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A B S T R A C T 

Not only basic research in sciences, but also medicine, law, and manu­

facturing need statistical techniques, including graphics, to assess disagree­

ment. For some items or individuals i = l,2,---,n suppose that pairs 

(Xi,Y{) denote each item's measurements by two distinct methods or by 

two observers, or X, and Yi may be initial and repeat measurement scores, 

with discrepancy Di = X{ — Y{. Disagreement may be characterized by 

location and scale parameters of discrepancy distributions. 

The present work primarily addresses estimation of central tendency — 

relative bias or median discrepancy (or discrepancy rate in some instances). 

Most previous literature on "agreement" or "reliability" instead concerns 

A', Y correlation, which can be regarded as the complement of discrepancy 

variance. (There is ambiguity or confusion about concepts of "reliability" 

in the literature of various applications.) 

Discrepancies D\, D2, • • •, Dn in practice often violate assumptions of 

standard statistical models and methods that have been commonly applied 

in studies of agreement. In particular, both Xi and Y{ generally incorporate 

measurement errors. Further, these two measurement error distributions 

for the ith item need not be the same; and both distributions could depend 

on the magnitude ^, of the item being measured. Hence, for example, 

discrepancy Di could have variance proportional to the size of the item; 
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and in general £ ) l 5 Z?2, • • •, Dn are not identically distributed. Finally, the 

selection of items i = 1,2, • • •, n often is not random. 

To estimate median discrepancy, we consider nonparametric confidence 

intervals corresponding to Student t test, sign test, Wilcoxon signed rank 

test, or other permutation tests. Several criteria are developed to compare 

the performance of one procedure relative to another, including expected 

ratio of confidence interval lengths (related to Pitman asymptotic relative 

efficiency of tests) and relative variability of interval lengths. Theoretical 

calculations and Monte Carlo simulation results suggest different procedural 

preferences for random sampling from different distributions.. 

For discrepancies distributed non-identically, but symmetrically about a 

common median value, mixture sampling is used as an approximate model. 

This approach is related to a "random walk" (rather than random sample) 

model of Z?i, • • •, Dn proposed particularly for discrepancies between 

counting processes. 

We also emphasize graphic methods, especially plots of difference of 

Y — X versus average (X + Y)/2, for exploratory analysis of discrepancy 

data and to choose appropriate statistical models and numerical methods. 

Various data sets are analyzed as examples of the methodology. 
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1. I N T R O D U C T I O N 

Medicine, manufacturing, and research in sciences all require counting of 

items or measuring amounts of substances being studied. Therefore, it is 

not surprising that great effort and time are devoted to evaluating measure­

ment methodologies, from intra-observer and inter-observer perspectives, and 

comparing distinct measurement methods. For instance, Beeler (1986) found 

that as many as one-third of all papers published in American Journal of 

Clinical Pathology are method comparison studies. Developments of new or 

"improved" methods may offer operational advantages, such as in speed, cost, 

convenience, etc. Consequently, there are many contexts in which the statis­

tician requires techniques for comparing repeated or paired measurements or 

comparing one measurement process to another. This thesis is particularly 

concerned with measurement scales that are continuous or that permit inte­

ger values over a large range, although there is some consideration of ordinal 

categoric ratings. 

Suppose (Xi, Yi), (X2, Y2), • • • , (Xn, Yn) are the pairwise measurements 

made by two measuring methods or by two observers or at two distinct 

occasions on n items. For instance (Xi,Yi) may be the counts of red blood 

cells in the ith blood specimen by two cell counting devices or the finishing 
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times of the ith racer recorded by two observers. (Other examples are given 

in Chapter 7.) Then define their discrepancies D\, D2, • • •, Dn by 

Di = Xi - Yi, i = 1,2, 

The term "discrepancy" or "disagreement" reflects the possibility of error 

in both Xi and Yi observations: if Hi denotes the "true" value associated 

with the ith item, then represent the two measurements, respectively, as 

Xi = fii + £i and Y; = /X{ + 6\, where e,- and are random errors (with 

respective biases Eei and E6i). Thus, no available measurement process is 

assumed to be absolutely accurate. 

Agreement or disagreement between paired measurements can be charac­

terized by at least two aspects — relative bias and reliability, or precision. 

"Relative bias" refers to the mean of the probability distribution of discrep­

ancy Di: 

E(Di) = E(Xi - Y) 

= E{Xi-Hi)-E(Yi-iii) 

= E(el)-E(6i) 

= bias of Xi — bias of Y{ 

— relative bias of Xi and Yj. 
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Median or other central location parameter, rather than expectation of £>i, 

also may be of interest. 

"Reliability" or "precision" or "reproducibility" usually refers to the 

predictability of one measurement, given the other. This issue essentially 

relates to the variance of discrepancy distribution — or, equivalently, to 

the correlation coefficient, p(Xi,Y{), of the joint distribution the Xi and Y{ 

measurements: 

Var(Di) = Var(Xi - Y{) 

= Var(Xi) + Var(Yi) - 2Cov(Xi,Yi) 

= Var(Xi) + VariYi) ~ 2[p(Xu Yi)]y/Var(Xl)y/Var(Yt). 

Note that if Var(Xi) = Var(Y{) = cr2, as in several models considered 

below, then Var(Dt) = 2a2[l - p(Xi,Yi)). But Var(Xi) and Var(Y}), and 

hence variance of the discrepancy distribution, may be in any functional 

relationship with the variances may be, for instance, proportional to m 

or to / / 2 , etc. 

This thesis is mostly concerned with relative bias — assessment of 

central tendency for discrepancy distributions. Emphasis is on graphical 

methods and estimation procedures, including confidence intervals, for the 

mean or median of discrepancy distribution. Motivation comes partly from 
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data analysis (by Professor Ned Glick) in litigation where substantial dollar 

costs were claimed in proportion to an alleged relative bias or discrepancy 

rate in measuring quantities of wood; see Chapter 7. 

There appears to be little statistical literature directly related to the 

relative bias aspect of agreement or disagreement (although there is much 

literature on "reliability" as noted in Chapter 2, and much general theory 

related to location parameter estimation and confidence interval issues, as 

discussed in later chapters). The most directly relevant material seems to be 

Altman and Bland (1983) and Bland and Altman (1986), and some responses 

to their works — partly published while this thesis was in progress. 
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2. S U R V E Y OF " A G R E E M E N T " IN R E S E A R C H L I T E R A T U R E 

As discussed in the Introduction, there are at least two aspects of 

agreement or disagreement between measurements — namely, relative bias 

and reliability; or equivalently, location and scale parameters of the dis­

crepancy distribution. There seems to be little explicit attention to relative 

bias in research literature; a notable exception is Bland and Altman (1986) 

using the graphical approach proposed by Altman and Bland (1983). There 

is much literature on reliability using techniques such as correlation, intr-

aclass correlation coefficient, Cohen's kappa, linear regression, general linear 

model, etc. For review of statistical methods in reliability studies, see Lan-

dis and Koch (1975, Parts I and II). But many applications in reliability 

literature, discussed in this chapter, either misinterpret these techniques or 

are based on assumptions that may be invalid, for example, assuming that 

measurement errors have the same variance for different observers and for 

all items measured. Also the two aspects of agreement often are confused, 

for instance, in research literature of medicine or behavioural sciences. In 

particular, the term "agreement" often is used as a synonym for reliability, 

neglecting relative bias. 

Altman and Bland (1983) suggested that such confusion may arise 

5 



"because virtually all introductory courses and textbooks in statistics are 

method-based rather than problem-based" — that is, correlation is a promi­

nently used elementary method, but the problem(s) of assessing agreement 

may be nowhere mentioned. "A further reason for poor methodology is", 

according to Altman and Bland (1983), "the tendency for researchers to 

imitate what they see in other published papers". A related issue is that 

many discussions of "agreement" (or of "reliability") calculate some quanti­

tative statistics(s) without clearly indicating why one should be interested, 

nor what may be the practical implications or applications. 

Altman and Bland (1983) noted that relative bias is a more important 

issue than reliability in a published comparison of two methods for measuring 

systolic blood pressure. In another example, mentioned in the last chapter, 

substantial dollar costs were claimed in proportion to an alleged relative bias 

or discrepancy rate in counting and measuring volumes of wood. 

2.1. C O R R E L A T I O N 

Some research workers tacitly — and incorrectly — assume that repeata­

bility, usually evaluated in terms of high correlation or "significant" linear 

regression, implies low relative bias. Such fallacy is common in elementary 
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statistics and has been discussed, for instance, by Freedman, Pisani and 

Purves (1978). Considering the Skeels-Skodak study for intelligence scores of 

adopted children, their adoptive mothers, and their biologic mothers, Freed­

man, Pisani and Purves (1978, pp.139-141) noted that correlation may be 

stronger between children and their biologic mothers than between children 

and their adoptive mothers, but that the average score for these children 

could be much closer to the average of adoptive mothers. In terms of linear 

regression to predict children's scores from their biologic mothers' scores, the 

intercept may be large, although the slope is close to one and is "highly 

significant". The biologic mothers may "predict" their children's scores in the 

sense of explaining a large fraction of variation in the dependent variable; 
t 

but the distribution of scores for the children could be systematically shifted 

with respect to the distribution of their biologic mothers' scores. 

Correlation coefficient also has been incorrectly interpreted as a per­

centage of agreement. Cassidy, Triplett and LaDuca (1985) studied the 

Factor VIII inhibitors in blood, evaluating agreement between two measuring 

methods and between two laboratories. Because all their pairwise correlation 

coefficients are roughly equal to 0.9, the authors concluded that "these values 

indicate approximately 90% agreement for each comparison". 
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Other researchers seem to interpret squared correlation as an agreement 

scale. Because correlation coefficient usually is close to one in reliability 

studies, Rawles (1986) suggested squaring to "spread" out the "cramped" 

"meaningful range". 

In the present context, both X and Y measurements are subject to 

(non-degenerate) errors; this implies that the expectation of the sample 

correlation coefficient always is less than one. This phenomenon sometimes 

is called "attenuated correlation". See Altman and Bland (1983) or Fleiss 

(1986, pp.3-4). Such components-of-variance perspective also shows that 

correlation depends on the mechanism by which objects or "items" are 

selected, and is not an intrinsic property of the measurement procedures. 

Indeed, in many cases, items to compare measurement methods or to assess 

agreement between ratings are not drawn by any random procedure, but 

arbitrarily or deliberately; and a great range of scores usually would lead to 

a high correlation, regardless of relative bias between measurements [Altman 

and Bland (1983)]. 

2.2. I N T R A C L A S S C O R R E L A T I O N C O E F F I C I E N T 

In literature of behavioural sciences and elsewhere, intraclass correlation 
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coefficient (ICC) has been outstandingly used to measure reliability or re­

peatability of measurement procedures, with two or more observations per 

item; see Gulliksen (1950), Ebel (1951), Guilford (1954), Haggard (1958), 

Hoyt and Krishnaiah (1960), Winer (1962), Hoffman (1963), and others. 

Bartko (1966) showed that, for pairs, ICC and the usual Pearson 

correlation coefficient estimate the same parameter. He also showed that 

the ICC applies in a linear model in which "item" is a random effect; 

but using fixed effect data — items that are arbitrarily chosen — ICC 

does not resolve the problem of correlation depending on the item selection 

mechanism, as discussed in last section. 

2.3. K A P P A 

Cohen (1960) introduced a kappa statistic as a measure of inter-rater 

agreement for categoric data. Later Cohen (1968) generalized to a weighted 

kappa, which allows the relative seriousness of each disagreement to be 

quantified. For full discussion of kappa, see Chapter 13 of Fleiss (1981). 

Suppose two raters (or measuring methods) separately classified n items 

on an L-point scale; the resulting data can be summarized in an L x L 

contingency table, or, equivalently, an array of observed proportions, such 
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that pij denotes the proportion of subjects classified into i category by the 

1st rater and into jth category by the 2 n d rater. Since agreement requires 

raters to classify a given subject identically into the same category, one 

simple index of agreement is estimated by 

L L 

1=1 j=l 

where {onij, i,j = 1,2, • • • , £ } are a set of non-negative weights, assigned 

according to the seriousness of disagreement (and independently of the data 

actually collected). 

Originally Cohen (1960) took u>a = 1 (corresponding to agreement) and 

u)ij — 0 for i j (any disagreement), so that p0 = YL^=\Pa- ^n general, we 

require that 

una = 1, 

0 < u>ij < 1 for i y£ j, and 

Ulij = OJji. 

See Feldman, Klein, and Honingfeld (1972), and Cicchetti (1976) for different 

choices of Wjj. 

Cohen takes account of chance-expected agreement. If we assume in­

dependence between ratings by the two raters, the expected agreement 
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proportion is estimated by 

L L 

t'=l j=l 

where pi. = X^ = 1Pifc, a n d P.j = 5Z*=i Pfcj- Then p0(u) - pe(u) represents 

the observed excess agreement beyond chance, and 1 — pe(w) indicates the 

maximum possible excess agreement beyond chance. Cohen proposed a 

measure of agreement, adjusting for the agreement due to chance: the 

weighted kappa statistic is 

po(w) -Pe(w) 
k(u) 

1 - pe(uj) 

—pe(u>) 

which ranges from ;—- to 1, with the lower value depending on the 
1 - P e O ) 

marginal distributions. Note that only for the special case where pe(u}) = — 

does k(u>) range from —1 to 1. In general, 

o k(u>) > 0 indicates better than chance agreement; 

o K(U>) = 0 indicates exactly chance agreement; 

o k(u) < 0 indicates poorer than chance agreement; 

o k(u>) — 1 indicates perfect agreement. 

Correspondences have been established between weighted kappa and the 
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Pearson correlation coefficient, and between weighted kappa and the intraclass 

correlation coefficient (ICC). Cohen (1968) has shown that, assuming the 

marginal distributions are the same (i.e., pi, = p,i for i = 1,2, • • • , £ ) and 

using the set of weights 

the weighted kappa is precisely equal to the Pearson correlation coefficient 

calculated on integer-valued categories. And for these same weights Uij, 

Fleiss and Cohen (1973) have shown that, under a random-effect model, the 

estimate of ICC differs from k(u) by a term involving the factor — and 

hence is asymptotically equal to k(u>). 

Thus, weighted kappa is equivalent to correlation and ICC, and hence 

does not relieve us from the problems noted in previous sections. 

2.4. R E G R E S S I O N 

Linear regression analysis, which is another commonly used approach in 

comparison study, should be used with caution. 

