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ABSTRACT

Three suboptimum detection schemes are examined. The deterioration
in performance, measured in the probability of error sense, of weighted
partial deq}sion, binary partial decisiqn, and sample-and-sum detectors
are analyzed. Even though these schemes are inferior to the digital
matched filter, they can be used in systems with more modest computational
capabilities. Analytic expressions are obtained for the penalties.v The
effects on the penalties of the signalling waveform employed, the number
of samples processed, and the signal-to-noise ratio are considered in
detail. Included are the penalties for the optimum wéighted partial

decision detector.

The effects of dependence among the samples on the detector losses
are investigated. It is shown that, in some cases, the losses of the
suboptimum procedures can be reduced by processing more, dependent, samples.
The amount of the loss that can be recovered depends on the prefilter
characteristic and the sampling rate, as well as the detection algorithm.

The structure of the optimum detector for hard-limited data
signals is presented and its performance is compared with those of
some commonly used schemes. Performance in impulsive as well as
Gaussian noise environments is considered. The optimum receiver for
M-ary signalling based on receivéd signal samples quantized to an
arbitrary number of levels is derived and compared to another common

detector.
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The fundamental loss in signal detectability due to hard-
limiting in a sampled system dperating in Gaussian noise is investigated.
The relation of the loss to the signal-to-noise ratio and the number

of samples is analyzed.
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I INTRODUCTION

1.1. Motivation

A fundamental problem in communication theory and design is how
to best detect information signals in noise. Optimal detection methods
are known but may be expensive or difficult to implement.

Suboptimum detection procedures are employed in a number of diverse
areas. Data recovery circuits in modems are frequently

based on suboptimal procedures where cost-effective implementations
trade off complexity against performance. In underwater

sound detection systems, arrays of receivers that may be quite large
are used to detect weak signals. For large arrays, the processing
required can be reduced significantly by employing suboptimal procedures
that have more modest computational requirements than the optimal
processing. Digital receivers for systems employing time or frequency
spreading techniques have large time-bandwidth products and must process
a large pumber of samples. Simplified versions of digital natchea
filters offer flexibility, reliability, speed, compactness and cost
efficiency.

In order to assess, compare and choose alternative detection
procedures for a given application, the commnications engineer requires
knovledge of the performance of the schemes. This is one of the
principal objectives of this tesearch.v The performances of a number of
ad hoc detectors are analysed. The rgsults are useful for performance
evaluation of existing designs as well as for initiating new designs in

data Trecovery and signal detection systems.



Another principal objective is to investigate the optimality of
the schemes employed. In particular, given certain processing constraints,
what are the optimum detection schemes? The results of this investigation
will provide theoretical limits for the performance that can be achieved
by systems operating with particular hardware or processing limitations.
The thesis research has industrial as well as academic significance.
In the short term, the results will provide answers that
will enable product designers to construct improved receiver subs&stems.
In the long term, the development of theory of suboptimal detection
procedures entails dealing with some fundamental issues regarding the
properties and the components of the losses incurred by
these processes. A better understanding of signal detection will come

from the theory developed.

1.2. Scope of the Thesis

This thesis considers suboptimum detection procedures. Both
theoretical and numerical results are presented. With the exception of
section 4.6, the work deals with binary systems. The emphasis is on
evaluating the performance of the detectors with the performance measured
in the Bignal detectability sense. That is, the probability of error is
used as the performance criterion.

The thesis is concerned throughout with the processing of sets of
signal samples. The analysis and results are cast in the context of data
recovery in digital communication receivers. The mathematical techniques
and the results, however, are quite general and apply to a wide range of
problems. The signal samples may, for example, be from a diversity

digital communication system, or a radar or sonar signal detection system.



The effects of hard-limiting on signal detectability are investigat-
ed in detail. The relations of the detector losses to the number of
samples processed, the signal-to-noise ratio, and the processing algorithm
are of central interest.

In order to gain insight into the principal mechanisms and relations
of the detector losses, some simplifying assumptions have been made. 1In
particular, it has been assumed that there is negligible intersymbol
interference (IS1) and that bit synchronization is available.

1S1 is not present in pulse detection systems. Furthermore, many
communication systems operate with little or mo ISI. Low speed modems
for telephone channels and radio modems are two examples. The present
results also apply to 1ISI channels when the received signal has been

equalized.

The method used to obtain bit synchronization is not of particular
interest here. Timing recovery circuits can provide bit synchronization
vith less than a few percent jitter. The effects of this jitter on the
penalties of the detectors 1s of minor importance as consideration of
the binary eye indicates.

Some of the results of this thesis have been reported earlier in
the journal papers, "On the Performance of Three Suboptimum Detection
Schemes for Binary Signalling" [7]), "Optimal Detection of Hard-Limited
Data Signals in Different Koise Environments" [8], "Penalties of Sample-
and-Sum and Weighted Partial Decision Detectors in Gaussian Noise" [9],
and the conference papers, "A Comparisoh of Three Suboptimum Detectors
for Binary Signalling"{32), "On Hard-Limiting in Sampled Binary Data
Systems" [33], "The Optimal Hard-Limiting Detector for Data Signals in
Different Noise Environments"[10), and "Penalties of Weighted Partial

Decision Detectors in Gaussian Noise'[34].



1.3. Review of Relevant Work

A review of work relevant to this thesis is given in this section.
Brief comments on the methods used and the results obtained are given
for each reference. The reader may find it helpful to refer to the
glossary for explanation of some of the terms.

Tozer and Kollerstrom [1] have considered the penalties of hard
decision in the detection of binary antipodal signals in additive white
Gaussian noise. In this analysis, short subsections of the signal are
detected, giving a number of hard binary decisions. The subsections of
the signal are constrained to be of equal energy and are detected by
appropriate matched filters. The data polarity is recovered by using
majority rule on the subsection decisions. This detection scheme is
compared to the optimum detection achieved by using an analogue matched
filter over the entire signal duration. It is shown that for a large
number of independent subsections and small signal-to-noise ratios a
penalty of 1.96 dB is incurred.

Milutinovic [2,3,35,36] has described a suboptimum detection pro-
cedure based on weighting partial decisions. This work considers binary
signals in additive white Gaussian noise. The detection algorithm is
based on two counters, Bo and Bl’ The received signal is sampled M
times in the duration of one signalling element. Each sample is
compafed with a threshold value and, depending on the oﬁtcome, counter
Bo or Bl is incremented by a weight which depends on the sample index.
After M partial decisions, the transmitted signal 1is determined by a
comparison ofAthe two counters. The weights are chosen toAbe proportional

to the distance between the two transmitted signals at the sampling



instant. Also considered is an algorithm based on binary partial
decisions. In this scheme, all samples are weighted equally.

The performance of the two suboptimum detectors is compared to
that of a digital matched filter. The penalty is computed for a particular
set of antipodal signals for three values of sample size M., The results
are example specific. It is found that the penalty of the weighted partial
decision detector is about 2 dB for all three values of M and increases
slightly with increasing signal-to-noise ratio. The penalty of the binary
partial decision detector is about 3 dB for low signal-to-noise ratios
and increases sharply as the signal-to-noise ratio becomes large.

Lockhart [4] has considered replacing analogue filter and analogue
detector circuits in data receivers by digital networks designed from
truth table specifications. A method of compiling the truth tables from
received signal probabilities is presented. The technique is illustrated
by an example. The detection of binary antipodal raised cosine signals
in the presence of Gaussian noise is examined. The received signal
samples are assumed to be independent. The performance of the digital

network is compared to that achieved by using & single sample

detector. An error probability versus signal-to-noise ratio curve is
presented for each scheme. It is noted that the proposed scheme performs
better. It is also noted that the truth table is valid for all values
of signal-to-noise ratio and can be derived more directly by considering

a hard-limited received signal filtered by a nonrecursive matched filter.



The algorithm presented by Lockhart is an application of the
maximum aposteriori probability (MAP) rule to the situation where there
are a number of independent hard-limited received signal samples and the
transmitter signal set, as well as the noise statistics are known. The
independence assumption will require that the noise be white or that
appropriate filtering of the received signal be done. The computationally
direct method of considering the hard-limited, nonrecursively matched
filtered signal samples is the weighted partial decision algorithm
described by Milutinovic {2,3]. For the signa;ling waveform and the
number of samples considered the MAP rule and the weighted partial
decision algorithm yield the same truth table. In general, however, the
MAP rule truth table will depend on the signal-to-noise ratio and the
two procedures will not be truth table equivalent.

Chie [5] has investigated a simplified digital detector which
performs only additions on the noisy signal samples. In this analysis,
the signalling waveforms are antipodal nonreturn-to-zero (NRZ) pulses |
and the sdditive noise is white and Gaussian., The detector prefilter is
assumed to pass the signal without distortion. BRence, all the signal
samples have the same magnitude and there is mo ISI. It is also assumed
that perfect synchronization is available.

Numerical results are presented for a typical implementation
example configured with sixteen samples and a four bit analogue-to-digital
converter (ADC). The sensitivity of the detector performance to the
number of samples processed, the number of ADC bits, and the ADC loading

is examined, each individually. For this example, it appears that four

bit quantization performs almost as well as quantization with an



infinite number of bits and that very little can be gained in
performance by using more than sixteen samples.

Chang [6] has also investigated the sample-and-sum detector examin-
ed by Chie [5]. Again, antipodal NRZ signals in white Gaussian noise are
considered. The performance degradation of the detector is related to the
bandwidth of the prefilter, the sampling rate, and the number of quantizat-
ion levels. The distortion of a single pulse resulting from the prefilter
is dealt with in the analysis, but the effects of ISI are assumed to be
negligible. Perfect synchronization is assumed throughout. It is con-
cluded that, for the examples investigated, a prefilter bandwidth on the
order of twice the bit rate is adequate and that three or four bit

quantjization is almost as good as infinite quantization.

l1.4. Outline of the Thesis

In this section, an outline of the thesis is given. The principal
results of each chapter are described in turn.

Chapter two introduces three suboptimum detection procedures: the
Sample-and-Sum (SAS), the Weighted Partial Decision (WPD) and the Binary
Partial Decision (BPD) algorithms. The bit error rate performances of
these detectors are analysed for large time-bandwidth product conditions.
This 1s first done for binary antipodal signals and it is then shown
that the results may be generalized to arbitrary binary signals. The
relation among the losses of the three séhemes is presented.

In chapter three, the performances of the three detectors for
large time-bandwidth systems with dependent samples are conside?ed. It

is shown that, in some cases, the losses of the suboptimum schemes can



be reduced by processing more, dependent, samples. The amount of the
loss recoverable is related to the prefilter shape and the sampling
rate.

The stfucture of the optimum, minimum probability of error,
detector for hard-limited samples is presented in chapter four. Whereas
previous chapters have dealt with large time-~bandwidth product conditions
and Gaussian noise, the results of this chapter are general and apply to
an arbitrary number of samples and most common noise environments. The
optimum detector for M-ary signalling with each received sample quantized
to an arbitrary number of levels is also derived. Again,‘the result is

valid for most noise distributions.

In chapter five, the penalty associated with the use of the WPD
detector in Gaussian noise is examined in detail. The effects on the
penalty of the signalling waveform employed, the number of samples
processed, and the signal-to-noise ratio are examined. Two common ad
hoc choices of weights are considered as well as the optimum weights.

The performance degradations of the SAS and BPD detectors are
analysed for arbitrary SNR's in chapter six. The effects on the penalties
of the signalling waveform employed and the number of samples processed
are also considered in detail. The relationship among the losses of
the SAS, BPD and WPD detectors for low SNR and finite sample sizes is
derived.

Finally, chapter seven gives a more detailed summary of the results

of the thesis research and suggests some topics for further research.



II PERFORMANCE COMPARISON OF THREE SUBOPTIMUM DETECTION SCHEMES

FOR BINARY SIGNALLING

2.1. Introduction

In this chapter, the problem of detecting one of two equally likely
signals using digital techpiques is addressed. The case of antipodal signals
is first considered and it is then shown that the results are readily gener-
alized to arbitrary signals. The model considered is shown in figure 2.1.
Depending on the message me{0,1} to be transmitted, & signal +s(t) or =-s(t)
is sent over the additive white Gaussian moise (AWGN) channel. The two-sided
power spectral density of the moise process n(t) is assumed to be N°/2. The
signal s(t) 1s assumed to be non-zero only in the time fnterval [0,T] sec.
and bandlimited to B Hzt. The received signal r(t) is filtered to remove
excess out-of-band noise producing the signal v(t) which is then processec
by the detector.

The detector samples the signal v(t) at a rate of 2B samples per
second, yielding a total of M = 2BT noisy samples of the transmitted signal.
A consequence of this sampling rate is that the (Gaussian) moise saumples in
v(t) will be fodependent [11). Furthermore, in order to ensure that the
transmitted signal s(t) is essentially undistorted by the receiver filter, we
require that

M= 2BT > 1. (2.1)
Exactly how large M should be depends {n part on the shape of s(t). I1f s(t)

1s fairly swooth (e.g. @& sinusoidal wave) then a value of 10 wuld suffice.

t Strictly speaking, a time-limited signal cannot be completely bandlimited.
However, for practical txrpoces. all the signal energy will lie within &
frequency range of B >> T
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On the other hand if s(t) has sharp transitions (e.g. & square wave), then a

larger value of about 100 is required. These values of M are sutficient to
T ,

| 1s(t)-s(t)|dar

keep p 2 g - , where s(t) denotes the output of the filter, to
| ls(t)ar
0

less than 1.5%.
It is well~known [11] that the optimum detector for minimizing the
A
probability of error P(e) [ Pr{m *m} in the above problem is the digital

matched filter (DMF). 1Its operation can be described as follows: Let

vy =8 + n, {i=1,2,...,M (2.2)
denote the M samples of v(t), i.e. v, - v(lg), which are to be processed.
The values { si)r_1 denote the samples of s(t), 1.e. s, = s(ig) and the
{ nilf_lare independent Gaussian noise random variables with means O and

variances cﬁ - BNO. The DMF computes

M
& ] wv,s (2.3)

D
1=1 11

OPT

A
and decides ; =0 4if DOPT > 0; otherwise it declares m = 1. The resulting

probability of error is given by [11]

| 2E.
P(e) = o(/5) (2.4)
[+

11



1 -_2
where £ # J s2(t)dt 1s the energy of s(t) and Q(a ) - J e /24y,
: & 0 2y a

Equation (2.4) gives the error probability for an analogue matched filter.
It is also valid for the DMF when M is large.

