A PARTIAL LOGIC OF DESCRIPTIONS

by
PETER J. APOSTOLI
Hnrs. B. A. The University of British Columbia, November 1984

A THESIS SUBMITTED IN PATIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ARTS

 in THE FACULTY OF GRADUATE STUDIES Department of PhilosophyWe accept this thesis as conforming to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA
November 1986
(C) Peter J. Apostoli, 1986

In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Department of

The University of British Columbia 1956 Main Mall
Vancouver, Canada
V6T 1Y3
Date \qquad Oct. $14 \quad 1986$

Abstract

Let a "partial logic" for a first order predicate language \mathbb{L} be a formal proof-theory $\mathbb{P T}$ for sentences of \mathbb{L} together with a model theoretic semantics for $\mathbb{P T T}$ which can be considered a generalization of classical first-order Tarskian semantics in the following sense: if \mathbb{M} is a model for $\mathbb{P} \mathbb{T}$ then \mathbb{M} is a partial function from the set of sentences of \mathbb{L} into the set $\{T, F\}$ of classical truth values such that 1) every atomic sentence of \mathbb{L} receives exactly one truth value, and 2) if \mathbb{M} agrees with a given Tarskian model $\mathbb{T M}$ on the assignment of truth values to the atomic sentences of \mathbb{L}, then \mathbb{M} agrees with $\mathbb{T} \mathbb{M}$ everywhere \mathbb{M} is defined. In this paper we utilize formal techniques developed by P. C. Gilmore for intensional set theories without excluded middle to present a sound and complete partial logic Pld for the first order predicate calculus with definite descriptions. Pld utilizes truth value gaps to systematically treat symbolic sentences that contain "improper" description terms, and can be seen as an acceptable formalization of the Strawsonian view that the semantic-well-formedness of a grammatically subject-predicate sentence of English presupposes the propriety of any definite description occurring as subject term therein.

Contents

Section 0: Introduction pp. 1
Section 1: The System Pld pp. 14
Section 2: A Soundness Result for Pld pp. 34
Section 3: An Alternative Logical Syntax for Pld pp. 49
Section 4: Semantic Completeness for Pld pp. 59
Section 5: Corollaries to Soundness and Completeness pp. 95
Section 6: Some Remarks on the Frege - Strawson Doctrine. pp. 97
Bibliography pp. 104

Acknowledgements

Many thanks are due to the Department of Philosophy for the support I received during my Masters work. I also want to thank the people in the Department of Computer Science (in particular, Paul Gilmore and Akira Kanda) for their generosity. Special thanks are due to Dick Robinson and Howard Jackson for their speed-reading abilities.

Section 0: Introduction

As is well known, there has been considerable debate among language philosophers concerning the proper treatment of sentences of natural language which contain improper definite descriptions. In particular, there has been heated debate over the question of whether or not grammatically subject-predicate sentences which contain improper definite descriptions as subject terms merit truth values. In contrast, logicians, although differing in their particular logistic methods for treating symbolic sentences containing "improper" description terms, have (historically) been virtually unaminous in their religious belief that all sentences of a formal description calculus should be evaluated. Indeed, Russell and Frege, although on opposte sides of the natural language debate, both offer proof-theoretic treatments of description terms which require (i.e., are sound and complete with respect to) semantics that close truth value gaps for all symbolic sentences.

The purpose of this paper is to challenge the assumption that any acceptable description calculus should maintain the law of excluded middle. Utilizing formal techniques originally developed for intensional set theories without excluded middle by P.C. Gilmore in the papers "Combining Unrestricted Abstraction with Universal Quantification" [1] and "Natural Deduction Based Set Theories: A New Resolution of Old Paradoxes" [2], I present a sound and complete "partial logic of descriptions" (abbreviated as 'Pld') which systematically employs truth value gaps in the treatment of certain symbolic sentences containing improper description terms. The semantic treatment such sentences receive in Pld may be seen as a formalization of the Strawsonian [1] view that the truth evaluation of an English subject-predicate sentence which contains a definite description as subject term presupposes the propriety of that description, since the symbolic translation of such a sentence is evaluated relative to a given model of Pld only after the propriety of every description term occurring in the symbolic sentence has been established relative to the given model.

By a "partial logic" for a first order predicate language \mathbb{L} we intend a formal proof-theory $\mathbb{P T}$
for sentences of \mathbb{L} together with a model theoretic semantics for $\mathbb{P T}$ which can be considered a generalization of classical first-order Tarskian semantics in the following sense: if \mathbb{M} is a model for $\mathbb{P T}$ then \mathbb{M} is a partial function from the set of sentences of \mathbb{L} into the set $\{T, F\}$ of classical truth values such that 1) every atomic sentence of \mathbb{L} recieves exactly one truth value, and 2) if \mathbb{M} agrees with a given Tarskian model $\mathbb{T M}$ on the assignment of truth values to the atomic sentences of \mathbb{L}, then \mathbb{M} agrees with $\mathbb{T M}$ everywhere \mathbb{M} is defined.

Partial logics are not to be confused with many-valued logics, say, three-valued systems in which the third value is intended to represent a classical-truth-value gap, since models for such systems are total assignment functions. (Intuitively, where the recursive definition of truth for such a three-valued system assigns the third value to a sentence S on the basis of a succeeding computation, we treat such sentences \mathbf{S} by computations which fail.)

So a partial logic is simply a logical system which allows truth value gaps, and Pld is simply a partial logic for the first order identity calculus with descriptions in which certain symbolic sentences which contain description terms that lack descriptums relative to a given model \mathbb{M} do not receive a truth value relative to \mathbb{M}. We may characterize virtually all other proof-theoretic treatments of descriptions (or at least the histortically important ones) as offering totalizing solutions to the problems presented by improper description terms in the sense that they are sound with respect to total models only, that is, models in which excluded middle holds.

In this section we give a brief outline of the three historically important proof-theoretic solutions (i.e., those proposed by Hilbert and Bernays [1], Frege [1], [2], and Whitehead and Russell [1]) to the problem posed by improper description terms occurring in symbolic sentences and appraise the relative merits of Pld visa-vis these totalizing solutions. Then in sections 1. -5. we set out the syntax and semantics for Pld and prove that Pld is both sound and complete. In section 6 we discuss what we call the "Frege-Strawson Doctrine" (F-S D), the view that grammatically singular subject-predicate sentences of a natural language that contain improper definite descriptions as subject terms have no truth value, and evaluate to what extent Pld can be said to be a formalization of that doctrine. We will see that Pld treats in a natural way the thorny problem of integrating the F-S D with a general theory of truth for complex symbolic sentences.

Any proof-theoretic treatment of descriptions has to treat in some acceptable way the problem that the classically valid inference forms of excluded middle and existential generalization / universal specification are not (in general) intuitively sound in languages containing syntactically well-formed but semantically vacuous singular terms. The failure of existential generalization / universal specification in languages containing syntactically well-formed but semantically vacuous singular terms is self explanatory. The argument that the occurrence of improper description terms in symbolic sentences threatens the validity of excluded middle in formal systems is essentially the same as the argument that vacuous singuar terms occurring as subject terms in grammatically subject-predicate sentences of a natural language threaten the legitimacy of excluded middle for natural languages:

Let the "naive" view of the semantics of grammatically singular subject-predicate sentences of a natural language be the view that the utterer of a such a sentence S utters a sentence that is true, respectively, false relative to a context of utterance \mathbb{C} just in case the grammatical predicate of S "applies" relative to \mathbb{C} to the object "picked out" relative to \mathbb{C} by the subject term of S. Note that this account has the same general form as has the account usually given of the truth evaluation relative to a model \mathbb{M} of an atomic sentence ${ }^{\lceil } \mathbf{P}(t)^{\rceil}$of a formal language (for simplicity, we assume ${ }^{〔} \mathbf{P}(t){ }^{7}$ consists of the unary predicate letter 'P' followed by singular term ' t ', although this restriction is not essential to the point I wish to make): $\left\lceil\mathbf{P}(t){ }^{7}\right.$ is true, respectively, false, relative to \mathbb{M} just in case the object \mathbb{M} assigns to ' t ' belongs, respectively, does not belong, to the set of objects that \mathbb{M} assigns to ' \mathbf{P} '.

Now, it seems a harmless rephrasing of the naive view to say that the utterer of a grammatically singular subject-predicate sentence S of a natural language utters a sentence that is true, false relative to \mathbb{C} just in case the subject term of S "picks out" an object relative to \mathbb{C} and the grammatical predicate of S applies, does not apply, relative to \mathbb{C}, to that object. In other words, it seems that the naive view of how singular subject-predicate sentence of a natural language come to have truth values (relative to a context of utterance) presupposes (Frege [1], Stawson [1]) that the subject terms of those sentences have referents (relative to that context of utterance).

Similarily, we can rephrase the above account of the evaluation of the symbolic sentence $\left.{ }^{\lceil } \mathbf{P}(t)\right\rceil$
relative to \mathbb{M} as follows: ${ }^{\lceil } \mathbf{P}(t){ }^{7}$ is true, false, relative to \mathbb{M} just in case \mathbb{M} assigns some object to ' t ' and that object belongs, respectively, does not belong, to the set of objects that \mathbb{M} assigns to ' \mathbf{P} '. So it appears that the standard method of evaluating the truth of symbolic sentences \mathbf{A} relative to a model \mathbb{M} presupposes that the singular terms (or at least those of the primitive basis of the language) occurring in \mathbf{A} have denotations relative to \mathbb{M}. Of course, as Russell points out in "On Denoting" [1], we cannot simply assign an arbitrary truth value (say, False) to sentences which contain improper definite descriptions as subject terms and maintain classical negation without breaching the law of noncontradiction.

Now Russell [1], explicitly states that Theory of Definite Description is intended to solve the problem of the "apparent" failure of excluded middle in English posed by improper definite descriptions occurring as subject terms of grammaticaly subject-predicate sentences of English. Indeed, the Russellian Theory of Descriptions does not maintain the validity of existential generalization / universal specification as applied to descriptions. In contrast, Frege, who first articulated the view that (at least subject-predicate) sentences of natural language that contain vacuous singular subject terms do not have truth values, seems concerned with the general problem of the failure of certain intuitively acceptable modes of inference in languages that contain syntactically well formed but semantically vacuous singular terms. Frege [1, pp. 70] writes

> it is a defect of languages that expressions are possible within them, which, in their grammatical form, seemingly determined to designate an object, nevertheless do not fulfill this condition in special cases . .
> . it is customary in logic texts to wam against the ambiguity of expressions as a source of fallicies . .
> . . it is a least appropriate to issue a warning against apparent names that have no designation ;

Although Frege does not explicitly mention the intuitive modes of reasoning he feels that "logically perfect" languages should support, Frege's famous dictum, intended as definitive of the notion of a formal language,
that in a logically perfect language (logical symbolism) every expression constructed as a name in a grammatically correct manner out of already introduced symbols, in fact designate an object
certainly ensures that any reasonable formal semantic theory that satisfies it will maintain both
excluded middle and unrestricted generalization / specification as valid forms of inference.
The three proof-theoretic treatment of descriptions we are concerned with comparing to Pld Hibert and Bernay's [1] treatment of descriptive terms in a first-order arithmetic language, Frege's methods [1], [2], and the Whitehead-Russell [1] method presented in P.M.- can best be compared in terms of the above dictum: while the Hilbert - Bernays and the Fregean treatments are based upon different methods of satisfying this same dictum, the Russell's Theory of Descriptions is based upon a rejection of the dictum.

For the purposes of the following discussion we introduce the strict-substitution operator [t / $x]$, which, when applied to a formula or term E, yields the result $[t / x] E$ of substituting t for all free occurrences of \boldsymbol{x} in \boldsymbol{E}. Renaming of variables bound in the formula or term is automatically effected so that any free occurrence of a variable in t is a free occurrence in the result of the application.

1) Russell's method: The proof-theoretic treatment of description terms that Russell presents in P.M. is based upon the semantic intuition motivating the Russelian Theory of Descriptions, that the propriety of an English definite description (that is, the condition that there exists a unique object satisfying the defining formula of the definite description) is part of the semantic content or meaning of the sentences in which the description occurs. Accordingly, a grammaticaly subject-predicate sentence S of English containing a definite description D.D as subject term is treated as semantically equivalent to, and an abreviation of, (the material mode equivalent of) the quantificational statement that there exists a unique object \mathbf{x} satisfying the defining formula of D.D. and \mathbf{x} bears the grammatical predicate of \mathbf{S}.

In P.M., Russell provides a proof-theoretic formalization of the Theory of Descriptions in terms of the following contextual definiton schema:

$$
[(u x) \Phi / y] F \equiv \equiv_{\mathrm{df}}\left(\exists_{y}\right)\left[\left(\forall_{x}\right)(\Phi \leftrightarrow x=y) \wedge F\right]
$$

where Φ is an arbitrary symbolic formula containing at most free occurrence of the variable x, and F is an arbitrary symbolic formula that contains a free occurrence of y, where y is different from x. This schema may be thought of as a two-way rewrite rule; for any instance \mathbb{I} of the schemata, any
occurrence (in a symbolic sentence occurring in a derivation) of the symbolic sentence that is the definiendum, respectively, definiens of \mathbb{I} may be replaced by the symbolic sentence that is the definiens, respectively, definiendum of II. The important point here is that the description operator is not part of the primitve basis of the Russellian language; rather, it is a symbol that is defined only within arbitrary sentential contexts.

Let us consider the "Russellian" description calculus obtained from the classical first order identity calculus by the addition of the above contextual definition to the proof theory for the identity calculus. Now, there are two ways in which we could set up a semantics for this Russellian proof theory of descriptions. We could leave the descriptor operator, and hence all description terms, out of the primitive basis of the language, in which case our semantics would simply be the classical semantics for the identity calculus, and no symbolic sentence (of the classical identity calculus with descriptions) that contains description terms would be evaluated relative to any model of our semantics. On the other hand, we could the add description terms to the elementary syntax of our language and add a semantic rule analgous to the Russellian contextual definition to our semantics so that a sentence of the form $\left(\exists_{y}\right)\left[\left(\forall_{x}\right)(\Phi \leftrightarrow x=y) \wedge F\right]$ is true relative to a given model iff $[(u) \Phi / y] F$ is (where these two sentences satisfy the same restrictions as those placed on applications of the Russellian contextual definition above). The important point is that, in either case, this proof-theoretic treatment of description terms requires a semantics in which definite descriptions (i.e., description terms) are not assigned denotations at all. That is, if \mathbb{M} is a model of a Russellian proof-theory of descriptions, then a symbolic sentence $[(u x) \Phi / y] F$ that contains a description term $(u x) \Phi$ is not evaluated on the basis of an assignment of an object from the domain of \mathbb{M} to $(u x) \Phi$. So a Russellian semantics for formal description calculi represents a rejection of Frege's dictum that every singular term, in particular, every description term, of a formal language should be assigned a denotation (relative to a given model, we would say) since within a Russellian semantics, description terms do not function to denote objects.

As mentioned, the main drawback of the Russellian proof-theoretic treatment of descriptions is that existential generalization / universal specification are not in general sound (i.e., validity preserving) when applied to description terms. For suppose $\left(\forall_{y}\right) F$ is a classically valid symbolic
sentence, for some symbolic formula \boldsymbol{F} containing free occurrence of \boldsymbol{y}. Consider a symbolic formula Φ containing at most free occurrence of a variable \boldsymbol{x} such that $\neg\left(\exists_{\boldsymbol{y}}\right)\left(\forall_{x}\right)(\Phi \leftrightarrow \boldsymbol{x}=\boldsymbol{y})$ is classically valid (for example, the formula $\neg(x=x)$ will do). Then clearly the symbolic sentence $\neg\left(\exists_{y}\right)\left[\left(\forall_{x}\right)(\Phi \leftrightarrow x=y) \wedge F\right]$ is classically valid. Then, if our Russellian description calculus is complete with respect to classical semantics, we are able to derive $\neg\left(\exists_{y}\right)[(\forall \boldsymbol{\gamma})(\Phi \leftrightarrow \boldsymbol{x}=\boldsymbol{y}) \wedge \boldsymbol{F}]$. The above definition, applied "left to right", allows us to re-write this sentence as $\neg[(u x) \Phi / \boldsymbol{y}] F$. Then by an application of unrestricted existential generalization applied to the constant term (ux) Φ, we may derive $\left(\exists_{\boldsymbol{y}}\right) \neg \boldsymbol{F}$. But since $\left(\forall_{\boldsymbol{y}}\right) \boldsymbol{F}$ is a classically valid, so is $\neg\left(\exists_{\boldsymbol{y}}\right) \neg \boldsymbol{F}$. Hence, $\left(\exists_{y}\right) \neg F$ is not classically valid. So $\left(\exists_{y}\right) \neg \boldsymbol{F}(\boldsymbol{y})$ is derivable but not classically valid, i.e., our Russellian description calculus with unrestricted existential generalization of constant singular terms is not sound. Indeed, this example shows that such calculus (if complete) is not syntactically consistent, since in this example both of $\left(\exists_{\boldsymbol{y}}\right) \neg \boldsymbol{F}, \neg\left(\exists_{\boldsymbol{y}}\right) \neg \boldsymbol{F}$ are derivable.

So any sound and complete Russellian calculus of descriptions must restrict the application of the deductive rule existential generalization so that only "provably proper" description terms, that is constant description terms $(\boldsymbol{x}) \Phi$ such that, for some variable y, the sentence $\left(\exists_{y}\right)\left(\forall_{x}\right)(\Phi \leftrightarrow x=$ $y)$ is provable, may be generalized. It is easily shown that a similar restriction must be put on universal specification. One way of restricting existential generalization in this way is simply to require that any application of existential generalization in which the generalized singular term is a description term must be preceded by a subordinate proof of the propriety of the description term.
2) Frege's methods: Frege [1], [2], suggests two formal treatments of descriptions both of which involve satisfying his dictum, that every well-formed singular term of the language have a denotation, by making the arbitrary convention that otherwise improper description terms are assigned some object from the range of the individual variables. There are several ways that this convention can be implemented proof-theoretically, depending on the type of objects that belong to the domain of discourse of the model(s) of the system. In [2], Frege presents a typeless system in which both classes as well as their elements belong to the range of the individual variables, so he is able to make the convention that any constant description term whose descriptive formula is not uniquely satisfied by some object in the range of the individual variables be assigned as descriptum
the class of those objects satisfying the defining formula. So, relative to a model \mathbb{M} of this type of system, different constant description terms whose defining formulas are not uniquely satisfied by some object from the domain of \mathbb{M} may have different descriptums.

Frege suggests a slightly simpler treatment in [1]. Here, a single object from the range of the individual variables of the system is chosen as the common descriptum of all description terms whose defining formula is not uniquely satisfied. For example, if the system is a first order arithmetic, zero might be chosen. Alternatively, if the range of the individual variables contains classes of individuals, the null set might be chosen as the common descriptum of all otherwise improper description terms (this is Quine's [1] choice in Mathematical Logic).

Now, the literature contains two interesting proof-theoretic implementations of Frege's second method (we ignore the first method, since for our purposes, it is merely a more complicated method of achieving the goal of the second, viz., the assignment of arbitrary denotations to otherwise improper description terms).

Carnap [1] suggests a proof-theoretic treatment of descriptions in which a particular individual constant of the language, say \boldsymbol{a}_{0}, is chosen to denote the common descriptum of all constant description terms whose defining formula is not uniquely satisfied. More precisely, if \mathbb{M} is a model for this particular proof-theoretic treatment of descriptions, then \mathbb{M} assigns some object o from the domain of \mathbb{M} to the individual constant a_{0} and for any constant description term ($\left.u x\right) \Phi$ of the language, if Φ is not uniquely satisfied relative to \mathbb{M} by some object in the domain of \mathbb{M}, then \mathbb{M} assigns 0 to $(u) \Phi$.

In this formal treatment of descriptions a sentence of the form $[(u x) \Phi / y] F$, where Φ is an arbitrary symbolic formula containing at most free occurrence of \boldsymbol{x} and \boldsymbol{F} is a symbolic formula containing free occurrence of \boldsymbol{y} distinct from \boldsymbol{x}, is treated as logically equivalent to the following sentence $\left(\exists_{y}\right)\left[\left(\forall_{x}\right)(\Phi \leftrightarrow x=y) \wedge F\right] \vee\left(\neg\left(\exists_{y}\right)\left[\left(\forall_{x}\right)(\Phi \leftrightarrow x=y)\right] \wedge\left[a_{0} / y\right] F\right)$. Then the proof theory for this treatment of descriptions is that of the first order identity calculus together with the following axiom schema (or the corresponding contextual definition):

$$
[(u x) \Phi / y] F \leftrightarrow\left(\exists_{y}\right)[(\forall x)(\Phi \leftrightarrow x=y) \wedge F] \vee\left(\neg\left(\exists_{y}\right)[(\forall x)(\Phi \leftrightarrow x=y)] \wedge\left[a_{0} / y\right] F\right) .
$$

and the semantics for this treatment of descriptions is that of the first order identity calculus together with a semantic rule that makes $[(u x) \Phi / y] F$ semantically equivalent to $\left(\exists_{y}\right)[(\forall x)(\Phi \leftrightarrow x=y)$ $\wedge F] \vee\left(\neg\left(\exists_{y}\right)[(\forall \boldsymbol{x})(\Phi \leftrightarrow \boldsymbol{x}=\boldsymbol{y})] \wedge\left[a_{0} / \boldsymbol{y}\right] F\right)$.

The authors Kalish, Montague and Mar [1] present a natural deduction based treatment of descriptions based on Frege's second method. Here, the term chosen to denote the common descriptum of all otherwise improper constant description terms is the 'absurd' constant description term $(x) \neg(x=x)$. As in Carnap's treatment, if \mathbb{M} is a model for this particular proof-theoretic treatment of descriptions, then \mathbb{M} assigns some object o from the domain of \mathbb{M} to the the description term $(\boldsymbol{x}) \square(\boldsymbol{x}=\boldsymbol{x})$ and for any constant description term $(\boldsymbol{u}) \Phi$ of the language, if Φ is not uniquely satisfied relative to \mathbb{M} by some object in the domain of \mathbb{M}, then \mathbb{M} assigns o to $(1 x) \Phi$.

Kalish, Montague and Mar present two inference rules for introducing description terms into their natural deductions derivations. P.D. (Proper Description) allows the symbolic formula $[(u x) \Phi$ $/ x] \Phi$ to be derived from a formula of the form $\left(\exists_{y}\right)\left(\forall_{x}\right)(\Phi \leftrightarrow x=y)$, where Φ is an arbitrary formula containing no free occurrence of y. I.D. (Improper Description) allows the formula $(u x) \Phi=(u x) \neg(x=x)$ to be derived from a formula of the form $\neg\left(\exists_{y}\right)(\forall x)(\Phi \leftrightarrow x=y)$, where Φ is an arbitrary symbolic formula containing no free occurrence of \boldsymbol{y}.

As mentioned above, the main advantage of the Fregean treatments over the Russellian is that they maintain the soundness of the inference rules existential generalization and universal specification. It is easy to show that they also preserve excluded middle (as does the Russellian). The main disadvantage of the Fregean treatments over the Russellian is that the meanings that certain symbolic sentences containing description terms receive in these treatments diverge from their intuitive meanings. For example, when we consider the following two sentences
1)

$$
(\forall x)(\Phi \leftrightarrow x=b)
$$

2)

$$
b=(u x) \Phi
$$

(where \mathbf{b} is an individual constant) as translations of English sentences, we expect them to be semantically equivalent - indeed, it is easily verified that they are semantically equivalent within a

Russellian semantics. But it is easy to see that there are Fregean models in which 1) is false but 2) is true: let \mathbb{M} be any Fregean model such that there is no object \mathbf{o} in the domain of \mathbb{M} which uniquely satisfies Φ. Further, assume that \mathbb{M} assigns the "default object" (i.e., the element of the domain of \mathbb{M} which has been chosen as the common descriptum in \mathbb{M} of all constant description terms whose defining formulas are not uniquely satisfied relative to \mathbb{M} by some object in the domain of \mathbb{M}) to the individual constant \mathbf{b}. Then 2) is true relative to \mathbb{M} but 1) is, by hypothesis, false.
3) The method of Hilbert and Bernays: In [1], Hibert and Bernays present an arithmetic calculus (that is, a proof-theory with the natural numbers as the intended model) based upon a proof-theoretic implementation of Frege's dictum (that a formal language must insure that every syntactically well-formed singular term have a denotation) which is an alternative to the Fregean convention of assigning a "default object" to otherwise improper description terms. Rather than defining "term / formula of the language" in a context-free grammar (per the classical approach to defining the elementary syntax of logical languages) this treatment defines the elementary syntax and the notion of proof by simultaneous induction such that a string of the form (\mathbf{x}) Φ, and hence any "sentence" in which it occurs, is allowed into the language only if there is a proof that there is exactly one natural number satisfying the defining formula Φ. Hence, whereas Frege satisfies by semantic means his dictum that all singular terms defined in the elementary syntax of a logical language have denotations (by assigning a "default object" to otherwise improper description terms), Hilbert and Bernays satisfies Frege's dictum by modifying the elementary syntax of classical arithmetic with descriptions so that a string of the form ($u x) \Phi$ is considered well formed only if (there is a proof that) there is exactly one natural number satisfying $\boldsymbol{\Phi}$.

Hilbert and Bernays' single deductive rule for introducing description terms into derivations provides the original motivation for Gilmore's natural deduction rule for descriptions presented in [2] and (hence) both the proof theoretic and the semantic rules for treating description terms in Pld. We might think of the Hilbert and Bernays' deductive rule for descriptions, and indeed Pld's, as a "one-way" implementation of the Russellian contextual definition that allows us to introduce description terms into arbitrary sentential contexts but not eliminate them from sentential contexts.

Roughly speaking, the Hilbert and Bernays deductive rule for description terms (as well as Gilmore's and Pld's deductive rules for descriptions) allows the symbolic sentence that is the definiendum of an instance of the Russellian contextual definition to be concluded from a derivation line consisting of the symbolic sentence which is the definiens of that instance; there is no corresponding rule for introducing description terms into derivations on the basis of a derivation line consisting of the denial (negation) of the symbolic sentence that is the definiens of an instance of the Russellian contextual definition (as there is in the Russellian and Fregean proof theoretic treatments of descriptions). Hence, only provably proper description terms (which are the only description terms in Hilbert and Bernays' language) can be introduced into symbolic sentences in a derivation.

If we forget, for the moment, that the language of the Hilbert and Bernays arithmetic calculus is only a proper subset of what we might call "classical arithmetic with descriptions", it would seem that this property of a proof-theory alone, that the only symbolic sentences that can be introduced into a derivations are those in which the only occurring description terms are provably proper, will insure that excluded middle fails for that proof-theory. For surely no sentence of the form $((\boldsymbol{x}) \neg(x=\boldsymbol{x})=\mathbf{b}) \vee \neg((\boldsymbol{x}) \neg(x=x)=\mathbf{b})$ will be derivable in such a system. Indeed, this sentence of the classical identity calculus with descriptions is not a theorem of Pld. But of course, this sentence is not even in Hilbert and Bernays' language. It is easy to show that excluded middle holds for every sentence of classical arithmetic with descriptions that is in Hilbert and Bernays' language, so their proof-theoretic treatment of descriptions can be classified, along with Frege's and Russell's, as a totalizing treatment in the sense that it is sound only with respect to models that are total Tarskian functions from the set of sentences of the language into $\{T, F\}$.

One obvious drawback of the Hilbert and Bernays proof-theoretic treatment of descriptions is that this system's language does not have a decidable elementary syntax. Indeed, it is easily seen that the set of well-formed strings of that language is recursively enumerable but not recursive.

Carnap [1] points out another drawback of the general approach of satisfying Frege's dictum by restricting the elementary syntax of the classical description calculus. While this approach may be convenient in an arithmetic calculus, he suggests, its extension to general proof-theories in
which "factual" symbolic sentences may figure as premises to deductions has the consequence that the set of well formed strings of the language, and hence the formal notion of grammaticality, will depend on "the contingency of facts". We might put Carnap's point here slightly more generally as follows: "The approach of satisfying Frege's dictum by restricting the elementary syntax of the classical description calculus lends itself to an applied system like arithmetic with descriptions since the set of constant description terms of classical description calculus that are "provably proper in arithmetic", and hence are well-formed expressions for the language thus restricted, although undecidable, is at least determinate (at least for a Platonist). However, if this approach is extended to a general description calculus in which we can axiomatize arbitrary extralogical first order theories, the language thus restricted becomes indeterminate since the set of constant description terms of classical description calculus that are "provably proper" now depends on the particular extralogical theory whose axioms are figuring as premises in derivations of the general calculus".

Now it seems to me that the soundness of Hilbert and Bernays proof-theoretic treatment of descriptions in arithmetic illustrates that Frege's dictum places a requirement on the notion of a formal language that is stronger than is necessary to achieve Frege's goal of eliminating the possibility of falacious inferences within a formal language. For the type of fallacious inferences that are due to the occurrence of sentences containing vacuous singular terms in arguments of natural language can be avoided in languages that do not meet the condition that every well formed singular term is assigned a denotation. As the Hilbert-Bernays treatment shows, to avoid making fallacious inferences in a formal language, we need only avoid reasoning over sentences of the language that contain vacuous singular terms. In other words, to avoid fallacious inferences in a formal language with descriptions, we need only exclude improper description terms from occurring in sentences in our derivations, rather than from the language altogether.

So Hilbert and Bernay's practice of excluding from their language those sentences that contain classical description terms that are (arithmetically) improper is not necessary to satisfy the goal of Frege's dictum (if not the letter). Of course, any proof-theory of descriptions that uses the Hilbert-Bernays technique (of allowing a description term to be introduced into a sentence in a derivation only after its propriety has been proven) but does not restrict its elementary syntax in
the manner of Hilbert and Bernays will not be complete with respect to any classical semantics for that language. For, as we have seen, the classically valid sentence $((v x) \neg(x=x)=b) \vee$ $\neg((x) \neg(x=x)=b)$ will not be derivable in such a system.

Now, consider the semantics for such a system obtained from Tarskian first order semantics by adding to the Tarskian definition of 'truth relative to a model' a rule that is the semantic version of our "one-way" deductive rule for description terms, so that the definiendum of an instance \mathbb{I} of the Russellian contextual definition is true relative to a model \mathbb{M} of this semantics if the definiens of \mathbb{I} is true relative to \mathbb{M} but not conversely. This semantics is found to be a generalization of Tarskian semantics in which excluded middle holds for all sentences of the classical identity calculus but fails in a model \mathbb{M} for (certain) symbolic sentences, and only symbolic sentences, that contain constant description terms that are improper relative to \mathbb{M}. Then this semantics together with our Hibert-Bernaysian proof-theory constitutes a sound and complete partial logic of descriptions based upon a decidable elementary syntax. Essentially, we maintain both the semantic completeness of our proof-theory and the decidability of our elementary syntax by making the nonrecursive procedure of determining the propriety of a given description term part of the semantics of our system (where it belongs), rather than polluting our elementary syntax with it, as Hilbert and Bernays would have us do. This is the motivation for Pld.

Section 1: The System Pld.

1.1 Elementary syntax

The language for Pld has as its primitive basis the sets of symbols given in 1.1.1. - 1.1.9. below:
.1. An enumerable set Var of individual variables: ' u ', ' v ', ' w^{\prime}, ' x ', ' y ', with or without numeric subscripts. An individual variable is a term. An individual variable has an occurrence in itself. An occurence of an individual variable in itself is a free occurrence in itself.
.2. An enumerably infinite set $P a r$ of individual parameters: ' l ', ' m ', ' n ',' $p^{\prime}, ~ ' q$ ', with or without numeric subscripts. An individual parameter is a term. An individual parameter has an occurrence in itself.
3. A finite set Cnst of individual constants: ' $a^{\prime},{ }^{\prime} b^{\prime},{ }^{\prime} c^{\prime},{ }^{\prime} d^{\prime},{ }^{\prime} e^{\prime}$, with or without numeric subscripts An individual constant is a term and has an occurrence in itself.
.4. A finite set F un of unary functors: ' $\mathcal{\prime}$ ' ' \mathcal{Z}, ' R ', ' $<$ ', with or without numeric subscripts.
.5. For each n, a denumerable set set Pred n of n-ary descriptive predicate constants: ' $P^{n \prime}$, ' $Q^{n \prime},{ }^{\prime} R^{n \prime}, S^{\prime \prime}$, with or without numeric subscripts.
.6. A set $\left\{{ }^{\prime}=\right.$ ' $\}$ containing a single binary logical predicate constant.
.7. A set $\{' \neg ', ~ ' \rightarrow ', ~ ' \wedge '\}$ of sentential connectives.
.8. A set $\{$ ' ()', ' 1 '\} of variable binding operators. ' i ' is called the descriptive operator.
.9. A set $\left\{{ }^{\prime}(', ~ ')\right.$ ' , ''] of punctuation marks.

For the purposes of discussion we will assume as available the connective and quantifier sets
of the full predicate calculus on the understanding that expressions over the larger language are defined in terms of the above primitive basis in the usual way. For each set S of symbols given in 1.1.1. - 1.1.5., above, we let the bold-face version of the member symbols be metalinguistic variables ranging over S. Each symbol which is a member of one of the sets given in 1.1.6. 1.1.9. occurs in the metalanguage as a metalinguistic constant denoting itself in the object language. Let r, s, t, with or without numeric subscripts, be metalinguistic variables ranging over terms. Metalinguistic concatenation denotes object language concatenation. Then,
.1.0. Elementary formulas are of the form $P^{n}\left(t_{1}, \ldots, t_{n}\right)$ and $\left(t_{1}=t_{2}\right)$. A (free) occurrence of a variable in one of t_{1}, \ldots, t_{n} is a (free) occurrence in $P^{n}\left(t_{1}, \ldots, t_{n}\right)$. A (free) occurrence of a variable in t_{1} or in t_{2} is a (free) occurrence in ($\boldsymbol{t}_{1}=\boldsymbol{t}_{2}$). Elementary formulas are formulas. An elementary formula of the form $P^{n}\left(t_{1}, \ldots, t_{n}\right), t_{1}=t_{2}$ is an atomic formula if the $\boldsymbol{t}_{1}, \boldsymbol{t}_{2}, \ldots, \boldsymbol{t}_{\boldsymbol{n}}$ are basic terms.

Let 'afm', respectively, ${ }^{\prime} F^{\prime}, G^{\prime}, ' H^{\prime}, ' \Phi^{\prime}, ' \Psi{ }^{\prime},{ }^{\prime} \Xi^{\prime}$, with or without numeric subscripts, be metalinguistic variables over atomic formulas, respectively, formulas.
.1.1. If \boldsymbol{F} and \boldsymbol{G} are formulas, then the following expressions are formulas: $\neg \boldsymbol{F},(\boldsymbol{x})(\boldsymbol{F}),(\boldsymbol{F} \rightarrow$ $\boldsymbol{G}),(\boldsymbol{F} \wedge \boldsymbol{G})$. A (free) occurrence of a variable in \boldsymbol{F} is a (free) occurrence in $\neg \boldsymbol{F}$. A (free) occurrence of a variable in \boldsymbol{F} or \boldsymbol{G} is a (free) occurrence in both of $(\boldsymbol{F} \rightarrow \boldsymbol{G}),(\boldsymbol{F} \wedge \boldsymbol{G})$. A free occurence of a variable other than x in F is a free occurrence in $(x)(F)$; no other variable has a free occurence in $(\boldsymbol{x})(\boldsymbol{F})$.
.1.2. If t is a term and $\not \subset$ is a unary functor, then the result $\not \subset(t)$ of applying \neq to t is a term. If F is a formula, then $u x . F$ is a term, and a description term. A (free) occurrence of a term r in t is a (free) occurrence in $\not \boldsymbol{f}(t)$. An occurrence of a term r in F is an occurrence in $\boldsymbol{x} . \boldsymbol{F}$. A free occurrence of a variable other than \boldsymbol{x} in \boldsymbol{F} is a free occurrence in $\boldsymbol{x} . \boldsymbol{F}$; no other variable has a free occurrence in $\mathbf{x x} . \boldsymbol{F}$. A term in which no variable has a free occurrence is a constant term.
.1.3. A term which contains no occurrence of a description term is a basic term.
.1.4. Let $\mathbb{P}: \mathbb{N} \rightarrow$ Par be a bijective enumeration of Par. Let π be any subset of Par. Then $\delta(\pi)$ is the set of constant basic terms in which the only occurring parameters are from Par $\cup\{\mathbb{P}(1)\}$. So $\delta(P a r)$ is the set of constant basic terms of Pld.
1.4. A sentence is a formula in which no variable has a free occurrence. Let π be any subset of Par. Then $\Sigma(\pi)$ is the set of sentences in which the only occurring parameters are from π. So $\Sigma($ Par $)$ is the set of all sentences of Pld.