Note that comparison of paired measurements in the present context is 

very different from the calibration problem, in which a set of measurements 



are compared with and adjusted to the known true measurements, made by 

a standard, precise method. Misunderstanding the desirable question would 

lead to an inappropriate analysis. 

If measurement (X) were free of error, we might fit for given data a 

"best" line Y = a + (3X, using least-squares regression. Then we might argue 

that this regression line should go through the origin and have a slope of 

one, unless there is some systematic bias. Hence we might interpret the 

intercept and slope — specifically, the quantities a — 0 and (3—1, respectively 

— as the constant error (or relative bias) and "proportional error" [Cassidy, 

Triplett and LaDuca (1985), and Rawles (1986)]. 

However, since both sets of measurements are subject to error, nec­

essarily E(/3) < 1 and E(a) > 0 [Altman and Bland (1983)]. Thus, the 

usual regression analysis would give misleading results: both relative bias 

and "proportional error" are expected to be non-zero, no matter how well 

the two sets of measurements agree. 

Techniques have been developed, for computing a consistent estimate of 

the slope of the line relating two variables, when both are subject to errors. 

In particular, distinct methods were developed by Bartlett (1949), Deming 
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(1943), and Mandel (1964); also see survey papers by Madansky (1959) and 

Mandel (19S4) and bibliography for Chapter 1 of Draper and Smith (1981). 

Once a slope estimate 0 is obtained, we can estimate the intercept by 

a = Y — f3X. But these approaches and ordinary least-squares regression all 

assume that measurement errors 

i. follow a Guassian distribution, and 

ii. are identically distributed, regardless of the sizes of items measured. 

These two assumptions (especially the latter) in general do not hold in 

the present context. For instance, if we consider two counting processes, it 

is unlikely to have a discrepancy as great as 50 items for a shipment of 

size 100, but would be more likely for a shipment of size 1000. Thus, the 

variance of discrepancy for two counting processes would likely depend on the 

sizes of items measured; and the X, Y scatter plot would be heteroscedastic 

("hetero" means "different", "scedastic" means "scatter" [Freedman, Pisani 

and Purves (1978, p.178)]). 

2.5. W E I G H T E D L E A S T - S Q U A R E S A N A L Y S I S 

If there were no error in the X measurements, then weighted least-
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squares regression would be appropriate for heteroscedastic data. In the 

weighted least-squares analysis to fit Y = a + 0X, the sum of squares to be 

minimized is 
n 

YjUiiY-a-pX,)2, 

t=i 

where usually u>i = — 

If the set of weights {a;,-, z = l,2, were known, then the solution 

would be 

Hi=i Vi(Xi - i u ) 2 

where A w = -=W , and Yu = -=k1r 

But the variance cr2 and hence Wi usually are unknown. Estimation 

would require iteration, using u>{ = (a + flxi)-1 or U{ = (ct + /5a;,)-2, etc. 

Notable works include Jacquez, Mather and Crawford (1968), Bement and 

Williams (1969), and Amemiya (1973). 

But weighted least-squares, like ordinary least-squares regression, still 

may be inappropriate if the X{ are subject to error. 
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2.6. A N A L Y S I S O F V A R I A N C E A N D G E N E R A L L I N E A R 

M O D E L 

Suppose Wij denotes measurement of object i made by method j , 

(i = 1,2, •••,n, and j = 1,2), and Hi denotes the true but unknown value 

for the object i. Then the general linear model relating Wij to Hi 1S 

Wij = Oj + fljHi + £,;, 

where a.j and /3j are parameters that jointly describe the measurement bias 

for method j , and where e,j is a random error in measuring object i with 

method j . It is assumed throughout that eij M ~ P A/*(0,CTJ). 

This model includes the previous discrepancy model as a special case 

with 

Yi — Wi2 — a2 + Pi2 + £i2, and 

Di =Xi-Yi = Wn - Wi2 

= ( a i - a2) + (0i - 02)Hi + O i l - e,-2)-

o The model is said to have common precision if <r| is the same for all 

j-

o The measuring method j is said to be unbiased if otj = 0, and 0j = 1. 
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o The measuring method j is said to have a constant bias if aj ̂  0, but 

Pj = I- -

o Two methods j and k are said to have a constant relative bias if 

aj ̂  ak, but pj = l= plk. 

o The method j is said to have a nonconstant bias if (3j ̂  1. 

o Two methods j and k are said to have nonconstant relative bias if 

Two cases have been studied: 

i. a fixed-effect model where Hi a r e n ° t randomly selected, and 

ii. a random-effect model where Hi a r e randomly selected from some Guas-

sian population. 

Then various linear model techniques can be employed to estimate 

relative bias (called "contrast") cti — a2. Notable works include Grubbs 

(1948) and Thompson (1963). But most linear model methods assume 

common precision, aj the same for all j. 
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More importantly, in the usual linear model, the distribution of error 

£ij does not depend on /i,-. 

2.7. P A I R W I S E D I F F E R E N C E A N D G R A P H I C A L A P P R O A C H 

Altman and Bland (1983) criticized various techniques used in reliability 

literature and also argued that many of these studies should be more 

interested in relative bias. Noting that the usual X, Y scatter plot is more 

relevant to correlation than to study of relative bias between the paired 

measurements, Altman and Bland relied on the "average-difference plot", 

which is. a graph of pairwise difference (or discrepancy) against the average 

of the pair (estimate of the true measurement). One advantage of this plot 

is that it exhibits any trend relating discrepancy and size of measurement 

in a clear manner. Similar plots have been used by other statisticians, as 

discussed in the next chapter. 

Further, Altman and Bland (1983) suggested using Pearson correlation 

X + Y 

coefficient between discrepancy (Y — X) and average —— (or sum X + Y) 

to check for equality of the total variance of the two sets of measurements. 

This is based on the following results. If Var(Xi) — Var(Yi), then Cov[(Xi + 

Yi),(Y, - Xi)] = 0; or equivalently, if Cov[(Xi + YJ), (Y{ - Xt)} # 0, then 
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Var(Xi) # Var(Yi). 

When there is no clear relationship between discrepancy and average, 

Altman and Bland (1983 and 1986) suggested using the normal percentile to 

construct a 95% confidence interval for relative bias: (5 — 1.965,73 + 1.965), 

where 

Essentially, the central limit theorem is applied here. In the following 

chapter, we consider also nonparametric confidence intervals for median dis­

crepancy. 

Altman and Bland (1983) proposed using transformation of the data if 

the "average-difference plot" indicates any relationship between the discrep­

ancy and the average. However, no example has been shown. Indeed, an 

appropriate transformation may not be obvious. Also, if the discrepancies 

are symmetrically distributed, transformation that destroys symmetry may 

not be desirable. 

2.8. Q U E S T I O N S B E Y O N D A L T M A N A N D B L A N D 

There is a serious issue not much dealt with even by Altman and Bland. 

D = X-Y, and 

i = i 

19 



For paired measurements A r, Y, scatter plot often shows heteroscedasticity 

— plots described in Chapters 5 and 7 demonstrate the issue dramatically. 

Some reliability techniques allow for heteroscedasticity (using weighted least-

squares regression, for example); but the normal confidence interval above 

does not. 

More precisely, consider paired measurements Xi and YJ;, and the corre­

sponding discrepancy £ \ , such that the variance 

Var(Di) = Var(Xi) + Var{Yi) - 2Cov{Xi,Yi) 

is a function of the true magnitude /i;; then how should we inter­

pret a "sample" variance of D\, D2, • • •, Dn, or a "sample" correlation for 

(A"i, Yi), (X2, Y2), • • • , (Xn, K„), if the magnitudes n\ ? ^ 2 , • • • > have been ar­

bitrarily or intentionally (but not randomly) selected? 

This thesis, using a perspective related to permutation tests, tries to 

estimate the relative bias without any assumption about the mechanism by 

which the items measured are chosen. 
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3. I N D E P E N D E N T , I D E N T I C A L L Y D I S T R I B U T E D 

D I S C R E P A N C I E S : A S I M P L E M O D E L 

Suppose ( X i , Yi), (X2, Y2), • • •, (Xn, Yn) are the pairwise observations ob­

tained by two raters or two measuring processes on n objects. Then their 

discrepancies D\, D2, • • •, Dn are given by 

Di = Xi-Yi, i = 1,2, •••,!*. 

As discussed earlier, agreement or disagreement may be characterized 

primarily by a central location parameter such as the mean (that is, relative 

bias) or the median of the discrepancy distribution. In various contexts, 

we may wish to estimate this location parameter, say 6; or to provide a 

confidence interval; or to test a hypothetical value of this parameter (usually 

9 = 0 would be of interest). 

Our statistical concern here is comparison of observers or of measurement 

methods — not the "true" magnitudes (say ^1, /J.2, • • •, fin) of the particular 

objects being measured, nor the separate distributions of X{,Y{ measurements 

(with, say, A'j = m + £,• and Yi = m + Si for some errors £i,6"i). 

But, in general, the underlying distribution of discrepancy D{ could 



depend on the magnitude /i, being measured. For instance, the standard de­

viation of the discrepancy distribution may be proportional to the magnitude 

of the object being measured or to the square root of that magnitude, etc. 

The simplest model, which is the subject of this chapter, would assume that 

the discrepancy distribution is not a function of the quantity being mea­

sured. This assumption, together with the independence assumption, models 

Dy, -D2, • • •, Dn as independent and identically distributed observations. This 

assumption holds, in particular, if the (X{,Yi) are independent and identically 

distributed random vectors. 

Even if the observed discrepancies £>i, Z?2, • • •,-On are independent and 

identically distributed, the underlying distribution, in general, is still un­

known and may be in any shape. But an estimator, confidence interval or 

hypothesis test for the central location may be more or less efficient, relative 

to some other method, depending on whether the unknown distribution is 

symmetric or skewed, whether it is light-tailed or heavy-tailed, and so on. 

In this chapter, we consider alternative (or competitive) estimators, etc. 

3.1. M E A N A N D t P R O C E D U R E S 

The expected value or mean of a distribution is the parameter most 
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often used to characterize central tendency. And the usual unbiased esti­

mate of the distribution mean is the sample mean. Given a sample of 

discrepancies, D\, D2, • • •, DN, the sample mean, D, is defined to be 

D = mean of {Di, D2, • • •, DN} 

1 N 

• - 5 > • 
rt —<* n 

J=l 

We would also like to construct a confidence interval (or interval esti­

mate) for the distribution mean; hence, we need the distribution as well as 

the expected value of the sample mean D. If the discrepancies are normally 

distributed, then the sample mean, D, also will be normally distributed. 

However, since we need to use the sample variance 

* 2 = S > - * » s 

i=l 

to estimate the unknown variance of the normal discrepancies, a confidence 

interval for the location parameter of the discrepancy distribution is obtained 

based on the Student t distribution, with n — 1 degrees of freedom. Hence, 

a 1 — 2a symmetric confidence interval, {6LOW,9UP), is given by 

S S 
GLOW = D — tan-i—= and 6yp — D + tQ n_! —=, 

where tan_1 is the upper 100c* percentile point (or denotes the 100(1 — a) 

ordinary percentile) of the t distribution, with degrees of freedom n — 1. 



For large n, percentile i a ,n- i can be approximated by za, the corresponding 

percentile of the standard normal distribution. (In particular, zQ — 1.96 if 

a = 0.025.) 

To test the hypothesis 

Ho:0 = So versus Hi : d # 6>0, 

at 2a level of significance, we construct the t statistic 

and compare it with ta>n-i. We would reject HQ and conclude that 8 is 

significantly different from 9Q at the 2a level of significance if and only if 

If the underlying discrepancy distribution is not normal, but is at least 

symmetric, then the t test can be regarded as a permutation test, discussed 

below, although the nominal significance level would not be exact. 

Even without symmetry, the central limit theorem still would provide 

approximate normality for the sampling distribution of D, assuming only 

that the discrepancy distribution has finite variance. Thus, asymptotically, 

the situation would be the same as the previous case, and the confidence 

interval and hypothesis testing can be based on the t distribution as before. 



There is considerable literature on how non-normality affects the t 

statistic and confidence intervals. Notable are works by E. S. Pearson and 

Adyanthaya (1929), Geary (1936, 1947), Gayen (1949), Efron (1969), E. S. 

Pearson and Please (1975), and Cressie (1980). This literature indicates 

that asymmetry (or skewness) of the underlying distribution affects the 

distribution of t more than does the kurtosis (heavy- or light-tailedness). 

In the present context, the underlying distribution characterizes difference 

between two measuring processes, X and Y. If measurements X and Y have 

distributions of the same shape, but shifted — that is, if the processes have 

different biases, but the same variance — then the distribution of difference, 

X — Y", must be symmetric [Pratt and Gibbons (1981, p. 147)]. Thus, the t 

confidence interval and the t test for the discrepancies tend to be robust 

for inference with respect to measurement discrepancies. 

3.2. M E D I A N A N D S I G N P R O C E D U R E S 

The median is another well known parameter characterizing the central 

location of a distribution. By definition, the median of the distribution of 

D is a point d such that 

Prob(D < d) < i < Prob(D < d). 
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Notice that the median, in general, is not uniquely defined. However, if the 

underlying distribution is continuous, then the median is unique and can be 

defined as that value d such that 

Prob(D <d) = i . 

For symmetric distribution, median and mean are the same value, the 

symmetry point (provided that the expectation exists and is finite). 

One simple estimator of the distribution median would be the sample 

median. Given a sample of discrepancies, D\, D2, • • •, Dn, the sample median, 

.D, is given by 

D = median of {D\,D2, • • • ,Dn} 

^(s±iy if n is odd; 

1 _ _ 
. j D(f) + £ >(f+i). if n is even. 

2 

Here, denotes the ith order statistic of D\, D2, • • •, Dn. 

Furthermore, a confidence interval can be obtained based on order 

statistics. Suppose ' D\, D2, Dn are the observed discrepancies; then a 

1 — 2a symmetric confidence interval (0LOW,6UP) is given by 

0LOW = D^n + \-ba) a n d 6UP = D(bay 

where ba is the upper 100a percentile point of the binomial distribution 



with sample size n and p = —. That is, bQ is the value such that 

Prob(B > ba) = a, 

where 5 ~ Bin ^n, 0 [Hollander and Wolfe (1973, pp.48-49)]. This binomial 

percentile point can be obtained from tables of the binomial distribution or 

of the incomplete beta function [e.g., Harvard (1955) or Owen (1962)]. 