We note that the DMF requires M multiplications and (M-1) additionms.
A number of suboptimal schemes [ 1-10,12,13] have been proposed which
have more modest computational requirements. These include the Sample-and-
Sum (SAS), the Weighted Partial Decision (WPD) and the Binary Partial
Decision (BPD) detectors. Previous analyses of these suboptimal schemes
have been confined to specific signalling waveforms s(t) and specific
(small) values of M. In the following sections, an analysis of the
penalty incurred by each of these schemes for an arbitrary signalling
waveform and large values of M is given. The penalty is defined as the
increase in signal energy required by a suboptimum detector im order to
achieve the same error probability as a digital matched filter (in the
large sample case,‘this is the same as the error probability of the

analogue matched filter). Examples illustrating how the penalties vary

with M are also included. Note that the model used implies a small signal-
to-noise ratio condition. The results, therefore, are valid for small

signal-to-noise ratios. This restriction is removed in chapters 5 and 6.

' ' (2.5)
2.2. The Sample~and-Sum (SAS) Detector
The SAS detector [5,6,13] computes the quantity
AH (
2.5
Dg,s ¥ 1 v, sgnls)) )

i=]

+1 1f 0 . .
where sgn(x) =¢ O 4f x=0 , and declares m = 0 1if DSAS > 0. Othervige, m =1
-] 4f =<0



Comparison of (2.3) and (2.5) shows that the SAS detector avoids
The

is decided.
sultiplication by mot weighting the samples of the received signal.

resulting penalty is mow analyzed.

Civen m = 0, 1.¢. +s(t) s traosmitted, the mean of DSAS is given by

M
=) s (2.6)

|
g1 1

DSAS

and the variance of DSAS is given by

Dy " "

SAS
= MBN
[e]
MN
0 2.7

2T °
An error will be made 1f DsAs € 0, We nmote that since DSAS is the sum of

Gaussian random variables, it is itself a Gaussian random variable. Thus,

1= ) . (2.8)

By symmetry,

P(e) = P(e|w=0) = P(elm=l).

Bote also that

13
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M T
1lim )) '91' -;% = [ {s(t)|dt. Therefore, as M+,
M+ i=] 0

P(e) = Q (/32 <Js(e)}>) (2.9)
[«

T
where <|s(t)]> -% ] |s(t)}dt represents the average magnitude of the
0 :

signalling waveform s(t). I1f we define

E
as= & , (2.10)

'r{<ls(:)l>}2

equation (2.9) can be rewritten as

,25s
P(e) = Q(/—=5) - (2.11)
(]

By comparison of (2.11) with (2.4), it can be seen that to achieve the same

value of P(e), the SAS detector uses a times the energy required by the DMF
detector. For a constant s(t), a = 1 as might be expected. (It can be shown
using Schwarz's Inequality [11] that the minimunm value of a is 1.) However,

for a sinusoidal gignalling waveform, a= 12/8 or 0.912 dB.



2,3. The Weighted Partial Decision (WPD) Detector

In the WPD detector [2], the necessity for multiplication is avoided
by ignoring the magnitudes of the received signal samples and using only

their polarities. The decision is based on

M

Do 5;2& sgn(v,) * s, . (2.12)

1f DHPD > 0, ; = 0 is declared; otherwise D =1 is declared. In an actual

implementation, two accumulators AO and A1 could be used. If v1 >0, Ao is

incremented by 8 and 1f \A < 0, then A.1 is incremented by 8, . In the

(unlikely) event that v, = O, neither accumulator is incremented. After all

i

M samples have been processed, the contents of AO and Al are compared to

determine ;.
We now proceed to calculate P(e) for the WPD detector. S8ince by
symmetry, P(e|m=0) = P(e|m=1), we assume with mo loss of generality that

m=0, i.e. +6(t) 15 sent. In this case, we can rewrite (2.12) as

M
Durp -12i n1[s1| . (2.13)

where the partial decision random variable D1 is defined by

+1 1f sgn(vi) - .gn(si) 0
D 0 1f either ogn(vi)-o or agn(si)-o .
~1 otherwise

(2.14)

15



It follows that P(Di-l) = l-pi and P(Di-—l) =P where

P = P(n1>,51')

- o /2 1s,1) - (2.15)
(o]

2
The mean and variance of Di'si‘ are given by (1 2p1)!si! and 4p1(1-p1)’sil
respectively. Under certain conditions which are satisfied in this case, it

can be shown [14] that as M=, D has the asymptotically Gaussian

WPD
distribution

M

M
n( 1 G-2plsls §o4p Gl 1),

i=]1

Using this result, it is shown in Appendix A for small signal-to-noise

ratios that the probability of error for the WPD detector as M+e is given by

4E
P(e) = Q( J57)- (2.16)
R |

It is interesting to mote that for large values of M, the WPD detector uses-g
times the energy required by the DMF detector to achieve the same value of
P(e). This penalty of 1.96 dB is independent of the specific signalling

waveform used, in contrast to the SAS detector in which the penalty does

depend on the shape of s(t).

16



2.4. The Binary Partial Decision (BPD) Detector

The BPD detector can be considered as a special case of the WPD
detector in which the information regarding the magnitude of the sample
values {si}?_1 is not used. This results in a simple implementsation in which
a counter (initially reset to 0) is incremented or decremented by 1 depending

on the polarities of A and 5, Specifically, define

p.. &7 (2.17)

A
wvhere D1 = sgn(vi) * 8gn (si). as in (2.14). Then if Depp > 0, m= 0 is
declared; otherwise ; = ] 18 decided. It can easily be seen that the
detector will make an error i{f and only if & majority of the M samples have
had their polarities reversed by the channel moise. Proceeding as in section

2,3, it can be shown that as M*=, D has the asymptotically Gaussian

BPD
distribution

(Y 3 )
n (1-2p,) , 4p (1-p,) ).
1=] 1" 4 44

Using this result, it is shown in Appendix B that the probability of error

for the BPD detector as M+ ig given by

ZE
Pe) = Q ( '—R‘—a ) (2.18)
[o]

17



where a is as defined in (2.10). Compared with the DMF detector, we see that
the BPD detector is 10 1°gloG;§) = 1.96 + 10 log, o dB less efficient. We
note that the penalty can be interpreted as consisting of 2 components: 1.96
dB is lost because decisions are based only on the polarities of the received
signal samples (mot on their magnitudes) and 10 logloa dB is lost because
equal weights are being given to received signal samples even though the
sample corresponding to a large !sil 1s less likely to be in error than the
sample corresponding to & small |51|' These 2 components correspond to the

losses resulting from the WPD and the SAS detectors respectively.

2.5. Generalization to Arbitrary Signalling Waveforms

The results of the three preceeding sections can be easily generalized
to arbitrary signalling waveforms. Let so(t) and sl(t) denote any two
finite-energy waveforms defined on [0,T]. This set of signals can be

transformed into a set of binary antipodal signals by defining

Io(t) + .l(t)
s(t) = 8,(t) - 5 | (2.19a)
and ‘
s (t) + s, (t)
8, (t) = s, (¢) - 3 . (2.19b)

This transformation subtracts the arithmetic mean of the two signals from
each signal. The results derived in the previous sections then apply

{ s2(t), 81(t)}
directly to "0 ' 8 + where ES is to be interpreted as the energy
in sé(t) or s{(t). The energy Es of (2.4), (2.11), (2.16) and (2.18) can

be related

18



to the signals so(t) and sl(t) by noting that

T 2
E = fo [s5(t)]° dr

T
1
-2 [E . + 1-:51 -2 fo so(t) s, (t) dt ] (2.20)

where Es , i=0,1, is the energy of si(t). Of course, if sl(t) = -so(t),
i
T
E - Eso - Esl. On the other hand, if 1-:so - Esl and fo 8,(t) 8,(t) dt = 0

E
8

corresponding to'binary orthogonal signalling, Es - -ig leading as expected

to a loss of 3 dB relative to binary antipodal signalling.

2.6. Discussion

The asymptotic losses associated with the use of three suboptimum

detection schemes have been analyzed. Table 1 gives a summary of the results

as applied to three specific signalling waveforms.
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Losses relative to DMF detector (dB)
Waveform SAS WPD BPD
Square 0 1.96 1.96
Sinusoid 0.912 1.96 2.87
Raised 1.76 1.96 3.72
Cosine

Table 1 - Asymptotic losses for suboptimum.schemes.

As indicated below, these asymptotic values are reached quite rapidly. The
losses for the SAS, WPD and BPD detectors are plotted against the sample size
M in figures 2.2 - 2.5. 1In figures 2.2 and 2.3, a sinusoidal signalling
waveform 1s assumed, whereas a square signalling waveform is used in figures
2.4 and 2.5. For each figure, a target value of P(e) is used. In figures
2.2 and 2.4, this value is 10“3 and in figqres 2.3 and 2.5, it is 10-7.
The losses represent the increase in Es required-to achieve the same

target value of P(e) using the suboptimum detector and equation (2.4)

respectively.

The plots in these figures wﬁre obtained numerically using & VAX-
11/750. Llosses were calculated for each suboptimum scheme for different
(0dd) values of M. It should be moted that the distortion of the signalling
waveform which wuld result for small values of M was taken into account in
these calculations. Details concerning the computation of P(e) are given in

Appendix C. Recall that the samples are .paced-% sec. apart, The first

20
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Figure 2.2. The penalty as a function of the (0odd) sample size M. The signalling waveform
is a single sinusoid. Curves B, D and F (A, C, E) are for the best (worst) choice of

sampling starting time for the BPD, WPD and SAS detectors respectively.
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Figure 2.3. The penalty as a function of the (0odd) sample size M. The signalling waveform
is a single sinusoid.  Curves B, D and F (A, C, E) are for the best (worst) choice of

sampling starting time for the BPD, WPD and SAS detectors respectively.
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Figure 2.4, The penalty as a function of the (odd) sample size M. The signalling waveform
is a square-wave. Curves A and B are for the worst and best choice of sampling starting
time respectively for the BPD and WPD detectors. Curves C and D represent the worst and

best choice of sampling starting time respectively for the SAS detector.
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Figure 2.5. The penalty as a function of the (0odd) sample size M. The signalling waveform
is a square-wave. Curves A and B are for the worst and best choice of sampling starting
time respectively for the BPD and WPD detectors. Curves C and D represent the worst and

best choice of sampling starting time respectively for the SAS detector.
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sample can be chosen anywhere in the interval (0 ,-%). The difference in
losses obtained by selecting the best and the worst times for the‘first
sanmple 1s also indicated in the figures. As would be expected, the time of
the first sample has little effect on the losses for large values of M.
Figure 2.2 shows that with the sinusoidal signalling waveform and
P(e)=10-3, for M greater thah about 15, the SAS, WPD and BPD detector losses
are within 0.05, 0.03 and 0.25 dB of their asymptotic values. For P(e)=10"",
figure 2.3 shows that the corresponding figures are 0.1, 0.2 and 1 dB
respectively. For square wave signalling, the WPD and BPD detectors are
equivalent. From figure 2.4, it can be seen that for P(e)=10-3, and M
greater than about 15, the SAS and WPD detector losses are within 0.5 dB of
their asymptotic values. For & smaller value of P(e)=10-7, figure 2.5

indicates roughly the same behaviour.



III EFFECTS OF OVERSAMPLING ON THE PERFORMANCE OF THREE

SUBOPTIMUM DETECTION SCHEMES

3.1, Introduction

In chapter 2, the penalty incurred in the use of three suboptimum
detectors was analysed. The filter characteristicsland the sampling rates
used in the analysis guaranteed the independence of the received signal
samples. In this chapter, the effects of sample dependence on the penalties
are examined. The effects of oversampling are analysed for Butterworth,
Gaussian and ideal lowpass filters as well as for a cascade of N identical
poles.

The receiver model is shown in figure 3.1. The case of antipodal
signals will be analysed but the results can be generalized to arbitrary
binary signals by using the transformation of section 2.5.. Depending on the
message me{0,1} to be transmitted, a signal +s(t) or -s(t) is sent over an
additive white Gaussian noise (AWGN) channel. The two-sided power spectral
density of the noise process 1is NO/Z. The signal s(t) is assumed to be
non-zero only in the time interval {0,T] sec. and bandlimited to B Hz. The
received signal r(t) is filtered to remove excess out of band noise to
produce the signal v(t) which is then processed by the detector. The lowpass
filter has 3dB cutoff frequency B.

| Tﬁe detector samples the signal v(t) at a rate of 2cB samples per
second yielding a total of M = 2¢BT noisy.samples vy =8y + n, of the
transmitted signal where f = f(li—:—%LélZ) and the {ni};{_1 are Gaussian (not
necéssarily independent) noise random variables with means O and variances
onz. The parameter ¢ may be thought of as the oversampling factor.

