \ 2^=%2 1^ w n e r e 

U^<UQ from the general d e f i n i t i o n of resistance. By equivalence 

E, .(tT) = E_ .(tT) and we w i l l l e t E .=E, .(tT). Define i , j y 2 , j v y 2 i,3 J 
k 

n.(k) = I 6 ( v ) , 
J i - j 

(see 4.32), the number of times T^ i s given between the j-th and k-th 

cycles of therapy where reference to the strategy, indexed by v, i s 

supressed for s i m p l i c i t y . 

Using this notation i t i s then straightforward to show 
J n.(k) k-j+l-n.(k) k-j+l-n.(k) n.(k) 

C.(S(v))= E I gk~2 [%Q

2 * 2 + nQ

 2 r^2 ]. ...(4.35) 
J Jk=j 

We see from (4.35) that, as expected, mirror image strategies ( i . e . 1 and 

2's interchanged) have the same value of C^(S(v)) since E^ does not 

depend on S(v). 

Having developed the required notation we w i l l now show that M given 

by (4.31) and thus M' given by (4.29) i s minimized by the a l t e r n a t i n g 

strategies {l,2,1,2,...}, {2,1,2,1,... } amongst those of fixed length J . 

THEOREM 1 
J 

Among a l l strategies of fixed length J, M = £ C.(S(v)) i s minimized only 
j - l 2 

by the two strategies which alternate therapy at each cy c l e . 

Proof: 
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The proof w i l l be achieved by characterizing the strategies S(v) 

which minimize Cj(S(v)) for ab i t r a r y j . We w i l l then show that the 

al t e r n a t i n g strategies minimize Cj(S(v)) for a l l j . The proof w i l l 

consist of three parts: 

( i ) Choose a r b i t r a r y j . For any S(v) not i n (see (4.34)), there 

ex i s t s S(v*) e B^ such that Cj(S(v*)) < C^(S(v)). 

( i i ) If S(v), S(v*) £ B^ then C ( S ( v ) ) = C..(S(v*)). 

( i i i ) If S(l) = (1,2,1,2,...) and S(2) = (2,1,2,1,...) then S ( l ) and 
J 

S(2) minimize £ C.(S(v)) among a l l strategies of length J . 
j-1 2 

( i ) Choose a r b i t r a r y j . If S(v) i s not i n B^ choose one k e K j ( S ( v ) ) , 

as defined i n (4.33). Consider f i r s t the case k<J and 6 k ( v ) = l , that i s 

the k-th cycle i s T,. Let be the operator which interchanges the k-th 

and k+l-st elements of a strategy. Now k e K^(S(v)) and k<J implies that 

S^ + 1(v)=2. Consider the strategy o kS(v). Using (4.35) we have 

C ( S ( v ) ) - C (cr kS(v)) 

k-j n ( k ) - l k-j+l-n (k) 
= Ejg [nQ

2 nl ( l l o~ 1 tl ) 

k-j+l-n (k) n ( k ) - l 
+ nQ (\-*0)] 

where n j ( k ) i s calculated for S(v). Thus we may write 

C j ( S ( v ) ) - C j ( a k S ( v ) ) 
n ( k ) - l k-j+l-n (k) k-j+l-n (k) n ( k ) - l 

- E.g 2[*Q

 2 nl
 - 7 t0 \ 3 1 

k - i 
where E_.g J does not depend on S(v). 

Now since S(v) i s not i n B^ and 6 k ( v ) = l , we have n.(k) > (k-j+2)/2, 
n ( k ) - l k-j+l-n (k) k-j+l-n (k) n ( k ) - l 

Since ^Q>^ we have TC, > UQ 1 
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and thus 

CjCSCv)) - C ( o ^ S C v ) ) ^ . 

For k<J and 6^(v)=0 then we can also show the above r e s u l t using s i m i l a r 

considerations. For {J}=K_.(S( v)) consider the strategy S(v') where the 

J-th treatment i s replaced by the other treatment and obtain a s i m i l a r 

i n e q u a l i t y for C,.(S( v) )-C..(S( v') ) . 

We may now apply the same considerations to the new strategy which 

we have created (either a^S(v) or S(v')) and obtain a sequence of 

d i s t i n c t s t r a t e g i e s , {S(v)} say, which have s t r i c t l y decreasing C^.(S(v)). 

Now the number of possible strategies i s f i n i t e (for f i n i t e J ) , and t h i s 

process of producing new strategies must terminate since each strategy i s 

d i s t i n c t . Since there i s at least one v such that S(v) e B . (and the 
J 

process of improving strategies i s v a l i d for a l l v such that S(v) i s not 

i n B J ) we conclude that the sequence of strategies terminates with the 

l a s t member being contained i n B ̂ . This proves the desired r e s u l t . 

( i i ) For a l l j , K j < J , B . . contains 22+^J~2^2^ elements and 

therefore consider the n o n - t r i v i a l case S(v)*S(v*). Using (4.35) we have 

Cj(S(v)) - C j(S(v*)) = 
J k-j n.(k) k-j+l-n.(k) k-j+l-n.(k) n.(k) 

E I g |> 2
 K

 2
 + 7!Q

 2
 T t 1

 2 

J k=j 
n*(k) k-j+l-n*(k) k-j+l-n*(k) n*(k) 

~ ^0 ^ %l ^ ~ ^0 ^ \ 2 ~\' ...(4.36) 
where n*(k) i s calculated for strategy S(v*). Since S(v), S(v*) e B ^ we 

have 

and 

n^(k) = k " ^ + 1 = n*(k) for k-j+1 even, 

n^.(k) = n*(k) or n^(k) = k-j+l-n*(k) for k-j+1 odd. 
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Thus each term i n the sum (4.36) i s zero, and therefore C^(S(v)) = 

C\(S(v*)), proving the required r e s u l t . 

( i i i ) Now S ( l ) , S(2) e B.. for a l l K j < J . Furthermore only S ( l ) and 

S(2) have t h i s property. But S(l) and S(2) minimize C^(S(v)) for a l l j 

and thus only S ( l ) and S(2) minimize 
J 

M = I C ( S ( v ) ) . 
j - l 2 

The proof i s complete. 

The proof of a s p e c i a l case of t h i s theorem (c=d=0, it. .=iz. , n = l ) 
1 , 1 i,12 

has been presented previously [31]. We w i l l now show that the 

a l t e r n a t i n g strategies minimize E[N(t)] for t > t j . 

Theorem 2 

Among the strategies of fixed length J, S ( l ) and S(2) minimize 

E[N(t)] for a r b i t r a r y t > t j . 

Proof: 

We w i l l evaluate E[N(t)] at time t J + 1 = t j + ( t j ' t j ^ ) ( a s before) 
without loss of generality. Consider the development of doubly r e s i s t a n t 

c e l l s i n the i n t e r v a l [tj> '•j+i^ ^ o r j=0»«'«>J from c e l l s which were not 

doubly r e s i s t a n t at time t ^ . Each such c e l l must have grown from one of 

three types of progenitor at time t ^ , i . e . either a R Q , a R ^ or a R ^ 

c e l l . The treatment sequence does not a f f e c t the d i s t r i b u t i o n of Rg(t) 

(only the length does because of equivalent treatments), so the number of 

doubly r e s i s t a n t c e l l s at t . , . derived from R _ c e l l s at t . does not 
J+l 0 j 

depend on the treatment sequence. Thus the d i f f e r e n t i a l e f f e c t of 

various strategies on the number of doubly r e s i s t a n t c e l l s at time t, 

t j < t < t j + ^ , r e s u l t s from i t s d i f f e r e n t i a l e f f e c t on singly r e s i s t a n t c e l l s 
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present at the treatment times t , , . . . t ^ . We w i l l now cal c u l a t e the 

expected number of doubly r e s i s t a n t c e l l s which have ari s e n from si n g l y 

r e s i s t a n t c e l l s present at treatment times. 

Let R 1 2 ( t , t ' , t " ) . ( t " > t ' , t>t') be the number of doubly r e s i s t a n t 

c e l l s present at time t whose progenitor ( f i r s t doubly r e s i s t a n t c e l l ) 

o r i g i n a t e d as a mutation from a singly r e s i s t a n t c e l l (either or 

R 2) i n [ t ' , t " ) . Using (4.12.2) we can write 

K i R i 2 < t k + i » V W l W * W i 
= [ \ ( \ ) + R 2 ( t k ) ] h ' f ° r k = 1 ' - - * . J . ...(4.37) 

„ „ ^ W V M - a l,12 ( t k + l H : k \ j , u where h=e (1-e ). Let T ^ - T C , 12 ^~r"2 12^ e n 

E [ R 1 2 ( t . ) ] = n2 E [ R 1 2 ( t j ) ] for J-1....J. 
5 ( tk+r tk ) 

If we l e t g*=e then we have by (4.12.2) 

E t R 1 2 ( t J + l » V W ' W ' R 2 ( t k > l 
= [ R 1 ( t k ) + R 2 ( t k ) ] h ( T i 2 g * ) J _ k , for k - l , . . . J . ...(4.38) 

From the same considerations used i n deducing (4.35) we have 

- I V V + R 2 ( t k ) ] 
k k-j n.(k) k-j+l-n (k) k-j+l-n.(k) n.(k) 

= ^ Ejg {*0
 3 \ 3 +*0

 J rcx
 J }, -..(4.39) 

where E^ and n j ( k ) are the same as i n the proof of Theorem 1. Thus using 

(4.37), (4.38) and (4.39) we have 

E I R12 ( t J+l» t l » t J+l ) l 
J k k-j n.(k) k-j+l-n.(k) 

= I h (Tt g * ) J ~ * I E g {n 2 it 2 

k-1 j-1 2 L 

k-j+l-n (k) n (k) 
+ T t Q TI, } • ...(4.40) 

Now E [ R 1 2 ( t J + 1 ) ] - E [ R 1 2 ( t J + 1 ) t l , t J + 1 ) ] + E [ R 1 2 ( t J + l j t 0 , t l ) ] , where 

E [ R , 2 ( t J + , , t Q , t , ) ] does not depend on the strategy S(v). Also from (4.39) 
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we have 

E [ R l ( t j + 1 ) + R 2 ( t J + 1 ) ] 
J+l n (J) J-j+l-n (J) J-j+l-n (J) n (J) 

= I E g ITCQ \ 2 + 2 * 2 }, ...(4.41) 
j - l 

where n^(k)=0 i f j>k. Using (4.40) and (4.41) we obtain 

E [ N ( t J + 1 ) ] = E [ R 0 ( t J + 1 ) ] + E [ R l ( t J + 1 ) ] + E [ R 2 ( t J + 1 ) ] + E [ R 1 2 ( t J + 1 ) ] 
J+l J-j+1 n (J) J-j+l-n.(J) J-j+l-n.(J) n.(J) 

= K+ I E g {it 2 * 2 + n 2 * J } 
j - l 

J J-k k k-j n (k) k-j+l-n.(k) k-j+l-n.(k) n.(k) 
+ I h (*g*) I E g {u 2 u 2 + u J 71 J } 
k=l j=l J 

...(4.42) 

where K does not depend on the strategy S(v). 

The terms within the summations i n (4.42) have both been seen to be 

minimized by strategies belonging to Bj; i t follows that the summations 

are uniquely minimized by S(l) and S(2). Thus S( l ) and S(2) minimize 

E[N(t)] for t > t j . This completes the proof of the theorem. 

We have found that there i s one "pattern" of strategies which i s 

optimal ( i n terms of minimizing E[N(t)]) for any treatment parameters 

providing the two drugs are equivalent. This property i s extremely 

convenient since i n any s i t u a t i o n where treatment must be stopped early 

( i . e . patient t o x i c i t y or r e f u s a l ) , the truncated regimen i s then optimal 

for the number of treatments given. S i m i l a r l y i f i t i s decided to 

increase the treatment regimen we may s t i l l construct the optimal plan of 

the required length by adding cycles of the drugs to the pre-existing 

regimen. 

As previously indicated, however, the p r o b a b i l i t y of cure P^, i s not 
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ne c e s s a r i l y maximized by those strategies which minimize E[N(t)] for 

t>tj (or minimize M') when treatments are equivalent. An example of 

th i s i s given i n Chapter 5 and the accompanying discussion suggests that 

t h i s phenomena w i l l only occur i n the p a r t i c u l a r set of circumstances 

when regrowth between treatments i s large and the composite process of 

treatment and regrowth (for si n g l y r e s i s t a n t c e l l s ) i s not strongly 

s u b c r i t i c a l . This s i t u a t i o n i s u n l i k e l y to be encountered i n human 

disease since growth over periods of one month (which i s greater than 

most intertreatment Intervals) i s modest for the majority of human 

tumors. However, such conditions may be encountered i n several 

experimental cancers where doubling times i n the order of twelve hours 

are not uncommon. 

The two theorems, with the preceding discussion, indicate that i n 

cases of human cancer where two equivalent agents are a v a i l a b l e , which 

may not be used concurrently, the best way to use these two w i l l be i n an 

a l t e r n a t i n g strategy. This r e s u l t i s of i n t e r e s t both because of i t s 

generality ( i t does not depend on the p a r t i c u l a r parameter values) and 

because i t i s not current c l i n i c a l p r a c t i c e . 

In c l i n i c a l medicine protocols are developed whereby active agents 

are combined, as much as possible, into regimens which are then repeated 

a fixed number of cycles. Where two such regimens are a v a i l a b l e the 

common pract i c e i s to use one continuously u n t i l there i s evidence of 

relapse when the other regimen i s employed. Conversely, although 

al t e r n a t i n g strategies represent a departure from c l i n i c a l p r a c t i c e , they 

are compatible with the c l i n i c a l concept of combination chemotherapy. 

Combination chemotherapy uses drugs given at constant times during a 
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cycle and this cycle i s repeated a fixed number of times. In each 

regimen the drugs are frequently not given simultaneously but on 

d i f f e r e n t days. An a l t e r n a t i n g regimen can be viewed as combination 

chemotherapy with repeated cycles of the regimen T^T^ (or T^Tj) over a 

longer intertreatment i n t e r v a l . 

4.5 Discussion 

The i d e n t i f i c a t i o n of optimal strategies ( i . e . those which maximize 

P^) represents a considerable problem i n computation when the parameters 
12 

are known. For example, when J=12 there are 2 possible s t r a t e g i e s . 

Thus i t i s desirable to seek h e u r i s t i c s to reduce the set of strategies 

which must be considered. For a strategy to be e f f e c t i v e the treatments 

must be able to make the net growth of Rg(t), R^(t) and s u b c r i t i c a l 

(over the treatment period); otherwise no cure i s possible. In 

p a r t i c u l a r the c e l l s present at time t^ i n R^, R̂  and R^ must be 

eliminated with a "large" p r o b a b i l i t y . Following this reasoning we i n f e r 

that the expected number of these c e l l s should be small at completion of 

the treatment regimen. That i s , "reasonable" strategies would be 

expected to s a t i s f y , 
n (J) J-n (J) 

E [ R i ( t 1 ) ] [Ttlt± 7 C 2 j l ] < k, ...(4.43) 
for 1=0,1,2 where k i s chosen as a function of d ( i . e . i t w i l l be larger 

i f the death rate i s larger; a possible choice i s k=0.5(l-e) ^"). In 

c e r t a i n cases the set of i n e q u a l i t i e s (4.43) may provide useful lower and 

upper bounds on n^(J) ( i . e . not 0 and J ) , thus eliminating some 

strategies from consideration. These i n e q u a l i t i e s may also indicate that 

J i s too small so that the search for an optimal rule of length J may not 

be of great use. 
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The search for optimal st r a t e g i e s , using P N as the c r i t e r i o n , has 

been examined i n considerable d e t a i l by Day [34], who considered 16 

strategies (chosen to "span" the set of possible s t r a t e g i e s ) for the case 

J=12, and calculated t h e i r e f f e c t on the p r o b a b i l i t y of cure for 256 

d i f f e r e n t combinations of drug and tumor parameters. He showed that i t 

i s possible to i d e n t i f y c e r t a i n patterns i n the best (of the 16) 

treatment strategies as the degree of asymmetry i n the parameters of the 

two drugs increases. In a p a r t i c u l a r c l i n i c a l problem strategies "close" 

to the best of the 16 determined by Day could be examined. The d e t a i l s 

of such a search remain to be worked out and we w i l l return to t h i s 

problem i n Chapter 5. 

It should be remarked that the assumption of a fixed number of 

treatments may not be a reasonable model for the c l i n i c a l s i t u a t i o n when 

the two drugs have d i f f e r e n t recovery times before further therapy i s 

possible. In such cases i t may be more reasonable to f i x the t o t a l 

treatment i n t e r v a l [t.. ,t'] where J w i l l be chosen so that t <t". If the 

tumor parameters are known then i t i s straightforward, although 

computationally demanding, to calculate the optimum strategy. In order 

to treat the problem of optimizing strategies comprehensively, we need a 

precise statement of the r e l a t i o n s h i p between dose and t o x i c i t y for each 

of the drugs. If t h i s were s p e c i f i e d then i t would be possible to 

construct optimum dosages as well as optimum schedules. However l i t t l e 

t h e o r e t i c a l work has been undertaken i n t h i s area and at present i t i s 

not possible to include considerations of t o x i c i t y i n modelling the 

e f f e c t s of treatment. This concludes the consideration of optimizing 

treatment s t r a t e g i e s . We w i l l now consider v a r i a t i o n i n mutation rates 
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on the development of double resistance. 

4.6 Variation i n the Mutation Rates 

In the previous chapter dealing with resistance to a single agent we 

examined the e f f e c t of v a r i a t i o n i n the rate a=ort-v/b (Section 3.10). 

Here ( i n analogy to the case of single resistance) we w i l l consider 

v a r i a t i o n s i n mutation rates where the rates for an i n d i v i d u a l tumor are 

fixed but follow a d i s t r i b u t i o n f or tumors of that type. In p a r t i c u l a r 

we w i l l consider v a r i a t i o n s i n the vector of parameters A*, where 

A* = ( A ^ , , A ^ , A^,A^) 

= ( a 1b+v 1, a 2b+v 2, a x ^ 1 2b+v 2 ̂  u , o ^ b + v ^ ). 

We w i l l assume a ^ 2 b + v i 2 = ^ s i n c e w e a r e primarily interested i n examining 

the e f f e c t of v a r i a t i o n i n rates on the two step development of double 

resistance; the one step process having been e s s e n t i a l l y covered i n 

Section 3.10. Thus we w i l l consider A, the f i r s t four elements of A*, at 

t h i s point although we w i l l consider A* l a t e r i n a d i f f e r e n t context. 

Also, because the d i s t r i b u t i o n function of {R Q(t), R^(t), R 2 ( t ) , R 1 2 ( t ) } 

cannot be obtained i n e x p l i c i t form, we w i l l (as i n Section 3.10) 

consider the e f f e c t of v a r i a t i o n s i n A on the p r o b a b i l i t y of cure. The 

scale of measurement of t i s , of course, a r b i t r a r y . In order to s i m p l i f y 

presentation we w i l l assume, without any loss of generality, that t i s 

measured on a scale for which b=l. 

The p r o b a b i l i t y of cure depends on the treatment strategy for 

a r b i t r a r y u . In analogy with the case for single resistance we w i l l 
I»x 

only consider the s p e c i a l case TC^ Q = U 2 Q=%\ 2~%2 %1 12~%2 12=^ ^ \ 1 

and TC2 2 are a r b i t r a r y ) and assume that both drugs are given together. 

