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ABSTRACT 

Three suboptimum detection schemes are examined. The deterioration 

in performance, measured in the probability of error sense, of weighted 

partial decision, binary partial decision, and sample-and-sum detectors 

are analyzed. Even though these schemes are inferior to the d i g i t a l 

matched f i l t e r , they can be used in systems with more modest computational 

capabilities. Analytic expressions are obtained for the penalties. The 

effects on the peaalties of the signalling waveform employed, the number 

of samples processed, and the signal-to-noise ratio are considered in 

d e t a i l . Included are the penalties for the optimum weighted partial 

decision detector. 

The e f f e c t s of dependence among the samples on the detector losses 

are investigated. It i s shown that, in some cases, the losses of the 

suboptimum procedures can be reduced by processing more, dependent, samples. 

The amount of the l o s s that can be recovered depends on the p r e f i l t e r 

c h a r a c t e r i s t i c and the sampling rate, as well as the detection algorithm. 

The structure of the optimum detector for hard-limited data 

signals i s presented and i t s performance i s compared with those of 

some commonly used schemes. Performance in Impulsive as well as 

Gaussian noise environments i s considered. The optimum receiver for 

M-ary signalling based on received signal samples quantized to an 

arbitrary number of levels i s derived and compared to another common 

detector. 



The fundamental l o s s i n s i g n a l d e t e c t a b i l i t y due to hard-

l i m i t i n g i n a sampled system operating i n Gaussian noise i s investigated. 

The r e l a t i o n of the l o s s to the signal-to-noise r a t i o and the number 

of samples i s analyzed. 
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I INTRODUCTION 

1.1. Motivation 

A fundamental problem In communication theory and design is how 

to best detect information signals in noise. Optimal detection methods 

are known but may be expensive or d i f f i c u l t to implement. 

Suboptimum detection procedures are employed in a number of diverse 

areas. Data recovery c i r c u i t s i n modems are frequently 

based on suboptimal procedures where c o s t - e f f e c t i v e implementations 

trade o f f complexity against performance. In underwater 

sound detection systems, arrays of receivers that nay be quite large 

are used to detect weak signals. For large arrays, the processing 

required can be reduced significantly by employing suboptimal procedures 

that have more modest computational requirements than the optimal 

processing. Digital receivers for systems employing tine or frequency 

spreading techniques have large time-bandwidth products and oust process 

a large number of samples. Simplified versions of digital Batched 

filters offer flexibility, reliability, speed, compactness and cost 

efficiency. 

In order to assess, compare and choose a l t e r n a t i v e detection 

procedures for • given application, the communications engineer requires 

knowledge of the performance of the schemes. This is one of the 

principal objectives of this research. The performances of a number of 

ad hoc detectors are analysed. The results are useful for performance 

evaluation of existing designs as veil ss for initiating new designs in 

data recovery and signal detection systems. 
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Another principal objective i s to investigate the optimality of 

the schemes employed. In particular,, given certain processing constraints, 

what are the optimum detection schemes? The results of this investigation 

w i l l provide theoretical limits for the performance that can be achieved 

by systems operating with particular hardware or processing limitations. 

The thesis research has industrial as well as academic significance. 

In the short term, the results w i l l provide answers that 

w i l l enable product designers to construct improved receiver subsystems. 

In the long term, the development of theory of suboptimal detection 

procedures entails dealing with some fundamental issues regarding the 

properties and the components of the losses incurred by 

these processes. A better understanding of signal detection w i l l come 

from the theory developed. 

1.2. Scope of the Thesis 

This thesis considers suboptimum detection procedures. Both 

theoretical and numerical results are presented. With the exception of 

section 4 . 6 , the work deals with binary systems. The emphasis i s on 

evaluating the performance of the detectors with the performance measured 

in the signal detectability sense. That i s , the probability of error i s 

used as the performance criterion. 

The thesis i s concerned throughout with the processing of sets of 

signal samples. The analysis and results are cast in the context of data 

recovery in d i g i t a l communication receivers. The mathematical techniques 

and the results, however, are quite general and apply to a wide range of 

problems. The signal samples may, for example, be from a diversity 

d i g i t a l communication system, or a radar or sonar signal detection system. 
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The effects of hard-limiting on signal detectabillty are investigat

ed in d e t a i l . The relations of the detector losses to the number of 

samples processed, the signal-to-noise ratio, and the processing algorithm 

ere of central Interest. 

In order to gain insight into the principal mechanisms and relations 

of the detector losses, some simplifying assumptions have been made. In 

particular, i t has been assumed that there 1B negligible intersymbol 

interference (ISI) and that bit synchronization i s available. 

ISI i s not present in pulse detection systems. Furthermore, many 

communication systems operate with l i t t l e or no ISI. Low speed modems 

for telephone channels and radio modems are two examples. The present 

results also apply to ISI channels when the received signal has been 

equalized. 

The method used to obtain b i t synchronization i s not of particular 

interest here. Timing recovery c i r c u i t s can provide bit synchronization 

with less than a few percent j i t t e r . The effects of this j i t t e r on the 

penalties of the detectors Is of minor Importance as consideration of 

the binary eye Indicates. 

Some of the results of this thesis have been reported earlier in 

the journal papers, "On the Performance of Three Suboptimum Detection 

Schemes for Binary Signalling" 1 7 ) , •'Optimal Detection of Hard-Limited 

Data Signals i n Different Noise Environments" [ 6 ] , "Penalties of Sample-

and-Sum and Weighted Partial Decision Detectors in Gaussian Noise" [ 9 ] , 

and the conference papers, "A Comparison of Three Suboptimum Detectors 

for Binary S i g n a l l i n g " [ 3 2 ] , "On Hard-Limiting in Sampled Binary Data 

Systems" 1 3 3 ] , "The Optimal Hard-Limiting Detector for Data Signals in 

Different Noise Environments" [ 1 0 ], and "Penalties of Weighted Partial 

Decision Detectors In Gaussian Noise"[34]. 
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1.3. Review of Relevant Work 

A review of work relevant to this thesis is given in this section. 

Brief comments on the methods used and the results obtained are given 

for each reference. The reader may find i t helpful to refer to the 

glossary for explanation of some of the terms. 

Tozer and Kollerstrom [1] have considered the penalties of hard 

decision in the detection of binary antipodal signals in additive white 

Gaussian noise. In this analysis, short subsections of the signal are 

detected, giving a number of hard binary decisions. The subsections of 

the signal are constrained to be of equal energy and are detected by 

appropriate matched f i l t e r s . The data polarity i s recovered by using 

majority rule on the subsection decisions. This detection scheme is 

compared to the optimum detection achieved by using an analogue matched 

f i l t e r over the entire signal duration. It i s shown that for a large 

number of independent subsections and small signal-to-noise ratios a 

penalty of 1.96 dB i s incurred. 

Milutinovic [2,3,35,36] has described a suboptimum detection pro

cedure based on weighting partial decisions. This work considers binary 

signals in additive white Gaussian noise. The detection algorithm is 

based on two counters, B o and B^. The received 6 i g n a l i s sampled M 

times in the duration of one signalling element. Each sample i s 

compared with a threshold value and, depending on the outcome, counter 

B or B, Is incremented by a weight which depends on the sample index, o 1 
After M par t i a l decisions, the transmitted signal is determined by a 

comparison of the two counters. The weights are chosen to be proportional 

to the distance between the two transmitted signals at the sampling 
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instant. Also considered is an algorithm based on binary partial 

decisions. In this scheme, a l l samples are weighted equally. 

The performance of the two suboptimum detectors i s compared to 

that of a d i g i t a l matched f i l t e r . The penalty i s computed for a particular 

set of antipodal signals for three values of sample size M. The results 

are example specific. It i s found that the penalty of the weighted partial 

decision detector is about 2 dB for a l l three values of M and increases 

slightly with increasing signal-to-noise ratio. The penalty of the binary 

partial decision detector i s about 3 dB for low signal-to-noise ratios 

and increases sharply as the signal-to-noise ratio becomes large. 

Lockhart [4] has considered replacing analogue f i l t e r and analogue 

detector c i r c u i t s in data receivers by d i g i t a l networks designed from 

truth table specifications. A method of compiling the truth tables from 

received signal probabilities is presented. The technique i s illustrated 

by an example. The detection of binary antipodal raised cosine signals 

in the presence of Gaussian noise i s examined. The received 6 i g n a l 

samples are assumed to be independent. The performance of the d i g i t a l 

network i s compared to that achieved by using a single sample 

detector. An error probability versus signal-to-noise ratio curve i s 

presented for each scheme. It i s noted that the proposed scheme performs 

better. It i s also noted that the truth table i s valid for a l l values 

of signal-to-nolse ratio and can be derived more directly by considering 

a hard-limited received signal f i l t e r e d by a nonrecursive matched f i l t e r . 
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The algorithm presented by Lockhart is an application of the 

maximum aposteriori probability (MAP) rule to the situation where there 

are a number of independent hard-limited received signal samples and the 

transmitter signal set, as well as the noise stat i s t i c s are known. The 

independence assumption w i l l require that the noise be white or that 

appropriate f i l t e r i n g of the received signal be done. The computationally 

direct method of considering the hard-limited, nonrecursively matched 

fi l t e r e d signal samples i s the weighted partial decision algorithm 

described by Milutinovic [2,3]. For the signalling waveform and the 

number of samples considered the MAP rule and the weighted partial 

decision algorithm yield the same truth table. In general, however, the 

MAP rule truth table w i l l depend on the signal-to-noise ratio and the 

two procedures w i l l not be truth table equivalent. 

Chie [5] has investigated a simplified d i g i t a l detector which 

performs only additions on the noisy signal samples. In this analysis, 

the signalling waveforms are antipodal nonreturn-to-zero (NRZ) pulses 

and the additive noise i s white and Gaussian. The detector p r e f i l t e r i s 

assumed to pass the signal without distortion. Hence, a l l the signal 

samples have the same magnitude and there i s no ISI. It i s also assumed 

that perfect synchronization i s available. 

Numerical results are presented for a typical implementation 

example configured with sixteen samples and a four b i t analogue-to-digital 

converter (ADC). The sensitivity of the detector performance to the 

number of samples processed, the number of ADC bits, and the ADC loading 

i s examined^ each Individually. For this example, It appears that four 

bit quantization performs almost as well as quantization with an 



infinite number of bits and that very little can be gained in 

performance by using more than sixteen samples. 

Chang [6] has also investigated the sample-and-sum detector examin

ed by Chle 15]. Again, antipodal NRZ signals in white Gaussian noise are 

considered. The performance degradation of the detector is related to the 

bandwidth of the prefilter, the sampling rate, and the number of quantizat

ion levels. The distortion of a single pulse resulting from the prefilter 

is dealt with in the analysis, but the effects of ISI are assumed to be 

negligible. Perfect synchronization is assumed throughout. It is con

cluded that, for the examples investigated, a prefilter bandwidth on the 

order of twice the bit rate is adequate and that three or four bit 

quantization is almost as good as infinite quantization. 

1.4. Outline of the Thesis 

In this section, an outline of the thesis is given. The principal 

results of each chapter are described in turn. 

Chapter two Introduces three suboptlmum detection procedures: the 

Sample-and-Sum (SAS), the Weighted Partial Decision (WPD) and the Binary 

Partial Decision (BPD) algorithms. The bit error rate performances of 

these detectors are analysed for large time-bandwidth product conditions. 

This is first done for binary antipodal signals and It is then shown 

that the results may be generalized to arbitrary binary signals. The 

relation among the losses of the three schemes is presented. 

In chapter three, the performances of the three detectors for 

large time-bandwidth systems with dependent samples are considered. It 

Is shown that, In some cases, the losses of the auboptimum schemes can 
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be reduced by processing more, dependent, samples. The amount of the 

loss recoverable i s related to the prefl i t e r shape and the sampling 

rate. 

The structure of the optimum, minimum probability of error, 

detector for hard-limited samples i s presented in chapter four. Whereas 

previous chapters have dealt with large time-bandwidth product conditions 

and Gaussian noise, the results of this chapter are general and apply to 

an arbitrary number of samples and most common noise environments. The 

optimum detector for M-ary signalling with each received sample quantized 

to an arbitrary number of levels i s also derived. Again, the result i s 

valid for most noise distributions. 

In chapter five, the penalty associated with the use of the WPD 

detector in Gaussian noise i s examined in d e t a i l . The effects on the 

penalty of the signalling waveform employed, the number of samples 

processed, and the signal-to-noise ratio are examined. Two common ad 

hoc choices of weights are considered as well as the optimum weights. 

The performance degradations of the SAS and BPD detectors are 

analysed for arbitrary SNR's in chapter six. The effects on the penalties 

of the signalling waveform employed and the number of samples processed 

are also considered in detail. The relationship among the losses of 

the SAS, BPD and WPD detectors for low SNR and f i n i t e sample sizes i s 

derived. 

Finally, chapter seven gives a more detailed summary of the results 

of the thesis research and suggests some topics for further research. 
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I I PERFORMANCE COMPARISON OF THREE SUBOPTIMUM DETECTION SCHEMES 

FOR BINARY SIGNALLING 

2.1. Introduction 

In this chapter, the problem of detecting one of two equally l i k e l y 

signals using d i g i t a l techniques i s addressed. The case of antipodal signals 

i s f i r s t considered and i t i s then shown that the results are readily gener

alized to arbitrary signals. The model considered i s shown in figure 2.1. 

Depending on the message «c{0,l} to be transmitted, s signal +s(t) or -s(t) 

Is sent over the additive white Gaussian noise (AWGN) channel. The two-sided 

power spectral density of the noise process o(t) i s assumed to be NQ/2. The 

signal s(t) Is assumed to be non-zero only In the time Interval I0,T] sec. 

•nd bandlimited to B Hzt. The received signal r ( t ) i s f i l t e r e d to remove 

excess out-of-band noise producing the s i g n a l v(t) which i s then processed 

by the detector. 

The detector samples the signal v(t) at a rate of 2B samples per 

second, yielding a total of H - 2BT noisy samples of the transmitted signal. 

A consequence of this sampling rate Is that the (Gaussian) noise samples i n 

v(t) w i l l be Independent 111]. Furthermore, in order to ensure that the 

transmitted signal s(t) Is essentially undlstorted by the receiver f i l t e r , we 

require that 

M - 2BT » 1. (2.1) 
Exactly how large M should be depends i n part on the shape of s ( t ) . If »(t) 

i s f a i r l y smooth (e.g. • sinusoidal wave) then a value of 10 would suffice. 

t S t r i c t l y speaking, a time-limited signal cannot be completely bandlimited. 
Bbwever, for practical purposes, a l l the signal energy w i l l l i e within a 
frequency range of B » * . 



LOWPASS FILTER 

- B B 

v(t) 
DETECTOR •Cm) 

Figure 2.1. Block diagram of the data r e c e i v e r . 
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On the other hand If s(t) hae 6 h a r p transitions (e.g. a square wave), then a 

larger value of about 100 i s required. These values of M are sufficient to 
T 
/ |s(t)-s(t)|dt 

keep p • —~ , where s(t) denotes the output of the f i l t e r , to 
/ |a(t)|dt 
0 

less than 1.52. 

It Is well-known [ 1 1 ) that the optimum detector for minimizing the 
A * 

probability of error P(e) • Pr { m * m) i n the above problem i s the di g i t a l 

matched f i l t e r (DMF). Its operation can be described as follows: Let 

V i " S i + n i * 1 ' 1 , 2 M ( 2 ' 2 ) 

IT 
denote the M samples of v(t), i . e . » V "̂~M̂  which are to be processed. 