Increasing c gives more, dependent, samples for processing. There are a
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maximum of M = 2BT independent samples available from an ideal lowpass filter
corresponding to ¢ = 1 and sampling frequency fs = 2B [11]. The normalized
sampling rate is ¢ = fs/ZB. In order to ensure that the transmitted signal

is essentially undistorted by the receiver filter, we require that
M = 2BT >> 1. (3.1)
The ideal lowpass filter admits noise power anz = NOB. In general,

2 -
A R (3.2

where

AR S IR LICILE: (3.3)

is the normalized noise bandwidth of the filter and H(f) is the amplitude

response of the filter. One has [18,19]

|B(£)]|2 = [1 + (£/8)2)-1 (3.4a)
N-th order Butterworth

|B(£)]2 = [1 + (f/n)z(zllN -1 (3.4b)
cascade of N identical poles

- 2
¢ (£/B)“2n2 (3.4¢)

Gaussian

lB(£)|? =

28



for the N-th order Butterworth, the cascade of N identical poles and the

Gaussian filter respectively. Using (3.4a3) - (3.4c) and (3.3) gives

- L3
Yn T 2N sin[n/2N] (3.5a)
N-th order Butterworth

_ 1365+ eee (2N = 3=

n
/2N TN ey

cascade of N identical poles

/ n \
LA 48n2 (3.5¢c)

Gaussian

Y (3.5b)

for the N-th order Butterworth, the N-pole cascaded and the Gaussian filter

respectively.

3.2. The Sample-and-Sum (SAS) Detector with Dependent Samples

The SAS detector with dependent samples computes the quantity

M

= 2 visgn(si) as described previously in section 2.2. The

D
SAS {=1

penalty may be determined by proceeding as was done there.
Given that m = 0 is transmitted, the mean of DSAS is given by
M

D, -izllsil and the variance of Dg,. is given by
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M M
o2 = E[(Deye = De,e)?] = E[(] v,sgn(s,) ~ ] |s,|)?] (3.6)
DSAS SAS SAS {=1 i i {=1 i

vhere E[x] denotes the expected value of x. The square in (3.6) may be

expanded and the terms rearranged to give

- M-1 M
2
o? o? M{1 + 3 121 Jziﬂsgn(sisj)rn(j 1)} (3.7)

where rn(j-i) - E[njnillE[(ni)Z] is the normalized autocorrelation of the
noise which is assumed stationary.
I1f the signalling waveform s(t) is continuous on 0 ¢ t < T and single-

phase, 1.e. s(t) > 0 for 0 < t < T, then (3.7) gives

o? f1+3 Mil % »)
-2 M1+ r (D} . (3.8)
Dsas  ® SPEIR = UL

Using the result [20] that

1 Hfl I e(h=1 c(d
lim = r(j) = r (3
M+ M gel gm1 P g=1

whenever the series

.® i
1r (3 =1lin Elrn(j) (3.9)
i=1 {40 4=
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is convergent with (3.8) gives for large values of M

oy = o M1 +2 E r (D} _ (3.10)
SAS i=1

when the series (3.9) converges.

Let the term split-phase refer to a signal s(t) which is continuous on
the interval 0 < t < T and which satisfies the conditions signum{s(tA)} .
signum{s(tB)} = -1 for (0 < t, < T/2, T/2 < ty < T) and s(T/2) = 0. Then
result (3.10) is valid for split-phase signals. This is proven from (3.7)
by proceeding as in the single-phase case. The following analysis applies
to all signalling waveforms which satisfy (3.10).

The random variable DSAS is Gaussian since it 1s the sum of jointly
Gaussian random variables. Therefore, (3.1), (3.2), (3.10) and (2.10)
give

Pe) = P(eImSO) = P(e|m=1)

= Pr(Dg,<0) = Q{dg,g/op !

SAS
M
/2cT ] syl
i=1
-Q{ \
W yN[1+2)r (1))
n o i-ln
2cE 3
- Q | g } . (3.11)

y_ a |1 +2 r_(1)]
etliez Ie,
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Comparison of (3.11) with (2.4) shows that to achieve the same error
probability as the optimum detector, the SAS detector with dependent samples

requires aTn more energy where

ro=vy {1+ 2i§1rn(1)}/c . (3.12)

The loss represented by Fn.is in addition to the a loss described in section
2.2. One observes from (3.12) that Pn has two components. The factor Yn
arises because a filter with finite roll-off admits more noise than an

ideal filter with infinitely sharp cut-off. The sum 2 rn(i) results from
i=1

the dependence of the samples.

It 18 interesting to consider'I‘n for the ideal lowpass filter. 1In

sin(ni/c)
this case, Y, " 1 and rn(i) - G Using the fact that the Fourier

sine series representation for the function f(x) = n - x, 0 < x < =, is [21]

£(x) ~2 ] 2inix
1=1

gives for x = %n/c withe > 1,

sin (ni/c) _

2L oo mett



where convergence 1s guaranteed By a Fourier Theorem. Hence, Fn-‘ 1 for all
values qf ¢ > 1 for the ideal lowpass filter. That is, processing more than
the maximum number of independent samples neither ifmproves nor deteriorates
the performance when (3.1) is satisfied. Note also that the loss, a,
incurred by not weighting the samples is not retrievable in whole or

in part by oversampling.

In the general case, the normalized autocorrelation rn(t) of filtered
white noise is related to the filter characteristic by the Wiener-Khintchine
theorem [22}. That is, rn(t) is the normalized inverse Fourier transform of
the squared magnitude frequency response of the filter. Starting from

(3.4a) - (3.4c) one may derive

N
22-1 23-1 23-1
r (7) = sin(n/ZN)leexp[-ZnBltlsin (555 ®)1 sin{=55= = + 2nB|t|cos(S5n)}

Nth order Butterworth (3.132)

N-1 k / \
_ _(N-1)! -b|<] (2N-k-2)1(2b]<]) - 1/N_
() = oyt © | kzo KT (R-k-1)1 » b= 2mB/y27 -1

cascade of N identical poles
(3.13b)

-t27282/ gn2

rn(t) = e
Gaussian (3.13¢)

for the N-th order Butterworth, the cascade of N identical poles and the

Gaussian filter respectively. Figure 3.2 presents rn(T) as a function of
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Figure 3.2, The normalized autocorrelation function rn(t) of white noise filtered by a

Butterworth lowpass filter of order N. The ideal lowpass fllter corresponds to N = <,
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Bt for the Butterworth (N = 1-4) and ideal lowpass filters. Figure 3.3
shows rn(t) for the cascaded pole (N = 1, 2, 4, 6) and Gaussian filters.

The terms in the sum of (3.12) occur at time instants

t, = 1/2cB. Therefore, equations (3.13a)-(3.13c) combined with (3,12)

i
and (3.58)-(3.5c) yield, after some manipulations,

x -E-sin LTy
+ 2 -
P i'( - {1+’in{55) g sin(a,+ = cos a,) - e sin a, -
R cefsinlx =1 cosh(Z sin 8,) - cos(Z cos a,)
c P S c 3
22-1
- L N~th order Butterwvorth (3.14a)

8 "

r

o 103050 eee (N-Bym g, 2(N-D1) 'ie-ah

a QDT L
/27N ¥ -1y te 1=1

Nl erentem® | p. =

k! (N~k-1)!
k=0 ( ) e/ 20/ =1

cascade of N {dentical poles

[_J
1 x -12x2/4c22n2
Ip=cJame U2 121 . b -

Gaussian (3.14¢)

(3.141)

The quantity rn 1s plotted as a function of the normalized sampling rate
€ /2B = ¢ in figures 3.4 and 3.5 for Buttervorth and cascaded pole filters
s

respectively. Also shown in figure 3.5 43 the curve for the Gaussian filter



rn(Bt)

. 1.0

0.75

0.50

0.25

Bt

Figure 3.3. The normalized autocorrelation function rn(t) of white noise filtered by a

cascade of N identical poles. The Gaussian filter corresponds to N = =,
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Figure 3.4. The additional penalty Pn for the SAS detector with a Butterworth

prefilter of order N.
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Pigure 3.5. The additional penalty Pn for the SAS detector with prefilter

consisting of a cascade of N identical poles.

The Gaussian prefilter corresponds
to N = o,
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which corresponds to a cascaded-pole filter with N = «. 1In all cases,
Tn decreases with ¢ and %ig Pn = 1. Using the Wiener-Khintchine theorem, it
can be shown that %12 Pn = ] for any filter provided that rn(t) is

integrable.

3.3. The Weighted Partial Decision (WPD) Detector with Dependent Samples

The WPD detector with dependent samples bases its decision on

M M
D= ) sgn( v, )es, = )} D,|s,| (3.15)
weD ~ L SRS SN St

as described in section 2.3, The error probability is found by proceeding as
previously. That is, the mean and variance of DWPD are derived and a central

1limit theorem is used to approximate the error probability for large values
of M. The partial decision random variables D1 are now permitted to be
dependent. In order to proceed, we postulate that a central limit theorem
holds for certain sums of dependent random variables. Many central limit
theorems for dependent random variables formalize in some sense a heuristic
notioﬂ that one expects a central 1imit theorem to hold if the random vari-
ables behave more like independent random variables the further they are
geparated [23]. The dependent random variables considered here behave in
this fashion. Computer simulations are used to test the validity of the
postulate and to i1llustrate how the penalty varies with M.

When a general filter and dependent samples, as described by (3.1)

and (3.2), are considered equation (2.15) must be replaced by



p, = Pr(n>]s, ) = qf izTo b lb - (3.16)

The mean and variance of Di|si| are again given by (1-2pi)|si| and

lspi(l-pi)|si|2 respectively. The mean of D is found from (3.15)

WPD

Dupp ™ 1§ (1-2p,) s, | ' (3.17)
and the variance of DWPD is

°‘2’m = E[ (D ppDypp)?] = E[(izlnilsil-izlvilsil)2]

M ) M .
- 121 1|B | + Z E |81||s | {E[ i 3 DiDj]} . (3.18)
1#3

It is shown in Appendix D that for large values of M

E[D,D ] -D D %arcsin {r (-0} (3.19)

13

where the noise process is assumed to be stationary. Then (3.18) can

be rewritten as
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M M M
o2 = ) a2 |s,|%2+ 2 ) s.||s,larcsin{r (§-1)} . - (3.20)
i T T N LT j:zsll ille a3}
1#3

By proceeding as in Appendix A with Py given by (3.16), it may

be shown that for large values of M

M ) MEs
iZIO%iISiI g —T- (3.21)

and
- [/ 4cM ’
DWPD L4 ;ﬁ;;—f EB . (3.22)
n

Furthermore, it is proven in Appendix E that as M

M M ®
T

Y I ls,lls,larcsin{r_(3-1)} = 2 § arcsin{r (1)} . (3.23)
MEggm1 g1 1) n =1 n
1#3

Combining (3.21) and (3.23) with (3.20) and (3.22) gives

4E ¢ 1
~ 8 . (3.24)

WPD oy (14 2 i}-:larcsin{rn(i)})

Applying a central limit theorem to the sum of (3.15) and using (3.24)

gives the error probability
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4Esc A\
P(e) ~ Qf }e (3.25)

nNoyn(1+ %-izlatcsin{rn(i)})

Comparison of (3.25) with (2.4) shows that the penalty of the WPD detector

with dependent samples is =/2 Fn where
A - -]
Pn = yn[1+ E-izlarcsin{rn(i)}]/c . (3.26)

The loss represented by I' is in addition to the n/2 or 1.96 dB loss of the
WPD detector with independent samples. Note that 2/m arcsin{r (1)} 1s the
normalized autocorrelation function after hard-limiting of a random variable
possessing normalized autocorrelation function rn(i) [24]. Equation (3.26)
is, therefore, analagous to equation (3.12). The functiqn 2/n arcsin{rn(Bt)}.
is shown in figures 3.6 and 3.7 for Butterworth and cascaded pole filters
respectively.

The additional penalty Pn is plotted as a function of the normalized
sampling rate in figures 3.8 and 3.9 for Butterworth and cascaded pole fil-
ters respectively. The values rn(i) are determined from equations (3.13a) -
(3.13c) with rn(i) = rn(i/ZCB). Observe that for hiéh sampling rates, the
penalty for a low order filter is less than that for a high order filter.
For example, in figure 3.8 at fSIZB = 15, rn ® -1.5dB for N = 1 while

r =-0.9dB for N=w, A similar observation was made in [25], in the
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Figure 3.6. The normalized autocorrelation function of white noise after lowpass filtering
and hard-limiting. The filter used is N-th order Butterworth. The ideal lowpass filter

corresponds to N = o,
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Figure 3.7.

The normalized autocorrelation function of white noise after lowpass filtering
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Figure 3.8. The additional penalty rn of the WPD and BPD detectors. The
prefilter is R-th order Butterworth lowpass. The ideal lowpass filter

corresponds to N = «,
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context of polarity coincidence array detectors.

3.4. The Binary Partial Decision (BPD) Detector with Dependent Samples

The BPD detector with dependent samples computes

1D - (3.27)

The probability of error is determined by proceeding as in section 2.4.