Throughout the remainder of this paper, we will use the symbol ' \cong ' to denote the relation of syntactic identity holding between terms, formulas and signed sentences of Pld. In other words, the expression ' $\mathbb{E}_{1} \cong \mathbb{E}_{\mathbb{Z}}$ ' shall mean that the expression denoted by the metalinguistic variable ' \mathbb{E}_{1} ' is syntactically the same expression as that denoted by ' $\mathbb{E}_{\mathbb{Z}}$. We do this to avoid confusion with the object language symbol for identity ' $=$ '. Further, we will use both of ' \cong ', ' $=$ ' to denote the relation of set theoretic identity holding between sets of signed sentences; ' $=$ ' will be used to denote this metatheoretic relation only when there is no danger of confusing it with the object language symbol ' $=$ '. In particular, ' \cong ' will be used to denote the identity relation holding between those sets of signed sentences which are denoted in this text by the display of their member signed sentences.

The following expressions, with or without numeric subscripts, will be used as metalinguistic variables over atomic sentences, respectively, sentences: 'asnt', respectively, 'snt', 'A', 'B', 'C', 'D'. The logical syntax and the semantics for Pld is presented in the manner of Gilmore [1], [2] using the notions of signed sentence and sequent of signed sentences. If \mathbf{A} is a sentence, then both of $\pm \mathbf{A}$ are signed sentences. A sequent is any finite set of signed sentences. Semantically, the signature \pm indicates, respectively, the assignment of truth or falsehood to a sentence relative to a model. In the logical syntax, the signature \pm indicates that the sentence so signed occurs to the right, respectively, left, of the Gentzen arrow. Also used is the simultaneous strict-substitution operator $\left[t_{1}, \ldots, t_{n} / x_{1}, \ldots, x_{n}\right]$, which, when applied to a formula or term, substitutes $\boldsymbol{t}_{\boldsymbol{i}}(1 \leq i \leq n)$ for all free occurrences of $\boldsymbol{x}_{\boldsymbol{i}}$ in the formula or term, such that none of the x_{i} occurring free in any of the t_{1}, \ldots, t_{n}, are substituted for. Renaming of variables bound in the formula or term is automatically effected so that any free occurrence of a variable in $\boldsymbol{t}_{\boldsymbol{i}}$ is a free occurrence in the result of the application. The substitution operator $\left[t_{1}\right.$, . .
$\left.\ldots, t_{n} / x_{1}, \ldots, x_{n}\right]$ will be abbrieviated as $[t / \underline{x}]$, where $t \cong t_{1}, \ldots, t_{n}$ and $\underline{x} \cong x_{1}, \ldots$, $\boldsymbol{x}_{\boldsymbol{n}}$. We will also apply the simultaneous strict-substitution operator $\left[\boldsymbol{t}_{\boldsymbol{l}}, \ldots, \boldsymbol{t}_{\boldsymbol{n}} / \boldsymbol{x}_{\boldsymbol{I}}, \ldots\right.$, $\left.x_{n}\right]$ to sequents such that $\left[t_{1}, \ldots, t_{n} / x_{1}, \ldots, x_{n}\right]$ Seq denotes the sequent obtained from the sequent \mathbb{S} eq by replacing every signed sentence $\pm s n t$ in $\mathbb{S e q}$ by respectively $\pm\left[\boldsymbol{t}_{\boldsymbol{l}}, \ldots, t_{\boldsymbol{n}}\right.$, $\left.x_{1}, \ldots, x_{n}\right]$ snt .

1.2. Logical syntax

We present a set of axioms and first order rules of deduction much as in Gilmore [1], [2]. Rule 1.2.2.6. below is significanly modified over the rule 5.3 .2 . for descriptions presented in Gilmore [2], where description terms are defined on the basis of set abstraction terms from the first order set theory. 1.2.2.6. represents a weakening of the restriction 5.3.2. places on the "existance" and "uniqueness" premises of an application of that rule such that the "input" sentences to an application of 1.2.2.6 do not have to be themselves derivable sentences, but rather merely positively signed members of a derivable sequent. Indeed, as we demonstrate in section 6 , this modification is necessary to the completeness of the set of rules given below relative to the semantics we will define.

1. Let t be in $\delta(P a r)$. Then the set of axioms is the set of all sequents of the form $\{-a s n t$, $+a s n t\}$ or of the form $\{+(t=t)\}$.
.2. Let t, r, s be constant, possibly non-basic, terms. The rules of deduction are given by the following schemata:
.1.士 (thinning)
Seq
$\operatorname{seq} \cup\{ \pm \mathbf{A}\}$
.2. \pm
$\frac{\operatorname{Seq} \cup\{ \pm \mathbf{A}\}}{\operatorname{seq} \cup\{\mp \neg \mathbf{A}\}}$
.3. \pm
$\frac{\operatorname{seq} \mathbb{1} \cup\{+\mathbf{A}\} \quad \operatorname{Seq} 2 \cup\{+\mathbf{B}\}}{\operatorname{Seq} \mathbb{S e q} 2 \cup\{+(\mathbf{A} \wedge \mathbf{B})\}}$ $\operatorname{Seq} \cup\{-\mathbf{A},-\mathbf{B}\}$
$s e q \cup\{-(\mathbf{A} \wedge \mathbf{B})\}$
.4. \pm

$$
\frac{\operatorname{seq} \cup\{-\mathbf{A},+\mathbf{B}\}}{\operatorname{seq} \cup\{+(\mathbf{A} \rightarrow \mathbf{B})\}}
$$

$\frac{\operatorname{Seq} \cup\{-[t / x] F\}}{\operatorname{Seq} \cup\{-(x) F\}}$
where, for $.5 .+, p$ is a parameter which does not occur in the conclusion $\operatorname{Seq} \cup\{+(\boldsymbol{x}) \boldsymbol{F}\}$.
.6. $\operatorname{Seq} \mathbb{Z} \cup\{+[t / x] \Phi\} \quad \operatorname{Seq} 2 \cup\{+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)\} \quad \operatorname{Seq} 3 \cup\{ \pm[t / u] F\}$

$$
\text { Seq } \mathbb{I} \cup \operatorname{Seq} 2 \cup \operatorname{Seq} 3 \cup\{ \pm[u . \Phi / u] F\}
$$

where, \boldsymbol{v} different from \boldsymbol{x}.
. 7.
$\frac{\operatorname{Seq} \mathbb{1} \cup\{+[r / u] F\} \quad \operatorname{seq} 2 \cup\{-[s / u] F\}}{\operatorname{Seq} \mathbb{R} \cup \operatorname{Seq} 2 \cup\{-(r=s)\}}$
.8. (cut)
$\underline{\operatorname{Seq} \mathbb{I} \cup\{+\mathrm{A}\} \quad \operatorname{Seq} 2 \cup\{-\mathrm{A}\}}$

SeqI $\cup S e q 2$

An instance of one of the above rule schemata will be called an application of the rule. For a given application \mathbb{A} of one of the above rules, the sequent(s) above, respectively, below, the vinculum are called the premise(s), respectively, conclusion, to \mathbb{A}. Let the signed sentential variables (i.e., ' $\pm \mathbf{A}^{\prime},{ }^{\prime} \pm \mathbf{B}^{\prime},{ }^{\prime} \pm[t / x] \Phi^{\prime}, ' \pm(x) F^{\prime}, \quad ' \mp(\mathbf{A} \wedge \mathbf{B})$ ', etc.) explicitly given in the premises, respectively, conclusion, of a given rule schema \mathbb{R} be said to denote the input sentence(s), respectively, output sentence, to a given application of \mathbb{R}.

We have, then, a three premise rule for introducing sentences containing definite descriptions (i.e., description terms) into derivations. Notice that .6. is unique among the above rules in that it does not have a dual rule treating the case where the input sentences to an application have negative signatures. This asymmetric treatment of descriptions is motivated by the intuition that we cannot, in genaral, validly introduce a sentence containing a description into a derivation on either side of the turnstile (i.i., Gentzen arrow) without first securing the existence of a descriptum for the description to denote. This corresponds to the semantical intuition behind the Frege-Strawson doctrine that a sentence of natural language which is grammatically of subject-predicate form and which contains a vacuous singular subject term cannot have a truth value associated with it. We can say, then, that any description which is introduced into a Pld derivation by 1.2.2.6. has large scope, in the Russellian sense, over the sentence in which it occurs.
.3. An axiom from 1.2.1. is a derivation tree. If Σ is a derivation tree whose endsequent $\mathbb{S e q}$ is the premise of an application \mathbb{A} of one of 1.2.2.1.土, 1.2.2.2.土, 1.2.2.3.-, 1.2.2.4.+, 1.2.2.5. \pm, then the tree obtained from Σ by appending the conclusion of \mathbb{A} to Seq is a derivation tree. If Σ, Σ^{\prime} are derivation trees whose endsequents respectively $\mathbb{S e q}, \operatorname{Seq}^{\circ}$ are premises of an application \mathbb{A} of one of 1.2.2.3.+, 1.2.2.4.-, 1.2.2.7., 1.2.2.8. then the tree obtained from Σ and Σ^{\prime} by appending the conclusion of \mathbb{A} to Seq and $\mathbb{S e q}^{\circ}$ is a derivation tree. If $\Sigma^{\prime} \Sigma^{\prime}, \Sigma^{\prime \prime}$ are derivation trees whose endsequents respectively Seq, Seq $q^{\circ}, S e q^{\circ 0}$ are premises of an application \mathbb{A} of 1.2 .2 .6 . then the tree obtained from Σ and Σ^{\prime} and $\Sigma^{\prime \prime}$ by appending the conclusion of \mathbb{A} to $\mathbb{S e q}$ and $S e q^{\circ}$ and $S e q^{\circ}$ is a derivation tree.
4. A sequent Seq of signed sentences is derivable iff it is the endsequent of a derivation tree. A sentence snt is derivable iff the sequent $\{+s n t\}$ is derivable.
.5. A sentence snt is grounded iff the sequent. $\{+$ snt, - snt $\}$ is derivable. Let $\mathbb{G} r d$ denote the set of grounded sentences.
.6. The depth $\mathbb{D}(\Sigma)$ of a derivation tree Σ is zero if Σ ia an axiom; otherwise $\mathbb{D}(\Sigma)=1+\mathbb{D}\left(\Sigma^{\prime}\right)$
where Σ^{\prime} is Σ^{\prime} s deepest proper subtree.

1.3 Semantics

A term model for a formal system T is an interpretation for T whose domain of discourse is the set of constant terms defined in the elementary syntax for T. In this subsection we define a class of term models, called bases, for Pld.

1. Let $\pi \subseteq$ Par be any set of parameters. A base bse with domain $\delta(\pi)$ is any set bse of signed atomic sentences from $\Sigma(\pi)$ which satisfies the following three conditions:
1) For every atomic sentence asnt $\in \mathbb{E}(\pi)$, exactly one of $\pm a s n t$ is a member of bse.
2) For all terms t in $\delta(\pi),+t=t$ is in bse.
3) For all terms r, s in $\delta(\pi)$, if both of $+[r / x] a f m,-[s / x] a f m$ are in bse, then so is $-r=s$.

For the remainder of this paper, we use simply the term 'base' to mean 'base with domain $\delta(P a r)$ ' unless otherwise indicated.
.2. Let Set be a set of signed sentences. The semantic successor $\mathbb{S e}(\mathbb{S e t})$ of $\mathbb{S e t}$ is the smallest set satisfying the following semantic rules:
.1. If respectively $\pm \mathbf{A}$ is in Set, then respectively $\mp \neg \mathbf{A}$ is in $\operatorname{Sc}(\mathbb{S e t})$.
.2. If each of $+\mathbf{A},+\mathbf{B}$, respectively, one of $-\mathbf{A},-\mathbf{B}$, is in Set, then respectively $\pm(\mathbf{A} \wedge \mathbf{B})$ is in $S c(S e t)$.
.3. If one of $-\mathbf{A},+\mathbf{B}$, respectively, each of $+\mathbf{A},-\mathbf{B}$, is in Set, then respectively $\pm(\mathbf{A} \rightarrow \mathbf{B})$ is in $\operatorname{Sc}(\operatorname{Se} t)$.
.4. If Set contains $+[t / x] F$ for all t in $\delta(P a r)$, respectively, $-[t / x] F$ for some t in $\delta(P a r)$, then respectively $\pm(x) F$ is in $\operatorname{Sc}(\operatorname{Set})$.
.5. If each of $+[t / x] \Phi,+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)$, and one of, respectively, $\pm[t / u] F$, is in Set, then respectively $\pm[u x . \Phi / u] F$ is in $\mathbb{S c}(\mathbb{S e t})$, where t is a constant, possibly non-basic, term.

In the semantic rule 1.3.2.5. for descriptions, let ${ }^{\prime}+[t / x] \Phi^{\prime},{ }^{\prime}+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=$ $v)$ ' be said to denote the signed sentence which is the existence, respectively, uniqueness, presupposition of an instance of $1.3 .2 .5 .{ }^{\prime} \pm[t / u] F^{\prime}$ will be said to denote the signed sentence which is the major statement of an instance of 1.3.2.5.. We have then, a rule which is the obvious semantic analog to the derivational rule 1.2.2.7. for descriptions. Note the assymetric treatment descriptions receive semantically: 1.3.2.5. has no dual rule treating the cases where one of the presuppositions of an instance of the rule is false, i.e., of negative signature, in bse.
.3. Let Set be a set of signed sentences. We define by transfinite induction on μ a sequence $\left\langle\right.$ Set $\left._{\mu}\right\rangle$ as follows:
.0. Set $_{0}=$ Set ;
.1. $\operatorname{Set}_{\mu+1}=\operatorname{Set}_{\mu} \cup \mathbb{S c}\left(\operatorname{Set}_{\mu}\right)$ for successor ordinals μ;
.2. $\operatorname{Set}_{\mu}=\bigcup_{\operatorname{Set}_{\beta}}, 0 \leq \beta<\mu$ for limit ordinals μ.
.4. The semantic closure $\mathbb{C l}(b s e)$ of $b s e$ is the union set of the $b s e_{\mu}$ for ordinals μ less than the first nondenumerable ordinal, i.e., $\mathbb{C l}(b s e)=b s e_{\in 0}$.
.5. Let bse be a base. A sequent Seq is valid for bse iff $[\underline{t} / \boldsymbol{p}] \operatorname{Seq} \cap \mathbb{C l}(b s e) \neq \varnothing$, where p is an n-ary vector on Par which contains all of the parameters which occur in signed sentences of Seq and t is any n-ary vector on $\delta(P a r)$.
6. A sequent Seq is valid iff $S_{e q}$ is valid for all bases. A sentence $s n t$ is valid iff $\{+s n t\}$ is a valid sequent.

Lemma 1.3.7: $S c(C l(b s e)) \subseteq \mathbb{C l}(b s e)$.

Proof of 1.3.7.: Suppose otherwise, i.e., suppose $\mathbb{S c}(\mathbb{C l}(b s e)) \supset \mathbb{C l}(b s e)$. Then there is a sequence $b s e_{0}, \ldots ., b s e_{\in_{0}}, S c(C l(b s e))$ of sets of signed sentences each of which properly includes its immediate predecessor. But this sequence is order type $\epsilon_{o}+1$, and so is of nondenumerable cardnality. Hence, there are nondenumerably many distinct sentences of Pld. But

Pld has only denumerably many sentences. Contradiction.

We should note that it is possible to define the semantic closure $\mathbb{C l}(b s e)$ of a base bse by finite induction only as $b s e_{\omega}$. That is, one can show by induction on $i, 0 \leq i<\omega$, that $\operatorname{Sc}\left(b s e{ }_{\omega}\right)$ $\supset b s e_{\omega}$. However, we maintain definition 1.3.4. of $\mathbb{C l}(b s e)$ as $b s e_{\in O}$ since that definition makes the proof of 1.3.7. much easier than would otherwise be the case.

Note that since the semantic rule 1.2.3.4. limits the range of the universal quantifier to the set $\delta($ Par) of constant basic terms, and since no description terms occur in any sentence of any base, the bases we are considering all have $\delta($ Par $)$ as their domain of individuals. Hence, description terms play no semantic role in the class of term models defined in 1.3.. Rather, the role that description terms play in Pld is of a purely syntactic nature: descriptions function in the logical syntax (specifically, through the rule of universal specification, .5.-) to abbreviate the results of certain formal deductions and hence to facilitate certain further deductions, deductions which can be achieved without the use of descriptions. Hence, although, Pld is nominalistically interpreted, in the sense that its models are syntactic, description terms do not function as individuals in those models. The fact that description terms do not belong to the domain of individuals in our term models is expressed by lemma 1.3.10. below which "says" that a description term will "bear a range of properties" relative to a given model of Pld only if there is a basic term which bears the same range of properties. This fact proves crucial to the proof (lemma 1.3.9.) that the class of term models we have defined "obey the law of noncontradiction" in the sense that no sentence is assigned both the value true and the value false relative to any given model.

Lemma 1.3.8: Let bse be any base and let $\boldsymbol{r}, \boldsymbol{s}$ be any terms in $\delta(P a r)$ such that the signed sentence $+r=s$ is in $\mathbb{C l}(b s e)$. Then, for all formulas F, if $\pm[s / x] F$ is in $b s e_{\mu}$, so is respectively $\pm[r / x] F$.

Proof of 1.3.8: Suppose $+\boldsymbol{r}=s$ is in $\mathbb{C l}(b s e)$. Then, since $+\boldsymbol{r}=s$ is atomic, $+\boldsymbol{r}=s$ is in $b s e$. We show by transfinite induction on μ in definition 1.3.3. that for all μ, if $\pm[s / x] F$ is in $b s e_{\mu}$, so is respectively $\pm[r / x] F$. So let $\pm[s / x] F$ be any signed sentence in $b s e_{\mu}$. Clearly, we may
assume that \boldsymbol{x} occurs free in \boldsymbol{F}, since otherwise the claim holds vacuously.

Base step: $\mu=0$. By clause 1) of definition 1.3.1., since bse contains $+r=s$, bse does not contain $-\boldsymbol{r}=\boldsymbol{s}$. Hence, by the contrapositive of clause 3) of 1.3.1., for every atomic formula afm, if $\pm[s / x] a f m$ is in $b s e_{\mu}$, then so is respectively $\pm[r / x] a f m$. But bse contains atomic formulas only, so the claim holds.

Induction step: Assume that for all $\beta<\mu$, for all formulas G, if $\pm[s / x] G$ is in $b s e_{\beta}$, so is respectively $\pm[\boldsymbol{r} / \boldsymbol{x}] \boldsymbol{G}$. We want to show that respectively $\pm[\boldsymbol{r} / \boldsymbol{x}] \boldsymbol{F}$ is in $b s e_{\mu}$:

For limit ordinals μ : Since $\pm[s / x] F$ is in $b s e_{\mu}$, and $b s e_{\mu}=\bigcup_{b s e_{\beta}, 0 \leq \beta<\mu \text {, respectively }}$ $\pm[s / \boldsymbol{x}] \boldsymbol{F}$ is in $b s e_{\beta}$ for some $\beta<\mu$. By the hypothesis of induction, then, respectively $\pm[\boldsymbol{r} / \boldsymbol{x}] F$ is in $b s e_{\beta} \subseteq b s e_{\mu}$.

Successor ordinals μ : By the hypothesis of induction, we may assume that $\pm[s / x] F$ is not in bse ${ }_{\beta}$ for any $\beta<\mu$, since otherwise respectively $\pm[r / x] F$ is in $b s e_{\beta} \subseteq b s e_{\mu}$. Then, since $b s e_{\mu}=b s e_{\mu-1}$ $\cup \mathbb{S c}\left(b s e_{\mu-1}\right), \pm[\boldsymbol{s} / \boldsymbol{x}] F$ is in $\mathbb{S c}\left(b s e_{\mu-1}\right)$. There are five main cases:
i) $\pm[s / x] F$ is in $\mathbb{S c}\left(b s e_{\mu-1}\right)$ by virtue of an instance of the semantic rule 1.3.2.1. and is respectively of the form $\pm[s / x] \neg G \cong \pm \neg[s / x] G$ for some formula G. Then respectively $\pm[s /$ $x] G$ is in $b s e_{\mu-1}$. So, by the hypothesis of induction, respectively $\pm[r / x] G$ is in $b s e_{\mu-1}$. Then, by 1.3.2.1., respectively $\mp \neg[r / x] G \cong \pm[r / x] \neg G \cong \pm[r / x] F$ is in $\mathbb{S c}\left(b s e_{\mu}\right) \subseteq b s e_{\mu}$.
ii) $\pm[s / x] F$ is in $\operatorname{Sc}\left(b s e_{\mu-1}\right)$ by virtue of an instance of the semantic rule 1.3.2.2. and is respectively of the form $\pm[s / x](G \wedge H) \cong \pm([s / x] G \wedge[s / x] H)$. Then each of $+[s / x] G,+[s$ $/ x] H$, respectively, one of $-[s / x] G,-[s / x] H$, is in $b s e_{\mu-1}$. So, by the hypothesis of induction each of $+[r / x] G,+[r / x] H$, respectively, one of $-[r / x] G,-[r / x] H$, is in $b s e_{\mu-1}$. By 1.3.2.2., then, respectively $\pm([r / x] G \wedge[r / x] H) \cong \pm[r / x](G \wedge H) \cong \pm[r / x] F$ is in $\mathbb{S c}\left(b s e_{\mu}\right)$ $\subseteq b s e_{\mu}$.
iii) $\pm[s / x] F$ is in $S c\left(b s e_{\mu-1}\right)$ by virtue of an instance of the semantic rule 1.3.2.3.. This case is
similar to ii).
iv) $\pm[s / x] F$ is in $S c\left(b s e_{\mu-1}\right)$ by virtue of an instance of the semantic rule 1.3.2.4. and is respectively of the form $\pm[s / x](y) G \cong \pm(y)[s / x] G$ for some formula G. Then $b s e_{\mu-1}$ contains $+[t / y][s / x] G \cong+[s / x][t / y] G$ for all t in $\delta(P a r)$, respectively, $-[t / y][s / x] G \cong-[s / x][t /$ $y] G$ for some t in $\delta(P a r)$. So, by the hypothesis of induction, bse ${ }_{\mu-1}$ contains $+[r / x][t / y] G \cong$ $+[t / y][r / x] G$ for all t in $\delta($ Par $)$, respectively, $-[r / x][t / y] G \cong-[t / y][r / x] G$ for some t in $\delta($ Par $)$. Hence, by 1.3.2.4., $\mathbb{S c}\left(b s e_{\mu}\right) \subseteq b s e_{\mu}$ contains respectively $\pm(y)[r / x] G \cong \pm[r / x](y) G$ $\cong \pm[r / x] F$.
v) $\pm[s / x] F$ is in $S c\left(b s e_{\mu-1}\right)$ by virtue of an instance \mathbb{I} of the semantic rule 1.3.2.5. for descriptions and is respectively of the form $\pm[s / x][\tau y . \Phi / u] G$ for some constant description term $\mathfrak{v y .} \Phi$ and formula G. Since s is a constant term, we may rewrite the sentence $[s / x][t y . \Phi /$ $u] G$ as $[\boldsymbol{y} .[s / x] \Psi / u][s / x] G$ for some formula Ψ such that $\Phi \cong[s / x] \Psi$. Then, since $\pm[\imath y .[s / x] \Psi / u][s / x] G$ is in $\mathbb{S c}\left(b s e_{\mu-1}\right)$ by virtue $\mathbb{I}, b s e_{\mu-1}$ contains both of the presuppositions $+[t / y][s / x] \Psi,+(y)(v)(([s / x] \Psi \wedge[v / y][s / x] \Psi) \rightarrow y=v)$, as well as the major statement respectively $\pm[t / u][s / x] G$ for some constant term t. Since both of t, s are constant terms, the presuppositions may be written as: $+[s / x][t / y] \Psi,+[s / x](y)(v)((\Psi \wedge[v /$ $y] \Psi) \rightarrow y=v$) and the major statement may be respectively rewritten as $\pm[s / x][t / u] G$. Then, by the hypothesis of induction, bse $\mu_{\mu-1}$ contains both of $+[r / x][t / y] \Psi,+[r / x](y)(v)((\Psi \wedge[v /$ $y] \Psi) \rightarrow \boldsymbol{y}=v$, respectively $\pm[r / x][t / u] G$. Again, these signed sentences may be written as: $+[t / y][r / x] \Psi,+(y)(v)(([r / x] \Psi \wedge[v / y][r / x] \Psi) \rightarrow y=v)$, respectively $\pm[t / u][r / x] G$. Since $b s e_{\mu-1}$ contains all of $+[t / y][r / x] \Psi,+(y)(v)(([r / x] \Psi \wedge[v / y][r / x] \Psi) \rightarrow y=v)$, respectively $\pm[t / u][r / x] G$, by 1.3.2.5., $\mathbb{S c}\left(b s e_{\mu}\right) \subseteq b s e_{\mu}$ contains respectively $\pm[t y .[r / x] \Psi /$ $u][r / x] G \cong \pm[r / x] F$.

Lemma 1.3.9: Let bse be any base, snt any sentence. Then, for all ordinals μ, not both of \pm snt are in $b s e_{\mu}$.

Lemma 1.3.10.: Let bse be any base. Then, for all ordinals μ, for evey constant description term
$u x . \Phi$, there is a basic term $\boldsymbol{t}_{\mathbf{x} . \Phi}$ in $\delta($ Par $)$ such that for all formulas F, if $\pm[u x . \Phi / u] F$ is a signed sentence in $b s e_{\mu}$, then respectively $\pm\left[t_{u . \Phi} / u\right] F$ is in $b s e_{\mu} . t_{u x . \Phi}$ is called a descriptum for $\mathfrak{l x} . \Phi$ in bse.

Proof of 1.3.9. and 1.3.10.: We prove 1.3.9., 1.3 .10 by simultaneous transfinite induction on μ in definition 1.3 .3 . showing that all ordinals μ satisfy both of 1.3.9., 1.3.10.. Let bse be any base.

Base step: $\mu=0$. Since $b s e_{0}=b s e$ is a base, by condition 1) of definition 1.3.1., not both of $\pm s n t$ are in $b s e_{0}$. So 1.3.9. holds. Since $b s e_{0}=b s e$ contains signed atomic sentences only, and no atomic sentence contains an occurrence of any description term, 1.3.10. holds vacuously.

Induction step: $\mu>0$. Assume that for all $\beta<\mu, b s e_{\beta}$ satisfies both of 1.3.9., 1.3.10.. That is, assume that a) for all $\beta<\mu$, not both of $\pm s n t$ are in $b s e_{\beta}$, and b) for all $\beta<\mu$, for evey constant
 $/ u] F$ is a signed sentence in $b s e_{\beta}$, then respectively $\pm\left[t_{u_{x . \Phi}} / u\right] F$ is in $b s e_{\beta}$. We need to show that $b s e_{\mu}$ satisfies both of 1.3.9., 1.3.10..

For limit ordinals μ : Since $b s e_{\mu}=\bigcup_{b s e_{\beta}}, 0 \leq \beta<\mu$, both of 1.3.9., 1.3.10., hold trivially for $b s e_{\mu}$ by the hypothesis of induction.

For successor ordinals μ : We show first that $b s e_{\mu}$ satisfies 1.3.10.. Let $w x . \Phi$ be any description term. We want to show that there is a $t_{u x . \Phi}$ in $\delta($ Par $)$ such that for all formulas F, if $\pm[u x . \Phi / u] F$ is a signed sentence in $b s e_{\mu}$, then respectively $\pm\left[t_{\text {x. } \Phi} / u\right] F$ is in $b s e_{\mu}$. Clearly, we may assume that $\mathrm{x} . \Phi$ occurs in a signed sentence ssnt belonging to $b s e_{\mu}$, since otherwise the claim holds vacuously. There are two main cases:
a) For no $\gamma<\mu$, constant term t, variable v, does bse γ_{γ} contain both of the signed sentences $+[t /$ $x] \Phi,+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)$. Since $v x . \Phi$ occurs in some signed sentence ssnt belonging to $b s e_{\mu}$ and $\left\langle b s e_{\mu}\right\rangle$ is well ordered under \subseteq, there is a least $\gamma \leq \mu$ such that x. Φ occurs in some signed sentence ssnt belonging to $b s e_{\gamma}$. Since $b s e_{0}$ contains signed atomic sentences
only, $\gamma \neq 0$. If γ is a nonzero limlt ordinal, then there is a $\beta<\gamma$ such that $s s n t \in b s e_{\beta}$. Hence, γ is a successor ordinal. Let $t_{\text {u. } \Phi}$ be any term in $\delta($ Par $)$. Now, we show by induction on α that for all $\alpha, \gamma \leq \alpha \leq \mu$, for all formulas F, if $\pm[u x . \Phi / u] F$ is in $b s e_{\alpha}$, then respectively $\pm\left[t_{\boldsymbol{x . ~}^{\Phi}} / u\right] F$ is in $b s e_{\alpha}$. Clearly, our desired result that for all formulas F, if $\pm[u x . \Phi / u] F$ is a signed sentence in $b s e_{\mu}$, then respectively $\pm\left[t_{\mathrm{xx.} \mathrm{\Phi}^{\Phi}} / u\right] F$ is in $b s e_{\mu}$, will follow from this result. So assume that the signed sentence $\pm[u x . \Phi / u] F$ is in $b s e_{\alpha}$

Base step: $\alpha=\gamma$. Now, since γ is a successor ordinal, by definition 1.3.3., bse ${ }_{\gamma}=b s e_{\gamma-1} \cup$ $\operatorname{Sc}\left(\right.$ bse $\left._{\gamma-1}\right)$. Since $1 x . \Phi$ does not occur in any signed sentence inbse $\gamma_{\gamma-1}$ it follows that $\pm[u x . \Phi /$ $u] F$ is in $b s e_{\gamma}$ by virtue of being in $\mathbb{S c}\left(b s e_{\gamma-1}\right)$. Since $x . \Phi$ is a constant term and bse ${ }_{\gamma-1}$ does not contain the presuppositions to any instance of semantic rule 1.3.2.5., $\pm[u x . \Phi / u] F$ is obtained in $\mathbb{S c}\left(b s e_{\gamma-1}\right)$ by an instance \mathbb{I} of one of the semantic rule 1.3.2.2., 1.3.2.3.. We will assume that \mathbb{I} is an instance \mathbb{I} of 1.3.2.2., since the other case is similar. Then $\pm[u x . \Phi / u] F$ is of the form $-(A$ $\wedge[\boldsymbol{x} . \Phi / \boldsymbol{u}] \boldsymbol{H})$ for some sentence \mathbf{A} and formula \boldsymbol{H} containing free occurrence of \boldsymbol{u}., where $b s e_{\gamma_{-1}}$ contains the the signed sentence -A. Then by an instance of 1.3.2.2., $\mathbb{S c}\left(b s e_{\gamma-1}\right)$ contains the signed sentence $-\left(\mathbf{A} \wedge\left[t_{u_{x} \Phi} / u\right] H\right) \cong-\left[t_{\text {ux. }_{\Phi}} / u\right] F$. So the claim holds.

Induction step: $\alpha>\gamma$. Assume c) that that for all $\beta, \gamma \leq \beta<\alpha$, for all formulas F, if $\pm[u x . \Phi /$ $u] F$ is in $b s e_{\beta}$, then respectively $\pm\left[t_{\boldsymbol{x x}_{\Phi}} / u\right] F$ is in $b s e_{\beta}$. We want to show that for all formulas F, if $\pm[u x . \Phi / u] F$ is in $b s e_{\alpha}$, then respectively $\pm\left[t_{x . \Phi} / u\right] F$ is in $b s e_{\alpha}$. So let F be any formula such that $\pm[u x . \Phi / u] F$ is a signed sentence in $b s e_{\alpha}$ We show that respectively $\pm\left[t_{u x . \Phi}\right.$ $/ u] F$ is in $b s e_{\alpha}$. For limit ordinals α : Since $b s e_{\alpha}=\bigcup_{b s e_{\beta}, 0 \leq \beta<\alpha, \text { the claim holds trivially }}$ by hypothesis of induction c). For successor ordinals α : We may assume that for no $\beta<\alpha$ is $\pm[u x . \Phi / u] F$ in $b s e_{\alpha}$, since otherwise, by the hypothesis of induction, the claim holds trivially. Then $\pm[u x . \Phi / u] F$ is in $\operatorname{Sc}\left(b s e_{\alpha-1}\right)$. Since $\alpha-1<\mu$ and no for no $\beta<\mu$ does $b s e_{\beta}$ contain the presuppositions to any instance of 1.3.2.5., there are just four cases:
i) $\pm[u x . \Phi / u] F$ is obtained in $S c\left(b s e_{\alpha-1}\right)$ by an application of semantic rule 1.3.2.1. and is respectively of the form $\pm[u x . \Phi / u]-G$, for some formula G. Then $b s e_{\alpha-1}$ contains repectively
$\mp[u x . \Phi / u] G$ and so, by the hypothesis of induction $c)$, contains $\mp\left[t_{x . \Phi} / u\right] G$. Hence, by
 ii) $\pm[u x . \Phi / u] F$ is obtained in $\mathbb{S c}\left(b s e_{\alpha-1}\right)$ by an application of semantic rule 1.3.2.2. and is respectively of the form $\pm[u x . \Phi / u](G \wedge H)$, for some formulas G, H. Then $b s e_{\alpha-1}$ contains both of $+[u x . \Phi / u] G,+[u x . \Phi / u] H$, respectively one of $-[u x . \Phi / u] G,-[u x . \Phi / u] H$. By hypothesis of induction c), bse $e_{\alpha-1}$ contains both of $+\left[t_{\text {x. } \Phi} / u\right] G,+\left[t_{x . \Phi} u\right] H$, respectively one of $-\left[t_{u_{x . \Phi}} / u\right] G,-\left[t_{u_{x . \Phi}} / u\right] H$. Hence, by semantic rule 1.3.2.2., respectively $\pm\left[t_{x . \Phi} / u\right](G$ $\wedge H) \cong \pm\left[t_{\text {u. } \Phi} / u\right] F$ is in $\operatorname{Sc}\left(b s e_{\alpha-1}\right) \subseteq b s e_{\alpha}$.
iii) $\pm[u x . \Phi / u] F$ is obtained in $S c\left(b s e_{\alpha-1}\right)$ by an application of semantic rule 1.3.2.3. and is respectively of the form $\pm[u . \Phi / u](G \rightarrow \boldsymbol{H})$. This case is similar to ii).
iv) $\pm[u x . \Phi / u] F$ is obtained in $S c\left(b s e_{\alpha-1}\right)$ by an application of semantic rule 1.3.2.4. and is respectively of the form $\pm[u x . \Phi / u](v) G$, for some formula G. Then $b s e_{\alpha-1}$ contains $+[u x . \Phi /$ $u][s / v] G$ for all s in $\delta(P a r)$, respectively, $-[u x . \Phi / u][s / v] G$ for some s in $\delta(P a r)$. So, by hypothesis of induction c), $b s e_{\alpha-1}$ contains $+\left[t_{u_{x . \Phi}} / u\right][s / \nu] G$ for all s in δ (Par), respectively, $-\left[t_{u x . \Phi} / u\right][s / v] G$ for some s in $\delta(P a r)$. Since both of $s, t_{u_{x . \Phi}}$ are constant terms, $\pm\left[t_{\mathrm{Lx} . \Phi} /\right.$ $u][s / v] G \cong \pm[s / v]\left[t_{u_{x . \Phi}} / u\right] G$. So bse $e_{\alpha-1}$ contains $+[s / v]\left[t_{t_{x . \Phi}} / u\right] G$ for all s in $\delta($ Par $)$, respectively, $-[s / v]\left[t_{\mathbf{u r}_{. \Phi}} / \boldsymbol{u}\right] G$ for \boldsymbol{s} in $\delta(P a r)$. Hence, by semantic rule 1.3.2.4., respectively $\pm(v)\left[t_{u x . \Phi} / u\right] G \cong \pm\left[t_{x_{x . \Phi}} / u\right](v) G \cong \pm\left[t_{u_{x . \Phi}} / u\right] F$ is in $S c\left(b s e_{\alpha-1}\right) \subseteq b s e_{\alpha}$.