Thus a l l c e l l s , except the doubly r e s i s t a n t ones, are eliminated by the 
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f i r s t a p p l i c a t i o n of the combination of the two drugs. In th i s case the 

p r o b a b i l i t y of cure depends only on the f i r s t time of administration of 

the combination since subsequent a p p l i c a t i o n has no e f f e c t on the 

remaining doubly r e s i s t a n t stem c e l l s . Even i n th i s case the p r o b a b i l i t y 

of cure i s a complicated function (involving i n t e g r a l s ) and thus we w i l l 

use the approximation given by (4.23). In what follows we w i l l assume 

that A i s random and w i l l indicate the dependence of ?^ on A by wr i t i n g 

writing P„(a). We wish to select a d i s t r i b u t i o n for A which leads to an 

expression for E [ P ^ ( A ) ] which i s reasonably simple to c a l c u l a t e . We 

assume that there e x i s t s a density function for the random variable A, 

f( a ) say. Unfortunately, l i t t l e information i s ava i l a b l e as to the form 

of f(a) since no experiments have been undertaken to attempt to i d e n t i f y 

i t . 

Given our ignorance on the form of f(a) i t seems reasonable to 

require that f(a) have structure which accords with our physical 

understanding about the nature of the processes involved. We have, 

generally, 

f(a) = g ( a
3 , a 4 \ a l t a 2 ) h ' C a , ^ ) , 

where g (a^ ,a^ |a, ,a 2) i s the density of (A^A^) condit i o n a l on 

(A,=a, yk 2=& 2) and h(a, a2) i s the marginal density of (A,»A 2). We 

postulate here that (A^.A^) are c o n d i t i o n a l l y (on (A,,A^)) independent: 

g ( a 3 , a 4 | a 1 , a 2 ) = g ^ a ^ a , ^ ) g 2 ( a 4 l a , ,a 2 ), 

where g,(a 3|a,,a 2) and g 2 ( a 4 | a , , a 2 ) are the marginal densities of A 3 and 

A 4 r e s p e c t i v e l y , c o n d i t i o n a l upon (A,=a,,A 2=a 2). Also we postulate that 

g 1 ( a 3 | a 1 , a 2 ) = g 1 ( a 3 | a 2 ) , g 2 ( a 4 | a , , a 2 ) = g 2 ( a 4 | a , ) , 

that i s , the development of resistance to Tj i n c e l l s r e s i s t a n t to T^ 
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i s dependent only on the r e a l i z e d parameter for the a c q u i s i t i o n of 

resistance to i n se n s i t i v e c e l l s . Combining the above postulates we 

have, 

f ( a ) = g 1 ( a 3 | a 2 ) g ^ a j a ^ h ( a 1 , a 2 ) . ...(4.44) 

This implies that i f Ai and A 2 are marginally independent then 

(A^jA^) and (A^,A^) are independent. The structure for f(a) 

expressed i n (4.44) seems a reasonable s i m p l i f i c a t i o n to impose since i t 

implies that the pairs (A^,A^) and (A^,A^) are independent i f , and only 

i f , A^ and A 2 are independent. Also the d i s t r i b u t i o n of rates to double 

resistance depends only on the analogous rates to single resistance. In 

common with the single resistance case (section 3.10) we w i l l use a beta 

d i s t r i b u t i o n to model v a r i a t i o n i n the mutation rates as detai l e d below. 

Reference to (4.44) shows that there are three seperate densities 

whose form must be s p e c i f i e d . We would l i k e to model h(a^,a 2) by a 

bi v a r i a t e beta d i s t r i b t u i o n . The "natural" b i v a r i a t e beta d i s t r i b u t i o n 

(which i s obtained by conditioning on sums of gamma random variables) has 

a negative c o r r e l a t i o n for a l l parameter values. Since i n s t a b i l i t y i n 

the stem c e l l genome i s l i k e l y to lead to higher mutation rates of a l l 

kinds, mutation rates to drug resistance are more l i k e l y to be 

p o s i t i v e l y , than negatively correlated. Rather than attempt to construct 

a p o s i t i v e l y correlated b i v a r i a t e d i s t r i b u t i o n with beta marginals, we 

w i l l consider two p a r t i c u l a r forms for h(a^,a 2) as follows: 

( i ) independence: h(a^,a 2) = h ^ ( a ^ ) h 2 ( a 2 ) where h ^ ( a ^ ) , h 2 ( a 2 ) are 

both univariate b e t a - d i s t r i b u t i o n s . ...(4.45) 

( i i ) dependence: ^2=A^ with p r o b a b i l i t y 1 where A^ has a beta 

d i s t r i b u t i o n . ...(4.46) 
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To motivate the choice of the densities g^a^\a^) and g 2 ( a 4 | a , ) , i t 

i s h e l p f u l to consider some underlying structure for t h e i r expected 

values. A convenient form i s the l i n e a r model, that i s 

E[Ai+2|A..=a..] = n ^ + k ^ a j - i i j ) 1-1,2, j-3 - i , ...(4.47) 

where \is= E [Aj] and thus E 1=^n-2* S * n c e w e m u s t have 

0 < E [ A J , _ I A.-a . ]<1, we require that i+2 1 J J 

m a x C-iziT » ~TT-> < k j < m i n ("Rir » —>• 
3 3 3 3 

We w i l l consider two d i f f e r e n t forms for the d i s t r i b u t i o n s g,(.) and 
g^(') which exhibit t h i s l i n e a r structure as follows. 

( i ) F i r s t Form 

Ai+2 = l l i + 2 + k j ( A j " t i j ) w i t h p r o b a b i l i t y 1-

This may be viewed as the l i m i t of a beta d i s t r i b u t i o n (for the 

con d i t i o n a l d i s t r i b u t i o n given Aj=a^) with parameters (u,v) where u-*», 

V -KO i n such a way that 

- Z T - = ^ A O * . ( - i = l » 2 , j=3-i. u+v ^i+2 j j j 
L e t t i n g 

PN = E I P N ( A - ) ] = / f(fL>*fL > 

then from (4.24) we have 

I i . 1 2 

P = J 1 f exp{-(l-e) N I a (u +k (a -u )) 
™ 0 0 1=1 J J J 

in [ ( l - e ) / e ( ^ 1 + 2 + k j ( a j - j i j ) ) ] } h f a ^ a ^ d a ^ , ...(4.48) 

where j=3-i. As previously mentioned, two forms for h(a,,a 2) w i l l be 

used: (4.45) and (4.46). In c a l c u l a t i n g (4.48) we w i l l be concerned 

mainly with cases where the standard deviations of A, and A 2 are small, 

since i t i s clear (by analogy with the case of single resistance, Section 

3.10) that when the standard deviation i s large, P J J w i l l vary slowly 
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with N. By examining the cases where S.D.(A^) i s small, we w i l l be 

able to examine the e f f e c t s upon c u r a b i l i t y of v a r i a b i l i t y i n the 

mutation rates which l i e close to the l e v e l of d e t e c t a b i l i t y even i n 

experimental systems. Figures 5 and 6 plot equation (4.48) as a function 

of N for d=0, p 3=u 4=u 1=n 2=10~ 3, S.D. ( A ^ S . D . (A 2)=10~ 3 and where k
1

= k
2

= 0 

and k^=k 2=l re s p e c t i v e l y . As may be seen the most marked e f f e c t of 

v a r i a b i l i t y i n the rates i s to produce a pronounced t a i l i n P J J (for 

increasing N) which i s not evident when the rates are f i x e d , 

( i i ) Second Form 

Here we w i l l assume that A ^ + 2 (i=l,2) have beta d i s t r i b u t i o n s (for the 

cond i t i o n a l d i s t r i b u t i o n s given A^= a^) where 

E[Ai+2\k.=a.] = u . ^ + k ^ a j - U j ) for 1-1,2, j-3-1. 

This does not uniquely specify the beta d i s t r i b u t i o n (which has two 

parameters) and thus we w i l l also require that the c o e f f i c i e n t s of 

v a r i a t i o n are the same, that i s , 

C.V.[A |A.] = C V . [A.], for i=l,2, j=3-i. ...(4.49) 

We assume that the conditi o n a l c o e f f i c i e n t of v a r i a t i o n i s constant since 

v a r i a t i o n i n mutation rates are l i k e l y to be proportional to th e i r 

absolute magnitude. The integr a l s to be calculated to evaluate P ^ for 

the second form are more complex than the f i r s t form and involve the 

numerical c a l c u l a t i o n of one more nested i n t e g r a l . Examples are 

presented i n Figures 7 and 8. Examination of these figures shows a 

sim i l a r t a i l for P N to that seen previously where A ^ + 2 ( i = l , 2 ) was a 

degenerate function of A^ (j=3-i). For the most pronounced case, where 

k^= k 2 = l , a considerable change i s produced from the case where the rates 

are fixed (Figure 8). 
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In summary we can conclude that even modest v a r i a t i o n s 

(S.D. (A)=|J.(A)) i n the mutation rates can lead to su b s t a n t i a l changes i n 

the function P„ for the s p e c i a l case TC. „=0, TC. .=0 ( i * i ) and TE. n«=l N i,0 i , j i,12 

( i = l , 2 ) . C l e a r l y these e f f e c t s w i l l apply to other s i t u a t i o n s where the 

re's are a r b i t r a r y , however the e f f e c t s are then more d i f f i c u l t to 

ca l c u l a t e because they depend on the f u l l treatment protocol. An example 

(with further discussion) of a case where TC, ̂ ^0 and TC. ( i , j = l , 2 ) i s v i,0 i , j ' J 

given i n Chapter 5. However i f we assume that we may use the example 

presented as a model for the (more complex) si t u a t i o n s encountered i n 

r e a l tumor systems, we may make some tentative observations. If a 

p a r t i c u l a r tumor type has a small, but s i g n i f i c a n t , cure rate when 

treated at an advanced stage (large bulk of tumor), then the predicted 

c u r a b i l i t y at lesser tumor burdens (of the same type) w i l l be a function 

of the amount of v a r i a b l i t y i n the mutation rates. For example a f i v e ­

f o l d reduction i n siz e would imply a large increase i n c u r a b l i t y and the 

size of t h i s increment w i l l decrease as the degree of v a r i a b l i t y i n the 

rates increases. This observation has implications for the therapy of 

human disease where the c u r a b l i t y of a regimen i s observed and l i t t l e i s 

known of the mutation rates. 

The e f f e c t of v a r i a t i o n i n A on the mean number of doubly r e s i s t a n t 

c e l l s i s more e a s i l y evaluated. Using (4.12.2) and approximating a l l 

exponentials (except e^fc) by the f i r s t three terms i n t h e i r expansion 

y i e l d s 
2 2 

» 1 2(t)-e 6 t{m 1 2 ( 0 ) + I - i W t l a - ! • « £ ] +' B Q t 2 / 2 I a.a }. 
i = l i = l 

Taking the expected value of this expression (with respect to A) and 
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Plgure 5 

Probability of Cure when Variation i s Present - 1. 

Number of Stem Cells-N 

P r o b a b i l i t y of cure P^ plotted as a function of stem c e l l burden at 

diagnosis where and T 2 are given simultaneously at time of diagnosis, 

\ 0 = 0 , ^ i i a r b i t r a r v » \ 1 2 = 1 ' ° f o r i = 1 » 2 , \ 2 = 7 I2 1 = 0 > b = 1 a n d d = 0 * T n e 

function i s plotted for three separate cases where k,=k2=0 i n (4.48): 

( i ) A,=A2=A.j=A4=10-3, mutation rates f i x e d . 

( i i ) A 3=A 4=10~ 3, A, and A 2 independent with B - d i s t r i b u t i o n 

with E[A ±]= S.D. [ A ^ - I O - 3 for i=l , 2 . 

( i i i ) A 3=A 4=10~ 3, A,=A2 with p r o b a b i l i t y 1, where A, has 

a B - d i s t r i b u t i o n with E ^ J - S . D . [ A ^ - 1 0 - 3 . 
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Figure 6 

Probability of Cure when Variation i s Present - 2. 

10 o 101 102 103 104 105 106 107 

Number of Stem Cells-N 

P r o b a b i l i t y of cure P^ plotted as a function of stem c e l l burden at 

diagnosis where and T 2 are given simultaneously at time of diagnosis, 

• ^ i 0=0, Tt^ i a r b i t r a r y , 1 2=1.0 for 1=1,2, T C ^ 2=%2 1 = 0 , b = 1 a n d d = 0 * 7 1 1 6 

function i s plotted for three separate cases where k^=k 2=l i n (4.48): 

( i ) A,=A =A =A,=10"3, mutation rates f i x e d . 
1 2 3 4 

( i i ) A i + 2 = A 3 - I W i t h P r o b a D i l i t y 1 f o r 1 = 1 >2> A ! a n d A
2 

independent and follow a 8 - d i s t r i b u t i o n with 

E[A ]«S.D.[A ]-10 - 3 for i-1,2. 

( i i i ) A i + 2 = A 3 - i a n d ^ ^ 2 w i t h P r o b a D i l i t y 1 f o r i = 1 » 2 » 

where Â ^ has a B d i s t r i b u t i o n with E[A 1]=S.D. [A 1]=10~ 3 
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assuming the structure expressed by (4.44), (4.47) and (4.49) we have 

t 2 t 2 2
 V a r ( V 

E t a i , 1 2 - 2 a i , 1 2 ^ = ^i+2" 2 ^ i + 2 + k j v a r ( A j ) ] [ 2 + 1 ] 

and 

E [JX
 a i a i , 1 2 ] - J 1 I » i l » 1 i+2 + k J < c o v ( A 1 ' A 2 ) ] -

From this we have 

E [ R 1 2 ( t ) ] = e 6 t{m 1 2(0) 

2 t 7 7 var(A.) 
+ t I m.(0) [u - | + k var (A 

2 2 

+ B t 12 I cov (A ,A )]} where j=3-i. 
i = l J 

For c l i n i c a l disease, where we assume m,(0) = m 2(0) = m, 2(0) = 0> 

the net e f f e c t of v a r i a t i o n i n mutation rates on E [ R , 2 ( t ) ] w i l l depend on 

k,, k 2 and cov(A, A 2 ) . Thus even when A, and A 2 have a small 

c o r r e l a t i o n , i f th e i r variance i s large the mean number of doubly 

r e s i s t a n t c e l l s may be quite d i f f e r e n t from when the rates are f i x e d . 

It i s natural to consider whether i t i s possible to generalize the 

notion of equivalent agents (where each component of A* i s fi x e d , as i n 

Section 4.3) to include the s i t u a t i o n where A* (A^O) has a 

nondegenerate d i s t r i b u t i o n . Assuming A* to have a density function 
f . . . A ( x ) say, then a natural d e f i n i t i o n of equivalent agents i s A, ,A2 ,A.j , 

fA A A A A ( ~ } = fA A A A A ( X ) ' ...(4.50) 

1 2 3 4 5 2 1 4 3 5 

where as before * 1 > ( ) - * 2 > 0 , * l f l - * 2 , 2 ' * l , 2 = 7 t 2 , l * \ , 12 = 7 I2,12 a n d 

( t j + , - t j ) are fixed for j = l , . . . , J - l . We may extend Theorem 2 to t h i s 

s i t u a t i o n . However, Theorem 1 may not be simply extended ( i n general) 

since the r a t i o n a l e behind i t s construction (minimizing t r a n s i t i o n s from 



-141-

Figure 7 

Probablity of Cure when Variation i s Present -3 . 

10° 101 102 103 104 105 106 10 
Number of Stem Cells-N 

7 

P r o b a b i l i t y of cure P^ plotted as a function of stem c e l l burden at 

diagnosis where and T 2 are given simultaneously at time of diagnosis, 

TCi 0 = 0 , ^ i i a r D i t r a r v > \ 1 2 = 1 ' ° f o r i = 1 , 2 » %i 2 = 7 t2 1 = 0 ' b = 1 a n d d = 0 " ' I h e 

function i s plotted f o r three separate cases where k^=k2=0 i n (4.48): 

( i ) 

( i i ) 

A^=A2=A.j=A^=10-3, mutation rates f i x e d . 

- - - - A^ and A^ independent and follow a beta d i s t r i b u t i o n 

where E[A ± + 2]=S.D.[A i + 2]=10" 3 for i-1,2, A^ and A 2 

independent with beta d i s t r i b u t i o n and E[A^]=S.D.[A^]=10 - 3, 

for i-1,2. (A^,A^) are independent of (A^,A 2). 

( i i i ) A^ and A^ independent and follow a beta d i s t r i b u t i o n where 

E [ A 1 + 2 ] = S . D . [ A i + 2 ] = 1 0 - 3 for i-1,2. A ]=A 2 with p r o b a b i l i t y 1 

where has a beta d i s t r i b u t i o n with E[A^]=S.D.[A^]=10 - 3. 

(A^,A^) are independent of (A^,A 2). 
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Figure 8 

Probability of Cure when Variation i s Present - 4. 

,8 

Number of Stem Cells-N 

P r o b a b i l i t y of cure P^ plotted as a function of stem c e l l burden at 

diagnosis where and T 2 are given simultaneously at time of diagnosis, 

^ i 0 = 0 > U i i a r D i t r a r y » 111 1 2 = 1 * ° f ° r i = 1 ' 2 , u i 2 = T t2 1 = 0 , b = 1 a n d d = 0 " T h e 

function i s plotted for two cases where k ^ - l ^ - l i n (4.48): 

( i ) A =A =A = A .=10 - 3, mutation rates f i x e d . 
1 2 3 4 

( i i ) - - - - - A . J and A ^ follow a 8 - d i s t r i b u t i o n where 

E I A i + 2 I A 3 - i = a 3 - i ] = a 3 - i • S ' ° ' I A i + 2 I A 3 - i = a 3 - i 1 

~a2-i ^ o r 1=1»2- A i = A 2 w * t n p r o b a b i l i t y 1 where A ^ 

has a 6 - d i s t r i b u t i o n with E [ A ] = S . D . [ A ]=10~ 3. 
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R, and R 2 to R, 2) i m p l i c i t l y assumed that = A^ with p r o b a b i l i t y 1. 

C o r o l l a r y 1 (to Theorem 2) 

For strategies of fixed length J, i f 

A l , A 2 , A 3 ' A 4 ' A 5 ~ ^2,A,,A^,A^,A^ ~ 

then the a l t e r n a t i n g strategies S(l) and S(2) minimize E[N(t)] for 

a r b i t r a r y t>t^. 

Proof: 

Without loss of generality assume that t i s measured on a scale 

where b=l. To proceed we w i l l f i r s t condition on A*=a*. F i r s t l y we 

note 

that E. .(t.) (1=1,2, j=l,«««,J) depends upon a* and thus i n general 
1»J J ~ 

E. .=E. .(t.)*E .(t.)=E . for j = l , . . . , J . S i m i l a r l y the terms g and h 
1 » j 1>3 3 ^ > 3 3 ^»3 

(used i n Theorem 2) depend on a* and are not i n general the same for R, 

s define 

g i = e x p { ( 6 - a 1 + 2 ) ( t k + 1 - t k ) } 

and R^' Thus define 

and 

h^=e [1-e J for k=l,...,J, i=l,2. 