For large M,

D 1\ —\
BPD 4eT{<]s(t)|>}2 - 4cEs
33 45 ] 1+ 43 . .
nNoyn[1+ ;;Elarcsin{rn(i)} Wy @ ;;glarcs n{r ( )}
‘ (3.28)

where a has been previously defined in (2.10). Assuming a central limit
theorem holds for the sum in equation (3.27) and using (3.28) gives for

the error probability

4¢Es

Pepple) = Q (3.29)

uNoyna[1+-%;Zlatcsin{rn(i)}]

The penalty of the BPD detector with dependent samples is found by comparing

(3.29) with (2.4). It is a m/2 rn where rn is given by (3.26). That is, the
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additional penalty rn is the same for the BPD and WPD detectors and is

independent of the signalling waveform.

3.5. Conclusions

The asymptofic losses of three suboptimum detection schemes
with dependent sampling have been analyzed. In order to verify the
central limit theorem postulated in section 3.3 and to illustrate how
quickly the asymptotic values are reached, we have simulated the WPD
detector with dependent samples. Coloured Gaussian noise samples
.were generated using the method of reference [26). The signal-to-
noise ratio required to attain P(e) = 1.00 x 10-'3 is determined from
figure 3.8 and equations (3.25) and (2.4). Using a first order Butter-
worth prefilter, the simulated error probabilities for fs/ZB = ] were

3

1.13 x 10~ and 1.01 x 107> for M= 9 and M = 31 respectively. For

fS/ZB = 3 and M= 27, 93 and 303 the P(e) values were 1.77 x 10_3,
1.14 x 10-3 and 1.05 x 10-3 respectively.

It was noted earlier that better performance can be achieved
by using a first order lowpass filter rather than a fourth order
filter. This has also been verified by simuiation. Again, the SKNR
required to achieve P(e) = 1.00 x 10-3 is determined from the present
results and used in the simulator. The analysis indicates that
0.48 dB greater SNR 1is required for the fourth order filter when
both filters are Butterworth and fs/ZB = 15 for M = 1515. The

simulated error probabilities were 1.09 x 10_3 and 1,04 x 10-'3 for

the first and fourth order filters respectively. Note that an

3 4

increase of 0.48 dB decreases P(e) from 1.00 x 10~ to 5.46 x 10 .



IV OPTIMAL DETECTION OF HARD-LIMITED DATA SIGNALS IN DIFFERENT

NOISE ENVIRONMENTS

4.1. Introduction

A pumber of digital techniques for detecting £inary antipodal
signals are based on examining the polarities of the received signal
samples and ignoring their amplitudes. The weighted partial decision
(WPD) and binary partial decision (BPD) detectors analyzed in chapters
2 and 3 are two examples. In this chapter, the structure of the

optimum detector D for the hard-limited samples is derived.

OPT,HL
Its performance is compared with those of some commonly used ad hoc
detectors in both impulsive and Gaussian noise environments. For the

Gaussian case, the performance is also compared with that of the

optimum detector D which operates directly on the unquantized

OPT
received samples.

The generalization of the DOPT,HL detector to M-ary signal-
ling with each received sample quantized to an arbitrary number of
levels 1is also examined. The optimum, minimum probability of error,

receiver for this case is derived.

4.2, ‘Derivation of the Optimum Detector for Hard-Limited Samples

In this section, we derive the optimum processing for a number
of hard-limited samples. For ease of discussion, it is assumed
that the samples come from one of two antipodal signals that have been

corrupted By additive channel noise.* Depending on the message

*The analysis is extended to arbitrary signalling schemes in section
4.6.
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me{0,1} to be transmitted, a signal +s(t) or -s(t) is sent over a noisy
channel. The detector decides which message m, me{0,1} was sent on the
basis of the hard-limited samples. The optimum detector DOPT,HL minimizes
the probability of error P(e) g Pr(mo¥m).

Assume that the transmitted signals ts(t) are time-limited to the

interval {0,T). If s(t) is sent (corresponding to message m=0), then

v1.+si+ni . i= 1’2.....N§ (‘0.1)

e v@329:21T 5 be

where {v } € denote the N samples of v(t), f.e. v
1 1.1 8 i hs

processed. The values {si} ® denote the samples of +s(t) and {ni} s

i=] i=1

represent outcomes of independent noise random variables (r.v.'s). The noise
is assumed to possess an even probability density function. If the message
is m=1, then -s(t) 1is sent, and vy =<8y + n, 1-1,2,...,Ns. Each sample vy

is hard-limited by the detector according to

+1 if sgn (vi) = ogn(si) ¢ 0
D, = 0 1f sgn(v,) = O or sgn(s,) = 0 ’ (4.2)

-1 othervise

+1 1ifx>0
where sgn(x) = 0 if x=0 .
-1 1f x<C 0

 The probability that sample vy is of opposite polarity to the

transmitted sample +s1 or -s, (31¢0, v1¢0) is given by

P, - Pr(D,=1|u=0) = Pr(D,=1|==1) = Pr(y, > [s,]) - (4.3)
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The minimum P(e) detector corresponds to the maximum a posteriori (MAP)
decision rule which states that G-O is chosen if
Ns Ns
Pr({d,) |m=0) Pr(m=0) > Pr({d,} {o=1) Pr(m=1) (4.4)
i i
i=1 i=1
where di denotes a particular outcome of the random variable Di' In the case

of equally likely messages, inequality (4.4) reduces to

N
ln=0) > Pr({d,} * [w=1) . (4.5)
i

N
Pr({d,) &
i= =]

1

Let A1 denote the set of all 1's such that di.l and A_1 denote the set of all

A
1's such that di'.l' Then, the optimum decision rule is to choose m=0 if

n (-p)0 p, >0 p, O (-p,). (4.6)
1eA, 1eA_ 1eA, © feA

From (4.6), the optimum decision rule can be stated as follows: form the

statistic
Ns l-pi
dopr,m & 1 ¢ & =) s (4.7)
i=1 i
A A
if dOPT,HL > 0, =0 is declared; otherwise, m=1 is declared.

Various weighted partial decision (WPD) detectors for hard-limited

signals have been proposed [zlbvhich have the following general form. The

N
6 A
test statistic 46 d._ 2 ) d,w,, vhere {u } ° are weights assigned to the
WPD gml i1 _ 1 g=1

. A
different samples. The WPD detector chooses m=0 1if dHPD > 0 and m=1 if deD

€ 0. The weights'wa-l, w1-|sil and wi-siz'are often used. It can be seen



from equation (4.7) that the optimum weights are given by

* l-pi
w, = &n (—IT) . o 4.8)

In the next three sections, the detector D is compared to these schemes

OPT,HL

and, in the case of Gaussian noise, to the optimum detector based on the

unquantized samples {vi} ® .
i=1

4.3, Optimum Weights for Low Signal-to-Noise Ratios

In this section it 1s shown that, for most common noise models, the

optimun weights as given by equation (4.8) are well approximated by w, = lsil

when the signal-to-noise ratio (SNR) is low. Assume that the noise variables

N
{w,} ® have an identical probability density function (pdf) which is even.
i=1

This holds for most commonly used noise models such as the Gaussian, Laplace
or Cauchy pdf's. Let the ctnnﬁative distribution function (CDF) be denoted
by Fn(.)' Suppose that Fn(°) can be represented by a Maclaurin series
expansion, i.e.
o k
F(= 1 FrO S (4.9)
k=0

where Fn¥(0) denotes the k-th derivative of Fn(a) evaluated at a=0. One may
combine (4.3), (4.8) and (4.9) to obtain

. . Fpllsgl/o)

W, = ln (4.103)
1 1-F (s [/ 0)
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k
® (ls, |/0)
. k i
+ kzl Fn (0 k!

ol

- ln( - ) (4.10b)
k=1 P k!

Ty I

k
® (ls,|/0)
 § oo 12
k=1 -
- fn ( 1+ - ) (4.10¢)
T or Koy Ll
k=1 n k!

~of -

In (4,10b) the fact that the noise pdf 1s an even function has been used
and o is the noise scale parameter. For low signal-to-noise ratios, i.e.

Isillc << 1, one has

*
- 1 4.11
w, = 4F _1(0) |si!/o. ( )
since An(l + x) = x --% x2 +-% x3 4 ovs, for =1 ¢ x ¢ 1. In (4.11) it has

also been assumed that Fnl(O)#O, as is the case for a Gaussian, Laplace
or Cauchy pdf. Finally, one notes that scaling of the weights by a

*
constant does not affect the decision rule. Hence, w, may be chosen to

be approximately equal to lsi].

4.4, Optimum Weights for Bigh SNR's

In the case of high SNR's the optimun weights depend on the noise pdf.

The Gaussian, Laplace and Cauchy distributions will be considered in turn.
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4.4.1. Gaussian Noise Distribution

For a Gaussian noise r.v. of variance anz. it follows from equation

ls 1 -x¥2
(4.3) that Py = Q( 5 ) where Q(q) = — ] e dx. When the SNR is high,
_ n T a
ls"»l 1s well 1 &(31b———r—-rl (52) From (4.8)
s P g we approximate 1 y exp (- . rom 8),
“n i Zn 153 2°n2
%n
the optimun weights are approximated by
* ‘12
W .- 5 (4.12)
2°n

Since scaling the weights by a constant does not affect the decision rule

2

*
defined by (4.7), W, can be chosen to be approximately equal to 5, -

4.4.2. Laplace Noise Distribution

This distribution 15 sometimes used as a model for impulsive noise
1 _-|al/c
[11). The Laplace pdf is defined by £f(a) 5 e R

~lsgl/c
variance 2¢2. 1In this case, Py =3 e 1 . For high SNR'g, from (4.9), the

-0 g =, with

optimun weights cen be approximated by

s,
w* -t . (4.13)
i
* “, *
Since the decision rule 1s unchanged by scaling {“’:l} » Wy can be chosen as
i=1

'lii.
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4.4.3. Cauchy Noise Distribution

The Cauchy distribution defined by the pdf f(a) -—57%5;7, o qa =,

18 used to model severe impulsive noise [27]. 1In this case for high SNR's,

*
the optimun weights are epproximately given by w, = 1 as shown in Appendix

i
F.

4.5. Some Numerical Examples

In this section a8 nunber of examples are presented. These examples
1llustrate some of the issues involved in the selection of the weights and

compare the detector performances for different choices. In all of the

examples the signal-to-noise ratio is defined as 20 log;, (?A), 20 log,, e)
n

and 20 log,, E%) for the Gaussian, Laplace and Cauchy distributions
respectively, where A is the pulse amplitude.
As a first example, we consider the detection of a raised cosine

pulse, sampled Ns = 11 times according to (4.1), in Gaussian noise. The

optimum detector for the unquantized samples in Gaussian noise is the digital

N
/ s
matched filter (DMF) for which P(e) = Q{ I 8,%0 ). Figure 4.1 shows the
i=1
probability of error obtained using the DMF and the WPD detector with weights
1-p, 1-p,
ln(-—p——), s, 1, siz and 1. The xn(—p—) and 812 curves, though indistin-
i i

guishable, are not identical. It cen be seen that the use of the 512 weights

instead of the optimun weights results in little loss. However, the use of
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Figure 4,1 . Error probabilities for the DMF detector and four different WPD detectors. A

raised cosine pulse in additive white Gaussian noise 1s sampled 11 times.
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u&-l results in a substantial loss, e.g. a penalty of about 3.7 dB is
incurred at P(e)=10"" relative to D « For the same error probability an
OPT,HL
inherent penalty of about 2 dB results from hard~limiting the samples. It is

interesting to note that in certain cases, the WPD detectors with weights

1-p
‘ln(-——_i.)l 'si' and 8

> 2 gre equivalent. Examples include the case of a raised
i

i
cosine in Gaussian noise sampled Ns- 3, 4 or 6 times.
For a second example, the detection of a half sinusoid pulse sampled

Ns-3 times is investigated. This example shows that caution should be
N

s
exercised when dealing with ties. A tie occurs when d = Z d, w,=0. If
: WPD =1 i

the weights |si| are used, a tie will occur if the first and third samples
have opposite polarity to the second sample. One option in this case is to
choose message ; based on the outcome of a fair coin toss. This may,
however, lead to poorer performance than that obtained by using the optimum
MAP decision rule. This is illustrated in figure 4.2 which shows the error

probability as a function of the SNR for the WPD detector with weights
I-Pi l-pi

w, = tn{—=), |s,|, and s,2. 1In this case, the tn{——) and s 2 weights are
i Py T i i Py i

equivalent. The |31| weights detector with random tie resolution performs

poorer at high SNR's, e.g., an increase of about 1.5 dB in SNR is required to

maintain a target value of P(e)-IO’“. In this case if the decisions
corresponding to ties are properly chosen, the |sil weights detector is

equivalent to DOPT,HL'

Also shown in figure 4.2 are the error performances of the DMF detector
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Figure L4.2. Error probabilities for the DMF detector and four different WPD detectors.
half sinusoid in additive white Gaussian noise is sampled 3 times.
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and the WPD detector with u&-l. It 1is seen that the WPD detector with

optimum weights (or s 2 weights) performs poorer than the DMF detector by

i
about 1.8 dB (actually a factor of 1.5). It performs, nonetheless,
appreciably better than the equal weights detectof; e.g., to achieve
P(e)=10"", an additional 2.0 dB is required.

An example involving the detection of a raised cosine pulse sampled
Ns-ﬂ times in Lsplace noise is now considered. As discussed in sections 4.3

and 4.4, the weights lsil are nearly optimum for very low and very high SNR

enviromments. This can be observed in figure 4.3. The only noticeable

1~

P
difference between the inf P 1

) and |5 | curves occur for SNR's between -3 dB

and 21 dB. The weights wi-l detector is significantly poorer, the difference
being about 4 dB at P(e)=10"5. The w, = 812 detector performs almost as well
as the optimum weights detector. The differeﬁce is less than 0.6 dB for

P(e) < ~1076.