In all cases then, respectively $\pm\left[t_{\text {u. } \Phi} / u\right] F$ is in $b s e_{\alpha}$. This completes the induction step for case a).
b) For some $\gamma<\mu$, constant term t, variable \boldsymbol{v}, bse ${ }_{\gamma}$ contains both of the signed sentences $+[t /$ $x] \Phi,+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)$. Then, since $\left\langle b s e_{\mu}\right\rangle$ is well ordered under \subseteq, there is a least $\gamma<\mu$ such that for some $\gamma<\mu$, constant term t, variable $\nu, b s e_{\gamma}$ contains both of the signed sentences $+[t / x] \Phi,+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)$. Since $\gamma<\mu$, by hypothesis of induction b), we may assume that this t belongs to $\delta(P a r)$. So let $t_{\text {ux. } \Phi}$ be t. Now, we show by
induction on α that for all $\alpha, \gamma \leq \alpha \leq \mu$, for all formulas F, if $\pm[u x . \Phi / u] F$ is in $b s e_{\alpha}$, then respectively $\pm\left[t_{x . \Phi} / u\right] F$ is in $b s e_{\alpha}$. Clearly, our desired result that for all formulas F, if $\pm[u x . \Phi / u] F$ is a signed sentence in $b s e_{\mu}$, then respectively $\pm\left[t_{x . \Phi} / u\right] F$ is in $b s e_{\mu}$, will follow from this result. So assume that the signed sentence $\pm[u x . \Phi / u] F$ is in $b s e_{\alpha}$

Base step: $\alpha=\gamma$. Since for no $\beta<\gamma$ does $b s e_{\beta}$ contain the pressupositions to any instance of the semantic rule for descriptions 1.3.2.5., it follows by the argument given in case a) above that for all formulas F, if $\pm[u x . \Phi / u] F$ is in $b s e_{\gamma}$, then respectively $\pm\left[t_{u x . \Phi} / u\right] F$ is in $b s e_{\gamma}$.

Induction step: $\alpha>\gamma$. Assume c) that that for all $\beta, \gamma \leq \beta<\alpha$, for all formulas F, if $\pm[\tau x . \Phi /$ $u] F$ is in $b s e_{\beta}$, then respectively $\pm\left[t_{u_{x . \Phi}} / u\right] F$ is in $b s e_{\beta}$. We want to show that for all formulas F, if $\pm[u x . \Phi / u] F$ is in $b s e_{\alpha}$, then respectively $\pm\left[t_{u x . \Phi} / u\right] F$ is in $b s e_{\alpha}$. So let F be any formula such that $\pm[u x . \Phi / u] F$ is a signed sentence in $b s e_{\alpha}$ We show that respectively $\pm\left[t_{\tau x . \Phi}\right.$ $/ u] F$ is in $b s e_{\alpha}$. For limit ordinals $\alpha:$ Since $b s e_{\alpha}=\bigcup_{b s e_{\beta}}, 0 \leq \beta<\alpha$, the claim holds trivially by hypothesis of induction c). For successor ordinals α : We may assume that for no $\beta<\alpha$ is $\pm[\tau x . \Phi / u] F$ in $b s e_{\alpha}$, since otherwise, by the hypothesis of induction, the claim holds trivially. Then $\pm[u x . \Phi / u] F$ is in $\mathbb{S c}\left(b s e_{\alpha-1}\right)$. There are five subcases: subcases in which $\pm[u x . \Phi / u] F$ is in $S c\left(b s e_{\alpha-1}\right)$ by virtue of an instance \mathbb{I} of one of semantic rules 1.3.2.1, 1.3.2.2., 1.3.2.3., 1.3.2.4., are treated as subcases i) - iv) of case a) above. So we consider only the subcase where II is an instance of the semantic rule for descriptions 1.3.2.5. Then there are two sub-subcases:

1) It is not the case that, for some constant term r and variable v, both of the following hold:
i) the presuppositions to \mathbb{I} are of the form $+[r / x] \Phi,+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)$.
ii) the major statement to \mathbb{I} is respectively of the form $\pm[r / u] F$.

Then F is of the form $[i z \Psi / y] G$, for some constant description term $i z . \Psi$ and formula G, and the presuppositions, respectively, major statement to \mathbb{I} are of the form $+[s / z] \Psi,+(z)(v)((\Psi \wedge$ $[v / z] \Psi) \rightarrow z=v)$, respectively, $\pm[1 x . \Phi / u][s / y] G \cong \pm[s / y][u x . \Phi / u] G$, for some constant term s and variable v. So bse $e_{\alpha-1}$ contains all of $+[s / z] \Psi,+(z)(v)((\Psi \wedge[v / z] \Psi) \rightarrow$ $z=v$), respectively $\pm[u x . \Phi / u][s / y] G$. Then by hypothesis of induction c$),$ bse $e_{\alpha-1}$ contains
all of $+[s / z] \Psi,+(z)(v)((\Psi \wedge[v / z] \Psi) \rightarrow z=v)$, respectively $\pm\left[t_{x . \Phi} / u\right][s / y] G \cong \pm[s /$ $y]\left[t_{u x . \Phi} / u\right] G$. So, by semantic rule 1.3.2.5., $\operatorname{Sc}\left(b s e_{\alpha-1}\right) \subseteq b s e_{\alpha}$ contains respectively $\pm[1 z . \Psi$ $/ y]\left[t_{\text {ux. } \Phi} / u\right] G \cong \pm\left[t_{\text {Lx. } \Phi} / u\right][\tau z . \Psi / y] G \cong \pm\left[t_{\text {vx. } \Phi} / u\right] F$. So the claim holds.
2) The presuppositions to \mathbb{I} are of the form $+[r / x] \Phi,+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)$, and the major statement to \mathbb{I} is respectively of the form $\pm[\boldsymbol{r} / \boldsymbol{u}] \boldsymbol{F}$, for some constant term \boldsymbol{r} and variable v. So bse $\alpha_{\alpha-1}$ contains all of $+[r / x] \Phi,+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)$, respectively $\pm[r / u] F$. Since $\alpha-1<\mu$, by the hypothesis of induction b), we may assume that r is in $\delta(P a r)$. But we established that the signed sentence $+\left[t_{u_{x . \Phi}} / x\right] \Phi$ belongs to bse ${ }_{\gamma}$. Since $\gamma<\alpha$, bse ${ }_{\gamma} \subseteq$ $b s e_{\alpha-1}$. So all of $+\left[t_{u_{x . \Phi}} / x\right] \Phi,+[r / x] \Phi,+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)$, are in $b s e_{\alpha-1}$. Since $+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)$ is in $b s e_{\alpha-1}$, it is easily verified that by semantic rule 1.3.2.4. there is a $\beta<\alpha-1$ such that $+\left(\left(\left[t_{x . \Phi} / x\right] \Phi \wedge[s / x] \Phi\right) \rightarrow t_{t x . \Phi}=s\right)$ is in $b s e_{\beta}$. Then, it is easily verified that by semantic rule 1.3.2.3. there is a $\zeta<\beta$ such that one of $-\left(\left[t_{\mathrm{tx} . \Phi^{\prime}} /\right.\right.$ $x] \Phi \wedge[s / x] \Phi),+\left(t_{\mathrm{ux.} \Phi}=s\right)$ is in $b s e_{\zeta}$. Assume that $-\left(\left[t_{\mathrm{ux.}} / x\right] \Phi \wedge[s / x] \Phi\right) \in b s e_{\zeta}$. Then it is easily verified that by semantic rule 1.3.2.2. there is a $\lambda<\zeta$ such that one of $-\left[t_{\text {x. } \Phi} / x\right] \Phi$, $-[s / x] \Phi$ is in $b s e_{\lambda}$. Since $\lambda<\zeta<\beta<\alpha-1, \lambda<\alpha-1$, and hence $b s e_{\lambda} \subseteq b s e_{\alpha-1}$. So both of $+\left[t_{x . \Phi} / x\right] \Phi,+[s / x] \Phi$ and one of $-\left[t_{x_{x . \Phi}} / x\right] \Phi,-[s / x] \Phi$ is in $b s e_{\alpha-1}$. So there is a sentence snt such that both of \pm snt are in $b s e_{\alpha-1}$. Since $\alpha-1<\mu$, this contradicts hypothesis of induction a). So the signed sentence $+\left(t_{x . \Phi}=s\right)$ is in $b s e_{\zeta} \subseteq b s e_{\alpha-1}$. So by lemma 1.3.8., since $\pm[s / u] F$ is in $b s e_{\alpha-1}$, respectively $\pm\left[t_{\text {ux. } \Phi} / u\right] F$ is in $b s e_{\alpha-1} \subseteq b s e_{\alpha}$. So the claim holds.

In all cases, then, respectively $\pm\left[t_{x_{x} \Phi} / u\right] F$ is in $b s e_{\alpha}$ This completes the inner induction step of the proof that $b s e_{\mu}$ satisfies lemma 1.3.10.. Thus, the outer induction step of the proof that for all ordinals $\mu, b s e_{\mu}$ satisfies lemma 1.3.10., is now complete. We now complete the induction step of the proof that $b s e_{\mu}$ satisfies lemma 1.3.9.: Let $s n t$ be any sentence. Assume, contrary to that which is to be shown, that $b s e_{\mu}$ contains both of $\pm s n t$. Since the sequence $\left\langle b s e_{\mu}\right\rangle$ is well ordered under \subseteq, there are least $\beta, \gamma, 0<\beta, \gamma \leq \mu$, such that $+s n t \in b s e_{\beta}$ and $-s n t \in b s e_{\gamma}$. Now, by definition 1.3.3., $b s e_{\beta}=b s e_{\beta} \cup S c\left(b s e_{\beta-1}\right)$ and $b s e_{\gamma}=b s e_{\gamma-1} \cup S c\left(b s e_{\gamma-1}\right)$. Since for no ζ, α such that $\zeta<\beta$ and $\alpha<\gamma$ is $+s n t \in b s e_{\zeta},-s n t \in b s e_{\alpha}$ it follows that $+s n t \in \mathbb{S c}\left(b s e_{\beta-1}\right)$ and
$-s n t \in \operatorname{Sc}\left(b s e_{\gamma-1}\right)$. There are two cases:

1) snt contains no occurrence of any description term. Then there are just four subcases:
i) snt is of the form $\neg \mathbf{A}$ for some sentence \mathbf{A}. Then $+\neg \mathbf{A}$ is in $\mathbb{S c}\left(b s e_{\beta-1}\right)$ and $\neg \neg \mathbf{A}$ is in $\mathbb{S c}\left(b s e_{\gamma_{-1}}\right)$ by virtue of semantic rule 1.3.2.1.. and so $-\mathbf{A} \in b s e_{\beta-1}$ and $+\mathbf{A} \in b s e_{\gamma-1}$. Assume, without loss of generality, that $\gamma \leq \beta$. So $b s e_{\gamma-1} \subseteq b s e_{\beta-1}$ and hence both of $\pm \mathbf{A}$ are in $b s e_{\beta-1}$. Since $\beta \leq \mu, \beta-1<\mu$. So there is a $\beta<\mu$ such that both of $\pm \mathbf{A}$ are in $b s e_{\beta}$. This contradicts hypothesis of induction a).
ii) snt is of the form $(\mathbf{A} \wedge \mathbf{B})$ for some sentences \mathbf{A}, \mathbf{B}. Then $+(\mathbf{A} \wedge \mathbf{B})$ is in $\mathbb{S c}\left(b s e_{\beta-1}\right)$ and $-(\mathbf{A}$ $\wedge B)$ is in $\operatorname{Sc}\left(b s e_{\gamma-1}\right)$ by virtue of semantic rule 1.3.2.2. and so both of $+\mathbf{A},+\mathbf{B}$ are in $b s e_{\beta-1}$ and one of $-\mathbf{A},-\mathbf{B}$ is in $b s e_{\gamma-1}$. Assume, without loss of generality, that $\gamma \leq \beta$. Then both of $+\mathbf{A},+\mathbf{B}$ and one of $-\mathbf{A},-\mathbf{B}$ are in $b s e_{\beta-1}$. Then either both of $\pm \mathbf{A}$ or both of $\pm \mathbf{B}$ are in $b s e_{\beta-1}$. Since $\beta \leq$ $\mu, \beta-1<\mu$. So there is a $\beta<\mu$ and a sentence snt such that both of $\pm s n t$ are in bse ${ }_{\beta}$. This contradicts the hypothesis of induction a).
iii) snt is of the form $(\mathbf{A} \rightarrow \mathbf{B})$ for some sentences \mathbf{A}, \mathbf{B}. This case is similar to case ii) above.
iv) snt is of the form $(x) F$ for some formula F. Then $+(x) F$ is in $S c\left(b s e_{\beta-1}\right)$ and $-(x) F$ is in $S c\left(b s e_{\gamma-1}\right)$ by virtue of semantic rule 1.3.2.4. and so $+[t / x] F$ is in $b s e_{\beta-1}$ for all terms $t \in \delta($ Par $)$ and $-[\boldsymbol{r} / \boldsymbol{x}] \boldsymbol{F}$ is in $b s e_{\gamma-1}$ for some term $r \in \delta($ Par $)$. Assume, without loss of generality, that $\gamma \leq$ β. Then both of $+[r / x] F,-[r / x] F$ are in $b s e_{\beta-1}$. Since $\beta \leq \mu, \beta-1<\mu$. So there is a $\beta<\mu$ and a sentence $[\boldsymbol{r} / \boldsymbol{x}] F$ such that both of $\pm[r / x] F$ are in $b s e_{\beta}$. This contradicts hypothesis of induction a).
2) snt contains an occurrence of some description term and so is of the form $[u x . \Phi / u] F$ for some description term $u x . \Phi$ and formula F containing free occurrence of $u .$. In case neither + snt $\in \operatorname{Sc}\left(b s e_{\beta-1}\right)$ nor $-s n t \in \operatorname{Sc}\left(b s e_{\gamma-1}\right)$ by virtue of the semantic rule for descriptions 1.3.2.5., this case reduces to case 1) above. So assume, without loss of generality, that $+\operatorname{snt} \in \operatorname{Sc}\left(b s e_{\beta-1}\right)$ by
virtue of an instance $\mathbb{B} 1.3 .2$.5.. Then there are two subcases:
i) $-s n t \in \mathbb{S c}\left(b s e_{\gamma-1}\right)$ by virtue of an instance \mathbb{G} of 1.3.2.5.. Since $+[u x . \Phi / u] F \in \mathbb{S c}\left(b s e_{\beta-1}\right)$ by virtue of $\mathbb{B}, b s e_{\beta-1}$ contains the two presuppositions $+[s / x] \Phi,+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x$ $=v$), as well as the major statement $+[s / u] F$, to \mathbb{B}, for some constant term s and variable v. And since $-[u x . \Phi / u] F \in \mathbb{S c}\left(b s e_{\gamma-1}\right)$ by virtue $\mathbb{G}, b s e_{\gamma-1}$ contains the existential presupposition $+[\boldsymbol{r} / \boldsymbol{x}] \Phi$ and the major statement $-[\boldsymbol{r} / \boldsymbol{u}] F$ to \mathbb{G} for some constant terms r. Since $\gamma-1<\mu$, both of s, r may by hypothesis of induction b) be assumed to belong to δ (Par). Then, since $\gamma-1$ $<\mu$, it follows from hypothesis of induction a), by an argument similar to the one given in the outer induction step for the proof of lemma 1.3.10., that the signed sentence $+(\boldsymbol{s}=\boldsymbol{r})$ belongs to bse. So, by lemma 1.3.8., since both of $+(s=r),-[r / x] \Phi$ belong to $b s e_{\gamma-1}$, it follows that the signed sentence $-[s / x] \Phi$ belongs to $b s e_{\gamma-1}$. So both of $\pm[s / x] \Phi$ belong to bse $e_{\gamma-1}$. This contradicts hypothesis of induction a).
ii) $-s n t \in \mathbb{S c}\left(b s e_{\gamma-1}\right)$ by virtue of an instance \mathbb{G} of some semantic rule other than 1.3.2.5.. Since $+[u x . \Phi / u] F \in \mathbb{S c}\left(b s e_{\beta-1}\right)$ by virtue of $\mathbb{B}, b s e_{\beta-1}$ contains the two presuppositions $+[s / x] \Phi$, $+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)$, as well as the major statement $+[s / u] F$, to \mathbb{B}, for some constant term s and variable \boldsymbol{v}. Let us suppose that \mathbb{G} is an instance of 1.3.2.2.; the other cases are similar to this one. Then \boldsymbol{F} is of the form $(\boldsymbol{G} \wedge \boldsymbol{H})$ for some formulas G, \boldsymbol{H}. Since $-[u x . \Phi /$ $u](G \wedge H) \cong-([u x . \Phi / u] G \wedge[u x . \Phi / u] H) \in \mathbb{S c}\left(b s e_{\gamma-1}\right)$ by virtue of $\mathbb{G}, b s e_{\gamma-1}$ contains one of the signed sentences $-[\imath x . \Phi / u] G,-[i x . \Phi / u] H$. Now, since $\gamma-1<\mu$, it follows from hypothesese of induction a) and b), by the argument given in the outer induction step for the proof of lemma 1.3.10., that there are $\zeta<\gamma-1$ and $t_{x_{x . \Phi}} \in \delta($ Par $)$ such that $b s e_{\zeta}$ contains the signed sentence $+\left[t_{x_{x} \Phi} / x\right] \Phi$ and $b s e_{\gamma-1}$ contains one of the signed sentences $-\left[t_{u x . \Phi} / u\right] G,-\left[t_{u x . \Phi} /\right.$ $u] H$. Assume, without loss of generality, that $\gamma \leq \beta$. So $b s e_{\zeta} \subseteq b s e_{\gamma-1} \subseteq b s e_{\beta-1}$ and hence all of $+\left[t_{i x . \Phi} / x\right] \Phi,+[s / x] \Phi,+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v),+[s / u] F \cong+([s / u] G \wedge[s /$
 $x] \Phi,+[s / x] \Phi,+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)$ are in $b s e_{\beta-1}$, it follows from hypothesis of induction a) that the signed sentence $+\left(t_{\text {ux. } \Phi}=s\right)$ belongs to bse. So, by lemma 1.3.8., since
$+\left(t_{\mathrm{Lx} . \Phi}=s\right)$ and one of $-\left[t_{\mathrm{ux.} . \Phi} / u\right] G,-\left[t_{\mathrm{ux.} \mathrm{\Phi}} / u\right] H$ both belong to $b s e_{\beta-1}$, it follows that one of $-[s / u] G,-[s / u] H$ belongs to $b s e_{\beta-1}$.

Now, formulas $\boldsymbol{G}, \boldsymbol{H}$ are respectively of the form $[\underline{\mathrm{iz}}, \Psi / \underline{x}] G^{\prime},[\underline{[y . E} / \underline{x}] H^{\prime}$, for some formulas G^{\prime}, H^{\prime} containing no occurrences of any constant description terms, where the $\underline{1 z .} \Psi \cong$
 occurring in G, H. So $b s e_{\beta-1}$ contains $+[s / u] F \cong+([s / u] G \wedge[s / u] H) \cong+\left([s / u][\underline{z} . \Psi / x] G^{\prime}\right.$ $\wedge[s / u][\underline{\underline{v} . \Xi} / \underline{x}] H)$ and one of $-[s / u][\underline{z} . \Psi / \underline{x}] G^{\prime},-[s / u][\underline{v} . \underline{E} / \underline{x}] H^{\prime}$. Since $\beta-1<\mu$, by

 $u]\left[t_{\underline{12}, \Psi^{\prime}} / x\right] G^{\prime},-[s / u]\left[\underline{t}_{\underline{12}, E} / \underline{x}\right] H^{\prime}$. Now, since neither of G^{\prime}, H^{\prime} contain an occurrence of any
 constant description term. Since bse $_{\beta-1}$ contains $+\left([s / u]\left[t_{\underline{L z} \Psi^{\prime}} / \underline{x}\right] G^{\prime} \wedge[s / u]\left[t_{\underline{1 z},} / \underline{x}\right] H^{\prime}\right)$, there is a least $\zeta \leq \beta-1$ such that $b s e_{\zeta}$ contains $+\left([s / u]\left[t_{12,}, \Psi^{\prime} \underline{x}\right] G^{\prime} \wedge[s / u]\left[t_{[2, E} / x\right] H\right)$. So $+([s /$
 $\left.u]\left[t_{[1 z .} / E^{\prime}\right] H^{\prime}\right)$ contains no occurrence of any constant description term, $+\left([s / u]\left[\underline{t}_{\underline{t z}, \Psi^{\prime}} \underline{x}\right] G^{\prime} \wedge[s /\right.$ $\left.u]\left[t_{12}=\underline{E}^{\prime} \underline{x}\right] H^{\prime}\right)$ is in $S c\left(b s e_{\zeta-1}\right)$ by virtue of semantic rule 1.3.2.2.. So bse ${ }_{\zeta-1}$ contains both of $+[s$ $/ u]\left[t_{\underline{t z}, \Psi^{\prime}} / \underline{x}\right] G^{\prime},+[s / u]\left[t_{\underline{L z}-\bar{\xi}} / \underline{x}\right] H^{\prime}$. Since $b s e_{\zeta-1} \subseteq b s e_{\beta-1}$, it follows that $b s e_{\beta-1}$ contains both
 there is a $\beta<\mu$ and a sentence snt such that both of $\pm s n t$ are in $b s e_{\beta}$. This contradicts hypothesis of induction a).

In all cases then, the assumption that both of $\pm s n t$ are in $b s e_{\mu}$ leads to a contradiction. This completes the induction step of the proof that for all ordinals μ, bse ${ }_{\mu}$ satisfies lemma 1.3.9.. Thus, the proofs of lemmata 1.3.9. and 1.3.10. are now complteted.

Lemma 1.3.11.: Let bse be any base and let $u x . \Phi$ be any constant description term such that for some constant term r and variable $v, \operatorname{Cl}(b s e)$ contains both of the signed sentences $+[r / x] \Phi$, $+(x)(\boldsymbol{v})((\Phi \wedge[v / x] \Phi) \rightarrow x=v)$. Let $t_{\mathrm{ux} . \Phi} \in \delta($ Par $)$ be a descriptum of $u x . \Phi$ in bse. Then,
for all formulas F, if $\pm\left[t_{\mathbf{x x .}^{\prime}} / u\right] F$ is a signed sentence in $C l(b s e)$, then so is respectively $\pm[u x . \Phi$ $/ \boldsymbol{u}] \boldsymbol{F}$.

Proof of 1.3.11:: Let bse, $\boldsymbol{x} . \Phi$ and $t_{\mathrm{xx} . \Phi}$ be as above. Assume that, for some formula \boldsymbol{F}, $\pm\left[t_{u x . \Phi} / u\right] F$ is a signed sentence in $\mathbb{C l}(b s e)$. We want to show that respectively $\pm[u x . \Phi / u] F$ is in in $\mathbb{C l}(b s e)$. Since $\mathbb{C l}(b s e)=$ Ubse $_{\mu}, 0 \leq \mu<\epsilon_{0}$, respectively $\pm\left[t_{u_{x . \Phi}} / y\right] F$ is in $b s e_{\zeta}$ for some $\zeta<\epsilon_{0}$. Since $\mathbb{C l}(b s e)$ contains both of the signed sentences $+[r / x] \Phi,+(x)(v)((\Phi \wedge[v /$ $x] \Phi) \rightarrow x=v)$, there are $\beta, \gamma<\epsilon_{0}$ such that $+[r / x] \Phi \in b s e_{\beta}$ and $+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x$ $=v) \in b s e_{\gamma}$. Assume, without loss of generality, that $\beta<\gamma$. Then $b s e_{\beta} \subseteq b s e_{\gamma}$ and so $b s e_{\gamma}$ contains both of the signed sentences $+[r / x] \Phi,+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)$. So, by an instance of 1.3.2.5. whose major statement is $+[r / x] \Phi, S c\left(b s e_{\gamma}\right) \subseteq b s e_{\gamma+1}$ contains the signed sentence $+[u x . \Phi / x] \Phi$. Then by lemma 1.3.10., $b s e_{\gamma+1}$ contains the signed sentence $+\left[t_{x . \Phi} /\right.$ $x] \Phi$. There are two cases:
i) $\zeta \leq \gamma$. Then $b s e_{\gamma+1}$ contains both of $+\left[t_{v . \Phi} / x\right] \Phi,+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)$, as well as respectively $\pm\left[t_{i x . \Phi} / y\right] F$. Hence, by 1.3.2.5., $\mathbb{S c}\left(b s e_{\gamma+1}\right) \subseteq \mathbb{C l}(b s e)$ contains respectively $\pm[\boldsymbol{x} . \Phi / y] F$.
ii) $\zeta>\gamma$. Then $b s e_{\zeta}$ contains both of $+\left[t_{\text {v. } \Phi} / x\right] \Phi,+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)$, as well as respectively $\pm\left[t_{\mathbf{x x . ~}^{\prime}} / \boldsymbol{y}\right] \boldsymbol{F}$. Hence, by 1.3.2.5., $\mathbb{S c}\left(\right.$ bse $\left._{\zeta}\right) \subseteq \mathbb{C l}($ bse $)$ contains respectively $\pm[u x . \Phi / y] F$.

The significance of lemma 1.3.10. is that it guarantees that for every base bse and every constant description term \boldsymbol{t}, there is a basic terms representing or "covering" \boldsymbol{t} in bse. This fact is crucial to the soundness proof of the next section.

Section 2: A Soundness Result for Pld.

We say that Pld is semantically sound iff every derivable sequent is valid. In this section we show that Pld is (semantically) sound.

Lemma 2.0.: Let bse be any base, s any constant term, ux. Φ any constant description term, and F any formula containing free occurrence of the variable u. Then, for all ordinals μ, ifbse ${ }_{\mu}$ contains both of the signed sentences respectively $\pm[s / u] F, \mp[u x . \Phi / u] F$, then, for some constant term t and variable $v, b s e_{\mu}$ contains both of the signed sentences $+[t / x] \Phi,+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow$ $x=v$).

Proof of 2.0:: Let bse be any base, s any constant term, $u x . \Phi$ any constant description term, and F any formula containing free occurrence of the variable u. Assume that bse μ_{μ} contains both of respectively $\pm[s / u] F, \mp[u x . \Phi / u] F$, and, contrary to that which is to be shown, for no constant term t and variable v does $b s e_{\mu}$ contain both of the signed sentences $+[t / x] \Phi,+(x)(v)((\Phi \wedge[v /$ $x] \Phi) \rightarrow x=v$). By definition 1.3.3., bse $\mu_{\mu}=\bigcup_{b s e}, 0 \leq \beta<\mu$, so, since $\mp[u x . \Phi / u] F$ belongs to $b s e_{\mu}$, there is a $\beta \leq \mu$ such that $\mp[u x . \Phi / u] F \in b s e_{\beta}$. Now, since $u x$. Φ occurs in the signed sentence $\mp[u x . \Phi / u] F \in b s \dot{e}_{\beta}$ and $\left\langle b s e_{\mu}\right\rangle$ is well ordered under \subseteq, there is a least $\zeta \leq \beta$ such that $u x$. Φ occurs in some signed sentence $s s n t$ in $b s e_{\zeta}$. We now establish the following claim:

Claim: Let \boldsymbol{F} be any formula containing free occurrence of a variable \boldsymbol{u} ands be any constant term such that $b s e_{\mu}$ contains both of the signed sentences respectively $\pm[s / u] F, \mp[u x . \Phi / u] F$. Then, there is $\beta \leq \mu$ such that for no $\gamma<\beta$ does $\mathbf{u x}$. Ф occur in any signed sentence in bse γ_{γ} and for some sentence \mathbf{A} and formula \boldsymbol{G} containing free occurrence of \boldsymbol{u}, one of the following two conditions holds:
i) there is a sentence of the form $(\mathrm{A} \wedge[s / u] G),([s / u] G \wedge A)$ such that $b s e_{\beta}$ contains the signed sentence $-(\mathbf{A} \wedge[\boldsymbol{x} . \Phi / u] G),-([s / u] G \wedge \mathbf{A})$ as well as the signed sentence $+(\mathbf{A} \wedge[s / u] G)$,
$+([s / u] G \wedge \mathbf{A})$
ii) there is a sentence of the form $(\mathbf{A} \rightarrow[s / u] G),([s / u] G \rightarrow \mathbf{A})$ such that $b s e_{\beta}$ contains the signed sentence $+(\mathbf{A} \rightarrow[u x . \Phi / u] G),+([u x . \Phi / u] G \rightarrow \mathbf{A})$ as well as the signed sentence $-(\mathbf{A}$ $\rightarrow[s / u] G),-([s / u] G \rightarrow \mathbf{A})$.

Proof of claim: Let \boldsymbol{F} be any formula containing free occurrence of \boldsymbol{u} ands be any constant term such that $b s e_{\mu}$ contains both of the signed sentences respectively $\pm[s / u] F, \mp[u x . \Phi / u] F$. We show by induction on μ for $\mu \geq \zeta$ that there is $\beta \leq \mu$ such that for no $\gamma<\beta$ does $u x$. Φ occur in any signed sentence in $b s e_{\gamma}$ and for some sentence \mathbf{A} and formula \boldsymbol{G} containing free occurrence of \boldsymbol{u}, one of conditions i), ii) hold.

Base step: $\mu=\zeta$. Clearly, μ is a successor ordinal. So $b s e_{\mu}=b s e_{\mu-1} \cup \mathbb{S c}\left(b s e_{\mu-1}\right)$. Since $\mp[u x . \Phi / u] F \in b s e_{\mu}$ and for no $\beta<\mu=\zeta$ does $\mp[u x . \Phi / u] F$ occur in $b s e_{\beta}$, it follows that $\mp[u x . \Phi / u] F \in \mathbb{S c}\left(b s e_{\mu-1}\right)$ by virtue of an instance \mathbb{I} of some semantic rule. Since $u x . \Phi$ is a constant term and for no $\beta<\mu=\zeta$ does ωx. Φ occur in any signed sentence in $b s e_{\beta}$, it follows that II is not an instance of either of the semantic rules 1.3.2.1., 1.3.2.4.. By assumption, for no constant term t and variable v does $b s e_{\mu} \supset b s e_{\mu-1}$, and hence $b s e_{\mu-1}$, contain both of the signed sentences $+[t / x] \Phi,+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)$, so II is not an instance of the semantic rule for descriptions 1.3.2.5. Then there are just two cases:
a) II is an instance of the semantic rule 1.3.2.2.-.. Then, for some sentence \mathbf{A} containing no occurrence of $u x . \Phi$ and some formula G containing free occurrence of $u, \mp[u x . \Phi / u] F$ is of the form of one of $-(\mathbf{A} \wedge[u x . \Phi / u] G),-([u x . \Phi / u] G \wedge \mathbf{A})$, where $b s e_{\mu-1}$ contains $-\mathbf{A}$. Then $\pm[s /$ $u] F$ is of the form $+(\mathbf{A} \wedge[s / u] G),+([s / u] G \wedge \mathbf{A})$. So μ is such for no $\beta<\mu$ does $u x . \Phi$ occur in any signed sentence in $b s e_{\beta}$ and $b s e_{\mu}$ contains $-(\mathbf{A} \wedge[u x . \Phi / u] G),-([u . \Phi / u] G \wedge \mathbf{A})$ as well as $-(\mathbf{A} \wedge[u x . \Phi / u] G),-([u x . \Phi / u] G \wedge \mathbf{A})$. So condition i) holds.
b) I is an instance of the semantic rule 1.3.2.3.+.. Then, for some sentence \mathbf{A} containing no occurrence of $u x . \Phi$ and some formula G containing free occurrence of $u, \mp[u x . \Phi / u] F$ is of the
form of one of $+(\mathbf{A} \rightarrow[u x . \Phi / u] G),+([\nu x . \Phi / u] G \rightarrow \mathbf{A})$, where $b s e_{\mu-1}$ contains $-\mathbf{A},+\mathbf{A}$. Then $\pm[s / u] F$ is of the form $-(\mathbf{A} \rightarrow[s / u] G),-([s / u] G \rightarrow \mathbf{A})$. So μ is such for no $\beta<\mu$ does $u x . \Phi$ occur in any signed sentence in $b s e_{\beta}$ and $b s e_{\mu}$ contains $+(\mathrm{A} \rightarrow[u x . \Phi / u] G)$, $+([u x . \Phi / u] G \rightarrow \mathbf{A})$ as well as $-(\mathbf{A} \rightarrow[s / u] G),-([s / u] G \rightarrow \mathbf{A})$. So condition ii) holds.

In both cases, then, one of conditions i), ii) holds.

Induction step: $\mu>\zeta$. Assume that for all $\gamma, \zeta \leq \gamma<\mu$, for all formulas \boldsymbol{H} containing free occurrence of u and all constant terms t such that bse $\boldsymbol{\gamma}_{\gamma}$ contains both of the signed sentences respectively $\pm[t / u] H, \mp[u x . \Phi / u] H$ there is $\beta \leq \gamma$ such that for no $\gamma<\beta$ does \mathbf{x}. Φ occur in any signed sentence in $b s e_{\gamma}$ and for some sentence A and formula G containing free occurrence of u, one of conditions i), ii) hold.

For limit ordinals μ : The claim holds trivially by the hypothesis of induction.