M IT The values { B I ) I M ^ denote the samples of s ( t ) , i . e . s^ - and the 

{ n^ }^_^are Independent Gaussian noise random variables with means 0 and 
2 variances o • BN . The DMF computes n o 

Don ' lml V , < 2 - 3 ) 

A A 

and decides m - 0 if D^«„ > 0: otherwise i t declares m • 1. The resulting OPT 
probability of error is given by [11] 

/2E~ P(e) - Q C / y - * ) 
o 

(2.4) 
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T " 2. 
where E & / s 2(t)dt Is the energy of s(t) end Q( a ) & - ~ / e~* dx. 

8 0 ^5* a 

Equation (2.4) gives the error p r o b a b i l i t y for an analogue matched f i l t e r . 

I t i s also v a l i d for the DMF when M i s large. 

We note that the DMF requires M m u l t i p l i c a t i o n s and (M-l) additions. 

A number of suboptimal schemes I 1-10,12,13 1 have been proposed which 

have more modest computational requirements. These include the Sample-and-

Sum (SAS), the Weighted P a r t i a l Decision (WPD) and the Binary P a r t i a l 

Decision (BPD) detectors. Previous analyses of these suboptimal schemes 

have been confined to s p e c i f i c s i g n a l l i n g waveforms s ( t ) and s p e c i f i c 

(small) values of M. In the following sections, an an a l y s i s of the 

penalty incurred by each of these schemes f o r an a r b i t r a r y s i g n a l l i n g 

waveform and large values of M i s given. The penalty i s defined as the 

increase i n s i g n a l energy required by a suboptimum detector i n order to 

achieve the same error p r o b a b i l i t y as a d i g i t a l matched f i l t e r ( i n the 

large sample case, t h i s i s the same as the error p r o b a b i l i t y of the 

analogue matched f i l t e r ) . Examples i l l u s t r a t i n g how the penalties vary 

with M are also included. Note that the model used implies a small s i g n a l -

to^noise r a t i o c ondition. The r e s u l t s , therefore, are v a l i d f o r small 

signal-to-noise r a t i o s . This r e s t r i c t i o n i s removed in chapters 5 and 6. 

(2.5) 
2.2. The Sample-and-Sum (SAS) Detector 

The SAS detector [ 5 , 6 , 1 3 ] computes the quantity 

D S A S M Y i •«nC*i) (2.5) 

f+1 i f *>0 
< 0 i f * - 0 , 

L-i i f *<o 
where sgn(x) 0 if « - 0 , a n d declares a - 0 if D ^ > 0. Otherwise, * - 1 
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i s decided. Comparison of (2.3) and (2.5) shows that the SAS detector avoids 

multiplication by not weighting the samples of the received signal. The 

resulting penalty i s now analysed. 

Clven • - 0, I.e. 4«(t) Is transmitted, the nean of i s given by 

w j , Ki (2-6> 

and the variance of D_._ 16 given by 
aAs 

2 u 2 ou - Mo 
^SAS 

« MBN 
A ° 

- T ^ . C2.7) 
An error will be nade if D„ir. < 0. We note that since De._ is the sum of 

SAb a<va 
Gaussian random variables, It is Itself a Gaussian random variable. Thus, 

M 
I K r 

P ( e f m - O ) - Q ) 

*BAS 

Q f 1 1 ) . (2.8) 
• N /2T o 

By symmetry, 

P(e) - P(e|»-0) - P(e|«-1). 

Vote also that 
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M _ T 
lim I (s J - / js(t)|dt. Therefore, as M< 
M-M» i - l 0 

He) - Q (/p<|s(t>|>) , (2.9) 

1 T 

where <|s(t)|> - / js(t)jdt represents the average magnitude of the 
T 0 

signalling waveform s ( t ) . If we define 

E 
o - 5- , (2.10) 

T{<|s(t)i>r 

equation (2.9) can be rewritten as 

'2E 
8 ^ (2.11) PC) • 9(/^-} 

By comparison of (2.11) with (2.4), i t can be seen that to achieve the same 

value of P(e), the SAS detector uses a times the energy required by the DMF 

detector. For a constant s ( t ) , o - 1 as might be expected. (It can be shown 

using Schwarz'6 Inequality [11] that the minimum value of a i s 1.) However, 
2 

for a sinusoidal signalling waveform, a " i /8 or 0.912 dB. 
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2.3. The Weighted Partial Decision (WPD) Detector 

In the WPD detector (2], the necessity for multiplication i s avoided 

by ignoring the magnitudes of the received signal samples and using only 

their polarities. The decision i s based on 

implementation, two accumulators AQ and A^ could be used. If v^ > 0, A^ is 

incremented by 8^ and i f v^ < 0, then Â  i s incremented by s^. In the 

(unlikely) event that v^ - 0, neither accumulator i s incremented. After a l l 

N samples have been processed, the contents of A^ and Â  are compared to 
A 

determine m. 

We now proceed to calculate P(e) for the WPD detector. Since by 

symmetry, P(ejm-O) • P(e|m*l), we assume with no loss of generality that 

D - 0, i . e . +s(t) i s sent. In this case, we can rewrite (2.12) as 

(2.12) 

A A 
If D > 0, m - 0 i s declared; otherwise m - 1 i s declared. In an actual 

M 
(2.13) 

where the partial decision random variable D. i s defined by 

(2.14) 



It follows that P(D 1»1) - l- p 1 and P ^ —1) - where 

- Q i y i 1 ^ , ! ) . (2.i5) 

2 

The mean and variance of D^Js^j are given by (l-2p^)Js^| and 4p^(l-p^) Js^ | 

respectively. Under certain conditions which are satisfied i n this case, i t 

can be shown [14] that as M-̂ °°, D^^ has the asymptotically Gaussian 

distribution 

M M 
n( I (l-2p )|s |, I 4p (1-p )|s J 2 ) . 
1-1 1 1 1-1 

Using t h i s r e s u l t , i t i s shown i n Appendix A f o r small signal-to-noise 

r a t i o s that the p r o b a b i l i t y of error f o r the WPD detector as M** i s given by 

4E 
8 ^ (2.16) 
o 

It Is interesting to note that for large values of M, the WPD detector uses y 

tlaes the energy required by the DMF detector to achieve the sane value of 

P(e). This penalty of 1.96 dB Is independent of the specific signalling 

waveform used, i n contrast to the SAS detector i n which the penalty does 

depend on the shape of s ( t ) . 
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2.A. The Binary Partial Decision (BPD) Detector 

The BPD detector can be considered as a special case of the WPD 

detector i n which the Information regarding the magnitude of the sample 
M 

values {s^)^ m^ i s not used. This results In a simple implementation in which 

a counter ( I n i t i a l l y reset to 0) i s Incremented or decremented by 1 depending 

on the polarities of v^ and s^. Specifically, define 

i " l 

where Di - sgnCv^ • sgn ( s ^ , as in (2.1A). Then i f D B p D > 0 , m = 0 is 
A 

declared; otherwise m - 1 Is decided. It can easily be seen that the 

detector w i l l make an error i f and only i f a majority of the M samples have 

had their polarities reversed by the channel noise. Proceeding as i n section 

2.3, i t can be shown that as M+«°, ̂ BPD * i a s t n e aBYmot-°ticaHy Gaussian 

distribution 

M M 
n( I (l-2p ) , I 4 p . ( l - P l ) ) . 

i - l 1 i - l 1 1 

Using this result, i t i s shown i n Appendix B that the probability of error 

for the BPD detector as M+- i s given by 

p ( e > - o ( / n r . ) • 
o 

(2.18) 
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where a i s as defined in (2.10). Compared with the DMF detector, we see that 

the BPD detector Is 10 l o g 1 0 ( - ~ ) - 1.96 + 10 log 1 ( )a dB less e f f i c i e n t . We 

note that the penalty can be interpreted as consisting of 2 components: 1.96 

dB Is lost because decisions are based only on the polarities of the received 

signal samples (not on their magnitudes) and 10 l o g ^ a dB i s lost because 

equal weights are being given to received signal samples even though the 

sample corresponding to a large js^ J i s less l i k e l y to be i n error than the 

sample corresponding to a small \ B ^ \ . These 2 components correspond to the 

losses resulting from the WPD and the SAS detectors respectively. 

2.5. Generalization to Arbitrary Signalling Waveforms 

The results of the three preceeding sections can be easily generalized 

to arbitrary signalling waveforms. Let a Q(t) and 8j(t) denote any two 

finite-energy waveforms defined on [0,T]. This set of signals can be 

transformed into a set of binary antipodal signals by defining 

s (t) • a (t) 

. . ( t ) - . o ( t ) - _° 
and 

e n ( t ) + a (t) 
s j ( t ) - Bj(t) - - ^ j - ^ 

This transformation subtracts the arithmetic mean of the two signals from 

each signal. The results derived in the previous sections then apply 

directly to { *o^t^» }» where E G is to be interpreted as the energy 

in sl(t) or s!(t). The energy E of ( 2 . 4 ) , (2.11), (2.16) and (2.18) can 
u x s be related 

(2.19a) 

(2.19b) 
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to the signals SQCO and s^(t) by noting that 

T 
E - / [ s ' ( t ) ] 2 dt s ' 0 0 

i T 

4- [ E + E c - 2 J s n ( t ) s.(t) dt ], (2.20) 4 i s Q s 2 ' Q 0 1 

where E , i-0,1, i s the energy of s.(t). Of course, i f s.(t) • - s n ( t ) , 
6^ 1 1 U 

T 
E - E - E . On the other hand, i f E - E and / B-(t) s.(t) dt - 0 s s 0 6 l s 0 S j ' Q 0 1 

E 
80 

corresponding to binary orthogonal signalling, E g " leading as expected 

to a los6 of 3 dB relative to binary antipodal signalling. 

2.6. Discussion 

The asymptotic losses associated with the use of three suboptimum 

detection schemes have been analysed. Table I gives a summary of the results 

as applied to three specific signalling waveforms. 
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Losses relative to DMF detector (dB) 

Waveform SAS WPD BPD 

Square 

Sinusoid 

Raised 
Cosine 

0 

0.912 

1.76 

1.96 

1.96 

1.96 

1.96 

2.87 

3.72 

Table I - Asymptotic losses for suboptimum.schemes. 

As Indicated below, these asymptotic values are reached quite rapidly. The 

losses for the SAS, WPD and BPD detectors are plotted against the sample size 

M in figures 2.2 - 2.5. In figures 2.2 and 2.3, a sinusoidal signalling 

waveform Is assumed, whereas a square signalling waveform is used in figures 

2.4 and 2.5. For each figure, a target value of P(e) is used. In figures 
-3 -7 2.2 and 2.4, this value Is 10 and in figures 2.3 and 2.5, it is 10 . 

The losses represent the Increase In E required to achieve the same 
8 

target value of P(e) using the suboptimum detector and equation (2.4) 

respectively. 

The plots in these figures were obtained numerically using a VAX-

11/750. Losses were calculated for each suboptimum scheme for different 

(odd) values of M. It should be noted that the distortion of the signalling 

waveform which would result for small values of M was taken Into account In 

these calculations. Details concerning the computation of P(e) are given in 

Appendix C. Recall that the samples are spaced TT sec. apart. The first 
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SAMPLE SIZE M 

Figure 2.2. The penalty as a function of the (odd) sample s i z e M . The s i g n a l l i n g waveform 
i s a single sinusoid. Curves. B, D and F (A, C, E) are for the best (worst) choice of 
sampling s t a r t i n g time f or the BPD, WPD and SAS detectors r e s p e c t i v e l y . 



SAMPLE SIZE M 

Figure 2.3. The penalty as a function of the (odd) sample siz e M. The s i g n a l l i n g wave 
i s a single sinusoid. Curves B, D and F (A, C, E) are for the best (worst) choice of 
sampling s t a r t i n g time for the BPD, WPD and SAS detectors r e s p e c t i v e l y . 



Figure 2.h. The penalty as a function of the (odd) sample siz e M. The s i g n a l l i n g waveform 
i s a square-wave. Curves A and B are for the worst and best choice of sampling s t a r t i n g 
time respectively for the BPD and WPD detectors. Curves C and D represent the worst and 
best choice of sampling s t a r t i n g time respectively for the SAS detector. 



Figure 2.5. The penalty as a function of the (odd) sample s i z e M. The s i g n a l l i n g waveform 
i s a square-wave. Curves A and B are f o r the worst and best choice of sampling s t a r t i n g 
time respectively for the BPD and WPD detectors. Curves C and D represent the worst and 
best choice of sampling s t a r t i n g time respectively for the SAS detector. 



sample can be chosen anywhere In the interval (0 , - g ) . The difference i n 

losses obtained by selecting the best and the worst times for the f i r s t 

sample i s also indicated i n the figures. As would be expected, the time of 

the f l r 6 t sample has l i t t l e effect on the losses for large values of M. 

Figure 2.2 shows that with the sinusoidal signalling waveform and 

P(e)«10 , for M greater than about 15, the S A S , WPD and BPD detector losses 

are within 0.05, 0.03 and 0.25 dB of their asymptotic values. For P(e)«*10-7, 

figure 2.3 shows that the corresponding figures are 0.1, 0.2 and 1 dB 

respectively. For square wave signalling, the WPD and BPD detectors are 
_3 

equivalent. From figure 2.4, i t can be seen that for P(e)=10 , and M 

greater than about 15, the SAS and WPD detector losses are within 0.5 dB of 

their asymptotic values. For a smaller value of T(.e)B10 \ figure 2.5 

indicates roughly the same behaviour. 
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III EFFECTS OF OVERSAMPLING ON THE PERFORMANCE OF THREE 

SUBOPTIMUM DETECTION SCHEMES 

3.1. Introduction 

In chapter 2, the penalty incurred in the use of three suboptimum 

detectors was analysed. The f i l t e r characteristics and the sampling rates 

used i n the analysis guaranteed the independence of the received signal 

samples. In this chapter, the effects of sample dependence on the penalties 

are examined. The effects of oversampling are analysed for Butterworth, 

Gaussian and ideal lowpass f i l t e r s as well as for a cascade of N identical 

poles. 

The receiver model i s shown in figure 3.1. The case of antipodal 

signals w i l l be analysed but the results can be generalized to arbitrary 

binary signals by using the transformation of section 2.5. Depending on the 

message me{0,l} to be transmitted, a signal +s(t) or -s(t) is sent over an 

additive white Gaussian noise (AWGN) channel. The two-sided power spectral 

density of the noise process is NQ/2. The signal s(t) Is assumed to be 

non-zero only in the time Interval [0,T] sec. and bandlimited to B H z. The 

received signal r(t) i s f i l t e r e d to remove excess out of band noise to 

produce the signal v(t) which i s then processed by the detector. The lowpass 

f i l t e r has 3dB cutoff frequency B. 

The detector samples the signal v(t) at a rate of 2cB samples per 

second yielding a total of M - 2cBT noisy samples « + of the 

transmitted signal where f - f ( l x ~ ^' 5^) » n d t h e ^ n i ^ i - i a r e Gaussian (not 

necessarily independent) noise random variables with means 0 and variances 

a 2 . The parameter c may be thought of as the oversampling factor, n 
Increasing c gives more, dependent, samples for processing. There are a 



LOWPASS FILTER 

V . 
- B B 

v ( t ) 
DETECTOR 

Figure 3 . 1 . Block diagram of the data r e c e i v e r . 
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maximum of M • 2BT independent samples available from an ideal lowpass f i l t e r 

corresponding to c • 1 and sampling frequency f • 2B [11]. The normalized 

sampling rate is c • f g/2B. In order to ensure that the transmitted signal 

i s essentially undistorted by the receiver f i l t e r , we require that 

M = 2BT » 1. (3.1) 

The ideal lowpass f i l t e r admits noise power 0 Q
2 • NQB. In general, 

°n 2 " W ( 3- 2 ) 

where 

Y n " 2T ^ |H(f)| 2df (3.3) 

is the normalized noise bandwidth of the f i l t e r and H(f) i s the amplitude 

response of the f i l t e r . One has [18,19] 

|H(f)| 2 - [1 + (f/B) 2 1 * ] * 1 (3.4a) 
N-th order Butterworth 

| H ( f ) l 2 - [1 + ( f / B ) 2 ( 2 1 / N - 1 ) ] " N (3.4b) 
cascade of N identical poles 

| H ( f ) | 2 - e-(f/B) 2ln2 ( 3 4 c ) 

Gaussian 



for the N-th order Butterworth, the cascade of N identical poles and the 

Gaussian f i l t e r respectively. Using (3.4a) - (3.4c) and (3.3) gives 

Y n = 2N sln[*/2N] ( 3 * 5 a ) 

N-th order Butterworth 

Y - 1'3»5. (2N - 3)u ( 3 > 5 b )  

1 1 / 2
1 / N - i V (H-1) I 

cascade of N identical poles 

Gaussian 

for the N-th order Butterworth, the N-pole cascaded and the Gaussian f i l t e r 

respectively. 