For large n, the integer bQ can be approximated by 

n fn 
bQ « 2 + 1 + * a V 4 ' 

where za is the standard normal percentile (defined before). The value on 

the right hand side, in general, is not an integer, so in practice the closest 

integer is used. This gives a large-sample approximate confidence interval for 

the median discrepancy [Hollander and Wolfe (1973, p.49)]. 

If the problem of interest is to test the hypothesis 

Ho:8 = 60 versus Hx : 6 ± 0O, 

then we define the sign statistic 

B = >0O), 



where the indicator function 

> *> = {I:« D ( < 2: 
and reject iJo (to conclude that 9 is significantly different from 9Q) a t the 

lot level of significance if either B > ba or B < n — bQ [Hollander and Wolfe 

(1973, p.40)]. 

In computing the sign statistic B, above, 1(1?, > 9Q) has not been 

defined when Di — 8Q. We can avoid this difficulty, in theory, by assuming 

continuous distribution. In practice, measurements are not always sufficiently 

precise to avoid zeros, even if the distribution is continuous. For methods of 

handling zeros in the sign test, see Hemelrijk (1952), Putter (1955), Noether 

(1967), Krauth (1973), and Pratt and Gibbons (1981, pp.97-104). 

3.3. T H E H O D G E S - L E H M A N N E S T I M A T O R A N D S I G N E D 

R A N K P R O C E D U R E S 

The procedures discussed below compromise between the t and sign pro­

cedures: the underlying distribution should be symmetric (or approximately 

symmetric), but normality is not needed. And, as noted in Section 3.1, the 

discrepancies would be symmetrically distributed if the distributions of X 

and Y have the same shape and differ only by a location shift. 



For a sequence of observations D\, -D2, • • •, Dn, define the set of Walsh 

n(n + 1) 
averages, the m = quantities 

Di + Dj 
, i,j = 1,2, & t < j 

Then the corresponding Hodges-Lehmann statistic D is defined to be the 

sample median of these Walsh averages, that is 

D — median of | — — i , j = 1,2, • • •, n & i < j ^ . 

If the underlying discrepancy distribution is symmetric, then the Hodges-

Lehmann statistic (the Walsh median) estimates this centre (= median = 

mean) [Hollander and Wolfe (1973, p.33)].. 

Moreover, a symmetric confidence interval for the symmetry point can 

be based on the Walsh averages: for confidence level 1 — 2a the interval 

(&LOW,0UP) is given by 

OLOW = W{M + 1 _ W A ) and 6UP = W / W ay 

where W^) < W(2) 5; •"' ^ W(m) denote the ordered Walsh averages, with 

77(77. + 1) 

m = , and wQ is the upper 100a percentile point of the Wilcoxon 

signed rank statistic, whose exact distribution is available in tables [e.g., 

Owen (1962) or Pearson and Hartley (1972)]. For large n, the integer wa 



can be approximated by 

wr 

n(n + l) ln(n + l)(2n + 1) -^r- + l+Zav 2i ' 
w here zQ is the standard normal percentile and the right hand side is 

rounded to the closest integer value [Hollander and Wolfe (1973, pp.35-36)]. 

To test the hypothesis 

H0:6 = e0 versus Hx : 0 ^ 0O, 

we define the Wilcoxon signed rank statistic 

n 

W = ^2RiI(Dt> 0O), 

where i?{ denotes the rank of \Di\ in the ranking from least to greatest of 

absolute values \D\ |, |Z>21, • • •, \Dn\, and the indicator function 

We would reject i J 0 (to conclude that 6 is significantly different from 60) 

at the 2ct level of significance if either W > wa or W < m — wa [Hollander 

and Wolfe (1973, p.28)]. 

Zero values may be a practical problem for the signed rank procedure 

(as for the sign test). Also non-zero ties (two or more observations which 
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have the same magnitude) can cause complications for Wilcoxon signed rank 

procedures. For present purposes, "midranks" as defined by Lehmann (1975) 

may be used when ties render "rank" ambiguous. For discussion of zeros 

and ties, see Conover (1973), Cureton (1967), Pratt (1959), and Rahe (1974). 

3.4. D I S C U S S I O N : T H E P E R M U T A T I O N P E R S P E C T I V E 

Obviously, normality is the most restrictive assumption considered above; 

and the ordinary median estimator and the sign test are the least restricted 

procedures, not even requiring symmetry. The signed rank procedures are 

intermediate. 

If the underlying distribution is symmetric, then all three approaches 

considered above — that is: the t test, sign test, and signed rank test 

— are permutation (or randomization) procedures, corresponding to different 

score functions. For a random vector D = (D\, D2, • • •, Dn), a permutation 

test statistic or "generalized Student's statistic" [Efron (1969)] has the form 

Sn = ^Ui, 

where the vector 
U = g(U), and 

D D 
U = 

\D\\ v T ^ T 
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and j is a symmetry preserving transformation of the unit n-sphere into 

itself. For instance, if 

y n(n + 1) 

is defined on the positive orthant S+ = { ( f n " ' * > fn) : & > O^XlLi £% = 

where Ri is the rank of among {£j, £2, • • •, £ n } a n d 9 maps every orthant 

into itself in a similar fashion, then Sn is the Wilcoxon signed rank statistic. 

The permutation perspective is important since, as pointed out in Sec­

tion 3.1, the discrepancy distribution will be symmetric if the X and Y 

distributions have the same shape, but possibly differ by a location shift. 

Choice among different permutation procedures should be based on rela­

tive performance as discussed in the next chapter. 

3.5. B O O T S T R A P M E T H O D 

Efron's "bootstrap", related to Tukey's "jackknife", provides a general 

method to construct nonparametric estimators or confidence intervals [Efron 

(1979)]. The bootstrap method can be applied to estimate any parameter 

characterizing central tendency; but the bootstrap estimators of distribution 

mean and median turn out to be essentially the same as the ordinary sample 



mean and sample median. Hence, the general theory of the bootstrap is not 

utilized in the remainder of this thesis. (But discussion of the bootstrap 

method is provided in Appendix I.) 

The bootstrap has been modified to utilize partial knowledge about 

the underlying distribution of interest: but the "smoothed bootstrap" [Efron 

(1981)], the "parametric bootstrap" [Efron (1985)] and the "Bayesian boot­

strap" [Rubin (1981)], will not be discussed here. 
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4. E V A L U A T I N G R E L A T I V E P E R F O R M A N C E OF C O N F I D E N C E 

I N T E R V A L P R O C E D U R E S 

Choice among competing statistical procedures should be based on their 

relative performance. In statistical literature, relative efficiency is most often 

defined in the hypothesis testing context. This chapter first reviews relative 

efficiency of tests and an equivalent definition of relative efficiency based on 

expected ratio of squared lengths of confidence intervals. Also, we propose 

two other criteria of relative performance: probability that one procedure 

produces a shorter confidence interval than the other procedure, and the 

relative variability of confidence interval lengths. (These criteria are easier 

to interpret than other relative efficiency definitions, such as by Bahadur, 

Hodges-Lehmann, or Chernoff, etc.) 

4.1. R E L A T I V E E F F I C I E N C Y OF STATISTICAL TESTS 

Relative efficiency of two statistical tests (e.g., sign test and signed rank 

test) in general would depend on 

i. the specified significance level, 

ii. the alternative hypothesis value, 
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iii. the sample size, and 

iv. the form of the underlying distribution. 

Pitman (1948) defined an asymptotic relative efficiency (ARE) which 

depends only on the form of the underlying distribution, but requires sym­

metry. Essentially, Pitman efficiency of test procedure T2 with respect to 

Ti , denoted here by ARE(2,1), is equivalent to the limiting ratio of sample 

sizes, — , such that both tests achieve equal power against a sequence of 
n2 

alternatives that are "close" to and approaching the null hypothesis [Randies 

and Wolfe (1979, pp.142-144)]. Note that, if ARE(2,1) is the efficiency of 

T2 relative to 7\, then ARE(1,2) = -. Pitman efficiency can be 
ARE(2,1) 

represented as a ratio of efficacies, defined in Appendix II and evaluated in 

Table 1 for permutation tests applied to familiar distributions. 

Based on Pitman efficiency, statistical literature (notably literature on 

nonparametric methods) gives the following general recommendations for the 

t test (T), sign test (5), and. Wilcoxon signed rank test (W) [Randies and 

Wolfe (1979, pp.166-168)]. 

o T is optimal for normal distribution and performs well for other 

distributions with moderate tails (e.g., logistic distribution); 
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o T is preferable to S and is comparable to W for distributions with 

light tails (e.g., uniform distribution); 

o T is inferior to both 5 and W for distributions with heavy tails 

(e.g., Cauchy or double exponential distribution); 

o S is preferable for distributions with very heavy tails; 

o W is intermediate between S and T, and therefore is "robust" in 

the sense of being a good compromise. 

However, there are few guidelines for a mixture of normals or for a 

contaminated normal distribution, which will be of interest in the next 

chapter. 

4.2. R E L A T I V E E F F I C I E N C Y O F C O N F I D E N C E I N T E R V A L 

P R O C E D U R E S 

In estimation or data analysis context, Pitman ARE can be interpreted 

in terms of lengths of confidence intervals. Suppose Liyn and Li,n

 a r e the 

respective lengths of confidence intervals for corresponding to tests T\ 

and T2, respectively, and both based on the same sample of size n. If T\ 
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produces a confidence interval with expected length less than that produced 

by T 2 , then we say Tj is more efficient than T 2 . It can be shown that, 

under suitable conditions, ( j converges to ARE(2,1) in probability, as 

n oo [Pratt and Gibbons (1981, p.376)]. It follows that 

Eg 
L\,n 

L2,n 
ARE(2,l) , 

or equivalently 

Eg (jj^) — + y/ARE(2,l) 

In confidence interval context, it seems natural to consider lengths rather 

than squared lengths. Thus, the asymptotic expectation of •— (suppressing 
L2 

notational dependence on n) is an important criterion of relative performance. 

Pratt (1961) provided another interpretation for ARE: relative probability 

of including a false value. Pratt showed that 

E9O (8UP - 9Low) = I Pe0 (BLOW <0< 6UP)d6 

Je 

= j Pe0(0Low<0<0up)d6, 

where {0LOW-,8\JP) is a confidence interval for 8, and 80 is the true (but 

unknown) value of 8. Notice that the last integral gives the probability of 

including a particular false value and "averages" over all possible false values 

[Pratt and Gibbons (1981, p.50)j. 
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Recall that Pitman ARE provides an asymptotic comparison. How 

applicable are these asymptotic results for the finite sample size n? Monte 

Carlo results (see below) show that, in general, the finite-sample behaviour 

is reasonably close to asymptotic results; but anomalies may arise. 

4.3. O T H E R C R I T E R I A O F R E L A T I V E P E R F O R M A N C E 

Instead of comparing lengths in expectation, we can compare them in 

probability: that is, consider the probability that procedure Ti produces 

a confidence interval shorter than that produced by T2. If L\ < L2 with 

probability much greater than 0.5, i.e., if 

Prob0 (Li < L2) > 0.5, 

then procedure T x may be preferred to T2 even if their ARE is close to 1. 

Besides considering which confidence interval is shorter in expectation 

or in probability, we would also like to have an interval whose length has 

relatively small variance. Thus, relative variability (or inversely, stability) of 

confidence interval lengths provides another criterion of performance. If the 

standard deviation of L\ is much less than that of L2, i.e., if 

SD(L2) ^ ' 
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we would conclude that T\ performs better than T2. 

Unluckily, exact theoretical results for the probability and relative vari­

ability criteria are very difficult, if not impossible, to obtain. For instance, if 

the confidence intervals related to the sign test and to the Wilcoxon signed 

rank test are compared, difficult integrals based on certain joint distributions 

of order statistics are required [Sarhan and Greenberg (1962)]. In order to 

study these three criteria for specific distributions, Monte Carlo simulations 

are needed to approximate the theoretical exact results. 

In summary, we would prefer Tj to T2 if 

ii. P(Li < L2) > 0.5, and 

... SDiLx) 

But, in Monte Carlo studies below, there are examples in which one 

criterion favours Ty while another favours T2. Also, there are examples of 

distributions for which 
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o E{L1/L2)^l and SD(Li)/SD(L2) « 1, but P(L a < L 2 ) > 0.5, or 

o E(L1/L2)&1 and P(Lj < L 2 ) « 0.5, but SD(Ly)/SD(L2) < 1. 

So it is clear that the three criteria, above, do not imply one another; 

and, in particular, both of our new criteria may have practical importance: 

to choose between two procedures when relative efficiency is approximately 

equal to 1. 

4.4. E V A L U A T I O N O F T H E T H R E E P E R F O R M A N C E 

C R I T E R I A F O R S P E C I A L D I S T R I B U T I O N S : 

M O N T E C A R L O R E S U L T S 

In order to examine the relevance of asymptotic results and to eval­

uate the above criteria for specific distributions, we consider the following 

Monte Carlo studies. One thousand random samples, each of size n = 32, 

are generated from each of eleven distributions: standard normal A/"(0,1), 

uniform( —1,1), Cauchy (or t with one degree of freedom), equal-proportion 

mixtures of four and five normals, where each component is jV(0,i2) with 

i = 1,2,3,4 and i — 1,2,3,4,5, and six contaminated standard normals. 

(Mixed and contaminated distributions are useful to approximate various sit­

uations in which the assumption of "identically distributed observations" is 
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not valid. Efficiency results for mixtures also demonstrate importance of the 

new performance criteria.) Notice that the normal, uniform, and Cauchy are 

examples of distributions with medium, light, and heavy tails, respectively. 

Since the three criteria of relative performance do not depend on the dis­

tribution parameters (except for the mixtures of normals and contaminated 

normals), there is no loss of generality in considering standard normal, uni­

form, and Cauchy. For interval estimation corresponding to the exact sign 

test (not using normal approximation), exact 95% coverage in general is not 

attainable (without randomization); but for sample size n = 32, coverage of 

94.98% is an attainable level. Also, n = 32 is close to sizes of some real 

data sets considered below. 

For the distributions just described, we consider confidence intervals cor­

responding to the t test (T), the sign test (5) and the Wilcoxon signed 

rank test (W). All three confidence interval procedures are available in the 

Minitab (version 5) statistics package [Ryan, Joiner and Ryan (1985)], but 

for present purposes have been programmed in the "S" statistics environ­

ment under UNIX [Becker and Chambers (1984)]. For these three confidence 

interval procedures, asymptotic relative efficiency (ARE) and simulation re­

sults (for 77 = 32) are shown in Tables 2 - 6 . (Note that Table 2 gives 

ARE(W,S) while ARE(S, W) = A R E ^ W s^ i s t h e W : 5 squared length ra-
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tio, given by Table 3; etc.). Table 3 gives length and squared length ratios 

for finite samples (n = 32), results directly comparable to the asymptotic 

ratios in Table 2. Tables 4 and 5 compare intervals using variability and 

probability criteria for finite samples. Table 5 also gives actual coverages 

of the nominal 95% confidence intervals (each entry based on 1000 samples, 

with sample size n = 32). 