For successor ordinals μ : Now, bse ${ }_{\mu}$ contains both of respectively $\pm[s / u] F, \mp[u x . \Phi / u] F$. Since by assumption s is a constant term, by lemma 1.3.10, we may assume that s is in $\delta(P a r)$. Let $v . \Psi$ be any constant description term occurring in F and let F^{\prime} be the result of uniformly replacing every occurrence of $\tau z \Psi$ in F by a descriptum $t_{z .} \Psi$ for $\tau . \Psi$ in bse whose existance is guaranteed by lemma 1.3.10. By lemma 1.3 .10, bse $_{\mu}$ contains both of respectively $\pm[s / u] F^{\prime}$, $\mp[u x . \Phi / u] F^{\prime}$. Since $b s e_{\mu}=\bigcup^{U} b s e_{\beta}, 0 \leq \beta<\mu$, and $\left\langle b s e_{\mu}\right\rangle$ is well ordered under \subseteq, there are least $\gamma, \beta \leq \mu$ such that $\pm[s / u] F^{\prime} \in b s e_{\gamma}$ and respectively $\mp[u x . \Phi / u] F^{\prime} \in b s e_{\beta}$. Clearly, β is a successor ordinal, and so $b s e_{\beta}=b s e_{\beta-1} \cup \mathbb{S c}\left(b s e_{\beta-1}\right)$. So $\mp[u x . \Phi / u] F^{\prime} \in \mathbb{S c}\left(b s e_{\beta-1}\right)$ by virtue of an instance \mathbb{G} of some semantic rule. Since F^{\prime} contains no occurrence of any constant description term, and for no constant term t and variable v does $b s e_{\mu} \supset b s e_{\beta-1}$, and therefore $b s e_{\beta-1}$, contain both of the signed sentences $+[t / x] \Phi,+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)$, it follows that \mathbb{G} is not an application of the rule for descriptions 1.3.2.5.. So there are just four cases:

1) \mathbb{G} is an instance of 1.3 .2 .1 .. Then F^{\prime} is of the form $\neg H$ for some formula H and so $\mp[u x . \Phi /$
$u] F^{\prime} \cong \mp[u x . \Phi / u] \neg H$. So bse $e_{\beta-1}$ contains respectively $\pm[u x . \Phi / u] H$. Now, bse $\boldsymbol{\gamma}_{\gamma}$ contains respectively $\pm[s / u] F^{\prime} \cong \pm[s / u] \neg H$. Since $[s / u] \neg H$ is not atomic, $\gamma \neq 0$. Clearly, then, γ is a successor ordinal, and so $b s e_{\gamma}=b s e_{\gamma_{-1}} \cup \operatorname{Sc}\left(b s e_{\gamma-1}\right)$. Since for no $\kappa<\gamma$ does $b s e_{\kappa}$ contain $\pm[s /$ $u] \neg \boldsymbol{H}$, it follows that $\pm[s / u] \neg H \in \mathbb{S c}\left(b s e_{\gamma-1}\right)$ by virtue of an instance \mathbb{B} of some semantic rule. Since $\pm[\boldsymbol{s} / \boldsymbol{u}] \boldsymbol{F}^{\prime} \cong \pm[\boldsymbol{s} / \boldsymbol{u}] \square \boldsymbol{H}$ contains no occurrence of any constant description term, it follows that \mathbb{B} is not an application of the rule for descriptions 1.3.2.5.. Then \mathbb{B} is an instance of 1.3.2.1.. So bse ${ }_{\gamma-1}$ contains respectively $\mp[s / u] H$. Assume, without loss of generality, that β $\geq \gamma$. Then $b s e_{\gamma-1} \subseteq b s e_{\beta-1}$ and so $b s e_{\beta-1}$ contains both of respectively $\pm[u x . \Phi / u] H, \mp[s / u] H$. Clearly, since \boldsymbol{u} has free occurrence in $\boldsymbol{F}^{\prime} \cong \neg \boldsymbol{H}$, it follows that \boldsymbol{u} has free occurrence in \boldsymbol{H}. Since $\beta \leq \mu, \beta-1<\mu$, so by the hypothesis of induction, there is $\eta \leq \beta-1$ such that for no γ $<\eta$ does $\mathbf{v x}$. Φ occur in any signed sentence in $b s e_{\gamma}$ and for some sentence A and formula G containing free occurrence of u, one of conditions i), ii) hold. Since $\beta \leq \mu, \eta \leq \mu$. Hence, there is a $\eta \leq \mu$ such that for no $\gamma<\eta$ does $u x . \Phi$ occur in any signed sentence in bse ${ }_{\gamma}$ and for some sentence \mathbf{A} and formula \boldsymbol{G} containing free occurrence of u, one of conditions i), ii) hold. So the claim holds.
2) \mathbb{G} is an instance of 1.3 .2 .2 .. Then F^{\prime} is of the form ($G \wedge H$) for some formulas G, H and so $\mp[u x . \Phi / u] F^{\prime} \cong \mp[u x . \Phi / u](G \wedge H) \cong \mp([u x . \Phi / u] G \wedge[u x . \Phi / u] H)$. So bse $\gamma_{\gamma-1}$ contains one of $-[u x . \Phi / u] G,-[u x . \Phi / u] H$ respectively both of $+[u x . \Phi / u] G,+[u x . \Phi / u] H$. Now, $b s e_{\beta}$ contains respectively $\pm[s / u] F^{\prime} \cong \pm([s / u] G \wedge[s / u] H)$. Since $([s / u] G \wedge[s / u] H)$ is not atomic, $\beta \neq 0$. Clearly, then, β is a successor ordinal, and so $b s e_{\beta}=b s e_{\beta-1} \cup \mathbb{S c}\left(b s e_{\beta-1}\right)$. So $\pm([s / u] G \wedge[s / u] H) \in S c\left(b s e_{\beta-1}\right)$ by virtue of an instance \mathbb{B} of some semantic rule. Since $\pm[s / u] F^{\prime} \cong \pm([s / u] G \wedge[s / u] H)$ contains no occurrence of any constant description term, it follows that \mathbb{B} is not an application of the rule for descriptions 1.3.2.5.. Then \mathbb{B} is an instance of 1.3.2.1.. So $b s e_{\beta-1}$ contains both of $+[s / u] G,+[s / u] H$ respectively one of $-[s / u] G,-[s /$ $u] H$. Assume, without loss of generality, that $\beta \geq \gamma$. Then bse ${ }_{\beta-1}$ contains both of $+[s / u] G$, $+[s / u] H$ and one of $-[u x . \Phi / u] G,-[u x . \Phi / u] H$ respectively one of $-[s / u] G,-[s / u] H$ and both of $+[u x . \Phi / u] G,+[u x . \Phi / u] H$. Now, we show that there is a formula K containing free
occurrence of u such that $b s e_{\beta-1}$ contains both of $\pm[t / u] K, \mp[u x . \Phi / u] K$; clearly, this result follows if both of $\boldsymbol{G}, \boldsymbol{H}$ contain free occurrence of \boldsymbol{u}. So assume that it is not the case that both of $\boldsymbol{G}, \boldsymbol{H}$ contain free occurrence of \boldsymbol{u}. Since \boldsymbol{u} has free occurrence in $\boldsymbol{F}^{\prime} \cong(\boldsymbol{G} \wedge \boldsymbol{H}), \boldsymbol{u}$ has free occurrence in one $\boldsymbol{G}, \boldsymbol{H}$. So assume, without loss of generality, that \boldsymbol{G} contains free occurrence of \boldsymbol{u} but \boldsymbol{H} does not. In this case, $[s / u] H \cong[u x . \Phi / u] H$. It follows that $b s e_{\beta-1}$ does not contain $-[u x . \Phi / u] H \cong-[s / u] H$, for suppose it does: Then, contrary to lemma 1.3.9., bse ${ }_{\beta-1}$ contains both of $+[s / u] H,-[s / u] H$. Since $b s e_{\beta-1}$ does not contain $-[x . \Phi / u] H \cong-[s / u] H$, it follows that $b s e_{\beta-1}$ contains both of $+[s / u] G,-[u x . \Phi / u] G$ respectively both of $-[s / u] G$, $+[u x . \Phi / u] G$. So there is a formula K containing free occurrence of u such that $b s e_{\beta-1}$ contains both of $\pm[t / u] K, \mp[u x . \Phi / u] K$. Since $\beta \leq \mu, \beta-1<\mu$, so by the hypothesis of induction, there is a $\eta \leq \beta-1$ such that for no $\gamma<\eta$ does $v x . \Phi$ occur in any signed sentence in bse $\gamma^{\text {and }}$ for some sentence \mathbf{A} and formula \boldsymbol{G} containing free occurrence of \boldsymbol{u}, one of conditions i), ii) hold. Since $\beta \leq \mu, \eta \leq \mu$. Hence, there is a $\eta \leq \mu$ such that for no $\gamma<\eta$ does $2 x . \Phi$ occur in any signed sentence in $b s e_{\gamma}$ and for some sentence A and formula G containing free occurrence of u, one of conditions i), ii) hold. So the claim holds.
3) \mathbb{G} is an instance of 1.3 .2 .3 .. This case is similar to case 2) above
4) \mathbb{G} is an instance of 1.3.2.4.. Then \boldsymbol{F}^{\prime} is of the form $(\boldsymbol{z}) \boldsymbol{H}$ for some formula \boldsymbol{H} and variable \boldsymbol{z} and so $\mp[u x . \Phi / u] F^{\prime} \cong \mp[u x . \Phi / u](z) H \cong \mp(z)[u x . \Phi / u] H$. So bse ${ }_{\gamma-1}$ contains $-[t / z][u x . \Phi$ $/ u] H$ for some $t \in \delta(P a r)$ respectively $+[t / z][u x . \Phi / u] H$ for all $t \in \delta($ Par $) \quad$ Now, bse $\boldsymbol{\beta}_{\beta}$ contains respectively $\pm[s / u] F^{\prime} \cong \pm[s / u](z) H \cong \pm(z)[s / u] H$. Since $(z)[s / u] H$ is not atomic, $\beta \neq 0$. Clearly, then, β is a successor ordinal, and so $b s e_{\beta}=b s e_{\beta-1} \cup S c\left(b s e_{\beta-1}\right)$. So $\pm(z)[s /$ $u] H \in S c\left(b s e_{\beta-1}\right)$ by virtue of an instance \mathbb{B} of some semantic rule. Since $\pm[s / u] F^{\prime} \cong \pm(z)[s /$ $u] H$ contains no occurrence of any constant description term, it follows that \mathbb{B} is not an application of the rule for descriptions 1.3.2.5. Then \mathbb{B} is an instance of 1.3.2.4.. So bse $\boldsymbol{\beta}_{\beta-1}$ contains $+[t /$ $z][s / u] H$ for all $t \in \delta(P a r)$ respectively $-[t / z][s / u] H$ for some $t \in \delta($ Par $)$. Clearly, since u has free occurrence in $\boldsymbol{F}^{\prime} \cong(\boldsymbol{z}) \boldsymbol{H}, \boldsymbol{u}$ has free occurrence in \boldsymbol{H}. Assume, without loss of generality, that $\beta \geq \gamma$. Then $b s e_{\beta-1}$ contains $-[t / z][x . \Phi / u] H$ for some $t \in \delta(P a r)$ and $+[t /$
$z][s / u] H$ for all $t \in \delta($ Par $)$ respectively $+[t / z][u x . \Phi / u] H$ for all $t \in \delta(P a r)$ and $-[t / z][s /$ $u] H$ for some $t \in \delta(P a r)$. Clearly, then, since $[t / z][u x . \Phi / u] H \cong[u x . \Phi / u][t / z] H$ and $[t /$ $z][s / u] H \cong[s / u][t / z] H$, it follows that $[t / z] H$ is a formula containing free occurrence of \boldsymbol{u} such that $b s e_{\beta-1}$ contains both of $\pm[t / u][t / z] H, \mp[u x . \Phi / u][t / z] H$. Since $\beta \leq \mu, \beta-1<\mu$, so by the hypothesis of induction, there is a $\eta \leq \beta-1$ such that for no $\gamma<\eta$ does u. Φ occur in any signed sentence in $b s e_{\gamma}$ and for some sentence A and formula G containing free occurrence of u, one of conditions i), ii) hold. Since $\beta \leq \mu, \eta \leq \mu$. Hence, there is a $\eta \leq \mu$ such that for no $\gamma<$ η does \boldsymbol{x}. Φ occur in any signed sentence in $b s e_{\gamma}$ and for some sentence \mathbf{A} and formula \boldsymbol{G} containing free occurrence of \boldsymbol{u}, one of conditions i), ii) hold. So the claim holds.

In all cases then, there is a $\beta \leq \mu$ such that for no $\gamma<\beta$ does x. Φ occur in any signed sentence in $b s e_{\gamma}$ and for some sentence A and formula G containing free occurrence of u, one of the following two conditions holds. This completes the induction step of the proof of the claim. We now return to the main proof of lemma 2.0..

Since $b s e_{\mu}$ contains both of respectively $\pm[s / u] F, \mp[u x . \Phi / u] F$, by the claim, there is a $\beta \leq$ μ such that for no $\gamma<\beta$ does $u x . \Phi$ occur in any signed sentence in $b s e_{\gamma}$ and for some sentence A and formula \boldsymbol{G} containing free occurrence of \boldsymbol{u}, one of conditions i), ii) holds. Assume, without loss of generality, that condition i) holds. Then, there is a sentence of the form $(\mathbf{A} \wedge[s / u] G),([s$ $/ u] G \wedge \mathbf{A})$ such that $b s e_{\beta}$ contains the signed sentence $-(\mathbf{A} \wedge[u x . \Phi / u] G),-([u x . \Phi / u] G \wedge \mathbf{A})$ as well as the signed sentence $+(\mathrm{A} \wedge[s / u] G),+([s / u] G \wedge \mathrm{~A})$. Since by assumption s is a constant term, by lemma 1.3.10, we may assume that s is in $\delta($ Par $)$. Let $\mathrm{z} . \Psi$ be any constant description term occurring in \mathbf{A} or in \boldsymbol{G}, and let respectively $\mathbf{A}^{\prime}, \boldsymbol{G}^{\prime}$ be the result of uniformly replacing every occurrence of $\tau \mathcal{L} \Psi$ in respectively A^{\prime}, G^{\prime} by a descriptum $t_{\mathrm{iz}} \Psi$ for $\boldsymbol{z} \mathcal{Z} \Psi$ in $b s e$ whose existance is guaranteed by lemma 1.3.10. By lemma 1.3.10, bse ${ }_{\beta}$ contains both of $-\left(A^{\prime} \wedge\right.$ $\left.[u x . \Phi / u] G^{\prime}\right),-\left([u x . \Phi / u] G^{\prime} \wedge A^{\prime}\right)$ as well as the signed sentence $+\left(\mathrm{A}^{\prime} \wedge[s / u] G^{\prime}\right),+([s /$ $\left.u] G^{\prime} \wedge A^{\prime}\right)$. Clearly, β is a successor ordinal, and so $b s e_{\beta}=b s e_{\beta-1} \cup S c\left(b s e_{\beta-1}\right)$. Since for no $\gamma<\beta$ does $u x . \Phi$ occur in any signed sentence in $b s e_{\gamma}$, it follows that $-\left(\mathrm{A}^{\prime} \wedge[x . \Phi / u] G^{\prime}\right)$, $-\left([x . \Phi / u] G^{\prime} \wedge A^{\prime}\right)$ does not belong to bse $_{\beta-1}$. So $-\left(\mathrm{A}^{\prime} \wedge[u x . \Phi / u] G^{\prime}\right),-\left([x . \Phi / u] G^{\prime} \wedge\right.$
A^{\prime}) belongs to $\mathbb{S c}\left(b s e_{\beta-1}\right)$ by virtue of an instance \mathbb{B} of some semantic rule. Since neither \mathbf{A} nor \boldsymbol{G} contains an occurrence of any constant description term, and for no constant term \boldsymbol{t} and variable v does $b s e_{\mu} \supset b s e_{\beta-1}$, and therefore $b s e_{\beta-1}$, contain both of the signed sentences $+[t / x] \Phi$, $+(\boldsymbol{x})(\boldsymbol{v})((\Phi \wedge[\boldsymbol{v} / \boldsymbol{x}] \Phi) \rightarrow \boldsymbol{x}=\boldsymbol{v})$, it follows that \mathbb{B} is not an instance of the semantic rule for descriptions 1.3.2.5.. Hence, \mathbb{B} is an instance of 1.3.2.2., and so $b s e_{\beta-1}$ contains - A^{\prime}. Since $b s e_{\beta}$ contains the signed sentence $+\left(\mathrm{A}^{\prime} \wedge[s / u] G^{\prime}\right),+\left([s / u] G^{\prime} \wedge \mathrm{A}^{\prime}\right)$, there is a least $\gamma \leq \beta$ such that $b s e_{\gamma}$ contains the signed sentence $+\left(\mathrm{A}^{\prime} \wedge[s / u] G^{\prime}\right),+\left([s / u] G^{\prime} \wedge \mathrm{A}^{\prime}\right)$. Clearly, γ is a successor ordinal, and so $b s e_{\gamma}=b s e_{\gamma-1} \cup \mathbb{S c}\left(b s e_{\gamma-1}\right)$. Since $+\left(\mathrm{A}^{\prime} \wedge[s / u] G^{\prime}\right),+\left([s / u] G^{\prime} \wedge\right.$ $\left.A^{\prime}\right)$ does not belong to $b s e_{\gamma-1},+\left(\mathrm{A}^{\prime} \wedge[s / u] G^{\prime}\right),+\left([s / u] G^{\prime} \wedge A^{\prime}\right)$ belongs to $\mathbb{S c}\left(b s e_{\beta-1}\right)$ by virtue of an instance \mathbb{G} of some semantic rule. Now, $+\left(\mathrm{A}^{\prime} \wedge[s / u] G^{\prime}\right),+\left([s / u] G^{\prime} \wedge A^{\prime}\right)$ contains no occurremce of any constant description term, \mathbb{B} is not an instance of 1.3.2.5.. Hence, \mathbb{G} is an instance of 1.3.2.2., and so $b s e_{\gamma-1}$ contains both of $+\mathrm{A}^{\prime},+[s / u] G^{\prime}$. Assume, without loss of generality, that $\gamma \geq \beta$. Hence, bse ${ }_{\beta-1} \subseteq b s e_{\gamma-1}$. So $b s e_{\gamma-1}$ contains both of $\pm \mathrm{A}^{\prime}$. This contradicts lemma 1.3.9.. Thus lemma 2.0 is established.

Theorem 2.1.: Let Seq be any sequent. If Seq is derivable, then $\mathbb{S e q}$ is valid.
 Parcontaining all of the parameters which occur in some member signed sentence of $\$$ need to show that for all bases bse and all n-ary vectors $\underline{t} \cong t_{1}, \ldots, t_{n}$ on $\delta(P a r),[t / p] \operatorname{Seq} \cap$ $C l(b s e) \neq \varnothing$, from which it follows by definition 1.3.5. and 1.3.6. that Seq is valid. So let bse be any base and t any n-ary vector on Par. Since Seq is derivable, by definition 1.2.4., there is a derivation tree Π such that $\mathbb{S e q}$ is the endsequent of Π. We show by strong induction on the depth $\mathbb{D}(\Pi)$ that $[\boldsymbol{t} / \boldsymbol{p}] \operatorname{Seq} \cap \mathbb{C l}(b s e) \neq \varnothing$.

Base step: $\mathbb{D}(\Pi)=0$. Then by 1.2 .6. Seq is an axiom and so by 1.2 .1 . there are two cases:
i) Seq is of the form $\{-a s n t,+a s n t\}$ for some atomic asnt. Since the t are all members of $\delta($ Par $),[\underline{t} / \boldsymbol{p}] a s n t$ is an atomic sentence. So by condition 1) of1.3.1., one of $\pm[\boldsymbol{t} / \boldsymbol{p}]$ asnt belong to bse. Hence $\{-[\underline{t} / \boldsymbol{p}]$ asnt,$+[\underline{t} / \boldsymbol{p}] a s n t\} \cong[\underline{t} / p]\{-a s n t,+a s n t\} \cong[\underline{t} / p] \operatorname{Seq} \cap \mathbb{C} l(b s e) \neq$
\varnothing.
ii) Seq is of the form $\{+(t=t)\}$ for some $t \in \delta(P a r)$. Clearly, $[t / p] t \in \delta(P a r)$, so by condition 2) of 1.3.1., the signed atomic sentence $+([\underline{L} / p] t=[\underline{L} / p] t)$ belongs to bse. So $\{+([\underline{L} /$ $p] t=[t / p l t)\} \cong[\underline{L} / p]\{+(t=t)\} \cong[\underline{t} / \underline{p}] \operatorname{Seq} \cap \mathbb{C l}(b s e) \neq \varnothing$.