3.2. The Sample-and-Sum (SAS) Detector with Dependent Samples 

The SAS detector with dependent samples computes the quantity 
M 

D » £ v sgn(s.) as described previously in section 2.2. The SAS ± m l I I 

penalty may be determined by proceeding as was done there. 

Given that m • 0 i s transmitted, the mean of D g A S is given by 
_ M 
DSAS " ^ ' 8 i l a n d t h e v a r i a n c e o f DSAS 1 8 8 I V E I 1 by 
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« V C - E « D S A S " DSAS>21 * v̂gnCê  - j IsJ)2] (3.6) 
SAS i«l i-1 

where E[x] denotes the expected value of x. The square in (3.6) may be 

expanded and the terms rearranged to give 

M—1 M 
a 2 - o * M { l + ' ! E I ign(s . )r ( J - i ) j (3.7) 

SAS D i - 1 J-i+1 

where r ( j - i ) " E[n .n ]/E[(n ) 2] is the normalized autocorrelation of the n j I I 
noise which is assumed stationary. 

If the signalling waveform s(t) is continuous on 0 < t < T and single-

phase, i.e. s(t) > 0 for 0 < t < T, then (3.7) gives 

SAS i = l j - 1 

Using the result [20] that 
. M-l i 

11* £ I X rB(J) - I rn(j) 
M-~» " i - 1 j - 1 ° J - l 

whenever the series 

(3 . 9 ) 
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is convergent with (3.8) gives for large values of M 

S A S 
- a (3.10) 

when the series (3.9) converges. 

Let the term split-phase refer to a signal s(t) which is continuous on 

the interval 0 < t < T and which satisfies the conditions signum{s(tA)} • 

signum{s(t B)} - -1 for (0 < t>A < T/2, T/2 < t g < T) and s(T/2) - 0. Then 

result (3.10) i s valid for split-phase signals. This is proven from (3.7) 

by proceeding as in the single-phase case. The following analysis applies 

to a l l signalling waveforms which satisfy (3.10). 

Gaussian random v a r i a b l e s . Therefore, (3.1), (3.2), (3.10) and (2.10) 

give 

The random variable D 
S A S 

is Gaussian since i t i s the sum of jointly 

P(e) - P(e|m-0) - P(e|m-1) 

} 

(3.11) 
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Comparison of (3.11) with (2.4) shows that to achieve the same error 

probability as the optimum detector, the SAS detector with dependent samples 

requires aT^ more energy where 

r - Y U + 2 I r ( i ) } / c . (3.12) 

The loss represented by is in addition to the o loss described in section 

2.2. One observes from (3.12) that T has two components. The factor Y 
n n . 

arises because a f i l t e r with f i n i t e r o l l - o f f admits more noise than an 
CD 

ideal f i l t e r with i n f i n i t e l y sharp cut-off. The sum £ r
n ( l ) results from 

i - l 

the dependence of the samples. 

( 
sin(ni/c) this case, Y - 1 and r (i) - — ; — . , x . Using the fact that the Fourier * 'n n v (m/c) ° 

sine series representation for the function f(x) - n - %, 0 < x < it, is [21] 

It i s interesting to consider for the ideal lowpass f i l t e r . In 

8 in ix f(x) ~ 2 I l l f 
i - l 

gives for x - K/C with c > 1, 

. r s i n ( t t l / c ) _ . 
2 J 1 O c i / c ) C 1 ' 



where convergence is guaranteed by a Fourier Theorem. Hence, T - 1 for a l l 
n 

values of c > 1 for the ideal lowpass f i l t e r . That i s , processing more than 

the maximum number of independent samples neither improves nor deteriorates 

the performance when (3.1) i s satisfied. Note also that the loss, a, 

incurred by not weighting the samples is not retrievable in whole or 

in part by oversampling. 

In the general case, the normalized autocorrelation r (t) of f i l t e r e d 
n 

white noise is related to the f i l t e r characteristic by the Wiener-Khintchine 

theorem [22]. That i s , r
n ( t ) is the normalized inverse Fourier transform of 

the squared magnitude frequency response of the f i l t e r . Starting from 

(3.4a) - (3.4c) one may derive 

N 
r (T) - sin(n/2N) J exp[-2nB|t|sin ( 

n A=l 
2A-1 
2N Tt)] sin{ 2JL-1 2N n + 2itB|x|cos( 2JI-1 2N 

Nth order Butterworth (3.13a) 

r n < * > 

cascade of N identical poles 
(3.13b) 

r n ( T ) 

-T 2* 2B 2/Jln2 e 
Gaussian (3.13c) 

for the N-th order Butterworth, the cascade of N identical poles and the 

Gaussian f i l t e r respectively. Figure 3.2 presents r (T) as a function of 



2BT 

Figure 3.2. The normalized autocorrelation function * n ( T ) of white noise f i l t e r e d by 

Butterworth lowpass f i l t e r of order N. The ideal lowpass f i l t e r corresponds to N =» «°. 
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BT for the Butterworth (N - 1-4) and Ideal lowpass filters. Figure 3.3 

shows rn(t) for the cascaded pole (N • 1, 2, 4, 6) and Gaussian filters. 

The terms i n the sum of (3.12) occur at time instants 

- l/2cB. Therefore, equations (3.13a)-(3.13c) combined with (3.12) 

•nd (3.5a)-(3.5c) yield, after some manipulations, 

- — sin a. 
N sinfa,+ - cot i . ) - e C sin a. 

n ' 2cNsin(*/2N) l l + B l n i 2 N j * Z7^~~t ^ r * \ ' ' 
JM. cosh'̂— sin ŝ j - coŝ— cos â) 

21-1 
• A • ic N-th order Butterworth (3.14a) 

r - 1'3»5« ... (2N-3)n ... 2(N-1)1 r -ih 
n / i/N •» M (2N-2) 1 £ 
/21/N-1 2N(N-l)!c 1 1 

" r 1 (2N-k-2)!(21h)k , h 1 
k!(N-k-l)l >» C/2T7T7 ( 3' 1 4 b ) 

cascade of N Identical poles 

x 1 Gaussian (3.14c) 

The quantity Is plotted as • function of the normalized sampling rate 

f /2B - c in figures 3.4 and 3.5 for Butterworth and cascaded pole filters 

respectively. Also shown In figure 3.5 is the curve for the Gaussian filter 



Figure 3.3. The normalized autocorrelation function r
n ( T ) of white noise f i l t e r e d by a 

cascade of N identical poles. The Gaussian f i l t e r corresponds to N = ». 





3.0 

r (dB) n 

2 3 5 10 
Normalited Sampling Rate f / 2 B 

Figure 3 . 5 . The additional penalty r n for the SAS detector with p r e f i l t e r 

consisting of a cascade of H identical poles. The Gaussian prefilter corresponds 

to N • ». 

u > 
OO 
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which corresponds to a cascaded-pole f i l t e r with N - ». In a l l cases, 

T decreases with c and lim T • 1. Using the Wlener-Khintchine theorem, i t n c+" n ° ' 
can be shown that lim r - 1 for any f i l t e r provided that r (T) i s 

c*» n n 
integrable. 

3.3. The Weighted Partial Decision (WPD) Detector with Dependent Samples 

The WPD detector with dependent samples bases i t s decision on 

M M 
DWPD " I 8 g D ( V i ) , 8 i " I D i ' 8 i l ( 3 - 1 5 )  

U i-1 1 1 i-1 1 1 

as described in section 2.3. The error probability i s found by proceeding as 

previously. That i s , the mean and variance of D^^ are derived and a central 

limit theorem is used to approximate the error probability for large values 

of M. The par t i a l decision random variables D̂  are now permitted to be 

dependent. In order to proceed, we postulate that a central limit theorem 

holds for certain sums of dependent random variables. Many central limit 

theorems for dependent random variables formalise in some sense a heuristic 

notion that one expects a central limit theorem to hold i f the random var i 

ables behave more like independent random variables the further they are 

separated [23]. The dependent random variables considered here behave in 

this fashion. Computer simulations are used to test the validity of the 

postulate and to i l l u s t r a t e how the penalty varies with M. 

When a general f i l t e r and dependent samples, as described by (3.1) 

and (3.2), are considered equation (2.15) must be replaced by 



p i = P r ( n i > l S i l ) " Q ^ y / ~ Y p ^ ^ i 1 1 ' ( 3' 1 6 ) 

The mean and variance of D^|s^| are again given by (l-2p^)|s^| and 

A p ^ ( l - p ^ ) | | 2 respectively. The mean of D^pp is found from (3.15) 

DWPD- X CX-2p±>|.±| (3.17) 
1=1 

and the variance of n y p D i s 

M M 
UWPD i - l i - l 

M M M 
I |. | 2 + I I |s ||s | {E[DD -DD ]} . (3.18) 

i - l " i 1 i - l J - l x J 

i * j 

It i s shown in Appendix D that for large values of M 

E[DtD ] - - -| arcsin { r n ( j - i ) } (3.19) 

where the noise process i s assumed to be stationary. Then (3.18) can 

be rewritten as 
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M 2 M M 
1 - I |s±|2 + - I I |s ||s |arcsin{r (j-i)} . (3.20) WPD 1=1 1 1 71 1=1 j*»l n 

i * j 

By proceeding as in Appendix A with p^ given by (3.16), i t may 

be shown that for large values of M 

M ME 
I - J I - i l ' - T 1 ( 3 - 2 1 > 

i=l i 
and 

/
4cM \ 

* V n T 

D » /_-l£EL- E . (3.22) WPD / IN v T s 

Furthermore, i t i s proven in Appendix E that as M-*89 

Combining (3.21) and (3.23) with (3.20) and (3.22) gives 

WPD 

WPD 

4E c 
8 

1 
(3.24) 

Applying a central limit theorem to the sum of (3.15) and using (3.24) 

gives the error probability 



P(e) 
4E c 

8 

u l W 1 + " I arcsin{r n(i)}) 
(3.25) 

1=1 

Comparison of (3.25) with (2.4) shows that the penalty of the WPD detector 

with dependent samples is it/2 where 

r n " I I «csln{r n(l)}]/c . (3.26) 

The loss represented by Tn is in addition to the n/2 or 1.96 dB loss of the 

WPD detector with independent samples. Note that 2/it arcsin{r n(i)} i s the 

normalized autocorrelation function after hard-limiting of a random variable 

possessing normalized autocorrelation function r
n ( i ) [24]. Equation (3.26) 

i s , therefore, analagous to equation (3.12). The function 2/ir arcsin{r n(BT)} 

i s shown in figures 3.6 and 3.7 for Butterworth and cascaded pole f i l t e r s 

respectively. 

The additional penalty r i s plotted as a function of the normalized 

sampling rate in figures 3.8 and 3.9 for Butterworth and cascaded pole f i l 

ters respectively. The values r (i) are determined from equations (3.13a) -
n 

(3.13c) with r (i) - r (i/2cB). Observe that for high sampling rates, the n n 
penalty for a low order f i l t e r i s less than that for a high order f i l t e r . 

For example, in figure 3.8 at f /2B • 15, T « -1.5 dB for N - 1 while 
s n 

T - -0.9 dB for N - °°. A similar observation was made in [25], in the n 



-0.25 I I I I I I 
0 1 2 3 4 5 

2BT 

Figure 3.6. The normalized autocorrelation function of white noise after lowpass filtering 

and hard-limiting. The filter used Is N-th order Butterworth. The ideal lowpass filter 

corresponds to N • 0 0. 
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BT 

Figure 3 . 7 . The normalized autocorrelation function of white noise after lowpass f i l t e r i n g 

and hard-limiting. The f i l t e r used is a cascade of N identical poles. The Gaussian lowpass 

f i l t e r corresponds to K * •, 



Figure 3.8. The additional penalty r of the WPD and BPD detectors. The 

prefliter is H-th order Butterworth lowpass. The ideal lowpass filter 

corresponds to H • "• 
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Konnallred Sampling Kate f g / 2 B 

Figure 3.9. The additional penalty T of the WPD and BPD detectors. The 

p r e f i l t e r i s a cascade of F identical lowpass poles. The Gaussian lowpass 

corresponds to N • ". 



47 

context of polarity coincidence array detectors. 

3.4. The Binary Partial Decision (BPD) Detector with Dependent Samples 

The BPD detector with dependent samples computes 

A M 

D„™ - I D . . (3.27) BPD / , i 1=1 

The probability of error i s determined by proceeding as in section 2.4, 

For large M, 

PBPD / 4cT{<ls(t)|>} 2
 m I 4cEs 

B ? D «csin{r n(i)}] / u N o y n a [ l + ^ I arcsin{r n(i)}] 
i-1 V i-1 (3.28) 

where a has been previously defined in (2.10). Assuming a central limit 

theorem holds for the sum in equation (3.27) and using (3.28) gives for 

the error probability 

r / *CEB W I 
P B P D ( e ) " Q 1 / r A r r n f ( 3 ' 2 9 ) 

1/ - , o T n
a t l + i : X « " l l l { r n ( 1 ) H J 

The penalty of the BPD detector with dependent samples Is found by comparing 

(3.29) with (2.4). It i s o w/2 T where T i s given by (3.26). That i s , the 
n n 



additional penalty i s the same for the BPD and WPD detectors and is 

independent of the signalling waveform. 

3.5. Conclusions 

The asymptotic losses of three suboptimum detection schemes 

with dependent sampling have been analyzed. In order to verify the 

central limit theorem postulated in section 3.3 and to ill u s t r a t e how 

quickly the asymptotic values are reached, we have simulated the WPD 

detector with dependent samples. Coloured Gaussian noise samples 

were generated using the method of reference [26], The signal-to-
_3 

noise ratio required to attain P(e) • 1.00 x 10 i s determined from 

figure 3.8 and equations (3.25) and (2.4). Using a f i r s t order Butter

worth p r e f i l t e r , the simulated error probabilities for f s/2B • 1 were 

1.13 x 10" 3 and 1.01 x IO - 3 for M - 9 and M * 31 respectively. For 
-3 f /2B - 3 and M « 27, 93 and 303 the P(e) values were 1.77 x 10 , s 

-3 -3 

1.14 x 10 and 1.05 x 10 respectively. 

It was noted earlier that better performance can be achieved 

by using a f i r s t order lowpass f i l t e r rather than a fourth order 

f i l t e r . This has also been verified by simulation. Again, the SNR 
_3 

required to achieve P(e) • 1.00 x 10 i s determined from the present 

results and used in the simulator. The analysis indicates that 

0.48 dB greater SNR i s required for the fourth order f i l t e r when 

both f i l t e r s are Butterworth and f /2B = 15 for M = 1515. The 
s 

-3 -3 simulated error probabilities were 1.09 x 10 and 1.04 x 10 for 
the f i r s t and fourth order f i l t e r s respectively. Note that an 

-3 -4 increase of 0.48 dB decreases P(e) from 1.00 x 10 to 5.46 x 10 



IV OPTIMAL DETECTION OF HARD-LIMITED DATA SIGNALS IN DIFFERENT 

NOISE ENVIRONMENTS 

4.1. Introduction 

A number of digital techniques for detecting binary antipodal 

6 ig rials are based on examining the polarities of the received signal 

samples and ignoring their amplitudes. The weighted partial decision 

(WPD) and binary partial decision (BPD) detectors analyzed in chapters 

2 and 3 are two examples. In this chapter, the structure of the 

optimum detector DQJJ ̂  for the hard-limited samples is derived. 