Examining (4.42) we see that the constant K depends on a* but i s not 

dependent on the treatment strategy. The two summations i n (4.42) only 

depend on a* through E. ., g. and h.. Carrying out the appropriate ~ l , j l I 

substitutions of E. ., g. and h. for E., g and h i n (4.42) we have 
i,3 i 1 3 

E[N(t J + 1)|A*=a*] = K(a*) 
J+l J-j+l n.(J) J-j+l-n . (J) J-j+l J-j+l-n . (J ) n .(J) 

+
 .ME1»3 8 1 ^0 3 \ 3 + E 2 , j S 2 ^0 3 \ 3 * j=l 

J J-k k k-j n.(k) k-j+l-n.(k) k-j k-j+l-n(k) n.(k) 
+J$*28*> J ) E l , j h l g l V *1 3 + E 2 , j h 2 S 2 *0 V } fc—1 j—J-

...(4.51) 
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where g* i s as used i n (4.38). Conditional on A*=a* we may use (4.12.1) 

to c a l c ulate E. .. In order to do t h i s we use k=6-a -a„-a r and notice 1 , 3 1 2 5 
that m.(0)=0 (by the d e f i n i t i o n of E. . ) , which gives 

I 1 > J 
6Atr -a„,. At -(a1+a0+a,.)At a. B ( t . ,) e e 2+i - e l 

a, + a, + a - a„., 
2^5 } a Z ] 

where j = l , . . , J , A t = t 0 - t 1 and i=l,2 for a l l a* such that a+a.+a.-a. *0. 
Z J. ~ 1 Z j Z+I 

We w i l l assume that a.j+a2+a,--a2+.j,*0 with p r o b a b i l i t y 1 and thus from the 

d e f i n i t i o n of equivalence (4.50), 

E [ E 1 } j g l
J " j + 1 ] = E [ E 2 ) . g 2

J _ j + 1 ] ...(4.52.1) 

and 

E t E ^ . h l g l
k " j ] = E [ E 2 > . h 2 g 2

k _ j ] . ...(4.52.2) 

From (4.51) and (4.52.1-2) we have E [ N ( t J + 1 ) ] = E [ E [ N ( t J + 1 ) | A ] ] i s of the 

same form as (4.42) and thus the c o r o l l a r y i s proved. 

Notice that the proofs of Theorems 1 and 2 and Corollary 1 do not 

require the assumption of deterministic growth of se n s i t i v e stem c e l l s 

since (conditional on a*) the E.. have the same values under the f u l l y 

stochastic model. 

This concludes our consideration of v a r i a t i o n i n mutation rates. We 

w i l l now b r i e f l y consider extensions of the proposed model. 

4.7 Extensions 

Generalizing t h i s model to n drugs i s possible i n p r i n c i p l e , however 

the complexity of the process increases r a p i d l y as a function of n. For 

n drugs there are 2 n r e s i s t a n t states and 3n2 n ^ parameters. Thus 

e x p l i c i t s o l u t i o n of the f u l l problem w i l l l i k e l y be of l i t t l e p r a c t i c a l 
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value i n human disease for n>2 because of the large number of paramaters 

which must be s p e c i f i e d . 

Even i n the case where n=2, the large number of parameters require 

that we s i m p l i f y the problem and carry out s e n s i t i v i t y analyses to assess 

the e f f e c t s of assuming d i f f e r e n t choices of these parameters [34]. 

Under the strong assumption of equivalent agents (using the natural 

extension of i t s d e f i n i t i o n to multiple agents) the s p e c i f i c a t i o n of 3n 

parameters would be required. A f r u i t f u l approach therefore seems to 

examine multidrug therapies and determine whether i t i s possible to 

consider them as two drugs. In multidrug regimens (n>2) for c l i n i c a l 

cancer i t i s frequently possible to i d e n t i f y one of the drugs as being 

much more e f f e c t i v e than the others. We may thus attempt to model the 

regimen by considering i t to be composed of two drugs (the most e f f e c t i v e 

and the others) and try to approximate the e f f e c t of the regimen using 

the case n=2. We would argue that t h i s approach i s reasonable, 

e s p e c i a l l y i n l i g h t of the p o s s i b i l i t y that resistance to any one of the 

drugs may a r i s e i n a series of stages anyway. 

This approach i s not of great use i n the construction of protocols 

where i t i s desired to choose drugs and the dosages that are to be used. 

However, the major obstacle to using these models i n the planning of 

protocols i s a comprehensive description of the nature of t o x i c i t y 

associated with drug combinations and how this depends on the i n d i v i d u a l 

dosages used. This i s an extremely important problem which has not been 

extensively explored. Moreover, since most drugs overlap i n t o x i c i t y on 

only two or three normal tissue systems ( i . e . hemopoietic, gastro­

i n t e s t i n a l , e t c . ) , i t may be possible to summarize the toxic e f f e c t s of 
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drugs using a vector with as l i t t l e as two or three elements (one for 

each system). 

This completes the consideration of multitype drug resistance. In 

the next chapter we w i l l present some applications of the theory 

developed i n Chapter 3 and 4 to experimental and c l i n i c a l cancer. 
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5 . APPLICATIONS OF THE THEORY 

In the previous chapters we have presented theory for the 

development of resistance to one or two drugs as a re s u l t of spontaneous 

t r a n s i t i o n s from the se n s i t i v e state. As remarked i n Chapter 1, t h i s i s 

one of many mechanisms which can lead to c l i n i c a l resistance and thus the 

model presented here can only be considered to be tentative for the 

response of c l i n i c a l disease to chemotherapy. Nevertheless, i t i s 

possible to examine observations on c l i n i c a l and experimental cancer i n 

the context of th i s model and assess th e i r " f i t " . The model presented i s 

c l e a r l y not comprehensive, since i t ignores many processes, but i t i s 

intended to be of general a p p l i c a b i l i t y to a large v a r i e t y of 

experimental and c l i n i c a l tumor systems. However, even within the 

context of the process of resistance considered, further generalization 

may s t i l l be required i n order to accurately model the process i n 

c l i n i c a l and experimental cancer. For example, we have assumed that the 

rates a and v do not vary with time. If these rates vary continuously i n 

time, we may approximate the r e s u l t i n g process by p a r t i t i o n i n g the growth 

and treatment periods into a number of i n t e r v a l s and assuming that the 

rates are fixed within each i n t e r v a l . The r e s u l t i n g o v e r a l l p r o b a b i l i t y 

generating function may then be constructed using the recursive 

r e l a t i o n s h i p s presented i n Chapters 3 and 4. The i n t e r d i v i s i o n time of 

c e l l s has been assumed to be exponentially d i s t r i b u t e d with a common 

parameter. This i s not an accurate r e f l e c t i o n of r e a l i t y where very 

small d i v i s i o n s times ( i n r e l a t i o n to the mean) may not occur. Although 

we may vary the values of b, c and d throughout the growth period ( i n the 

same way as for a and v), we cannot relax the d i s t r i b u t i o n a l assumption 
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included i n this model. Furthermore we have assumed that the growth 

parameters for se n s i t i v e and r e s i s t a n t c e l l s are the same. 

Keeping these l i m i t a t i o n s i n mind, we now propose to examine the 

ap p l i c a t i o n of the model presented i n three d i f f e r e n t cases. F i r s t l y , 

using the theory presented i n Chapter 4, we w i l l present c a l c u l a t i o n s of 

the e f f e c t of various treatment strategies on c u r a b i l i t y . Secondly, we 

w i l l examine experimental data c o l l e c t e d on the treatment of a mouse 

leukemia with two chemotherapeutic agents. T h i r d l y , we w i l l examine the 

concept of neo-adjuvant chemotherapy i n the l i g h t of th i s model. 

5.1 The E f f e c t of Treatment Strategies on C u r a b i l i t y 

A computer program was written which incorporates the r e l a t i o n s h i p s 

presented i n (4.11), (4.17) and (4.18). Numerical i n t e g r a t i o n i s 

performed using Simpson's r u l e . The in t e g r a l s are generally well-behaved 

and may be evaluated to 8 figure accuracy by p a r t i t i o n i n g the i n t e r v a l of 

integ r a t i o n into no more than 100 subintervals. Input consists of 

parameters which define the behaviour of the tumor and of the drugs and 

are described i n more d e t a i l below. 

The basic treatment parameters are Tt , the p r o b a b i l i t y of a c e l l 
I > X 

i n compartment R Q surviving administration of treatment i , and T ( i ) , the 

recovery time a f t e r treatment i , i . e . the minimum time before any further 

treatment may be "safely " administered. Five treatments are considered 

as follows: i=l,2 correspond to s p e c i f i c chemotherapeutic agents T^ and 

T , i=3 corresponds to the two agents (T„) being given together TC„ = 

u i n 7 1? n» ^"=4 represents a non-chemotherapeutic treatment (T.) which 
1 > X ^ » X ^ 

a f f e c t s a l l stem c e l l s equally, that i s TE, =k (0<k<l) for a l l Q , and i=5 
'4, x represents a n u l l treatment (T ) where TE,. n=l«0 for a l l Q . It i s assumed 
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that no treatment may be administered within the (minimum) recovery time 

for the preceding treatment. T,. i s included so that other treatments may 

be applied at a r b i t r a r y times after the minimum recovery time. In the 

examples which follow treatments w i l l be applied at the minimum recovery 

times. The following parameters are also input: 

N = number of stem c e l l s at diagnosis, 

DT = the doubling time of the tumor, 

e = d/b the r e l a t i v e rate of c e l l death, 

c* = c/b the r e l a t i v e rate of c e l l renewal, 

an » n = t r a n s i t i ° n parameters for resistance to the drug T. 
q i ' q j V q j 1 

(1-1,2) where Ô .Q e {0, 1, 2, 12}, 

k n n = Y A / b = r e l a t i v e rates for spontaneous development of 
Q i ' q j V ^ j 

resistance Q ± e {0, 1, 2, 12}, 

J = number of times treatments are administered. 

There i s no i m p l i c i t time scale used but each parameter r e f l e c t i n g 

times (DT and T ( i ) ) must be entered using the same scale i . e . days, hours 

etc. In a l l cases the tumor i s assumed to have grown from a single stem 

c e l l . 

The output from the program includes E [ R Q ( t ) ] , E f R ^ t ) ] , E [ R 2 ( t ) ] , 

E [ R 1 2 ( t ) ] evaluated at t ^ , and t ^ , for j = l , . . . , J . The following 

p r o b a b i l i t i e s are also calculated: P^t.. )=<|>( e, 1,1,1; t_. ), 

P ^ t )-<|>(l,e,l,l;t ), P 2 ( t )-4>(l,l,e,l;t ) , P ^ C t j J - ^ l . l . l . e j t j ) and 

P(tj)=<|>( e, e, e, e;t..), (the p r o b a b i l i t y of cure a f t e r the j - t h treatment), 

fo r j = l , . . . , J . The f i r s t four of these quantities correspond to the 
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marginal p r o b a b i l i t i e s that c e l l s i n R Q , R ^ , R ^ and R ^ respectively at 

time t ^ w i l l go spontaneously extinct at some l a t e r time. ^Oj) ^ s t n e 

p r o b a b i l i t y of cure. Notice that P Q ^ , . ) i s the p r o b a b i l i t y that the 

s e n s i t i v e c e l l s at time t j w i l l go spontaneously extinct ( a l l c e l l s 

derived from these c e l l s go extinct) and not the p r o b a b i l i t y that there 

w i l l be no s e n s i t i v e stem c e l l s at time t=°°. This observation also 

applies (for the appropriate states) to P . ( t . ) , P»(t .) and P 1„(t.). 
•*• 3 ^3 i^ 3 

We w i l l present an example with parameters chosen to be i n the range 

of those seen i n passaged experimental tumors. The parameter values are 

indicated i n Table V. The parameters e and c* were chosen to be zero, 

implying that a l l c e l l s are stem c e l l s which seems to be approximately 

true for a number of experimental tumors. The doubling times (DT) and 

intertreatment times ( T ( i ) ) were chosen to be 5 and 3 days re s p e c t i v e l y . 

This doubling time represents the upper l i m i t for most experimental 

tumors and the lower l i m i t of those measured for human disease. However, 

as noted previously, the unit of measurement i s i r r e l e v a n t to these 
computations and i t i s only the r a t i o (5/3) of the quantities which i s 

important. As noted i n Chapter 4, when a +v /b i s f i x e d , the 
1, j 1. 3 

various values of a and v have l i t t l e r e a l e f f e c t on the 
^ i , q j ^i,3 

p r o b a b i l i t y of cure. Thus for s i m p l i c i t y we have chosen v =0 and 

Y* „ = 6 „ =0. For s i m p l i c i t y we have assumed that a.. =v 1 9=0, that i s 

d i r e c t t r a n s i t i o n s from s e n s i t i v i t y to double resistance do not occur. 

The therapeutic parameters have been chosen so that r e s i s t a n t c e l l s are 

absolutely r e s i s t a n t to the p a r t i c u l a r drug. The number of times therapy 

i s administered, J, has been set to 8. Parameters were chosen so that 
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the drugs s a t i s f y the d e f i n i t i o n of equivalence given i n Section 4.4. In 

a l l simulations which follow the intertreatment i n t e r v a l has been assumed 

to be the minimum permitted by the recovery time of the previous 

treatment ( i n th i s case 3 days). 

Tables VI, VII and VIII show the ef f e c t of three treatment 

strategies on c u r a b i l i t y : S(l)=(l,1,1,1,1,1,1,1), S(2)=(l,l,l,l,2,2,2,2) 

and S ( 3 ) = ( l , 2 , l , 2 , l , 2 , l , 2 ) . That i s , S ( l ) , represents eight cycles of T 

given at 3 day i n t e r v a l s with the f i r s t cycle being given when the tumor 

consists of 10 7 stem c e l l s e t c Since the treatments are equivalent, 

each strategy has i t s mirror image which has the same p r o b a b i l i t y of 

cure. Figures 9, 10 and 11 plot the expected number of c e l l s for the 

treatment strategies S ( l ) , S(2) and S(3). 

Tables VI, VII, and VIII show, for this example, that among the 

three strategies of length J=8 which give a single drug per treatment, 

the p r o b a b i l i t y of cure i s maximized by the al t e r n a t i n g strategy S(3). 

As can be seen by r e f e r r i n g to Tables VI-VIII, a l l three strategies 

control (eliminate with high p r o b a b i l i t y ) the s e n s i t i v e c e l l s but the 

strategies have d i f f e r e n t i a l e f f e c t i n c o n t r o l l i n g the various r e s i s t a n t 

compartments. S(2) and S(3) successfully control both the sin g l y 

r e s i s t a n t compartments but have a d i f f e r e n t i a l e f f e c t on c e l l s i n R-j.2* 

Furthermore since neither T^ or T^ have any e f f e c t on c e l l s i n R.^ 

further treatment (a f t e r t 0 with either T or T ) cannot increase the 
o I L 

p r o b a b i l i t y of cure to a value which exceeds P „(t ). The question 
12 O 

arises as to whether S(3) i s best, i n the sense that i t maximizes P(tg) 

over a l l strategies with J=8 which use either T± or T 2 at the minimum 

permissable treatment times? Since the treatments are equivalent there 
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are at most 27=128 strategies with d i s t i n c t p r o b a b i l i t i e s of cure (since 

each strategy has a mirror image). We w i l l now consider general 

arguments to reduce the set of strategies which must be considered, i n 

order to determine the optimal one. 

or We have assumed, i n this example, that TC^ \2=n

2 \2~^~ a n d W e n a v e ^ 

any strategy that P(t)<P^ 2(t') where t>t'. Examining Table VIII we see 

that the a l t e r n a t i n g strategies of length J=8 have P,„(t o)=0.569. The 
12 o 

strategies considered i n Table VI and Table VII are not optimal since 

a f t e r 3 consecutive applications of the same drug, 

P 1 2(t 3)=0.487<0.568. When TS^ 1 2
= T ! :2 12 t h e v a l u e o f P i 2 ^ t j ^ d o e s n o t 

depend on which drug i s given at time t ^ (either T^ or T^) but only 

depends on preceding applications of therapy. Thus a strategy whose 

f i r s t three cycles are (1,1,2) have the same value for P -^C^) a s that of 

a strategy commencing with (1,1,1). Thus P 1 2(t 3)=0.487 i f (or T 2) i s 

given as the f i r s t two cycles of the strategy. From t h i s we conclude 

that the optimum strategy must begin with the a l t e r n a t i o n of T^ and T 2. 

Examination of Tables VI and VII also show that strategies which include 

four cycles of T^ and four cycles of T 2 are s u f f i c i e n t to eliminate the 

si n g l y r e s i s t a n t stem c e l l s with p r o b a b i l i t y >0.999. If there are only 

three cycles of T 2 (T x) then the l i k e l i h o o d that the ^ (R 2) c e l l s w i l l 

be eliminated i s s i g n i f i c a n t l y reduced; for example compare P^(t^) and 

P 1 ( t g ) i n Tables VII or VIII. Thus we need only consider ( 3)=20 

strategies to determine the best of length J=8, i . e . those that begin 

with (1,2) and have four cycles of T^. Simulations of these 20 

strategies indicates that there i s l i t t l e to choose between st r a t e g i e s 

which commence with either (1,2,1,2) or (1,2,2,1) and have four cycles of 
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T, i n the t o t a l treatment strategy. Although these considerations only 

apply to the model with the p a r t i c u l a r values of the parameters 

s p e c i f i e d , arguments s i m i l a r to these may usually be applied to reduce 

the number of strategies which must be considered to determine the 

optimal one. 

Figures 9-11 present plots of the mean number of c e l l s (for each of 

the r e s i s t a n t subcompartments and o v e r a l l ) for the tumor model with 

parameters given i n Table V for the three strategies S ( l ) , S(2) and S(3) 

r e s p e c t i v e l y . Judged by E [ N ( t Q ) ] , S ( l ) i s c l e a r l y i n f e r i o r to S(2) and 
o 

S(3), however there i s l i t t l e difference between the l a t t e r two 

(E[N(t Q)]=131.6 and 122.5 r e s p e c t i v e l y ) . The r e l a t i v e l y small diff e r e n c e o 
i n E [ N ( t Q ) l for the two strategies can be contrasted with the large o 

d i f f e r e n c e i n predicted c u r a b i l i t y between S(2) and S(3) (Tables VII 

and VIII). This indicates that the e f f e c t s of strategies on c u r a b i l i t y 

may not be r e f l e c t e d by s i m i l a r proportionate changes i n E [ N ( t Q ) ] and 
o 

this has c l i n i c a l implications as follows. 

In the analysis of c l i n i c a l and experimental chemotherapy two 

measures of e f f i c a c y are i n common use: cure rate ( p r o b a b i l i t y of cure) 

and s u r v i v a l time or time to relapse. Time to relapse (or s u r v i v a l time) 

depends on the growth rate of the neoplasm and the post-treatment tumor 

burden. If the e f f e c t s of treatment are s i m i l a r on the two p r o l i f e r a t i v e 

compartments of the tumor ( i . e . stem c e l l s and t r a n s i t i o n a l c e l l s ) and 

produce a large net reduction i n the number of tumor c e l l s , then the 

tumor w i l l regrow at the rate determined i n Chapter 2 and the time taken 

for i t to reach some predetermined size w i l l depend on the post-treatment 

stem c e l l burden. Thus i n an experiment where recurrence times are 
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measured In g e n e t i c a l l y i d e n t i c a l animals, the times w i l l be a function 

of the post-treatment stem c e l l burden. It i s common to view these two 

measures of treatment e f f i c a c y (cure rate and relapse time) as measuring 

the same underlying e f f i c a c y of the treatment protocol. Indeed we have 

argued i n Chapter 4 that t h i s i s l i k e l y to be so, that i s , P(S(v)) i s 

maximized and E[N . At)] i s minimized by the same strategy. However, £>( v) 

even when these two c r i t e r i a do induce a s i m i l a r ordering on the set of 

strategies, this does not imply that differences between strategies w i l l 

be q u a n t i t a t i v e l y s i m i l a r using either measure of e f f i c a c y . In the 

previous example we saw that the P ( t Q ) for S(3) was 0.569 and for S(2) 
o 

was 0.275 whereas the corresponding values of E [ N ( t 0 ) ] were 122.5 and 
o 

131.6 r e s p e c t i v e l y . In an experiment c a r r i e d out on a tumor where t h i s 

model was appropriate and the parameter values were as given i n Table V 

the large difference i n cure p r o b a b i l i t i e s would be r e a d i l y apparent. 