In both cases, then, $[t / p] \operatorname{Seq} \cap \mathbb{C l}(b s e) \neq \varnothing$.
Induction step: Assume valid all sequents which are derivable as endsequents of derivation trees Σ such that $\mathbb{D}(\Sigma)<\mathbb{D}(\Pi)$. We show that $[\underline{t} / p] \operatorname{Seq} \cap \mathbb{C l}(b s e) \neq \varnothing$ by considering eight cases corresponding to the eight deductive rules given in 1.2.2. applications of which Seq may be the conclusion in Π :
i) Seq is the conclusion of an application \mathbb{A} of the thinning rule 1.2.2.1.土. Then Seq is respectively of the form Seq$q^{\circ} \cup\{ \pm s n t\}$ for some sequent Seq and sentence $s n t$, where $S e q^{\circ}$ is the premise to \mathbb{A}. Then $S e q^{\circ}$ is the endsequent of Π 's deepest proper subtree Σ. Since $\mathbb{D}(\Sigma)<$ $\mathbb{D}(\Pi)$, by the hypothesis of induction, $\operatorname{Seq}^{\circ}$ is valid." So, by definition 1.3.6., $[\underline{L} / p] S e q^{\circ} \cap$ $C l(b s e) \neq \varnothing$. Trivially, then, $\left([\underline{t} / \boldsymbol{p}]\right.$ Seq $\left.^{\circ} \cup[\underline{t} / \boldsymbol{p}]\{ \pm s n t\}\right) \cong[t / \boldsymbol{p}]\left(\right.$ Seq $^{\circ} \cup\{ \pm$ snt $\left.\}\right) \cap$ $C l(b s e) \neq \varnothing$. So $[t / p] \operatorname{Seq} \cap C l(b s e) \neq \varnothing$.
ii) Seq is the conclusion of an application \mathbb{A} of 1.2.2.2.土. Then Seq is respectively of the form $\operatorname{Seq}^{\circ} \cup\{\mp \neg \mathbf{A}\}$ for some sequent Seq $^{\circ}$ and sentence \mathbf{A}, where respectively $\operatorname{Seq} \mathcal{q}^{\circ} \cup\{ \pm \mathbf{A}\}$ is the premise to \mathbb{A}. Then $S e q^{\circ} \cup\{ \pm \mathbf{A}\}$ is the endsequent of Π 's deepest proper subtree Σ. Since $\mathbb{D}(\Sigma)<\mathbb{D}(\Pi)$, by the hypothesis of induction, $\operatorname{Seq}^{\circ} \cup\{ \pm \mathrm{A}\}$ is valid. So, by definition 1.3.6., $[t$ $\mid \boldsymbol{p}]\left(S e q^{\circ} \cup\{ \pm \mathbf{A}\}\right) \cong\left([t / p] S e q^{\circ} \cup[\underline{t} / \boldsymbol{p}\}\{ \pm \mathbf{A}\}\right) \cap C l(b s e) \neq \varnothing$. There are two cases:
a) $[t / p]$ Seq $^{\circ} \cap \operatorname{Cl}(b s e) \neq \varnothing$. Trivially, then, respectively $\left([\underline{L} / \boldsymbol{p}]\right.$ Seq $\left.^{\circ} \cup[\boldsymbol{t} / \boldsymbol{p}]\{\mp \neg \mathbf{A}\}\right) \cong[\boldsymbol{t} /$ $p]\left(S e q^{\circ} \cup\{\mp \neg \mathbf{A}\}\right) \cap C l(b s e) \neq \varnothing$. So $[t / p] S e q \cap C l(b s e) \neq \varnothing$.
b) $[t / p]$ Seq $^{\circ} \cap C l(b s e)=\varnothing$. Then, since respectively $\left([\underline{L} / p] S e q^{\circ} \cup[t / p]\{ \pm \mathbf{A}\}\right) \cap \mathbb{C l}(b s e)$ $\neq \varnothing$, it follows that respectively $\pm[\boldsymbol{f} / \boldsymbol{p}] \mathbf{A} \in \mathbb{C l}($ bse $)$. So, by semantic rule 1.3.2.2. \pm,
respectively $\mp \neg[\boldsymbol{t} / \boldsymbol{p}] \mathbf{A} \cong \mp[\boldsymbol{t} / \boldsymbol{p}] \neg \mathbf{A} \in \operatorname{Sc}(C l(b s e)) . \quad$ By lemma 1.3.7., $S c(C l(b s e)) \subseteq \boldsymbol{C l}(b s e)$, so $\mp[t / p] \neg \mathbf{A} \in \mathbb{C l}(b s e))$. Hence, respectively $\left([\underline{L} / \boldsymbol{p}]\right.$ Seq $\left.^{\circ} \cup\{\mp[t / p] \neg \mathbf{A}\}\right) \cong[t / \boldsymbol{p}]\left(S e q^{\circ} \cup\right.$ $\{\mp \neg \mathbf{A}]) \cap \mathbb{C l}(b s e) \neq \varnothing$. So $[t / p] \operatorname{Seq} \cap \mathbb{C l}(b s e) \neq \varnothing$.
iii) Seq is the conclusion of an application \mathbb{A} of 1.2 .2 .3.土.. We separate the two cases:
iii.1) Seq is the conclusion of an application \mathbb{A} of 1.2.2.3.+.. Then Seq is of the form $\operatorname{Seq} q^{\circ} \cup$ $\{+(\mathbf{A} \wedge \mathbf{B})\}$ for some sequent Seq $^{\circ}$ and sentences \mathbf{A}, \mathbf{B}. Then there are sequents Seq1, Seq2 such that $\operatorname{Seq}^{\circ}=\operatorname{Seq} \mathbb{\mathbb { l }} \cup \operatorname{Seq} 2$ and $\operatorname{Seq} \mathbb{1} \cup\{+\mathbf{A}\}, \operatorname{Seq} 2 \cup\{+\mathbf{B}\}$ are the premises to \mathbb{A}. Then both of Seq $\cup\{+\mathbf{A}\}$, Seq $2 \cup\{+\mathbf{B}\}$ are endsequents of proper subtrees respectively Σ_{1}, Σ_{2} of Π. Since $\mathbb{D}\left(\Sigma_{I}\right), \mathbb{D}\left(\Sigma_{2}\right)<\mathbb{D}(\Pi)$, by the hypothesis of induction, both of SeqI $\cup\{+\mathbf{A}\}$, Seq2 $\cup\{+\mathrm{B}\}$ are valid. So, by definition 1.3.6., $[t / p]($ Seq $\mathbb{Z} \cup\{+\mathrm{A}\}) \cong([\underline{L} / p] \operatorname{Seq} 2 \cup\{+[\underline{t}$ $\mid p] \mathbf{A}\}) \cap C l(b s e) \neq \varnothing$ and $[\underline{t} / p](\operatorname{Seq} 2 \cup\{+\mathbf{B}\}) \cong([\underline{L} / p] \operatorname{Seq} 2 \cup\{+[\underline{L} / p] \mathbf{B}\}) \cap C l(b s e) \neq$ \varnothing. There are two cases:
iii.1.a) $([t / p] S e q \mathbb{I} \cup[t / p] S e q 2) \cap C l(b s e) \neq \varnothing$. Since $S e q q^{\circ}=S e q \mathbb{Z} \cup S e q 2$, it follows that
 $\left.p] \operatorname{Seq}^{\circ} \cup[\underline{t} / \boldsymbol{p}]\{+(\mathbf{A} \wedge \mathbf{B})\}\right) \cong[\underline{t} / \boldsymbol{p}]\left(\right.$ Seq $\left.^{\circ} \cup\{+(\mathbf{A} \wedge \mathbf{B})\}\right) \cap \boldsymbol{C l}(b s e) \neq \varnothing$. So $[\underline{t} / \boldsymbol{p}]$ Seq $^{\circ} \cap$ $C l(b s e) \neq \varnothing$.
iii.1.b) $([\underline{t} / \boldsymbol{p}]$ Seq $\mathbb{Z} \cup[t / p]$ Seq2 $) \cap C l(b s e)=\varnothing$. Then, since $([\underline{L} / p] \operatorname{Seq} \mathbb{Z} \cup\{+[t / p] \mathbf{A}\}) \cap$ $C l(b s e) \neq \varnothing$ and $([t / p] S e q 2 \cup\{+[t / p] B\}) \cap C l(b s e) \neq \varnothing$., it follows that both of $+[t / p] \mathbf{A}$, $+[t / p] \mathbf{B} \in \operatorname{Cl}(b s e)$. So, by semantic rule 1.3.2.3.+, $+([\underline{t} / p] \mathbf{A} \wedge[\underline{t} / p] \mathbf{B}) \cong+[t / p](\mathbf{A} \wedge \mathbf{B}) \in$ $\operatorname{Sc}(\boldsymbol{C l}(b s e))$. By lemma 1.3.7., $\operatorname{Sc}(\mathbb{C l}(b s e)) \subseteq \mathbb{C l}(b s e)$, so $+[t / p](\mathbf{A} \wedge \mathbf{B}) \in \mathbb{C l}(b s e))$. Hence, $[t / p]$ Seq $^{\circ} \cup\{+[t / p](\mathbf{A} \wedge \mathbf{B})\} \cong[t / p]\left(S e q^{*} \cup\{+(\mathbf{A} \wedge \mathbf{B})\}\right) \cap C l(b s e) \neq \varnothing$. So $[\underline{t} /$ $p] S e q \cap C l(b s e) \neq \varnothing$.
iii.2) Seq is the conclusion of an application \mathbb{A} of 1.2.2.3.... Then Seq is of the form $\operatorname{Seq}^{\circ} \cup$ $\{-(\mathbf{A} \wedge \mathbf{B})\}$ for some sequent $\operatorname{Seq}{ }^{\circ}$ and sentences \mathbf{A}, \mathbf{B}, where $\left.\operatorname{Seq}^{\circ} \cup\{-\mathbf{A},-\mathbf{B})\right\}$ is the premise to \mathbb{A}. Then $\left.S e q^{\circ} \cup\{-\mathbf{A},-\mathbf{B})\right\}$ is endsequent of Π 's deepest proper subtree Σ. Since
$D(\Sigma)<\mathbb{D}(\Pi)$, by the hypothesis of induction, $\left.\operatorname{Seq}^{\circ} \cup\{-\mathrm{A},-\mathrm{B})\right\}$ is valid. So, by definition 1.3.6., $[\underline{t} / \boldsymbol{p}]\left(\right.$ Seq $\left.\left.^{\circ} \cup\{-\mathbf{A},-\mathbf{B})\right\}\right) \cong\left([\underline{t} / p]\right.$ Seq $\left.\left.^{\circ} \cup[\underline{t} / \boldsymbol{p}]\{-\mathbf{A},-\mathbf{B})\right\}\right) \cap \mathbb{C l}(b s e) \neq \varnothing$. There are two cases:
iii.2.a) $\left([\underline{t} / \boldsymbol{p}] \mathbb{S e q}^{\circ} \cap \mathbb{C l}(b s e) \neq \varnothing\right.$. Trivially, then, $\left([\underline{t} / p] \mathbb{S e q}^{\circ} \cup[\underline{t} / \boldsymbol{p}]\{-(\mathbf{A} \wedge \mathbf{B})\}\right) \cong[\underline{t} /$ $p]\left(\operatorname{Seq}^{\prime} \cup\{-(\mathbf{A} \wedge \mathbf{B})\}\right) \cap \mathbb{C l}(b s e) \neq \varnothing . \quad$ So $[t / p] \operatorname{Seq} \cap \mathbb{C l}(b s e) \neq \varnothing$.
iii.2.b) $\left([\underline{t} / \boldsymbol{p}] \operatorname{Seq}^{\circ} \cap \mathbb{C l}(b s e)=\varnothing\right.$. Then, since $\left.\left([\underline{t} / p] \operatorname{Seq}^{\circ} \cup[\underline{t} / \underline{p}]\{-\mathbf{A},-\mathbf{B})\right\}\right) \cap \mathbb{C l}(b s e) \neq$ \varnothing, it follows that $[\underline{t} / \boldsymbol{p}]\{-\mathbf{A},-\mathbf{B})\}) \cap \operatorname{Cl}(b s e) \neq \varnothing$ and hence that one of $-[\underline{t} / \boldsymbol{p}] \mathbf{A},-[t / p] \mathbf{B}$ belongs to $\mathbb{C l}($ bse $)$. So, by semantic rule 1.3.2.2.-, $-([\underline{t} / \boldsymbol{p}] \mathbf{A} \wedge[\boldsymbol{t} / \boldsymbol{p}] \mathbf{B}) \cong-[\underline{t} / \boldsymbol{p}](\mathbf{A} \wedge B) \in$ $\mathbb{S c}(\mathbb{C l}(b s e))$. By lemma 1.3.7., $\mathbb{S c}(\mathbb{C l}(b s e)) \subseteq \mathbb{C l}(b s e)$, so $-[\underline{t} / \boldsymbol{p}](\mathbf{A} \wedge \mathbf{B}) \in \mathbb{C l}(b s e))$. Hence, $[\boldsymbol{t} / \boldsymbol{p}] \operatorname{Seq}^{\circ} \cup\{-[\boldsymbol{t} / \boldsymbol{p}](\mathbf{A} \wedge \mathbf{B})\} \cong[\underline{t} / \boldsymbol{p}]\left(\operatorname{Seq}^{\circ} \cup\{-(\mathbf{A} \wedge \mathbf{B})\}\right) \cap \mathbb{C l}(b s e) \neq \varnothing$. So $[\underline{t} / \boldsymbol{p}] \operatorname{Seq}$ $\cap C l(b s e) \neq \varnothing$.
iv) Seq is the conclusion of an application of respectively 1.2.2.4.土.. This case is similar to case iii) above.
v) Seq is the conclusion of an application \mathbb{A} of 1.2.2.5.土.. We separate the two cses:
v.1) Seq is the conclusion of an application \mathbb{A} of $1.2 .2 .5 .+.$. Then $\mathbb{S e q}$ is of the form $\mathbb{S e q}^{\circ} \cup$ $\{+(x) F\}$ for some sequent Seq $^{\circ}$ and formula F, where for some $q \in P a r$ not occurring in any signed sentence of $\operatorname{Seq}^{\circ} \cup\{+(x) F\}, \operatorname{Seq}^{\circ} \cup\{+[\boldsymbol{q} / \boldsymbol{x}] \boldsymbol{F}\}$ is the premise to \mathbb{A}. Then Seq\cup $\{+[\boldsymbol{q} / \boldsymbol{x}] \boldsymbol{F}\}$ is endsequent of Π 's deepest proper subtree Σ. Since $\mathbb{D}(\Sigma)<\mathbb{D}(\Pi)$, by the hypothesis of induction, $\operatorname{Seq}^{\circ} \cup\{+[\boldsymbol{q} / \boldsymbol{x}] F\}$ is valid. Now, we want to show that $\operatorname{Seq}^{\circ} \cup$ $\{+(x) F\}$ is valid, that is, we want to show that for all n-ary vectors \underline{t} on $\delta(P a r),[\underline{t} / p]\left(\operatorname{Seq}^{\circ} \cup\right.$ $\{+(\boldsymbol{x}) \boldsymbol{F}\}) \cap \boldsymbol{C l}(b s e) \neq \varnothing$, where \boldsymbol{p} is an n-ary vector on Par containing all of the parameters which occur in some member of $\operatorname{Seq} \cup\{+(x) \boldsymbol{F}\}$. Let $\boldsymbol{q} \cong \boldsymbol{q}_{\boldsymbol{1}}, \ldots, \boldsymbol{q}_{\boldsymbol{i}} \cong \boldsymbol{q}, \ldots, \boldsymbol{q}_{m}$ be an m-ary vector on Par containing all of the parameters which occur in the members of $\operatorname{Seq} \boldsymbol{q}^{\circ} \cup\left\{+\left[\boldsymbol{q}_{\boldsymbol{i}}\right.\right.$ $\mid x] F\}$ such that \boldsymbol{q} is the i^{\prime} th term of q. Clearly \boldsymbol{q} contains all of the parameters which occur in some member of $\operatorname{Seq}^{i} \cup\{+(x) F\}$. Let $\underline{s} \cong s_{1}, \ldots, s_{i}, \ldots, s_{m}$ be any m-ary vector on,
and let r be any term in, $\delta($ Par $)$. Let $\left|r / s_{i}\right| \underline{\cong} \cong s_{1}, \ldots, r, \ldots, s_{m}$ be the m-ary vector which is obtained from \underline{s} be replacing the i^{\prime} th term s_{i} in \underline{s} by r. Since Seq $q^{0} \cup\left\{+\left[q_{i} / \boldsymbol{x}\right] F\right\}$ is valid, it follows that $[\underline{s} / \underline{q}]\left(\operatorname{Seq}^{\circ} \cup\left\{+\left[\boldsymbol{q}_{i} / x\right] F\right\}\right) \cong\left([\underline{s} / q] \operatorname{Seq}^{\circ} \cup[\underline{s} / \underline{q}]\left\{+\left[\boldsymbol{q}_{\boldsymbol{i}} / x\right] F\right\}\right) \cap$ $\mathbb{C l}(b s e) \neq \varnothing$. There are two cases:
v.1.a) $[\underline{s} / \underline{q}] \operatorname{Seq}^{\prime} \cap \mathbb{C}(b s e) \neq \varnothing$. Trivially, then, $\left([\underline{s} / \underline{q}] \operatorname{Seq}^{\circ} \cup[\underline{s} / q]\{+(x) F\}\right) \cong[\underline{s} /$ $\underline{q}]\left(\operatorname{Seq} q^{\circ} \cup\{+(x) F\}\right) \cap \mathbb{C l}(b s e) \neq \varnothing . \quad$ So $[\underline{s} / \underline{q}] \operatorname{Seq} \cap \mathbb{C l}(b s e) \neq \varnothing$.
v.1.b) $[\underline{s} / q] \operatorname{Se} q^{\prime} \cap C l(b s e)=\varnothing$. Since q_{i} does not occur in any member of $S e q^{\prime}$, it follows that $[\underline{s} / \underline{q}] \operatorname{Seq}^{\circ} \cong\left[\left|r / s_{i}\right| \underline{s} / \underline{q}\right] \operatorname{Seq}^{\circ}$. So, $\left[\left|r / s_{i}\right| \underline{s} / \underline{q}\right] \operatorname{Seq}^{\circ} \cap \mathbb{C l}(b s e)=\varnothing$. But since Seq$\cup$ $\left\{+\left[q_{i} / x\right] F\right\}$ is valid, it follows that $\left[\left|r / s_{i}\right| \underline{s} / \underline{q}\right]\left(\operatorname{Seq}^{\circ} \cup\left\{+\left[q_{i} / x\right] F\right\}\right) \cong\left(\left[\left|r / s_{i}\right| \underline{\mid} / \underline{q}\right] \operatorname{Seq}^{0} \cup\right.$ $\left.\left[\left|r / s_{i}\right| \underline{s} / q\right]\left\{+\left[q_{i} / x\right] F\right\}\right) \cap \mathbb{C l}(b s e) \neq \varnothing . \quad$ So $\left[\left|r / s_{i}\right| \underline{s} / \underline{q}\right]\left\{+\left[q_{i} / x\right] F\right\} \cap \mathbb{C l}(b s e) \neq \varnothing$, in other words, $+\left[\left|\boldsymbol{r} / s_{i}\right| \underline{\mid} / \underline{q}\right]\left[\boldsymbol{q}_{\boldsymbol{i}} / \boldsymbol{x}\right] \boldsymbol{F} \in \mathbb{C l}(b s e)$. Now, since all of the terms in $\left|\boldsymbol{r} / s_{i}\right| \boldsymbol{s}$ are constant terms, $\left[\left|r / s_{i}\right| \underline{s} / \underline{q}\right]\left[q_{i} / \boldsymbol{x}\right] F \cong[r / x]\left[\left|r / s_{i}\right| \underline{s} / \underline{q}\right] F$. Since $\boldsymbol{q}_{\boldsymbol{i}}$ does not occur in $F, \quad[r /$ $x]\left[\left|r / s_{i}\right| \underline{s} / q\right] F \cong[r / x][\underline{s} / q] F$. So $+[r / x][\underline{s} / q] F \in \mathbb{C} l(b s e)$. Since r is an arbitrary term in $\delta(P a r)$, for all $r \in \delta(P a r),+[r / x][\underline{s} / \underline{g}] F \in \mathbb{C l}(b s e)$. Hence, by semantic rule 1.3.2.4.+., $+(x)[\underline{s} / g] F \cong+[\underline{s} / g](x) F \in \mathbb{S c}(\mathbb{C l}(b s e))$. By lemma 1.3.7., $\mathbb{S c}(\mathbb{C l}(b s e)) \subseteq \mathbb{C l}(b s e)$, so $+[\underline{s} /$ $\underline{q}](x) F \in \mathbb{C} l(b s e))$. Hence, $[\underline{s} / \underline{q}] \operatorname{Seq}^{\circ} \cup\{+[\underline{s} / \underline{q}](x) F\} \cong[\underline{s} / \underline{q}]\left(\operatorname{Seq}^{\circ} \cup\{+(x) F\}\right) \cap$ $\mathbb{C l}(b s e) \neq \varnothing . \quad$ So $[\underline{t} / p] \operatorname{Seq} \cap C l(b s e) \neq \varnothing$.
v.2) Seq is the conclusion of an application \mathbb{A} of 1.2.2.5.-. Then Seq is of the form $\mathbb{S e q}^{\circ} \cup$ $\{-(x) F\}$ for some sequent $\operatorname{Seq}^{\circ}$ and formula F, where for some constant term $t, \operatorname{Seq}^{\circ} \cup\{-[t /$ $\boldsymbol{x}] \boldsymbol{F}\}$ is the premise to \mathbb{A}. Then Seq$\cup\{-[\boldsymbol{t} / \boldsymbol{x}] F\}$ is endsequent of Π 's deepest proper subtree Σ. Since $\mathbb{D}(\Sigma)<\mathbb{D}(\Pi)$, by the hypothesis of induction, $\operatorname{Seq}^{\prime} \cup\{-[\boldsymbol{t} / \boldsymbol{x}] F\}$ is valid. So $[\underline{t} /$ $p]\left(\operatorname{Seq}^{\circ} \cup\{-[t / x] F\}\right) \cong\left([\underline{t} / p] \operatorname{Seq}^{\circ} \cup[\underline{t} / \boldsymbol{p}]\{-[t / x] F\}\right) \cap \mathbb{C l}(b s e) \neq \varnothing$. There are two main cases:
v.2.a) $[t / p] S e q^{\circ} \cap C l(b s e) \neq \varnothing$. Trivially, then, $\left([t / p] \operatorname{Seq}^{\circ} \cup[\underline{t} / p]\{-(x) F\}\right) \cong[t / p]\left(\right.$ Seq $^{\circ}$ $\cup\{-(x) F\}) \cap \subset l(b s e) \neq \varnothing$. So $[\underline{t} / p] \operatorname{Seq} \cap \mathbb{C l}(b s e) \neq \varnothing$.
v.2.b) $[t / p] S^{\prime} q^{\prime} \cap C l(b s e)=\varnothing$. Since $\left([t / p] S^{\prime} q^{\prime} \cup[t / p]\{-[t / x] F\}\right) \cap C l(b s e) \neq \varnothing$, it follows that $[t / p]\{-[t / x] F\}) \cap C l(b s e) \neq \varnothing$. So $-[t / p][t / x] F \cong-[[t / p] t / x][t / p] F \in$ $\mathbb{C l}(b s e)$). There are two subcases:
v.2.b. α) $[t / p] t \in \delta(P a r)$. Then, by semantic rule 1.3.2.4.-., $-(x)[t / p] F \cong-[t / p](x) F \in$ $S c(\mathbb{C l}(b s e))$. By lemma 1.3.7., $\operatorname{Sc}(\mathbb{C l}(b s e)) \subseteq \mathbb{C l}(b s e)$, so $-[t / p](x) F \in \mathbb{C l}(b s e))$. Hence, $[t$ $/ p] S e q^{\circ} \cup\{-[t / p](x) F\} \cong[t / p]\left(S e q^{\circ} \cup\{-(x) F\}\right) \cap \mathbb{C l}(b s e) \neq \varnothing$. So $[t / p] S e q \cap \mathbb{C l}(b s e)$ $\neq \varnothing$.
v.2.b. $\beta)[t / p] t \notin \delta(P a r)$. Then $[t / p] t$ is a constant description term, so by lemma 1.3.9., there is a descriptum $\boldsymbol{r}_{[\mathbf{t} / \mathbf{p}] t} \in \delta($ Par $)$ for $[\underline{t} / \boldsymbol{p}] t$ in bse such that $\left.-\left[\boldsymbol{r}_{[\mathbf{t} / \mathbf{R} \mid t} / \boldsymbol{x}\right][\underline{t} / \boldsymbol{p}] F \in \mathbb{C l}(b s e)\right)$. So this subcase reduces to v.2.b. α) above.
vi) Seq is the conclusion of an application \mathbb{A} of 1.2.2.6.. Then Seq is respectively of the form Seq1 \cup Seq $2 \cup S e q 3 \cup\{ \pm[u x . \Phi / u] F\}$ for some sequents Seq1, Seq2, Seq3, description term $\tau x . \Phi$ and formula F, where for some constant term t, the premises to \mathbb{A} are Seq $\mathbb{Z} \cup\{[t /$ $x] \Phi\}, \operatorname{Seq} 2 \cup\{+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)\}$ and respectively Seq $3 \cup\{ \pm[t / u] F\}$. Since these premises to \mathbb{A} are endsequents of proper subtrees of Π, by the hypothesis of induction, they are all valid. So $[\boldsymbol{t} / \boldsymbol{p}](\operatorname{Seq} \mathbb{Z} \cup\{+[t / x] \Phi\}) \cong([\underline{t} / \boldsymbol{p}]$ Seq $\mathbb{Z} \cup[\underline{t} / \boldsymbol{p}]\{+[t / x] \Phi\}) \cap$ $C l(b s e) \neq \varnothing$ and $[t / p](S e q 2 \cup\{+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)\}) \cong([t / p] S e q 2 \cup[t /$ $p]\{+(x)(v)((\Phi \wedge[\nu / x] \Phi) \rightarrow x=v)\}) \cap C l(b s e) \neq \varnothing$ and respectively $[t / p]($ Seq $\mathcal{3} \cup\{ \pm[t /$ $u] F\}) \cong([t / p] \operatorname{Seq} 3 \cup[t / p]\{ \pm[t / u] F\}) \cap C l(b s e) \neq \varnothing$. There are two main cases:
vi.a) $[\underline{t} / \boldsymbol{p}]$ Seq $\mathbb{Z} \cup[\underline{t} / \boldsymbol{p}] \operatorname{Seq} 2 \cup[t / p] \operatorname{Seq}{ }^{3} \cap \operatorname{Cl}(b s e) \neq \varnothing$. Trivially, then, $[\underline{t} / p]$ Seq $\mathbb{Z} \cup$ $[t / \boldsymbol{p}]$ Seq $2 \cup[\mathbf{t} / \boldsymbol{p}]$ Seq $3 \cup\{ \pm[\mathbf{x} . \Phi / u] F\} \cong[\underline{L} / \boldsymbol{p}]($ Seq $1 \cup \operatorname{Seq} 2 \cup \operatorname{Seq} 3 \cup\{ \pm[\boldsymbol{x} . \Phi /$ $u] F\}) \cap C l(b s e) \neq \varnothing$. So $[t / p] \operatorname{Seq} \cap C l(b s e) \neq \varnothing$.
vi.b) $([\underline{L} / \boldsymbol{p}] \operatorname{Seq} \mathcal{1} \cup[\mathbf{t} / \boldsymbol{p}] \operatorname{Seq} 2 \cup[\underline{t} / \boldsymbol{p}] \operatorname{Seq} 3) \cap \operatorname{Cl}(b s e)=\varnothing$. So, $[\underline{t} / \boldsymbol{p}]\{+[t / x] \Phi\} \cap$ $C l(b s e) \neq \varnothing$ and $[t / p]\{+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)\}) \cap C l(b s e) \neq \varnothing$ and respectively $[t /$ $p]\{ \pm[t / u] F\}) \cap C l(b s e) \neq \varnothing$. So all of $+[\underline{t} / \boldsymbol{p}][t / x] \Phi \cong+[[\underline{t} / p] t / x][\underline{t} / \boldsymbol{p}] \Phi,+[t /$
$p](x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v) \cong+(x)(v)(([L / \boldsymbol{p}] \Phi \wedge[v / x][\underline{L} / p] \Phi) \rightarrow x=v)$, respectively $\pm[t / p][t / \boldsymbol{u}] \boldsymbol{F}\} \cong \pm[[t / \boldsymbol{p}] t / \boldsymbol{u}][\boldsymbol{t} / \boldsymbol{p}] \boldsymbol{F}$ belong to $\operatorname{Cl}(b s e))$. Then, since $[\boldsymbol{t} / \boldsymbol{p}] t$ is a constant term, by semantic rule 1.3.2.5., respectively $\pm[\tau x .[t / p] \Phi / u][t / p] F \cong \pm[t / p][u x . \Phi / u] F \in$ $\operatorname{Sc}(\mathbb{C l}(b s e))$. By lemma 1.3.7., $\operatorname{Sc}(\mathbb{C l}(b s e)) \subseteq \mathbb{C l}(b s e)$, so respectively $\pm[\underline{t} / p][u . \Phi / u] F \in$ $\mathbb{C l}(b s e))$. Hence, $[\underline{t} / \boldsymbol{p}]$ Seq $\mathbb{1} \cup[\underline{t} / p] \operatorname{Seq} 2 \cup[\underline{t} / p] \operatorname{Seq} 3 \cup[\underline{t} / p]\{ \pm[u x . \Phi / u] F\} \cong[\underline{t} /$ $p](S e q \mathbb{I} \cup \operatorname{Seq} 2 \cup S e q 3 \cup\{ \pm[u . \Phi / u] F\}) \cap \mathbb{C l}(b s e) \neq \varnothing$. So $[\underline{L} / \mathrm{p}] \operatorname{Seq} \cap \mathbb{C l}(b s e) \neq \varnothing$.
vii) Seq is the conclusion of an application \mathbb{A} of 1.2.2.7.. Then Seq is respectively of the form SeqI $\cup S e q 2 \cup\{-(r=s)\}$ for some sequents Seq1, Seq2, and constant terms r, s, where for some formula F, the premises to \mathbb{A} are Seq $\cup\{+[r / u] F\}, \operatorname{Seq} 2 \cup\{-[s / u] F\}$. In case u does not occur free in $\boldsymbol{F},[\boldsymbol{r} / \boldsymbol{u}] \boldsymbol{F} \cong[s / \boldsymbol{u}] F$. Then, by the arguement given in case x below, ($[\mathbf{t} /$ $p] S e q \mathbb{Z} \cup[t / p] S e q 2) \cap C l(b s e) \neq \varnothing$, and hence $([t / p] \operatorname{Seq} \mathbb{I} \cup[t / p] S e q 2 \cup[t / p]\{-(r=$ $s)\}) \cong[t / p](\operatorname{Seq} \mathbb{1} \cup \operatorname{Seq} 2 \cup\{-(r=s)\}) \cap C l(b s e) \neq \varnothing$. So $[t / p] \operatorname{Seq} \cap C l(b s e) \neq \varnothing$. So assume that \boldsymbol{u} has free occurrence in \boldsymbol{F}. Since the premises to \mathbb{A} are endsequents of proper subtrees of Π, by the hypothesis of induction, they are all valid. So $[t / p](S e q \mathbb{I} \cup\{+[r / u] F\})$ $\cong([\underline{L} / p]$ Seq $\mathbb{Z} \cup[t / p]\{+[r / u] F\}) \cap C l(b s e) \neq \varnothing$ and $[\underline{t} / \boldsymbol{p}]($ Seq $2 \cup\{-[s / u] F\}) \cong([\underline{t} /$ $p]$ Seq2 $\cup[t / p]\{-[s / u] F\}) \cap C l(b s e) \neq \varnothing$. There are two main subcases:
vii.a) $([\underline{t} / p] \operatorname{Seq} \mathbb{I} \cup[t / p] \operatorname{Seq} 2) \cap C l(b s e) \neq \varnothing$. Trivially, then, $\left([\underline{t} / p] \operatorname{Seq} \mathbb{I} \cup[\underline{t} / p] \operatorname{Seq}{ }^{2}\right.$ $\cup[t / p]\{-(r=s)\})=[t / p]\left(S e q^{\circ} \cup\{-(r=s)\}\right) \cap \mathbb{C l}(b s e) \neq \varnothing$. So $[t / p] S e q \cap C l(b s e) \neq \varnothing$.
vii.b) $([\underline{L} / p] \operatorname{Seq} \mathbb{I} \cup[\underline{t} / \boldsymbol{p}]$ Seq2 $) \cap C l(b s e)=\varnothing$. Since $([t / p]$ Seq $\mathbb{1} \cup[\underline{L} / p]\{+[r / u] F\}) \cap$ $C l(b s e) \neq \varnothing$ and $([\underline{t} / p] \operatorname{Seq} 2 \cup[\underline{t} / p]\{-[s / u] F\}) \cap C l(b s e) \neq \varnothing$, it follows that $[\underline{L} / p]\{+[r /$ $u] F\} \cap C l(b s e) \neq \varnothing$ and $[t / p]\{-[s / u] F\} \cap C l(b s e) \neq \varnothing$ and hence that both $+[\underline{L} / p][r / u] F \cong$ $+[[t / p] r / u][t / p] F,-[\underline{L} / \boldsymbol{p}][s / u] F \cong-[[t / p] s / u] \underline{t} / \boldsymbol{p}] F$ belong to $C l(b s e)$. By definition 1.3.3., $C l(b s e)=$ Ubse $_{\mu}, 0 \leq \mu<\epsilon_{0}$, so, since both of $+[[t / p] r / u][t / p] F,-[[t / p] s / u][t /$ $p] F$ belong to $C l(b s e)$, there are $\beta, \gamma \leq \epsilon_{0}$ such that $+[[t / p] r / u][t / p] F \in b s e_{\beta}$ and $-[[t / p] s /$ $u][t / p] F \in b s e_{\gamma}$. Assume, without loss of generality, that $\beta \geq \gamma$. Then $b s e_{\gamma} \subseteq b s e_{\beta}$ and so both of $+[[\boldsymbol{t} / \boldsymbol{p}] \boldsymbol{r} / \boldsymbol{u}][\underline{t} / \boldsymbol{p}] \boldsymbol{F},-[[\boldsymbol{t} / \boldsymbol{p}] \boldsymbol{s} / \boldsymbol{u}][\underline{L} / \boldsymbol{p}] \boldsymbol{F}$ belong to $b s e_{\beta}$. There are two main
sub-subcases:
vii.b.i) both of $[\boldsymbol{t} / \boldsymbol{p}] r,[\underline{t} / \boldsymbol{p}] s$ are basic terms. Then, since $[\underline{t} / \boldsymbol{p}] r,[\underline{t} / \boldsymbol{p}] s$ are constant terms, $[\underline{t} / \boldsymbol{p}] r,[\underline{t} / \boldsymbol{p}] s \in \delta($ Par $)$. Then, by the contrapositive of lemma 1.3.8., since both of $+[[\underline{t} / \boldsymbol{p}] r /$ $u][\underline{t} / p] F,-[[\underline{t} / \boldsymbol{p}] s / u][\underline{t} / \boldsymbol{p}] F$ belong to $b s e_{\beta}$, the signed sentence $+([\underline{t} / \boldsymbol{p}] r=[\underline{t} / \boldsymbol{p}] s)$ does not belong to $\mathbb{C l}(b s e)$, thus, $+([\underline{t} / \boldsymbol{p}] r=[\underline{t} / \boldsymbol{p}] s) \notin b s e . \quad$ So, by condition 1) of definition 1.3.1., $-([\underline{t} / \boldsymbol{p}] r=[\underline{t} / p] s) \cong-[\boldsymbol{t} / \boldsymbol{p}](r=s) \in b s e \subseteq \mathbb{C} l(b s e) . \quad$ Hence, $[\boldsymbol{t} / p] \operatorname{Seq}^{\circ} \cup\{-[\boldsymbol{t} / \boldsymbol{p}](r=s)\}$ $\cong[\underline{t} / \boldsymbol{p}]\left(\mathbb{S e q} q^{0} \cup\{-(r=s)\}\right) \cap \mathbb{C l}(b s e) \neq \varnothing . \quad$ So $[\underline{t} / p] \operatorname{Seq} \cap \mathbb{C l}(b s e) \neq \varnothing$.
vii.b.ii) not both of $[\underline{t} / \underline{p}] r,[\underline{t} / \underline{p}] s$ are basic terms, i.e., at least one of $[\underline{t} / \boldsymbol{p}] r,[\underline{t} / \boldsymbol{p}] s$ is a constant description term. Assume without loss of generality that $[t / p] s$ is a constant description term $u x . \Phi$. Then there are two sub-sub-subcases:
vii.b.ii.1) $[\boldsymbol{t} / \boldsymbol{p}] r \in \delta(P a r)$, i.e., $[\boldsymbol{t} / \boldsymbol{p}] r$ is a basic term. Since $-[\boldsymbol{x} . \Phi / u][\boldsymbol{L} / \boldsymbol{p}] F$ belongs to $b s e_{\beta}$, by lemma 1.3.10., there is a descriptum $t_{x_{x . \Phi}} \in \delta($ Par $)$ for $x_{x} . \Phi$ in bse such that $-\left[t_{1 x . \Phi} / u\right][t /$ $\boldsymbol{p}] F$ belongs to $b s e_{\beta}$. Since both of $+[[\underline{t} / \boldsymbol{p}] r / u][\underline{t} / \boldsymbol{p}] F,-\left[t_{\mathbf{u x . \Phi}} / u\right][\underline{t} / \boldsymbol{p}] F$ belong to $b s e_{\beta}$, by the same argument as that given in b.i) above, the signed sentence $-\left([\underline{t} / \boldsymbol{p}] r=t_{\mathbf{L x} . \Phi}\right)$ belongs to $b s e \subseteq \mathbb{C l}(b s e)$. Now, since u occurs free in F, u occurs free in $[\underline{t} / p] F$. So, since both of $+[[\underline{t} /$ $\boldsymbol{p}] r / u][\underline{t} / \boldsymbol{p}] F,-[\boldsymbol{x} . \Phi / \boldsymbol{u}][\underline{t} / \boldsymbol{p}] F$ belong to $b s e_{\beta}$, by lemma 2.0., for some constant term t and variable $v, b s e_{\beta} \subseteq \mathbb{C l}(b s e)$ contains both of the signed sentences $+[t / x] \Phi,+(x)(v)((\Phi \wedge[v /$ $x] \Phi) \rightarrow \boldsymbol{x}=\boldsymbol{v})$. Then, by lemma 1.2.11, since all of $-\left([\underline{t} / p] r=t_{\mathbf{x} . \Phi}\right),+[t / x] \Phi,+(x)(v)((\Phi$ $\wedge[v / x] \Phi) \rightarrow x=v)$ belong to $\mathbb{C l}(b s e)$ so does the signed sentence $-([\underline{L} / p] r=v x . \Phi) \cong-([t /$ $\boldsymbol{p}] r=[\underline{t} / \boldsymbol{p}] s) \cong-[\underline{t} / \boldsymbol{p}](r=s) . \quad$ Hence, $[\underline{t} / p] \operatorname{Seq}^{\prime} \cup\{-[\underline{t} / \boldsymbol{p}](r=s)\} \cong[\underline{t} / p]\left(\operatorname{Seq}^{\circ} \cup\{-(r\right.$ $=s)\}) \cap \mathbb{C l}(b s e) \neq \varnothing . \quad$ So $[\underline{t} / p] \operatorname{Seq} \cap \mathbb{C l}(b s e) \neq \varnothing$.
vii.b.ii.2) $[\underline{t} / \boldsymbol{p}] \boldsymbol{r} \notin \delta(P a r)$, i.e., $[\boldsymbol{t} / \boldsymbol{p}] \boldsymbol{r}$ is a constant description term, say $\mathfrak{l z} . \Psi$ for some formula Ψ. Since $+[\imath z, \Psi / u][\underline{t} / p] F$ belongs to bse $_{\beta}$, by lemma 1.3.10., there is a descriptum $t_{1 z .} \in \delta(P a r)$ for $t z . \Psi$ in bse such that $+\left[t_{1 z} \Psi / u\right][\underline{t} / \underline{p}] F$ belongs to $b s e_{\beta}$. By the argument given in b.ii.1) above, there is a descriptum $t_{\mathrm{Lx.} \mathrm{\Phi}} \in \delta($ Par $)$ for $\mathrm{xx} . \Phi$ in bse such that $-\left[t_{\mathrm{xx.} \mathrm{\Phi}} /\right.$
$u][\boldsymbol{L} / p] F$ belongs to $b s e_{\beta}$. Since both of $+\left[t_{\text {Lz. }} / u\right][\boldsymbol{t} / \boldsymbol{p}] F,-\left[t_{\boldsymbol{x}_{. \Phi}} / u\right][\underline{t} / p] F$ belong to $b s e_{\beta}$, by the same argument as that given in vii.b.i) above, the signed sentence $-\left(t_{\mathrm{Lz} . \Psi}=\boldsymbol{t}_{\mathrm{ux} . \Phi}\right)$ belongs to bse $\subseteq \mathbb{C l}(b s e)$. By the argument of vii.b.ii.1) above, it follows that $-\left(\boldsymbol{t}_{\mathrm{Lz} .} \Psi=\boldsymbol{x} . \Phi\right)$ belongs to bse $\subseteq \mathbb{C l}($ bse $)$. So, since both of $+[\underline{L} . \Psi / u][\underline{t} / \boldsymbol{p}],-[u x . \Phi / u][t / p] F$ belong to $b s e_{\beta}$, by lemma 2.0., for some constant term t and variable $v, b s e_{\beta} \subseteq \mathbb{C l}(b s e)$ contains both of the signed sentences $+[t / z] \Psi,+(z)(v)((\Psi \wedge[v / z] \Psi) \rightarrow z=v)$. Then, by lemma 1.2.11, since all of $-\left(t_{\mathrm{tz} .} \Psi=v x . \Phi\right),+[t / z] \Psi,+(z)(v)((\Psi \wedge[v / z] \Psi) \rightarrow z=v)$ belong to $\mathbb{C l}($ bse $)$ so does the signed sentence $-(\imath . \Psi=u x . \Phi) \cong-([\underline{t} / p] r=[\underline{t} / \underline{p}] s) \cong-[\underline{t} / \boldsymbol{p}](r=s)$. Hence, $[\underline{t} /$ $p] \operatorname{Seq}^{\circ} \cup\{-[\underline{t} / \underline{p}](r=s)\} \cong[\underline{t} / \underline{p}]\left(\operatorname{Seq}^{\circ} \cup\{-(r=s)\}\right) \cap \mathbb{C l}(b s e) \neq \varnothing$. So $[\underline{t} / p] \operatorname{Seq} \cap$ $C l(b s e) \neq \varnothing$.
viii) Seq is the conclusion of an application \mathbb{A} of the cut rule 1.2.2.8.. Then, trivially by lemma 1.3.9., $[t / p] \operatorname{Seq} \cap \mathbb{C l}(b s e) \neq \varnothing$.

In all cases, then, $[\underline{t} / p] \operatorname{Seq} \cap \operatorname{Cl}(b s e) \neq \varnothing$. Hence, theorem 2.1. and the soundness of Pld is established.

Corollary to Soundness ("Syntactic Consistency"): For no sentence snt are both of $\{+s n t\}$, \{-snt\} derivable sequents.

Proof: Assume there is a sentence snt such that both of $\{+s n t\},\{-s n t\}$ are derivable. Let bse be any base, \boldsymbol{p} any n-ary vector on Par containing all of the parameters occurring in snt and t any n-ary vector on $\delta(P a r)$ and. By soundness theorem 2.1 ., both of $\{+s n t\},\{-s n t\}$ are valid, so by definitions 1.3.5. and 1.3.6., $[\underline{t} / p]\{+s n t\} \cap \mathbb{C l}(b s e) \neq \varnothing$ and $[\underline{t} / p]\{-s n t\} \cap \mathbb{C l}(b s e) \neq \varnothing$. So both of $\pm[\underline{t} / p] s n t$ belong to $\mathbb{C l}(b s e)$. Since $\mathbb{C l}(b s e)=\bigcup_{b s e}, 0 \leq \mu<\epsilon_{0}$, there are $\beta, \gamma<$ $<\epsilon_{0}$ such that $+[\underline{t} / \boldsymbol{p}] s n t \in b s e_{\beta}$ and $-[\boldsymbol{t} / \boldsymbol{p}] s n t \in b s e_{\gamma}$. Assume, without loss of generality, that $\beta<\gamma$. Then $b s e_{\gamma} \subseteq b s e_{\beta}$ and so both of $\pm[t / p]$ snt belong to $b s e_{\beta}$. This contradicts lemma 1.3.9..

Section 3: An Alternative Logical Syntax for Pld.

For the purposes of the semantic completeness proof of section 4, we present a set of deductive rules which is equivalent to the set presented in 1.2 .2 .; section 4 establishes the semantic completeness of the new theory Pld2. The logical syntax of Pld2 is obtained from the set of deductive rules of 1.2.2. by replacing the three premise description rule 1.2.2.6.,

$$
\text { 6. } \frac{\operatorname{Seq} \mathbb{1} \cup\{+[t / x] \Phi\} \operatorname{Seq} 2 \cup\{+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)\} \quad \operatorname{Seq} \cup \cup\{ \pm[t / u] F\}}{\operatorname{Seq} \cup \cup \operatorname{Seq} 2 \cup \operatorname{Seq} 2 \cup\{ \pm[u x . \Phi / u] F\}}
$$

by the following two binary rules $1.2 .2 .6 .+$ and $1.2 .2 .6 .-:$

A Pld2 derivation tree is defined in the obvious way. We say that a sequent $\mathbb{S e q}$ is 2-derivable iff it is the endsequent of a Pld2 derivation tree. We need to show that a sequent Seq is 2-derivable iff it is derivable. The claim that every derivable sequent is 2-derivable is trivial. However, the proof that Pld is semantically complete requires the converse claim, that every 2-derivable sequent is derivable, which we now establish. We first prove a couple of simple lemmata concerning the "old" notion of derivability:

Lemma 3.1: Let Seq be any sequent, \mathbf{A} any sentence. If $\operatorname{Seq} \cup\{+\square \mathbf{A}\}$ is derivable, then so is $\operatorname{Seq} \cup\{-\mathbf{A}\}$.

Proof of 3.1.: The proof of 3.1. is by induction on the depth $\mathbb{D}(\Pi)$ of an arbitrary derivation tree
Π of $\operatorname{Seq} \cup\{\downarrow \mathrm{A}\}$ in the manner of the proof of lemma 3.2. below.

Lemma 3.2.: Let Seq be any sequent, \mathbf{A}, \mathbf{B} any sentences. If $\operatorname{Seq} \cup\{+(\mathbf{A} \wedge \mathbf{B})\}$ is derivable, then there are sequents $\operatorname{Seq} \mathbb{1}, \operatorname{Seq} 2$ such that $\operatorname{Seq} \mathbb{I} \cup S e q 2=\operatorname{Seq}$ and both of $\operatorname{Seq} \mathbb{I} \cup\{+\mathrm{A}\}$, Seq2 $\cup\{+\mathbf{B}\}$ are derivable.

Proof of 3.2.: Assume that $\operatorname{Seq} \cup\{+(\mathbf{A} \wedge \mathbf{B})\}$ is derivable, say, as endsequent of a derivation tree Π. We show by induction on the depth $\mathbb{D}(\Pi)$ of Π that there are sequents Seq1, Seq2 such that $\operatorname{Seq} \mathbb{Z} \cup S e q 2=\operatorname{Seq}$ and both of $\operatorname{Seq} \mathbb{I} \cup\{+A\}, \operatorname{Seq} 2 \cup\{+B\}$ are derivable. Clearly, we may omit the basis step, since by assumption Π contains nonatomic sentences and so is not an axiom. So assume the claim holds for all sequents which are derivable as endsequents of derivation trees Σ such that $\mathbb{D}(\Sigma)<\mathbb{D}(\Pi)$. We show the claim holds for $\operatorname{Seq} \cup\{+(\mathbf{A} \wedge \mathbf{B})\}$ by case analysis. Since the proof is trivial and somewhat tedious, we consider only three cases:

1) $\operatorname{Seq} \cup\{+(\mathbf{A} \wedge \mathbf{B})\} \cong \operatorname{Seq}^{\circ} \cup\{+(x) \boldsymbol{F},+(\mathbf{A} \wedge \mathbf{B})\}$ is the conclusion of an application \mathbb{A} in Π of the quantifier rule 1.2.2.5+. Then the premise to \mathbb{A} is $\operatorname{Seq}^{\circ} \cup\{+[p / x] F,+(\mathbf{A} \wedge \mathbf{B})\}$ where p is a parameter that does not occur in $\operatorname{Seq} \cup\{+(\mathbf{A} \wedge \mathbf{B})\}$. Now, $\operatorname{Seq}{ }^{\circ} \cup\{+[p / x] F$, $+(\mathbf{A} \wedge \mathbf{B})\}$ is the endsequent of the deepest proper subtree Σ of Π. Since $\mathbb{D}(\Sigma)<\mathbb{D}(\Pi)$, by the hypothesis of induction, there are $\operatorname{Seq}^{\circ} \mathbb{I}$ and $\operatorname{Seq}^{\circ} 2$ such that $\operatorname{Seq}^{\circ} \mathbb{I} \cup \operatorname{Seq}^{\circ} 2 \cong \operatorname{Seq}^{\circ} \cup\{+[p$ $\mid x] F\}$ and both of Seq' $\mathcal{1} \cup\{+\mathbf{A}\}, \operatorname{Seq}^{\top} 2 \cup\{+\mathbf{B}\}$ are derivable. So $\{+[\boldsymbol{p} / \boldsymbol{x}] \boldsymbol{F}\}$ belongs to one of $\mathrm{Seq}^{\circ} \mathbb{1}, \mathrm{Seq}^{\prime} 2$. Without loss of generality, assume that $\{+[p / x] F\} \in$ Seq$^{\circ} \mathbb{I}$. There are two cases:
i) $\{+[\boldsymbol{p} / \boldsymbol{x}] \boldsymbol{F}\} \notin$ Seq$^{\circ} 2$. Since p does not occur in Seq $\cup\{+(\mathbf{A} \wedge \mathbf{B})\} \cong \operatorname{Seq}^{\circ} \cup\{+(\boldsymbol{x}) \boldsymbol{F}$, $+(\mathbf{A} \wedge \mathbf{B})\}, p$ does not occur in $\left(\right.$ Seq $\left.{ }^{\circ}-\{+[p / x] F\}\right) \cup\{+(x) F,+\mathbf{A}\}$. So the following is a legitimate application of rule 1.2.2.5+.:

$$
\frac{\left(\operatorname{Seq}^{\circ} \mathbb{1}-\{+[p / x] F\}\right) \cup\{+[p / x] F,+\mathrm{A}\}}{\left(\operatorname{Seq}^{\circ} \mathbb{1}-\{+[p / x] F\}\right) \cup\{+(x) F,+\mathrm{A}\}}
$$

Since $\operatorname{Seq} q^{\prime} \cup\{+\mathbf{A}\} \cong\left(\operatorname{Seq}^{\prime} \mathbb{Z}-\{+[p / x] F\}\right) \cup\{+[p / x] F,+\mathbf{A}\}$ is derivable, it follows that
$\left(\operatorname{Seq}^{\prime} \mathbb{I}-\{+[p / \boldsymbol{x}] \boldsymbol{F}\}\right) \cup\{+(\boldsymbol{x}) \boldsymbol{F},+\mathbf{A}\}$ is derivable. Hence, both of $\left(\operatorname{Seq}^{\circ} \mathbb{I}-\{+[p / \boldsymbol{x}] \boldsymbol{F}\}\right) \cup$ $\{+(\boldsymbol{x}) \boldsymbol{F},+\mathbf{A}\}, \operatorname{Seq}^{\circ} 2 \cup\{+\mathbf{B}\}$ are derivable. Since $\operatorname{Seq}^{\circ} \mathbb{1} \cup \operatorname{Seq}^{\circ} 2 \cong \operatorname{Seq}^{\circ} \cup\{+[\boldsymbol{p} / \boldsymbol{x}] \boldsymbol{F}\}$ and $\{+[p / x] F\} \notin \operatorname{Seq}^{\circ} 2,\left(\operatorname{Seq}^{\circ} \mathbb{Z}-\{+[p / x] F\}\right) \cup\{+(x) F\} \cup \operatorname{Seq}^{2} 2 \cong \operatorname{Seq}^{\circ} \cup\{+(x) F\}$. So, the claim holds.
ii) $\{+[p / x] F\} \in \mathbb{S e q} 2$. Since p does not occur in $\operatorname{Seq} \cup\{+(\mathbf{A} \wedge \mathbf{B})\}, p$ does not occur in $\left(\operatorname{Seq}^{\circ} 2-\{+[\boldsymbol{p} / \boldsymbol{x}] \boldsymbol{F}\}\right) \cup\{+(\boldsymbol{x}) \boldsymbol{F},+\mathbf{B}\}$. So the following is a legitimate application of rule 1.2.2.5+.:

$$
\frac{\left(\operatorname{Seq} q^{2} 2-\{+[p / x] F\}\right) \cup\{+[p / x] F,+B\}}{\left(\operatorname{Seq}^{2} 2-\{+[p / x] F\}\right) \cup\{+(x) F,+B\}}
$$