4.4.1. C O M P A R I S O N OF A S Y M P T O T I C A N D F I N I T E - S A M P L E 

RESULTS 

o In the Monte Carlo experiment with 1000 replications, most of the 

actual coverages are within 1% of the nominal coverage, 95%, except 

for the T interval with Cauchy distribution. Observed coverage of 

T for Cauchy distribution (98%) confirms that T is conservative for 

a long-tailed distribution [Benjamini (1983)]. 

o In general, if one procedure is preferred to another by Pitman's 

asymptotic relative efficiency criterion, then the same preference 

holds for n — 32. But the "advantage" may be consistently and 

considerably less (or more) for finite samples than asymptotically. 

For instance: "advantage" of W over S is less for n = 32 than 
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asymptotically; "advantage" of T over S is less for n = 32 than 

asymptotically; and "advantage" of W over T is less for n = 32 

than asymptotically, for most distributions. 

o Reversals are technically possible, an example being the mixture of 

four normals: asymptotically W is more efficient than S (the length 

ratio L\v/Ls —* \/0.9693 < 1 as n —• oo); but for n — 32, the Monte 

Carlo sample mean of (Lw/Ls) = 1.0402. 

4.4.2 E X A M P L E S : N E W C R I T E R I A M A Y B E D E C I S I V E 

Recall that, in addition to the usual definition of relative efficiency 

as expected ratio of squared interval lengths, we wish to consider the 

probability that one procedure produces an interval shorter than the other 

and the relative variability of interval lengths. In the simulation results, we 

evaluate not only the sample mean of the ratio of lengths, but also the 

percentage of times such that one interval is shorter than the other, and 

the ratio of sample standard deviations of lengths. 

The following examples call attention to criteria other than usual relative 

efficiency. 
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E X A M P L E 1A: Probability criterion may be critical. 

Consider W and T for uniform distribution. The Monte Carlo experi-

ment with 1000 replications gives 

1 3 ( ^ * 1 . 0 9 * 1 , and £ £ ^ « 1 . 1 9 « 1 , 
\LT J SD(LT) 

which do not suggest strong preference for T. But since LT < L\y f ° r 968 

out of 1000 simulated samples, T would be preferred by the probability 

criterion. 

E X A M P L E IB: Probability criterion may be critical. 

Consider W and T for the mixture of five normals. The Monte Carlo 

experiment with 1000 replications gives 

i s f ^ * 0.92*1, and ^ 4 « 1.01 » 1, 
\LTJ SD{LT) 

which do not suggest strong preference for W. But since LT < Lw only for 

232 out of 1000 samples, W would be preferred by this criterion. 

These examples suggest that the probability criterion is more sensitive 

than the expectation criterion (usual relative efficiency) with respect to the 

shape of the distribution tails. 
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E X A M P L E 2A: Variability criterion may be critical. 

If W and S are compared for the mixture of five (or four) normals, 

simulation results give 

E (j^J ~ 1-06 (or 1.04) « 1, and 

LW < LS for 470 (or 5 1 8 ) , « 50% of 1000 samples. 

But since, for both mixtures, 

SD(Lw) 

the relative variability of interval lengths clearly favours W, although the 

other two criteria do not provide any clear preference. 

E X A M P L E 2B: Variability criterion may be critical. 

For the mixture of five normals 

E (j^j ~ i - 1 8 ' a n d 

LT < LS for only 337 out of 1000 samples, 

so these two criteria slightly favour S. But 

SD(LT) 
SD(Ls) 
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and supports use of T. We might accept slightly greater length in order to 

reduce variability of our confidence interval. 

E X A M P L E 2C: Variability criterion may be critical — performance of W 

versus T for contaminated normals. 

As discussed in Section 4.1, based on Pitman efficiency, T is slightly 

preferable to W for [pure] normal distributions, with ARE(W, T) = 0.95 or, 

equivalently, —— —* 1.02; and simulation results for n = 32 give 

However, normality is a strong assumption — in practice, a small percentage 

of contaminant is common (e.g., a small percentage of measurements with 

large errors; or a small percentage of time when a process is "out of 

control"). 

For example, consider simulation results for the standard normal contam­

inated with 5% of Af(0,16): 

LT 

LT < Lw for 731 out of 1000 samples, and 

SD(LW) 
SD (LT) 

1.13. 

and 
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LT < L\v for 393 out of 1000 samples, 

so these two criteria slightly favour W. But since 

SD (LW) 
SD (LT) 

~ 0.49 < 1 

the relative variability of interval lengths strongly favours W. 

4.5. D I S C U S S I O N 

Pitman ARE, which is equivalent to the limiting ratio of squared lengths 

of two confidence interval procedures, is not the only measure of relative 

performance. Fortunately, in our examples, the asymptotic efficiency generally 

is similar to the corresponding expected ratio for finite sample size. But, in 

addition to expectation of the length ratio, we may wish to consider a) the 

probability that this length ratio exceeds one, and b) the relative variability 

of lengths of the two confidence intervals. In Monte Carlo simulation, these 

three criteria of relative performance generally complement each other, but 

there are instances which spotlight the differences. 

Overall, signed rank confidence interval W is generally good: even in 

the worst case, the longer intervals produced by W have expected length 

not much longer nor much more variable than the competitive procedures. 
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4.6. E P I L O G U E : A D A P T I V E P R O C E D U R E S 

The foregoing discussion is from a traditional perspective in which the 

statistician's choosing of a statistical procedure (from among T, 5, and W 

confidence interval procedures, or from any other collection) is separated 

from application and computation. But there have been several suggestions 

that would formally unify these aspects of statistical analysis. In principle, 

we could 

o calculate several confidence intervals (e.g., T, S, and W intervals) 

for a given data set; and then 

o calculate some auxiliary statistic(s) and invoke a formal decision rule 

based on such statistic to select and report one of the available 

intervals. 

The simplest such suggestions have been the following. 

o Adaptive procedures of Randies and Hogg (1973): if one method 

is generally good for data from light-tailed distributions and an­

other method is good for heavy-tailed distributions, then calculate a 

statistic that quantifies tail weight and adopt a formal cut-off value. 

This idea obviously generalizes from two competitors to several. See 
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Appendix III. 

o "Legalized cheating" proposed by Efron (1969): select the first of 

two available confidence intervals if and only if their length ratio 

—- < 1. Efron suggests appropriate adjustment of confidence level, 

working with sign and t procedures. 

These ideas are intriguing and we hope to consider them in the future 

— but not in the remainder of this thesis. They present both practical and 

theoretical problems. 

Adaptive procedures introduce additional decision parameters; and also 

they may be computationally difficult. At present, popular statistical com­

putation packages, such as SAS, BMDP, and SPSS do not even provide S 

and W confidence intervals, corresponding to the sign and Wilcoxon signed 

rank tests; and Minitab made these confidence intervals available only in 

19S5 — using normal approximation to Wilcoxon confidence interval [Ryan, 

Joiner and Ryan (1985, p.290)]. 

Little is known about relative performance criteria to choose among 

adaptive options. And little is known about behaviour of such procedures 

when data are not identically distributed, as considered in the next chapter. 
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5. N O N - I D E N T I C A L L Y D I S T R I B U T E D D I S C R E P A N C I E S : 

A G E N E R A L M O D E L 

The simplest model assumes that discrepancy between two measuring 

procedures does not depend on the quantity measured, so that observed dis­

crepancies are independent and identically distributed. This chapter considers 

a more general model: discrepancies that are independent, but need not be 

identically distributed. In particular, the variance of a discrepancy distri­

bution may be a function of (for instance, proportional to) the magnitude 

of the object measured, so that distributions of D\, Di, • • •, Dn differ with 

respect to scale. 

But, in order to have a meaningful concept of agreement to estimate 

or to test, the discrepancy distributions must have some location parameter 

in common; and this chapter will assume that the non-identical discrepancy 

distributions have identical means or medians. Again note that these two 

parameters would be equal if the discrepancies are symmetrically distributed; 

and that Di = X{ — Y{ will have symmetric distribution whenever the X{ 

and Yi distributions have the same shape, differing only by some shift (or 

relative bias). Variance or other scale parameters for X{ and Yi distributions 

still could be a function of the magnitude of the object measured. (In 
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practice, the assumption of sampling with a common median or mean often 

may be valid for discrepancy rate — difference between measurements as a 

percentage of quantity measured — considered in the next chapter.) 

This chapter first considers empirical (largely graphical) methods to 

explore or validate distributional assumptions about Di,D2, • • •,Dn, such as 

symmetry, functional modelling of variance, etc. A "random walk" model is 

then proposed to provide theoretical basis for approximate normality (and 

symmetry) of discrepancy distribution when X and Y are two counting 

processes. Assuming symmetry, choice among the three statistical procedures 

is discussed by comparing the non-identically distributed case to sampling 

from a suitable mixture. Finally, a summary guide is provided to estimate 

median discrepancy for real data. 

5.1. G R A P H I C A L M E T H O D S F O R D I S C R E P A N C I E S 

Scatter plotting of X{ and Yi values and calculation of the usual 

(Pearson) correlation are commonly used to check for linear relationship 

and to demonstrate that one variable can predict the other. But when X 

and Y processes measure the same objects, strong positive correlation (i.e., 

high reliability) is usual — otherwise the measurements would be useless in 
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practice. For strongly linear X, Y points, visual resolution of discrepancy 

is poor. Also, the calculated correlation may be misleading: the greater 

the range of magnitudes measured, the better agreement will appear to be. 

See Altman and Bland (19S3) and the discussion of correlation above, in 

Chapter 2. 

A more effective graphical method for assessing agreement between mea-

A -(- Y 

surmg processes is to plot Y — A against the average measurement — - — 

[Altman and Bland (1983)]. This leads to an "average-difference plot", 

which is a variation of the "sum-difference graph" attributed to Tukey by 

Cleveland (1985, pp.118-23). The average is used here in lieu of the sum 

in Tukey's graph, because of its obvious interpretation — as a combined 

estimate of the magnitude measured separately by X and Y. Either the 

average-difference plot or the sum-difference graph rotates a scatter plot 45° 

in a clockwise direction and then expands the rotated points vertically to 

fill the plotting region [Cleveland (1985, p.122)]. Notice that the difference 

Y{ — Xi and the sum A,- + Yi are uncorrelated random variables if A, and 

Yi have the same variance (similarly for Xi — Y,- instead Yi — A, , and for 

average (X,-+ Yi)/2 instead of Xi + Yi) and hence are independent if X,-,Yi 

are bivariate normal. Or, equivalently, the variances of Xi and Y, cannot be 

equal if the difference Xi — Yi and the sum A,- + Yi are not uncorrelated. 



It is sometimes useful also to plot absolute value \X — Y\ versus average 

or sum. For some data it may be useful to plot the abscissa on a non-linear 

scale, such as logarithm or square root of X + Y. (See the first example in 

Chapter 7.) 

Using these plots, we can visually assess the range of measurement and 

check for symmetry of discrepancy; and we can see if there is any trend, 

for instance, whether and how magnitude of discrepancy increases with the 

(estimated) magnitude of the object measured. 

If D\, D2, • • •, Dn are independent and identically distributed, then verti­

cal scatter in the average-difference plot should be about the same over any 

horizontal interval, regardless of the interval's position along the abscissa. 

And if the data are symmetric, then scatter in the average-difference plot 

should be symmetric about a horizontal line. (We can also check symmetry 

using a q-q plot or normal probability plot of the sample distribution, as 

well as a histogram.) 

That is, symmetric, identically distributed data tend to fill a rectangle 

in the average-difference plot. If instead the standard deviation of the 

discrepancy distribution is proportional to the magnitude of measurement, 

53 



then the average-difference plot will exhibit a "shotgun" pattern 

out in a triangle, symmetric about a horizontal line. 

— spread 

Similarly, if the standard deviation of the discrepancy distribution is 

proportional to the square root of the magnitude measured, then the average-

difference plot will diverge like a root function; or a plot of difference versus 

the square root of the average will fan out linearly. (This plot was used by 

by Professor Ned Glick for the logging data in Chapter 7.) The following 

section develops a corresponding theoretical model. 

5.2. D I S C R E P A N C Y B E T W E E N T W O COUNTING P R O C E S S E S : 

R A N D O M W A L K M O D E L 

Suppose X and Y are integer counts of the same lot of items; for 

instance, in data analysis considered in Chapter 7, X and Y may be 

counts by two inspectors of the same batch of logs or of cells on the same 

laboratory slide. Then the discrepancy X — Y may be considered as a sum 

(over items) of random differences. Such sequence is equivalent to "steps" in 

a "random walk" — the walk observed only once, after an unknown number 

of steps (corresponding to the number of items in the batch). 

This model was suggested by Professor Ned Glick in analysis of the 
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logging data considered in Chapter 7. As shown here, this model implies 

that variance of discrepancy should be proportional to batch size. 

Consider a batch containing B items. For each item or piece in 

the batch, the counting process X may miss that piece, may count it 

correctly once, or may double count it, etc., with some (unknown) probability 

distribution whose expectation is p and whose variance is r. Then the 

X count can be treated as the sum of these successive contributions: 

X = ]Cf=i -Pfc, where Pk is the contribution of the kth piece in the lot; and 

If the piecewise contributions Pk are independent, then 

Notice that X is a binomial random variable, with parameters B and 

p, if there are no multiple countings — that is, if necessarily each Pk = 0 

or 1. Moreover, if X is sum of independent and identically distributed 

piece counts, then the central limit theorem implies approximate normality 

— X ~ Af(Bp, Br) approximately, if the batch size B is large. 

Similarly, a second count Y is approximately normal, Af(Bq, Bs), where 

q and 5 are the piecewise expectation and variance for the process Y. 
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Thus, discrepancy D = X — Y is approximately normal, M(Bp — Bq,v), where 

variance 

v = Var(X - Y) 

= Var(X) + Var(Y) - 2Cov(X, Y) 

= Br + Bs-.2Cov{X,Y) 

= B[r + s-2p(X,Y)y/rl}. 