However, consider the same example except that <x^=5xl0-1+ 

(=ct2=a^ i2=a2 12^* ^ n t b :*" s c a s e t n e p r o b a b i l i t y of cure i s n e g l i g i b l e 

for a l l strategies which use T^ and/or T^ only, since for TC^ \2=T*2 12 =* 

we have for t>t^ P ( t ) < P 1 2 ( t 1 ) < 1 0 - 1 0 . If we apply S(2) and S(3) we f i n d 

that E [ N ( t g ) ] = 13,064 and 12,158 respectively. The e f f e c t i v e extension 

of the time to relapse i s 
hi [13,064/12,158] v _ ... „, n v . , 1 — ^ r 2 j — 1 L * Doubling time = 0.10 x 5 days 

=0.5 day 

When th i s i s compared against an estimated 86 days from time of 

f i r s t treatment to relapse (at 10 8 c e l l s ) we see that improvements of the 

order of 0.5 day w i l l be very d i f f i c u l t to detect. Thus even i n cases 

where Theorem 2 applies ( i . e . treatments are equivalent), increases i n 
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disease-free s u r v i v a l may be d i f f i c u l t to d i s t i n g u i s h experimentally. 

We may continue t h i s example and consider the s u r v i v a l time under 

various s t r a t e g i e s . I f , for s i m p l i c i t y , we assume that death occurs at 

1 0 1 0 c e l l s , then we s t i l l have a mean difference of 0.5 day (between S(2) 

and S(3)) and a mean s u r v i v a l time of approximately 119 days. We may 

contrast t h i s with the protocol where T\ i s given u n t i l relapse (at 10 8 

c e l l s ) when the treatment i s switched to T 2 which i s continued u n t i l 

death (at 1 0 1 0 c e l l s ) . In this case an animal has an approximate mean 

s u r v i v a l time (from f i r s t treatment) of 120 days. Thus the approximate 

difference i n mean s u r v i v a l time between the l a s t strategy and S(3) (the 

best strategy) i s 1 day. Given possible uncontrolled var i a t i o n s i n 

experimental conditions, var i a t i o n s i n the number of re s i s t a n t c e l l s and 

the i n t r i n s i c p r e c i s i o n of measurement, i t w i l l be extremely d i f f i c u l t to 

detect differences of this order i n r e a l systems. From consideration of 

th i s example we see that the value of strategies as r e f l e c t e d by t h e i r 

a b i l i t y to produce cures ( i n cases where this i s possible) may not be 

equally r e f l e c t e d i n mean disease-free i n t e r v a l s or s u r v i v a l times when 

cure i s u n l i k e l y . 

The strategies considered up to th i s point have a l l assumed that 

T^ and T 2 may not be given simultaneously. We w i l l now consider 

cases where they can be given together. In each of the following two 

cases the parameters values are as given i n Table V except as indicated. 

Table IX and Figure 12 contain d e t a i l s of the e f f e c t of the strategy 

S(4)=(3,3,3,3,3,3,3,3) where Tt =Tt u and T(3)=T(1)=T(2). Table X 

and Figure 13 contain the same information for the strategy S(4) where 

T t 3 Q= 10 - 2, T t 3 , = 1 ^ 2=10 - 1, T t 3 1 2=1 and T(3)=T(1)=T(2). The parameter 
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values chosen for treatment 3 i n the c a l c u l a t i o n s presented i n Table IX 

correspond to a case where T^ and T 2 have no overlapping t o x i c i t y and 

thus may be given i n f u l l dose together. The parameter values chosen for 

treatment 3 i n Table X correspond to a case where t o x i c i t y overlaps on 

one or more normal tissues and i n order to give them together the drug 

dose of each i s halved. 

As expected, when there i s no overlapping t o x i c i t y , S(4) has the 

highest p r o b a b i l i t y of cure (of a l l strategies considered); t h i s 

Indicates that where possible active drugs should be combined (Table 

IX). Comparison of Tables VIII and X indicates that when the i n d i v i d u a l 

drug dosages are reduced ( i n order to combine them) the r e s u l t i n g 

strategy can be better than c y c l i c administration of the two agents 

s i n g l y . Notice that i n t h i s case we have assumed that the n e t - k i l l per 

cycle of the combination i s the same to s e n s i t i v e c e l l s as that of e i t h e r 

of the drugs given alone i n f u l l dose. If t h i s were not true then such 

regimens might not be superior to one or more strategies involving c y c l i c 

administration of each drug at f u l l dose. 

As discussed i n Chapter 4 minimizing E[N(t)] i s not neces s a r i l y 

equivalent to maximizing the p r o b a b i l i t y of cure, P ( t ) . We w i l l now 

present an example where P(t) i s not maximised by a l t e r n a t i o n of two 

equivalent drugs (where of couse E[N(t)] i s minimized). Table XI 

contains the parameter values and Table XII the r e s u l t s of three 

strategies S'(l)-(1,2,1,2), S'(2)=(l,2,2,l) and S'(3)=(l,2,2,2) for t h i s 

example. It can be seen that the a l t e r n a t i n g strategy i s c l e a r l y 

i n f e r i o r and that S'(3) i s a superior strategy. C a l c u l a t i o n shows, as 

expected, that the a l t e r n a t i n g strategy S'(l) minimizes the expected 
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tumor size at time t ^ . Calcu l a t i o n also shows that S'(3) i s the best of 

the sixteen strategies of length J=4, i . e . that which maximizes P(t4). 

Examination of Table XII shows that extending the length of the 

strategies may improve the c u r a b i l i t y of the regimens since V^)~>V(t^) 

f o r each of the three s t r a t e g i e s . However, notice that P j ^ C t ^ ) ^ o r 

i s much less than P(t^) for either S'(2) or S'(3), and thus a l l 

a l t e r n a t i n g regimens (of length J>4) w i l l have a lower p r o b a b i l i t y of 

cure P(t) than at least two other strategies (those that begin with 

either S'(2) or S'(3)). Examination of Table XII shows that the reason 

the a l t e r n a t i n g strategy does not maximise P(t4) i s because the R 2 

c e l l s are eliminated, with p r o b a b i l i t y 0.912, by the f i r s t course of 

T]_. Because of the fast regrowth of the c e l l s several courses of T 2 

must be given to eliminate c e l l s i n R]_. This combination of 

circumstances seems u n l i k e l y to occur i n the treatment of human cancer, 

but could a r i s e i n the therapy of experimental neoplasms. 

In Chapter 4 we examined the e f f e c t s of v a r i a b i l i t y i n mutation 

rates on the p r o b a b i l i t y of cure, for the s p e c i a l case where both drugs 

were given together and eliminated a l l but the R,2 c e l l s . We w i l l now 

examine the e f f e c t s on more general treatment s t r a t e g i e s . In t h i s 

example we w i l l use the parameter values as given i n Table V except that 

the mutation rates follow a d i s t r i b u t i o n . We w i l l assume that A (A,_=0) 

s a t i s f i e s A,=A2=A3=A4 with p r o b a b i l i t y 1 (see Section 4.6) where A^ 

follows a beta d i s t r i b u t i o n with E(A,)=S.D.(A,). This corresponds to a 

p a r t i c u l a r example of the dependent case (4.46) for g i ( . ) and g 2(-) 

of the second form (4.49). This single s p e c i a l i z e d example i s considered 

because of the complexity of the ca l c u l a t i o n s involved. Even i n th i s 
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s i t u a t i o n where A i s e s s e n t i a l l y a scalar random va r i a b l e , i t i s 

necessary to approximate i t s true d i s t r i b u t i o n . In order to provide 

comparability with the previous example (Table V) we w i l l assume that 

v i=v i 1 2=0 for i=l,2, v 1 2=0 and E ^ ]=5xl0~ 5 for i=l,...,4. The e f f e c t 

of v a r i a t i o n i n A i s d i f f i c u l t to compute exactly because of the 

recursive nature of the relatio nships involved (see (4.11), (4.17) and 

(4.18)) where E[<|>(s;t,a)] i s not of closed form. We w i l l therefore 

approximate the beta d i s t r i b u t i o n by a set of 10 d i s c r e t e mass points of 

weight 0.1 placed at the 5,15,...,95 percentiles of the beta 

d i s t r i b u t i o n . The points are given i n Table XIII. Tables XIV-XVI give 

the r e s u l t s of applying the strategies S ( l ) , S(2) and S(3) to the tumor 

system. A s i m i l a r c a l c u l a t i o n using 20 mass points (at the 2.5,...,97.5 

percentiles) yielded r e s u l t s which were the same (to four decimel places) 

as those presented and thus the d i s c r e t e approximation to the beta 

d i s t r i b u t i o n can be expected to be reasonable for the puposes of t h i s 

c a l c u l a t i o n . 

As i s to be expected, the p r o b a b i l i t y of no doubly r e s i s t a n t c e l l s 

at the commencement of therapy, ^^2^1^' ^ s d i f f e r e n t from the s i t u a t i o n 

when the mutation rates were f i x e d . However, the difference i s quite 

small. We f i n d that, as when mutation rates were f i x e d , the a l t e r n a t i n g 

regimen S(3) i s superior to either S ( l ) or S(2); i n fact i t maximizes 

P(tg) among the strategies which only give one treatment per treatment 

time. However, there are differences i n the e f f e c t s of the strategies on 

the two d i f f e r e n t tumor systems. Comparison of Tables VI-VIII and Tables 

XIV-XVI, shows that the p r o b a b i l i t y of e x t i n c t i o n of the s e n s i t i v e stem 

c e l l s i s v i r t u a l l y the same i n the two series of computations. 
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S i m i l a r l y , differences i n the p r o b a b i l i t y of e x t i n c t i o n of the s i n g l y 

r e s i s t a n t c e l l s are small and of the type expected (see Figure 3). That 

i s , when the mutation rates are va r i a b l e , P i ( t ) and P2(t) increase 

e a r l i e r i n the treatment regimen but require approximately the same 

number of treatments to approach unity. Comparison of Tables VII and XV 

shows that changes i n P-^O occur more slowly during the treatment 

period when v a r i a t i o n i s present. This behaviour i s to be expected as 

may be seen from the following observation. From (4.24) we may 

approximate the p r o b a b i l i t y of no doubly r e s i s t a n t c e l l s p r i o r to 

treatment, P ^ ^ i ^ ' * n t n e r o r m e x P ( -a*N). Thus the e f f e c t on P ^ ^ l ^ 

of any v a r i a t i o n i n a* w i l l have the same e f f e c t as an analogous 

v a r i a t i o n i n N when a* i s f i x e d . Thus we may consider P^Ct^) a s t n e 

weighted sum of points of the function P N given i n Figure 4. As time 

increases (and the tumor grows) each point w i l l experience a d i f f e r e n t 

rate of change of P ^ . In the example considered, the fixed mutation 

rate case experiences a high ( i n absolute value) rate of change of P N and 

P ^ w i l l decline comparatively quickly. For the variable mutation rate 

P-^Ct,) roav be considered to decline as a mixture of variable rates of 

change i n P J J (some large and some small i n absolute value), and thus 

P 1 2 ^ t l ^ w m decline more slowly than when the mutation rates are f i x e d . 

This argument also indicates that the p r o b a b i l i t y of cure w i l l not always 

change more slowly (during the treatment period) when v a r i a b i l i t y i n 

mutation rates i s present than when i t i s not. When the mutation rates 

are fixed and the rate of change i n P N i s small then P , ^ (t,) may decline 

at a faster rate when mutation rates have considerable v a r i a b i l i t y . 

This behaviour may be of some p r a c t i c a l i n t e r e s t . Consider a class 
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TABLE V 

Parameter Values for Simulations Presented i n 
Tables VI-X. 

Parameter Value 

N 10 7 

DT 5 days 

£ 0 

c* 0 

a (=a =a =a ) 5 x IO" 5 

1 2 1,12 2,12 

v ( = v =v =v ) 0 
1 2 1,12 2,12 

a 0 
12 

v 0 
12 

Tt ( = TC =TC =TC ) 10~ 2 

1.0 2,0 1,2 2,1 

Tt ( = TC =Tt =TC ) 1 
1.1 2,2 1,12 2,12 

T(1)(=T(2)) 3 days 

J 8 
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TABLE VI 

P r o b a b i l i t y of E x t i n c t i o n of C e l l s at Times of Treatment 
f o r Parameter Values given i n Table V f o r 

Strategy S(l)=(l,1,1,1,1,1,1,1). 

Time t Treatment ?n(t) p
x ( t ) P12^ t^ ? (- z^ 

0 0 0 0.641 0 

t x T 1 0 0 0 0.641 0 

t 2 T1 0 0 0.500 0.573 0 

t 3 T x 0 0 0.984 0.487 0 

t 4 T x 0.707 0 1.000 0.386 0 

t 5 T x 0.995 0 1.000 0.277 0 

t 6 T x 1.000 0 1.000 0.172 0 

t 7 T x 1.000 0 1.000 0.087 0 

t 0 T n 1.000 0 1.000 0.033 0 
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TABLE VII 

Probability of Extinction of Cells at Times of Treatment 
for Parameter Values given In Table V for 

Strategy S(2)«(l,l,1,1,2,2,2,2). 

Time t Treatment ^o^) P]_(t) p 2 ( t ) P12^ t^ P^ t) 

t ^ 0 0 0 0.641 0 

tx Tj_ 0 0 0 0.641 0 

t 2 Tj_ 0 0 0.500 0.573 0 

t 3 T x 0 0 0.984 0.487 0 

t 4 Tj_ 0.707 0 1.000 0.386 0 

t 5 T 2 0.995 0 1.000 0.277 0 

t 6 T 2 1.000 0.059 1.000 0.275 0.022 

t-j T 2 1.000 0.934 1.000 0.275 0.263 

t g T 2 1.000 0.999 1.000 0.275 0.275 
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TABLE VIII 

P r o b a b i l i t y of E x t i n c t i o n of C e l l s at Times of Treatment 
f o r Parameter Values given i n Table V for 

Strategy S ( 3 ) = ( l , 2 , l , 2 , l , 2 , l , 2 ) . 

Time t Treatment P Q ( t ) P L ( t ) P 2 ( t ) 

0 0 0 0.641 0 

t L TX 0 0 0 0.641 0 

t 2 T 2 0 0 0 0.573 0 

t 3 TL 0 0 0.369 0.571 0 

t 4 T 2 0.707 0.254 0.368 0.569 0.044 

t 5 T x 0.995 0.254 0.968 0.569 0.155 

t 6 T 2 1.000 0.955 0.968 0.569 0.537 

t 7 TL 1.000 0.955 0.999 0.569 0.550 

t Q To 1.000 0.999 0.999 0.569 0.568 
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TABLE IX 

P r o b a b i l i t y of E x t i n c t i o n of C e l l s at Times of Treatment 
f o r Parameter Values given i n Table V f o r 

Strategy S(4)=(3,3,3,3,3,3,3,3) and 
TC3,0=10~ » w 3 , l = 1 l 3 , 2 = 1 0 ~ 2 » *3,12 - 1' 

Time t Treatment ^o^) P12^ t^ P^ f c^ 

t ^ 0 0 0 0.641 0 

t , T 3 0 0 0 0.641 0 

t 2 T 3 0.859 0.515 0.515 0.640 0.163 

t 3 T 3 1.000 0.985 0.985 0.640 0.627 

t 4 T 3 1.000 1.000 1.000 0.640 0.639 

t 5 T 3 1.000 1.000 1.000 0.640 0.640 

t 6 T 3 1.000 1.000 1.000 0.640 0.640 

t 7 T 3 1.000 1.000 1.000 0.640 0.640 

t Q To 1.000 1.000 1.000 0.640 0.640 
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TABLE X 

Probability of Extinction of Cells at Times of Treatment 
for Parameter Values given in Table V for 

Strategy S(4)=(3,3,3,3,3,3,3,3) and 

Time t Treatment ^nit) P ^ t ) P 2 ( t ) p12^ t^ P ^ t ^ 

t ^ 0 0 0 0.641 0 

t x T 3 0 0 0 0.641 0 

t 2 T 3 0 0 0 0.627 0 

t 3 T 3 0 0 0 0.624 0 

t 4 T 3 0.707 0.266 0.266 0.624 0.036 

t 5 T 3 0.995 0.781 0.781 0.624 0.406 

t 6 T 3 1.000 0.956 0.956 0.624 0.584 

t 7 T 3 1.000 0.992 0.992 0.624 0.618 

t Q To 1.000 0.999 0.999 0.624 0.623 
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TABLE XI 

Parameter Values f o r Simulations 
Presented i n Table XII. 

Parameter Value 

N 10 7 

DT 0.3 days 

e 0 

c* 0 

a l ( = a 2 = a l , 1 2 = a 2 , 1 2 > 1 0 
-5 

v l ( = v 2 = = v l , 1 2 = v 2 , 1 2 ) 

a12 

v 1 2 

"1,0 <=1t2,0> 

*1,2 < = 1 t2,l> 

r t l , l ( = 1 l2,2 =' r vl,12 = = 7 l2,12 ) 

T(1)(=T(2)) 3 days 

0 

0 

0 

1 0 - 5 

lO" 1* 

1 
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TABLE XII 

Pr o b a b i l i t y of E x t i n c t i o n of C e l l s at Times of Treatment 
for Parameter Values given i n Table XI for the Strategies 

s ' ( i ) = -(1,2,1,2), S'(2) =(1,2,2,1) and S'(3) =(1,2,2,2). 

Strategy Time t Treatment P l ( t ) V ^ P 1 2 ( t ) P(t) 

fcl 0 0 0 0.979 0.0 

S'(l) H T l 0 0 0.912 0.979 0.0 

T2 0.363 2.7x10" 1 1 0.329 0.009 7.5x10" 13 

fc3 T l 0.990 2.7x10" 1 1 0.712 0.005 4.3x10" 12 

H T2 1.000 2.7x10" 1 1 0.712 1.9x10" 1 1 4.3x10" 12 

S'(2) T l 0 0 0.912 0.979 0.0 

H T2 0.363 2.7x10- 1 1 0.329 0.009 7.5x10" 13 

C 3 T2 0.990 0.012 0.326 0.005 1.0x10" •k 

H T l 1.000 0.012 0.326 0.002 1.1x10" •4 

S'(3) ti T l 0 0 0.912 0.979 0.0 

H T2 0.363 2.7x10" 1 1 0.329 0.009 7.5x10" •13 

fc3 T2 0.990 0.012 0.326 0.005 1.0x10" •4 

H T2 1.000 0.512 0.326 0.002 0.001 
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Flgure 9 

Plot of expected number of stem c e l l s In each of the r e s i s t a n t 

compartments for the tumor with parameters given i n Table V treated with 

S(1)={1,1,1,1,1,1,1,1}. 
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Flgure 10 

Expected Numbers of Cells for Treatment Strategy S(2). 

Plot of expected number of stem cel ls in each of the resistant 

compartments for the tumor with parameters given in Table V treated with 

S(2)={l,l,l,l,2,2,2,2}. 
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Figure 11 

Expected Number of Cells for Treatment Strategy S(3). 
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Flgure 12 

Expected Number of Cells for Treatment Strategy S(4) - 1. 
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Flgure 13 

Expected Number of Cel ls for Treatment Strategy S(4) - 2. 
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TABLE XIII 

Mass Points for the Approximation to the Beta Distribution with 
E[k±]=5xl0-5, S.D. [ A J - S x l O - 5 . 