The last example of this section involves the detection of a raised

cosine pulse sampled Ns-3 times in Cauchy noise. The error probabdilities for
l-pi

w, = lnfs——-), lsil and 1 are plotted in figure 4.4. The weights lsil
i

detector outperforms the equal weights detector when the SNR is less than
15.1 dB. For higher SNR values, the unity weights detector has a signif-
icantly better performance. In Appendix G it is shown that in this
example with Ns = 3 gamples the P(e) of the optimum weights detector

is equal to the smaller of the P(e)'s for the weights Isi] and 1
detectors. For this example, it can easily be seen that the welghts

|si| and s 2 detectors are equivalent.

i
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Figure 4.3. Error probabilities for the detection of a raised cosine pulse in Laplace noise
sampled 7 times. Three different WPD detectors are illustrated.
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Figure 4.4, Error probabilities for the detection of & raised cosine
‘pulse in Cauchy noise sampled 3 tines. Three different WFD detectors

are illustrated.

61



However, there are signalling waveforms for which the weights lsil detector

performs much better than the weights 812 detector.

4.6. Generalization to M-ary Signalling and Multilevel Quantization

In this section, the WPD detectors for M-ary signalling with each
received sample quantized to an arbitrary number of levels are examined.
These detectors can be viewed as generalizations of the binary signalling
detectors of section 4.2. Thus, consider that the message m can now take on

one of M values, m c{l,...,M}. Corresponding to m = j, the signal s,(t) 1s

3

sent and the Ns received samples.are vV, =

i sj,i + ﬂi, i= l,Z,-..Ns,

N

je {1,2,...M] where 84,1 " sngi:%;ilI) and {ni}:1 are independent noise
s -

samples.

Let.x-(vl,vz,...vN ) denote the vector of received samples. 1In the
B

case of M equally likely messages, the minimum P(e) detector corresponds to
the maximum likelihood decision rule, i.e., choose G-j if

P (v|w=3) > Pr(v|m=k) for a1l k # 3 . (4.14)

Let each received sample Vg 1-1,2,...,Ns be quantized to one of q regions

q = [
{Ri.’.}‘!"1 and define the function d =2 1f v e Ri,l On the basis of
.ﬁ'(dl'dz»"'-dn ). the WPD detector decides on the transmitted message m.
6
The minimun P(e) detector will decide m=j if
Pr(d|o=3) > Pr(d|m=k)  for sll k ¢ 3 . (4.15)

Since the samples are independent, inequality (4.15) becomes
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N N

& ]

n Pr(dilm-j) >1 Pr(dilm-k) , all k # 3§ . (4.16)
1=1 i=1 '

Let A"~ denote the set of all 1's such that di-l' Then (4.16) can be

rewritten as

i Pr(ditllm-j) I Pr(d,=2[w=j)... T Pr(d;=qm=3) >

1eA, 1eA, 1eA
1 (4.17)
I Pr(d,=l{o~k) N Pr(d =2|m=k)... I Pr(d,=qfo=k) all k # j .
1eA 1eA
1 2
q
Defining

pi,lln - Pr(di-llm-n), i= 1,2..0.“5. L= 1’2,0--.q, ns= 1,2,00.“

and taking logarithms, (4.17) becomes

] anp + J tnop 4+ .c+ ] anp >
1£A1 1’113 1542 132Ij iEAq 1:Q|j
(4.18)
Z &n p + 2 inp + oes + Z &n p » 8ll k # 3 .
1ea,  DollR T g T Th2lk 1en  Lealk

From (4.18) it is seen that one way of implementing the optimum W%D detector
is as follows: Associate with each message an accumulator Cn’ n=l,?,...,M.
Step 1. Initialize all M accumulators to zero.

Step 2. For each {1, 1-1,2,...,Ns increment Cn by in pi.xln if and only if
Ve E Ry

Step 3. Determine the accurulator Cj with the largest value, 1.e.,

C, = nax{Cn}; declare ;-j.

J n

It can be verified that the above procedure when M=q=2 and 51 4™ 52 4
’ ]



reduces to that of section 4.2. We conclude this section by looking at an
example. Figure 4.5 shows the error probabilities for 2, 4 and 8 level
pulse amplitude modulation (PAM) for the DMF and the WPD detectors with
optimum and unity weights. In this example q=M and the term "unity weights"
refers to incrementing accumulator cn by 1 1f and only 1if v, € Ri,n' In this
example, the signalling waveforms are raised cosines and the noise is
Gaussian. The M amplitude values afe B, #3B,...,HM-1)B where B is the
amplitude of the smallest energy pulse. The M-l decision thresholds for any
sampling 1nstanf are loéated at the midpoints of the intervals between
adjacent signals. In all cases the receiver processes 5 samples. The SNR is
defined as the average value of 20 log, O(A/ °n) where A is the amplitude of
the pulse and the M messages are assumed equiprobable. The optimur detector
for the Ns unquantized samples makes its decision according to (4.14).
Furthermore, Pr(xlm'j) = gg(xjgj) vhere_gj denotes the vector of signal
samples {sj,i} and PN(-) denotes the N-fold Gaussian density of the noise
samples. Equivalent-l—y, the optimum decision is to pick the signal j that
lies closest in terms of Euclidean distance to the received vector. By
making use of the fact that the signal vectors are collinear the probability

of error for the DMF in this case can be shown to be

/N \
8
=2(1 —%)Q( 1):153, lo_) (4.19)

where 5, denotes the signal with amplitude B.
One sees in figure 4.5 that the WPD detector with optimum weights

suffers some loss relative to the optimum detection of the unquantized
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(a)

- Figure 4.5. PAM error probabilities for the DMF and the WPD detectors with optimum and
unity weights., The received signals are raised cosines in Gaussian noise sampled 5 times.

The number of signalling levels is 2, 4 and 8 for figures (a), (b) and (c) respectively.
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Figure 4.5. PAM error probabilities for the DMF and the WPD detectors with optimum and
unity weights. The received signals are raised cosines in Gaussian noise sampled 5 times.

The number of signalling levels is 2, 4 and 8 for figures (a), (b) and (c) respectively.
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Figure 4,5. PAM error probabilities for the DMF and the WPD detectors with optimum and
unity weights. The received signals are raised cosines in Gaussian noise sampled 5 times.

The number of signalling levels is 2, 4 and 8 for figures (a), (b) and (¢) respectively.
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samples. For P(e)=10"" there 1s a penalty of sbout 2.2 dB for all 3 cases.
The performance is, however, significantly better than when equal weights are
used. The differences are about 3.2, 3.4 and 3.5 dB for signalling with 2, 4

and 8 levels, respectively, for the same P(e)=10"" value.

4.7. Conclusions

The problem of detecting binary antipodal data signals based on a
nurber of hard-limited samples has been analyzed and the optimum detector has
been derived for an arbitrary noise enviromment. The optimal processing is
characterized by a set of weights. 1In ggneral, the values of the weights
depend on the signal-to-noise ratio as well as on the shape of the signals
and the probability distribution of the channel noise. The optimal weights
are approximately |Bi| for low SNR's for most noise enviromments. For high
SNR's the weights 312, ]sil and 1 are nearly optimun for Gaussian, Laplace
and Cauchy noise respectively.

In some instances, a set of weights which i1s independent of the
signal-to-noise ratio performs almost as well as the optimum weights for
practical ranges of SNR. It fs interesting to note that in these cases,
pearly optimum processing of the hard-limited samples can be performed using
only threshold decisions and additions.

The optimum detector for M-ary data signals based on samples quantized
to an arbitrary number of levels has also been derived. The processing

requires forming sums of optimized weights, analogous to the binary antipodal

case.



V PENALTIES OF WEIGHTED PARTIAL DECISION DETECTORS IN GAUSSIAN NOISE

5.1. Introduction

The performance of the WPD detector with weights w, = Isi'
has been analyzed for low SNR conditions in chapters 2 and 3. The
optimum WPD detector for arbitrary SNR was derived in chapter 4. 1In
this chapter, the penalties of WPD detectors are analyzed for arbitrary

signal-to-noise ratios. The weights w, = Isil and w, = g 2 detectors

i i i

as well as the optimum weights detector are considered. The effects
on the penalties of the signalling waveform employed, the number of
samples processed, and the SNR are considered in detail.

The optimum WPD detector is the optimum detector for hard-
limited samples and the digital matched filter is the optimum detector
for the continuous amplitude samples. Hence; the penalty of the
optimum WPD detector relative to the DMF detector represents the

fundamental loss in signal detectability due to hard-limiting in a

sanpled system.

5.2. Problem Statement

We consider the model of a data communication system shown
in figure 5.1. Depending on the message me{0,1} to be transmitted, a
signal +A s(t) or -~A s(t) is sent over the additive white Gaussian
noise (AWGN) channel. The positive constant A is a scaling factor.
The received signal r(t) is filtered to remove out of band noise and

the resulting signal v(t) is sampled at some appropriate rate.
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Figure 5.1. Block diagram of the data communication system.

NOISY

0¢



Assume that the signal s(t) is time limited to the interval {O0,T]. If

A.s(t) is sent (corresponding to m=0), then

v, = +A s1 + L i=1,2,...,M (5.1)
where {v:l}i..1 denote the M samples of v(t), 1.e. v1 = v(L—-ﬁ—l-), to be

M

M
processed. The values {si} denote the samples of + s(t) and {n}
i=] i=]

represent outcomes of independent Gaussian noise random variables, each with

variance o2. If m=]l, then -A s(t) {8 sent and vi.- -A si + o,
M
1 =1,2,...,M. The detector bases ite decision on {v,} .
i=]
It 1s well known {1] that the optimum detector for minimizing the
probability of error P(e) £ Pr{ﬁ # m} in the problem described above is the

digital matched filter (DMF). The DMF computes

Dopy & L v, 8, (5.2)

and chooses m=0 1f DOPT > 0; otherwise it declares m=l. The resulting

probability of error is

P(e) = Q( — 22— ) (5.3)
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® g2
where Q(a) 1 I e /2

T &«

dx. It is convenient to assume that s(t) is

normalized so that its maximum value is equal to 1. We define the

signal-to-noise ratio (SKR) to be 20 logloza measured in dB.

‘In this chapter, the penalties of the weighted partial decision detect-
ors are measured relative to the DMF detector. The penalty is defined as the
increase in signal-to-noise ratio required by a suboptimum detector in order

to achieve the same target value of probability of error as the DMF detector.

5.3. Weighted Partial Decision (WPD) Detectors

In the family of WPD detectors, the received signal samples are first
hard-limited. The decision as to which message ﬁ, ;e{O,l) wvas sent is based
on the hard~limited samples. Let the random variables representing these

samples be denoted by

+1 , 1f sgn (vi) = ggn (si) + 0

"D, = 0, 4f sgn (vi) = 0 or sgn (si) =0 (5.4)

-1 , otherwise .

Then the general WPD detector forms the test statistic

M
A
Depp = L Dy @ o (5.5)
i=]
M
vhere {wi} are the weights assigned to the different samples. The WPD
i=1

A A
detec;or chooses o=( 1f DHPD > 0O and =1 1f DUPD < 0. Some caution should be
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exercised in choosing m if DHPD = 0 as shown in section 4.5. The optimum

( minimum P(e) ) weights to be used in (5.5) are given by (4.8)

% 1 - Py
w = an P ) (5.6)

where Py is the probability that the i-th sample has its polarity reversed,
i.e. p, = Q(Als,|/0). The weights w =1, & = |s;| and w = si2 have also
been previously suggested. |

let B denote a subset of U = {1,2,...,H} and B 1ts complement. Then

the probability of error for a WPD detector can be written as

Po(e)= ] IB) O p, T _ (1-p,) 4 (5.7)
WEDETT 411 B 1eB 1 g€ 1

vhere

'™

» 1 ] o> ]
ieB 1¢B°

» 1 ] w= ] w
1eB 1e8¢

N'o-o

I(B) =

(=

1¢B 1eB€

In (5.7), it is assumed that 1if DWPD = 0, @ is chosen according to the out-
come of a fair coin toss. The probability of error PWPD(e) can be directly
computed from equation (5.7). This, hcwever, may involve considerable

computational effort. In some cases, more computationally efficient methods



can be used to compute PwPD(e) as described in Appendix C. An expression

for the penalty at high SNR values is derived in Appendix H, namely

% 2
121 1
erD ( _S_'Ha" ) = T"——; (5.8)
8
« 1
ieB
* * * 2 2
wvhere B € U and B has the properties that I(B ) > 0 and 2 5 < z 8,
*
ieB ieB

for all B € U for which I(B) > 0. The penalty for low SKNR values is given

by
M
22M-2 z 812
1=1 (5.9)
rWPD (2.“)0 ) b 2 ¢ *
[ I x® {] Is0 = 1 [sgl}]
all B 1¢B 1eBS
This result may be derived by applying the procedure of Appendix K to PWPD(e)

as given in (5.7).

5.4. The WPD Detector for a Piecewise Constant Amplitude Signalling Waveform

For a piecewise constant amplitude signalling waveform, the weights

= - - 2 - * 3
w =1, w l‘1|- w, = 6,% and w = w WPD detectors are equivalent. With

Isil = 1, the penalty relative to the DMF detector is defined implicitly by

n -—
I GOt a-p™? . M odd

M+1
Q(/2) = T (5.10)

i M, 1 -1 1M -% |
2 Me2 (1) p (1-p) +3 (‘g ) [p(l-p)] » M even
i e
2
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A VA
where p = Q(/TWPD( l,M,—a ) . ) and the notation rHPD (_S_,M;%) is uged to

explicitly indicate the dependence of the penalty rWPD on s g (31-‘2-'°°-SM)-

A .
M and Z . Equation (5.10) can be used to compute NeppS l,H,% ) as follows.