Since $\operatorname{Seq}^{2} 2 \cup\{+B\} \cong\left(\operatorname{Seq}^{\circ} 2-\{+[p / x] F\}\right) \cup\{+[p / x] F,+B\}$ is derivable, it follows that $\left(\operatorname{Seq}^{2} 2-\{+[\boldsymbol{p} / \boldsymbol{x}] \boldsymbol{F}\}\right) \cup\{+(\boldsymbol{x}) \boldsymbol{F},+\mathrm{B}\}$ is derivable. By case a$)$, we know that $\left(\mathbb{S e q}^{\prime} \mathbb{Z}-\{+[\boldsymbol{p} /\right.$ $\boldsymbol{x}] \boldsymbol{F}\}) \cup\{+(\boldsymbol{x}) \boldsymbol{F},+\mathbf{A}\}$ is derivable. Since $\operatorname{Seq}^{\prime} \mathbb{Z} \cup \operatorname{Seq}^{\prime} \mathbb{Z} \cong \operatorname{Seq}^{\circ} \cup\{+[\boldsymbol{p} / \boldsymbol{x}] \boldsymbol{F}\}$, $\left(\operatorname{Seq}^{\circ} \mathbb{Z}-\right.$ $\{+[\boldsymbol{p} / \boldsymbol{x}] F\}) \cup\{+(\boldsymbol{x}) \boldsymbol{F}\} \cup\left(\operatorname{Seq}^{\circ} 2-\{+[\boldsymbol{p} / \boldsymbol{x}] F\}\right) \cup\{+(x) F\} \cong \operatorname{Seq}^{\prime} \cup\{+(\boldsymbol{x}) \boldsymbol{F}\}$. So the claim holds. QED CASE 1).
2) $\operatorname{Seq} \cup\{+(\mathbf{A} \wedge \mathbf{B})\} \cong \operatorname{Seq} \cup\{+(\mathbf{C} \wedge \mathbf{D}),+(\mathbf{A} \wedge \mathbf{B})\}$ is the conclusion of an application \mathbb{A} in Π of rule $1.2 .2 .3+$., for some sentences \mathbf{C}, \mathbf{D} and sequent $S e q^{\circ}$. Then \mathbb{A} is of the following form:

$$
\frac{\operatorname{Seq}^{\circ} \mathbb{1} \cup\{+C\} \quad \operatorname{Seq}^{2} \cup\{+D\}}{\operatorname{seq}^{0} \cup\{+(\mathbf{C} \wedge D),+(A \wedge B)\}}
$$

where $\operatorname{Seq}^{\circ} \mathbb{1} \cup \operatorname{Seq}^{n} 2 \cong \operatorname{Seq}^{\circ} \cup\{+(\mathbf{A} \wedge \mathbf{B})\}$. There are three cases:
i) $\{+(\mathbf{A} \wedge \mathbf{B})\} \in \operatorname{Seq}^{\prime} \mathbb{I}$ and $\{+(\mathbf{A} \wedge \mathbf{B})\} \notin \operatorname{Seq}^{\circ} 2$. Then $\operatorname{Seq} q^{\circ} \mathbb{I} \cong\left(\operatorname{Seq}^{\circ} \mathbb{I}-\{+(\mathbf{A} \wedge \mathbf{B})\}\right) \cup$ $\{+(\mathbf{A} \wedge \mathbf{B})\}$. Since $\left(\right.$ Seq $\left.^{\circ} \mathbb{I}-\{+(\mathbf{A} \wedge \mathbf{B})\}\right) \cup\{+(\mathbf{A} \wedge \mathbf{B}),+\mathbf{C}\}$ is derivable as endsequent of a proper subtree of Π, by the hypothesis of induction, there are Seq3 and Seq4 so that Seq3 \cup $\operatorname{Seq}^{4} \cong\left(\operatorname{Seq}^{\circ} \mathbb{I}-\{+(\mathbf{A} \wedge \mathbf{B})\}\right) \cup\{+\mathbf{C}\}$ and both of $\operatorname{Seq} 3 \cup\{+\mathbf{A}\}, \operatorname{Seq} 4 \cup\{+\mathbf{B}\}$ are
derivable. Assume, without loss of generality, that $+\mathbf{C} \in \operatorname{Seq} 3$. There are two cases:
a) $+\mathrm{C} \notin \operatorname{Seq} 4$. The following is a legitimate application of 1.2.2.3.:
$\frac{(\operatorname{Seq} 3-\{+\mathbf{C}\}) \cup\{+\mathbf{C}\} \cup\{+\mathbf{A}\} \quad \operatorname{seq} 2 \cup\{+\mathbf{D}\}}{\operatorname{seq}^{2} 2 \cup(\operatorname{seq} 3-\{+\mathbf{C}\}) \cup\{+(\mathbf{C} \wedge \mathbf{D})\} \cup\{+\mathbf{A}\}}$

Since both of $\operatorname{Seq} 2 \cup\{+\mathbf{D}\}, \operatorname{Seq} 3 \cup\{+\mathbf{A}\} \cong(\mathbb{S e q} 3-\{+\mathbf{C}\}) \cup\{+\mathbf{C}\} \cup\{+\mathbf{A}\}$ are derivable, it follows that $\operatorname{Seq}^{2} 2 \cup(\operatorname{Seq} 3-\{+\mathbf{C}\}) \cup\{+(\mathbf{C} \wedge \mathbf{D})\} \cup\{+\mathbf{A}\}$ is derivable. Further, we know that $\operatorname{Seq} \mathbb{4} \cup\{+B\}$ is derivable. Now, since $\operatorname{Seq}^{\circ} \mathbb{Z} \cup \operatorname{Seq}^{\circ} 2 \cong \operatorname{Seq}^{\circ} \cup$ $\{+(\mathbf{A} \wedge B)\}$ and $\operatorname{Seq} 3 \cup \operatorname{Seq} \mathbb{A}^{\sharp} \cong\left(\operatorname{Seq}^{\prime} \mathbb{I}-\{+(\mathbf{A} \wedge B)\}\right) \cup\{+C\}$, it follows from the facts that $\{+(\mathbf{A} \wedge B)\} \notin \operatorname{Seq}^{\circ} 2$ and $+\mathbf{C} \notin \operatorname{Seq}^{4}$ that $\mathbb{S e q}^{2} 2 \cup(\operatorname{Seq} 3-\{+C\}) \cup\{+(\mathbf{C} \wedge \mathrm{D})\} \cup$ $\operatorname{Seq} 4 \cong \operatorname{Seq}^{\circ} \cup\{+(\mathbf{C} \wedge \mathrm{D})\}$. So the claim holds.
b) $+\mathbf{C} \in \mathbb{S e q} 4$. The following is a legitimate application of 1.2.2.3.:

$$
\frac{\left.(\operatorname{seq} 4-\{+\mathbf{C}\}) \cup\{+\mathbf{C}\} \cup\{+\mathbf{B}\} \quad \operatorname{seq}^{2} \cup \cup+\mathbf{D}\right\}}{\operatorname{seq}^{2} 2 \cup(\operatorname{Seq} 4-\{+\mathbf{C}\}) \cup\{+(\mathbf{C} \wedge \mathbf{D})\} \cup\{+\mathbf{B}\}}
$$

Since both of $\operatorname{Seq}^{2} 2 \cup\{+\mathbf{D}\}, \operatorname{Seq} 4 \cup\{+B\} \cong(\operatorname{Seq} 4-\{+\mathbf{C}\}) \cup\{+\mathbf{C}\} \cup\{+B\}$ are derivable, it follows that $\operatorname{Seq} 2 \cup(\operatorname{Seq} 4-\{+\mathbf{C}\}) \cup\{+(\mathbf{C} \wedge \mathbf{D})\} \cup\{+\mathbf{B}\}$ is derivable. Further, by case a) we know that $\operatorname{Seq}^{2} 2 \cup(\operatorname{Seq} 3-\{+\mathbf{C}\}) \cup\{+(\mathbf{C} \wedge \mathbf{D})\} \cup\{+\mathbf{A}\}$ is derivable. Now, since $\operatorname{Seq}^{\circ} \mathbb{I} \cup \operatorname{Seq}^{\circ} 2 \cong \operatorname{Seq}^{\circ} \cup\{+(\mathbf{A} \wedge B)\}$ and $\operatorname{seq} \mathbb{S}^{3} \cup \operatorname{Seq} \mathbb{4} \cong\left(\operatorname{Seq}^{\circ} \mathbb{1}-\right.$ $\{+(\mathbf{A} \wedge \mathbf{B})\}) \cup\{+\mathbf{C}\}$, it follows from the fact that $\{+(\mathbf{A} \wedge \mathbf{B})\} \notin \operatorname{Seq}^{2} 2$ that $\operatorname{Seq}^{2} 2 \cup\left(\operatorname{Seq}^{4}\right.$ $-\{+\mathbf{C}\}) \cup\{+(\mathbf{C} \wedge \mathbf{D})\} \cup \operatorname{Seq}^{p} 2 \cup(\operatorname{Seq} 3-\{+\mathbf{C}\}) \cup\{+(\mathbf{C} \wedge \mathbf{D})\} \cong \operatorname{Seq}^{\prime} \cup\{+(\mathbf{C} \wedge \mathbf{D})\}$. So the claim holds.
ii) $\{+(\mathbf{A} \wedge \mathbf{B})\} \notin S_{S e q} \mathbb{l}^{1}$ and $\{+(\mathbf{A} \wedge \mathbf{B})\} \in \operatorname{Seq}^{2} 2$. This case is similar to case i) above.
iii) $\{+(\mathbf{A} \wedge \mathbf{B})\} \in \operatorname{Seq}^{\rho} \mathbb{I}$ and $\{+(\mathbf{A} \wedge \mathbf{B})\} \in \operatorname{Seq}^{\circ} 2$. Then, by similar argument to case i$)$, there are $\operatorname{Seq} 3$ and $\operatorname{Seq} 4$ so that $\operatorname{Seq} 3 \cup \operatorname{Seq} 4 \cong\left(\operatorname{Seq}^{\circ} \mathbb{1}-\{+(\mathbf{A} \wedge \mathbf{B})\}\right) \cup\{+\mathrm{C}\}$ and both of $\operatorname{Seq} 3 \cup\{+\mathbf{A}\}, \operatorname{Seq} 4 \cup\{+\mathbf{B}\}$ are derivable and there are Seq5 and Seq6 so that $\mathbb{S e q} 5 \cup$
$\operatorname{Seq} \sigma \cong(\operatorname{Seq} 2-\{+(\mathbf{A} \wedge \mathbf{B})\}) \cup\{+\mathbf{D}\}$ and both of $\operatorname{Seq} 5 \cup\{+\mathbf{A}\}, \operatorname{Seq} \sigma \cup\{+\mathbf{B}\}$ are derivable. The following is a legitimate application of 1.2.2.3.:

$$
(\operatorname{Seq} 3-\{+\mathbf{C}\}) \cup\{+\mathbf{A},+\mathbf{C}\} \quad(\operatorname{Seq} 5-\{+\mathbf{D}\}) \cup\{+\mathbf{A},+\mathbf{D}\}
$$

$$
(\operatorname{Seq} 3-\{+\mathbf{C}\}) \cup(\operatorname{Seq} 5-\{+\mathbf{D}\}) \cup\{+(\mathbf{C} \wedge \mathbf{D}),+\mathbf{A}\}
$$

In case $+\mathbf{C} \in \operatorname{Seq} 3, \operatorname{Seq} 3 \cup\{+\mathbf{A}\} \cong(\operatorname{Seq} 3-\{+\mathbf{C}\}) \cup\{+\mathbf{A},+C\}$. In case $+\mathbf{C} \notin \operatorname{Seq} 3$, since $\operatorname{Seq} \mathcal{3} \cup\{+\mathbf{A}\}$ is derivable, $(\operatorname{Seq} 3-\{+\mathbf{C}\}) \cup\{+\mathbf{A},+\mathbf{C}\}$ is derivable by an application of thinning. So in both cases, (Seq3 $-\{+\mathbf{C}\}) \cup\{+\mathbf{A},+\mathbf{C}\}$ is derivable. By similar reasoning, $(\operatorname{Seq} 5-\{+\mathbf{D}\} \cup\{+\mathbf{A},+\mathbf{D}\}$ is derivable. Hence, $(\mathbb{S e q} 3-\{+\mathbf{C}\}) \cup($ Seq $5-\{+\mathbf{D}\}) \cup$ $\{+(\mathbf{C} \wedge \mathbf{D}),+\mathbf{A}\}$ is derivable. A similar argument establishes that $(\operatorname{Seq} 4-\{+\mathbf{C}\}) \cup(\operatorname{Seq} 6-$ $\{+\mathbf{D}\}) \cup\{+(\mathbf{C} \wedge \mathbf{D}),+\mathbf{B}\}$ is derivable also. Since Seq $\mathcal{S} \cup \operatorname{Seq}^{4} \cong\left(\operatorname{Seq}^{\circ} \mathbb{I}-\{+(\mathbf{A} \wedge \mathbf{B})\}\right)$ $\cup\{+\mathbf{C}\}$ and $\operatorname{Seq} 5 \cup \operatorname{Seq} \cong \cong(\operatorname{Seq} 2-\{+(\mathbf{A} \wedge \mathbf{B})\}) \cup\{+\mathbf{D}\}$, it follows from the fact that $\operatorname{Seq} \mathbb{Z}^{\circ} \cup \operatorname{Seq}^{\circ} 2 \cong \operatorname{Seq}^{\circ} \cup\{+(\mathbf{A} \wedge \mathbf{B})\}$ that $\left(\operatorname{Seq} \mathcal{S}^{-}-\{+\mathbf{C}\}\right) \cup(\operatorname{Seq} \mathcal{S}-\{+\mathbf{D}\}) \cup\{+(\mathbf{C} \wedge$ D) $\} \cup(\operatorname{Seq} \notin\{+\mathbf{C}\}) \cup(\operatorname{Seq} \sigma-\{+\mathbf{D}\}) \cup\{+(\mathbf{C} \wedge \mathbf{D})\} \cong \operatorname{Seq}^{\circ} \cup\{+(\mathbf{C} \wedge \mathbf{D})\}$. So the claim holds. QED CASE 2).
3) $\operatorname{Seq} \cup\{+(\mathbf{A} \wedge \mathbf{B})\} \cong \operatorname{Seq}^{\circ} \cup\{ \pm[u x . \Phi / u] F,+(\mathbf{A} \wedge \mathbf{B})\}$ is the conclusion of an application \mathbb{A} in Π of rule 1.2.2.6., for some description term $u x . \Phi$ and formula F. Then \mathbb{A} is respectively of the following form:
$\operatorname{Seq} \mathbb{1} \cup\{+[t / x] \Phi\} \quad \operatorname{Seq} 2 \cup\{+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)\} \quad \operatorname{Seq} 3 \cup\{ \pm[t / u] F\}$

$$
\operatorname{Seq}^{i} \cup\{ \pm[u x . \Phi / u] F,+(\mathbf{A} \wedge B)\}
$$

where $\operatorname{Seq} \mathbb{I} \cup \operatorname{Seq} 2 \cup \operatorname{Seq} 3 \cong \operatorname{Seq} \cup\{+(\mathbf{A} \wedge \mathbf{B})\}$. There are four main cases:
i) $+(\mathbf{A} \wedge \mathbf{B}) \in S e q \mathbb{I}$ and $+(\mathbf{A} \wedge \mathbf{B}) \notin \operatorname{Seq} 2 \cup$ Seq3. Then, since Seq $\mathbb{\cup} \cup\{[t / x] \Phi\} \cong$ $(\operatorname{Seq} \mathbb{l}-\{+(\mathbf{A} \wedge \mathbf{B})\}) \cup\{+(\mathbf{A} \wedge \mathbf{B}),+[t / x] \Phi\}$ is derivable as the endsequent of a proper subtree of Π, by the hypothesis of induction, there are Seq4, Seq5 such that Seq4 4 Seq $5 \cong$ $(\operatorname{Seq} \mathbb{I}-\{+(\mathbf{A} \wedge \mathbf{B})\}) \cup\{+[t / \boldsymbol{x}] \Phi\}$ and both of $\operatorname{Seq} 4 \cup\{+\mathbf{A}\}, \operatorname{Seq} 5 \cup\{+\mathbf{B}\}$ are derivable.

Assume without loss of generality that $+[t / x] \Phi \in \mathbb{S e q} 4$. There are two cases:
a) $+[t / x] \Phi \notin \mathbb{S e q} 5$. The following is a legitimate application of 1.2.2.6.:
$(\operatorname{Seq} 4-\{+[t / x] \Phi\}) \cup\{+\mathrm{A},+[t / x] \Phi\} \quad \operatorname{Seq} 2 \cup\{+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)\} \quad \operatorname{Seq} 3 \cup\{ \pm[t / u] F\}$
$(S e q 4-\{+[t / x] \Phi\}) \cup S e q 2 \cup S e q 3 \cup\{ \pm[u x . \Phi / u] F,+A\}$

Since all of $\operatorname{Seq} 4 \cup\{+\mathbf{A}\} \cong(\operatorname{Seq} 4-\{+[t / x] \Phi\}) \cup\{+\mathbf{A},+[t / x] \Phi\}, \operatorname{Seq} 2 \cup$ $\{+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)\}$, Seq $3 \cup\{ \pm[t / u] F\}$ are derivable, it follows that (Seq4 $-\{+[t / x] \Phi\}) \cup \operatorname{Seq} 2 \cup \operatorname{Seq} 3 \cup\{ \pm[u x . \Phi / u] F,+\mathbf{A}\}$ is derivable. So both of (Seq4 $\{+[t / x] \Phi\}) \cup \operatorname{Seq} 2 \cup \operatorname{Seq} 3 \cup\{ \pm[u x . \Phi / u] F,+\mathbf{A}\}, \operatorname{Seq} 5 \cup\{+\mathbf{B}\}$ are derivable. Now, since $\operatorname{Seq} \mathbb{Z} \cup \operatorname{Seq} 2 \cup \operatorname{Seq} 3 \cong \operatorname{Seq} \cup\{+(\mathbf{A} \wedge \mathbf{B})\}$ and $\operatorname{Seq} 4 \cup \operatorname{Seq} 5 \cong(\operatorname{Seq} \mathbb{I}-\{+(A \wedge$ B) $\}) \cup\{+[t / x] \Phi\}$, it follows by the facts that $+(\mathbf{A} \wedge \mathbf{B}) \notin \operatorname{Seq} 2 \cup \operatorname{Seq} 3$ and $+[t / x] \Phi \notin$ $\operatorname{Seq} 5$ that $(\operatorname{Seq} 4-\{+[t / x] \Phi\}) \cup \operatorname{Seq} 2 \cup \operatorname{Seq} 3 \cup\{ \pm[1 x . \Phi / u] F\} \cup \operatorname{Seq} 5 \cong \operatorname{Seq} \cup$ $\{ \pm[u x . \Phi / u] F\}$. So the claim holds.
b) $+[t / x] \Phi \in \operatorname{Seq} 5$. Then $\mathbb{S e q} 5 \cup\{+\mathbf{B}\} \cong(\operatorname{Seq} 5-\{+[t / x] \Phi\}) \cup\{+[t / x] \Phi,+B\}$. The following is a legitimate application of 1.2.2.6.:
$(\operatorname{Seq} 5-\{+[t / x] \Phi\}) \cup\{+\mathrm{B},+[t / x] \Phi\} \quad \operatorname{Seq} 2 \cup\{+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)\} \quad \operatorname{Seq} 3 \cup\{ \pm[t / u] F\}$

$$
(\operatorname{Seq} 5-\{+[t / x] \Phi\}) \cup \operatorname{Seq} 2 \cup \operatorname{Seq} 3 \cup\{ \pm[u . \Phi / u] F,+B\}
$$

Since all of $\operatorname{Seq} S \cup\{+\mathbf{B}\} \cong(\operatorname{Seq} S-\{+[t / x] \Phi\}) \cup\{+B,+[t / x] \Phi\}, \operatorname{Seq} 2 \cup\{+(x)(v)((\Phi$ $\wedge[\boldsymbol{v} / \boldsymbol{x}] \Phi) \rightarrow \boldsymbol{x}=\boldsymbol{v})\}, \operatorname{Seq} 3 \cup\{ \pm[t / \boldsymbol{u}] F\}$, are derivable, it follows that (Seq5 $-\{+[\boldsymbol{t} /$ $x] \Phi\}) \cup \operatorname{Seq} 2 \cup \operatorname{Seq} 3 \cup\{ \pm[u x . \Phi / u] F,+B\}$ is derivable. But by case a), we know that $(\operatorname{Seq} 4-\{+[t / x] \Phi\}) \cup \operatorname{Seq} 2 \cup \operatorname{Seq} \mathcal{S} \cup\{ \pm[t x . \Phi / u] F,+\mathbf{A}\}$ is also derivable. Now, since $\operatorname{Seq} \mathbb{1} \cup \operatorname{Seq} 2 \cup \operatorname{Seq} 3 \cong \operatorname{Seq} \cup\{+(\mathbf{A} \wedge B)\}$ and $\operatorname{Seq} 4 \cup \operatorname{Seq} 5 \cong(\operatorname{Seq} \mathbb{Z}-\{+(\mathbf{A} \wedge B)\}) \cup$ $\{+[t / x] \Phi\}$, it follows by the fact that $+(\mathbf{A} \wedge \mathbf{B}) \notin \operatorname{Seq} 2 \cup \operatorname{Seq} 3$ that $(\operatorname{Seq} S-\{+[t / x] \Phi\}) \cup$ $\operatorname{Seq} 2 \cup \operatorname{Seq} 3 \cup\{ \pm[t x . \Phi / u] F\} \cup(\operatorname{Seq} 4-\{+[t / x] \Phi\}) \cup \operatorname{Seq} 2 \cup \operatorname{Seq} 3 \cup\{ \pm[1 x . \Phi /$ $u] F,+\mathbf{A}\} \cong S e q^{\circ} \cup\{ \pm[u x . \Phi / u] F\}$. So the claim holds.
ii) $+(\mathbf{A} \wedge \mathbf{B}) \in \operatorname{Seq} \mathbb{I}$ and $+(\mathbf{A} \wedge \mathbf{B}) \in \mathbb{S e q} 2$ and $+(\mathbf{A} \wedge \mathbf{B}) \notin \mathbb{S e q} 3$. By case i$)$, there are $\operatorname{Seq} 4, \operatorname{Seq} 5$ such that $\operatorname{Seq} 4 \cup \operatorname{Seq} 5 \cong(\operatorname{Seq} \mathbb{I}-\{+(\mathbf{A} \wedge \mathbf{B})\}) \cup\{+[t / x] \Phi\}$ and both of $\operatorname{Seq} 4 \cup\{+\mathbf{A}\}, \operatorname{Seq} 5 \cup\{+\mathbf{B}\}$ are derivable. By a similar argunent, since $+(\mathbf{A} \wedge \mathbf{B}) \in \operatorname{Seq}^{2}$, we know that there are $\mathbb{S e q} \sigma, \mathbb{S e q} 7$ such that $\mathbb{S e q} \sigma \cup \mathbb{S e q} 7 \cong(\mathbb{S e q} 2-\{+(\mathbf{A} \wedge \mathbf{B})\}) \cup$ $\{+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)\}$ and both of Seq $\sigma \cup\{+\mathbf{A}\}, \operatorname{Seq} 7 \cup\{+B\}$ are derivable. Let $S e q \sigma^{*} \cong(\operatorname{Seq} \sigma-\{+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)\}) \cup\{+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x$ $=v)\}$. The following is a legitimate application of 1.2.2.6.:

$$
(\operatorname{Seq} 4-\{+[t / x] \Phi]) \cup\{+\mathbf{A},+[t / x] \Phi\} \quad \operatorname{Seq} 6^{*} \cup\{+\mathrm{A}\} \quad \operatorname{Seq} 3 \cup[\pm[t / u] F\}
$$

$$
(\operatorname{Seq} 4-\{+[t / x] \Phi\}) \cup(\operatorname{Seq} 6-\{+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)\}) \cup \operatorname{Seq} 3 \cup\{ \pm[u x . \Phi / u] F,+\mathbf{A}\}
$$

In case $+[t / x] \Phi \in \operatorname{Seq} 4, \operatorname{Seq} 4 \cup\{+A\} \cong\left(\operatorname{Seq}^{4}-\{+[t / x] \Phi\}\right) \cup\{+\mathbf{A},+[t / x] \Phi\}$; in case $+[t / x] \Phi \notin \operatorname{Seq} 4,(\operatorname{Seq} 4-\{+[t / x] \Phi\}) \cup\{+\mathbf{A},+[t / x] \Phi\}$ is derivable from $\operatorname{Seq} 4 \cup\{+\mathbf{A}\}$ by an application of thinning. In both cases, then, $(\operatorname{Seq} 4-\{+[t / x] \Phi\}) \cup\{+\mathbf{A},+[t / x] \Phi\}$ is derivable. A similar argument establishes that $\operatorname{Seq} \boldsymbol{\sigma}^{*} \cup\{+\mathrm{A}\}$ is derivable. Since $\operatorname{Seq} \mathcal{J} \cup\{ \pm[t /$ $u] F\}$ is derivable, it follows that $(\operatorname{Secq} 4-\{+[t / x] \Phi\}) \cup(\operatorname{Seq} \sigma-\{+(x)(v)((\Phi \wedge[v / x] \Phi)$ $\rightarrow \boldsymbol{x}=\boldsymbol{v})\}) \cup \operatorname{Seq} 3 \cup\{ \pm[u . \Phi / u] F,+\mathbf{A}\}$ is derivable. A similar argument establishes that $(\operatorname{Seq} 5-\{+[t / x] \Phi\}) \cup(\operatorname{Seq} 7-\{+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)\}) \cup \operatorname{Seq} \mathcal{S} \cup\{ \pm[u x . \Phi$ $\mid \boldsymbol{u}] F,+B\}$ is derivable as well. Now, since $\operatorname{Seq} \mathbb{1} \cup \operatorname{Seq} 2 \cup \operatorname{Seq} 3 \cong \operatorname{Seq}^{\circ} \cup\{+(\mathbf{A} \wedge \mathbf{B})\}$ and $\operatorname{Seq} 4 \cup \operatorname{Seq} 5 \cong(\operatorname{Seq} \mathbb{I}-\{+(\mathbf{A} \wedge B)\}) \cup\{+[t / x] \Phi\}$ and $\operatorname{Seq} \sigma \cup \operatorname{Seq} 7 \cong(\operatorname{Seq} 2-\{+(A \wedge$ B) $\}) \cup\{+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)\}$, it follows by the fact that $+(\mathbf{A} \wedge B) \notin S e q 3$ that $\left(\operatorname{Seq}^{4}-\{+[t / x] \Phi\}\right) \cup(\operatorname{Seq} \sigma-\{+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)\}) \cup \operatorname{Seq} 3 \cup\{ \pm[u x . \Phi$ $/ \boldsymbol{u}] F\} \cup(\operatorname{Seq} 5-\{+[t / x] \Phi\}) \cup(\operatorname{Seq} 7-\{+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)\}) \cup \operatorname{Seq} \mathcal{S} \cup$ $\{ \pm[u x . \Phi / u] F\} \cong \operatorname{Seq}^{\circ} \cup\{ \pm[u x . \Phi / u] F\}$. So the claim holds.
iii) $+(\mathbf{A} \wedge B) \in \operatorname{Seq} \mathbb{l}$ and $+(A \wedge B) \notin \operatorname{Seq} 2$ and $+(A \wedge B) \in S e q 3$. This case is similar to case ii) above.
iv) $+(\mathbf{A} \wedge B) \in \operatorname{Seq} \mathbb{l}$ and $+(\mathbf{A} \wedge B) \in \operatorname{Seq} 2$ and $+(A \wedge B) \in S e q 3$. This case is similar to case ii) above. QED CASE 3).

This completes our case analysis. By the principle of induction, lemma 3.2. is established.

We may now establish the desired result that every 2-derivable sequent is derivable:

Lemma 3.3: Let Seq be any sequent. If Seq is 2 -derivable, then $\mathbb{S e q}$ is derivable.

Proof of 3.3.: Assume that $S e q$ is 2-derivable, say, as endsequent of a Pld2 derivation tree Π. We show by induction on the depth $D(\Pi)$ of Π that $\mathbb{S e q}$ is derivable.

Base step: $\mathbb{D}(\Pi)=0$, i.e., Π is an axiom. Then Π is derivable.

Induction step: Assume derivable every sequent that is 2-derivable as endsequent of a Pld2 derivation tree Σ such that $\mathbb{D}(\Sigma)<\mathbb{D}(\Pi)$. Clearly, if Seq is the conclusion of an application of one of $1.2 .2 .1 . \pm, 1.2 .2 .2 . \pm, 1.2 .2 .3 . \pm, 1.2 .2 .4 . \pm, 1.2 .2 .5 . \pm, 1.2 .2 .7 . \pm, 1.2 .2 .8 . \pm$, then by the hypothesis of induction, $\mathbb{S e q}$ is derivable. So assume that $\mathbb{S e q}$ is the conclusion of an application \mathbb{A} of either 1.2.2.6.+ or 1.2.2.6.-. We consider these two cases:
i) Seq is the conclusion of an application \mathbb{A} in Π of $1.2 .2 .6 .+$. Then, $\mathbb{S e q} \cong \mathbb{S e q} \mathbb{S} \cup \operatorname{Seq} 2 \cup$ $\{+[u x . \Phi / x] F\}$ for some sequents $\mathbb{S e q} \mathbb{1}, \operatorname{Seq} 2$, term t, formula F, and description term $\boldsymbol{x} . \Phi$ and \mathbb{A} is of the following form:

$$
\operatorname{Seq} \mathbb{Z} \cup\{+[t / x](\Phi \wedge F)\} \quad \operatorname{Seq} 2 \cup\{+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)\}
$$

$$
\operatorname{Seq} \mathbb{1} \cup \operatorname{Seq} 2 \cup\{+[u x . \Phi / x] F\}
$$

Since $\operatorname{Seq} \mathbb{I} \cup\{+[t / x](\Phi \wedge F)\}$ and $\operatorname{Seq} 2 \cup\{+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)\}$ are 2-derivable as endsequents of proper subtrees of Π, by the hypothesis of induction, both of $\mathbb{S e q} \mathbb{I}$ $\cup\{+[t / x](\Phi \wedge F)\}$, Seq $2 \cup\{+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)\}$ are derivable. Since Seq \mathbb{I} $\cup\{+[t / x](\Phi \wedge F)\} \cong \operatorname{Seq} \mathbb{I} \cup\{+([t / x] \Phi \wedge[t / x] F)\}$ is derivable, by lemma 3.2., there are sequents $\operatorname{Seq}^{3}, \operatorname{Seq} 4$ such that $\operatorname{Seq} 3 \cup \operatorname{Seq} 4 \cong \operatorname{Seq} 1$ and both of $\operatorname{Seq} 3 \cup\{+[t / x] \Phi\}$, $\operatorname{Seq} 4\{+[t / x] F\}$ are derivable. The following is a legitimate application of 1.2.2.6.:

```
\(\operatorname{Seq} 3 \cup\{+[t / x] \Phi\} \operatorname{Seq} 2 \cup\{+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)\} \quad \operatorname{Seq} 4 \cup\{+[t / x] F\}\)
```

$\operatorname{Seq} 3 \cup \operatorname{Seq} 2 \cup \operatorname{Seq} 4 \cup\{+[1 x . \Phi / x] F\}$

So it follows that $\operatorname{Seq} 3 \cup \operatorname{Seq} 2 \cup \operatorname{Seq} 4 \cup\{+[1 x . \Phi / x] F\} \cong \operatorname{Seq} \mathbb{I} \cup \operatorname{Seq} 2 \cup\{+[1 x . \Phi /$ $x] F\} \cong \operatorname{Seq}$ is derivable. So the claim holds.
ii) Seq is the conclusion of an application \mathbb{A} in Π of 1.2.2.6.-. Then, $\operatorname{Seq} \cong \operatorname{Seq} \mathbb{I} \cup S e q 2 \cup$ $\{-[u x . \Phi / x] F\}$ for some sequents Seq1, Seq2, term t, formula F, and description term $\boldsymbol{x} . \Phi$ and \mathbb{A} is of the following form:
$\frac{\operatorname{Seq} \mathbb{1} \cup\{+[t / x](\Phi \wedge \neg F)\} \quad \operatorname{Seq} 2 \cup\{+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)\}}{\operatorname{Seq} \mathbb{1} \cup \operatorname{Seq}^{2} \cup\{-[1 x . \Phi / x] F\}}$

Since $\operatorname{Seq} \mathbb{I} \cup\{+[t / x](\Phi \wedge \neg F)\}$ and $\operatorname{Seq} 2 \cup\{+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)\}$ are 2-derivable as endsequents of proper subtrees of Π, by the hypothesis of induction, both of $\mathbb{S e q} \mathbb{\mathbb { Z }}$ $\cup\{+[t / x](\Phi \wedge \neg F)\}, \operatorname{seq} 2 \cup\{+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)\}$ are derivable. Since $\operatorname{Seq} \mathbb{I} \cup\{+[t / x](\Phi \wedge \neg F)\} \cong \operatorname{Seq} \mathbb{\mathbb { Z }} \cup\{+([t / x] \Phi \wedge[t / x] \neg F)\}$ is derivable, by lemma 3.2., there are sequents $\operatorname{Seq} 3, \operatorname{Seq} 4$ such that $\operatorname{Seq} 3 \cup \operatorname{Seq} 4 \cong \operatorname{Seq} \mathbb{I}$ and both of $\operatorname{Seq} 3 \cup\{+([t /$ $x] \Phi\}, \operatorname{Seq} 4 \cup\{+([t / x] \neg F)\}$ are derivable. Since $\operatorname{Seq} 4 \cup\{+([t / x] \neg F)\}$ is derivable, by lemma 3.1., Seq4 $\cup\{-([t / x] F)\}$ is derivable. The following is a legitimate application of 1.2.2.6.:

$$
\frac{\operatorname{Seq}^{3} \cup\{+[t / x] \Phi\} \operatorname{Seq} 2 \cup\{+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)\} \quad \operatorname{Seq} 4 \cup\{-[t / x] F\}}{\operatorname{Seq}^{3} \cup \operatorname{Seq} 2 \cup \operatorname{Seq} 4 \cup\{-[u x . \Phi / x] F\}}
$$

So it follows that $\operatorname{Seq} 3 \cup \operatorname{Seq} 2 \cup \operatorname{Seq} 4 \cup\{-[1 x . \Phi / x] F\} \cong \operatorname{Seq} \mathcal{I} \cup \operatorname{Seq} 2 \cup\{-[u x . \Phi / x] F\}$ \cong Seq is derivable. So the claim holds.

In both cases, Seq is derivable. So by the principle of induction, lemma 3.3. is established.
3.4.: A derivation tree Π is a strict derivation tree iff Π contains no applications of the cut rule $1.2 .2 .8 . \pm$ and no applications \mathbb{A} of the description rule 1.2 .2 .6 . such that \mathbb{A} has a nonelementary output sentence. A sequent $\mathbb{S e q}$ is strictly derivable iff it is derivable as endsequent of a strict derivation tree. A Pld2 derivation tree Π is a strict Pld2 derivation tree iff Π contains no applications of the cut rule 1.2.2.8.士 and no applications \mathbb{A} of either of the description rules $1.2 .2 .6 .+, 1.2 .2 .6 .-$, such that \mathbb{A} has a nonelementary output sentence. A sequent $\mathbb{S e q}$ is strictly 2-derivable iff it is 2 -derivable as endsequent of a strict Pld2 derivation tree.

Lemma 3.5.: Let $\mathbb{S e q}$ be any sequent. If Seq is strictly 2 -derivable, then $\mathbb{S e q}$ is strictly derivable.

Proof of 3.5: The proof of lemma 3.5. is obtained from the proof of lemma 3.3. by uniformly substituting the expression "strict derivation tree" for "derivation tree", "strict Pld2 derivation tree" for "Pld2 derivation tree", "strictly derivable" for "derivable", "strictly 2-derivable" for "2-derivable", and "afm" for " F " throughout that proof.

This concludes section 3. We are now prepared to establish the semantic completeness of Pld by establishing the semantic completeness of Pld2.

Section 4: Semantic Completeness for PId.

We say that Pld is semantically complete iff every valid sequent is derivable. In this section we show that Pld is semantically complete.

4.1 Preliminaries.

For the purposes of the completeness proof, we generalize the notion of 2-derivability (strict 2-derivability) defined in section 3 so that we may consider the 2-derivability (strict 2-derivability) of arbitrary sets of signed sentences. A possibly infinite set Set of signed sentences is said to be 2-derivable (strictly 2 -derivable) iff there is a sequent $\mathbb{S e q} \subseteq$ Set such that Seq is 2 -derivable (strictly 2-derivable). In other words, a set of signed sentences is 2-derivable (strictly 2-derivable) iff some finite subset of it is 2 -derivable (strictly 2 -derivable). Observe that a sequent is 2 -derivable (strictly 2 -derivable) in the extended sense defined here iff it is 2-derivable (strictly 2 -derivable) in the sense of section 3 .