Its performance is compared with those of some commonly used ad hoc 

detectors in both impulsive and Gaussian noise environments. For the 

Gaussian case, the performance is also compared with that of the 

optimum detector D̂p̂  which operates directly on the unquantized 

received samples. 

The generalization of the D0pT ̂  detector to M-ary signal

ling with each received sample quantized to an arbitrary number of 

levels is also examined. The optimum, minimum probability of error, 

receiver for this case is derived. 

4.2. Derivation of the Optimum Detector for Hard-Limited Samples 

In this section, we derive the optimum processing for a number 

of hard-limited samples. For ease of discussion, it is assumed 

that the samples come from one of two antipodal signals that have been 

corrupted by additive channel noise.* Depending on the message 

The analysis Is extended to arbitrary signalling schemes in section 
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me{0,l} to be transmitted, a signal +s(t) or -s(t) i s sent over a noisy 

channel. The detector decides which message m, me{0,l} was sent on the 

basis of the hard-limited samples. The optimum detector D minimizes 
OPT , HI* 

the probability of error P(e) * Pr( m ¥ m ). 

Assume that the transmitted signals ±s(t) are time-limited to the 

interval 10,T]. If s(t) is sent (corresponding to message m-0), then 

v i " + + nj • 1 " lf2....»Ne (4.1) 

N .i~0 5 IT where {v^} 6 denote the Vg samples of v(t), i.e. - v — K * ' ), to be 

N N 

N 

i-1 

processed. The values {s.} 6 denote the samples of +s(t) and {n.} s 

1 i-1 1 i-1 
represent outcomes of independent noise random variables (r.v.'s). The noise 

is assumed to possess an even probability density function. If the message 

Is m-1, then -s(t) Is sent, and V j - - S j + n̂, 1-1,2,...,Ng. Each sample 

is hard-limited by the detector according to 

{I 
if sgn ( V j ) - sgn(s1) # 0 
if sgn(v1) - 0 or sgn(&1) - 0 (4.2) 
otherwise 

if x > 0 
where sgn(x) - 0 if x - 0 

if x < 0 

The probability that sample v± Is of opposite polarity to the 

transmitted sample +ei or -s1 (ŝ O, v^O) Is given by 

P j - Pr̂ -llm-0) - Pr̂ -llm-l) - Pr^ > \ B ± \ ) . (4.3) 



The minimum P(e) detector corresponds to the maximum a posteriori (HAP) 

decision rule which states that m-0 is chosen i f 

N N 
Pr({d } 8 |m-0) Pr(m-O) > Pr ({d > 8 |m-l) Pr(m-l) (4.4) 

1 1-1 1 1-1 

where d^ denotes a particular outcome of the random variable D^. In the case 

of equally l i k e l y messages, Inequality (4.4) reduces to 

N N 
Pr({d.) 6 |m-0) > Pr({d,} 8 |m-l) . (4.5) 

X 1-1 1 i - l 

Let A 1 denote the set of a l l I's such that d^-1 and A_^ denote the set of a l l 
A 

i's such that d^—1. Then, the optimum decision rule Is to choose m-0 i f 

n (i-p.) n p > n p. n U-P.). (4.6) 
icAl

 1 icA_ x
 1 icAj 1 IcA_ 1 

From (4.6), the optimum decision rule can be stated as follows: form the 

s t a t i s t i c 

D O P T , H L £ j ^ i * ' ( A ' 7 ) 

i f d-__ „. > 0, m-0 is declared; otherwise, m-1 Is declared. OFT,HL 
Various weighted partial decision (WPD) detectors for hard-limited 

signals have been proposed (2] which have the following general form. The 

. N s N s 

test s t a t i s t i c i6 d„__ - J d.u., where {u. } are weights assigned to the 
W t i - l 1 1-1 

different samples. The WPD detector chooses m-0 i f & ^ > 0 and m-1 i f d w p D 

< 0. The weights Wj-1, w 1"l s
1l a n d w i " 8 i * a r e o f t e n u 8 e d » 1* c5 n ^e s e e n 
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from equation ( 4 . 7 ) t h a t the optimum weights are given by 

" An (-p-i) . ( 4 . 8 ) 

In the next three s e c t i o n s , the de t e c t o r DQPJ h l i s compared to these schemes 

and, i n the case of Gaussian noise, to the optimum de t e c t o r based on the 
N 

unquantized samples {v.} 
1 i - 1 

4 . 3 . Optimum Weights f o r Low S l g n a l - t o - N o i s e R a t i o s 

In t h i s s e c t i o n I t I s shown t h a t , f o r most common noise models, the 

optimum weights as given by equation ( 4 . 8 ) are w e l l approximated by = |s^| 

when the s i g n a l - t o - n o i s e r a t i o (SNR) i s low. Assume that the noise v a r i a b l e s 
N 

{NjJ 6 have an I d e n t i c a l p r o b a b i l i t y d e n s i t y f u n c t i o n (pdf) which Is even. 6 
i - 1 

T h i s holds f o r most commonly used noise models such as the Gaussian, Laplace 

or Cauchy p d f s. Let the cumulative d i s t r i b u t i o n f u n c t i o n (CDF) be denoted 

by Fn(*)» Suppose that F n ( • ) can be represented by a Ma c l a u r i n s e r i e s 
expansion, i . e . 

F n < " > - j 0
 F n k < ° > £ < 4 ' 9 ) 

where F n (0) denotes the k-th d e r i v s t l v e of F n ( o ) evaluated at a-0. One may 

combine ( 4 . 3 ) , ( 4 . 8 ) and ( 4 . 9 ) to o b t a i n 

# F ( | s . | / o ) 
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1 r- k < l » i l / " > k 

JUiI — i — 1 (A.10b) 
I r k ( l 6 i l / 0 > k ' 
4 - i O ( o ) 1 

2 k-i n 

- k < i » , i M k 

2 I F n ( 0 ) El 
- An ( 1 4 — ^ - ) CA.lOc) 

V i ? r " n n ( l ' ' | / o ) 

2 - J / n ^ - k l -
In (4,10b) the fact that the noise pdf i s an even function has been used 

and o is the noise scale parameter. For low signal-to-noise ratios, i.e. 

|s^|/o << 1, one has 

w* - A F n
1 ( 0 ) IsJ/c, (A.11) 

since An(l + x) - x - -| x 2 + -| x 3 + ..., for -1 < x < 1. In (A.11) i t has 
also been assumed that F A ( 0 ) ^ 0 , as i s the case for a Gaussian, Laplace 

n 
or Cauchy pdf. Finally, one notes that scaling of the weights by a 

* 
constant does not affect the decision rule. Hence, may be chosen to 
be approximately equal to |s i ' -

4.4. Optimum Weights for High SNR's 

In the case of high SNR's the optimum weights depend on the noise pdf. 

The Gaussian, Laplace and Cauchy distributions w i l l be considered i n turn. 
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4.4.1. Gaussian Noise Distribution 

For a Gaussian noise r.v. of variance a 2, it follows from equation 
n 

j wnere v\«U - • 
JTh a 

s 2 

1' 1 1 — » 1, p. Is well approximated [31] by r——r e x P ( )• From (4.8) 
ti i ^ i i 1 i 1 2o 2 

M\K 1 r" -X2/2 
(4.3) that p. - Q M - where Q(a) - J e ' dx. When the SNR Is high, 

1 °n m a 

n 
°n 

the optimum weights are approximated by 

s 2 

* 1 
w. . (4.12) 

1 W 
Since scaling the weights by a constant doe6 not affect the decision rule 

* 2 
defined by (4.7), can be chosen to be approximately equal to ŝ  . 

4.4.2. Laplace Noise Distribution 

This distribution Is sometimes used as a model for Impulsive noise 

[11]. The Laplace pdf Is defined by f(o) - -j£ e"'°'/c, < a< with 

1 - I 8 l ' / C 

variance 2c2. In this case, Pj --J « . For high SNR's, from (4.9), the 

optimum weights can be approximated by 
i - . (4.13) 1 c 

Since the decision rule is unchanged by scaling [u.} , u. can be chosen as 
i-1 



4.4.3. Cauchy Noise Distribution 

The Cauchy distribution defined by the pdf f(o) --£7̂ .̂ < a< », 

Is used to model severe impulsive noise [27] • In this case for high SNR's, 
* 

the optimum weights are approximately given by " 1 as shown in Appendix 

F. 

4.5. Some Numerical Examples 

In t h l 6 section a number of examples are presented. These examples 

Illustrate some of the Issues Involved In the selection of the weights and 

compare the detector performances for d i f f e r e n t choices. In a l l of the 
A A 

examples the signal-to-noise ratio is defined as 20 logi0 (—), 20 logi0 (-) 
n 

and 20 loĝ Q f^) for the Gaussian, Laplace and Cauchy distributions 

respectively, where A is the pulse amplitude. 

As a first example, we consider the detection of a taised cosine 

pulse, sampled Ng - 11 times according to (4.1), in Gaussian noise. The 

optimum detector for the unquantlzed samples In Gaussian noise Is the digital 
— * 

P(e) - Q(/ I •1
2/on). matched filter (DMF) for which P(e) - Q(/ I *4

2/o J. Figure 4.1 shows the 
i-l 

probability of error obtained using the DMF and the WPD detector with weights 

1-P4 I-P* i n ( -). |s1|, s4
2 snd 1. The Inf——) and curves, though indistin-

Pi ' ' 1 V p i 
gulshable, are not Identical. It can be seen that the use of the ŝ 2 weights 

Instead of the optimum weights results In little loss. However, the use of 



Figure U.l . Error p r o b a b i l i t i e s for the DMF detector and four d i f f e r e n t WPD detectors. A 
r a i s e d cosine pulse i n additive white Gaussian noise i s sampled 11 times. 
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tî -1 results in a substantial loss, e.g. a penalty of about 3.7 dB i s 

incurred at P(e)-10~1* relative to n
Q p T For the same error probability an 

inherent penalty of about 2 dB results from hard-limiting the samples. It Is 

Interesting to note that In certain cases, the WPD detectors with weights 
1 _ P i 

l n ( — - — ) , Iŝl and B ^ 2 are equivalent. Examples Include the case of a raised 

cosine In Gaussian noise sampled N - 3, 4 or 6 times. 
6 

For a second example, the detection of a half sinusoid pulse sampled 
Ng"3 times is investigated. Thl6 example shows that caution should be 

N 
5 

exercised when dealing with tie s . A tie occurs when d^p^ - £ d^ o^-O. If 
i-1 

the weights | | are used, a tie w i l l occur i f the f i r s t and third samples 

have opposite polarity to the second sample. One option In this case Is to 
A 

choose message m based on the outcome of a f a i r coin toss. This may, 

however, lead to poorer performance than that obtained by using the optimum 

MAP decision rule. This Is Illustrated i n figure 4.2 which shows the error 

probability as a function of the SNR for the WPD detector with weights 
1-P4 1-P4 

w - Jtnf i ) , Is. I, and s 2 . In this case, the Jtnf " ) and s 2 weights are 
1 v p ' - • l ' l " i 

equivalent. The |ŝ| weights detector with random t i e resolution performs 

poorer at high SNR'6, e.g., an Increase of about 1.5 dB In SNR Is required to 

maintain a target value of PCe)-!©"1*. In this case If the decisions 

corresponding to ties are properly chosen, the | | weights detector i s 

equivalent to D 0 P T ) H L -
Also shown in figure 4.2 are the error performances of the DMF detector 



Figure U .2 . Error p r o b a b i l i t i e s f or the DMF detector and four d i f f e r e n t WPD detectors. A 
h a l f sinusoid i n additive white Gaussian noise i s sampled 3 times. 

oo 
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and the WPD detector with u ^ - l . It i s 6een that the WPD detector with 

optimum weights (or 6^* weights) performs poorer than the DMF detector by 

about 1*8 dB (actually a factor of 1.5). It performs, nonetheless, 

appreciably better than the equal weights detector; e.g., to achieve 

P(e)-10~\ an additional 2.0 dB i s required. 

An example involving the detection of a raised cosine pulse sampled 

N g»7 times in Laplace noise 16 now considered. As discussed in sections 4.3 

and 4.4, the weights |s^| are nearly optimum for very low and very high SNR 

environments. This can be observed i n figure 4.3. The only noticeable 

l " p i 
difference between the A n ( ~ — ) *»d |s 1| curves occur for SNR's between -3 dB 

and 21 dB. The weights u -1 detector is significantly poorer, the difference 

being about 4 dB at P(e)«10~ 5. The • B ^ 2 detector performs almost as well 

as the optimum weights detector. The difference is less than 0.6 dB for 

P(e) < ~10~ 6. 

The last example of this section Involves the detection of a raised 

cosine pulse sampled N g«3 times In Cauchy noise. The error probabilities for 
1-pj , . 

u>, • inf =•), Is. I and 1 are plotted i n figure 4.4. The weights \s. | 

1 vp^ ' 1 

detector outperforms the equal weights detector when the SNR is less than 

15.1 dB. For higher SNR values, the unity weights detector has a signif

icantly better performance. In Appendix G i t i s shown that in this 

example with N g » 3 samples the P(e) of the optimum weights detector 

i s equal to the smaller of the P(e)'s for the weights Js^j and 1 

detectors. For this example, i t can easily be seen that the weights 

|s.| and s. detectors are equivalent. 



P(e) 

-20 -10 0 10 20 
SNR (dB) 

Figure U.3. Error p r o b a b i l i t i e s for the detection of a r a i s e d cosine pulse i n Laplace noise 
sampled 7 times. Three d i f f e r e n t WPD detectors are i l l u s t r a t e d . 

o 
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Figure k.k. E r r o r p r o b a b i l i t i e s f o r the detection o f a r a i s e d cosine 
pulse i n Cauchy noise sampled 3 t i n e s . Three d i f f e r e n t WPD detectors 
are i l l u s t r a t e d . 



However, there are signalling waveforms for which the weights Jsj| detector 

performs much better than the weights s 2 detector. 

4.6. Generalization to M-ary Signalling and Multilevel Quantization 

In this section, the WPD detectors for M-ary signalling with each 

received sample quantized to an arbitrary number of levels are examined. 

These detectors can be viewed as generalizations of the binary signalling 

detectors of section 4.2. Thus, consider that the message m can now take on 

one of M values, m e{l,...,M}. Corresponding to n • J, the signal s^(t) Is 

6ent and the N g received samples are v j " s j j + n
1 » 1 * l»2,...N f i, 

j e {l,2,...M} where s, - s. ft *~f; : ) and {n } 6 are Independent noise 
J.* J N s 1 i-1 

samples. 

Let v-(vj,v2»••«v^ ) denote the vector of received samples. In the 
_ s 

case of M equally l i k e l y messages, the minimum P(e) detector corresponds to 

the maximum likelihood decision rule, I.e., choose m-j If 

Fr(v|m=j) > Pr(v|m-k) for a l l k # j . (4.14) 

Let each received sample v , i-l,2,...,N be quantized to one of q regions 

{R .} q and define the function d -A i f v e » . On the basis of 

d - ( d l t d 2 d N ), the WPD detector decides on the transmitted message m. 
"~ 6 

A 
The minimum P(e) detector w i l l decide m-j i f 

Pr(d|m-j) > Pr(d|m-k) for a l l k # J . (4.15) 

Since the samples are Independent, Inequality (4.15) becomes 
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N N 
6 S 
n Pr(d |m-j) > II Pr(d |m-k) , a l l k * j . (4.16) 
1-1 1 i - l 1 

Let A ^ denote the set of a l l I's such that d^-I. Then (4.16) can be 
rewritten as 

n Pr (d i-l|m-j) n Pr(d 1-2|m- j ) . . . n Pr (d^q |m«j ) > 
cA, ieA, leA 

1 2 q (4.17) 
n Pr(d 1-l|iu-k) n Pr(dj-2|m«k)... n Pr (dj-q |m«k) a l l k * j . 