“JA
)-6 , one can rewrite (5.10) as

& A
Defining y '/rHPD( l,M.o

Q( A& b4 ) = T(M,¥) (5.11)

vheré

M
) 1 & » a-p™? » M odd
===

I(M,y) =
oM 4 Mg, 1 (™ M/2
) (e (A-p) "+ (n) [p(-p)]7° , M even
1= B2 2

‘and p = Q(y). From (5.11), one has

2

(o 3{T(m,») }]2

Figure 5.2 shows & plot of T ( 1,42 ) against 2 for Me1, 2, 3, 4, 10 and

2 as 8 function of y ¢ My
[ irouy 1) q Hreun |}

can be observed that the penalty is & non-decreasing function of -Aa and is

M y2

« It

11 obtained by plotting

upperbounded by 2 (3.01 dB). Explicit expressions for the penalty for small

and large SNR values are nmow examined. In Appendix I, it is shown that



M=11

0 ~ | | | | M=1

20 log; o ( Alo ) (dB)

A
Figure 5.2. The penalty TWPD ( l,M,;-) as a function of the signal-to-noise ratio for seven
values of sample size M.
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ZM-Z

(n-)

Typp( 1:M:0 ) = (5.13)

» M odd

» M even .

Using Stirling's formula it follows that lim PWPD( 1,M,0) -%t « Equation
M= :

(5.13) also shows that

I‘WPD(l,l,O) < I" (1 3,0) € «ee ( wI,D(_ll._,lo,O) < rWPD(-]-"z’O) . (5.14)

2
-a</2 )
By using the approximation Q(a) =~ e s @ > 1, 1n (5.10) it can be
Ta
shown that
2 s M even
Topp( 1,M,® ) = (5.15)
WED 2- -2 Modd .

M+l

It is also possible to determine the penalty T, D( I,M ) for large values
of M. The basic approach fs to derive an upper bound FWPD( 1 o, ) using the
Chernoff bound [28,29] and to show then that rUH:D( l,-,—A&) is also a lower

bound on rHPD( _1,0,-%) « The details apvpear in Appendix J. The curve
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D( l,0— ) is plotted in figure 5.2.

5.5. The Optimum WPD Detector for Arbitrary Signalling Waveforms

In the case of an arbitrary signalling waveform, the penalty

* A
D( _s_,H,— ) for the optimum WPD detector can be evaluated numerically by

equating Q(v § 5 to the right side of (5.7) with

=]

*
Py = Q(/FWPD( _g.\M;% é |s I) and w, = .!nE———) The procedure is

o
analogous to that followed in (5.10) to (5.12). The results for a raised
cosine and a half sinusoid signalling waveform are plotted in figures 5.3 and
5.4 respectively. 1In both figures, for a fixed value of M, the penalty
increases with% even though it is essentially constant for small and large

values of -Ai
o

It 1s shown in Appendix J that, for large values of M, the penalty is

upper bounded by

2 2
< amfeqyls(e) ) [1-qey|s(e) D]} >

- A MA p1

vhere y = / 1> ( 8,2 )2 and < £(r) > €3 [T £(t)dt 15 the average of £(t)

£(t) on the interval t€{0,T]. This bound is plotted in figures 5.3 and 5.4.
* A - UB A

For the examples considered here rVPD( _l_:,)h—o) was close to erD( 3,-,-3) when

*
M > 10. As an example, [T ( 8,=%) = Ty 2,102 )] < 0.14 dB for both

78



b
~ Mea2
m
R
M= 5
—~ Mea4
<)o
m.| 2 Moo
Q
« &
(39
N
M=3
0 | | | | M=l
=50 =25 0 25 50

20 log10 ( A/o ) (dB)

Figure 5.3. The penalty r;PD (‘g.M;%-) of the optimum WPD detector as a function of signal-to-noise

ratio for a raised cosine signalling waveform. Six values of sample size M are illustrated.

The curve for M = ®» is an upper bound.
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Figure 5.4. The penalty r;PD ( s,M;%—) of the optimum WPD detector as a function of signal-to-noise

ratio for a half sinusold signalling waveform. Six values of sample size M are

illustrated. The curve for M = = is an upper bound.
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the half sinusoid and raised cosine. For large values of -% » (5.16) becomes
vB -y2< 8%(t) > _ |

To (5,oe) = 2.
WPD < -y2%62(t)/2 >

5.6. The Weights w, = |sil and w = 812 WPD Detectors

The weights w, = lsil and w, = 5,2 WPD detectors have been previously

1

exsmined for low signal-to-noise ratio conditions. It has also been shown

i

that the optimum WPD detector is equivalent to the '31' and 312 weights
detectors for low and high SNR conditions respectively. In this section,
the performance of these weighting choices for other values of SKR is
investigated. The penalty I .. ( _g,M,-AB) for the |51| weights and the 512
weights WPD detectors may be evaluated using the technique of the previous
section. Figures 5.5 and 5.6 show rWPD( 3.}1,%) as & function of signal-to-
noise ratio for a raised cosine and a half sinusoid signalling waveform
respectively. In both figures the o, = l'1' wveights are used. There are
plots for the cases of M =1, 2, 3, 4, 5, 10 and 11 samples. Figures 5.7 and
5.8 show rHPD( _q,H,-%) versus SNR for a faised cosine and a half sinusoid
respectively, for the same values of sample size with weights w, = 8y 2, I

all cases, for fixed M, the penalty increases with-% but is approximately

constant for small and large values of—% .

5.7. Discussion

The performance losses for WPD detectors in Gaussian noise have been
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Figure 5.5. The penalty erD (_g,M;e-) of the w, = |81| weights WUPD detector as a function of

signal-to-noise ratio for a raised cosine signalling waveform. Seven values of sample size M
are illustrated.
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Figure 5.6. The penalty PWPD ( gJM;%-) of the w, = Iail weights WPD detector as a function of

signal-to-noise ratio for a half sinusoid signalling waveform. Seven values of sample size M

are illustrated.
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Figure 5.7. The penalty rUPD ( g,M,% ) of the w, = 512 weights WPD detector as a function of

eignal-to-noise ratio for a raised cosine signalling waveform. Seven values of sample size M
are 1llustrated.
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Figure 5.8. The penalty rHPD ( g,M,e-) of the w, = aiz welghts WPD detector as a function of

signal-to-noise ratio for a half sinusoid signalling waveform. Seven values of sample size M

are 1llustrated.
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investigated. Three choices of weights have been considered. Previous
analyses of these suboptimal schemes have been confined to low signal-
to-noise ratio conditions. In general, the penalty depends on the choice
of weights, the samples of the signalling waveform (and their number) as
well as on the signal-to-noise ratio. 1In all of the examples considered,
the penalties of the WPD detectors are approximately constant for low SNR
values, increase in a transition region, and are approximately constant
for high SNR values. Since equations (5.8) and (5.9) are independent of
the signal-to-noise ratio, the losses for the general WPD detector will
be approximately constant for low and high SNR values,

* 1-p
Since the w = in

pii weights WPD detector is the optimum detect-
or for hard-limited samples and the DMF ‘detector is the optimum processor
for continuous amplitude samples, the penalties of figures 5.2 - 5.4
represent the fundamental losses due to hard-limiting of independent

samples. In all cases, this loss is a non-decreasing function of signal-

to-noise ratio and is upper bounded by 2(3.01 dB).

The value of w/2 = 1,96 dB is often cited as the loss due to hard-
limiting {25,31,37). This fesult applies to an infinite number of
independent samples and a vanishingly small SNR. The work of
this chapter has shown that the loss is a function of the signal-to-
noise ratio and of the number of samples. Independent samples are
assumed in this work and the results are shown to agree with the previous
result when the number of samples 1s infinite and the SNR is vanishingly
small. However, the well known result of 1.96 dB as it applies to an
infinite number of independent samples does not represent a physically

realistic system. The results derived here deal with finite numbers of
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independent samples. This isvrepresentative of real systems.

The wy = Isil detector is optimal for low SNR conditions. Figures
5.5 - 5.8 show that the penalty for this detector may exceed 2(3.01 dB)
for high SNR vélues and is greater than thé penalty incurred by the si2
weights detector. Similarly, the si2 weights detector which is optimal

for high SNR's has greater loss at low SNR values than the ls.l weights
8 g i

detector.



VI PENALTIES OF SAMPLE-AND-SUM AND BINARY PARTIAL DECISION DETECTORS

IN GAUSSIAN NOISE

6.1. Introduction

The performances of the SAS and BPD detectors were analyzed for
low signal-to-noise (SNR) conditions in chapters 2 and 3. In this chapter,
the performances of SAS and BPD detectors are analyzed for arbitrary
signal-to-noise ratios. The effects on the penalties of the signalling
waveform employed, the number of samples processed, and the SKR are
considered in detail. The SAS detector is examined first because its
loss constitutes a part of the BPD detector's loss. The losses are
compared to those of some WPD detectors and a relationship between the
losses of the SAS, BPD and WPD detectors for low SNR and finitg sample
sizes is derived.

The model considered here is the same as in section 5.2.
Antipodal signals are used to communicate a message =e{0,1]}
over an additive white Gaussian noise (AWGN) channel. The signals +A s(t)
and ~A s(t) are sent corresponding tom = O and m = 1 respectively. The
receiver processes M samples {vi):‘-l’ v, = tAs, + D vhere {01]:_1 and
{n‘ }:_1 denote the samples of the .ignali s(t) (normalfized eo that {ts maxioum
szplitude 1s equal one) and outcomes of independent Gaussian noise random
varisbles respectively. Signal-to-noise ratio (SNR) is defined to be
20 logloéineaaured in 4B. The penalty is defined as the increase in
signal-to-noise ratio required by the suboptimum detector 4in order to
achieve the same target value of probability of error as the DMF

detector.
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6.2. The Sample-and-Sum (SAS) Detector Loss
In this section, the penalty incurred in using the SAS detector

is analyzed. This detector [5,6,13] forms the statistic

M
é .
D¢, ¢ )) v, sgn (si) (6.1)
i=1
+1, if x> O
where sgn(x) = 0, 1f x = 0 and chooses B=0 1f DSAS > 0. Otherwise, n=1
-1, £ x< 0

is chosen.

Given that m=0, i.e. +A s(t) 1is transmitted, the mean of DSAS is

M
Do, =AY s, (6.2)
sas © % L) e

and its variance is given by

o2 -M o2 . (6.3)
Dgas

An error occurs if DSAs < 0. To compute the probability of error, PSAS(e).

we observe that DSAS is a Gaussian random variable(r.v.) since it is

the sum
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of independent.Gaussian r.v.'s. Also, because of the symmetry, PSAS(eIm=1) =

PSAS (e|m=0). Hence,

M
A3 sl
i=1 )

P,s (e = Qf (6.4)

c

1 -x2/2
where Q(a) = — fo e dx . The penalty T, incurred by the SAS
R SAS

detector relative to the DMF detector is implicitly defined by comparing

PSAS(e) with PDHF(e) as given by (5.3) namely,

/M \ M
AV ) s, AT VT, sl

i
i=] i=]
Q( ——=——)=12q . (6.5)
( c ( /7o )

From (6.5), it follows that

M
M 2 s, 2
gm1 1
Tgps = —4—— - (6.6)
(3 18,132
g=1

Note that réAs is independent of the channel noise power, but does depend on

M
the samples {si} and the number of samples M. Where necessary, we will
i=1

use TéAs ( 8,M ) to indicate this dependence explicitly. For large values of



M,
T 2
] 8,23 ) ls(t)] ac (6.7a)
1=1 0o
and
M w T '
) le, | ~= [ [s(t)] et . (6.7b)
1= 0

Consequently, equation (6.6) can be rewritten as

E
8

L T 2 - 3 (6.8)
[Io le(e)| at]”  T[< [s(t)] >]

T
T [ s2(t) dat
0

r‘SAS

where Es 4 f sz(t) dt is the energy of the signalling waveform s(t) and
0

T
< |ls(t)] > A-% J |s(t)] 4t 18 1ts average magnitude. Equation (6.8) has
0

been previously derived (2.10) for a particular filtering scheme with a large
number of samples in a low SNR environment. The present derivation
shows that it is valid for any SNR.

We now use equation (6.6) to illustrate how rSAS varies with M for a

few commonly encountered signalling waveforms. For a constant (or piecewise
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constant) amplitude signalling waveform, réAS =1, {.e. O dB as expected.

For a half sinusoid signalling waveform, the samples are

M
B = sin-ﬁ (4 - 0.5), 1 =1,2,...,M. In this case, zllsil = cosec-gﬁ

ju=
M 1, M=1
[30,1+341¢1] and )2512 ~{ u . From (6.6)
i=1 i, M>2
1 , M=l
Toas = M2 n _
> sin? @) , M > 2, half sinusoid. (6.9)

The penalty FSAS given by (6.9) is plotted as a function of M in figure 6.1.