Let bijective numerations $\mathbb{P}: \mathbb{N} \rightarrow P a r, \mathbb{T}: \mathbb{N} \rightarrow \delta($ Par $), \mathbb{S S}: \mathbb{N} \rightarrow\{ \pm$ snt $:$ snt $\in \mathbb{E}($ Par $)\}$, of the set of respectively parameters, constant basic terms, signed sentences, of Pld be given. Let Ind: $\{ \pm s n t: s n t \in \mathbb{E}(P a r)\} \rightarrow \mathbb{N}$ be the functional inverse of $\mathbb{S S}$, i.e., $\operatorname{Ind}(\mathbb{S} S(i))=i ; i$ will be called the index of the signed sentence $\mathbb{S S}(i)$. If Set is a set of signed sentences, let $\mathscr{P}(\mathbb{S e t})$ be the set of parameters which occur in at least one member of Set. Then,
.1. Let Set be a set of signed sentences and $\pm s n t$ any member of Set. Then, Set is downward closed iff the following conditions hold:

1) For no atomic sentence asnt does Set contain both of \pm asnt.
2) For no t in $\delta(P a r)$ does Set contain the signed sentence $+(t=t)$
3) For no r, s in $\delta($ Par $)$ does Set contain both of $+(r=s),-(s=r)$.
4) For no r, s in $\delta(P a r)$ and atomic formula afm does Set contain all of $-(r=s),-[r / v] a f m$, $+[s / v] a f m$.
5) If \pm snt is respectively of the form $\pm \neg \mathbf{A}$ for some sentence \mathbf{A}, then Set contains respectively \mp A.
6) If $\pm s n t$ is respectively of the form $\pm(\mathbf{A} \wedge \mathbf{B})$ for some sentences \mathbf{A}, \mathbf{B}, then Set contains one of $+\mathbf{A},+\mathbf{B}$, respectively, both of $-\mathbf{A},-\mathbf{B}$.
7) If \pm snt is respectively of the form $\pm(\mathbf{A} \rightarrow \mathbf{B})$ for some sentences \mathbf{A}, \mathbf{B}, then Set contains both of $-\mathbf{A},+\mathbf{B}$, respectively, one of $+\mathbf{A},-\mathbf{B}$.
8) If \pm snt is respectively of the form $\pm(x) F$ for some formula F, then Set contains $+[p / x] F$ for some p in $\mathscr{P}(\mathbb{S e t})$, respectively, $-[t / x] F$ for everyt in $\delta(\mathscr{S}(\mathbb{S e t}))$.
9) If $\pm s n t$ is a signed nonatomic elementary sentence of the form $+[u x . \Phi / u] a f m$ for some constant description term $\tau \boldsymbol{x} . \Phi$ and atomic formula afm, then Set satisfies one of the following conditions:
i) Set contains the signed sentence $+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)$ for some variable v.
ii) Set contains the signed sentence $+[t / x](\Phi \wedge[x / u] a f m)$ for every $t \in \delta(\mathscr{P}(\mathbb{S e t}))$.
10) If $\pm s n t$ is a signed nonatomic elementary sentence of the form -[ux. $\Phi / u] a f m$ for some constant description term $u . \Phi$ and atomic formula afm, then $\mathbb{S e t}$ satisfies one of the following conditions:
i) Set contains the signed sentence $+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)$ for some variable $v \neq x$.
ii) Set contains the signed sentence $+[t / x](\Phi \wedge \neg[x / u] a f m)$ for every $t \in \delta(\mathscr{\mathscr { P }}(\mathbb{S e t}))$.

4.2. Statement and Proof of the Completeness Theorem.

Theorem 4.2.1.: Let Seq be a sequent of signed sentences. If Seq is valid, then Seq is derivable.

We establish 4.2.1. by proving the much stronger result that if $\mathbb{S e q}$ is valid then $\mathbb{S e q}$ is strictly derivable. This stronger result follows by lemma 3.5. from the following theorem, which we now prove:

Theorem 4.2.2: Let $\mathbb{S e q}$ be any sequent. If $\mathbb{S e q}$ is valid then $\mathbb{S e q}$ is strictly 2-derivable.

Proof of 4.2.2.: We will show that any sequent that is not strictly 2-derivable is not valid, that is, is invalidated by some base, by establishing the following two lemmata:

Lemma 4.2.3: Let $\mathbb{S e q}$ be any sequent. If $\mathbb{S e q}$ is not strictly 2-derivable, then $\mathbb{S e q}$ has a downward closed extension $\operatorname{Set}_{\omega}$.

Lemma 4.2.4: Every downward closed set Set of signed sentences determines a base bse ${ }_{\text {Set }}$ such that $\mathbb{S e t} \cap \mathbb{C l}\left(b s e_{S e t}\right)=\varnothing$.

Note that the significance of the notion of downward closed is revealed by lemmas 4.2.3. and 4.2.4.: every downward closed sequent is invalidated by some base. Clearly, our desired result that any sequent which is not strictly 2 -derivable is invalidated by some base is an immediate consequence of lemmas 4.2.3. and 4.2.4..

Proof of 4.2.3: We establish lemma 4.2.3. by defining a process which constructs downward closed extensions for arbitrary sequents which are not strictly 2 -derivable. We say that a signed sentence $\pm s n t$ is reducible iff $s n t$ is neither elementary nor, for some formula F, of the form $(x) F$. Let $S \subseteq \mathbb{N}$ and Set be a set of signed sentences. Let $\pm s n t$ be a signed nonatomic sentence in Set such that $\operatorname{Ind}(\pm s n t) \notin S$ and for all $j<i$, if $j \in S$, then $\mathbb{S S}(j) \notin S e t$. In other words, let \pm snt be the first signed nonatomic sentence in Set whose index is not in S. Then Set is said to be an S-reduction of $\mathbb{S e t}$ iff $\pm s n t$ is reducible and Set $^{\circ}$ is obtained from Set by adding new signed sentences to $\mathbb{S e t}^{\circ}$ according to the following rules:

1) If $\pm s n t$ is respectively of the form $\pm \boxed{A}$ for some sentence \mathbf{A}, then respectively $\mp \mathbf{A}$ is added to Set;
2) If $\pm s n t$ is of the form $+(\mathbf{A} \wedge \mathbf{B})$ for some sentences \mathbf{A}, \mathbf{B}, then one of $+\mathbf{A},+\mathbf{B}$ is added to Set;
3) If $\pm s n t$ is of the form $-(\mathbf{A} \wedge \mathbf{B})$ for some sentences \mathbf{A}, \mathbf{B}, then both of $-\mathbf{A},-\mathbf{B}$ are added to Set;
4) If \pm snt is of the form $+(\mathbf{A} \rightarrow \mathbf{B})$ for some sentences \mathbf{A}, \mathbf{B}, then both of $-\mathbf{A},+\mathbf{B}$ are added to Set;
5) If $\pm s n t$ is of the form $-(\mathbf{A} \rightarrow \mathbf{B})$ for some sentences \mathbf{A}, \mathbf{B}, then one of $+\mathbf{A},-\mathbf{B}$ is added to Set.;
4.2.3.1: A reduction sequence $\left\langle\mathbb{S e t}_{i}\right\rangle$ of a sequent $\mathbb{S} \mathbb{Q} q$ with respect to an enumeration $\mathbb{S} \mathbb{S}$ is a sequence of sets $\mathbb{S e} t_{i}$ of signed sentences defined by simultaneous recursion with sequences $\left\langle\mathrm{S}_{i}\right\rangle,\left\langle\mathrm{D} 1_{i}\right\rangle$ of index sets $\mathrm{S}_{i}, \mathrm{D} 1_{i}$ as follows: Let $\pm s n t_{i}$ be the first signed nonatomic sentence in $\mathbb{S e t}_{i}$ whose index is not in S_{i}. Let $\mathbb{R}(i) \subseteq S_{i}$ be the set of indices in S_{i} of signed sentences ssnt such that ssnt is either of the form $-(x) F$ for some formula F or of the form $\pm[u x . \Phi / u] a f m$ for some description term $u x . \Phi$ and atomic formula afm. Then,
6) $\operatorname{Set}_{0}=\operatorname{seq} . \mathrm{S}_{0}=\varnothing \cdot \mathrm{D} 1_{i}=\varnothing$.
7) If $\pm \boldsymbol{s n} t_{i}$ is reducible, then Set_{i+1} is a S_{i}-reduction of $\operatorname{Set}_{i} . \mathrm{S}_{i+1}=\mathrm{S}_{i} \cup\left\{\operatorname{Ind}\left(\pm \boldsymbol{\operatorname { n }} \boldsymbol{n} \boldsymbol{t}_{i}\right)\right\}$. $\mathrm{D} 1_{i+1}=\mathrm{D} 1_{i}$.
8) If $\pm s n t_{i}$ is of the form $+(x) F$ for some formula F, then Set_{i+1} is obtained from Set_{i} by adding to Set $_{\boldsymbol{i}}$ the new signed sentence $+[\boldsymbol{p} / \boldsymbol{x}] \boldsymbol{F}$, where \boldsymbol{p} is the first parameter that does not occur in any signed sentence of Set_{i}. In other words, $\operatorname{Set}_{i+1}=\operatorname{Set}_{i} \cup\{+[\boldsymbol{p} / \boldsymbol{x}] F\} . \quad \mathrm{S}_{i+1}=\left(\mathrm{S}_{i}\right.$ $\left.\cup\left\{\operatorname{Ind}\left(\pm s n t_{i}\right)\right\}\right)-\mathbb{R}(i) . \quad \mathrm{D} 1_{i+1}=\mathrm{D} 1_{i}$.
9) If $\pm s n t_{i}$ is of the form $-(x) F$ for some formula F, then Set $_{i+l}$ is obtained from Set $_{i}$ by adding to Set_{i} all signed sentences of the form $-[t / x] F$, where t is in $\delta\left(\mathscr{P}\left(\operatorname{Set}_{i}\right)\right)$. In other words, $\operatorname{Set}_{i+1}=\operatorname{Set}_{i} \cup\left\{+[t / x] F: t \in \delta\left(\mathscr{P}\left(\operatorname{Set}_{i}\right)\right)\right\} . \quad \mathrm{S}_{i+1}=\mathrm{S}_{i} \cup\left\{\operatorname{Ind}\left(\pm s n t_{i}\right)\right\} . \mathrm{D} 1_{i+1}=\mathrm{D} 1_{i}$.
10) If $\pm s n t$ is a signed nonatomic elementary sentence of the form $+[u x . \Phi / u] a f m$ for some description term $\mathrm{ux} . \Phi$ and atomic formula afm, then $\operatorname{Set}_{i+1}, \mathrm{~S}_{i+1}, \mathrm{D} 1_{i+1}$ are obtained from $\operatorname{Set}_{i}, S_{i}, D 1_{i}$ by one of the following rules:
a) If $\operatorname{Ind}\left(\pm s n t_{i}\right) \notin \mathrm{D} 1_{i}$, then Set_{i+1} is obtained from Set_{i} by adding to Set_{i} the new signed sentence $+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)$ for some variable $v \neq x$. In other words, Set ${ }_{i+1}$ $=\operatorname{Set}_{i} \cup\{+(x)(v)((\Phi \wedge[\nu / x] \Phi) \rightarrow x=v)\} . \mathrm{S}_{i+1}=\mathrm{S}_{i} \cup\left\{\operatorname{Ind}\left(\pm\right.\right.$ snt $\left.\left.t_{i}\right)\right\} . \mathrm{D} 1_{i+1}=\mathrm{D} 1_{i}$.
b) $S e t_{i+1}$ is obtained from Set $_{i}$ by adding to Set $_{i}$ all signed sentences of the form $+[t / x](\Phi \wedge[x$ $1 u] a f m)$, where $t \in \delta\left(\mathscr{P}\left(\right.\right.$ Set $\left.\left._{i}\right)\right)$. In other words, $\operatorname{Set}_{i+1}=\operatorname{Set}_{i} \cup\{+[t / x](\Phi \wedge[x /$ $u] a f m): t \in \delta\left(\mathscr{P}\left(\right.\right.$ Set $\left.\left.\left._{i}\right)\right)\right\} . \mathrm{S}_{i+1}=\mathrm{S}_{i} \cup\left\{\operatorname{Ind}\left(\pm s n t_{i}\right)\right\} . \mathrm{D} 1_{i+1}=\mathrm{D} 1_{i} \cup\left\{\operatorname{Ind}\left(\pm s n t_{i}\right)\right\}$.
11) If $\pm s n t$ is a signed nonatomic elementary sentence of the form - $[x . \Phi / u] a f m$ for some description term $\boldsymbol{x} . \Phi$ and atomic formula afm, then $\mathrm{Set}_{i+1}, \mathrm{~S}_{i+1}, \mathrm{D} 1_{i+1}$ are obtained from $\operatorname{Set}_{i}, \mathrm{~S}_{i}, \mathrm{D} 1_{i}$ by one of the following rules:
a) If $\operatorname{Ind}\left(\pm s n t_{i}\right) \notin \mathrm{D} 1_{i}$ then Set_{i+1} is obtained from Set_{i} by adding to Set_{i} the signed sentence $+(x)(\nu)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)$ for some variable $v \neq x$. In other words, Set $i_{i+1}=$ Set $_{i} \cup$ $\{+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)\} . \mathrm{S}_{i+1}=\mathrm{S}_{i} \cup\left\{\operatorname{Ind}\left(\pm s n t_{i}\right)\right\} . \quad \mathrm{D}_{i+1}=\mathrm{D1}_{i}$.
b) $S e t_{i+1}$ is obtained from Set_{i} by adding to Set $_{i}$ all signed sentences of the form $+[t / x](\Phi \wedge$ $\neg[x / u] a f m)$, where $t \in \delta\left(\mathscr{P}\left(\right.\right.$ Set $\left.\left._{i}\right)\right)$. In other words, Set $_{i+1}=\operatorname{Set}_{i} \cup\{+[t / x](\Phi \wedge \neg[x$ $\left.\mid u] a f m): t \in \delta\left(\mathscr{P}\left(\operatorname{Set}_{i}\right)\right)\right\} . \quad \mathrm{S}_{i+1}=\mathrm{S}_{i} \cup\left\{\operatorname{Ind}\left(\pm s n t_{i}\right)\right\} . \mathrm{D} 1_{i+1}=\mathrm{D} 1_{i} \cup\left\{\operatorname{Ind}\left(\pm s n t_{i}\right)\right\}$.
12) If there is no such signed sentence $\pm s n t_{i}$, that is, if Set $_{i}$ contains no signed nonatomic sentence whose index is not in S_{i}, then $\mathrm{Set}_{i+1}=\operatorname{Set}_{i} . \mathrm{S}_{i+1}=\mathrm{S}_{i} . \quad \mathrm{D1}_{i+1}=\mathrm{D1}_{i}$.

Observe that definition 4.2.3.1. is well-defined in the sense that the "new" parameter p required by clause 2) will always exist, since for all $i, \mathscr{\mathscr { O }}\left(\right.$ Set $\left._{i}\right)$ is finite, as we now show: Since Seq is a finite set of signed sentences, $\mathscr{P}\left(\right.$ Set $\left._{0}\right)$ is finite. If $\mathscr{P}\left(\right.$ Set $\left._{i}\right)$ is finite, so is $\mathscr{P}\left(\operatorname{Set}_{i+1}\right)$, since the only clause of 4.2.3.1. which adds new parameters to any $\mathscr{P}\left(\operatorname{Set}_{i}\right)$ (i.e., 2) adds only finitely many such parameters (just one, in fact).

We observe that 4.2.3.1. is well-defined also in the sense that clauses 1) - 6) inclusive of that definition are mutually exclusive as well as collectively exhaustive. It is important to note that rules a), b) of clauses 4) and 5) of 4.2.3.1. are not to be thought of as mutually exclusive and exhaustive and therefore determinate subcases of 4). Rather, they are alternative possible ways in which a $S e t_{i+1}$ may be obtained from $S e t_{i}$ in a reduction sequence $\left\langle\right.$ Set $\left._{i}\right\rangle$.

We will see that for arbitrary sequents Seq that are not strictly 2 -derivable there exists an infinite reduction sequence $\left\langle\right.$ Set $\left._{i}\right\rangle$ the union set of which proves to be the downward closed extension of Seq whose existence is claimed in lemma 4.2.3.. The significant observation here is that any reduction sequence $\left\langle\right.$ Set $\left._{i}\right\rangle$ has the property that for each Set_{i} in $\left\langle S e t_{i}\right\rangle$, if Set $_{i}$ is valid in a base bse with domain $\delta\left(\mathscr{P}\left(\operatorname{Set}_{i}\right)\right)$, then Set_{i+1} is valid in bse. Hence, if a base bse invalidates any $S e t_{i}$ in any reduction sequent $\left\langle\boldsymbol{S e t _ { i }}\right\rangle$ of a sequent $S e q$, it follows by induction that bse invalidates $\mathbb{S e q}$. Indeed, the claim that the union set of a reduction sequent $\left\langle\operatorname{Set}_{i}\right\rangle$ is downward closed implies that $\left\langle\right.$ Set $\left._{i}\right\rangle$ has the property observed above and that there are Set_{i} in $\left\langle\right.$ Set $\left._{i}\right\rangle$ and bse such that bse invalidates Set $_{i}$.

Lemma 4.2.3.2: Let Seq be any sequent. If Seq is not strictly 2-derivable, then Seq has an infinite reduction sequence $\left\langle\right.$ Set $\left._{i}\right\rangle$ such that no Set $_{i}$ in $\left\langle\right.$ Set $\left._{i}\right\rangle$ is strictly 2 -derivable.

Proof of 4.2.3.2.: Assume Seq is not strictly 2-derivable. We show by induction on i that for every i, there is a Set_{i} such that Set_{i} is not strictly 2 -derivable.

Base step: $\quad i=0$. By assumption $\operatorname{Set}_{0}=\operatorname{Seq}$ is not strictly 2-derivable.

Induction step: $i>0$. Assume Set_{i} is not strictly 2-derivable. We show that there is a Set_{i+1} which is not strictly 2 -derivable by exhaustive case analysis. There are two main cases:

1) There is no signed nonatomic sentence $\pm s n t_{i}$ such that $\pm s n t_{i} \in \operatorname{Set}_{i}$ and $\operatorname{Ind}\left(\pm s n t_{i}\right) \notin \mathrm{S}_{i}$. In this case, by clause 6) of definition 4.2.3.1., $\operatorname{Set}_{i+1}=\operatorname{Set}_{i}$. By the hypothesis of induction, Set t_{i+1} is not strictly 2-derivable, so the claim holds.
2) There is a signed nonatomic sentence $\pm s n t_{i}$ such that $\pm s n t_{i} \in \operatorname{Set}_{i}$ and $\operatorname{Ind}\left(\pm s n t_{i}\right) \notin S_{i}$. There are nine subcases:
i) $\pm s n t_{i}$ is respectively of the form $\pm \neg \mathbf{A}$ for some sentence \mathbf{A}. Then by clause 1) of 4.2.3.1. Set_{i+1} exists and is a $\mathrm{S}_{\boldsymbol{i}}$-reduction of Set_{i} of type 1). In this case, $\operatorname{Set}_{i+1} \cong \operatorname{Set}_{i} \cup\{\mp \mathbf{A}\}$, respectively. We show that if $S e t_{i+1}$ is strictly 2 -derivable, then so is $S e t_{i}$, from which it follows
by the hypothesis of induction that Set_{i+1} is not strictly 2-derivable. Assume that $\mathbb{S e t}_{i+1}$ is strictly 2-derivable. Then some finite subset $\operatorname{Seq}^{\circ}$ of Set_{i+1} is strictly 2 -derivable. In case $\operatorname{Seq}^{\circ}$ $\subseteq \operatorname{Set}_{i}$, Set $_{i}$ is strictly 2 -derivable by virtue of its strictly 2 -derivable finite subset Seq $^{\circ}$. In case $\operatorname{Seq}^{\circ} \Psi \operatorname{Set}_{i}$, respectively $\mp \mathbf{A} \in \mathbb{S e q}^{\circ}$. The following is a legitimate application of rule 1.2.2.2..:

$$
\frac{\left(S e q^{0}-\{\mp \mathbf{A}\}\right) \cup\{\mp \mathbf{A}\}}{\left(\operatorname{Seq}^{\circ}-\{\mp \mathbf{A}\}\right) \cup\{ \pm \neg \mathbf{A}\}}
$$

So, since $S e q^{\circ} \cong\left(\operatorname{Seq}^{\circ}-\{\mp \mathbf{A}\}\right) \cup\{\mp \mathbf{A}\}$ is strictly 2 -derivable, so is $\left(\operatorname{Seq}^{\circ}-\{\mp \mathbf{A}\}\right) \cup$ $\{ \pm \neg \mathbf{A}\}$. Since $\operatorname{Seq}^{\cdot} \subseteq \operatorname{Set}_{i+1} \cong \operatorname{Set}_{i} \cup\{\mp \mathbf{A}\},\left(\operatorname{Seq}^{\circ}-\{\mp \mathbf{A}\}\right) \cup\{ \pm \neg \mathbf{A}\} \subseteq \operatorname{Set}_{i} \cup\{ \pm \neg \mathbf{A}\}$ $\cong \operatorname{Set}_{i}$. Since Set_{i} has a finite subset $\left(\operatorname{Seq}^{\circ}-\{ \pm \mathbf{A}\}\right) \cup\{ \pm \neg \mathbf{A}\}$ which is strictly 2 -derivable, Set_{i} is strictly 2-derivable. So the claim holds.
ii) $\pm s n t_{i}$ is of the form $+(\mathbf{A} \wedge \mathbf{B})$ for some sentences \mathbf{A}, \mathbf{B}. In this case (since $\left.+(\mathbf{A} \wedge \mathbf{B}) \in \operatorname{Set}_{i}\right)$, $\operatorname{Set}_{i} \cong \operatorname{Set}_{i} \cup\{+(\mathbf{A} \wedge \mathbf{B})\}$. Then by clause 1$)$ of 4.2.3.1., two $\mathbb{S e t}_{i+1}$ exist as $\mathrm{S}_{\boldsymbol{i}}$-reductions of Set_{i} of type 2): $\mathbb{S e t}_{i} \cup\{+\mathbf{A}\}$ and $\operatorname{Set}_{i} \cup\{+\mathbf{B}\}$. We show that if both Set_{i+1} are strictly 2-derivable, then so is Set_{i}, from which it follows by the hypothesis of induction that at least one of the Set_{i+1} is not strictly 2 -derivable. So assume that both of $\operatorname{Set}_{i} \cup\{+\mathbf{A}\}, \operatorname{Set}_{i} \cup\{+\mathbf{B}\}$ are strictly 2-derivable. Then there are finite $\operatorname{Seq}_{\mathbb{L}} \subseteq \operatorname{Set}_{i} \cup\{+\mathbf{A}\}, \operatorname{Seq}^{2} \subseteq \operatorname{Set}_{i} \cup\{+\mathbf{B}\}$ such that both of Seq1, Seq2 are strictly 2-derivable. In case either of Seq1, Seq2 are subsets of Set_{i}, then clearly Set_{i} has a finite subset which is strictly 2 -derivable, and so is strictly 2-derivable. So assume neither of $\operatorname{Seq} \mathbb{Z}, \operatorname{Seq} 2$ are subsets of $\mathbb{S e t}_{i}$. Then $+\mathbf{A} \in \mathbb{S e q} \mathbb{I}$ and $+\mathbf{B}$ \in Seq2. The following is a legitimate application of rule 1.2.2.3.+.:

$$
\frac{(\text { Seq } 1-\{+\mathbf{A}\}) \cup\{+\mathbf{A}\} \quad(\text { Seq } 2-\{+\mathbf{B}\}) \cup\{+\mathbf{B}\}}{(\text { Seq } \mathbb{I}-\{+\mathbf{A}\}) \cup(\text { Seq } 2-\{+\mathbf{B}\}) \cup\{+(\mathbf{A} \wedge \mathbf{B})\}}
$$

Since both of Seq $\mathbb{I} \cong(\operatorname{Seq} \mathbb{1}-\{+A\}) \cup\{+A\}, \operatorname{Seq} 2 \cong(\operatorname{Seq} 2-\{+B\}) \cup\{+B\}$ are strictly 2-derivable, it follows that $(\operatorname{Seq} \mathbb{I}-\{+\mathbf{A}\}) \cup(\operatorname{Seq} 2-\{+\mathbf{B}\}) \cup\{+(\mathbf{A} \wedge \mathbf{B})\}$ is strictly

2-derivable. Now, since $\operatorname{Seq} \mathbb{1} \subseteq \operatorname{Set}_{i} \cup\{+\mathbf{A}\}$ and $\operatorname{Seq}^{2} \subseteq \operatorname{Set}_{i} \cup\{+\mathbf{B}\}$, it follows that $(\operatorname{Seq} \mathbb{P}-\{+\mathbf{A}\}) \cup(\operatorname{Seq} 2-\{+\mathbf{B}\}) \cup\{+(\mathbf{A} \wedge \mathbf{B})\} \subseteq \operatorname{Set}_{i} \cup\{+(\mathbf{A} \wedge \mathbf{B})\} \cong \operatorname{Set}_{i}$. Since Set_{i} has a strictly 2-derivable finite subset $(\operatorname{Seq} \mathbb{1}-\{+\mathbf{A}\}) \cup(\mathbb{S e q} 2-\{+\mathbf{B}\}) \cup\{+(\mathbf{A} \wedge \mathbf{B})\}, \operatorname{Set}_{i}$ is strictly 2-derivable. So the claim holds.
iii) $\pm s n t_{i}$ is of the form $-(\mathbf{A} \wedge \mathbf{B})$ for some sentences \mathbf{A}, \mathbf{B}. Then, by clause 1$)$ of 4.2.3.1., Set_{i+1} exists and is an S_{i}-reduction of Set_{i} of type 3). In this case, $\operatorname{Set}_{i} \cong \operatorname{Set}_{i} \cup\{-(\mathbf{A} \wedge \mathbf{B})\}$ and $\operatorname{Set}_{i+1} \cong \operatorname{Set}_{i} \cup\{-\mathbf{A},-\mathrm{B}\}$. We show that if Set_{i+1} is strictly 2 -derivable, then so is Set_{i}, from which it follows by the hypothesis of induction that S_{i+1} is not strictly 2-derivable. So assume that $\operatorname{Set}_{i} \cup\{-\mathbf{A},-\mathbf{B}\}$, is strictly 2 -derivable. Then there is finite $\operatorname{Seq}^{\circ} \subseteq \operatorname{Set}_{i} \cup\{-\mathbf{A}$, -B \} such that $\operatorname{Seq}^{\circ}$ is strictly 2 -derivable. In case $\operatorname{Seq}^{\circ} \subseteq \operatorname{Set}_{i}, \operatorname{Set}_{i}$ is strictly 2 -derivable by virtue of its strictly 2 -derivable finite subset $\operatorname{Seq}^{\circ}$. In case $\operatorname{Seq}^{\circ} \mp \operatorname{Set}_{i}$, one of $-\mathbf{A},-\mathbf{B} \in \operatorname{Set}_{i}$. Without loss of generality, assume that $-\mathbf{A} \in \operatorname{Set}_{i}$. There are two cases:
a) $-\mathbf{B} \in \operatorname{Se} q^{\circ}$. Then $\operatorname{Seq} q^{\circ} \cong\left(\operatorname{Seq} q^{\circ}-\{-\mathbf{A},-\mathbf{B}\}\right) \cup\{-\mathbf{A},-\mathbf{B}\}$. Consider the following legitimate application of rule 1.2.2.3.-:

$$
\frac{\left(\operatorname{Seq}^{\circ}-\{-\mathbf{A},-\mathbf{B}\}\right) \cup\{-\mathbf{A},-\mathbf{B}\}}{\left(\operatorname{Seq}^{\circ}-\{-\mathbf{A},-\mathbf{B}\}\right) \cup\{-(\mathbf{A} \wedge \mathbf{B})\}}
$$

Since $\left(\mathbb{S e q}^{\circ}-\{-\mathbf{A},-\mathbf{B}\}\right) \cup\{-\mathbf{A},-\mathbf{B}\} \cong \mathbb{S e q}^{\circ}$ is strictly 2 -derivable, it follows that (Seq${ }^{\prime}-$ $\{-A,-B\}) \cup\{-(A \wedge B)\}$ is strictly 2 -derivable.
b) $-\mathbf{B} \notin \operatorname{Seq}^{\circ}$. Then $\operatorname{Seq}^{\circ} \cong\left(\operatorname{Seq}^{\circ}-\{-\mathbf{A},-\mathbf{B}\}\right) \cup\{-\mathbf{A}\}$. The the following is a legitimate application of the thinning rule followed by a legitimate application of rule 1.2.2.3.-:

$$
\frac{\left(\operatorname{Seq}^{\circ}-\{-\mathbf{A},-\mathbf{B}\}\right) \cup\{-\mathbf{A}\}}{\frac{\left(\operatorname{Seq}^{\circ}-\{-\mathbf{A},-\mathbf{B}\}\right) \cup\{-\mathbf{A},-\mathbf{B}\}}{\left(\operatorname{Seq}^{\circ}-\{-\mathbf{A},-\mathbf{B}\}\right) \cup\{-(\mathbf{A} \wedge \mathbf{B})\}}}
$$

Since $\left(\operatorname{Seq}^{\circ}-\{-\mathbf{A},-\mathbf{B}\}\right) \cup\{-\mathbf{A}\} \cong S e q^{\circ}$ is strictly 2 -derivable, it follows that ($\operatorname{Seq}^{\circ}-\{-\mathbf{A}$, $-\mathbf{B}\}) \cup\{-(\mathbf{A} \wedge \mathbf{B})\}$ is strictly 2-derivable.

In both cases, then, $\left(S e q^{\circ}-\{-\mathbf{A},-\mathbf{B}\}\right) \cup\{-(\mathbf{A} \wedge \mathbf{B})\}$ is strictly 2 -derivable. Since $\operatorname{Seq} \mathcal{q}^{\circ} \subseteq$ $\operatorname{Set}_{i+1} \cong \operatorname{Set}_{i} \cup\{-\mathbf{A},-\mathbf{B}\}$, it follows that $\left(\operatorname{Seq}^{\circ}-\{-\mathbf{A},-\mathbf{B}\}\right) \cup\{-(\mathbf{A} \wedge \mathbf{B})\} \subseteq \operatorname{Set}_{i} \cup\{-(\mathbf{A}$ $\wedge \mathbf{B})\}=\operatorname{Set}_{\boldsymbol{i}}$. Hence, Set_{i} has a strictly 2 -derivable finite subset and so Set_{i} is strictly 2-derivable. So the claim holds.
iv) \pm snt $_{i}$ is the form $+(\mathbf{A} \rightarrow \mathbf{B})$ for some sentences \mathbf{A}, \mathbf{B}. This case is similar to subcase iii).
v) $\pm s n t_{i}$ is of the form - $(\mathbf{A} \rightarrow \mathbf{B})$ for some sentences \mathbf{A}, \mathbf{B}. This case is similar to subcase ii).
vi) $\pm s n t_{i}$ is of the form $+(x) F$ for some formula F. In this case, $\operatorname{Set}_{i} \cong \operatorname{Set}_{i} \cup\{+(x) F\}$. Then, by clause 2) of 4.2.3.1., Set_{i+1} exists and $\operatorname{Seq}_{i+1} \cong \operatorname{Set}_{i} \cup\{+[p / x] F\}$ where p is the first parameter that does not occur in any member of Set_{i}. We show that if $\operatorname{Set}_{\boldsymbol{i + 1}}$ is strictly 2-derivable, then so is Set_{i}, from which it follows by the hypothesis of induction that Set_{i+1} is not strictly 2-derivable. So assume that $\operatorname{Seq}_{i+1} \cong \operatorname{Set}_{i} \cup\{+[p / x] F\}$ is strictly 2 -derivable. Then there is finite $S e q^{\circ} \subseteq \operatorname{Set}_{i} \cup\{+[p / x] F\}$ such that $\operatorname{Seq}{ }^{\circ}$ is strictly 2-derivable. In case $S e q^{\circ} \subseteq \operatorname{Set}_{i}, \operatorname{Set}_{i}$ is strictly 2 -derivable by virtue of its strictly 2 -derivable finite subset Seq *. In case $\operatorname{Seq}{ }^{*} \Phi \operatorname{Set}_{i},+[p / x] F \in \operatorname{Seq}^{*}$. Since p does not occur in any member of Set_{i}, the following is a legitimate application of rule 1.2.2.5.+:

$$
\frac{\left(\operatorname{Seq} q^{\prime}-\{+[p / x] F\}\right) \cup\{+[p / x] F\}}{\left(\operatorname{Seq} q^{\prime}-\{+[p / x] F\}\right) \cup\{+(x) F\}}
$$

Since $\operatorname{Seq}^{\circ} \cong\left(\right.$ Seq $\left.^{\circ}-\{+[p / x] F\}\right) \cup\{+[p / x] F\}$ is strictly 2-derivable, it follows that (Seq ${ }^{\circ}$ $-\{+[p / x] F\}) \cup\{+(x) F\}$ is strictly 2 -derivable. Since $\operatorname{Seq}^{\circ} \subseteq \operatorname{Seq}_{i+1} \cong \operatorname{Set}_{i} \cup\{+[p /$ $x] F\}$, it follows that $\left(\operatorname{Seq}^{\circ}-\{+[p / x] F\}\right) \cup\{+(x) F\} \subseteq \operatorname{Set}_{i} \cup\{+(x) F\} \cong \operatorname{Set}_{i}$. Hence, $S e t_{i}$ has a strictly 2 -derivable finite subset and so Set_{i} is strictly 2-derivable.
vii) $\pm s n t_{i}$ is of the form $-(x) F$ for some fomula F. In this case, $\operatorname{Set}_{i} \cong \operatorname{Set}_{i} \cup\{-(x) F\}$. Then,
by clause 3) of 4.2.3.1., Set_{i+1} exists and $\operatorname{Seq}_{i+1} \cong \operatorname{Set}_{i} \cup\left\{-[t / x] F: t \in \delta\left(\mathscr{P}\left(\operatorname{Set}_{i}\right)\right)\right\}$. We show that if Set_{i+1} is strictly 2-derivable, then so is Set_{i}, from which it follows by the hypothesis of induction that Set_{i+1} is not strictly 2-derivable. So assume that $\operatorname{Seq}_{i+1} \cong \operatorname{Set}_{\boldsymbol{i}} \cup\{-[\boldsymbol{t} / \boldsymbol{x}] \boldsymbol{F}: \boldsymbol{t}$ $\left.\in \delta\left(\mathscr{\mathscr { S }}\left(\operatorname{Set}_{i}\right)\right)\right\}$ is strictly 2-derivable. Then there is finite $\mathbb{S e q}^{\circ} \subseteq \operatorname{Set}_{i} \cup\{-[\boldsymbol{t} / \boldsymbol{x}] \boldsymbol{F}: t \in$ $\left.\delta\left(\mathscr{O}\left(\operatorname{Set}_{i}\right)\right)\right\}$ such that $\mathbb{S e q}^{\circ}$ is strictly 2 -derivable. In case $\operatorname{Seq}^{0} \subseteq \operatorname{Set}_{i}, \operatorname{Set}_{i}$ is strictly 2-derivable by virtue of its strictly 2 -derivable finite subset $\mathbb{S e q}^{\circ}$. In case $\mathbb{S e q}^{\circ} \pm \mathbb{S e t}_{i}$ there is a nonempty finite set $\left\{-\left[t_{1} / x\right] F, \ldots,-\left[t_{n} / x\right] F\right\} \subseteq\left\{-[t / x] F: t \in \delta\left(\mathscr{S}\left(\mathbb{S e t}_{i}\right)\right)\right\}$ such that $\left\{-\left[t_{1} / x\right] F, \ldots,-\left[t_{n} / x\right] F\right\} \subseteq \operatorname{Seq}^{\circ}$ where the $-\left[t_{1} / x\right] F, \ldots,-\left[t_{n} / x\right] F$ are all the signed sentences in $\left\{-[t / x] F: t \in \delta\left(\mathscr{S}\left(\operatorname{Set}_{i}\right)\right)\right\}$ which are members of $S e q^{\circ}$. The following is a finite sequence of legitimate applications of rule 1.2.2.5.-:

$$
\begin{gathered}
\left(\operatorname{Seq}^{0}-\left\{-\left[t_{1} / x\right] F, \ldots,-\left[t_{n} / x\right] F\right\}\right) \cup\left\{-\left[t_{1} / x\right] F, \ldots,-\left[t_{n} / x\right] F\right\} \\
\frac{\left(\operatorname{Seq}^{0}-\left\{-\left[t_{1} / x\right] F, \ldots,-\left[t_{n} / x\right] F\right\}\right) \cup\left\{-\left[t_{2} / x\right] F, \ldots,-\left[t_{n} / x\right] F\right\} \cup\{-(x) F\}}{\left.\left.\left(\operatorname{Seq}_{1} / x\right] F, \ldots,-\left[t_{n} / x\right] F\right\}\right) \cup\left\{-\left[t_{3} / x\right] F, \ldots,-\left[t_{n} / x\right] F\right\} \cup\{-(x) F\}} \\
\bullet \\
\frac{\left.\left(\operatorname{Seq}^{0}-\left\{-\left[t_{1} / x\right] F, \ldots,-\left[t_{n} / x\right] F\right\}\right) \cup\left\{-\left[t_{n} / x\right] F\right\} \cup-(x) F\right\}}{\left(\operatorname{Seq}^{0}-\left\{-\left[t_{1} / x\right] F, \ldots,-\left[t_{n} / x\right] F\right\}\right) \cup\{-(x) F\}}
\end{gathered}
$$