In particular, the random walk model implies that discrepancy between 

two counting processes would be symmetric, with variance proportional to 

batch size. 

5.3. P E R M U T A T I O N P R O C E D U R E S F O R N O N - I D E N T I C A L L Y 

D I S T R I B U T E D O B S E R V A T I O N S 

Three approaches already considered for assessing median discrepancy in 

the independent and identically distributed case are: the Student t test, the 

sign test, and Wilcoxon signed rank test — and the three corresponding 

confidence interval procedures. As noted in Chapter 3, symmetry implies that 

all three approaches are permutation procedures corresponding to distinct 

score functions. It is well known that the two nonparametric approaches, 

sign and signed rank procedures, remain valid for non-identically distributed 

observations. (The sign test and corresponding confidence interval do not 
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even require symmetry.) [Pratt and Gibbons (1981, p.87 and p.155)]. Efron 

(1969) also showed that the t test, and hence the t confidence interval 

procedure, remain valid (and conservative) for non-identically distributed 

symmetric observations. Thus, under the symmetry assumption, all three 

approaches still can be applied for non-identically distributed observations. 

But relative performance criteria to choose among these permutation 

procedures have been developed (see Chapter 4) only for the independent 

and identically distributed case. 

5.4. M I X T U R E S A M P L I N G A P P R O X I M A T I O N T O 

N O N - I D E N T I C A L L Y D I S T R I B U T E D D A T A 

In order to make the relative performance criteria applicable, one might 

hope to generalize the criteria for non-identical distributions; unfortunately, 

there is no clear generalization yet. An alternative, developed below, in­

volves modelling (or approximating) a sequence of non-identically distributed 

observations by an independent and identically distributed sequence from a 

mixture. 

Suppose that the data D\, D2, • • •, Dn combine m observations from one 

distribution and n — m observations from a second distribution. That is, 
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suppose that .Di, £ > 2 , • • • ,-D n are an arbitrary permutation of D\, D'2, • • •, D'm, 

D ' J n + 1 , • • •, D'„, where D[,D2, • • •,D'm are m independent and identi­

cally distributed observations from F' and D'^nJrl, D'L+2, • • •, D'^ are n — m 

independent and identically distributed observations from F". Then the com­

bined data are not identically distributed; but, with high probability, the 

data look like an independent and identically distributed sequence drawn 

TTi 72 — TYl 
from a mixture of F' and F" with proportions — and , respectively. 

n n 

For sampling from a mixture, — would be the expected rather than the 
n 

actual fraction from F' (with the distinction vanishing as n gets large and 

the observed proportion converges to its expected value); and for mixture 

sampling, the permutation of the 7J>i, D2, • • •, Dn would be rigorously random 

rather than arbitrary. 

But, if it is difficult in principle to distinguish whether independent data 

D\,D2,- • • ,Dn are the product of simple random sampling from a mixture 

or of another sampling process involving non-identical distributions (with 

common point of symmetry), then it seems reasonable to base estimation 

of the symmetry point on" procedures appropriate for the simple mixture 

sampling. Obviously, this idea generalizes from a mixture of two symmetric 

distributions to a mixture with three, four, or many components. A 

sufficiently rich mixture could approximate the random walk model for 
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discrepancies between counting processes. 

Fisher (1955) questioned whether real data ever correspond to "repeated 

sampling from the same population" and described that assumption as one 

of the "products of the statistician's imagination". Fisher might have used 

conditioning (on the observed proportions, etc.) to argue that inference for 

independent and identically distributed mixture sampling should be the same 

as for a permutation of non-identically distributed observations. On the 

other hand, our perspective regards independent and identically distributed 

sampling from a mixture as a mathematically tractable approximation to the 

general case. 

Notice that the confidence interval based on the mixture would be 

conservative, because the variance of data from a mixture distribution is 

greater than that of corresponding data from deterministically non-identical 

distributions. Suppose U is distributed as a mixture of k symmetric distribu­

tions with densities fjj^, fjj , • • •, fjjk, having a common point of symmetry 

(assume E(U-) = 0, for i = 1,2, without loss of generality) and with 

weights (or expected proportions) u>x, u2, • • •, ojk, where 0 < c j , < 1 and 

5Zi=i ui ~ 1- Then the probability density function of 17, is given by 
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fu(u) = S i = i u i f T J i ^ u ) - ^ follows that 

/

oo roo fc fc /• oo 

u2fu(u)du = / u 2 ̂  u>ifTj.(u)du = ^ a;,- / u2fjj.(u)du 
-oo J — oo j_ j J— oo 

k 

where <7 2 = Var(rj,) = J^^u2fjj.(u)du. And suppose that V comes from 

a fixed permutation of independent data from non-identical densities 

/ f / i ' fu2' " '' -fa*: w i t h a c t u a l proportions , u>2, • • •, ojk. Then F ~ E ! = i ^ ^ 

and 

( fc \ fc fc fc 

^UiUx =^2u2Var(Ut) = ^ u 2 a 2 < ^ T C J . C T 2 = Var(U). 

1=1 / :=1 1=1 j ' = l 

5.5. S U M M A R Y G U I D E T O E S T I M A T I O N O F M E D I A N 

D I S C R E P A N C Y F O R R E A L D A T A 

Monte Carlo simulations have been used to compare performances of the 

three permutation procedures for particular mixtures (using the performance 

criteria of Chapter 4). Note that the Wilcoxon signed rank methods perform 

well for a great variety of normal contaminations or mixtures. 

In summary, the following steps are recommended for estimation of 

median discrepancy for real data. 
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Use graphical methods, especially, the average-difference plot for first 

evaluation of simple assumptions and models. 

If the data clearly are not symmetric, then sign procedures may be 

the only valid option. 

If, however, we can regard the data as symmetric, then check 

whether discrepancy variance seems to be constant or a function of 

the size of measurement. 

If the average-difference plot is consistent with constant variance 

and independent and identically distributed data, then use normal 

probability plot, tail-weight statistic, etc., to decide whether the 

distribution has light, moderate, or heavy tails — and accordingly 

choose among the permutation procedures (t, sign, or signed rank). 

If discrepancy variance is not constant, but increases with the 

magnitude measured — especially for discrepancies between integer 

counts — consider mixture models. 

The signed rank confidence interval is robust in senses noted above. 

But if length of the signed rank confidence interval greatly exceeds 
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length of the t or sign confidence interval, then it may be worth­

while to consider (by fresh Monte Carlo simulations) specialized 

non-normal mixture models. 
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6. D I S C R E P A N C Y O R D I S C R E P A N C Y RATE? 

In contexts where the items measured range from very small to very 

large magnitudes, it is often preferable to express discrepancy as a rate: for 

instance, a discrepancy of 50 for a shipment of size 100 is very different 

in importance from the same amount of discrepancy for a shipment of size 

5000. More importantly, since in some cases the items being measured 

are not randomly sampled, but arbitrarily or intentionally chosen over a 

wide range, a discrepancy rate may be a more relevant comparison or 

more intrinsic characterization to describe the relative bias of two measuring 

processes. This chapter discusses discrepancy in this relative sense. 

As in previous chapters, suppose A, = Hi + ei and Yi = Hi + f ° r true 

magnitude Hi and random errors £,• and 8{. Then the discrepancy is 

D, = X{ - Yi, 

and we may denote the discrepancy rate by 

Hi 

It follows that 
E(Rt) = E 

Di E(Di) 
and 

Var(Rt) = Var 

Hi . 

'Ei 
. Vi J 
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In particular, if Var(Dt) is directly proportional to magnitude Hii then 

Var(Ri) is inversely proportional to Hi-

Thus, if Hi were known, inference on discrepancy would lead easily to 

inference on discrepancy rate. 

But, of course, Hi 1S n°t known — otherwise there would be no need 

X- + Y-
for X, , Yi measurements. One natural solution is to use Hi = —' ~ i n 

2 

place of the unknown Hi- This leads to a practical issue: how relevant is 

Ri = El to inference about — ? 
Hi Hi 

IX — Y\ 
Suppose = \R\ <C 1, or, equivalently, |X — Y\ <C H- Then small 

A* 

perturbations in the denominator do not substantially alter the ratio. In 

practice, measurement errors should be small relative to the magnitude 

measured; and difference between two small errors should be very small. 

Hence the magnitudes in numerator and denominator of the discrepancy rate 

are so different that uncertainty in the denominator (due to estimation) 

usually is irrelevant. 
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7. A P P L I C A T I O N S : E X A M P L E S O F D I S C R E P A N C Y D A T A 

Several specific contexts for assessing agreement are presented in this 

chapter. For some examples, discrepancy data are analyzed in detail; for 

other examples, we just describe the context and note whether discrepancy 

variance is proportional to the measured magnitude or to its square, etc. 

E X A M P L E 7.1: Counting logs. 

This thesis was motivated, in part, by certain questions about counting 

and "scaling" (measuring volumes) of logs in the British Columbia forest 

industry. Evidence included data on certain shipments of logs that were 

counted and "scaled" twice: first at a central facility and again at various 

destinations. From paired counts, discrepancies can be found by subtraction. 

Median or relative bias of discrepancy rate was relevant to financial claims. 

In particular, two data sets are considered here: 166 batches of logs 

processed prior to change of the central facility's counting and scaling 

procedure in October 1981 ("old" logs), and 93 batches of logs after October 

19S1 ("new" logs). These data are presented in Data Sets 1.1 and 1.2. 

Generally speaking, these data show that the source counts tended to be 

slightly below the destination counts in the "old" ' period, but slightly above 
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the destination counts in the "new" period. The "old" log discrepancies 

range roughly from —200 to 120, with more negative than positive; while 

the "new" log discrepancies range roughly from —150 to 225, with positive 

and negative discrepancies more or less balanced. See the average-difference 

plots in Figures 3 and 4. 

Several parties were interested in discrepancy rates for these data; and 

because of the substantial dollar amounts involved, point estimation and 

confidence intervals were of great concern (while hypothesis testing was less 

important). Professor Glide's analyses considered data subsets determined by 

calendar year, species of log, and so on, as well as the "old" and "new" 

data overall. 

The scatter plots of source counts versus destination counts for the 

"old" logs and "new" logs are given in Figures 1 and 2, respectively. Both 

scatter plots indicate high correlation — with data points tightly along a 

straight line. But recall that high correlation does not necessarily suggest 

strong agreement in the present context; see Chapter 2. 

Figure 1 seems to suggest heteroscedasticity — that the amount of 

variability of discrepancy increases with the batch sizes for the "old" logs, 
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but the trend in not clear. This phenomenon is even less obvious in Figure 

2 for the "new" logs. However, heteroscedasticity is clear in two average-

difference plots, Figures 3 and 4, respectively — the "shotgun" pattern, 

spreading out like a root function, suggests that the variance of discrepancy 

is proportional to the batch size. This proportionality phenomenon can be 

displayed more clearly in a plot of difference (X — Y) versus square root 

suggests a "random walk" model that is compatible with these graphical 

results and that could be approximated by a mixture of normals which 

differ only in their variances; see Chapter 5. 

Since the batch sizes cover a large range (roughly from 100 to 3000) 

and since the batches are not randomly, but arbitrarily chosen, it would 

be preferable to consider discrepancy rate rather than the simple difference; 

see Chapter 6. The normal probability plot of the "old" discrepancy rates, 

provided in Figure 7, exhibits a certain degree of linearity (except for one 

outlier, with discrepancy rate roughly 28%) although, as just noted, the 

average-difference plots, Figures 5 and 6, indicate that the data are not 

identically normally distributed. This normal probability plot is fairly similar 

to plots for data simulated from the scale mixtures of four and five normals 

(mixtures discussed in Chapter 4, although probability plots for simulated 

of the average see Figure 5 and 6. The context (counting) 
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mixture sampling have not been shown). 

Hence, for these data (and for subsets of these data), the Wilcoxon 

signed rank procedure is preferable to its competitors, based on the simula­

tion results in Chapter 4. This preference is more-or-less compatible with the 

tail-weight statistic used by the adaptive procedure mentioned in Appendix 

III: the statistic Q* = 3.06, while 2.92 is the suggested boundary value 

between "moderate" and "heavy" tails. For all 166 "old" batches of wood, 

the Wilcoxon signed rank interval, with 95% confidence, estimates that the 

median discrepancy rate (source count minus destination count) is negative, 

with magnitude interval 1.28% to 2.83%; see Table 7. 

Student t and sign confidence intervals also were calculated for the 

166 "old" batches of logs. Tables 7 and 8 show that length ratios of 

these intervals relative to Wilcoxon signed rank interval are very similar 

to corresponding interval length ratios for scale mixture of four or five 

normals studied in Chapter 4. These ratio results provide further support 

for applying to these data the "random walk" model and the corresponding 

scale mixture approximation. 

The normal probability plot of the "new" discrepancy rates, provided in 
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Figure 8, shows that the five smallest and the two largest rates are potential 

outliers, which would be deleted for further analysis. The probability plot 

of the remaining rates, given in Figure 9, indicates a complicated mixture, 

with some skewness to the right. Although simulation results show that 

the Wilcoxon signed rank procedures are robust over a wide variety of 

distributions, asymmetry and heavy-tailedness (classified by the Q* tail-weight 

statistic) make the sign procedure a good choice for the "new" logs. 

For 86 batches of "new" logs (after deleting outliers), the sign confidence 

interval, with 96% confidence, estimates that the median discrepancy rate 

(source count minus destination count) is 0% to 0.34%; see Tables 9 and 

10. Note that for interval estimation using the exact sign procedure with 

sample size n = S6, an exact confidence level 95% is not attainable, and 

96% is as close as possible. 

E X A M P L E 7.2: Fuse-burning times. 

Grubbs (1948) gave burning times (in seconds) of 30 powder train fuses 

reported by three observers, say A, B, and C. Since one burning time for 

observer B was lost, this example only considers data for observers A and C, 

whose times are provided in Data Set 2. Scatter plot and average-difference 
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plot are provided in Figures 10 and 11, respectively. 

Notice that although the correlation between burning times recorded by 

observers A and C is high (0.99), the average-difference plot does show some 

systematic disagreement between the two observers. 

Grubbs (1948) used a components-of-variance model, assuming that er­

rors are unrelated to the times measured and are identically distributed 

for all observers. He partitioned variation into two components: due to 

fuse variation, and due to observer error. However, the average-difference 

plot, showing a "shotgun" pattern, suggests that the standard deviation of 

discrepancy may be proportional to the size of measurement, and hence 

that the validity of Grubbs' assumption is questionable. Indeed, Grubbs did 

notice that "errors of measurement (e) in some cases increase with increasing 

magnitude of the characteristic measured (a:)". But he assumed that ux and 

e are sufficiently independent to insure that limited variations in x are not 

reflected in the errors of measurement". 