2
The asymptotic value of réAS for large M is %L-or 0.912 @B.

The penalties for a full sinusoid (s:l = gin L%E (1-0.5)]) and & raised

cosine (s1 = [l-cos--fi3 (1-0.5)]/2) signalling waveform are given respectively

by

1 ,M=1or2

2
T - ';1- 8102 %) s M= 4,6.800¢
SAS

M2 ¢ sin(n/M) 2 .
5 i cosyms)] » M= 3,5,7-.. , full sinusold  (6.10)

and

» M>3 , raised cosine . _ (6.11)
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Figure 6.1. The penalty rSAS( 8,M ) as a function of the number of bit samples for a half sinusoid.
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The asymptotic values of rSAS as given by (6.10) and (6.11) are-gf or
0.912 dB and -%-or 1.76 dB. A plot Of.rSAS for a full sinusoid signalling
waveform is shown in figure 6.2,

In all these examples, the asymptotic value of rhAS is reached
rapidly. The magnitude of the difference IISASQE,M) - réAsgg,-ol is less

than 0.1 dB for M > 11.

6.3. The Binary Partial Decision (BPD) Detector Loss

The BPD detector forms the test statistic { 2.3 ]

A’)(:
D D
BPD ~ 2 1

where the partial decision random variable D, is defined by

i

+1 , 1f .gn(vi) - lgn(sx) 0

-1 , otherwise .

A A
The BPD detector chooses m = O 4f DBPD >0 and m =1 1f DBPD < 0. Some

caution should be exercised (section 4.5) 4n choosing o 1f DBPD = 0. Thisg
detector may be thought of as the special case of the WPD detector for which

the weights all equal one (mi = 1). It can be easily implemented using

a counter which 18 incremented or decremented by 1 depending on

the polarties of A and 8-

D, = 0, if ogn(vi) = 0 or -gn(si) -0 (6.12)
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The probability of error is the probability that a majority of the

transmitted samples are received vith their polarities reversed, i.e.

M
) r’i‘ , M odd
i- ﬂ
2
Pgpple) = " (6.13)
E PM +-1- 1"‘M » M even
1 Y3 Py
M2 M
i= - 2

where P;q 2 Pr {exactly i polarity errors in the M samples }.

By equating the right hand side of (6.13) with PDM‘F(e) as in
section 5.4 the penalties rBPD( 3.!4,%) can be numerically evaluated.
Plots of I‘BPD(-,-,O) as a function of -% for the raised cosine and half
sinusoid signalling waveforms are shown in figures 6.3 and 6.4. The
values of sample size illustrated afe M=1-5 10 and 11 for both

waveforms. For high SNR, it follows from (5.8) that

1=1 (6.14)
sun of the r—’il-l smallest terms in {512}!:_1

o)-

Tppp( £:Ms

where [x] denotes the smallest integer » x. Equation (6.14) holds for

an arbitrary signalling waveform.

For large values of M, one has
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Figure 6'3f The penalty rBPD

cosine signalling waveform. Seven values of sample size M are illustrated.

indicate points for which PBPD(e) - 10-7.

(.E'MJ%') as a function of the signal-to-noise ratio for a raised

The solid triangles
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Figure 6.4. The penalty rBPD ( E,M;E-) as a function of the signal-to-noise ratio for a half

sinusoid eignalling waveform. Seven values of sample size M are illustrated.
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T

fosz(t) dt
Toop( 8:%® ) & ———— : (6.15)
BFD [ 82(t) dt

W

where W is a union of intervals in {0,T] with & total width of-% which

minimizes [ s2(t) dt.
W

For a raised cosine signalling waveform, (6.15) becomes

2
]g“{%(l-cost)] dat ___6n

IhPD(raised cosine,», o) = %72 ; ) 37 =8
2 [, [3(1-cost)] ar
or 11.22 dB. (6.16)
For a half sinusoid waveform, we have
fg sin’ dt 2m
thD(half ginusoid,», @) = %74 -3 or 7.41 dB . (6.17)

2 J, sin?t dt

In the case of a piecewise constant signalling waveform, (6.14)

2, M even
reduces to thD(-l’“'° )= 2 - Hil . M odd in agreement with (5.15).

The asymptotic values for low SNR's will now be considered. 1In



Appendix K, it is shown that for an arbitrary signalling waveform,
rBPD( 8,M,0 ) = rWPD( ;,M,O ) * rSAS( 8,M) (6.18)

Equation (6.18) can be interpreted as follows: suppose the penalties are
measured in dB; then for low SNR values, the penalty incurred by the BPD
detector is the sun of the penalty incurred by the SAS detector ﬁnd the
penalty incurred by the WPD (or BPD) detector operating with a piecewise
constant signalling waveform ( as given by (5.13) ). Strictly

speaking, this relation is only valid for % = 0. It is however, nearly exact
over a wide range of signal-to-noise ratio because of the flat mature of the
penalty curves in that range.

From (6.18) and the fact that lim IhPD(-l'M’O) = 7/2 (section 2.3),

Mo

it follows that for large M,

Tepp( £:=0) ":z15 Tgas( 82®) - (6.19)

This result was previously derived for a particular filtering scheme

in section 2.4.

6.4. Discussion of Results

The penalties asao.ciated with the Vuae of the SAS and BPD detectors
have been analyzed. The loss incurred by the SAS detector depends on the
samples of the signalling waveform used but is independent of the

signal-to-nocise ratio. In contrast, the losses associated with the BPD
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detector (and the WPD detectors) depend on the signal-to-noise ratio as well
as on the signal samples.

While the BPD detector is easier to implement than the WPD'detectors
analyzed in chapter V, the penalty of the BPD detector was more
sensitive to the choice of the signalling waveform and in some cases was much
greater than the penalty of the WPD detectors. Also shown in figure 6.3 are
the points corresponding to PBPD(e) = 10~7. It can be seen from figure 6.3
that for the raised cosine waveform, the penalty using a BPD detector with

M =4 and P = 10~7 is about 14.5 dB. The corresponding penalty for the

ppp(®)
optimun WPD detector is only ~ 2.8 dB.
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VII CONCLUSION

7.1. Summary of Results

In this section, the highlights of the thesis research are
summarized.

Three suboptimum detectors which find appliﬁation in practical
digital systems have been described. The penalties of each have been
analysed and identified. The relationships between the losses of the
systems have been derived. Previous work in this area was mainly
numerical and example specific. The present work treats the topic
theoretically and gives some results that are fairly general and can
be applied to systems other than those examined in the examples.

The effects of dependence among the signal samples on the penalties
have been examined. It has been shown that, 4n some cases, the penalties
can be reduced by processing more, dependent, samples. It has been
found that the amount of loss recoverable depends on the prefilter
characteristic and the sampling rate.

The optimal detector which bases its decision on a number of
hard-limited samples has been presented. This detector is optimal in
the sense that it minimizes the bit error probability. The detector is
simple and inexpensive since it is essentially a one-bit snalog-to-
digital converter (ADC) and does not require an automatic gain control
(AGC). This result 4s general 4n that it applies to arbitrary SNR
values, .tbittary punbers of samples, and most practical nmoise environment
models.

The generalization of the optimum hard-limiting detector for binary

signals to higher quantization and signalling levels has also been derived.
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That is, the minimum bit error probability detector for M-ary signalling
with received signal samples quantized to an arbitrary number of levels
has been found. Again, these resulfs have been obtained using theoretical
analysis whereas previous related work, in many cases, has been numerical
and example specific.

The fundamental loss due to hard-limiting in Gaussian noise has
been investigated in depth. This loss is measured in the signal
detectability sense. That is, the loss is expressed as the increase
in SNR required to maintain a target value of error probability. Much
attention has been paid to the loss due to hard-limiting in the past.
The result most often quoted is that the loss is w/2 = 1.96 dB. This
result applies to an infinite number of independent samples and a
vanishingly small signal—to-noise ratio. The present work shows that
the loss is a function of the signal-to-noise ratio and of the number
of samples. Independent samples are assumed in our work and the results
agree with the previous result when the number of sgmples is infinite
and the SNR is vanishingly small., The results are important because
they apply to real world system conditions. The well known result of
1.96 dB as it applies to an infinite number of independent samples does
‘not represent a physically realistic system. The work done here which
deals with a finite number of independent samples is representative of
real systems.

In addition to the investigation of the fundamental loss due to
hard-limiting, the losses incurred by some ad hoc schemes that hard-

limit the received samples have been examined. Some of the results of



this work are of considerable interest for practical design. It is
éhown, for example, that one common ad hoc procedure has very lérge
losses at high SNRs and is therefore unsuitable for application in a

strong signal environment.

7.2, Suggestions for Further Research

There are a number of issues arising from the thesis work that
provide interesting topics for further research. Some of these are
presented and briefly discussed in this section.

The effects of dependence among the signal samples on the detect-
or penalties was investigated for large time-bandwidth product conditions
and low SNRs. The generalization of these results to arbitrary time-
bandwidth products and arbitrary SNRs has not been treated in this thesis.

The optimum detector for M-ary signalling with an arbitrary,
given, quantizer was derived. The optimum quantizer thresholds that
minimize the bit error probability were not specified. A related
question is the sensitivity of the detector performance to variations in
threshold settings.

The performance of the optimum detector for M-ary signalling may
be evaluated. Hereunder, one can consider different quantization levels
and modulation formats.

The losses of the suboptimum detectors under bandlimited conditions

with appreciable ISI are of interest. Performance evaluation in these
cases is probably best done by the application of tight bounds for the

error probabilities.
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APPENDIX A

In this appendix, we show that as M+w, the probability of error for the

WPD detector 1is

4E

Pe) = Q (/") (A.1)
o
Recall that Q(a) can be represented by the infinite series [15,16]
3 5 n 2mtl
1 1 a a (-1) @
Q(ﬂ)--" _{G-_+—-coo +——“"—-"‘—'—+ co-}. (A.Z)
2 6 40 (20+1)27n!

Thus, from (2.15), for large values of M (small signal-to-noise ratio),

1
Pi --i- 'IHN '8 ' (A-3)

As M+=, the mean of D, 1.e 2 Q1- 2p1)lc |, 18 given by (see page 14)

i=]
4M
‘INTI l(t) at = /-;—No-—.fE‘ (A.4)
k- 2
and the variance of D, 1.2.1-21 4p1(1-p1)hi| , is given by
T ME
M 2 — A.
Té{c(t)dt-r (A.5)
Mean of D
But P(e) = Q ( WPD

v variance of DHPD

E
e 1N:)'
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APPENDIX B

It is to be shown that the probability of error for the BPD detector

is

4E_
Pe) =0 ( /v ) (B.1)
[+

Using (A.3), it can be determined that as M+=, the mean of DBPD' i.e.

M

] (-2p), 1s given by
i=]

T T
/-;—i—i- Io IB(t)'dt (B.2)
[+

M
and its variance, i.e. 2 bpi(l-pi), is given by M. Hence

i=]1

mean of DBPD

P(e) = Q (

v variance of DBPD

45‘
- Q ( =N a
o



APPENDIX C

In this appendix the calculation of P(e) for the SAS, BPD and WPD
detectors for small values of M is briefly described. Let us denote the
noiseless received waveform by f(t). Thus f(t) results from passing the

transmitted waveform s(t) through the lowpass filter. Then, for the SAS

detector,
M
A
i=]
P(e) = Q ( —— ) (c.1)
niﬁ°72T

where fi' i=1,2,3,...,M denotes the ith sample of f(t).
The calculation of P(e) for the BPD and WPD detector is
computationally more involved. Let Py denote the probability that the

channel causes & reversal in the polarity of fi' i.e.,

£, |
P~ 0 o: ) (c.2)

where c, = v/ HN°72 e Also define qi «] - Py

Suppose A is some subset of U= {1,2,3,...,M}. Then the probability
that the samples {filkeﬁ have their polarities reversed by the noise and the

remaining samples (fi} c retain their original polarities is given by
ieA

P (1)1 q)-

Hence,

(c.3)

P(e) = | P, where the sum is taken over all subsets A which would
A
lead to a wrong decision. This brute-force method of calculating P(e) is
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time consuming. A more efficient way of evaluating P(e) for the BPD detector
can be obtained by moting that it is just the probability that a majority of

the samples have their polarities reversed, i.e.,

IM/2) .
P(e) = ] P (C.4)
n=0 ’
where Pn M= Pr {exactly n of the M samples are correct}. In (C.4) it is

assumed for simplicity that M is odd. If M is even, then

Mg? 1
P(e) = P - < P .
n=0 a,M 2 "M/2,M

In any case, P represents the generalized binomial distribution and

n,M

can be recursively evaluated [17] using

Pn,m ® qm Pn—l,mrl + Py Pn,m—l

PO,O =1, PO,m = P;PyecPps and Pn,m- 0if n > m. (c.5)
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APPENDIX D

It is to be shown that as M*x

E[DiDJ] - 5153 = 2/7 aresin {r_(3-D)}. (D.1)

One has that
E[DiDj] = E[sgn(visi)sgn(vjsj?] = Pr(n> -|s, |, n -Isjl)
+ Pr(ni< ~ls 1 nj< ~lsj|) - P (oD 18,1y n < -Isj|)
- P(n< -legls n > —Isjl). (D.2)

Let
= ~(x12-20%; x,4x,2)
B,(C, By o) = [ [ ——2—— exp{ Jdx,dx, (D.3)

C B Zn/l-pz 2(1'92)

denote the bivariate Gaussian distribution [15). Then (D.2) becomes
E[D,D,] = 2B, (18,70, -]sjl/on, r_(1-1))
+ B,(ls,1/0,, ls 4170y r (F-D)] -1 (D.4)

MNYa
where o _2

a = T and the noise is assumed to be stationary. The two dimen-
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sional Taylor series, centred at the origin, for f(x,y) is

f(x,y) = 2 ‘m‘—{.'[x'ag

dm
L - +y 3;] £(x,y) <=0 ° (D.5)
m y=0
Combining (D.5) with (D.3) gives
2402
B, (C,Bsp) = 21.' + _:E arcsin p - St I g - e(EHET) e(Z,B)

2
2/2? 27/1-p2 tm/1-p2‘

(D.6)

where e({,B)*0 as C3, ﬁ3, CBZ and CZB. Using (D.6) in (D.4) gives for large

M,

2¢1( s, |15, 1)?