I E A J 1EA 2 ieA q 

Defining 
P i Jl|n " ^ ( d

1 " A l D " n ) » 1 " 1» 2»'*« N
S» i " l » 2 , . . . , q , n - 1,2,...M 

and taking logarithms, (4.17) becomes 

l z q ^ 

L * P i . l | ^ + , L * P ^ 2 i l c + - + I *> P i , q | k ' 8 1 1 k * J ' i c A x ' 1 leA 2 ' 1 iEA q 

From (4.18) i t i s seen that one way of implementing the optimum WPD detector 

is as follows: Associate with each message an accumulator C , n=l,2,...,M. 
n 

Step 1. In i t i a l i z e a l l M accumulators to zero* 

Step 2. For each 1, i-l,2,...,N s increment C n by In ^ n i f and only If 

v i c R i , r 
Step 3. Determine the accumulator with the largest value, i.e., 

C. - max{C }; declare m-j. 
^ n 

It can be verified that the above procedure when M-q-2 and sit±m~B2ti 



reduces to that of section 4.2. We conclude this section by looking at an 

example. Figure 4.5 shows the error probabilities for 2, 4 and 8 level 

pulse amplitude modulation (PAM) for the DMF and the WPD detectors with 

optimum and unity weights. In this example q=M and the term "unity weights" 

refers to incrementing accumulator C by 1 i f and only i f v. c R, • In this 
6 n J i i,n 

example, the signalling waveforms are raised cosines and the noise is 

Gaussian. The M amplitude values are ±B, ±3B,..., ±(M-1)B where B i s the 

amplitude of the smallest energy pulse. The M-l decision thresholds for any 

sampling Instant are located at the midpoints of the Intervals between 

adjacent signals. In a l l cases the receiver processes 5 samples. The SNR Is 

defined as the average value of 20 log 1 0(A/o n) where A Is the amplitude of 

the pulse and the M messages are assumed equiprobable• The optimum detector 

for the N g unquantized samples makes Its decision according to (4.14). 

Furthermore, Pr(v|m«j) • P^ (y-_sj ) where _6j denotes the vector of signal 

samples {s. .} and P»(*) denotes the N-fold Gaussian density of the noise 
samples. Equivalently, the optimum decision i s to pick the signal j that 

l i e s closest In terms of Euclidean distance to the received vector. By 

making use of the fact that the signal vectors are collinear the probability 

of error for the DMF In this case can be shown to be 

where_£ u denotes the signal with amplitude B. 

One sees in figure 4.5 that the WPD detector with optimum weights 

suffers some loss relative to the optimum detection of the unquantized 
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0 10 20 30 
SNR (dB) 

(•) 

Figure 4 . 5 . PAM error p r o b a b i l i t i e s f o r the DMF and the WPD detectorB with optimum and 
unity weights. The received signals are r a i s e d cosines In Gaussian noise sampled 5 times. 
The number of s i g n a l l i n g l e v e l s i s 2 , h and 8 for fi g u r e s (a), (b) and (c) r e s p e c t i v e l y . 
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Figure U.5. PAM error probabilities for the DMF and the WPD detectors with optimum and 
unity weights. The received signals are raised cosines in Gaussian noise sampled 5 times. 
The number of signalling levels i s 2, 1* and 8 for figures (a), (b) and (c) respectively. 

o 
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Figure U.5. PAM error p r o b a b i l i t i e s for the DMF and the WPD detectors with optimum and 
unity weights. The received signals are r a i s e d cosines i n .Gaussian noise sampled 5 times. 
The number of s i g n a l l i n g l e v e l s i s 2, k and 8 for figures (a), (b) and (c) r e s p e c t i v e l y . 

<JN 
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samples. For P(e)«10~* there Is a penalty of about 2.2 dB for a l l 3 cases. 

The performance i s , however, significantly better than when equal weights are 

used. The differences are about 3.2, 3.4 and 3.5 dB for signalling with 2, 4 

and 8 levels, respectively, for the same PCe)-!©"4* value. 

4.7. Conclusions 

The problem of detecting binary antipodal data signals based on a 

number of hard-limited samples has been analyzed and the optimum detector has 

been derived for an arbitrary nol6e environment. The optimal processing Is 

characterized by a set of weights. In general, the values of the weights 

depend on the signal-to-noise ratio as well a6 on the shape of the signals 

and the probability distribution of the channel noise. The optimal weights 

are approximately |s^| for low SNR's for most noise environments. For high 

SNR's the weights *^2» |s^| and 1 are nearly optimum for Gaussian, Laplace 

and Cauchy noise respectively. 

In some Instances, a set of weights which Is Independent of the 

signal-to-noise ratio performs almost as well as the optimum weights for 

practical ranges of SNR. It Is interesting to note that i n these cases, 

nearly optimum processing of the hard-limited samples can be performed using 

only threshold decisions and additions. 

The optimum detector for M-ary data signals based on samples quantized 

to an arbitrary number of levels has also been derived. The processing 

requires forming sums of optimized weights, analogous to the binary antipodal 

case. 



V PENALTIES OF WEIGHTED PARTIAL DECISION DETECTORS IN GAUSSIAN NOISE 

5.1. Introduction 

The performance of the WPD detector with weights - |s^| 

has been analyzed for low SNR conditions i n chapters 2 and 3. The 

optimum WPD detector for arbitrary SNR was derived in chapter A. In 

this chapter, the penalties of WPD detectors are analyzed for arbitrary 

signal-to-noise ratios. The weights * (ŝ J and ID • ŝ ^ detectors 

as well as the optimum weights detector are considered. The effects 

on the penalties of the signalling waveform employed, the number of 

samples processed, and the SNR are considered in d e t a i l . 

The optimum WPD detector i s the optimum detector for hard-

limited samples and the d i g i t a l matched f i l t e r i s the optimum detector 

for the continuous amplitude samples. Hence, the penalty of the 

optimum WPD detector relative to the DMF detector represents the 

fundamental loss in signal detectability due to hard-limiting in a 

sampled system. 

5.2. Problem Statement 

We consider the model of a data communication system shown 

in figure 5.1. Depending on the message me{0,l) to be transmitted, a 

signal +A s(t) or -A s(t) i s sent over the additive white Gaussian 

noise (AWGN) channel. The positive constant A i s a scaling factor. 

The received signal r(t) i s f i l t e r e d to remove out of band noise and 

the resulting signal v(t) i s sampled at some appropriate rate. 



TRANSMITTER 
NOISY 

FILTER 

• t (0, 1} 

TRANSMITTER 
* A 8(t) CHANNEL 

r(t) 

FILTER 

m e (0, 1} DETECTOR SAMPLER DETECTOR SAMPLER 
v(t) 

Figure 5.1. Block diagram of the data communication system. 
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Assume that the signal 6(t) is time limited to the Interval [ 0 , T J . If 

A s(t) i s sent (corresponding to m-0), then 

V i " + A 8 i + °i * i - l » 2 f - » M (5.1) 

^ 1 1 — 0 5 I T 
where {v.} denote the M samples of v(t), i . e . v. - Ei~)» t 0 D e 

1 i - 1 i n 
M M 

processed. The values {s.} denote the samples of + s(t) and {n } 
1 i - 1 1 i - 1 

represent outcomes of Independent Gaussian noise random variables, each with 

variance o 2. If m-1, then -A s(t) i s sent and v^ - -A s^ + n^, 
M 

1 - 1,2,...,M. The detector bases i t s decision on {v } 
1 i - 1 

It i s v e i l known [ l ] that the optimum detector for minimizing the 

probability of error P(e) - Pr {m * m} i n the problem described above i s the 

di g i t a l matched f i l t e r ( D M F ) . The DMF computes 

D O P T " X V* 8* ( 5 ' 2 ) i - 1 

and chooses m-0 i f DQ^ > 0; otherwise i t declares m-1. The resulting 

probability of error i s 

/M 1 

( 5 . 3 ) 
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where Q(a) • / e X ^ dx. It is convenient to assume that s(t) i s 
/fit a 

normalized so that i t s maximum value i s equal to 1. We define the 
A 

signal-to-noise ratio (SNR) to be 2 0 l o g 1 Q - ^ measured i n dB. 

In this chapter, the penalties of the weighted partial decision detect

ors are measured relative to the DMF detector. The penalty i s defined as the 

increase in signal-to-noise ratio required by a suboptimum detector in order 

to achieve the same target value of probability of error as the DMF detector. 

5 . 3 . Weighted Partial Decision (WPD) Detectors 

In the family of WPD detectors, the received signal samples are f i r s t 
A A . . 

hard-limited. The decision a6 to which message m, B E { 0 , 1 J was sent Is based 

on the hard-limited samples. Let the random variables representing these 

samples be denoted by 

i f sgn (v4) - sgn (s 1 ) # 0 

i f sgn (vA) - 0 or sgn (s 1 ) - 0 (5.4) 
otherwise * 

Then the general WPD detector forms the test s t a t i s t i c 

M 
A D - T D u . (5.5) "WPD * x

 ul w i ' y 1 

M 
where {u^} are the weights assigned to the different samples. The 

detector chooses m-C i f D ^ > 0 snd m-1 i f D ^ < 0. Some caution should be 
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exercised in choosing m if DypD = 0 as shown in section 4.5. The optimum 

( minimum P(e) ) weights to be used in (5.5) are given by (4.8) 

in(-
1 " P. 

) . (5.6) 

where p̂  i 6 the probability that the 1-th sample has its polarity reversed, 

i.e. Pj » Q(A|si|/a). The weights « 1, - 16̂  | and • 2 have also 

been previously suggested. 

Let B denote a subset of U - {l,2 M} and Bc its complement. Then 

the probability of error for a WPD detector can be written as 

PWPD(e) " E I ( B ) 1 1 p i 1 1 c ( 1 " p i ) 

" all B ieB 1 ieBc 
(5.7) 

where 

1(B) 

ieB leB" 

ieB ieB-

0 , i f I itfj < I m1 

IeB ieB-

In ( 5 . 7 ) , it is assumed that if Dypn " 0, m is chosen according to the out

come of a fair coin toss. The probability of error P̂ ê) can be directly 

computed from equation ( 5 . 7 ) . This, however, may Involve considerable 

computational effort. In some cases, more computationally efficient methods 



can be used to compute P^pp(e) as described i n Appendix C. An expression 

f o r the pe n a l t y at high SNR values i s derived i n Appendix H, namely 

M 

r „ D ( . , « , . ) - if (5.8) 

i e B 

vhere B* C U and B* has the p r o p e r t i e s that I(B*) > 0 and X s. 2 < X s. 
* * * 

2 
" i 

ieB i e B 

f o r a l l B C U f o r which 1(B) > 0. The p e n a l t y f o r l o v SNR valu e s i s gi v e n 

by 

2 2 M" 2 J 8 i
2 

^ ( s,M,0 ) ^ . (5.9) 
[ X K B ) { X K l - X l»ilH 
a l l B i e B i c B c 

This r e s u l t may be d e r i v e d by a p p l y i n g the procedure of Appendix K to ? y p D ( e ) 

as given i n (5.7). 

5.4. The WPD Detector f o r a Piecewise Constant Amplitude S i g n a l l i n g Waveform 

For a piecewise constant amplitude s i g n a l l i n g waveform, the weights 

• 1, • | s 4 | , - S j 2 and - w* WPD de t e c t o r s are e q u i v a l e n t . With 

| s 1 | « 1, the pe n a l t y r e l a t i v e t o the DMF de t e c t o r I s defined i m p l i c i t l y by 

X (?) P 1 d-P)"" 1 • M odd 

-l * ( 5 - 1 0 ) 
M M 
X (?) P 1 (1-P) M _ 1 + 4 ( " ) [P( J-P)] 2 • M e v e n 

i» 



where p - Q(/2» m4 )%4 ) 8 n d t h e n o t a t l o n ?m < ±***0 ) is used to 
explicitly Indicate the dependence of the penalty Typ̂  on »• (s itS 2> • • • »ŝ) , 
M and ̂ . Equation (5.10) can be used to compute r w p D ( ) as follows. 

Defining y ̂ / IĴ C 2 »M»4 > 4 » o n e c a n r e w r l t e (5.10) as 

Q( & 7 ) " T(M,y) (5.11) 
/ 

where 

M 
I (?) P1 (I-P)"'1 

M+l 1 
, M odd 

T(M,y) - / 

and p - Q(y). From (5.11), one has 

W x»M'i > ^ — \ - ( 5-1 2 ) 

[Q"1{T(M,y)}] 

Figure 5.2 shows a plot of J t M ^ ) against ~ o for M-1, 2, 3, 4, 10 and 

M v2 y 11 obtained by plotting 2 as a function of y • • It 
[(TMT(M.y)}]2 0T1{T(M,y)} 

can be observed that the penalty Is a non-decreasing function of and 16 

upperbounded by 2 (3.01 dB). Explicit expressions for the penalty for small 

and large SNR values are now examined. In Appendix I, it Is shown that 



4 

M - 2 

M - 4 

M - 10 

M - 11 

M 

M - 1 

-50 -25 25 50 

20 l o g 1 ( ) ( A/o ) (dB) 

Figure 5.2. The penalty ( ) as a function of the signal-to-noise ratio for seven 
values of sample size M. 
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,2M-2 

M - 1 
, M odd 

2 

,2M 

M (I) 
, M even 

(5.13) 

U6ing Stirling's formula i t follows that lim r
W p D ( i.»M»° ) " * Equation 

M-K» 

(5.13) also shows that 

r^a.i.o) < r W DQ,3,o) < ... < r^a.4,0) < r H P D(i,2 io) . (5.14) 

By using the approximation Q(a) * 

shown that 

-a2/2 
e 
/2~* o 

, a » 1, in (5.10) i t can be 

rWPD( i ' M ' " } " 
12 , M even 

\ 2 " Wl • M o d d • 
(5.15) 

It 16 also possible to determine the penalty T^^i .i»M»"o- ) f o r l a r 8 e v a l u e s 
UB A 

of M. The basic approach i s to derive an upper bound T^^i ) using the 
UB A 

Chernoff bound [28,29] and to show then that J..-*— ) 1 6 a l s o 8 lower 
A 

bound on Iyp^ ±»mrj, ) • The details appear In Appendix J. The curve 



rWPD( ) 1 6 P l o t t e d i n f i g ^ e 5.2. 

5.5. The Optimum WPD Detector for Arbitrary Signalling Waveforms 

In the case of an arbitrary signalling waveform, the penalty 
* A 
*WPD̂  —'^'"o ̂  * o r t n e ° P t ^ n u m detector can be evaluated numerically by 

>ting Q(/T~7*A] equating Q(/ J s . 2 — ) to the right side of (5.7) with 
i - l ° 

P4 - Q(/r̂ pDC ) I s j l ) and - Jta£-—i). The procedure i s 
^ 1 

analogous to that followed in (5.10) to (5.12). The results for a raised 

cosine and a half sinusoid signalling waveform are plotted in figures 5.3 and 

5.4 respectively. In both figures, for a fixed value of M, the penalty 
A 

increases with — even though i t i s essentially constant for small and large 
values of —. 

a 

It i s shown i n Appendix J that, for large values of M, the penalty i s 

upper bounded by 

C < > , ^ < • ' < ' > > — (5.16) 
W D ° < in{4Q(y|s(t)|)[l-Q(y|s(t)|)]} > 

where y - / rj^ D( B,»J± j± and < f ( t ) > &j jj f ( t ) d t i s the average of f(t) 

f ( t ) on the Interval te[0,T]. This bound i s plotted i n figures 5.3 and 5.4. 