Such assumption has often been made in literature of agreement prob­

lems. This example draws our attention to the need for considering this 

assumption more seriously and for finding appropriate methods when the 
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assumption does not hold. 

E X A M P L E 7.3: Systolic blood pressure readings. 

Systolic blood pressures (in mm Hg) measured by two different methods 

on 25 patients were used in a textbook example of correlation by Daniel 

(19S3). This example also was discussed by Altman and Bland (1983); the 

data are listed in Data Set 3. Scatter plot and average-difference plot are 

given in Figure 12 and 13, respectively. 

Note that although the correlation coefficient between readings by the 

two methods is high (approximately 0.95), this does not imply agreement 

between the methods, in the sense of low relative bias; in fact, disagreement 

is clear in the average-difference plot. The average-difference plot also 

exhibits a "shotgun" pattern and hence calls into question the assumption 

of error distribution with constant variance. 

E X A M P L E 7.4: Spinal curvature — angular data. 

Spinal curvature, which is often used as a clinical assessment of scoliosis, 

can be described by two angles, viz., the Ferguson angle and the Cobb angle. 

The data in Data Set 4 come from a study comparing these two angles 
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for n = 26 patients [Robinson and Wade (1983)]. Predictability of one angle 

from the other angle seems to be the primary interest, but relative bias 

also would be interesting. 

Scatter plot and average-difference plot are given in Figures 14 and 15, 

respectively. This average-difference plot exhibits a pattern like an ordinary 

X, Y scatter plot and differs from all the average-difference plots consid­

ered above. This implies that error variances for Ferguson and Cobb angle 

measurements are not equal; see Chapter 2 and Altman and Bland (1983). 

Further study of replicated Ferguson measurements and replicated Cobb mea­

surements, on the same patients, likely would show greater reliability (higher 

correlation) for one method relative to the other, and hence may suggest 

practical preference for one method. 

Disagreement between the two angles is clear (even though correlation 

coefficient is 0.95) — Cobb angle is uniformly greater than the corresponding 

Ferguson angle. Moreover, relative bias of discrepancy obviously increases 

with the size of the angle, as shown in the average-difference plot. Hence 

it is not clear that any estimation methods considered above would be 

appropriate. And when the Cobb angle is regressed on the Ferguson 

angle, as by Robinson and Wade (1983), interpretation of the intercept is 
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questionable. Also, since both the Cobb and Ferguson angles are measured 

with errors, it is inappropriate to apply the usual regression; see Chapter 

2. The plot of residuals versus the Ferguson angles, provided in Figure 16, 

indicates that the residuals do depend on the Ferguson angle. 

E X A M P L E 7.5: Oxygen levels for newborn infants. 

This data set comes from a study of newborn infants, comparing a "con­

taining" position in a hammock with the supine position, when measuring 

respiration [Bottos, et al. (1985)]. 

Oxygen levels (pressure in mm Hg) of 50 babies measured in both 

positions are given in Data Set 5. Scatter plot and average-difference plot 

are given in Figures 17 and 18, respectively. The average-difference plot 

shows that relative bias between oxygen measurements in the two positions 

may be small (differences approximately symmetric around zero horizontal) 

but variation of discrepancy obviously increases with the oxygen level. (Note 

the substantial difference in oxygen for baby number 14 — 55.42 mmHg 

in supine position, 108.92 mmHg in hammock position.) These observations 

suggest usage of a nonparametric or robust confidence interval procedure. 

E X A M P L E 7.6: Tobacco moisture content. 
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These data come from a study of two electrical devices, say A and B, 

which measure the moisture content of tobacco. Data of 15 tobacco samples 

are listed in Data Set 6 (adapted from a B.Sc. Special Examination, 

University of London; no unit specified for "moisture content"). Scatter plot 

and average-difference plot are shown in Figure 19 and 20, respectively. 

Again, although the correlation is high (0.996), the average-difference plot 

suggests that variance of discrepancy increases with the moisture content; 

however, the trend is not very clear, possibly because of small sample size. 
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Table 1: Efficacies and Pitman asymptotic relative efficiency 
(ARE) comparisons of Student t (T), sign (S), and Wilcoxon 
signed rank (W) procedures. Numeric efficacies are for familiar den­
sities standardized so that efficacy is 1 for the sign procedure. Hence, the 
entries also are Pitman asymptotic efficiencies relative to the sign proce­
dure. For example, ARE(T,S) = 1.57 for normal distribution. [Adapted 
from Pratt and Gibbons (1981, p.384)]; see also Appendix II. 

Distributions W T S 

Normal (0,2/TT) 

Uniform (-1,1) 

Cauchy (0,2/TT) 

1.50 1.57 1.00 

3.00 3.00 1.00 

0.75 0.00 1.00 
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Table 2: Pitman asymptotic relative efficiency (ARE) comparisons 
of Student t (T), sign (5), and Wilcoxon signed rank (W) proce­
dures (results using theoretical efficacies); Relative efficiencies of 
procedures for normal, Cauchy, and uniform distributions do not depend 
on location and scale parameters of the distributions; see also Table 1. The 
listed distributions include standard normal and Cauchy; uniform distri­
bution over ( — 1,1); and normals mixed or contaminated: N.Mix(l : 4) 
denotes an equal-proportions mixture of normals Af(0,i2) for i = 1,2,3,4; 
CN(2;5) denotes 5% of A/"(0,22) contaminating standard normal A/"(0,1); 
etc. 

Pitman ARE 
Distributions W : S T : S W : T 

Normal 1.5000 1.5708 0.9549 
Uniform 3.0000 3.0000 1.0000 
Cauchy 0.7500 0.0000 oo 
N.Mix(l:5) 0.9568 0.6847 1.3973 
N.Mix(l:4) 1.0317 0.7721 1.3363 
CN(2;5) 1.4658 1.4369 1.0202 
CN(2;1) 1.4930 1.5404 0.9692 
CN(4;5) 1.4177 0.9689 1.4632 
CN(4;1) 1.4832 1.3866 1.0696 
CN(10;5) 1.3803 0.2895 4.7687 
CN(10;1) 1.4755 0.8037 1.8358 
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Table 3: Asymptotic (n —• oo) ratios of lengths and squared lengths 
of confidence intervals (^/ l /ARE and 1/ A R E , respectively, where 
A R E ' s are Pitman asymptotic relative efficiencies) for Student t 
(T), sign (5), and Wilcoxon signed rank (W) procedures (results 
using theoretical efficacies). Asymptotic ratios for normal, Cauchy, and 
uniform distributions do not depend on location and scale parameters of 
the distributions. For details of other listed distributions, see Table 2. 

Distributions 
Lengths Ratio = yj 1/ARE Sq. Lengths Ratio = 1/ARE 

Distributions W : S T : 5 W : T W : S T : S W : T 

Normal 0.8165 0.7979 1.0233 0.6667 0.6366 1.0472 
Uniform 0.5773 0.5773 1.0000 0.3333 0.3333 1.0000 
Cauchy 1.1547 oo 0.0000 1.3333 oo 0.0000 
N.Mix(l:5) 1.0224 1.2085 0.8460 1.0452 1.4604 0.7157 
N.Mix(l:4) 0.9845 1.1381 0.8650 0.9693 1.2952 0.7483 
CN(2;5) 0.8260 0.8343 0.9901 0.6822 0.6960 . 0.9802 
CN(2;1) 0.8184 0.8057 1.0158 0.6698 0.6492 1.0318 
CN(4;5) 0.8399 1.0159 0.8267 0.7054 1.0321 0.6835 
CN(4;1) 0.8211 0.8492 0.9669 0.6742 0.7212 0.9349 
CN(10;5) 0.8512 1.8587 0.4579 0.7245 3.4546 0.2097 
CN(10;1) 0.8232 1.1154 0.7380 0.6777 1.2442 0.5447 
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Table 4: Comparisons of T, 5, and W confidence intervals: average 
ratios of interval lengths and squared lengths (Monte Carlo sim­
ulation results). Each table entry is based on 1000 samples with n = 32, 
and all intervals have nominal 95% confidence; see Table 2 for descriptions 
of the listed distributions. For example, among 1000 standard normal sam­
ples, 0.8900 was the average W : S length ratio (dividing length of the 
Wilcoxon interval by length of the interval corresponding to the sign test, 
for each sample). 

Mean of Lengths Ratio Mean of Sq. Length s Ratio 

Distributions W : 5 T : 5 W : T W : 5 T:S W : T 

Normal 0.8900 0.8704 1.0314 0.8345 0.8103 1.0684 
Uniform 0.7233 0.6614 1.0905 0.5598 0.4648 1.1916 
Cauchy 1.3522 11.7286 0.3647 2.0823 1478.381 0.1941 
N.Mix(l:5) 1.0636 1.1843 0.9164 1.1968 1.5240 0.8510 
N.Mix(l:4) 1.0402 1.1485 0.9258 1.1485 1.4510 0.8691 
CN(2;5) 0.8921 0.8930 1.0105 0.8374 0.8530 1.0276 
CN(2;1) 0.8866 0.8715 1.0263 0.8280 0.8103 1.0580 
CN(4;5) 0.9123 1.0487 0.9116 0.8746 1.2300 0.8574 
CN(4;1) 0.8909 0.9094 0.9992 0.8360 0.8953 1.0105 
CN(10;5) 0.9326 1.7199 0.6795 0.9170 3.9835 0.5413 
CN(10;1) 0.8941 1.0847 0.9243 0.8421 1.5144 0.9026 
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Table 5: Comparisons of T, 5, and W confidence intervals: ratios of 
standard deviations of interval lengths (Monte Carlo simulation 
results). Each entry is based on 1000 samples with n = 32; see Table 2 for 
descriptions of the listed distributions. For example, the first entry shows 
that SD of Wilcoxon interval lengths, divided by SD of interval lengths for 
the sign procedure, gives a ratio 0.4696, for normal samples. 

Distributions 
Ratio of SD of Lengths 

Distributions W(SD) : S(SD) T(SD) : S(SD) W(SD) : T(SD) 

Normal 0.4696 0.4156 1.1299 
Uniform 0.2428 0.2040 1.1904 
Cauchy 1.2385 110.1337 0.0112 
N.Mix(l:5) 0.6479 0.6418 1.0094 
N.Mix(l:4) 0.6451 0.6408 1.0067 
CN(2;5) 0.4787 0.4960 0.9651 
CN(2;1) 0.4538 0.4188 1.0835 
CN(4;5) • 0.5361 1.1005 0.4871 
CN(4;1) 0.4608 0.6441 0.7155 
CN(10;5) 0.6028 3.5477 0.1699 
CN(10;1) 0.4696 2.0320 0.2311 
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Table 6: Confidence interval coverages and length comparisons 
(Monte Carlo simulation results). For each distribution listed below 
(all are symmetric about zero; see Table 2 for descriptions) 1000 samples 
were simulated, each with sample size n = 32; and, for each sample, confi­
dence interval estimates of distribution median were calculated using Stu­
dent t, sign, and Wilcoxon signed rank procedures (denoted respectively as 
T, S, W) with nominal confidence level 95%. Table entries: a) for each of 
the three procedures, the percentage of samples (from each distribution) for 
which the calculated intervals included zero; and b) the percentage of sam­
ples for which the length of one interval was shorter than another (T < S, 
etc.). 

% Coverage % Shorter Length 

Distributions T S W T<S T<W W<S 
Normal 94.6 94.4 95.3 77.2 73.1 75.9 
Uniform 95.5 93.8 96.1 95.5 96.8 92.5 
Cauchy 98.0 93.8 96.1 1.0 0.6 17.7 
N.Mix(l:5) 94.3 95.0 94.7 33.7 23.2 47.0 
N.Mix(l:4) 95.5 94.9 94.6 39.5 27.1 51.8 
CN(2;5) 94.6 94.4 95.0 74.1 63.3 77.2 
CN(2;1) 94.7 94.4 95.4 77.9 70.6 78.4 
CN(4;5) 95.6 94.4 94.9 54.2 39.3 74.2 
CN(4;1) 95.3 94.4 95.2 72.4 62.7 78.1 
CN(10;5) 96.9 94.4 94.6 28.1 21.6 71.1 
CN(10;1) 96.1 94.4 95.3 62.1 55.0 78.1 
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Table 7: (Example 7.1). Point estimate and confidence interval for 
median discrepancy rate of "old" logging counts ( n = 166 batches) 
using T , 5, and W procedures. See Data Set 1.1. 

Procedure Pt Est 
Confidence 

Level 
Interval 

Endpoints Length 

T -0.0269 95.00% (-0.0356,-0.0182) 0.0174 

S. -0.0225 94.80% (-0.0283,-0.0128) 0.0154 

W -0.0255 95.00% (-0.0338,-0.0177) 0.0161 

Table 8: (Example 7.1). Ratios of lengths and squared lengths for 
confidence intervals in Table 7. 

Procedures Length Ratio Squared Length Ratio 

W:S 1.0446 1.0911 

T:S 1.1291 1.2748 

W:T 0.9251 0.8559 
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Table 9: (Example 7.1). Point estimate and confidence interval for 
median discrepancy rate of "new" logging counts (n = 86 batches 
— with 7 outliers deleted) using T, S, and W procedures. See 
Data Set 1.2. 

Confidence Interval 
Procedure Pt Est Level Endpoints Length 

T 0.0038 95.00% (-0.00244,0.01003) 0.01247 
S 0.0005 96.01% ( 0.00000,0.00343) 0.00343 
w 0.0018 95.00% (-0.00266,0.00746) 0.01012 

Table 10: (Example 7.1). Ratios of lengths and squared lengths 
for confidence intervals in Table 9. 

Procedures Length Ratio Squared Length Ratio 

W:S 2.9459 .8.6783 

T:S 3.6311 13.1850 

W:T 0.8113 0.65S2 
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Data Set 1.1: (Example 7.1). Source counts and destination counts 
for 166 batches of "old" logs. 