E[DiDj] = 2/n arcsin {rn(j-i)} - (D.7)
/ - 2(4-
uMNoyn 1 r (-1
By proceeding as in Appendix A it may be shown that as M
O T SR P I (D.8)

i uMNoyn

Combining (D.8) with (D.7) results in (D.l).
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APPENDIX E

In this appendix it will be shown that as M+= (3.23)

T
— ) ¥ |s,|ls,larcsin{r (3-1)} = 2 § arcsin{r_(1)} . (E.1)
MEg 421 g=1 T 3 n jzl a0}
J#i
One has that
T3 Isylls,| (3 Is,I1s,_,lacestafe_(1}
s,||s,larcsin{r (j-1)} = 2 s, ||s,_, |larcsin{r (1)
1=1 j=1 i h| n k=2 k' k-1 n
321
M
+ 23|sk||sk;2!arcsin{rn(2)} + ...
k=

M
+ kz Isk|Isk_N+1|arcsin{tn(N-1)} + ...}
=N

M M

- 2{arcsin{rn(1)} )) lsk||sk_1| + arcsin{rn(Z)} ) 'sk||sk—2| S
k=2 k=3
M

+ atcsin{rn(N—l)} |sk||sk_N+1| + ...} . (E.2)
k=N

Note that, for fixed N,



M

M+

M T
AP S TG U 2) £ ST P YOS VIO S
M M &
M+ k=1 Y

where, without loss of generality, it has been assumed that B, =

8([1i-0.5]T/M). Using the result of (E.3) with (E.2) gives (E.l).

'R : ;Zi | Tuil 1?
lim 3 Is, 118, yuq] = 1im = s, 118, yos| + 1im & |s
M oy k' Uk-N4L Moo M oy k' k-NH Moo M 21 K

(E.3)
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APPENDIX F

It is to be shown that when the channel noise has a Cauchy
' *
distribution the optimum weights for high SNR's are given by wi'l- In a

Cauchy noise enviromment the probability that a sample has its polarity

(-}
reversed is p, = Pr(N1 > |51|) - f -—ELEE da. Making use of the series
. |sil b%a
1
-F'._;‘ 1-x+x2-... yields
@
b b2 . (by" _ (by©
Isil na?
1 rb_1 ,by3  1.b\5 ©
“txl-3 R +3R) vl
el

s, | nls, |
i * i
= > 1 and w, in{ =

For large signal-to-noise ratios,

Assume that s(t) = C E(t) where ;(t) is a waveform with unit smplitude

and C 1s a constent. Then,

* t‘C“;;‘ ~
wi - lnE-——s————) - ln(ICI) + lnéglsil) *

*
For large values of |C| and hence large SNR's, w = an(|C|). Since the

optimun decision rule is not changed by scaling the weights, one may use

*
w, - 1 for large SNR's.
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APPENDIX G

In this appendix it is shown that the optimal weights for the case of
8 raised cosine pulse in Cauchy noise sampled 3 times are
« {|‘1| 1f SNR < 15.1 dB
w, =

1 if SNR > 15.1 dB .

Note that there are 8 possible combinations of the 3 received signal
samples and that uﬁ - ug. Therefore, the sample vectors v = (+,+,+), (+,+,-)
and (-,+,+) will be assigned message 3 = 0 and the vectors v = (-,-,~),
{(-,-,+) and (+,-,-) will be assigned D =1. This is true for any
signal-t#—noise ratio and any choice of weights provided that w;=w;.
According to the Isil weights, the detector chooses 2=0 for_!-(-,+,-) apd a=1

for v=(+,-,4+). But for p, specified by the Cauchy distribution and-é < 15.1
- i b

1-p; 1-p, 1-p,
dB, 1n[—;:—] + lnf—;;-] < ln[—;;—]. Thus, the optimum weights are equivalent

to the [s, | veights in this SNR region. When 3 > 15.1 dB,

] and ; = 0,1 are chosen cortesponding to

1-p) 1-p3 1-p,
tn[——]+ sn[——] > anf

P) P3 P2
v=(+,-,+), (-,+,~) respectively by both the optimum and unity weights

detectors.
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APPENDIX H

In this appendix it is shown that the penalty for the general WPD
detector at high SNR values is given by (5.8)

From (5.7), for high SNR values, the probability of error becomes

P (e) = )) I(B) T p (H.1)
WED B C {1,2,...M} 1ep 1

where

1, 1f 2 wy > 2 w,
ieB 1¢B¢

1
I(B) ={ 5 » 1f ] wi-z W,
ieB 1eB°

0, 1f } wi(): w .

1¢B 1¢eB¢
A
Also, for large-‘-’ .
A A 2
S b A Tapn( 2455 )0 041/
Pi - Q( rwpp(!.’“fa)’a '31|) ~ . (H.2)
27 T, (sHA)‘-A- s, |
wPD* "6’ o "1

Bence,
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npi - . (B.3)

From (H.3), it can be seen that PWD(e) as given by (H.1l) will be dominated
(for high SNR) by the set (or sets) B for which I(B) > O and 2 512 is
ieB
* * 2
minimun. Let B denote one such set, that 15, B C U {1,2,...,M} and

*
I(B)>0end ] s,2¢ ] s,2for all BC U for which I(B) > 0. Since
*
1cB 1eB
A .
Tupp( _'_.ﬂt%) > 1, 1t follows from (E.1) that as — Increases

A, A2 1 2
wm{Pypp(e)} = ~LoppC &M ) (5] * 3 2* 8y - (H.L)
ieB
Recall that
M
M A 21
1l 8,2 IS 2 ! 312
A/ L% . 1=1 A
Pmr(e) = Q( 5 ) - - » for large =,
Y25 ] s 24
{=1 i o

so that
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1 (E.5)

A21 & A
Xn{PM(e)} -- [—c—,] 3 121 s, 2, for large = -

Equating (H.L) with (B.5) yields

M
g 2
A i=1 A
TWPD( M=) ._i_-:_-Z , for large = .
a1

ieB



APPENDIX I

It 1s to be shown that the penalty for the WPD detector with a
plecewise constant amplitude signalling waveform and low SNR is given by
(5.13). We consider first the derivation for odd values of M.

Differentiating (5.10) with respect to % and then letting % = 0 yields

2M=~2
rwrn( 1,M,0 ) = M 2 o M odd . (1.1)
I G)w
1:.&"_1-
2
One has
M-1
M M-1 -1
7 1f)= 1 w()ew § )
M+1 1-_— 1- 1:&.];
== 2
M1, (“’1 ) (1.2)
M-1 .
= M -—2- » M odd.
2
Also,
M M -1 (1.3)
)) M) =M2" " , Modd . I.3
M+1
i
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Using (I.2) and (I.3) in (I.1) one obtains

(_IOM’O ) = » M odd. (1.%4)

Tupp Vs
" (M-l )

In a similar way, it can be shown that

ZZM

#(3) °

rWPD(-l’M’O ) = , M even . (1.5)

It might be noted from (I.4) and (I.5) that

2k
Topp( 1s2K+1,0 ) = 50y Tpn( 1,2k,0 ) k=1,2,3,000 o
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APPENDIX J

It 15 to be shown that for a large number M of samples the penalty for
the optimun WPD detector is upper bounded by (5.16),
Let {X1}§_1 be M independent random variables defined by

1-p
an(—1
p

) with probability Py
i

Py

1-
-2nf - ) with probability (1-p,)
1

where pi - Q(fI‘wPD( _s_,M,-%?-é 6

- 1[). Then

* M
Popp(e) = Pr{ )) x, >0}. (J.1)
i=1
One can use the Chernoff bound [29: Eq. (5.4.15)] to upperbound the right

hand side of (J.1)

* M ui .
Ppple) € 1Ei Ele 7] (3.2)

where A is a positive number which can be chosen to optimize the bound. For

the present problem, the best value to use is8 A --;- « Then (J.2) becomes

M
*
o J.3
Poople) < 1'1.11 2/ piil-piS‘ (J.3)



An upper bound I‘S’;D( _g,M,%) is obtained by equating the right hand side of

(J.3) to Pm}.(e), namely

1 s2)= 1 2y
i=] i=]

wvhere Py Q(flﬂ?n( _s,M% % |s I) For large M ,
1 42 &
LA
A 2 e
Q('?, 2 31 ) - *
i=1 / 124 2‘A
2n 8,°—
1=1 i o

Using (J.5) in (J.4) ylelds for large M,

2 a
&) L ety =- [§ m {m(/r{,";l,(_s,-,% )2 [s(0)])

g

[1- Q(.FI‘UBD( Py )‘-‘% Is(t)l)]} dt .

—_
Letting /;f;n( 2,0.% ) -%- y, we can revrite (J.6) as

R -y2 f3 s%(t)dt
ngn( 5% T T
Jo m{eayls(e) D [1-aCyls(e) ) J]at

Equation (J.7) can be used to plot I‘ggb( _g,-rAa) as a function of% .

(3.4)

(J.5)

(J.6)

J.7)
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For a plecewise constant amplitude waveform the upper bound is also &

lower bound. This is now shown. One has (5.10)

iMl [bp( 1-p )]-2 » M even .

r M
I O ela-m™? » M odd
{ = .’itl.
2
Pupp(®) = { M M (3.8)
I (;1) pl(1-py" +—; (:) [p(1-p) ]2 » M even
{ = _}Ii.z_ _2
-
vhere p = Q(/ Typpl 1,M2 y &) . Therefore
- Bl
M 2 (P 32
(_M;_l) [ra-m ] GE) » M odd
(J3.9)
PWPD(e) >z M
.% (:) [p(l—p))z , M even .
. 2
M KL
M 2 2 2 1 ZM .
- Since (_!_l-;_l.) il ru g 11-11 (2 +?) )m when M is odd and
M -1 >2Mh M1 (J.9) yields
(M)-z(n) 3~ Vhen s even . yie
2 2
172 >
1 P _
T (_p) [4pC2 p)? , M odd
PWPD(e) > M (J.10)
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Using (J.3) (with Py =P for all 1), (J.5) and (J.10) one obtains for large

M
A |2 A VA
B) =~ { s/ [ 1,222 .

(J3.11)
A A

[1-(/ TyppC L= ) 501 ) -

Le / A A

tting PWPD( L= ) i A (J.11) may be rewritten as

T 108y -y? ' (3.12)
WPD( X Rt ap= ) .

° m{sqey) [1-e(n) ]}

Equation (J.12) is used to plot TWPD( l,w,—%) as a function of% .
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APPENDIX K

In this appendix, it is proved that

Tppp( £sM:0 ) = Tgpp( 1,4,0) * Tg,c( 8,M) - (K.1)

A
From equations (5.3) and (6.13), rBPD( _S_.M.-a) is implicitly

defined by
M .
IR 4 , M odd
M+l 3
==
M A
e/ I s,23) = M (K.2)
i=1 2 M 1 M
P, +5P s M even
w2 3 212
== 2
M A
where P-1 = Pr {exactly j (polarity) errors in the M samples}
M M M
= ses n px n (l-pk)
k=l kil kgmky 4] xe{kl,kz,...,kj} keU—{kl,....kj}

N Y
and p, = Q(/rBPD( _g,M.—A& ) |5,_' -%) . Differentiating with respect to 'éo and

then letting% = 0 in (K.2), we obtain



/""'ﬂ M—l /""""“ﬂ M M M
) 5, 2. Tgpp(8:M:0) )) ) )
1=1 .’.‘.'z*l kel =kl kgmk g4
1 lsyl - I sl , M odd (K.3)
ls{kl,-oo.kj} kEU‘{kl.ooo.kj}
M M
-1 M
- - . -14
gl T tEEe) nzl {2(‘;'1) Gl 121 £ -
T
Similarly, for M even, one'has
2 -1 ~1 M
/1 e & /rpamo ELN-ENT lol . s
i=] j {i=]
.1- L
From (K.4) and (K.5) one has
Tgpp( 8:M.0 ) = C, izlsz
— > M=1,2,3,... (K.6)
(2 s, | )2
g=1 1
for some constant CM' In particulsr,
CH
rwpn( l’“’o ) - rBPD( l,H,O ) -T ° (K.7)

Using (6.6) and (K.7) in (K.6), we have

rBPD( l’uoo )= erD( louoo ) ° rSAS( _8_,!( ) .
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GLOSSARY

binary antipodal signals
two signals, each of which is the negative of the other
binary partial decision
a decision based on a single signal sample which has two possible
outcomes
digital matched filter
the optimum detector which bases its decision on a number of
independent signal samples
hard decision
a decision which has two possible outcomes
hard-limiting
a transformation that assigns one value to all positive arguments
and a second value to all negative arguments
M-ary signalling
_the transmitter sends one of M signals depending on the message
sequence
maximum aposteriori probability (MAP) rule
the receiver chooses as its estimate of the transmitted signal
that signal which is most likely given the received signal
penalty
the deterioration in performance of a suboptimum detector measured
relative to an optimum detector; the increase in signal-to-noise
ratio required by a suboptimum detector in order to maintain the

same error probability as an optimum detector
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sample-and-sum detector
the received signal is sampled and the samples are summed
signalling element
one of the signal waveforms sent by the transmitter
weighted partial decision
a decision baséd on a single signal sample which may have one
of several outcomes, the larger the outcome the more heavily

the decision is weighted
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