For the examples considered here T^^i. ) close to Iy^ D( .£»•»•" ) when 

M > 10. As sn example, Jrjjp^ mT-A0 ) " r̂ pD< ^ . l O ^ )l < 0.14 dB for both 



-50 -25 
1 M-1 

25 50 

20 l o g 1 0 ( A/o ) (dB) 

* A 
Figure 5.3. The penalty ( J . tM,— ) of the optimum WPD detector as a function of signal-to-noise 
ratio for a raised cosine signalling waveform. Six values of sample size M are illustrated. 
The curve for M B • is an upper bound. 
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Figure 5.H. The penalty T* p D ( j»tM»~ ) o f t n e optimum WPD detector as a function of signal-to-no 

ratio for a half sinusoid signalling waveform. Six values of sample size M are 
illustrated. The curve for M = » is an upper hound. 
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the h a l f s i n u s o i d and r a i s e d c o s i n e . For l a r g e values of — , (5.16) becomes 

5.6. The Weights u± - | s 1 | and - s±

2 WPD Detectors 

The weights • | | and • s ^ 2 WPD d e t e c t o r s have been p r e v i o u s l y 

examined f o r low s i g n a l - t o - n o l s e r a t i o c o n d i t i o n s . I t has a l s o been shown 

that the optimum WPD de t e c t o r 16 equ i v a l e n t t o the | | and s ^ 2 weights 

d e t e c t o r s f o r low and high SNR c o n d i t i o n s r e s p e c t i v e l y . In t h i s s e c t i o n , 

the performance of these weighting choices f o r other values of SNR I s 

i n v e s t i g a t e d . The pen a l t y r w i ) ( ±»^r^ ) f o r the ( s J weights and the 

weights WPD d e t e c t o r s may be evaluated using the technique of the previous 

s e c t i o n . F i g u r e s 5.5 and 5.6 show £,Mr^ ) as a f u n c t i o n of s i g n a l - t o -

n o i s e r a t i o f o r a r a i s e d c o s i n e and a h a l f s i n u s o i d s i g n a l l i n g waveform 

r e s p e c t i v e l y . In both f i g u r e s the • J s ^ J weights are used. There are 

p l o t s f o r the cases of M - 1, 2, 3, 4, 5, 10 and 11 samples. F i g u r e s 5.7 and 

5.8 show r,_TX S,M,— ) versus SNR f o r a r a i s e d cosine and a h a l f s i n u s o i d WPD — a 

r e s p e c t i v e l y , f o r the same values of sample s i r e w i t h weights • s ^ 2 . In 

a l l cases, f o r f i x e d M, the p e n a l t y Increases w i t h ^ but i s approximately 

constant f o r small and l a r g e values of ~ • 

_ - y 2 < s 2 ( t ) > . 2 # 

< -y 2s 2(t ) / 2 > 

5 . 7 . D i s c u s s i o n 

The performance l o s s e s f o r WPD d e t e c t o r s i n Gaussian n o i s e have been 
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Figure 5 - 5 . The penalty ( £.M,^-) of the - IsJ weights WPD detector as a function of 

signal-to-noise ratio for a raised cosine signalling waveform. Seven values of sample size M 
are illustrated. 
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Figure 5.6. The penalty T w p D ( B , H ~ ) of the u± - | 8 i | weights WPD detector as a function of 

signal-to-noise ratio for a half sinusoid signalling waveform. Seven values of sample size M 
are illustrated. 
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Figure 5.7. The penalty ( £,M,£ ) of the u>1 - e* weights WPD detector as a function of 
signal-to-noise ratio for a raised cosine signalling waveform. Seven values of sample size M 
are illustrated. 
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are illustrated. 
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investigated. Three choices of weights have been considered. Previous 

analyses of these suboptimal schemes have been confined to low signal-

to-noise ratio conditions. In general, the penalty depends on the choice 

of weights, the samples of the signalling waveform (and their number) as 

well as on the signal-to-noise ratio. In a l l of the examples considered, 

the penalties of the WPD detectors are approximately constant for low SNR 

values, increase in a transition region, and are approximately constant 

for high SNR values. Since equations (5.8) and (5.9) are independent of 

the signal-to-noise ratio, the losses for the general WPD detector w i l l 

be approximately constant for low and high SNR values. 

Since the u « In — - — weights WPD detector i s the optimum detect

or for hard-limited samples and the DMF 'detector i s the optimum processor 

for continuous amplitude samples, the penalties of figures 5.2 - 5.4 

represent the fundamental losses due to hard-limiting of independent 

samples. In a l l cases, this loss Is a non-decreasing function of signal-

to-noise ratio and i s upper bounded by 2(3.01 dB). 

The value of w/2 - 1.96 dB is often cited as the loss due to hard-

limiting [25,31,37], This result applies to an i n f i n i t e number of 

independent samples and a vanishingly small SNR. The work of 

this chapter has shown that the loss i s a function of the signal-to-

noise ratio and of the number of samples. Independent samples are 

assumed in this work and the results are shown to agree with the previous 

result when the number of samples i s i n f i n i t e and the SNR is vanishingly 

small. However, the well known result of 1.96 dB as i t applies to an 

i n f i n i t e number of independent samples does not represent a physically 

r e a l i s t i c system. The results derived here deal with f i n i t e numbers of 



independent samples. This i s representative of r e a l systems. 

The u)^ = |s^| detector i s optimal for low SNR conditions. Figur 

5.5 - 5.8 show that the penalty for t h i s detector may exceed 2(3.01 dB) 
2 

fo r high SNR values and i s greater than the penalty incurred by the s^ 
2 

weights detector. S i m i l a r l y , the s^ weights detector which i s optimal 

f o r high SNR's has greater lo s s at low SNR values than the |s^| weights 

detector. 



VI PENALTIES OF SAMPLE-AND-SUM AND BINARY PARTIAL DECISION DETECTORS 

IN GAUSSIAN NOISE 

6.1. Introduction 

The performances of the SAS and BPD detectors were analyzed for 

low signal-to-noise (SNR) conditions in chapters 2 and 3 . In this chapter, 

the performances of SAS and BPD detectors are analyzed for arbitrary 

signal-to-noi6e ratios. The effects on the penalties of the signalling 

waveform employed, the number of samples processed, and the SNR are 

considered in detail. The SAS detector is examined first because its 

loss constitutes a part of the BPD detector's loss. The losses are 

compared to those of some WPD detectors and a relationship between the 

losses of the SAS, BPD and WPD detectors for low SNR and finite sample 

sizes is derived. 

The model considered here Is the same as in section 5 . 2 . 

Antipodal signals are used to communicate a message mt{0, l} 

over an additive white Gaussian noise (AWGN) channel. The signals 4A s(t) 

and -A s(t) are aent corresponding to m - 0 and m-1 respectively. The 
M M 

receiver processes M samples {•JJJ.J* v j " * A * i * n i w h e r e {'ili-i a n d 

Ŵ i-1 ° " e n o t e t h e • a n P 1 ' » o f t h e signal a(t) (normalised ao that its maxim 

amplitude Is equal one) and outcomes of Independent Gaussian noise random 

variables respectively. Signal-to-noise ratio (SNR) la defined to be 

20 log 10-̂ measured In dB. The penalty is defined as the increase in 

elgnal-to-noise ratio required by the suboptimum detector in order to 

achieve the same target value of probability of error as the DMF 

detector. 



6.2. The Sample-and-Sum (SAS) Detector Loss 

In this section, the penalty incurred in using the SAS detector 

is analyzed. This detector [5,6,13] forms the s t a t i s t i c 

M 
DSAS V i 8 * n <Si> ( 6 - A ) 

r + i , i f x > o 

jn(x) - < 0, i f x - 0 
L-l, i f x < 0 

where sgn(x) - 0, i f x • 0 and chooses m-0 i f D g A S > 0. Otherwise, m-1 
L-l, i f x < 0 

i s chosen. 

Given that m-0, i.e. +A a(t) i s transmitted, the mean of Dg A S i s 

D S A S - A X |s I (6.2) 
S A S i-0 1 

and i t s variance i s given by 

t,2 - M o 2 . (6.3) 
DSAS 

An error occurs i f D G A S < 0. To compute the probability of error, P S A g ( e ) » 

we observe that D„ _ i s a Gaussian random v a r i a b l e ( r . v . ) since i t i s SAS 
the sum 
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of independent^Gaussian r.v.'s. Also, because of the symmetry, PgAg(e|m=l) 

M 
A I |.,| 

1 r° ~x 2 / 2 

where Q(o) • J e dx . The penalty rcAC incurred by the SAS 
/ 2 n 

detector relative to the DMF detector i s implicitly defined by comparing 

PSAS ( e J W l t h P D M F ( e ) a s 8 I V E N b v <5-3> namely, 

/~M N M 
a / 1 8 I 2 AX 

Q ( - ~ ) - Q ( - ^ i — ) . (6.5) 

From ( 6 . 5 ) , i t follows that 

M 
M I s,2 

r s A s " ~ " • ( 6 - 6 ) 

i - i 

Note that T S A S i s independent of the channel noise power, but does depend on 

the samples {s } and the number of samples M. Where necessary, we w i l l 
1 i - l 

use r.._ ( s,M ) to indicate this dependence e x p l i c i t l y . For large values of SAS — 
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M, 

I s * - | / |s(t)| dt (6.7a) 
i-1 1

 1
 0 

and 

M T 
I l«J / l»(0| dt . (6.7b) 

i-1 1 1 0 

Consequently, equation (6.6) can be rewritten as 

T 
T / B 2 ( t ) dt £ 

r s A s " - r ; 5 ; (6-8> 
[/ |s(t)| dt] T[< | B ( t ) | >] 
0 

vhere E « J s ^ t ) dt i s the energy of the signalling waveform s(t) and 
8 0 

A 1 T 

< |s(t)| > / |a(t)| dt i s i t s average magnitude. Equation (6.8) has 
1 0 

been previously derived ( 2 . 1 0 ) for a particular f i l t e r i n g scheme with a large 

number of samples i n a low SNR environment. The present derivation 

shows that i t i s va l i d for any SNR. 

Ve now use equation (6.6) to i l l u s t r a t e how varies with M for a 

few commonly encountered signalling waveforms. For a constant (or piecewise 



constant) amplitude signalling waveform, rsAS • 1, i.e. 0 dB as expected. 
For a half sinusoid signalling waveform, the samples are 

M 
s± - 6in-p| ( i - 0.5), 1 - 1,2,...,M. In this case, I \e±\ - cosec i - l 

M f l , M-1 
1 M 1-1 1 I |. M > 

[30,1«341-1] and J, s^ 2 - ̂  M . From (6.6) 

r i , M - i 

j y - s i n 2 g j ) , M > 2 , half sii 
R S A S , n _ , _ 2 f * > „ . „ - 1 n u 8 0 l d . ( 6 . 9 ) 

The penalty T given by (6.9) is plotted as a function of M in figure 6.1. 

The asymptotic value of rgAS for large M i s -g- or 0.912 dB. 

The penalties for a f u l l sinusoid ( 6 j - sin [ ~ (i-0.5)]) and 8 raised 

cosine (B± - [l-cos-jp (i-0.5)]/2) signalling waveform are given respectively 

by 

1 , M - 1 or 2 
i2 

lSAS 
|- s i n 2 (g) , M - 4,6,8... 

£ t l f c o s U / M ) ) 2 • M " 3 > 5 > 7 - • f u l 1 B i D U S O l d ( 6 ' 1 0 ) 

i n d 

J l , M - 1, 2 
[•§ , M > 3 , ra i S A S I 4 . M > 3 , raised cosine . (6.11) 
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2 
The asymptotic values of Tĝg as given by (6.10) and (6.11) are -g— or 

3 
0.912 dB and -r- or 1.76 dB. A plot of T for a f u l l sinusoid s i g n a l l i n g 2 SAS 
waveform is shown in figure 6.2. 

In all these examples, the asymptotic value of rg A g is reached 

rapidly. The magnitude of the difference |rSAS(s»M) - rSAg(6»")| is less 

than 0.1 dB for M > 11. 

6.3. The Binary Partial Decision (BPD) Detector Loss 

The BPD detector forms the test statistic [ 2,3 ] 

°™* X  b* 
where the partial decision random vsriable D̂  is defined by 

if •gn(v1) » sgn(s1) # 0 

if •gn(v1) - 0 or •gn(s1) - 0 (6.12) 

otherwise • 

The BPD detector chooses m - 0 if DBpD > 0 and m « 1 if DBpD < 0. Some 

caution ahould be exercised (section 4.5) in choosing m if DBpD ™ 0. This 

detector may be thought of as the special case of the WPD detector for which 

the weights a l l equal one (û  - 1). It can be easily Implemented using 

a counter which is incremented or decremented by 1 depending on 

the polarties of v̂  and ŝ. 
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Figure 6.2. The penalty T^i s,M ) aa a function of the number of bit samples for a sinusoid. 
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The probability of error Is the probability that a majority of the 

transmitted samples are received vlth their polarities reversed, i . e . 

(6.13) 

where P̂  - Pr {exactly 1 polarity errors In the M samples}. 

By equating the right hand side of (6.13) with P~_(e) as in 
D M F 

section 5.4 the penalties rBTjr.( a-M̂ - ) can be numerically evaluated* 
A 

Plots of r__ n(«,»,0 as a function of for the raised cosine and half 

sinusoid signalling waveforms are shown in figures 6.3 and 6.4. The 

values of sample size illustrated are M « 1 - 5, 10 and 11 for both 

waveforms. For high SNR, i t follows from (5.8) that 

M 

W > !T < 6 ' U ) 

sum of the I -j I smallest terms i n i8^2}^.! 

where Px"] denotes the smallest integer > x . Equation (6.14) holds for 

an arbitrary signalling waveform. 

For large values of M, one has 
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Figure 6.3. The penalty r B p o ( J»»M,~ ) as a function of the signal-to-noise ratio for a raised 

cosine signalling waveform. Seven values of sample size M are illustrated. The solid triangles 
indicate points for which p

B p n ( e ) • 10~ 7. 
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Figure 6.U. The penalty r B p D ( l . M . j ) as a function of the signal-to-noise r a t i o for a half 

sinusoid s i g n a l l i n g waveform. Seven values of sample s i z e M are i l l u s t r a t e d . 

Oo 



T 
J n B 2 ( t ) d t 

J 8 2 ( t ) d t 
V 

PBPD( £•"»" > " T~: (6.15) 

T 
where V Is a union of Intervals In [0,T] with a total width of which 
minimizes / s 2 ( t ) dt. 

W 
For a raised cosine signalling waveform, (6.15) becomes 

r e t , , , fffri-co.»)]>dt _ 6 , 
^ ( r a i s e d cosine,-,-) ^j-

2 / 0 [ j d - c o s t ) ] dt 

or 11.22 dB. (6.16) 

For a half sinusoid waveform, we have 

£ 8 i n 2 t d t 2, rBpD(half sinusoid,-,-) ^ - % _ 2 or 7.41 dB . (6.17) 
2 L s l n ^ dt 

In the case of a piecewise constant signalling waveform, (6.14) 

{ 2, M even 

2 2_ M i n agreement with (5.15) 
M+l * 

The asymptotic values for low SNR's w i l l now be considered. In 
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Appendix K, It is shown that for an arbitrary signalling waveform, 

rBPD( -£'M*° > " rWPD( -i'M»° } * rSAS( 1»M ) ( 6 - 1 8 ) 

Equation (6.18) can be interpreted as follows: suppose the penalties are 

measured in dB; then for low SNR values, the penalty Incurred by the BPD 

detector Is the sum of the penalty Incurred by the SAS detector and the 

penalty Incurred by the WPD (or BPD) detector operating with a plecewlse 

constant signalling waveform ( as given by (5.13) ). Strictly 

speaking, this relation is only valid for - 0. It is however, nearly exact 

over a wide range of signal-to-noiBe ratio because of the flat nature of the 

penalty curves in that range. 