The parameters of the beta distribution B(a;u,v) are 
u=l-10 _ l t, v K l - l O - ^ X Z x l O - 4 -1). 

Point Percentile Mass 

2 . 6 x l 0 - 6 0.05 0.10 

8.1x l 0 - 6 0.15 0.10 

1.4xl0 - 5 0.25 0.10 

2.2xl0- 5 0.35 0.10 

3.0xl0- 5 0.45 0.10 

4.0x10-5 0 > 5 5 o a o 

5.3x10-5 0 > 6 5 0 > 1 0 

6.9xl0- 5 0.75 0.10 

9.5x10-5 0.85 0.10 

1.5X10-4 0.95 0.10 
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TABLE XIV 

Probability of Extinction of Cells at Times of Treatment 
for Parameter Values given in Table V for the Strategy 

S ( l ) = ( l , l , l , l , l , l , l , l ) where the Mutation Rates are Equal with 
Probability 1 and have the Distribution Given i n Table XIII. 

Time t Treatment P Q ( t ) P-^t) P 2 ( t ) P ( t ) 

0 0 0 0.676 0 

t , T, 0 0 0.032 0.676 0 

t 2 Tj_ 0 0 0.591 0.639 0 

t 3 T, 0 0 0.985 0.597 0 

t 4 T x 0.707 0 1.000 0.551 0 

t 5 T, 0.995 0 1.0 0.501 0 

t, I, 1.000 0 1.0 0.449 0 6 1 

t y T, 1.000 0. 1.0 0.398 0 

t Q T, 1.000 0 1.0 0.349 0 
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TABLE XV 

Probability of Extinction of Cells at Times of Treatment 
for Parameter Values given in Table V for the Strategy 

S(2)=(l,l,l,l,2,2,2,2) where the Mutation Rates are Equal with 
Probability 1 and have the Distribution Given in Table XIII. 

Time t Treatment ^o^) ^ ( t ) P 2^ t^ P12^ t^ ? ^ 

0 0 0 0.676 0 

t , T, 0 0 0.032 0.676 0 

t 2 T, 0 0 0.591 0.639 0 

t 3 T, 0 0 0.985 0.597 0 

t 4 T, 0.707 0 1.000 0.551 0 

t 5 T 2 0.995 0.002 1.000 0.501 0.002 

t 6 T 2 1.000 0.259 1.000 0.500 0.232 

t ? T 2 1.000 0.938 1.000 0.500 0.491 

t Q T 0 1.000 0.999 1.000 0.500 0.500 
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TABLE XVI 

P r o b a b i l i t y of E x t i n c t i o n of C e l l s at Times of Treatment 
for Parameter Values given i n Table V for the Strategy 

S(3)=(l,2,l,2,l,2,l,2) where the Mutation Rates are Equal with 
P r o b a b i l i t y 1 and have the D i s t r i b u t i o n Given i n Table XIII. 

Time t Treatment V ^ P i ( t ) p

2 ( t ) P12^ t) P ^ t ) 

f[ 0 0 0 0.676 0 

tx T L . 0 0 0.032 0.676 0 

t 2 T 2 0 0.019 0.028 0.639 0 

t 3 Tx 0 0.019 0.500 0.638 0 

t 4 T 2 0.707 0.421 0.500 0.638 0.197 

t 5 T L 0.995 0.421 0.969 0.638 0.366 

t 6 T 2 1.000 0.957 0.969 0.638 0.619 

t 7 T x 1.000 0.957 0.999 0.638 0.626 

t Q T 0 1.000 0.999 0.999 0.638 0.637 
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of tumors treated with two agents, T, and T^, where the doubly r e s i s t a n t 

c e l l s are absolutely r e s i s t a n t and mutation rates are f i x e d . If i s 

the p r o b a b i l i t y that an i n d i v i d u a l tumor w i l l contain no doubly r e s i s t a n t 

c e l l s at the time of f i r s t treatment, then the effectiveness (as judged 

by the p r o b a b i l i t y of cure) of various treatment strategies r e s u l t from 

t h e i r a b i l i t y (or lack of i t ) to decrease the l i k e l i h o o d that double 

resistance w i l l develop i n the remaining proportion (1-qR) of tumors. 

Consider the same s i t u a t i o n , where again a proportion qjj of tumors 

contain no doubly r e s i s t a n t c e l l s , where now the mutation rates are 

nondegenerate random v a r i a b l e s . In t h i s case the tumors with e x i s t i n g 

doubly r e s i s t a n t c e l l s at diagnosis tend to contain a greater proportion 

of tumors with higher mutation rates and vice-versa. As before the 

e f f e c t of the treatment s t r a t e g i e s , which use only and T2, i s on 

those tumors where doubly r e s i s t a n t c e l l s have not emerged p r i o r to the 

commencement of treatment. Since these tumours w i l l tend to have lower 

mutation rates the rate of development of double resistance w i l l be 

"slower". This w i l l r e s u l t i n the differences i n c u r a b i l i t y between 

various strategies being diminished (compared to the s i t u a t i o n where 

rates are f i x e d ) . For example, i n the most extreme case, the mutation 

rates among the tumors without e x i s t i n g r e s i s t a n t c e l l s at the time of 

f i r s t treatment may be a l l i d e n t i c a l l y zero. In t h i s extreme case a l l 

strategies of fixed length which give T^ the same number of times w i l l 

be of equal ef f e c t i v e n e s s . Thus as the v a r i a b i l i t y i n mutation rates 

increases the differences i n the p r o b a b i l i t y of cure for strategies of 

the same length w i l l decline, possibly to the point where they become 

experimentally i n d i s t i n g u i s a b l e . Similar arguements apply to the e f f e c t s 
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of variation in the size of the tumor, N, at f i r s t treatment, which w i l l 

cause a similar reduction in the relative benefits of various strategies 

when compared to the case where N is fixed. In summary, random variation 

in parameters may act to decrease the differences in effectiveness among 

strategies and thus i t is necessary to consider such variation in the 

modelling of real systems. 

This completes our examination of response when two drugs are 

available. We w i l l now examine some experimental data to determine the 

appropriateness of the model presented here. 

5.2 Fitting the Model to Experimental Data 

We w i l l examine experimental data collected by H. Skipper, F. 

Schabel and co-workers on the treatment of L 1 2 1 0 (mouse) leukemia by two 

drugs: Cyclophosphamide (Cyc) and Arabinosylcytosine (Ara-C ) [ 2 6 ] « This 

tumor and these drugs were chosen because of the extensive data collected 

on them by a single group of investigators in the same laboratory using 

the same breed of mouse. These drugs are also representative of two of 

the major types of drugs used in cancer chemotherapy, the alkylating 

agents (Cyc) and the antimetabolites (Ara-C). The data to be used in the 

examination of response to Cyclophosphamide alone is given in Table XVII; 

a l l data is for single doses given up to the L D ^ Q which occurs at 

about 3 0 0 mg/kg. 

This information has been compiled from a number of c l i n i c a l t r i a l s 

carried out by the investigators for intraperitoneally (IP) and 

intravenously (IV) implanted L 1 2 1 0 leukemia. The data is collected from 

experiments in which a fixed number (usually in the range of 1 0 0 - 1 0 0 0 ) of 

cells are implanted in an animal. The growth of the tumor is known to be 
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regular (for innoculums i n th i s range) and the size at any l a t e r time can 

be accurately estimated given the size of the o r i g i n a l innoculum [3]. 

Autopsies of animals indicate that 45 day survivors ( a f t e r the completion 

of any treatment) are free of any measurable L1210 leukemia [3]. The 

data presented i n Table XVII gives the number of 45 day survivors. 

The L1210 leukemia has been extensively studied and many of i t s 

physical properties are well known. Observation of the tumor (using 

thymidine l a b e l l i n g ) suggests that the median i n t e r m i t o t i c time of the 

tumor i s close to the median doubling time [26]. This implies that most 

c e l l s are a c t i v e l y d i v i d i n g and consequently that the end c e l l 

compartment i s small, and that c e l l loss i s small. Limiting d i l u t i o n 

assays (where a l i q u i d suspension of c e l l s are successively d i l u t e d and 

then injected into animals) suggests that a single c e l l i s s u f f i c i e n t to 

cause animal death (from the leukemia) [26]. This implies that almost 

a l l the c e l l s are stem c e l l s . We w i l l assume that a l l c e l l s are stem 

c e l l s and thus we have a model i n which c=d=0 (and there are no 

t r a n s i t i o n a l c e l l s ) . Data on c e l l s from this tumor which have been 

selected for Cyclophosphamide resistance suggests that such resistance i s 

e f f e c t i v e l y absolute ( r e s i s t a n t c e l l s survive administration of the drug 

with p r o b a b i l i t y 1), that i s TC^(D)=1.0 for a l l achievable doses D (see 

Section 3.1). Data on the mode of therapeutic action of Cyclophosphamide 

shows that i t has general a c t i v i t y on a l l phases of the c e l l cycle (see 

Section 3.2). If the c e l l s behave independently we see that the 

pro b a b i l i t y a tumor of size S se n s i t i v e stem c e l l s w i l l be cured by 

administration of the drug at dose D i s [ I - T C Q (D ) ] , where TCQ(D) i s the 

pro b a b i l i t y that a single s e n s i t i v e c e l l w i l l survive administration of 
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the drug. 

The form of ^ ( D ) be estimated from observation on growth 

delay curves (time taken to reach some fixed size a f t e r treatments of 

varying dosages c a r r i e d out at a common i n i t i a l s i z e ) . These 

observations indicate (assuming c e l l s behave independently) that 

7i0(D)=exp{-kD}, ...(5.1) 

for a range of doses up to the L D ^ Q (Section 3.2). There i s some 

i n d i c a t i o n that (5.1) may not be accurate for doses approaching the 

L D ; L Q » where the therapeutic e f f e c t may be less than predicted by 

(5.1) [26]. This observation may be explained i n at least two ways. 

F i r s t l y , i t may be that the form of (5.1) should be modified at high 

doses because some mechanism (possibly drug transport into the c e l l ) 

becomes saturated so that the ef f e c t of increasingly large doses i s 

l i m i t e d . Secondly, we note that estimates of 7to(n) are based on 

observations of the whole tumor and not just on se n s i t i v e c e l l s . Since 

large therapeutic e f f e c t s can only be measured i n large tumors, i t i s 

possible that r e s i s t a n t c e l l s have emerged i n these large tumors and 

contribute to the regrowth of the tumor. Thus a deviation from (5.1) 

would be expected i n large tumors where estimates of TCQ(D) are based on 

the response of the t o t a l tumor. Since i t i s known that r e s i s t a n t c e l l s 

are present i n large tumors, we w i l l assume that the second explanation 

i s the true one. 

Let t^ be the time of treatment (only one cycle i s given) and N 

the number of stem c e l l s ( a l l the tumor i n th i s case). Then since c=0, 

d=0 we have 

P N= P{cure|N(t~)=N} = P{R Q(t 1)-0,R 1(t 1)-0|N(t~)=N}. 
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Since TE^(D)=1.0 we have 

P N= p{R ( )(t 1)=0,R 1(t^)=0|N(t^)=N}, 

= P{R 0( t l)=0|R 0(t^)=N} p{R 1(t^)=0|N(t~)=N}. ...(5.2) 

Assuming that the e f f e c t of therapy i n each c e l l i s independent, the 

f i r s t term of (5.2) i s given by 

P{R 0(t 1)=0|R 0(t^)=N} = [ 1 - T C Q ( D ) ] N , 

since the p r o b a b i l i t y a single stem c e l l w i l l survive therapy i s ̂ ( D ) . 

Using the approximation suggested i n Section 3.7, that i s replacing N(t^) 

by Rg(t^) i n the second term i n (5.2), we have 

P{R 1(t^)=0|N(t~)=N}=P{R 1(t^)=0|R ( )(t^)=N} = ( l - a - v / b ) N _ 1 

from (3.33). Since we cannot d i s t i n g u i s h a and v from one another 

(without further information) we set a=oc+v/b and obtain 
N-l N P ^ I l - a ] 1 " [1 -TC Q(D)] . 

From (5.1) we have 
N-l N P N = [ l - a ] W i [ l - e x p ( - k D ) ] J N . 

Equation (3.33) was derived under the assumption that the tumor grew from 

a single s e n s i t i v e stem c e l l . In the s i t u a t i o n under consideration a 

number (100-1000) of c e l l s are implanted and this formula must be viewed 

as approximate. We w i l l set 

P N = [ l - a ] N [ l - e x p ( - k D ) ] N ...(5.3) 

since N=N(t^) i s large i n a l l cases. 

The approximate l o g - l i k e l i h o o d , L(a,k), for the data i s given by 
I J 

L(a,k) = V J n. .[f, .JlnP. .+(l-f. .)An(l-P. .)] ...(5.4) 
± ^ j = x ! J i J i j i J i j 

where N^ = siz e of tumor at treatment i = l , . . . , I , 

D. = dosage of treatment applied j = l , . . . , J , 
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n.. = number of animals tested at si z e N. and dosage D., 
i j i J 

s = number of animals cured among the n ^ treated, 

f. . = s. ./n. ., the observed proportion of animals cured, i j i j i j ' 
and P. . = p r o b a b i l i t y of cure at size N, and dose D., where, 

N N 
P ± j = [1-a] [1-expf-kD^] \ 

We may then d i f f e r e n t i a t e (5.4) to obtain equations i n a and k, which the 

maximum l i k e l i h o o d estimators a* and k* must s a t i s f y : 

M = y y n r ^ j . i3_. M i 4 

5a 1 £ 1 . i , i j ^ . d - P , . ) 1 9a 
I J f . . (1-f, .) N.P, . 

/ . i j L P , . d - P . . ) J d-a) U ' i = l j=l J i j xy ' 
I J f s . (1-f, .) 

M = v v „ r _ l i _ i l l i M 
ak 

V V r J-3 I J T 0^. • 

. \ .\n±3[?r~ O^PTO1 w i J 

i = l j=l i j i j 
I J f. . (1-f..) N.D.expl-kD.}P. . 

= y y „ r _ J J . _ 13 i 1 J 3 1 J = o 
i j L P . . (1-P. . ) J [l-exp{-kD. }] 

i = l j=l J i j i j 1 J 

The data for IP innoculation i n Table XVII were f i r s t modelled using 

the previous equations with a^O which yielded a maximum l i k e l i h o o d 

estimate k*=0.0678 and a corresponding l o g - l i k e l i h o o d of L(0,k*) 

=-1262.94. The f u l l model was then f i t and the maximum l i k e l i h o o d 

estimates were a*=l.04xl0 - 7, k*=0.0780 with L(a*,k*)=-530.20. Using the 

asymptotic x 2 d i s t r i b u t i o n for twice the difference i n the l o g -
2 

l i k e l i h o o d s a test of HQ:a=0 versus H^:a*0 has x^ =1465.48 providing 

strong evidence that a*0. The predicted values of P ^ using the maximum 

l i k e l i h o o d estimates a* and k* are given i n Table XVIII. The f i t of the 

model to t h i s data i s not good, as judged by a l o g - l i k e l i h o o d goodness-

o f - f i t s t a t i s t i c of 453.26. Nevertheless the data analysis provides 

evidence for the development of drug r e s i s t a n t mutants. Coupled with 

observational evidence that drug (Cyclophosphamide) r e s i s t a n t c e l l s may 
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be selected from this tumor, we conclude that this analysis i s compatible 

with the idea that these drug r e s i s t a n t c e l l s a r i s e v i a spontaneous 

mutations although the goodness-of-fit indicates that t h i s model i s not a 

complete d e s c r i p t i o n of the data. 

Calculations based on growth delay curves indicate that the 

therapeutic e f f e c t ( p r o b a b i l i t y of se n s i t i v e c e l l s u r v i v a l ) of 

cyclophosphamide i s greater for IV implanted tumors than for IP implanted 

tumors [26]. Repeating the preceeding analysis for the data on IV 

implanted tumors i n Table XVII, we f i n d that when a=0 that the maximum 

l i k e l i h o o d estimate i s k*=0.0648 with a l o g - l i k e l i h o o d of 

L(0,k*)=-478.01. F i t t i n g the f u l l model we f i n d a*=1.06xl0 - 7, k*=0.0802 
2 

and L(a*,k*)=-175.65. A test of H0:a=0 has associated x1=604.72 

providing strong evidence that a#0. Again the f i t of the model i s not 

good as assessed by the l o g - l i k e l i h o o d goodness-of-fit of X^ 3
= 141.99. 

The predicted values of P.. for the f u l l model are presented i n Table 

XVIII. 

The analysis presented thus provides some evidence that the 

therapeutic e f f e c t on sens i t i v e c e l l s , k, i s increased i n the IV 

innoculated tumors but the estimated values of a are almost i d e n t i c a l . 

By combining the data sets we may test whether the parameters a and k 

vary with route of implantation. Let a^, k^ ( i = l for IP and i=2 for IV) 

be the parameters for the two groups. We w i l l f i r s t f i t the model 

a^,k^=k2=k. Proceeding as before we obtain the maximum l i k e l i h o o d 

estimates a*=l.06xl0 - 7, a*=l.OlxlO - 7, k*=0.0784 with associated 

l o g - l i k e l i h o o d L(a*,a*,k*,k*)=-706.82. Using the l o g - l i k e l i h o o d s 

calculated from the separate models presented previously we have an 
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2 

asymptotic test for H ^ i k ^ l ^ versus H^k^^k^. This y i e l d s \^ = 1-94 and 

thus we may conclude that there i s no evidence (from t h i s a n alysis) that 

the parameter k i s affected by the route of implantation of the tumor. 

A - p r i o r i we would postulate that the mutation rate, a, should be the same 

for both IP and IV innoculated tumors since i t has been assumed to be a 

property of the tumor c e l l s . This hypothesis may be tested by f i t t i n g 

the model a^-a^-a and k^=k2=k. F i t t i n g t h i s model we obtain the maximum 

l i k e l i h o o d estimates a*=l.048xl0 - 7 and k*=0.0784 with L(a*,a*,k*,k*)= 

-706.89. Comparing t h i s with the previous model we have a test for the 
2 

hypothesis U^ia^a^ versus H ^ i a ^ * ^ with associated x-^O'l^. On the 

basis of th i s analysis (and data), we conclude that the mutation rate 

does not vary with the route of implantation. 

The analysis presented so far has assumed that the mutation rates 

are f i x e d . In Section 3.10 we presented theory which modelled the 

mutation rates as random variables with beta d i s t r i b u t i o n s . We may use 

that development to determine whether t h i s data provides evidence for 

v a r i a b i l i t y i n the mutation rates (of a type which may be approximated by 

the beta d i s t r i b u t i o n ) and estimate the parameters of the d i s t r i b u t i o n . 

A technical problem arises because the p r o b a b i l i t y of no r e s i s t a n t c e l l s 

i s given by (3.50), which requires computing the product of 8x l 0 7 terms 

(the largest size i n the data), that i s 

P{R 1(t-)=0|R 0(t-)=N}, V (^). 
x=0 

where (u,v) are the parameters of the beta d i s t r i b u t i o n . In the 

preceeding analysis, when rates were fixed we found a=10 - 7. We would 

therefore expect that the mean of this beta d i s t r i b u t i o n , u/(u+v), would 



-185-

be small and thus that u « v . If this i s indeed the case, then we may 

approximate the product as follows: 
N-2 _,_ N-2 

M n = - I M (1 + -£-) 
L
 n ^u+v+x;j L

n v+x x=0 x=0 
N-2 _ 

« - u J (v+x) 
x=0 
r dw „ rV+N-2n - - u J — = -u An . 