Batch Source Destination 
Number Count Count 

1 1068 1116 
2 623 624 
3 1655 1644 
4 672 683 
5 21 19 
6 2402 2398 
7 551 547 
8 1026 1065 
9 148 164 
10 2489 2503 
11 2272 2455 
12 850 844 
13 409 398 
14 729 719 
15 1027 1006 
16 548 546 
17 240 242 
18 395 386 
19 456 458 
20 112 118 
21 2437 2614 
22 1963 1977 
23 587 587 
24 2516 2719 
25 765 768 
26 506 511 
27 2161 2209 
28 1547 1567 
29 867 866 
30 638 662 

Batch Source Destination 
Number Count Count 

31 302 312 
32 630 650 
33 595 659 
34 580 647 
35 375 369 
36 575 577 
37 1172 1200 
38 589 608 
39 696 690 
40 529 539 
41 117 113 
42 418 468 
43 745 762 
44 1066 1169 
45 1199 1302 
46 687 656 
47 1233 1240 
48 1029 1052 
49 846 852 
50 519 503 
51 1898 1997 
52 1475 1438 
53 883 957 
54 1319 1329 
55 887 946 
56 1028 1075 
57 1176 1208 
58 929 925 
59 1392 1391 
60 544 574 

• • • continued below 
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Data Set 1.1: (Example 7.1). ••• continued 

Batch Source Destination 
Number Count Count 

61 467 503 
62 171 186 
63 571 584 
64 129 123 
65 309 311 
66 974 1098 
67 1105 1267 
68 891 871 
69 1355 1387 
70 1314 1371 
71 848 924 
72 631 654 
73 904 894 
74 705 713 
75 717 702 
76 883 882 
77 1349 1347 
78 1132 1052 
79 870 933 
80 894 894 
81 1013 1051 
82 696 803 
83 850 874 
84 2436 2501 
85 291 289 
86 1071 1054 
87 865 832 
88 1217 1234 
89 1074 1112 
90 855 872 

Batch Source Destination 
Number Count Count 

91 1014 1060 
92 446 468 
93 642 677 
94 498 592 
95 646 538 
96 526 565 
97 35 33 
98 516 550 
99 587 625 
100 19 19 
101 865 869 
102 1065 1092 
103 910 934 
104 298 322 
105 947 947 
106 1046 1067 
107 405 394 
108 644 651 
109 668 641 
110 610 647 
111 1005 1000 
112 277 291 
113 675 689 
114 649 667 
115 1433 1596 
116 868 908 
117 1269 1181 
118 900 893 
119 277 294 
120 364 377 

• • • continued below 
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Data Set 1.1: (Example 7.1). ••• continued 

Batch Source Destination 
Number Count Count 

121 891 915 
122 775 777 
123 666 630 
124 1085 1184 
125 1329 1436 
126 320 328 
127 610 606 
128 327 434 
129 930 886 
130 2445 2616 
131 725 638 
132 797 945 
133 2162 2456 
134 835 920 
135 1362 1377 
136 772 797 
137 838 838 
138 581 566 
139 885 924 
140 1411 1301 
141 534 538 
142 1033 1134 
143 1158 1250 

Batch Source Destination 
Number Count Count 

144 1004 1055 
145 1054 1006 
146 864 899 
147 449 437 
148 438 441 
149 273 243 
150 585 668 
151 734 746 
152 597 630 
153 443 479 
154 423 443 
155 562 603 
156 900 913 
157 977 1005 
158 1045 1073 
159 696 735 
160 513 519 
161 817 906 
162 504 564 
163 1201 1280 
164 564 573 
165 1209 1302 
166 236 256 
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Data Set 1.2: (Example 7.1). Source 
for 93 batches of "new" logs. 

counts and destination counts 

Batch Source Destination 
Number Count Count 

1 2833 2622 
2 507 508 
3 376 382 
4 158 160 
5 486 485 
6 623 638 
7 779 768 
8 639 661 
9 951 950 
10 465 482 
11 1035 1032 
12 841 806 
13 641 718 
14 670 668 
15 534 529 
16 590 583 
17 720 719 
18 1011 1008 
19 880 906 
20 711 733 
21 476 495 
22 617 631 
23 522 540 
24 395 401 
25 111 128 

Batch Source Destination 
Number .Count Count 

26 596 594 
27 783 762 
28 555 587 
29 2489 2481 
30 2693 2663 
31 654 653 
32 875 872 
33 2344 2392 
34 380 384 
35 271 267 
36 354 352 
37 509 582 
38 721 603 
39 477 480 
40 849 838 
41 347 363 
42 690 668 
43 341 322 
44 686 699 
45 753 763 
46 859 859 
47 876 902 
48 611 603 
49 770 777 
50 408 408 

. . . continued below 
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Data Set 1.2: (Example 7.1). ••• continued 

Batch Source Destination 
Number Count Count 

51 612 599 
52 171 168 
53 964 1118 
54 327 318 
55 609 641 
56 229 252 
57 541 544 
58 607 639 
59 522 512 
60 266 281 
61 164 164 
62 653 633 
63 252 252 
64 361 343 
65 385 381 
66 238 237 
67 1504 1392 
68 221 208 
69 691 648 
70 1464 1246 

. 71 862 868 
72 613 595 

Batch Source Destination 
Number Count Count 

73 984 990 
74 546 543 
75 265 265 
76 351 351 
77 254 253 
78 396 365 
79 486 487 
80 758 744 
81 496 479 
82 296 296 
.83 467 • 467 
84 238 229 
85 654 661 
86 303 304 
87 306 307 
88 297 297 
89 1881 1791 
90 2158 2158 
91 295 297 
92 2524 2564 
93 300 287 



Data Set 2: (Example 7.2). Fuse burning times (seconds) measured 
by two observers for 30 powder train fuses. [Grubbs (1948)]. 

Sample 
Number 

Observer Sample 
Number 

Observer Sample 
Number A B 

Sample 
Number A B 

1 10.10 10.07 16 9.74 9.74 
2 9.98 9.90 17 10.32 10.34 
3 9.89 9.86 18 9.86 9.86 
4 9.79 9.70 19 10.01 10.03 
5 9.67 9.65 20 9.65 9.65 
6 9.89 9.83 21 9.50 9.50 
7 9.82 9.79 22 9.56 9.55 
8 9.59 9.59 23 9.54 9.54 
9 9.76 9.72 24 9.89 9.88 
10 9.93 9.92 25 9.53 9.51 
11 9.62 9.64 26 9.52 9.53 
12 10.24 10.24 27 9.44 9.45 
13 9.84 9.86 28 9.67 9.67 
14 9.62 9.63 29 9.77 9.78 
15 9.60 9.65 30 9.86 9.86 
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Data Set 3: (Example 7.3). Systolic blood pressures (mm Hg) by 
two methods in 25 patients. [Daniel (1983)]. 

Patient 
Number 

Method Patient 
Number I II 

1 132 130 
2 138 134 
3 144 132 
4 146 140 
5 148 150 
6 152 144 
7 158 150 
8 130 122 
9 162 160 
10 168 150 
11 172 160 
12 174 178 
13 180 168 
14 180 174 
15 188 186 
16 194 172 
17 194 182 
18 200 178 
19 200 196 
20 204 188 
21 210 180 
22 210 196 
23 216 210 
24 220 190 
25 220 202 
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Data Set 4: (Example 7.4). Spinal curvature (angle, in degrees) by 
Ferguson method and by Cobb method in 26 patients. [Robinson 
and Wade (1983)]. 

Patient 
Number 

Meth od Patient 
Number Ferguson Cobb 

1 73 97 
2 66 90 
3 60 .88 
4 50 67 
5 48 70 
6 47 63 
7 45 55 
8 43 50 
9 43 48 
10 40 65 
11 40 64 
12 38 47 
13 37 52 
14 37 49 
15 36 60 
16 36 48 
17 33 41 
18 30 45 
19 30 40 
20 29 45 
21 29 39 
22 28 . 42 
23 28 37 
24 27 39 
25 27 35 
26 21 28 
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Data Set 5: (Example 7.5). Cutaneous oxygen levels (mmHg) in 50 
newborn infants measured in two positions. [Bottos, et al. (1985)]. 

Infant 
Number 

Position Infant 
Number 

Position Infant 
Number Hammock Supine 

Infant 
Number Hammock Supine 

1 80.67 93.83 26 77.46 96.75 
2 56.13 69.08 27 60.96 54.04 
3 95.17 103.58 28 74.33 69.46 
4 66.42 68.88 29 52.67 71.83 
5 • 77.42 67.83 30 .52.96 58.67 
6 55.92 59.50 31 71.50 62.88 
7 61.79 60.50 32 56.96 55.21 
8 65.92 68.71 33 66.67 59.79 
9 65.71 65.54 34 67.58 72.75 
10 67.30 75.33 35 69.92 77.71 
11 77.17 69.67 36 86.29 85.00 
12 71.67 67.13 37 55.67 54.33 
13 85.00 77.79 38 64.25 76.58 
14 108.92 55.42 39 71.71 75.50 
15 52.71 57.59 40 71.13 85.83 
16 66.00 62.67 41 72.63 85.54 
17 75.83 78.83 42 50.58 87.54 
18. 66.83 64.04 43 49.29 56.S8 
19 76.04 70.50 44 82.83 79.75 
20 67.71 56.63 45 88.58 80.13 
21 72.00 77.21 46 58.95 61.96 
22 69.96 71.75 47 54.17 63.83 
23 87.71 72.75 48 49.96 50.00 
24 82.33 76.38 49 80.25 61.17 
25 84.63 79.83 50 60.96 56.8S 
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Data Set 6: (Example 7.6). Tobacco moisture content in 15 samples 
measured by two devices. [Adapted from a B.Sc. Special Examination, 
University of London]. 

Sample Device 
Number A B 

1 12.0 10.1 
2 12.1 13.5 
3 7.5 8.5 
4 8.0 9.6 
5 16.0 16.8 
6 24.5 23.6 
7 5.0 4.9 
8 47.9 47.8 
9 43.1 46.7 
10 38.2 38.3 
11 69.0 64.8 
12 11.8 12.0 
13 20.0 17.5 
14 57.6 55.2 
15 15.0 14.8 
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Figures 1 & 2: Counting logs (Data Set 1) 

Scatter plot: destination vs source count, 
"old" logs, n = 166 
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Figures 3 & 4: Counting logs (Data Set 1) 
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Figures 5 & 6: Counting logs (Data Set 1) 

Diff. vs sq. root of avg. count, 
"old" logs, n = 166 
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Figures 7 & 8: Counting logs (Data Set 1) 
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Figures 9: Counting logs 
(subset of Data Set 1.2 — 7 outliers are deleted) 

Normal probability plot, 
o "new" logs, n = 86 

Normal standard units 
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Figures 10 & 11: Fuse burning times 
(Data Set 2, n = 30 ) 
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Figures 12 & 13: Systolic blood pressures 
(Data Set 3, n = 25 ) 
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Figures 14 & 15: Spinal curvature 
(Data Set 4, n = 26 ) 
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Figures 16: Spinal curvature 
(Data Set 4, n = 26 ) 
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Figures 17 & 18: Oxygen level and position 
(Data Set 5, n = 50 ) 
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res 19 & 20: Tobacco moisture content 
(Data Set 6, n = 15) 
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A P P E N D I X I. B O O T S T R A P M E T H O D 

1. G E N E R A L T H E O R Y O F B O O T S T R A P M E T H O D S 

Suppose we wish to draw inferences about some parameter 8 of a pop­

ulation with unknown distribution F based on realization of an independent 

identically distributed sample Xi = xx, X2 = x2, • • •, Xn = xn from F. It may 

be convenient to denote the parameter of interest by 0(F). And suppose 8 

is an estimator of 9; we also write 9 as 9(X\, X2, • • •, Xn) to indicate that 

the statistic is a function of Xi, X2, • • •, Xn. 

Let F be the empirical distribution of the random sample, putting prob­
ability mass — on each â ; and let X*, X%, • • •, X* denote a random sample 

n 

from F, i.e., drawn independently with replacement from {x\, x2, • • •, xn}: 

, A 2 , • • •, An ~ £ . 

Call A 7 , A r

2 V - - , X* a "bootstrap sample". Then 9* = 9(X*, JJf*, • • •, X*) 

estimates 8(F), considering F as fixed, that is, conditioning on the sample 

values. 

In theory, inferences about the parameter 8(F) can be based on the dis­

tribution of 9 = 8 (Xy, X2, • • •, Xy); and behaviour of 8 can be approximated 
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by behaviour of 9* — d(X*, XVf, • • •, A"*). The distribution of $*, in general, 

may be difficult to obtain analytically; but it can always be approximated 

by using a Monte Carlo algorithm, as discussed below. 

Suppose we know that the probability distribution F is symmetric. In 

this case, we would symmetrize F. One way to achieve this is to replace F 

by FSYMI the symmetric probability distribution obtained from F by reflec­

tion about the median. That is, FSYM bas probability mass on each 
2n — 1 

x(i),x(2),- and 2x( m )-x ( 1 . ) ,2x ( m )-a ;(2),-•- ,2a:( m )-X( n), assuming that 

n is odd and equal to 2m — 1 for convenience [Efron (1979)]. In this case, 

even though the symmetrized distribution is not a nonparametric maximum 

likelihood estimate for F, the symmetrized distribution has properties similar 

to the maximum likelihood estimate, F [Hinkley (1976)]. 

2. B O O T S T R A P E S T I M A T O R A N D C O N F I D E N C E I N T E R V A L 

Recall that bootstrap estimators or confidence intervals for 9 rely on 

the distribution of 9* = 9 (A*, A^, • • •, A*) — the estimator 9 evaluated at a 

"bootstrap sample" {A'*, A | , • • •, A*} generated as independent and identically 

distributed observations from the empirical distribution F. As already noted, 

in general, the distribution of 9* is hard to find analytically, but can be 
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approximated by a Monte Carlo method. But for the sample mean and 

the sample median, the bootstrap distribution can be obtained theoretically, 

without using the Monte Carlo methods. 

2.1. B O O T S T R A P P I N G F O R T H E M E A N 

For the mean, the parameter of interest is 0(F) = E(X). So, 8 = X, 

the sample mean, is the estimator of 0(F). 

It can be shown that 

E+(X*) = X, and 

Var*(X*) = ^ E (X* ~ X ? = ~ * 2 -
i = i 

Also, the central limit theorem implies that the bootstrap distribution 

of X* is approximately normal, Af(X,—a2). Thus, by the central limit 

theorem, the bootstrap interval estimate would essentially be the same as 

the t interval estimate as derived in Section 3.1. 

2.2. B O O T S T R A P P I N G F O R T H E M E D I A N 

For the median, the parameter of interest is the point 0 such that 

Prob(X <0)<-< Prob(X < 0). 

i n . 



So, the estimator is 6 = A", the sample median. 