From (6.18) and the fact that lim r w p D ( _1»M»°) " ̂ 2 (section 2 . 3 ) , 

it follows that for large M, 

Wi'"»° > " 1 rSAs<.£»-> • ( 6 - 1 9 ) 

This result was previously derived for a particular filtering scheme 

in section 2.A. 

6 . 4 . Discussion of Results 

The penalties associated with the use of the SAS and BPD detectors 

have been analyzed. The loss incurred by the SAS detector depends on the 

samples of the signalling waveform used but is Independent of the 

signal-to-noise ratio. In contrast, the losses associated with the BPD 
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detector (and the WPD detectors) depend on the signal-to-noise ratio as well 

as on the 6 i g n a l samples. 

While the BPD detector i s easier to Implement than the WPD detectors 

analyzed in chapter V, the penalty of the BPD detector was more 

sensitive to the choice of the signalling waveform and in 6ome cases was much 

greater than the penalty of the WPD detectors. Also shown in figure 6.3 are 

the points corresponding to p g p D ( e ) " 1 0 ~ 7 , J t can be seen from figure 6.3 

that for the raised cosine waveform, the penalty using a BPD detector with 

M - 4 and p
B p D ( e ) " 1 0 ~ 7 i s about 14.5 dB. The corresponding penalty for the 

optimum WPD detector i s only ~ 2.8 dB. 
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VII CONCLUSION 

7.1. Summary of Results 

In this section, the highlights of the thesis research are 

summarized. 

Three suboptimum detectors which find application In practical 

digital systems have been described. The penalties of each have been 

analysed and identified. The relationships between the losses of the 

systems have been derived. Previous work In this area was mainly 

numerical and example specific. The present work treats the topic 

theoretically and gives some results that are fairly general and can 

be applied to systems other than those examined i n the examples. 

The effects of dependence among the signal samples on the penalties 

have been examined. It has been shown that, in some cases, the penalties 

can be reduced by processing more, dependent, samples. It has been 

found that the amount of loss recoverable depends on the prefilter 

characteristic and the sampling rate. 

The optimal detector which bases its decision on a number of 

hard-limited samples has been presented. This detector is optimal in 

the sense that it minimizes the bit error probability. The detector is 

simple and inexpensive since it is essentially a one-bit analog-to-

digital converter (ABC) and does not require an automatic gain control 

(ACC). This result is general in that it applies to arbitrary SNR 

values, arbitrary numbers of samples, and most practical noise environment 

models. 

The generalisation of the optimum hard-limiting detector for binary 

signals to higher quantisation and signalling levels has also been derived. 



That i s , the minimum b i t error p r o b a b i l i t y detector for M-ary s i g n a l l i n g 

with received s i g n a l samples quantized to an a r b i t r a r y number of l e v e l s 

has been found. Again, these r e s u l t s have been obtained using t h e o r e t i c a l 

a n a l y s i s whereas previous r e l a t e d work, i n many cases, has been numerical 

and example s p e c i f i c . 

The fundamental l o s s due to h a r d - l i m i t i n g i n Gaussian noise has 

been investigated i n depth. This l o s s i s measured i n the s i g n a l 

d e t e c t a b i l i t y sense. That i s , the l o s s i s expressed as the increase 

i n SNR required to maintain a target value of error p r o b a b i l i t y . Much 

at t e n t i o n has been paid to the l o s s due to h a r d - l i m i t i n g i n the past. 

The r e s u l t most often quoted i s that the l o s s i s TT/2 = 1.96 dB. This 

r e s u l t a p p l i e s to an i n f i n i t e number of independent samples and a 

vanishingly small signal-to-noise r a t i o . The present work shows that 

the l o s s i s a function of the signal-to-noise r a t i o and of the number 

of samples. Independent samples are assumed i n our work and the r e s u l t s 

agree with the previous r e s u l t when the number of samples i s i n f i n i t e 

and the SNR i s vanishingly small. The r e s u l t s are important because 

they apply to r e a l world system conditions. The well known r e s u l t of 

1.96 dB as i t a p p l i e s to an i n f i n i t e number of Independent samples does 

not represent a p h y s i c a l l y r e a l i s t i c system. The work done here which 

deals with a f i n i t e number of independent samples i s representative of 

r e a l systems. 

In a d d i t i o n to the i n v e s t i g a t i o n of the fundamental l o s s due to 

h a r d - l i m i t i n g , the losses incurred by some ad hoc schemes that hard-

l i m i t the received samples have been examined. Some of the r e s u l t s of 



t h i s work are of considerable i n t e r e s t for p r a c t i c a l design. I t i s 

shown, f or example, that one common ad hoc procedure has very large 

losses at high SNRs and i s therefore unsuitable for a p p l i c a t i o n i n a 

strong si g n a l environment. 

7.2. Suggestions for Further Research 

There are a number of issues a r i s i n g from the th e s i s work that 

provide i n t e r e s t i n g topics for further research. Some of these are 

presented and b r i e f l y discussed i n t h i s s e c t i o n . 

The e f f e c t s of dependence among the si g n a l samples on the detect

or penalties was investigated for large time-bandwidth product conditions 

and low SNRs. The general i z a t i o n of these r e s u l t s to a r b i t r a r y time-

bandwidth products and a r b i t r a r y SNRs has not been treated i n t h i s t h e s i s 

The optimum detector for M-ary s i g n a l l i n g with an a r b i t r a r y , 

given, quantizer was derived. The optimum quantizer thresholds that 

minimize the b i t error p r o b a b i l i t y were not s p e c i f i e d . A rel a t e d 

question i s the s e n s i t i v i t y of the detector performance to v a r i a t i o n s i n 

threshold s e t t i n g s . 

The performance of the optimum detector for M-ary s i g n a l l i n g may 

be evaluated. Hereunder, one can consider d i f f e r e n t quantization l e v e l s 

and modulation formats. 

The losses of the suboptimum detectors under bandlimited condition 

with appreciable ISI are of i n t e r e s t . Performance evaluation i n these 

cases i s probably best done by the a p p l i c a t i o n of t i g h t bounds for the 

error p r o b a b i l i t i e s . 
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APPENDIX A 

ID this appendix, we show that as M + » , the probability of error for the 

WPD detector is 

He) - Q [/TIT)- ( A , 1 ) 

o 
Recall that Q( o) can be represented by the infinite series 115,16] 

3 5 . , . v n 2n+l 
2 ^ 6 4 0 (2n+l)2nn! 

Thus, from (2.15), for large values of M (small signal-to-noise r a t i o ) , 

o 
M 

As M - * - , the mean of D ^ , i.e J (l-2pi)|si|. Is given by (see page 14) 

O 0 o 
M , 

and the vsriance of D ^ , i.e. J Ap1(l-p1)|a1| , ia given by 

§ /V(t)dt - ̂ (A .5 ) 

But P(e) • Q [ 
• variance of 

0 ( / 3 )• 
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APPENDIX B 

It is to be shown that the probability of error for the BPD detector 

is 

O 

Using (A.3), it can be determined that as M-w, the mean of Dgpj}» 1«e-

M 
I (l-2pi), is given by i - 1 

4"M t i - t ^ l A . <B-2> / ^ / o | . ( t ) | - t 

and its variance, i.e. J 4p (1-p^. 1B given by M. Hence 
i-1 

mean of DBpp 

P(e) - Q ( J 
• variance of DBpD 

Q ( 
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APPENDIX C 

In this appendix the calculation of P(e) for the SAS, BPD and WPD 

detectors for small values of M is briefly described. Let us denote the 

noiseless received waveform by f(t). Thus f(t) results from passing the 

transmitted waveform s(t) through the lowpass filter. Then, for the SAS 

detector, 
M 

P(e) - Q ( 1 , 1 ) (C.l) 
Mitt /2T o 

where f , i-l,2,3,...,M denotes the 1th sample of f(t). 

The calculation of P(e) for the BPD and WPD detector Is 

computationally more involved. Let p̂  denote the probability that the 

channel causes a reversal In the polarity of f̂ , I.e., 

, , f i ' , 
PA - Q (-7- ) CC2) 

n where o - / MN /2T . Also define q. • 1 - p.. n o 1 > 1 
Suppose A is some subset of D - {1,2,3,...,M}. Then the probability 

that the samples {f.}. . have their polarities reversed by the noise and the 

1 X EA 
remaining samples (f } retain their original polarities is given by 

1 ieAc 

PA" C • 9±)i * c \ ) • (C'3) 

* ieA 1 ieAc ̂  
Hence, 

P(e) • [ P. where the sum Is taken over all subsets A which would 
A A 

lead to a wrong decision. This brute-force method of calculating P(e) is 
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time consuming. A more efficient way of evaluating P(e) for the BPD detector 

can be obtained by noting that i t i s just the probability that a majority of 

the samples have their polarities reversed, i.e., 
IM/2J 

P(e) ~ I P (C.4) 
n-0 n ' M 

where P Pr {exactly n of the M samples are correct}. In (C.4) i t i s n ,M 

assumed for simplicity that M i s odd. If M i s even, then 

M/2 j 

P ( e ) " J b P n , M " * ? M / 2 » M * 

In any case, P u represents the generalized binomial distribution and n,H 
can be recursively evaluated [17] using 

P » q P , . + p P , n,m Tn n-1, m-1 m n,m-l 
P. . » 1, P. - p, p....p , and P • 0 i f n > m. (C.5) 0,0 ' 0,m r l K 2 rm* n,m 
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It is to be shown that as M-**> 

E[D^DJ] - 5 ^ - 2/n arcsin { r j j - i ) } 

One has that 

EtDjDj] » E[sgn(v is 1)sgn(v js j)] - Pr(n i> - \ B ± \ , n̂ > 

+ P j n ^ -IsJ, -|8j|) - P r( n i> -IsJ, Dj< - | 8 j l ) 

- P(nA< - | B 1 | , N J > - | S J | ) , 

Let 
1 -(x^px^+x., 2) , 

B-,(C, P. P) - / / — — exp{ ; M * 2
d x l 

denote the bivariate Gaussian distribution [15]. Then (D.2) becomes 

E I D ^ j ] - 2[B 1(-|s i|/o n, - l - j l / o ^ r n ( j - i ) ) 

+ B 1 ( | . 1 | / a n , l-jl/v r n ( j-i))] - 1 

M N Q Y 

where o 2» ^ _ • and the noise i s assumed to be stationary. The two n zcl 
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s i o n a l Taylor s e r i e s , centred at the o r i g i n , for f(x,y) i s 

m = 0 x = 0 
y - 0 

(D.5) 

Combining (D.5) with (D.3) gives 

B 1(C ,8,p) i + ^ a r c s i n p -
2/2i? 2w/l-p 2* 4itA-p2* 

( D . 6 ) 

where e(C .6)-K) as C 3, P 3, CP 2 and C 2B. Using ( D . 6 ) i n ( D . 4 ) gives for large 

M, 

ElDjDj] • 2/tt a r c s i n { r n 

2CT ( | S I-|S \y< 
{r ( j - i ) } 3 (D.7) 

By proceeding as i n Appendix A i t may be shown that as M+» 

1 J ^ n 

(D.8) 

Combining (D.8) with (D.7) r e s u l t s In (D.l), 
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APPENDIX E 

In this appendix i t w i l l be shown that as M-»-«> (3.23) 

v j - I I |s ||s |arcain{r <J-i)} - 2 \ arcsin{r (i)} . 
s 1=1 j»l 3 j=l 

( E . l ) 

One has that 

M M M 
I I |s ||s |arcsin{r (j-i)} - l{ \ |s | |s |arcsin{r (1)} 

i - l j=l 1 J n k=2 K K 1 n 

3*i 

M 
+ I l« k l|s k_ 2|arcsin{r n(2)} + .. 
k=3 

M 
+ I |s k l|s k_ N + 1|arcsin{r n(N-l)} + ... } 
k=N 

M M 2{arcsin{rn(l)} \ IsJIŝ -J + arcsin{rn(2)} \ |8k||sk_2| + 
k*2 lce3 

M 
+ arcsin{r n(N-l)} J l*kl l»k..N+1l + ••• } • (E-2> 

k-N 

Note that, for fixed N, 
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M+» k»N M-w k»N M > » k-1 

i l a I J | . ( I > < - ° ^ ) | 2 . / T B 2 ( t ) d t - E • ( E . 3 ) 

M-K»
 M k-1 M 0 

where, without loss of generality, i t has been assumed that -

s([i-0.5]T/M). Using the result of (E.3) with (E.2) gives ( E . l ) . 



APPENDIX F 

It 16 to be shown that when the channel noise has a Cauchy 
* 

distribution the optimum weights for high SNR'6 are given by w^-l. In a 

Cauchy noise environment the probability that a sample has Its polarity 
C D 

reversed i s p. - Pr (N > |s.|) • / —-2- da. Making use of the series 1 1 1 IsJ b2+o2 
- j i ^ » 1-x+x2-... yields 

|s 1| %a* 

o-|s 1 

It 6, 1 i 1 * r
 1 i 1 •» For large signal-to-noise r a t i o s , — - — » 1 and • I n (— - — J . 

Assume that s(t) * C s(t) where s(t) i s a waveform with unit amplitude 

and C i s a constant. Then, 

* *|C||sJ 
to* - M b

 1 ) " *»UC|)+ togli-J) . 
For large values of |C| and hence large SNR's, u>* - JUi(|C|). Since the 

optimum decision rule i s not changed by scaling the weights, one may use 
* 

<i>4 « 1 for large SNR's. 
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APPENDIX G 

In this appendix i t i s shown that the optimal weights for the case of 

a raised cosine pulse i n Cauchy noise sampled 3 times are 

4 r |s 1| i f SNR < 15.1 dB 
U i " 1 

1 L l i f SNR > 15.1 dB . 
Note that there are 8 possible combinations of the 3 received signal 

* * , 
6ample6 and that tii± - u>3. Therefore, the sample vectors _v • [+,+,+), (+,+,-) 

and (-,+,+) w i l l be assigned message m-0 and the vectors_v - (-,-,-), 

(-,-,+) and (+,-,-) wi l l be assigned m-1. This i s true for any 

signal-to-nolse ratio and any choice of weights provided that Wj-u^. 

According to the |s^| weights, the detector chooses m-0 for_v-(-,+,-) and m=l 

for _v»(+,-,+). But for p^ specified by the Cauchy distribution and < 15.1 
1-Pi 1~P3 1-P2 dB, inf 1 + inf J < in[ ]• Thus, the optimum weights are equivalent 
P i P3 P2 

to the |6 1| weights i n this SNR region. When ̂  > 15.1 dB, 
1-Pj l - p 3 l - p 2 A 

Jtnf ] + Jtnf 1 > Jtn[ 1 and m - 0,1 are chosen corresponding to 
Pi P3 ?2 

v-(+,-,+), (-,•+,-) respectively by both the optimum and unity weights 

detectors. 