W L V J 

V 

Using t h i s approximation to (3.50),then from (5.3) we have 

V P l T ^ I U [l-exp(-kD)] N. ...(5.5) 

F i t t i n g t h i s model to the IP data using the l o g - l i k e l i h o o d function 

(5.4) with 

v+N -2 -u N 
P ± j - [ ~ ~ ] [l-exp(-kD.)] \ 

yielded the maximum l i k e l i h o o d estimates u*= 0.301, v*=0.578xl0 5 and 

k*=0.0857 with associated l o g - l i k e l i h o o d L(u*,v*,k*)=-347.42. The fixed 

mutation rate model i s a s p e c i a l case (u-* 0, v-*» such that u/(u+v)+a) of 

the variable mutation rate model and we may construct a test assessing 

whether the f i t of the model i s improved by permitting v a r i a b i l i t y . This 
2 

y i e l d s x^ =365.56 which provides evidence that the f i t of the model i s 

considerably improved by permitting v a r i a b i l i t y . Despite t h i s 

improvement there s t i l l remains considerable r e s i d u a l v a r i a t i o n as judged 
2 

by the l o g - l i k e l i h o o d goodness-of-fit s t a t i s t i c of X ^ = 87.70. 

Repeating this analysis for the data on IV implanted tumors y i e l d s 

u*=0.633, v*=4.912xl0 5, k*=0.0846 with a l o g - l i k e l i h o o d L(u*,v*,k*) = 

-117.41. As i n the IP case we f i n d that permitting the rates to vary 

(with a beta d i s t r i b u t i o n ) improves the f i t of the model with an 
2 

associated =116.48. However, as before we f i n d that this model does 
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not adequately f i t the data as judged by the l o g - l i k e l i h o o d goodness-of-
2 

f i t s t a t i s t i c of x 1 2
 = 25.49. 

If we l e t i (=1 for IP and =2 for IV) index the route of 

implantation, we may analyse the combined data set and test whether 

k^=k2=k. F i t t i n g this model yi e l d s L(u*,v*,u*,v*,k*)=-464.95 and thus a 
2 

test of H Q:k^=k 2 has x-^=0'24 providing no evidence for a difference i n 

the therapeutic parameters. F i t t i n g the model u^=u2=u, v^=v2=v, k^=k2=k 

we obtain L(u*,v*,k*)=-470.24 and a test of H Q : U ^ = U 2 , V ^ = V 2 (assuming 
2 

k^=k 2) i s given by x 2
=10*58 thus providing some evidence that the 

d i s t r i b u t i o n s of a may not be the same for IV and IP implanted tumors. 

The estimated values of the cure rates for the IP and IV implanted tumors 

using the maximum l i k e l i h o o d estimators u*, v* and k* (i=l,2) are given 

i n Table XVIII. 

Interpreting these r e s u l t s i s not straightforward since i f 

v a r i a b i l i t y i n mutation rates exists we would not expect i t to vary with 

route of implantation. The evidence that v a r i a b i l i t y e x i s t s must remain 

hypothetical and we can only say that the analysis of the data presented 

here i s compatible with this idea. This subject i s worthy of future 

(experimental) study although t h i s w i l l not be easy. 

Data on s u r v i v a l of animals having L1210 tumors treated with Ara-C 

i s given i n Table XIX. Ara-C i s e s p e c i a l l y active against c e l l s i n the 

S-phase of the c e l l cycle and thus i t s e f f e c t i s l i m i t e d by the 

proportion of c e l l s i n this phase during treatment [26]. This drug i s 

best administered i n doses far below the L U ^ Q since large doses have no 

greater tumoricidal e f f e c t . After much experimentation with this drug, 

Skipper and his associates have found that doses of 15mg/kg may be 
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repeated every 3 hours up to 8 times without r e s u l t i n g i n undue 

t o x i c i t y [26]. Observations on the growth delay of tumors treated with 

between 1 and 8 cycles of Ara-C (every 3 hours) suggest that the log of 

the f r a c t i o n of surviving c e l l s i s l i n e a r l y proportional to the number of 

cycles given. This would imply that the e f f e c t of each cycle of Ara-C i s 

the same (assuming independence) and that the c e l l s s u f f i c i e n t l y 

r e d i s t r i b u t e themselves about the c e l l cycle so that, approximately, a 

constant proportion of c e l l s are i n the S phase at each a p p l i c a t i o n of 

the drug. Further cycles of therapy beyond 8 (every 3 hours) produce 

considerable t o x i c i t y , however, i f therapy i s not given for three days 

the animal's normal tissues recover s u f f i c i e n t l y for therapy to be 

applied again. A regimen of 8 cycles of Ara-C given every 3 hours w i l l 

be referred to as a course [26]. 

Up to four courses may be given, with intervening three day recovery 

periods, without undue t o x i c i t y . Data from experiments using between one 

and four courses, for various i n i t i a l tumor burdens, are given i n Table 

XIX. We propose to model this data using the model presented i n Section 

3.7. In what follows j=l,...,4 w i l l index the number of courses of Ara-C 

given. As e a r l i e r the l o g - l i k e l i h o o d , L, i s given by (5.4). 

In t h i s case, however, P i s of a more complex form. Here we w i l l 

use the approximation developed i n Section 3.7 where we assumed that 

RQ(t^)= N(t^) where t ^ i s the time of the f i r s t cycle of the f i r s t 

course. Since the death rate for this tumor i s assumed to be zero, the 

tumor i s cured i f , and only i f , {R^t j)=0,R^(t j)=0} where tj i s the time 

of the l a s t cycle of therapy. For s i m p l i c i t y we w i l l assume that v=0 and 

estimate a only, that i s we w i l l assume that t r a n s i t i o n s to resistance 
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occur only at c e l l d i v i s i o n . Observation on Ara-C re s i s t a n t c e l l s 

suggest that t h i s resistance i s e f f e c t i v e l y absolute, i . e . TC^(D)=1 for 

the doses of Ara-C used. 

If (|>(sQ,s^;t) i s the p r o b a b i l i t y generating function for the 

d i s t r i b u t i o n of s e n s i t i v e and r e s i s t a n t c e l l s i n the tumor, then the 

p r o b a b i l i t y of cure i s <j>(0,0;tj); see (3.13). Since TC^(D)=1, from 

(3.11.1) we have 

<t>(s0,0;tj) = <KS 0(s 0),0;t-j), f o r J = 1 » ' " » J > 

where from (3.9.1), 

V s o ) = 1 - V D ) + V D ) V 
From (3.11.2) we have, 

<Ks 0,0;t~ + 1) = < K w 0(tj + 1-tj),0;tj) for j = l , . . . , J - l , 

where w^(t)=0 for s^=0 and 

soe 
-bt 

0 [ l - s 0 ( l - a ) (1-e b t ) ] 

since s^=0 and v=0 (see (3.6) and (3.7)). Using (3.30) we may write 

R 0 
<t)(s 0,s 1;t 1) = s Q C R ( s ^ t ^ , 

where R Q i s the "observed" number of se n s i t i v e stem c e l l s at time t ^ and 

we w i l l set R Q = n » the t o t a l tumor siz e at f i r s t treatment. From (3.33) 

we have 
n - N .N-l <t>(s0,0;t1)=s() (1-a) 

Using the above equations we may estimate the p r o b a b i l i t y of cure 

for various values of the parameters a and T C Q ( D). Notice that the drug 

i s only given at a single dose l e v e l (15 mg/kg) so i t i s not necessary to 

specify the form of 7£Q(D). The complex form of P makes i t i n f e a s i b l e 



-189-

to set up equations for the maximum l i k e l i h o o d estimates of a and 

UQ(15)=^Q- Thus a d i r e c t approach was taken by s e l e c t i n g " l i k e l y " values 

of the parameters and i t e r a t i n g i n d i r e c t i o n s so that the l o g - l i k e l i h o o d 

increases. I n i t i a l l y t his method was used on a version of t h i s model i n 

which a=0. In t h i s case i t proved d i f f i c u l t to compute the l o g -

l i k e l i h o o d since for a l l choices of u_ either P. .=1 or P. .=0 for some 
0 i j i j 

i , j . When the l o g - l i k e l i h o o d was calculated at least one term i n the sum 

overflowed y i e l d i n g the following i n e q u a l i t y for the l o g - l i k e l i h o o d : 

L(0, it*)<-10 3 8. However, j o i n t estimation of a and did produce 

e a s i l y computed l i k e l i h o o d s for a range of these two parameters. Maximum 

l i k e l i h o o d estimates were obtained for a number of s t a r t i n g values 

(10 - 9<a<10 - 5, 0.1<rvQ<0.3) and i n a l l cases ( i n which the l o g - l i k e l i h o o d 

did not overflow) each sequence converged to the same estimates. The 

maximum l i k e l i h o o d estimates were given by a*=l•791xl0 - 7, n*=0.186 with 

L(a*,n*)=-209.41. The l o g - l i k e l i h o o d goodness-of-fit of x 2
Q= 22.38 

indicates that v a r i a t i o n e x i s t s which i s not explained by the model. The 

predicted estimates of P using t h i s model are given i n Table XIX. 

There i s thus considerable evidence that spontaneously r e s i s t a n t c e l l s do 

a r i s e with a frequency of the order of 1 0 - 7 . 

F i t t i n g a model incorporating variable mutation rates poses a 

considerable technical problem since the recursive nature of the 

r e l a t i o n s h i p s involved do not permit an approximation of the type used i n 

(5.5). We w i l l approximate the e f f e c t of v a r i a t i o n i n a (following a 

beta d i s t r i b u t i o n ) using a discrete d i s t r i b u t i o n s i m i l a r to that used i n 

Section 5.1. The number of mass points used i n the approximation was 

was varied (5,10 and 20) and each lead to e s s e n t i a l l y the same r e s u l t (to 
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s i x s i g n i f i c a n t figures i n the l i k e l i h o o d ) . Using the same notation as 

i n the analysis of Cyclophosphamide, the maximum l i k e l i h o o d estimates 

were u*=3.298, v*=1.574xl0 8 (where u and v are the parameters of the beta 

d i s t r i b u t i o n which generate the percentiles used i n the discre t e 

approximation) and TE*=0.186 with L (U * , V * , T I * ) = - 2 0 9 . 15. The asymptotic x 2 

d i s t r i b u t i o n of the difference i n l o g - l i k e l i h o o d s yielded a test for the 

presence of v a r i a b i l i t y i n a of x 2 =0'52 providing no evidence for 

v a r i a t i o n i n a (following an approximate beta d i s t r i b u t i o n ) . 

The analysis of the data on two quite d i f f e r e n t drugs (one phase 

s p e c i f i c and one not) appear to provide evidence compatible with the 

hypothesis that drug r e s i s t a n t c e l l s do a r i s e as a r e s u l t of random 

mutations. In one case (Cyc) there was evidence that the mutation rate 

may be random, whereas the analysis of the data for Ara-C provided no 

evidence for t h i s . We cannot conclude that the mutation rate has been 

demonstrated to be random for resistance to Cyc i n the L1210 leukemia 

because there s t i l l e x i s t s considerable unexplained v a r i a t i o n i n the 

data. The existence of random v a r i a t i o n In mutation rates for 

spontaneous tumors cannot be determined from the analysis of passaged 

animal tumors because each spontaneous tumor i s unique whereas each 

animal implanted with a passaged tumor (L1210) should be considered to 

have a sample of a single tumor. By testing for random v a r i a t i o n i n 

mutation rates i n a single type of experimental tumor we are t e s t i n g 

whether these rates spontaneously evolve during the s e r i a l passaging of 

the tumor. In summary the presence of v a r i a t i o n i n mutation rates can 

properly be determined only by analyzing data from a series of de-novo 

spontaneous tumors. Since v a r i a t i o n can influence the value of various 
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TABLE XVII 

Response of In t r a p e r i t o n e a l l y (IP) and Intravenously (IV) 
Innoculated L1210 Leukemia to Single Doses of Cyclophosphamide.* 

IP IV 
Dose Size at .# of Animals # of # of animals # of 
mg/kg treatment Treated Survivors Treated Survivors 

300 8 x l 0 7 94 7 80 4 

8 x l 0 6 148 60 30 10 

8 x l 0 5 39 30 20 14 

250 8 x l 0 7 - - 66 1 

8 x l 0 6 - - 30 3 

8 x l 0 5 - - 30 17 

230 8x10 6 50 7 - -

8x10 5 40 10 - -

8 x l 0 4 50 41 - -

200 8 x l 0 7 109 3 60 0 

8x10 6 160 11 40 3 

8x10 5 60 11 10 0 

8X101* 10 8 - -

8 x l 0 3 10 10 - -

150 8x10 7 30 0 245 0 

8 x l 0 6 19 0 60 0 

8 x l 0 5 20 1 50 3 

100 8 x l 0 7 10 0 130 0 

8 x l 0 6 20 0 30 0 

8x10 5 144 0 20 0 

* Abstracted from reference [26]. 
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TABLE XVIII 

Observed (Obs) and Predicted values f o r the P r o b a b i l i t y of Cure f o r 
IP and IV Innoculated L1210 Leukemia Treated with Cyclophosphamide 
Using the Maximum Likelihood Parameter Estimates f o r Fixed Rates 

(Predl) and f o r Variable Rates (Pred2). 

Dose Size at t IP IV 
mg/kg treatment Obs Predl Pred2 Obs Predl Pred2 

300 8 x l 0 7 0.074 0.000 0.109 0.050 0.000 0.040 

8 x l 0 6 0.405 0.435 0.223 0.333 0.428 0.165 

8 x l 0 5 0.769 0.920 0.446 0.700 0.919 0.544 

250 8 x l 0 7 - - - 0.015 0.000 0.038 

8 x l 0 6 - - - 0.100 0.422 0.164 

8 x l 0 5 - - - 0.567 0.917 0.544 

230 8 x l 0 6 0.140 0.393 0.218 - - -
8 x l 0 5 0.250 0.911 0.445 - - -

8X104 0.820 0.992 0.778 - - -

200 8 x l 0 7 0.028 0.000 0.008 0.000 0.000 0.001 

8 x l 0 6 0.069 0.145 0.173 0.075 0.180 0.115 

8 x l 0 5 0.183 0.824 0.435 0.000 0.843 0.524 

8x10 4 0.800 0.981 0.776 - - -

8 x l 0 3 1.000 0.998 0.964 - - -

150 8 x l 0 7 0.000 0.000 0.000 0.000 0.000 0.000 

8 x l 0 6 0.000 0.000 0.000 0.000 0.000 0.000 

8x10 5 0.050 0.003 0.066 0.060 0.008 0.045 

100 8x l 0 7 0.000 0.000 0.000 0.000 0.000 0.000 

8x10 6 0.000 0.000 0.000 0.000 0.000 0.000 

8 x l 0 5 0.000 0.000 0.000 0.000 0.000 0.000 
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TABLE XIX 

Observed and Predicted Rates of Cure f o r Intravenously Innoculated L1210 
Leukemia Treated with Repetitive Courses of A r a - C * 

Dose Size at # of Animals # of Observed Predicted 
Schedule treatment Treated Survivors Cure Rate Cure Rati 

q 3hr (x8) 8x10 6 10 0 0.000 0.000 
1 course 

8x10 5 60 2 0.033 0.021 

8x10^ 20 11 0.550 0.681 

q 3hr (x8) 8x10 7 20 0 0.000 0.000 
2 courses 

8 x l 0 6 40 3 0.075 0.223 

8x10 5 19 11 0.579 0.860 

q 3 hr (x8) 8 x l 0 6 9 3 0.333 0.224 
3 courses 

8x10 5 30 25 0.833 0.861 

q 3 hr (x8) 8xl 0 7 59 0 0.000 0.000 
4 courses 

8 x l 0 6 80 25 0.313 0.224 

8 x l 0 5 215 187 0.870 0.861 

8xlOk 30 30 1.000 0.985 

*Data abstracted from reference [26]. 
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therapeutic interventions t h i s subject i s worthy of further study. 

5.3 Neo-Adjuvant Chemotherapy 

Adjuvant i s a term applied to chemotherapy which i s used i n addition 

to other forms of therapy ( i . e . radiotherapy or surgery) [32]. Adjuvant 

chemotherapy i s commonly used i n a large number of s o l i d human tumors and 

has proven successful i n increasing the c u r a b i l i t y of several of these 

tumors ( i . e . breast cancer) [35]. The use of adjuvant chemotherapy has 

been p a r t i c u l a r l y successful (and i n i t i a l l y somewhat controversial) when 

used i n in d i v i d u a l s with no observable disease (perhaps a f t e r surgery), 

but who are believed to have microscopic disease present (based on the 

experience of i n d i v i d u a l s with si m i l a r disease). In a l l these cases 

chemotherapy i s given subsequent to "curative" therapy (usually 

surgery). 

For some types of tumor, i n d i v i d u a l s may present with advanced 

disease where surgery, although desirable, i s not possible. In 

p a r t i c u l a r tumors ( i n i t i a l l y head and neck cancer) a new concept has been 

proposed, that of neo-adjuvant (or pre-operative) chemotherapy [36]. In 

thi s approach chemotherapy i s given f i r s t i n order to shrink the primary 

tumor so that surgery i s possible. After surgery the patient then 

receives the appropriate therapy. Like any good idea i t has been applied 

to a v a r i e t y of cases where i t i s more or less appropriate. In 

p a r t i c u l a r neo-adjuvant chemotherapy has been advocated, and i s currently 

being tested, i n si t u a t i o n s where surgery i s already possible without the 

neo-adjuvant chemotherapy. In breast cancer, which i s one such case, 

neo-adjuvant chemotherapy amounts to s t a r t i n g the programme of adjuvant 

therapy at a time p r i o r to surgery rather than a f t e r [37]. 
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In t h i s section we w i l l consider the case of human breast cancer i n 

some d e t a i l - Many advantages are espoused for the neo-adjuvant 

a p p l i c a t i o n of therapy, however, we w i l l be concerned with only one of 

them here; that neo-adjuvant therapy reduces the l i k e l i h o o d of treatment 

f a i l u r e from drug resistance. At th i s point we w i l l provide an overview 

of the approach to be taken. We w i l l assume that p r i o r to diagnosis the 

d i s t r i b u t i o n of tumor c e l l s Is given by the approximation of Section 3.6. 

We w i l l set up an ad-hoc model for the e f f e c t of surgery on the 

d i s t r i b u t i o n of tumor c e l l s and f i t i t to observations from human breast 

cancer. We w i l l not assume that we have a p a r t i c u l a r drug (with given a, 

v, e t c . ) , but require that the drug used i s "reasonably" e f f e c t i v e 

(against the se n s i t i v e c e l l s ) and examine the c u r a b i l i t y for various 

values of the mutation rates. Using the models developed for the e f f e c t 

of surgery and chemotherapy (Chapter 3) we w i l l then examine the e f f e c t 

on c u r a b i l i t y of an extra neo-adjuvant cycle of therapy. 