Suppose A"i = X\,X2 = x2, - • •, Xn = xn is the realization of a sample. 

For convenience, suppose the sample size is odd and equal to 2m — 1, say. 

Then the sample median estimate of 6(F) is A' = £ ( m ) - Then the bootstrap 

distribution of 6* is concentrated on the values < X(2) < ••• <,X( n) such 

that 

pk = Prob* = x{k) 

- I H G - ) ^ ) ' ^ ) " " ' - © ® ' ^ ) " " ' } 
[Efron (1982, p.77)]. 

Furthermore, Efron showed that the corresponding confidence interval is 

very close to the classical interval estimate for the median as discussed in 

Section 3.2 [Efron (1982, pp.80-81)]. 

2.3. M O N T E C A R L O E V A L U A T I O N O F T H E B O O T S T R A P 

D I S T R I B U T I O N F O R A R B I T R A R Y 0* 

1. Construct the nonparametric maximum likelihood estimator of F, 

the empirical distribution F, 

F : mass — at xi, x2, • • •, xn. 
n 



(For emphasis, we could write Fx = F and Fx = F). In the 

symmetric bootstrap case, replace F by FSY MI 

FSYM '• mass at xt2), • • •, xin), and 
2n — 1 

2a;(m) - 2x ( m ) - X(2), • • • ,2x ( m) - x ( n ) , 

assuming that n is odd and equal to 2m — 1, say, for convenience 

[Efron (1979)]. 

Draw a "bootstrap sample" of size n from F, 

V"* V * v * ''^ r> A 1,A 2,--,A n ~ t 

and calcalute 0* = 0(X*, X*, • • •, A'*). 

Independently repeat step 2 B times (for some large B), obtaining 

"bootstrap replications" b = 1,2, • • •, i? j . 

Approximate the cumulative distribution function of 9* by the em­

pirical cumulative distribution function of b = 1, 2, • • •, I?j: 

where the indicator function 

I{6*b<t} = {1' i{ft^ 
{0, otherwise. 
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[Efron (1982, p.28)]. 

2.4. B I A S - C O R R E C T E D B O O T S T R A P E S T I M A T E 

Statistic 0 need not be unbiased; in general 

Bias = EF9-9, 

where EF indicates expectation is taken with respect to the distribution F. 

This bias can be approximated by 

Bias* = Ej* - 9; 

where E* denotes expectation with respect to F; and a Monte Carlo 

approximation of Bias* is given by 

B I A S * = B 
6=1 

= 9* - 6, 

where 9* is the average of the B bootstrap replications of 9*, j(9*, 9%, • • •, 0*B^ 

Thus, a bias-corrected bootstrap estimate is given by 

9B = 9 - (9* - 9) 

= 29-9*. 
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However, this bias-corrected estimate would have a larger variance than the 

original estimate 9 because 

Var(8B) = Var(9 - Bias*) 

= Var(9) + Var(Bias*) - 2Cov(9, Bias*), 

where usually 2Cov(9, Bias*) « 0. (This is a "variance-bias tradeoff"). 

And the bootstrap estimate of standard error of 9 is equal to cr*(9), 

which can be estimated by sample standard deviation of the bootstrap 

replication of 9* : 

[Efron (1982, p.28)]. 
b=l 

2.5. B O O T S T R A P C O N F I D E N C E I N T E R V A L S 

Let Fg.(t) = Prob*{9* < t} be the cumulative distribution function of 

9*. Note that if the bootstrap distribution is obtained by the Monte Carlo 

methods, then Fg.(t) is approximated by the empirical cumulative distribution 

function of the bootstrap replications of 9*, |#*,9*, • • •,9B^ : 

6=1 

where the indicator function 

I{9*b < t) = \ 1' i f - *; 

[ 0, otherwise. 
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2.5.1. T H E P E R C E N T I L E M E T H O D 

Suppose that 6 — 6 is a pivotal quantity, that is 

6-6 ~ H, ( A l ) 

where H is a distribution not involving 6. Also, suppose that approximately 

6* -6 ~ H. (A2) 

In (A2) the distribution F plays the same role as F in (Ai), "~" indicating 

the distribution under independent and identical sampling from F. Notice 

that the second assumption is reasonable because, if F is close to F, then 

the bootstrap distribution of 8* — 6 will be "close" to that of 6 — 6, as 

long as #() is a reasonably smooth functional. Finally, assume that H is 

symmetric about 0. (A3) 

Then a 1 — 2a symmetric confidence interval (9LOW,6~UP) is given by 

6Low = Fr\a) and 6UP = F 7 \ \ - a ) 

[Efron (19S2, p.78)]. 

Assumptions (Al) and (A2) can be generalized to 

g{6)-g{6)~H, (Al') 
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and 

g(h-90)~H, (A21) 

where H symmetric about 0 and g() is an unknown, monotone increasing 

function. Indeed, further knowledge about g() is not necessary since the 

resultant interval does not depend on g(') [Tibshirani (1984)]. These pro­

cedures simply assume the existence of a symmetric pivotal on some other 

scale. , 

Under these generalized assumptions, the interval ^i ?r 1(a),JF 1r 1(l — a)J 

remains valid as a 1 — 2a confidence interval [Tibshirani (1984)]. 

2.5.2. T H E B I A S - C O R R E C T E D P E R C E N T I L E M E T H O D 

If H, the distribution of the pivotal quantity g(8) — g(6), is symmetric 

about a point, say (j., which does not equal 0, then the percentile interval 

will be biased and will not have the correct coverage. In order to estimate 

fj, and hence to derive a bias correction to the percentile interval, we need 

to assume a parametric form for H. Tibshirani (1984) showed that the 

bias-corrected percentile interval is robust with respect to the choice of a 

symmetric pivotal distribution. 
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Suppose H = Af(fi, 1). Define 

to estimate u,- where $ is the cumulative distribution function of Af(0,1). 

Then a 1 — 2a bias-corrected percentile interval {BLOW,® UP) is given by 

OLOW = F71 ($(2 2 a - *«)) and 6W = F T 1 ($(2z0 + ^)) 

[Efron (1982, p.82)]. 

Efron (1982, p.86) remarked that the bias-corrected percentile interval 

should be used with caution, or not at all, when distributional asymmetry 

is definite. 
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A P P E N D I X II. E F F I C A C Y C A L C U L A T I O N S A N D A R E ' S F O R 

S T A N D A R D DISTRIBUTIONS A N D M I X T U R E S 

Recall that for two statistical tests, say T\ and T 2 , Pitman asymptotic 

relative efficiency (ARE) of Tj with respect to T 2 can be represented as a 

squared ratio of efficacies: 

ARE(TUT2) = 
e/ /(TQ 

[eff(T2)\ 

1 2 

where e//(T;) denotes the efficacy of test Ti [Randies and Wolfe (1979, 

pp.147-149)]. 

Suppose K is a statistic used by test T for a hypothesis 9 = #o, where 

9 is a parameter of a symmetric density. Suppose we reject the hypothesis 

if K is outside a certain interval. Then the efficacy of T, denoted by 

e//(T), is defined as 

~dEe(i<y2 

eff(T) 
d9 

0=00 
Vareo(K) 

[Kotz and Johnson (1982, p.468)]. 

For a density function fx symmetric about 0, the efficacies of t test 
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(T), sign test (5), and Wilcoxon signed-rank test (W) are given by 

1 
o-x 

2/ x(0), and 

/

oo 
fx(x)dx, 

-oo 

where o~2
x = Var(X) = I x2fx{x)dx [Randies and Wolfe (1979, pp.165-

J — oo 
168)]. 

These efficacies are well known for particular symmetric families, includ­

ing normal, uniform, and Cauchy densities. Note that although efficacy may 

be a function of family parameter(s) (normal standard deviation cr, etc.), 

efficacy ratios — that is, Pitman relative efficiencies — are not. Hence, it 

suffices to evaluate numerically the efficacy of standard normal density, etc., 

as in Table 1, adapted from Pratt and Gibbons (1981, p.384). 

Efficacy and ARE also can be calculated for mixtures of normal distribu­

tions. Suppose X ~ Hi=i uiXi, where X{ i n ~ p A/"(0,tr2), and OJ, are weights 

k * 1 

such that 0 < u>i < 1, ^2i=1 w\ = 1. Then fx(x) = / ,UJi~==—exP 
V 27T(7j 

We need to compute ax, /A'(0), and J^°oofx(x)dx in order to obtain 
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eff(T) = 

eff(S) = 

eff(W) = 

my 



the efficacies of T, 5, and W for the mixture. 

/

oo fc 

-OO • i 
k 

V2^at

eXP\2a2 
dx 

k 

i=l 

/A '(0) = E T = ^ - K 0 ) = 4=E7 

l (y- ",2 /°° 1 

V2^ \ £ t ^ J-°° V2^(o-i/y/2)eXP [2(a2 

fc /•OO i 2 E E / -
<=i v / a 2 + <Ti 0 0 ^ (<7«-<Ti/v

/<T'? + a?) 
f fc 2 fc = j ̂  i ̂ v r .fa,,'fa;j' 

-exp 
i 

.2 • 

72). tix + 

—x 
2 ( ^ ? / ( ^ + ^)) 

since both integrands are density functions of normals. 

E X A M P L E 1: Consider a mixture with equal proportions of four normals, 
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Af(0, i2),i = 1,2, 3,4. That is, w,- = \ and a{ = i, for i = 1,2,3,4. Then 

4 4 
2 2 1 2 15 

«'=1 1=1 

/x(0) 
25 

V ^ T T ^ tr.- 4\/27r t 4 \ ^ T T V12 
1=1 1=1 

/

oo i f 4
 2 4 

25 

48 v 7 ^ - ' 
and 

16v/27T 
(4.8870). 

Thus, 

ARE(W, S) = 3 [Ho 
2 

— -i 
'3(4.8870)" 

/x(0) — o 25 
= 1.0317, 

ARE(S,T) = 4axfx(0) = 4 Qfj {l^J = 1-2952, and 

ARE(W,T) = 1 
1 2 

fx(x)dx 
T 2 

16\/2T 
(4.8870) - 1.3363. 

Recall that, for corresponding confidence intervals, the asymptotic ratio of 

Ly 1 
interval lengths 

L2 y/ARE(l,2) 

one for the mixture in this example. 

; and note that the ratios all are close to 

E X A M P L E 2: Consider a mixture with equal proportions of five normals, 
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Af(0,i2),i = 1,2, 3,4,5. That is, Ui = \ and cr,-= i, for i = 1,2,3,4,5. Then 

<4 
5 ^ 5 

= EW^?"=?E*'2 = 1 1 ' 

/x(0) 

/•oo 

•/ — oo 

i=l 1=1 

Thus, 

1 ^ u>i_ _ 1 ^ 1 _ 1 /137 

i f 5 2 5 7^\£? ̂ + 2 £ t 7^+^ 
2 5 v /^{|t^ + 2 S § \ ^ f + 1 ! 

25\/2^ 
(6.4474) 

and 

ARE(W,S) = 3 
JZofx(x)dx 

2 

— -5 
"60(6.4474)" 

/x(0) — o 5(137) 

AB£;(S,T) = 4<ri./J(0) = 4 ( l l ) 
. 5 \ ^ T T V 60 J_ 

= 0.9568, 

= 1.4604, and 

ARE(W,T) = 12a2
x / fx{x)dx =12(11) 

.J —oo 25V27T 
(6.4474) 1.3973. 

Note that, although this example is very similar to the preceding mixture, 

numeric results for ARE(W, S) are less than one here. 

E X A M P L E 3: Consider a standard normal A"(0,1) contaminated with 5% 
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of Af(0,102). That is, u>i = 0.95, UJ2 = 0.05, ax = 1, and ,o2 = 10. Then 

2 

a2

x = ̂ 2^i<T2 = 0.95(1) + 0.05(100) = 1.45, 

y/^iri ai I io 0.051 0.955 

1 / (0.95)2 (0.05)2 2(0.95)(0.05)) 
\/2if\ y/2 10\/2 v/TTTOO j 

(0.6478). 

Thus, 

A R £ ( W , S ) = 3 
2 

— 1 "0.6478" 
[ fx(0) \ — o 0.955 

= 1.3804, 

ARE(S,T) = 4a2

xf2

x(0) = 4(1.45) 

ARE(W, T) = I2a2

x f2

x(x)dx 

0.955 
' Z7T 

0.8419, and 

T 2 
12(1.45) 

0.6478 1 2 

and 

= 1.1621. 

Note that, for this contaminated normal, W becomes preferable to 

contrasting with the result for pure normal. 
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A P P E N D I X III T A I L - W E I G H T A D A P T I V E N O N P A R A M E T R I C 

P R O C E D U R E S 

Given a sample of discrepancies D\,D2, • • •,Dn, Randies and Hogg (1973) 

defined a tail-weight statistic 

Q = 10(l7o,o5 - LQ.QS) 
0̂.50 — 0̂.50 

where Up (Lp) is the sum of the largest (smallest) n/3 order statistics 

(fractional items are used if n/3 is not an integer). For instance, if n = 26, 

?7(0.05) = 1.3; so Lo.os = D(26) + 0.3£> ( 2 5 ) . 

Then the underlying distribution will be classified as having light, mod-

2 5 5 
erate, or heavy tails if Q < 2.OS - - , 2.08 < Q < 2.96 —, or 

n n n 
^ 5.5 
Q > 2.96 , respectively. 

n 

Randies and Hogg (1973) showed that the Q statistic discussed above is 

uncorrelated with the Student t, sign, and Wilcoxon signed rank statistics. 

A zero correlation would give asymptotic independence, because the relevant 

joint distribution is asymptotically normal; but, independence does not hold 

for finite samples. In particular, simulation gives confidence intervals with 

confidence less than the nominal level for n = 18; see Randies and Hogg 

(1973). 
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To obtain a truly nonparametric adaptive procedure, Randies and Hogg 

modified the tail-weight statistic Q as 

l O O t / ^ o 
V — n i 

1=1 

where UQ1Q is the sum of the largest 10% values |Di |, |Z)2|, • • •, | D n | , and the 

classification rule works as above. Notice that Q* is independent of all rank 

statistics, like the Student t (viewed as an approximation to permutation 

statistic), sign, and Wilcoxon signed rank statistics, because Q* is a function 

of the order statistics of \D\\, \D2\, • • •, \Dn\, which are sufficient and complete 

for a continuous symmetric distribution and because sufficient statistics are 

independent of every rank statistic [Lehmann (1983, p.40 and p.68)]. 
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