APPENDIX H 

In thi6 appendix i t i s shown that the penalty for the general WPD 

detector at high SNR values i s given by (5-8) 

From (5.7), f o r high SNR values, the p r o b a b i l i t y of erro r becomes 

W e ) - r 1 I ( B ) 1 1 P i w r u B C {1,2,...M} ieB 
(H.l) 

where 

1 , i f I > I wf 

ieB ieB 

1(B) - / i , if I u>x" I u± 

ieB ieB 

0 , i f I u± < I w± . 
ieB ieB" 

Also, for large — , 

/ 2 * rOTn( S.M^)-! l 8 i ' "WPDV 

(H.2) 

Hence, 



n P j 

-w^M4> l i o J 2 4 j B
8 i 2 

e  

n / 2 W W J , M A > i |. | 
ieB 

(H.3) 

From (H.3), i t can be seen that fypr/e) 8 6 given by (H.l) w i l l be dominated 

(for high SNR) by the set (or sets) B for which 1(B) > 0 and £ s 2 i s 
ieB 1 

* * A r > minimum. Let B denote one such set, that i s , B C U - {1,2,...,M} and 

I(B*) > 0 and I s 2 < J s 2 for a l l B C U for which 1(B) > 0. Since 
* 1 1 

ieB IeB 
r y p D ( ±t*£a ) > 1, i t follows from (H.l) that as incresses 

ieB 

Recall that 

/ T 
i - i 

-t-0i 1,1 V 
e 

/ — 8 — \ 
, for large - , 

so that 
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Equating (H.M with (H.5) y i e l d s 

M 
2 

* 
I E B 



APPENDIX I 

It Is to be 6 h o v n that the penalty for the WPD detector with a 

piecewise constant amplitude signalling waveform and low SNR is given by 

(5.13). We consider f i r s t the d e r i v a t i o n f o r odd values of M. 
A A D i f f e r e n t i a t i n g (5.10) with respect t° — and then l e t t i n g — = 0 y i e l d s 

M 2 2M-2 

M 
I (JK21-M) 
M+l 

L 1 * ~2 

, M odd (1.1) 

One ha6 

I M(?) - M2 M _ 1 , M odd . 
. M+l 

±ms — 

(1.3) 
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Using ( 1 .2) and ( 1 .3) In ( I - l ) o n e obtains 

2 M — 2 

In a similar way, i t can be shown that 

2 2 M 

W i ' M ' ° > " / M v 2 • M e V C n * U , 5 ) 

It might be noted from (I.U) and ( 1 .5) that 
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APPENDIX J 

It i s to be shovn that for a large number M of samples the penalty for 

the optimum WTD detector i s upper bounded by (5.16). 

Let f X j } j . i be M Independent random variables defined by 

1-Pj 
An(—-—) with probability p^ 

1 1 i-Pj 
-Inf-p—-) with probability ( l - p 1 ) 

r A —v A 

where p± - Q(/ B , H , - ) - |s 1|) . Then 

* M 

P (e) - Pr{ X X > 0} . (J.l) i - l 

One can use the Chernoff bound 129: Eq« (5.4.15)] to upperbound the right 

hand side of (J.l) 

M XX 
P* (e) < n E[e *] (J.2) 

m e u i - l 

where X Is a positive number which can be chosen to optimize the bound. For 

the present problem, the best value to use Is X - -| • Then (J.2) becomes 

W e ) < " 2 / ' P 1 < 1 - P 1 > S • < J ' 3 ) 



1 2 1 

An upper bound T ™ D ( l.M,^ ) Is obtained by equating the right hand side of 

(J . 3 ) to P_..(e), namely 

Q ( " a ^ J l S l 2 ) " i - 1 2 / p i ( l ~ P i V 

where p A £ Q (/ O-S' M4 >i I I 5- For l a r g e M , 

2 M 
, k - i e|r i «i2 

4 / l 8 .2 ) > C  

A* ! 
Q ( ± M ^ 2 ) 

i - i * ° 

Using (J.5) i n (J.4) yields for large M, 

(J.5) 

£)2 jg s2(t)dt - - /J |*Q(/C^»-4^4 l8(t> l> 

[I-Q(/0±.--t>4 .•<*>!>]}* • (J-6) 

Letting / r J ^ D ( )'4" y. ^ c a n rewrite (J.6) a s 

-Y 2 s 2 ( t ) d t 
JOB ( „ A ^ J ° (J.7) 
WPD i ' * O fT • - ' - . i . r . • - v I * 1 1 . . Ji ln{4Q(y|s(t)|)[l-Q(y|B(t)|)]}dt 

UB A A Equation (J . 7 ) can be used to plot Tmj){ l . - r ^ ) as a function of -
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For a plecevise constant amplitude waveform the upper bound Is also a 

lower bound* This i s now shown. One has (5.10) 

M 
I (?) PV-P)*1"1 

M+l 
2 

i -
, M odd 

(J.8) 

1 - ' 
even 

where p - Q ( / 1 , * , ^ ) (-p • Therefore A ^ .A. 

M I 
12 (V )2 ( ^ ) [ P ( 1 - P ) ] 2 t ^ f . " o d d 

WPD (e) >< 

1 ( H ) [Pd-P>] , M even 

(J . 9 ) 

Since ( 4 0 -
M+l M-1 
, 2 2 »M . 
^ n ( 2 + "j) > l+i w h e n M 1 8 °* d a n d 

»M 
( M ) " 2 (MMX) > - 2 r w h e n M 1 8 e v e n ( J * 9 ) * l e l d 6 

M 
M+T (T%) 1 / 2 [*P(1-P)? . M O D D 

W 6 > > M 
2M j; [4p( 1-p >? , M even • 

(J.10) 
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Using (J.3) (with P A - p for a l l i ) , (J.5) and (J.10) one obtains for large 

M 

£ ) 2 « - Xn { 4Q(/r T O( 1.-4)4 > * 
( J . l l ) 

[ i - Q c / r ^ c i.-4 )'4>] ^ • 

Letting / FypjjC ) -5 - y » ( J . l l ) ««y rewritten as 

r ( 1 ) rz 2. — . (J.12) 
W - " o > An{4Q(y) [l-Q(y) ]} 

A A 
Equation (J.12) i s used to plot hm*~a >  a s  a  f u n c t i o n  o f • 
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APPENDIX K 

In this appendix, i t i s proved that 

W •6-,M'° } " W ^ • M , ° } * rSAS ( > ' 
(K.l) 

From equations (5.3) and (6.13), W B.M,- ) is Implicitly 

defined by 

« ( / ! - J - J 
i - 1 1 

M M 

IU.1 J 
, M odd 

M+l 
3 " 2 

M 
even 

(K.2) 

where P M - Pr {exactly j (polarity) errors i n the M samples} 

M M 

k^- l k 2-k x+l 
H p n (l-p k) 

# W l * 1 A e t k l » k 2 V keU-{k l,....k j} 

• n d P. » Q(/r B p D( B,*£A) |BAI 4 > • Differentiating with respect to - and lBPD 

then letting ̂  - 0 i n ( K . 2 ) , we obtain 
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1-1 M M 
I I 

J - - ^ k r l k 2=k x+l 

le{k 1 (...,k^} keU-jki k^} 
, M odd 

M 
rif-i / r ( . m o f * K ^ " X ̂ 1 
tj-* " ^BPIT -* * ' , M+l 2 J i - l 

M 
I 

(K.3) 

(K.4) 

Similarly, for M even, one haB 

/ ? * , 2 - ^ f " 1 / r B P D ( i.M ,o) X I {2CJ) - ff)} X 
i - l 1 * * ™ , M+2 3 1 3 i - l 1 

(K.5) 

From (K.4) and (K.5) one ha6 

M 
W > - CM I " i 2 

i - l M , M—1,2,3,.•. 

(X IsJ)2 

i - l 1 

( K . 6 ) 

for some constant C^. In particular, 

(K .7) 

Using ( 6 . 6 ) and (K .7) i n (K . 6 ) , we have 

W ±">° 5 " W I»M'° > ' rSAS ( ±'* > 



REFERENCES 

T.C. Tozer and J. R o l l e r S t r o m , "Penalties of hard decision in 

signal detection," Electron. Lett.. vol. 16, pp.199-200, 

Feb. 1980. 

V.M. Milutinovic, "Suboptimum detection procedure based on the 

weighting of partial decisions," Electron. Lett., vol. 16, 

pp.237-238, Mar. 1980. 

V.M. Milutinovic, "Comparison of three suboptimum detection 

procedures," Electron. Lett., vol. 16, pp.681-683, Aug. 1980. 

G. B. Lockhart, "Implementation of di g i t a l matched f i l t e r s in 

data receivers," Electron. Lett., vol. 10, pp.311-312, July 1974. 

CM. Chie, "Performance analysis of d i g i t a l i n t e g r a t e - a n d - d u m p 

f i l t e r s , " IEEE Trans. Commun., vol. COM-30, pp.1979-1983, 

Aug. 1982. 

H. Chang, "Presampling f i l t e r i n g , sampling and quantization 

effects on the d i g i t a l matched f i l t e r performance," in Proc.  

International Telemetering Conference, San Diego,CA, USA, 

Sept. 28-30, 1982, pp.889-915. 

N.C. Beaulieu and C. Leung, "On the performance of three 

suboptimum detection schemes for binary signalling," IEEE Trans.  

Commun.. vol. C0M-33, pp.241-245, Mar. 1985. 

N.C. Beaulieu and C. Leung, "Optimal detection of hard-limited 

data signals in different noise environments," IEEE Trans. Commun., 

vol. C0M-34, pp.619-622, J u n e 1986. 



127 

[9] N.C. Beaulieu, "Penalties of Sample-and-Sum and Weighted Partial 

Decision Detectors in Gaussian Noise," under review. 

[10] N.C. Beaulieu and C. Leung, "The Optimal Hard-Limiting Detector 

for Data Signals i n Different Noise Environments," i n Proc.  

IEEE ICC, Toronto, Canada, June 23-25, 1986, pp.32.6.1-32.6.5. 

[11] M. Schwartz and L. Shaw, Signal Processing: Discrete Spectral 

Analysis, Detection and Estimation. New York: McGraw-Hill, 1975. 

[12] R.W. Stroh, "An experimental microprocessor-implemented 4800 bit/s 

limited distance voice band PSK modem," IEEE Trans. Commun., 

vol. COM-26, pp.507-512, May 1978. 

[13] V.C. Hamacher, "Analysis o f a simplified sampled signal detector," 

Queen's university Research Report 65-1, Mar. 1965. 

[14] M. Flsz, Probability Theory and Mathematical Sta t i s t i c s. New 

York: J. Wiley, 1963, pp.202-211. 

[15] J. Patel and C. Read, Handbook of the Normal Distribution. 

New York: Marcel Dekker, 1982, p.50. 

[16] M. Abramowitz and I.A. Stegun, Handbook o f Mathematical Functions. 

New York: Dover, 1972, pp.931-932. 

[17] G.P. Wadsworth and J.G. Bryan, Applications o f Probability and  

Random Variables. New York: McGraw-Hill, 1974, pp.89-91. 

[18] C. Cherry, Pulses and Transients In Communication Circuits. 

London: Dover, 1950. 

[19] A.I. Zverev, Handbook o f F i l t e r Synthesis. New York: J . Wiley, 

1967, pp.67-71. 



128 

[20] w. Rudin, Principles of Mathematical Analysis. New York: McGraw-

H i l l , 1964. 

[21] R.V. Churchill and J.W. Brown, Fourier Series and Boundary Value 

Problems. New York: McGraw-Hill, 1978, p.84. 

[22] R.E. Ziemer and W.H. Tranter, Systems, Modulation, and Noise. 

Boston: Houghton M i f f l i n , 1976. 

[23] M. Rosenblatt, "A Central limit theorem and a strong mixing 

condition," Proc. Nat. Acad. Sci., vol. 42, pp.42-47, 1956. 

[24] R. Deutsch, Nonlinear Transformations of Random Processes. 

Englewood C l i f f s , N.J. : Prentice-Hall, 1962. 

[25] M. Kanefsky, "Detection of weak signals with polarity coincidence 

arrays," IEEE Trans. Inform. Theory, vol. IT-12, pp.260-268, 

Apr. 1966. 

[26] M.J. Levin, "Generation of a sampled gaussian time series having 

a specified correlation function," IRE Trans. Inform. Theory, 

vol. IT-6, pp.545-548, Dec. 1960. 

[27] J.H. Miller and J.B. Thomas, "Detectors for discrete-time signals 

in non-gaussian noise," IEEE Trans. Inform. Theory, vol. IT-18, 

pp. 241-250, Mar. 1972. 

[28] H. Chernoff, "A measure of asymptotic efficiency for tests of a 

hypothesis based on the sum of observations," Annals Math. Stat., 

vol. 23, pp. 493-507, 1952. 

[29] "R.G. Gallager, Information Theory and Reliable Communication. 

New York: J. Wiley, 1968. 



129 

[30] i . s . Gradshteyn and I.M. Ryzhik, Table of Integrals, Series and 

Products. New York: Academic Press, 1980. 

[31] J.M. Wozencraft and I.M. Jacobs, P r i n c i p l e s of Communication 

Engineering. New York: J . Wiley, 1968. 

[32] N.C. Beaulieu and C. Leung, "A comparison of three suboptimum 

detectors for binary s i g n a l l i n g , " i n Proc. IEEE ICC, Chicago, USA, 

June 23-26, 1985, pp.18.A.1-18.4.6. 

[33] N.C. Beaulieu and C. Leung, "On ha r d - l i m i t i n g i n sampled binary 

data systems," North American Radio Science Meeting (URSI), 

Vancouver, Canada, June 17-21, 1985, p.330. 

[34] N.C. Beaulieu, "Penalties of Weighted P a r t i a l Decision Detectors i n 

Gaussian Noise," i n Proc. IEEE International Montech Conference on  

Antennas and Communications, Montreal, Canada, Sept. 29-0ct. 1, 1986. 

[35] V. M i l u t i n o v i c , "Performance comparison of two suboptimum detection 

procedures i n r e a l environment," IEE Proc.. v o l . 131, Pt. F, pp.341-

344, July 1984. 

[3 6] V.M. M i l u t i n o v i c , "Generalised WPD procedure f o r microprocessor-

based s i g n a l detection," IEE Proc., v o l . 132, Pt. F, pp.27-35, 

Feb. 1985. 

[37] P.M. Schultheiss and F.B. Tuteur, "Optimum and Suboptimum Detection of 

Di r e c t i o n a l Gaussian Signals i n an Isotropic Gaussian Noise F i e l d 

Part I I : Degradation of D e t e c t a b i l i t y Due to Cl i p p i n g , " IEEE Trans,  

on M i l i t a r y E l e c t r o n i c s , vol.MIL-9, pp.208-211, July-Oct. 1965. 



GLOSSARY 

binary antipodal s i g n a l s 

two s i g n a l s , each of which i s the negative of the other 

binary p a r t i a l d e c i s i o n 

a d e c i s i o n based on a s i n g l e s i g n a l sample which has two possible 

outcomes 

d i g i t a l matched f i l t e r 

the optimum detector which bases i t s d e c i s i o n on a number of 

independent s i g n a l samples 

hard d e c i s i o n 

a d e c i s i o n which has two possible outcomes 

h a r d - l i m i t i n g 

a transformation that assigns one value to a l l p o s i t i v e arguments 

and a second value to a l l negative arguments 

M-ary s i g n a l l i n g 

the transmitter sends one of M signals depending on the message 

sequence 

maximum a p o s t e r i o r i p r o b a b i l i t y (MAP) r u l e 

the receiver chooses as i t s estimate of the transmitted s i g n a l 

that s i g n a l which i s most l i k e l y given the received s i g n a l 

penalty 

the d e t e r i o r a t i o n i n performance of a suboptimum detector measured 

r e l a t i v e to an optimum detector; the increase i n signal-to-noise 

r a t i o required by a suboptimum detector i n order to maintain the 

same error p r o b a b i l i t y as an optimum detector 



sample-and-sum detector 
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weighted p a r t i a l d e c i s i o n 

a d e c i s i o n based on a s i n g l e s i g n a l sample which may have one 

of several outcomes, the larger the outcome the more heavily 

the decision i s weighted 
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