We know, from the example considered i n Section 3.5, that for a 

given treatment strategy the e a r l i e r the treatment i s begun the greater 

w i l l be the p r o b a b i l i t y of cure. The c r i t i c a l question i s the magnitude 

of the increase i n the p r o b a b i l i t y of cure produced by an extra 

neo-adjuvant cycle of therapy. We w i l l use breast cancer as an example 

although this approach can, i n p r i n c i p l e , be extended to other tumor 

types. The adjuvant therapy w i l l be assumed to be a single drug which i s 

given i n a fi x e d number of cycles. This a p p l i c a t i o n of the theory 

d i f f e r s from those considered previously since we are now considering the 

eff e c t of two modalities of therapy (chemotherapy and surgery) rather 

than chemotherapy alone. 
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As mentioned before (Chapter 3), the ef f e c t of surgery ( i n terms of 

tumor reduction) i s complex and depends on many fa c t o r s . One of the 

p r i n c i p a l d i f f i c u l t i e s i s that metastasis of the tumor to other s i t e s 

may not be apparent at diagnosis. For example i n breast cancer, the 

findi n g of lymph node involvement i s strongly i n d i c a t i v e of tumor 

dissemination to other s i t e s . This i s the idea i m p l i c i t i n the c l i n i c a l 

and pathological staging systems for tumors although other prognostic 

factors not included i n these systems have been i d e n t i f i e d . In breast 

cancer two prognostic factors which have been i d e n t i f i e d are commonly 

used i n the planning of c l i n i c a l t r i a l s : menopausal status 

(pre-menopausal or post-menopausal) and lymph node status (0 p o s i t i v e 

nodes, 1-3 p o s i t i v e nodes, 4+ p o s i t i v e nodes) [25]. We w i l l consider 

separately the s i x groups defined by menopausal status and nodal status 

for women with breast cancer. 

In order to estimate the eff e c t s of surgery within each of these 

groups i t i s necessary to analyse data on recurrence times of i n d i v i d u a l s 

with breast cancer treated by surgery. Ideally such data would include 

i n d i v i d u a l measurement of recurrence times and growth rates for women 

treated s u r g i c a l l y (using a standard procedure) for breast cancer. 

Unfortunately such data does not appear to be av a i l a b l e since i n d i v i d u a l 

growth rates are seldom reported. Here we propose to use the re s u l t s of 

an analysis by Skipper [38] of data of Valagussa et a l consisting of 

women treated s u r g i c a l l y for breast cancer [25]. In that analysis the 

following assumptions were made: 

( i ) A l l premenopausal disease grows at a fixed rate, 

( i i ) A l l postmenopausal disease grows at a fixed rate, 
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( i i i ) Recurrence occurs when the tumor burden at a single s i t e exceeds 

10 9 c e l l s , 

( i v ) Individuals not recurring within 10 years a f t e r surgery are 

cured, 

(v) A l l c e l l s are stem c e l l s . 

The f i r s t four assumptions are c e r t a i n l y not p r e c i s e l y true but are 

not unreasonable approximations. The f i f t h assumption i s not e x p l i c i t l y 

stated by the author but i s i m p l i c i t i n the development of the estimates 

of r e s i d u a l tumor burden. In t h i s development we would have preferred 

not to make th i s assumption however the raw data was not a v a i l a b l e for 

a n a l y s i s . For consistency, we have thus assumed that c=d=0 i n what 

follows although this i s not required by the subsequent development. The 

estimates of r e s i d u a l tumor burden (stem c e l l burden) subsequent to 

surgery are given i n Table XX. We w i l l also require the following 

further assumptions to continue with t h i s a n a l y s i s : 

( v i ) The removal of c e l l s by surgery i s a random process and does not 

d i s t i n g u i s h between c e l l types i . e . drug s e n s i t i v e and drug 

r e s i s t a n t , 

( v i i ) The f a i l u r e of drug therapy i s s o l e l y due to the presence of 

drug r e s i s t a n t c e l l s a r i s i n g by the process described i n Chapter 

3, 

( v i i i ) The two modalities (chemotherapy and surgery) do not i n t e r a c t 

with one another i . e . the e f f e c t of each modality for an 

i n d i v i d u a l i s independent of the time at which i t i s given, 

(ix) The number of tumor c e l l s at the s i t e of the f i r s t recurrence 

( i f i t occurs) i s much greater than the number of tumor c e l l s at 
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any other s i t e s i n the same i n d i v i d u a l , 

(x) The r e s i s t a n t c e l l s survive chemotherapy with p r o b a b i l i t y 1, 

(xi) The s e n s i t i v e c e l l k i l l of the chemotherapy i s s u f f i c i e n t l y 

large and the therapy i s applied s u f f i c i e n t l y frequently so that 

the net growth of the se n s i t i v e c e l l s during the treatment 

period i s strongly s u b - c r i t i c a l , 

( x i i ) The d i s t r i b u t i o n of the number of tumor c e l l s a f t e r surgery i s 

not related to the pre-surgery tumor burden. 

It seems appropriate, at th i s point, to indicate the reasons f o r 

these further assumptions. Assumption ( v i ) seems reasonable and 

considerably s i m p l i f i e s the l a t e r development. Assumption ( v i i ) r e l a t e s 

to the intended objective of this section which i s to examine the e f f e c t 

of neo-adjuvant chemotherapy i n preventing the development of drug 

resistance. Assumption ( v i i i ) permits analysis of the e f f e c t of timing 

and i s a reasonable s i m p l i f i c a t i o n of the behaviour of these two very 

d i f f e r e n t modalities. Assumption (ix) implies that we may approximate 

the t o t a l tumor burden of the i n d i v i d u a l by the number of tumor c e l l s at 

the s i t e of recurrence. We may then approximate the post-surgical 

p r o b a b i l i t y generating function for the t o t a l number of c e l l s by the 

p r o b a b i l i t y generating function for the number of c e l l s at the s i t e of 

recurrence. Also from (I) and ( i i ) we may make the preceedlng 

approximation at a l l times a f t e r the time of surgery. Assumptions (x) 

and (xi) are are si m p l i f y i n g assumptions which imply that the p r o b a b i l i t y 

of cure for the chemotherapy i s approximately equal to the p r o b a b i l i t y of 

cure at the f i r s t cycle of therapy. Thus the p r o b a b i l i t y of cure i s only 

weakly dependent on the d e t a i l s of the way i n which the chemotherapy i s 
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applied ( a f t e r the f i r s t c y c l e ) . Assumption ( x i i ) i s c l e a r l y i n c o r r e c t , 

however we are forced to make this assumption because of a lack of 

d e t a i l e d information on the pre-surgical tumor burden. 

We w i l l approximate the post-surgical d i s t r i b u t i o n of tumor c e l l s 

seperately for each of the s i x prognostic groups (menopausal x nodal 

combinations). Approximation ( x i i ) may not be as bad as i t f i r s t seems 

since the r e l a t i v e difference i n i n i t i a l tumor burden before surgery i s 

l i k e l y to be much smaller than the r e l a t i v e difference i n tumor burden 

a f t e r surgery. This assertion i s based on the assumption that the 

majority of the tumor burden p r i o r to therapy i s located i n the breast 

l e s i o n which i s (almost t o t a l l y ) excised i n a l l cases, thus leaving the 

more variable metastatic burden i n place. We are now i n a p o s i t i o n to 

determine a n a l y t i c expressions which summarise the e f f e c t s of applying 

the chemotherapy early (neo-adjuvant). 

The estimates of tumor burden a f t e r surgery ( i n the absence of 

neo-adjuvant therapy) derived by H. Skipper are given i n Table XX for the 

six prognostic groups. Cl e a r l y the v a r i a t i o n i n r e s i d u a l tumor burden i s 

quite large. We can now proceed to f i t a d i s t r i b u t i o n to the data given 

i n Table XX, however, the possible mathematical form of the d i s t r i b u t i o n 

which can be used i n subsequent analysis i s l i m i t e d . The reason i s that 

we do not have the d i s t r i b u t i o n function for the number of s e n s i t i v e and 

re s i s t a n t c e l l s i n e x p l i c i t form. The natural model for the response 

(removal or not) of a single c e l l to surgery i s a B e r n o u l l i v a r i a b l e , 

where the parameter, 9, i s a function of the i n d i v i d u a l (tumor) and the 

s u r g i c a l technique. The parameter i s unknown and cannot be estimated 

r e l i a b l y since we only have one observation per i n d i v i d u a l . We w i l l 
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assume that the parameters {9} only take a f i n i t e number of values and 

then f i t t h i s model to the observed data. This model i s quite ad-hoc, 

but our aim here i s to estimate the post-surgical d i s t r i b u t i o n of 

se n s i t i v e and r e s i s t a n t c e l l s and thus we only need to calculate the 

e f f e c t of surgery and not construct a v a l i d model of the mechanism of 

act i o n . We w i l l set 

e i = 1 0 _ 1 1=1,...,11, 

which spans the l i k e l y range of {9}. Let j(=l,2) and k(=l,2,3) index the 

prognostic groups and define 

C. =P{9=9.| i n d i v i d u a l i s i n prognostic group j,k}. 
1JK. 1 

We w i l l assume that the d i s t r i b u t i o n of the number of stem c e l l s 

p r i o r to surgery has p r o b a b i l i t y generating function, C(s;t), given by 

(3.24). The p r o b a b i l i t y generating function of the number of c e l l s a f t e r 

surgery given at time t ^ i n prognostic group j,k , C j k ( s ; t ^ ) , i s given by 
11 

C j k ( s ; t ^ ) = I C . j k C ( C i(s);t j f e) for j=l,2, k=l,2,3, 

where E.(s)=l-9,+9.s for 1=1,...,11. 
i i l 

Let N ( t ^ ) be the post-surgical number of stem c e l l s for 
j V 

i n d i v i d u a l s i n prognostic group j,k. Then P{Nj k(t^)=n} i s given by the 

c o e f f i c i e n t of s 1 1 i n the above expression. Expanding and i d e n t i f y i n g the 

c o e f f i c i e n t of s 1 1, we have 
n-rl 

11 9.e *[0 (1-e *)] 
H N j k ( t , ) = n } = I C i j k ^ for n>0, 

[9.+(l -9.)e *] x 1 

and 

11 (1-9.)e b t * 
P{N k(t*)=0} = I C 1 -

i - i 1 J K [e.+a-e^e^*] 
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11 ( i - e i ) e " b t * 
j k v *' > ^ i j k p. . -bt i = i 1 J K [ e^ i -e^e""*] 

Assuming that the mean number of c e l l s p r i o r to surgery i s 10 10 

(approximately a 2 cm- diameter sph e r i c a l tumor), we set e b t*=10 1 0. Then 

values of be chosen and the post-surgical tumor burden examined 

and compared with the "observed" values (Table XX). The values selected 

for C ., are given i n Table XXI and the predicted pos t - s u r g i c a l i Jk 

d i s t r i b u t i o n i s given i n Table XXII. These values are not unique and 

their " f i t " i s not perfect as may be seen by comparing Tables XXI and 

XXII. These values were selected by an informal procedure of t r i a l and 

error u n t i l the f i t t e d values were within ±1% of the observed values. 

Given that the observed d i s t r i b u t i o n of post-surgical tumor burden has 

considerable random error (since i t was estimated from data on 716 cases) 

the f i t t e d model seems adequate. 

Let <(>(sQ,s^;t) be the p r o b a b i l i t y generating function for the number 

of s e n s i t i v e and re s i s t a n t c e l l s i n the tumor at time t (see Section 

3.1). For the neo-adjuvant approach, chemotherapy i s applied f i r s t , at 

time t^ say. Then from (3.9.1) we have: 

4 ) ( s 0 , s 1 ; t 1 ) = 4 > ( C 0(s 0),s 1;t 1 ), 

where £Q(S)=1—TCQ+TCQSQ. If surgery i s applied at time we have 

<t>(sQ,s]L;t2) = < t > ( w 0 ( t 2 - t 1 ) , w 1 ( t 2 - t 1 ) ; t 1 ) , 

where w Q(t) i s given by (3.7), w ^ t ) by (3.6) with c=d=0. The e f f e c t of 

surgery on the p r o b a b i l i t y generating function of the number of c e l l s for 

a tumor i n the prognostic group j , k i s then given by 
11 

4>(s 0, S l;t 2) = I C • ( 5 1 ( s 0 ) , 5 1 ( s 1 ) ; t ), 
1=1 J 

for j=l,2, k=l,2,3. 
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To analyse the e f f e c t of neo-adjuvant therapy we must consider the 

parameters which are related to the chemotherapy- We w i l l assume that 

v=0 and c a l c u l a t e the c u r a b i l i t y for a number of values of a- From 

assumptions (x) and ( x i ) , i f the protocol i s s u f f i c i e n t l y long ( i . e . J 

lar g e ) , the c u r a b i l i t y of the regimen w i l l not depend very strongly on 

the parameter TCQ (the p r o b a b i l i t y of s e n s i t i v e c e l l s u r v i v a l for a 

cycle of chemotherapy). In his analysis of t h i s data, Skipper found that 

the doubling time was 56 days for premenopausal disease and 69 days for 

postmenopausal disease. We w i l l model conventional adjuvant chemotherapy 

as consisting of s i x cycles of chemotherapy where the f i r s t cycle i s 

given 28 days a f t e r surgery and then given i n cycles with 21 day 

i n t e r v a l . Calculations based on this model show that the c u r a b i l i t y i s 

approximately the same for a l l cases where 7CQ<0.1, J>4 (the number of 

treatment times) and the i n t e r v a l between cycles of chemotherapy i s le s s 

then t h i r t y days. Neo-adjuvant therapy w i l l be modelled by assuming that 

an single extra cycle of therapy i s given two days before surgery and 

then followed by the same post-surgical adjuvant therapy as above. In 

both cases the date of surgery i s the same, that i s , the Inclusion of the 

neo-adjuvant cycle does not a f f e c t the timing of other therapy- Tables 

XXIII-XXIV give the estimated c u r a b i l i t y of the tumor as a function of 

the mutation rate to resistance, a, for the conventional adjuvant 

protocol and the increase i n the p r o b a b i l i t y of cure associated with a 

neo-adjuvant cycle of therapy added to the same protocol for each of the 

prognostic groups. 

The most obvious r e s u l t which may be seen from examination of Tables 

XXIII-XXIV i s that i n no case does the calculated increase i n c u r a b i l i t y 
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exceed 0.01. Thus the l i k e l i h o o d of any measurable a f f e c t of neo­

adjuvant therapy of the type described here for the development of 

resistance to a single drug for breast cancer i s n e g l i g i b l e . The 

modelling procedure i s not i d e a l , as has already been described, however 

i t would seem that inaccuracies i n the modelling of surgery or the 

e f f e c t s of chemotherapy are u n l i k e l y to cause an order of magnitude 

change i n the advantage of neo-adjuvant therapy. Secondly, i t can be 

seen that the c u r a b i l i t y of the tumor ( i n any of the prognostic groups) 

varies quite slowly with the mutation rate. Large improvements i n the 

cure rates obtained with adjuvant chemotherapy w i l l thus require 

s i g n i f i c a n t reductions i n the o v e r a l l mutation rate. For example, an 

improvement i n c u r a b i l i t y of 0.10 i n premenopausal negative node group 

requires a chemotherapy with a mutation rate of 10-1*. A further 

improvement i n c u r a b l i t y of 0.10 would require a chemotherapy with a 

mutation rate of 1 0 - 7 . The p r i n c i p l e reason that neo-adjuvant therapy i s 

predicted to have l i t t l e e f f e c t (on the development of resistance) i n 

t h i s tumor i s the highly variable p o s t - s u r g i c a l tumor burden. If the 

po s t - s u r g i c a l tumor burden l i e s i n a narrow range then the r e l a t i o n s h i p 

between c u r a b i l i t y and mutation rate w i l l be quite d i f f e r e n t from that 

displayed i n Tables XXIII-XXIV. In t h i s s i t u a t i o n c u r a b i l i t y w i l l 

r a p i d l y change (as a function of the mutation rate) i n the region where 

the inverse of the mutation rate i s approximately equal to the mean 

resi d u a l tumor burden. In such sit u a t i o n s an extra neo-adjuvant cycle of 

may have considerable impact i n preventing the development of 

resistance. 

In conclusion, i f neo-adjuvant chemotherapy i s to have any 



-204-

measurable e f f e c t i n this tumor, i t s primary e f f e c t must be on other 

mechanisms of treatment f a i l u r e and not on the development of spontaneous 

resistance. This completes the consideration of applications of t h i s 

model. 
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TABLE XX 

Distribution of Post-Surgical Tumor Burden 
for 716 Cases of Breast Cancer as a Function of Nodal Status 

and Menopausal Classification.* 

Premenopausal Po s tmenopausal 

Number of Pos i t i v e Nodes Number of P o s i t i v e Nodes 

Tumor Burden 0 1-3 4+ 0 1-3 4+ 

[0] 0.69 0.31 0.12 0.74 0.35 0.15 

[ 1 0 ° , 101) 0.07 0.22 0.11 0.05 0.10 0.08 

[10 1, 102) 0.00 0.07 0.03 0.01 0.03 0.04 

[10 2, 103) 0.04 0.02 0.03 0.02 0.00 0.03 

[10 3, 0.03 0.04 0.09 0.02 0.08 0.04 

[10\ 105) 0.01 0.07 0.14 0.02 0.06 0.05 

[10 5, 106) 0.04 0.07 0.13 0.03 0.08 0.08 

[10 6, 107) 0.08 0.09 0.07 0.04 0.09 0.20 

[10 7, 108) 0.03 0.11 0.18 0.03 0.11 0.20 

[ i o 8 , ro) 0.00 0.01 0.11 0.04 0.08 . 0.14 

TOTAL 1.00 1.00 1.00 1.00 1.00 1.00 

* Abstracted from reference [38]. 
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TABLE XXI 

Table of Values of C±^* t b e P r o b a b i l i t y of B e r n o u l l i parameter 8^, 
fo r the Six Prognostic Categories. 

Premenopausal Postmenopausal 
Ber n o u l l i 
Parameter Number of P o s i t i v e Nodes Number of P o s i t i v e Nodes 

9 i 0 1-3 4+ 0 1-3 4+ 

1 0 - 1 1 0.64 0.00 0.00 0.75 0.34 0.04 

l O " 1 0 0.12 0.44 0.16 0.03 0.00 0.17 

l O " 9 0.00 0.07 0.09 0.00 0.13 0.02 

lO" 8 0.00 0.08 0.02 0.01 0.01 0.05 

10 - 7 0.05 0.00 0.01 0.02 0.00 0.01 

10~6 0.04 0.00 0.09 0.02 0.11 0.05 

l O - 5 0.00 0.04 0.15 0.02 0.04 0.05 

lo-1* 0.03 0.07 0.15 0.03 0.09 0.05 

l O - 3 0.11 0.07 0.02 0.04 0.08 0.22 

l O " 2 0.01 0.08 0.23 0.03 0.12 0.22 

i o - i 0.00 0.14 0.09 0.05 0.08 0.13 

TOTAL 1.00 1.00 1.00 1.00 1.00 1.00 
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TABLE XXII 

Predicted Distribution of Residual Tumor Burden after Surgery 
using the values of 6̂  and C^jk i n Table XXI. 

Tumor Burden 

Premenopausal Postmenopausal 

Number of Po s i t i v e Nodes Number of P o s i t i v e Nodes 

1-3 4+ 1-3 4+ 

[0] 

[10°, 10 1) 

[10 1, 10 2) 

[10 2, 10 3) 

[10 3, 101*) 

[10\ 10 5) 

[10 5, 10 6) 

[10 6, 10 7) 

[10 7, 10 8) 

[10 8, ») 

0.688 0.310 0.121 

0.072 0.208 0.114 

0.009 0.068 0.029 

0.041 0.019 0.028 

0.032 0.041 0.088 

0.012 0.068 0.140 

0.039 0.072 0.130 

0.083 0.088 0.070 

0.022 0.107 0.174 

0.001 0.019 0.106 

0.736 0.344 0.154 

0.048 0.106 0.079 

0.012 0.030 0.041 

0.017 0.020* 0.024 

0.018 0.085 0.042 

0.023 0.057 0.051 

0.034 0.081 0.077 

0.037 0.088 0.194 

0.032 0.107 0.203 

0.044 0.082 0.134 

TOTAL 1.000 1.000 1.000 1.000 1.000 1.000 

* Observed and predicted tumor burden d i s t r i b u t i o n d i f f e r by more than 
0.01. 
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TABLE XXIII 

Predicted C u r a b i l i t y of Breast Cancer f o r Premenopausal 
Disease as a Function of a and the Increase i n 

C u r a b i l i t y Associated with an Extra (Neo-adjuvant) Cycle. 

Mutation Rate 
a 

P r o b a b i l i t y of cure f o r 
adjuvant Chemotherapy 
Number of Nodes 

Increase i n P r o b a b i l i t y of 
Cure with Neo-adjuvant Therapy 

Number of Nodes 

0 1-3 4+ 0 1-3 4+ 

10" 0.994 0.968 0.897 4 x l 0 _ 1 + t 22xl0 _ 1 + 70xl0" 4 

10 ,-8 0.960 0.872 0.736 16xl0 - l t 43xl0 _ l t 47xl0 _ l t 

10 ,-7 0.891 0.773 0.616 15xl0 _ l t 22xl0 _ l t 29xl0 - l t 

10 ,-6 0.851 0.694 0.475 4x l 0 - l + 1 3 x l 0 - 4 2 6 x l 0 - 4 

10 -5 0.828 0.631 0.347 4 x l 0 _ 1 + 8 x l 0 - l t 15xl0 _ t t 

10" 0.791 0.594 0.279 5xl0~k 4 x l 0 _ , + 5xl0"4 

10 ,-3 0.763 0.545 0.246 2x l 0 _ l t 7 x l 0 _ l t 4 x l 0 _ l t 

10" 0.742 0.447 0.189 3xl0~4 14xl0 - l t 7xl0 _ i t 

10 -1 0.693 0.319 0.125 3x10-4 6 x l 0 _ I t 3 x l 0 _ l t 

Observed when 
no chemotherapy 0.692 0.309 0.120 
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TABLE XXIV 

Predicted C u r a b i l i t y of Breast Cancer f o r Postmenopausal 
Disease as a Function of a and the Increase i n C u r a b i l i t y 

Associated with an Extra (Neo-adjuvant) Cycle. 

Mutation Rate 
a 

P r o b a b i l i t y of cure f o r 
adjuvant Chemotherapy 
Number of Nodes 

Increase i n P r o b a b i l i t y of 
Cure with Neo-adjuvant Therapy 

Number of Nodes 

0 1-3 4+ 0 1-3 4+ 

10 -9 0.965 0.924 0.872 19xl0 - l t 40xl0 _ l t 68xl0 _ l t 

10 ,-8 0.923 0.812 0.660 1 2 X 1 0 - 1 1 SSxlO" 4 65xl0- 4 

10 -7 0.882 0.708 0.470 8 x l 0 _ , + 19X10"1* 30xl0 _ 1 + 

10 ,-6 0.848 0.625 0.379 4 x l 0 _ 1 + l l x l O - 4 l O x l O - 4 

10 -5 0.824 0.551 0.325 2xl0~h 9X10"4 6 x l 0 - 1 + 

10" 0.805 0.490 0.287 2x10-^ telO'** 3 x l 0 _ t t 

10" 0.790 0.462 0.252 l x l O - 4 3xl0~k 3xl0 _ 1* 

10 -2 0.773 0.402 0.207 2x l 0 _ 1 + 6 x l 0 _ 4 4 x l 0 _ l t 

10" 0.740 0.347 0.158 2xl0" 1 + 2xl0~h 2xl0" l t 

Observed when 
no chemotherapy 0.736 0.353 0.154 
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6. CONCLUSION 

In the previous chapters we developed a model for the resistance of 

tumor c e l l s to chemotherapeutic agents. This model i s predicated on the 

assumption that tumor c e l l s spontaneously acquire resistance to drugs as 

these c e l l s grow. This model uses a growth model (developed i n Chapter 

2) which assumes that tumors, i n analogy to normal ti s s u e s , are composed 

of three types of c e l l s : stem c e l l s , t r a n s i t i o n a l c e l l s and end c e l l s . 

The growth of these c e l l s i s described by a discrete-time Markov model 

with constant t r a n s i t i o n p r o b a b i l i t i e s for each c e l l . Using known 

resu l t s the asymptotic d i s t r i b u t i o n of the number of c e l l s at time t was 

derived. For unbounded r e a l i s a t i o n s of tumor growth, i t was shown that 

the asymptotic d i s t r i b u t i o n depends only on the number of stem c e l l s at 

time tQ« For a l l unbounded r e a l i s a t i o n s , having the same growth 

parameters, the proportion of each type of c e l l converges almost surely 

to a fixed l i m i t . It was argued that, for most parameter values which 

are l i k e l y to ar i s e i n p r a c t i c e , this asymptotic d i s t r i b u t i o n would 

approximate the true d i s t r i b u t i o n for tumors of c l i n i c a l dimensions. In 

th i s case, the number of c e l l s of each type can be estimated from a 

knowledge of the parameter values and the observed size of the tumor. In 

p a r t i c u l a r the number of stem c e l l s can be estimated and c u r a b i l i t y of 

the tumor reduces to consideration of the stem c e l l s alone. 

The preceding model of tumor growth must be regarded as approximate 

since i t takes no account of l o c a l and systemic conditions which 

influence growth. Furthermore, the assumption that c e l l s grow 

independently must be considered a f i r s t approximation since 

interactions between c e l l s have been demonstrated i n a number of systems. 



-211-

Further work i s needed to develop models describing the growth of tumors 

which preserve the disc r e t e nature of the process and incorporate the 

random nature of i n d i v i d u a l c e l l u l a r events. It i s u n l i k e l y that such 

models w i l l strongly influence the d i s t r i b u t i o n of r e s i s t a n t c e l l s unless 

there i s some, presently unrecognised, r e l a t i o n s h i p between parameters 

governing growth and those governing the development of resistance. 

In Chapter 3 a model was constructed for the development of stem 

c e l l resistance to a single drug. It was assumed that stem c e l l s behave 

independently and grow as a b i r t h and death process with f i x e d 

parameters. The p r o b a b i l i t y generating function of the number of 

se n s i t i v e and r e s i s t a n t stem c e l l s was derived for a tumor of known 

parameters that began with a single c e l l . It was shown that the mean 

proportion of r e s i s t a n t c e l l s increases i n time. Recursive r e l a t i o n s h i p s 

were developed for the c a l c u l a t i o n of the p r o b a b i l i t y generating function 

of the process a f t e r an a r b i t r a r y sequence of treatments. The 

formulation assumes that a l l c e l l s behave independently and that t h e i r 

i n t e r d i v i s i o n times are exponentially d i s t r i b u t e d with the same 

parameters. To model si t u a t i o n s where the growth rate of r e s i s t a n t and 

s e n s i t i v e c e l l s are d i f f e r e n t , i t could be necessary to use a model i n 

which this i s permitted: such a model has been described by Day [34]. 

Models which permit c e l l s to have i n t e r d i v i s i o n times which are not 

exponentially d i s t r i b u t e d are of i n t e r e s t . However these models w i l l 

generally not have the simple Markov structure of the one used here and 

t h e i r development w i l l be more complicated. 

Using the model developed i n Chapter 3 i t was shown that the best 

strategy for maximizing the p r o b a b i l i t y of cure for a given t o t a l dosage, 
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D, of a drug over a period [t^,") i s to give the whole dose at time 

t]_. Therapies which best approximate t h i s strategy ( i n r e a l systems) 

have previously been recommended, as a re s u l t of empirical research, on 

the basis that they maximise P{RQ(°°)=0} . In p a r t i c u l a r the knowledge 

that such a dosage schedule also maximizes P{R^(«>)=0} mandates i t s use 

(or the c l i n i c a l l y f e a s i b l e regimen which best "approximates" i t ) . This 

may be of p a r t i c u l a r importance since a number of d i f f e r e n t regimens may 

have s i m i l a r values for P{RQ(°°)=0} but divergent values for P{R^(»)=0} 

whereas the reverse i s not true (since RQ(°°)>0 implies R^(°>)>0). 

A ce n t r a l problem a r i s i n g i n the analysis of spontaneous tumors i s 

the s p e c i f i c a t i o n of the age of the tumor when f i r s t seen. Coupled to 

this i s the fact that c e r t a i n r e a l i s a t i o n s of the growth model have zero 

stem c e l l s at t=» and should not be included i n the consideration of 

large tumors. Three possible approaches were developed to address these 

problems: 

1) Delete sample paths where N(t)-K) and choose t" so that the 

d i s t r i b u t i o n {N(t")|N(»)>0} approximates that observed, 

2) Approximate the d i s t r i b u t i o n {Ri(t)|N(t)} by the d i s t r i b u t i o n 

{R^(t)|Rg(t)} over the early period of growth of the tumor, 

assume that the subsequent growth of R Q c e l l s i s deterministic 

and derive the r e s u l t i n g d i s t r i b u t i o n of R^(t*) for some 

observed Rg(t*), 

3) Assume that tumors are i n i t i a t e d uniformly i n time and then 

c a l c u l a t e the r e s u l t i n g d i s t r i b u t i o n of r e s i s t a n t c e l l s for a 

tumor d i s t r i b u t i o n at diagnosis of a p a r t i c u l a r prescribed form. 

Each of these approaches represent solutions to d i f f e r e n t problems 
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and as such are generally not d i r e c t l y comparable to one another. Each 

case i s of use for a p a r t i c u l a r s i t u a t i o n . In terms of the model 

developed, the f i r s t two solutions can be generalized by redefining the 

concept of the size at diagnosis. One approach i s to define the c r i t i c a l 

tumor burden to have a d i s t r i b u t i o n across i n d i v i d u a l s (with that tumor) 

and assume that diagnosis w i l l occur when the size of the tumor f i r s t 

exceeds the c r i t i c i a l size i n that i n d i v i d u a l . This would require the 

consideration of f i r s t passage times and would be quite complex. The 

t h i r d approach can be generalised i n several d i r e c t i o n s . The r e s u l t i n g 

d i s t r i b u t i o n of r e s i s t a n t c e l l s can be examined for a va r i e t y of mean 

incidence functions, u(t), which do not have the simple form ( i . e . 

constant) assumed i n Chapter 3. Possible forms of t h i s function are 

ava i l a b l e from the mathematical modelling of carcinogenesis [15]. In 

such cases the modelling of resistance i s u n l i k e l y to y i e l d simple 

expressions for the p r o b a b i l i t y generating function and numerical 

evaluation w i l l be necessary. The use of incidence functions of t h i s 

type w i l l permit the examination of the d i s t r i b u t i o n of r e s i s t a n t c e l l s 

as a function of the age of the subject. In advance i t does not seem 

l i k e l y that a strong r e l a t i o n s h i p w i l l e x i s t , however, i t i s worthy of 

exploration. The major conclusion from the analysis of the three 

approaches i s that the quantitative d e s c r i p t i o n of resistance depends 

upon the de s c r i p t i o n of the system under consideration and that 

attention must be paid to the p a r t i c u l a r experimental s i t u a t i o n . 

However, q u a l i t a t i v e l y the systems behave s i m i l a r l y and one or other of 

the approaches presented i s l i k e l y to be of use i n most s i t u a t i o n s . 

In the l a s t section of Chapter 3 we introduce the concept of 
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i n t r i n s i c v a r i a b i l i t y i n the mutation. There i s l i t t l e d i r e c t evidence 

for such v a r i a b i l i t y however given the experimental complexity involved 

i n t e s t i n g for such v a r i a t i o n we analysed i t s e f f e c t assuming that the 

appropriate parameters to follow a beta d i s t r i b u t i o n . I t was shown that 

v a r i a b i l i t y i n the mutation rates a f f e c t the form of the p r o b a b i l i t y of 

cure and thus i t may be possible to i d e n t i f y this phenomenon i n 

experimental systems. This phenomena was examined i n Chapter 5 for the 

experimental data on the L1210 leukemia treated with Cyclophosphamide and 

Arabinosylcytosine. I n i t i a l l y a model was f i t where a l l c e l l s were 

considered s e n s i t i v e and the logarithm of the p r o b a b i l i t y of c e l l 

s u r v i v a l , a f t e r treatment, was proportional to the dose used. This model 

did not f i t the data well for either drug. Generalising t h i s model to 

permit the existence of r e s i s t a n t c e l l s considerably improved the f i t to 

the data for each drug. Allowing the mutation rates to vary improved the 

f i t of the model for the data on treatment with Cyclophosphamide, but not 

for Arabinosylcytosine. In both cases there s t i l l remained unexplained 

v a r i a t i o n . These considerations apply only to a single well behaved 

tumor system treated with two drugs. It i s quite possible that 

spontaneous tumors may have more variable mutation rates. In p a r t i c u l a r , 

we have analysed data on a single tumor, the L1210 leukemia, and we 

cannot generalise r e s u l t s from a p a r t i c u l a r leukemia to a l l leukemias ( i n 

the same animal). To determine whether v a r i a t i o n i n mutation rates 

exists i s necessary to compare estimates of the mutation rates for a 

v a r i e t y of experimental tumors of the same type. 

In addition, the data used i n the preceding analysis did not include 

the cause of death (whether due to r e s i s t a n t or s e n s i t i v e c e l l s ) . The 
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analysis of s i m i l a r data with cause of death information would allow more 

accurate determination of mutation and pharmacokinetic parameters. Such 

an analysis may also be useful i n determining the source of the r e s i d u a l 

v a r i a t i o n unexplained by the present model. Further analysis of such 

data i s desirable since the concepts developed from such experiments are 

used i n the construction of protocols for the treatment of human cancer. 

In Chapter 4 a model was developed for resistance to two drugs. 

Expressions were developed which enabled the j o i n t p r o b a b i l i t y generating 

function of the number of stem c e l l s to be calculated for an a r b i t r a r y 

treatment regimen. Although not e x p l i c i t l y d e t a i l e d , the e f f e c t s on the 

p r o b a b i l i t y of cure of the timing and dosage of a single drug are seen to 

carry over to t h i s s i t u a t i o n . However, the optimum use of two drugs 

remains an unresolved problem. The major problem i s that there i s no 

common scale of measurement for the e f f e c t s of drugs on normal t i s s u e . 

There i s a need for models of t o x i c i t y since the construction of 

protocols c r i t i c a l l y depends on them (both i n theory and p r a c t i c e ) . 

However, given that such a dosage and timing schedule have been described 

then i t i s possible to examine how the ordering of treatments may e f f e c t 

the p r o b a b i l i t y of cure. In p a r t i c u l a r , i t was shown that i f the 

treatments are "equivalent" ( i . e . each has the same e f f e c t on s e n s i t i v e 

c e l l s and c e l l s r e s i s t a n t to i t and are given at the same times) then the 

expected number of stem c e l l s i s minimized by giving these drugs i n an 

al t e r n a t i n g fashion. It was also argued that, i n most cases of p r a c t i c a l 

i n t e r e s t , the p r o b a b i l i t y of cure w i l l also be maximized by such 

st r a t e g i e s . Although equivalence may not usually a r i s e i n p r a c t i c e , i t s 

examination leads to the conclusion that treatments must be interspersed 
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to maximize the p r o b a b i l i t y of cure. For non-equivalent drugs the 

pattern of interspersement w i l l depend on a number of parameters which 

r e f l e c t the effectiveness of the drugs i n each of the stem c e l l 

sub-compartments. This problem has been extensively studied by Day [34] 

who has examined the r e l a t i o n s h i p between the tumor and drug parameters 

and the pattern of a p p l i c a t i o n of each drug i n the "optimal" s t r a t e g i e s . 

In cases where the parameters are known the optimal strategy may be 

determined. In cases where some parameters are not accurately known i t 

seems reasonable to give these parameters a d i s t r i b u t i o n r e f l e c t i n g the 

p r e c i s i o n with which they are known. Optimal strategies may then be 

determined for t h i s system. Such a c a l c u l a t i o n was presented for 

equivalent agents (using the generalized d e f i n i t i o n ) i n Chapter 5 where 

the mutation rates follow a d i s t r i b u t i o n . It was shown ( i n Section 4.6) 

that the optimal strategy (for E[N(t)]) i s the same as for the f i x e d 

mutation rate case (that i s , the drugs should be alternated). However, 

In other cases the optimal strategy may depend on the amount of 

v a r i a b i l i t y (or lack of p r e c i s i o n ) . This problem i s worthy of further 

exploration. 

The generalization of this model to more than two drugs represents a 

considerable technical problem. This s i t u a t i o n i s probably best 

approached using a model s i m i l a r to that developed by Day [34]. As i n 

the example of two drugs, an unresolved question i s the way i n which 

drugs may be combined. This requires a knowledge of t h e i r j o i n t e f f e c t 

on t o x i c i t y . 

Chapter 5 presented applications of the theory developed i n 

preceding chapters to experimental and c l i n i c a l tumors. In addition to 
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those s i t u a t i o n s already discussed, the model was applied to the 

neo-adjuvant chemotherapy of breast cancer. Using an ad-hoc model for 

the e f f e c t of surgery on the d i s t r i b u t i o n of stem c e l l s , we assessed the 

influence of an extra neo-adjuvant cycle of chemotherapy on the 

p r o b a b i l i t y of cure. Chemotherapy was assumed to consist of a s i n g l e 

drug with unspecified pharmacokinetic and mutation parameters. Generally 

i t i s found that the a p p l i c a t i o n of the extra neo-adjuvant cycle had 

l i t t l e e f f e c t on the p r o b a b i l i t y that the tumor i s cured. This lack of 

improvement r e s u l t s mainly from the high v a r i a b i l i t y i n the p o s t - s u r g i c a l 

tumor burden as estimated by Skipper [38]. In situa t i o n s where the 

v a r i a t i o n i n burden i s much smaller, the e f f e c t of neo-adjuvant therapy 

can be expected to be greater. However, i t should be emphasized that 

t h i s conclusion only applies to the development of spontaneous drug 

r e s i s t a n t c e l l s and i f other mechanisms of tumor s e n s i t i v i t y are 

influenced by this early cycle of therapy, then the resultant e f f e c t may 

be considerably l a r g e r . Of more general i n t e r e s t , this analysis 

i l l u s t r a t e s the s e n s i t i v i t y of th i s model to v a r i a t i o n i n the o v e r a l l 

stem c e l l burden. This i s not s u r p r i s i n g , at least i n retrospect, but i t 

does i l l u s t r a t e that the quantitative e f f e c t of therapeutic strategies 

determined for animal models may not translate simply to human disease 

where the v a r i a t i o n i n tumor burden at treatment i s much greater. 

Further work i n modelling human disease i s desirable, since an 

understanding of the parameters which influence the c l i n i c a l therapy of 

cancer i s the ultimate objective of such research. The greatest obstacle 

to such research i s the r e l a t i v e paucity of quantitative information 

a v a i l a b l e for human disease. At present a most f r u i t f u l approach would 
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seem to be to model c l i n i c a l systems where the parameters have 

considerable v a r i a t i o n which may be taken to r e f l e c t the heterogeneity or 

imprecision i n th e i r s p e c i f i c a t i o n . 
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INDEX OF NOTATION 

Index of f i r s t appearance of notation. Greek symbols are l i s t e d 
seperately. 

page 

a 99 
a i , 1 2 9 9 

a 1 2 99 

a* 109 
A 20 
A* 132 

b 32 
B(t) 94 
B Q 97 

c 32 
c* 14 9 
C. 14 l 
C(t) 18 
C ± ( t ) 16 
C., ., 200 i jk 
C k(S(v)) ' 122 

32 

E i > k ( 0 121 

g 123 
g ± W3 
g(n) 74 
GR 19 

h 127 
h ± 14 3 

I ( t ) 71 
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L ( . ) 
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