Since $\operatorname{Seq}^{\circ} \cong\left(\operatorname{Seq}^{0}-\left\{-\left[t_{1} / x\right] F, \ldots,-\left[t_{n} / x\right] F\right\}\right) \cup\left\{-\left[t_{1} / x\right] F, \ldots,-\left[t_{n} / x\right] F\right\}$ is strictly 2 -derivable, it follows that $\left(\operatorname{Seq}^{0}-\left\{-\left[t_{1} / x\right] F, \ldots,-\left[t_{n} / x\right] F\right\}\right) \cup\{-(x) F\}$ is strictly 2 -derivable. Since $\operatorname{Seq}^{\circ} \subseteq \operatorname{Seq}_{i+1} \cong \operatorname{Set}_{i} \cup\left\{-[t / x] F: t \in \delta\left(\mathscr{S}\left(\operatorname{Set}_{i}\right)\right)\right\}$ and the $-\left[t_{1} /\right.$ $x] F, \ldots,-\left[t_{n} / x\right] F$ are all the signed sentences in $\left\{-[t / x] F: t \in \delta\left(\mathscr{S}\left(\operatorname{Set}_{i}\right)\right)\right\}$ which are members of $\mathbb{S e q}^{\circ}$ it follows that $\left(\operatorname{Seq}^{\prime}-\left\{-\left[t_{1} / x\right] F, \ldots,-\left[t_{n} / x\right] F\right\}\right) \cup\{-(x) F\} \subseteq \operatorname{Set}_{i}$ $\cup\{+(x) F\} \cong \operatorname{Set}_{i}$. Hence, Set_{i} has a strictly 2 -derivable finite subset and so Set_{i} is strictly 2-derivable. So the claim holds.
viii) $\pm s n t_{i}$ is a signed elementary sentence of the form $+[u x . \Phi / u] a f m$ for some description term $u x . \Phi$ and atomic formula $a f m$. In this case, $\operatorname{Set}_{i} \cong \operatorname{Set}_{i} \cup\{+[u x . \Phi / u] a f m\}$, for some set of
signed sentences Set. Then by rules a), b) of clause 4) of 4.2.3.1., two Set_{i+1} exist: a) $\operatorname{Set}_{i} \cup$ $\{+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)\}$ and b) $\operatorname{Set}_{i} \cup\{+[t / x](\Phi \wedge[x / u] a f m): t$ $\in \delta\left(\mathscr{S}\left(\operatorname{Set}_{i}\right)\right)$). We show that if both Set $_{i+1}$ are strictly 2 -derivable, then so is Set $_{i}$, from which it follows by the hypothesis of induction that at least one of the Set_{i+1} is not strictly 2-derivable. So assume that both of $\operatorname{Set}_{i+1} \mathrm{a}$), $\operatorname{Set}_{i+1} \mathrm{~b}$) are strictly 2-derivable. Then there are finite $\left.\operatorname{Seq} \mathbb{1} \subseteq \operatorname{Set}_{i+1} \mathrm{a}\right), \operatorname{Seq} 2 \subseteq \operatorname{Set}_{i+1}$ b) such that both of $\operatorname{Seq} \mathbb{1}, \operatorname{Seq} 2$, are strictly 2-derivable. In case one of $\operatorname{Seq} \mathbb{1}, \operatorname{Seq} 2$, is a subset of Set_{i}, then clearly Set_{i} is strictly 2-derivable. So assume neither of Seq1, Seq2, are subsets of Set $_{i}$. Then $+(x)(v)((\Phi \wedge[v /$ $x] \Phi) \rightarrow x=v) \in \operatorname{Seq} \mathbb{Z}$ and there is nonempty finite set $\left[+\left[t_{1} / x\right](\Phi \wedge[x / u] a f m), \ldots\right.$, $\left.+\left[t_{n} / x\right](\Phi \wedge[x / u] a f m)\right\} \subseteq\left\{+[t / x](\Phi \wedge[x / u] a f m): t \in \delta\left(\mathscr{S}\left(\operatorname{Set}_{i}\right)\right)\right\}$ such that $\left\{+\left[t_{1} /\right.\right.$ $\left.x](\Phi \wedge[x / u] a f m), \ldots,+\left[t_{n} / x\right](\Phi \wedge[x / u] a f m)\right\} \subseteq$ Seq 2 where the $+\left[t_{1} / x\right](\Phi \wedge[x /$ $u] a f m), \ldots,+\left[t_{n} / x\right](\Phi \wedge[x / u] a f m)$ are the only signed sentences in $\{+[t / x](\Phi \wedge[x /$ $\left.u] a f m): t \in \delta\left(\mathscr{S}\left(\operatorname{Set}_{i}\right)\right)\right\}$ which are members of Seq2. Let $\operatorname{Seq}^{*} \cong \cong \operatorname{Seq} \mathbb{Z}-\{+(x)(\boldsymbol{v})((\Phi \wedge$ $[v / x] \Phi) \rightarrow x=v)\}$, and let $\operatorname{Seq} 2^{*} \cong \operatorname{Seq} 2-\left\{+\left[t_{1} / x\right](\Phi \wedge[x / u] a f m), \ldots,+\left[t_{n} /\right.\right.$ $x](\Phi \wedge[x / u] a f m)\}$. Then the following is a finite sequence of legitimate applications of 1.2.2.6.+:

Seq2* $\cup\left\{+\left[t_{1} / x\right](\Phi \wedge[x / u] a f m), \cdots+\left[t_{n} / x\right](\Phi \wedge[x / u] a f m)\right\}$ Seq1
Seq2* $\cup \operatorname{Seq} 1 * \cup\left\{+\left[t_{2} / x\right](\Phi \wedge[x / u] a f m), \ldots,+\left[t_{n} / x\right](\Phi \wedge[x / u] a f m)\right\} \cup\{+[u x . \Phi / u] a f m\}$ SeqI
Seq2* \cup Seq1* $\cup\left\{+\left[t_{3} / x\right](\Phi \wedge[x / u] a f m) . . \ldots+\left[t_{n} / x\right](\Phi \wedge\{x / u] a f m)\right\} \cup\{+[t x . \Phi / u] a f m\}$ Seq1

Seq2* \cup Seq1* $\cup\left\{+\left[t_{n} / x\right](\Phi \wedge[x / u] a f m)\right\} \cup\{+[\lfloor x . \Phi / u] a f m)$

$$
\text { Seq2* } \cup \text { Seql } I^{*} \cup\{+[\imath x . \Phi / u] a f m\}
$$

Since both of Seq1, Seq2 \cong Seq2* $\cup\left\{+\left[t_{1} / x\right](\Phi \wedge[x / u] a f m), \ldots,+\left[t_{n} / x\right](\Phi \wedge[x\right.$ $/ u] a f m)\}$ are strictly 2 -derivable, it follows that Seq2* $\cup \operatorname{Seq} \mathcal{I}^{*} \cup\{+[$ u. $\Phi / u] a f m\}$ is strictly 2-derivable. Now, since Seq1 $\subseteq \operatorname{Set}_{i} \cup\{+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)]$ and Seq2 $\subseteq \operatorname{Set}_{i} \cup\left\{+[t / x](\Phi \wedge[x / u] a f m): t \in \delta\left(\mathscr{P}\left(\operatorname{Set}_{i}\right)\right)\right\}$, it follows by the facts that Seq⿻肀 ${ }^{*} \cong$

Seq $\mathbb{1}-\{+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)\}$ and $\operatorname{Seq} 2^{*} \cong \operatorname{Seq} 2-\left\{+\left[t_{1} / x\right](\Phi \wedge[x /\right.$ $\left.u] a f m), \ldots,+\left[t_{n} / x\right](\Phi \wedge[x / u] a f m)\right]$, where the $+\left[t_{1} / x\right](\Phi \wedge[x / u] a f m), \ldots,+\left[t_{n}\right.$ $\mid x](\Phi \wedge[x / u] a f m)$ are the only members of $\left\{+[t / x](\Phi \wedge[x / u] a f m): t \in \delta\left(\mathscr{P}\left(\right.\right.\right.$ Set $\left.\left.\left._{i}\right)\right)\right\}$ which belong to Seq2, that Seq2* $\cup \operatorname{Seq} \mathbb{I}^{*} \subseteq \operatorname{Set}_{i}$. Hence, Seq2* \cup Seq $\mathbb{1}^{*} \cup\{+[u x . \Phi /$ $u] a f m\} \subseteq \operatorname{Set}_{i} \cup\{+[u x . \Phi / u] a f m\} \cong \operatorname{Set}_{i}$. Hence, Set_{i} has a strictly 2 -derivable finite subset and so Set $_{i}$ is strictly 2 -derivable. So the claim holds.
ix) $\pm s n t_{i}$ is a signed elementary sentence of the form -[ux. $\left.\Phi / u\right] a f m$ for some description term $u x . \Phi$ and atomic formula $a f m$. In this case, $\operatorname{Set}_{i} \cong \operatorname{Set}_{i} \cup\{-[u . \Phi / u] a f m\}$. Then by rules
 and b) $\operatorname{Set}_{i} \cup\left\{+[t / x](\Phi \wedge \neg[x / u] a f m): t \in \delta\left(\mathscr{P}\left(\right.\right.\right.$ Set $\left.\left.\left._{i}\right)\right)\right\}$. We show that if both Set $_{i+1}$ are strictly 2-derivable, then so is $S e t_{i}$, from which it follows by the hypothesis of induction that at least one of the Set_{i+1} is not strictly 2 -derivable. So assume that both of $\operatorname{Set}_{i+1} \mathrm{a}$), Set_{i+1} b) are strictly 2 -derivable. Then there are finite $\operatorname{Seq} \mathbb{I} \subseteq \operatorname{Set}_{i+1}$ a), $\operatorname{Seq} 2 \subseteq \operatorname{Set}_{i+1}$ b) such that both of $\operatorname{Seq} 1, \operatorname{Seq} 2$, are strictly 2 -derivable. In case one of $\operatorname{Seq} \mathbb{1}, \operatorname{Seq} 2$, is a subset of Set_{i} then clearly Set_{i} is strictly 2-derivable. So assume neither of $\operatorname{Seq11}$, Seq2, are subsets of Set_{i}. Then $+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow \boldsymbol{x}=\boldsymbol{v}) \in$ SeqZ and there is a nonempty finite set $\left\{+\left[t_{\boldsymbol{1}} / x\right](\Phi \wedge \neg[x\right.$ $/ u]$ afm $\left.), \ldots,+\left[t_{n} / x\right](\Phi \wedge \neg[x / u] a f m)\right\} \subseteq\{+[t / x](\Phi \wedge \neg[x / u] a f m): t$ $\in \delta\left(\mathscr{P}\left(\right.\right.$ Set $\left.\left.\left._{i}\right)\right)\right\}$ such that $\left\{+\left[t_{1} / x\right](\Phi \wedge \neg[x / u] a f m), \ldots,+\left[t_{n} / x\right](\Phi \wedge \neg[x / u] a f m)\right\}$ \subseteq Seq2, where the $+\left[t_{I} / x\right](\Phi \wedge \neg[x / u] a f m), \ldots,+\left[t_{n} / x\right](\Phi \wedge \neg[x / u] a f m)$ are the only signed sentences in $\left\{+[t / x](\Phi \wedge \neg[x / u] a f m): t \in \delta\left(\mathscr{P}\left(\right.\right.\right.$ Set $\left.\left.\left._{i}\right)\right)\right\}$ which are members of Seq2. Let Seq $\mathbb{Z}^{*} \cong \operatorname{Seq} \mathbb{Z}-\{+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)\}$, and let Seq2* \cong Seq2 $\left\{+\left[t_{1} / x\right](\Phi \wedge \neg[x / u] a f m), \ldots,+\left[t_{n} / x\right](\Phi \wedge \neg[x / u] a f m)\right\}$. Then the following is a finite sequence of legitimate applications of 1.2.2.6.-:

Seq2* $\cup\left\{+\left[t_{1} / x\right](\Phi \wedge \neg[x / u] a f m), \ldots+\left[t_{n} / x\right](\Phi \wedge \neg[x / u] a f m)\right\} \quad$ Seq1
Seq2* \cup Seq $1 * \cup\left\{+\left[t_{2} / x\right](\Phi \wedge \neg[x / u] a f m) \ldots, \ldots\left[t_{n} / x\right](\Phi \wedge \neg[x / u] a f m)\right] \cup\{-[u x . \Phi / u] a f m\}$ Seq 1
Seq2* USeq1* $\cup\left\{+\left[t_{3} / x\right](\Phi \wedge \neg[x / u] a f m) . . \ldots,+\left[t_{n} / x\right](\Phi \wedge \neg[x / u]\right.$ afm $\left.)\right\} \cup\{-[i x . \Phi / u] a f m\}$ Seq1

$$
\text { Seq2* } \cup \text { Seq1* } \cup\{-[i x . \Phi / u] a f m\}
$$

Since both of Seq1, Seq2 $\cong \operatorname{Seq}^{2} \cup\left\{+\left[t_{1} / x\right](\Phi \wedge \neg[x / u] a f m), \ldots,+\left[t_{n} / x\right](\Phi \wedge \neg\right.$ $[x / u] a f m)\}$ are strictly 2 -derivable, it follows that Seq2* $\cup \operatorname{Seq} \mathbb{Z}^{*} \cup\{-[u x . \Phi / u] a f m\}$ is strictly 2-derivable. Now, since $\operatorname{Seq} \mathbb{I} \subseteq \operatorname{Set}_{i} \cup\{+(x)(v)((\Phi \wedge[\nu / x] \Phi) \rightarrow x=v)\}$ and Seq2 $\subseteq \operatorname{Set}_{i} \cup\left\{+[t / x](\Phi \wedge \neg[x / u] a f m): t \in \delta\left(\mathscr{P}\left(\right.\right.\right.$ Set $\left.\left.\left._{i}\right)\right)\right\}$, it follows by the facts that Seq $\mathbb{S}^{*} \cong$ $\operatorname{Seq} \mathbb{1}-\{+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)\}$ and Seq2* $\cong \operatorname{Seq} 2-\left\{+\left[t_{1} / x\right](\Phi \wedge \neg[x /\right.$ $\left.u] a f m), \ldots,+\left[t_{n} / x\right](\Phi \wedge \neg[x / u] a f m)\right\}$, where the $+\left[t_{l} / x\right](\Phi \wedge \neg[x / u] a f m), \ldots$, $+\left[t_{n} / x\right](\Phi \wedge \neg[x / u] a f m)$ are the only members of $\{+[t / x](\Phi \wedge \neg[x / u] a f m): t$
 $\operatorname{Seq} \mathbb{R}^{*} \cup\{-[u x . \Phi / u] a f m\} \subseteq \operatorname{Set}_{i} \cup\{-[u x . \Phi / u] a f m\} \cong \operatorname{Set}_{i}$. Hence, Set $_{i}$ has a strictly 2-derivable finite subset and so Set $_{i}$ is strictly 2 -derivable. So the claim holds.

This concludes our case analysis. By the principle of induction, lemma 4.2.3.2. is established.

Lemma 4.2.3.3: Let $\left\langle\right.$ Set $\left._{i}\right\rangle$ be any infinite reduction sequence of sequent Seq, and let $\left\langle\mathrm{S}_{i}\right\rangle$ be the sequence of index sets defined with $\left\langle\operatorname{Set}_{i}\right\rangle$ in 4.2.3.1.. Then, for any $\operatorname{Set} \boldsymbol{t}_{i}$ in $\left\langle\operatorname{Set}_{i}\right\rangle$ and any signed nonatomic sentence $\pm s n t \in \operatorname{Set}_{i}$ such that $\mathbb{I n d}(\pm$ snt $) \notin \mathrm{S}_{i}$, there is a $j \geq i$ such that $\pm s n t$ is the f irst signed nonatomic sentence in Set $_{j}$ such that $\operatorname{Ind}(\pm$ snt $) \notin \mathrm{S}_{j}$.

Proof of 4.2.3.3: Let $\operatorname{Set} t_{i}$ be any term of $\left\langle S e t_{i}\right\rangle$ and let $\pm s n t$ be any signed nonatomic sentence in Set_{i} such that $\mathbb{I n d}(\pm s n t) \notin \mathrm{S}_{i}$. Then for all $j \leq i, \pm s n t \in \operatorname{Set}_{j}$. We show by induction on the number $\mathrm{N}(i, \mathbb{I n d}(\pm$ snt $))$ of signed sentences ssnt of the form $+(x) F$ such that $\mathbb{I n d}($ ssnt $)<$ Ind $(\pm s n t)$ and $\operatorname{Ind}(s s n t) \notin S_{i}$ that there is a j such that $\pm s n t$ is the first signed nonatomic sentence in Set_{j} such that $\operatorname{Ind}(\pm$ snt $) \notin \mathrm{S}_{j}$.

Base step: $\mathrm{N}(i, \operatorname{Ind}(\pm s n t))=0$. Suppose the claim does not hold, that is, suppose that for all $j \geq$ i, there is a signed nonatomic sentence $s s n t \in \operatorname{Set}_{j}$ such that $\operatorname{Ind}(s s n t)<\operatorname{Ind}(\pm s n t)$ and $\mathbb{I n d}(\boldsymbol{s s n t}) \notin \mathrm{S}_{\boldsymbol{i}}$. For any \boldsymbol{i}, let $\boldsymbol{s s n t} \boldsymbol{t}_{\boldsymbol{i}}$ be the first signed nonatomic sentence in Set $_{\boldsymbol{i}}$ such that
$\operatorname{Ind}\left(s s n t_{i}\right) \notin \mathrm{S}_{i}$. Then, for all $j \geq i$, Ind $\left(s s n t_{j}\right)<\operatorname{Ind}(\pm s n t)$. So there is an infinite sequence of natural numbers $\operatorname{Ind}\left(s s n t_{i}\right), \operatorname{Ind}\left(s s n t_{i+1}\right), \ldots, \operatorname{Ind}\left(s s n t_{j}\right), \ldots$ such that for all $j \geq i$, $\operatorname{Imd}\left(\boldsymbol{s s n} t_{j}\right)<\operatorname{Ind}(\pm \boldsymbol{s} \boldsymbol{n t})$ and $\operatorname{Ind}\left(\boldsymbol{s s n} t_{j+1}\right) \notin \mathrm{S}_{j}$ and $\operatorname{Ind}\left(\boldsymbol{s s n} t_{j+1}\right) \in \mathrm{S}_{j+1}$. We now show by induction on j that for all $j \geq i, \mathrm{~S}_{j} \subseteq \mathrm{~S}_{j+l}:$ For $j=i$, since $\operatorname{Ind}\left(s s n t_{j}\right)<\operatorname{Ind}(\pm s n t)$ and $\operatorname{Ind}\left(s s n t_{j}\right) \notin \mathrm{S}_{j}$ and $\mathrm{N}(i, \operatorname{Ind}(\pm s n t))=0$, it follows that $s^{s n} t_{j}$ is not, for some formula F, of the form $+(x) F$. Hence S_{j+i} is obtained from S_{j} in $\left\langle S_{i}\right\rangle$ by a clause of 4.2.3.1. other than clause 2). Since clause 2) is the only clause of 4.2.3.1. that deletes indices from an S_{i} in $\left\langle S_{i}\right\rangle$, it follows that $\mathrm{S}_{j} \subseteq \mathrm{~S}_{j+1}$. For $j \geq i$, assume that for all $k, i \leq k<j, \mathrm{~S}_{k} \subseteq \mathrm{~S}_{k+1}$. Since $\mathrm{N}(i$, Ind $(\pm s n t))=0$, it follows that $\mathrm{N}(j$, Ind $(\pm s n t))=0$. So, $s n t_{j}$ is not of the form $+(x) F$, and so, since S_{j+l} is obtained from S_{j} by a clause of 4.2.3.1. other than 2), $\mathrm{S}_{j} \subseteq \mathrm{~S}_{j+1}$. QED. We now continue with the main proof of the base step: Since for all $j \geq i$, $\mathbb{I n d}\left(s s n t_{j+1}\right) \notin \mathrm{S}_{j}$ and $\mathbb{I n d}\left(s s n t_{j+1}\right) \in \mathrm{S}_{j+1}$, it follows by the fact that for all $j \geq i, \mathrm{~S}_{j} \subseteq \mathrm{~S}_{j+1}$ that for all $j \geq i$, for all $k<j$, Ind $\left(\operatorname{ssn} t_{k}\right) \neq$ $\operatorname{Ind}\left(s s n t_{j}\right)$. So each $\operatorname{Im} d\left(s s n t_{j}\right)$ in the sequence $\operatorname{Ind}\left(s s n t_{i}\right)$, $\operatorname{Imd}\left(s s n t_{i+1}\right), \ldots, \operatorname{Ind}\left(s s n t_{j}\right)$, . . . is distinct. Hence, there are infinitely many natural numbers n such that $n<\operatorname{lnd}(\pm s n t)$. But for any given natural number there are only finitely many natural numbers less than it. Contradiction. So the claim holds.

Induction step: $\mathrm{N}(i, \operatorname{Ind}(\pm s n t))>0$. Assume as the hypothesis of induction that for all $\mathbb{S e t}_{i}$ in $\left\langle\mathbb{S e t}_{i}\right\rangle$ and any signed nonatomic sentence $s s n t \in \mathbb{S e t}_{i}$ such that $\operatorname{Ind}(s s n t) \notin S_{i}$, if $\mathrm{N}(i$, $\operatorname{Ind}(s s n t))<\mathrm{N}(i, \operatorname{Ind}(\pm s n t))$, then there is a $j \geq i$ such that $s s n t$ is the first signed nonatomic sentence in Set_{j} such that $\operatorname{Ind}(s s n t) \notin \mathrm{S}_{j}$. We show that there is a $j \geq i$ such that $\pm s n t$ is the first signed nonatomic sentence in Set_{j} such that $\operatorname{Ind}(s s n t) \notin S_{j}$. For suppose the opposite. Suppose, that is, that for all $j \geq i$, there is a signed nonatomic sentence ssnt $\in \operatorname{Set}_{j}$ such that Ind $(s s n t)<\operatorname{Ind}(\pm s n t)$ and $\operatorname{Ind}(s s n t) \notin \mathrm{S}_{i}$. For any i, let $\boldsymbol{s s n t} \boldsymbol{t}_{i}$ be the first signed nonatomic sentence in Set_{i} such that $\operatorname{Imd}\left(s s n t_{i}\right) \notin S_{i}$. Then, for all $j \geq i$, $\operatorname{Ind}\left(s s n t_{j}\right)<\operatorname{Ind}(\pm s n t)$. Now, for all $j \geq i, S_{j+1}$ is obtained from S_{j} in $\left\langle\mathrm{S}_{i}\right\rangle$ by adding a $\operatorname{Ind}\left(s s n t_{j}\right)$ to S_{j} (per one of clauses $1), 2), 3), 4), 5$) of 4.2 .3 .1 .). So there is an infinite sequence of natural numbers Ind(ssnt t_{i}, $\operatorname{Ind}\left(s s n t_{i+1}\right), \ldots, \operatorname{Ind}\left(s s n t_{j}\right), \ldots . \operatorname{such}$ that for all $j \geq i$, $\operatorname{Ind}\left(s s n t_{j}\right)<\operatorname{Ind}(\pm s n t)$ and
$\operatorname{Ind}\left(s s n t_{j+1}\right) \notin \mathrm{S}_{j}$ and $\operatorname{IImd}\left(s s n t_{j+1}\right) \in \mathrm{S}_{j+1}$. In case for all $j \geq i, s s n t_{j}$ is not, for some formula F, of the form $+(x) F$, it follows that for all $j \geq i, \mathrm{~S}_{j} \subseteq \mathrm{~S}_{j+1}$. In this case, then, for all $j \geq i$, for all $k<j, \operatorname{Ind}\left(s s n t_{k}\right) \neq \operatorname{Ind}\left(\operatorname{ssn} t_{j}\right)$. Hence, each $\operatorname{Ind}\left(\boldsymbol{s s n} t_{j}\right)$ in the sequence $\operatorname{Ind}\left(\boldsymbol{s s n} t_{i}\right)$, $\operatorname{Ind}\left(s s n t_{i+1}\right), \ldots, \operatorname{Ind}\left(s s n t_{j}\right), \ldots$ is distinct, which contradicts the fact that there are only finitely many distinct natural numbers n such that $n<\mathbb{I n d}(\pm s n t)$. So let $v \geq i$ be a number such that $\boldsymbol{s s n} \boldsymbol{t}_{\boldsymbol{v}}$ is the signed sentence in the sequence $\operatorname{Ind}\left(\boldsymbol{s s n} t_{i}\right)$, $\operatorname{Ind}\left(\boldsymbol{s s n} t_{i+1}\right), \ldots, \operatorname{Ind}\left(\boldsymbol{s s n} t_{j}\right)$, . . of the form $+(\boldsymbol{x}) F$ such that for no $j, i \leq j<v$, is $s s n t_{j}$ of the form, for some formula \boldsymbol{G}, $+(x) G$. It follows that for all $j, i \leq j<v, \mathrm{~S}_{j} \subseteq \mathrm{~S}_{j+1}$, and so $\mathrm{S}_{i} \subseteq \mathrm{~S}_{v}$. Hence, $\mathrm{N}(i, \operatorname{Ind}(\pm s n t)) \geq$ $\mathrm{N}(v$, Ind $(\pm s n t))$. Now we know that $\operatorname{Ind}\left(s s n t_{v}\right)<\operatorname{Ind}(\pm s n t)$ and $\operatorname{Ind}\left(s s n t_{v}\right) \notin \mathrm{S}_{v}$. By clause 2) of 4.2.3.1., $S_{v+1}=\left(S_{v}-\mathbb{R}(v)\right) \cup\left\{\operatorname{Ind}\left(\operatorname{ssn} t_{v}\right)\right\}$. Since $\mathbb{R}(v)$ contains no indices of signed sentences of the form $+(x) F$, it follows that $\mathrm{N}(v+1$, Ind $(\pm s n t))=\mathrm{N}(v, \operatorname{Ind}(\pm s n t))-1$. Hence, $\mathrm{N}(v+1, \operatorname{Ind}(\pm s n t))<\mathrm{N}(i, \operatorname{Ind}(\pm s n t))$. So by the hypothesis of induction, there is a $j \geq$ $v+1$ such that \pm snt is the first signed nonatomic sentence in $\mathbb{S e t}_{v+1}$ such that $\mathbb{I n d}(\operatorname{ssnt}) \notin \mathrm{S}_{v+1}$. Since $v+I>i$, it follows that there is a $j \geq i$ such that $\pm s n t$ is the first signed nonatomic sentence in Set_{j} such that $\operatorname{Ind}(s s n t) \notin S_{j}$. So the claim holds.

This completes the proof of lemma 4.2.3.3.

Lemma 4.2.3.4: Let Seq be any sequent which is not strictly 2-derivable. Let $\left\langle\operatorname{Set}_{i}\right\rangle$ be one of the infinite reduction sequences of Seq whose existence is asserted by lemma 4.2.3.2. and let $\operatorname{Set}_{\omega}$ be the union set of $\left\langle\operatorname{Set}_{i}\right\rangle$, i.e., $\operatorname{Set}_{\omega}=\mathcal{S S e t}_{i}, 0 \leq i<\omega$. Then, $\operatorname{Se} t_{\omega}$ is downward closed.

Proof of 4.2.3.4.: We show that $\operatorname{Set}_{\omega}$ satisfies all of conditions 1)-10) inclusive of definition 4.1.1.. Let $\pm s n t$ be any member of $\operatorname{Set} \omega$. Then,

1) For no atomic sentence asnt does $\operatorname{Set}_{\omega}$ contain both of $\pm a s n t$.

Proof: Suppose that Set ω contain both of \pm asnt for some atomic sentence asnt. Since Set $\omega=$

without loss of generality, that $i \geq j$. Then both of $\pm a s n t \in \operatorname{Set}_{i}$ and so $\{+a s n t,-a s n t\} \subseteq \operatorname{Set}_{i}$. Since $\{+a s n t$, -asnt $\}$ is an axiom, it is strictly 2 -derivable. Since $\mathbb{S e t}_{i}$ has a strictly 2 -derivable finite subset, by definition Set_{i} is strictly 2-derivable. This contradicts the claim of lemma 4.2.3.2. that no Set_{i} in $\left\langle\operatorname{Set}_{i}\right\rangle$ is strictly 2-derivable. So $\mathbb{S e t}_{\omega}$ satisfies condition 1) of 4.1.1..
2) For no t in $\delta(P a r)$ does $\operatorname{Set}_{\omega}$ contain the signed sentence $+(t=t)$.

Proof: Suppose that $\operatorname{Set} \omega$ contains the signed sentence $+(t=t)$ for some basic constant term t in $\delta($ Par $)$. Since $\operatorname{Set}_{\omega}=\mathcal{U S e t}_{i}, 0 \leq i<\omega$, there is $i<\omega$ such that $+(t=t) \in \operatorname{Set}_{i}$. Since $\{+(t$ $=t)\}$ is an axiom, it is strictly 2 -derivable. Since Set_{i} has a strictly 2 -derivable finite subset, by definition $\operatorname{Set}_{\boldsymbol{i}}$ is strictly 2 -derivable. This contradicts the claim of lemma 4.2.3.2. that no $\operatorname{Set}_{\boldsymbol{i}}$ in $\left\langle\operatorname{Set}_{i}\right\rangle$ is strictly 2-derivable. So Set $_{\omega}$ satisfies condition 2) of 4.1.1..
3) For no r, s in $\delta(P a r)$ does $S e t$ contain both of $+(r=s),-(s=r)$.

Proof: Suppose there are r, s in $\delta(P a r)$ such that $\operatorname{Set}_{\omega}$ contains both of $+(r=s),-(s=r)$. Since $\operatorname{Set}_{\omega}=\bigcup \operatorname{Set}_{i}, 0 \leq i<\omega$, there is $i, j<\omega$ such that $+(r=s) \in \operatorname{Set}_{i}$ and $-(s=r) \in \operatorname{Set}_{j}$. Assume without loss of generality that $i \geq j$. Then $+(r=s),-(s=r) \in$ Set $_{i}$. Since the sequents $\{+(s=s)\},\{-(r=s),+(r=s)\}$ are both axioms, the following is a legitimate Pld2 strict derivation of the sequent $\{+(r=s),-(\boldsymbol{s}=\boldsymbol{r})\}$:

$$
\frac{\{+(s=s)\} \quad\{+(r=s),-(r=s)\}}{\{+(r=s),-(s=r)\}}
$$

Thus $\{+(r=s),-(s=r)\}$ is a strictly 2-derivable sequent. But by lemma 4.2.3.2. no $\operatorname{Set}_{i}, \operatorname{Set}_{i}$ in $\left\langle\operatorname{Set}_{i}\right\rangle$ is strictly 2-derivable. So $\{+(r=s),-(s=r)\}$ is not a subset of $\mathbb{S e t}_{i}$ for any i. So Set ω satisfies condition 3) of 4.1.1..
4) For no r, s in $\delta(P a r)$ and atomic formula afm does Set contain all of $-(r=s),-[r / v] a f m$, $+[s / v] a f m$.

Proof: Suppose that for some r, s in $\delta($ Par $)$ and atomic formula $a f m$, Set contain all of $-(r=s)$,
$-[r / v] a f m,+[s / v] a f m$. Since $\operatorname{Set}_{\omega}=\cup \operatorname{Set}_{i}, 0 \leq i<\omega$, there are $i, j, k<\omega$ such that $-(r=s)$ $\in \operatorname{Set}_{i},-[r / v] a f m \in \operatorname{Set}_{j}$, and $+[s / v] a f m \in \operatorname{Set}_{k}$. Assume, without loss of generality, that $i \geq j \geq k$. Then all of $-(r=s),-[r / v] a f m,+[s / v] a f m \in \operatorname{Set}_{i}$ and so $\{-(r=s),-[r / v] a f m$, $+[s / v] a f m\} \subseteq \operatorname{Set}_{i}$. We show that $\{-(r=s),-[r / v] a f m,+[s / v] a f m\}$ is a strictly 2-derivable sequent. The following is a legitimate application of the identity rule 1.2.2.7.:
$\frac{\{-[r / v] a f m,+[r / v] a f m\} \quad\{-[s / v] a f m,+[s / v] a f m\}}{\{-(r=s),-[r / v] a f m,+[s / v] a f m\}}$

Since both of $\{-[r / v] a f m,+[r / v] a f m\},\{-[s / v] a f m,+[s / v] a f m\}$ are axioms, it follows that $\{-(r=s),-[r / v] a f m,+[s / v] a f m\}$ is a strictly 2 -derivable sequent. Since Set $_{i}$ has a strictly 2-derivable finite subset, by definition $S e t_{i}$ is strictly 2 -derivable. This contradicts the claim of lemma 4.2.3.2. that no Set_{i} in $\left\langle\right.$ Set $\left._{i}\right\rangle$ is strictly 2-derivable. So Set $_{\omega}$ satisfies condition 4) of 4.1.1..

Since $\pm s n t \in \operatorname{Set}_{\omega}=\bigcup$ Set $_{i}, 0 \leq i<\omega$, and $\left\langle\right.$ Set $\left._{i}\right\rangle$ is well-ordered under \subseteq, it follows that $\pm s n t$ $\in \operatorname{Set}_{i}$ for some least $i, 0 \leq i<\omega$. We now show that $\operatorname{Set}_{\omega}$ satisfies conditons 5) - 10) of definition 4.1.1.:
5) If $\pm s n t$ is respectively of the form $\pm \neg \mathbf{A}$, for some sentence \mathbf{A}, then $\operatorname{Set}_{\omega}$ contains respectively \mp A.

Proof: Assume that \pm snt is respectively of the form $\pm \neg \mathrm{A}$. Since for all $j<i, \pm \neg \mathbf{A} \notin \operatorname{Set}_{j}$, it follows by definition 4.2.3.1. of $\left\langle\right.$ Set $\left._{\boldsymbol{i}}\right\rangle$ that respectively $\operatorname{Ind}(\pm \neg \mathbf{A}) \notin \mathrm{S}_{\boldsymbol{i}}$. Since $\pm \neg \mathbf{A} \in$ Set $_{\boldsymbol{i}}$ and $\operatorname{Ind}(\pm \neg \mathbf{A}) \notin \mathrm{S}_{i}$, by lemma 4.2.3.3., there is a $j \geq i$ such that $\pm \neg \mathrm{A}$ is the first signed sentence in Set j_{j} such that respectively $\operatorname{Ind}(\pm \neg \mathbf{A}) \notin \mathrm{S}_{j}$. Hence, by clause 1) of 4.2.3.1., $\operatorname{Set}_{j_{+1}}$ is an S_{i} - reduction of Set_{j} of type 1) and so $\operatorname{Set}_{j+1} \cong \operatorname{Set}_{j} \cup\{\mp \mathrm{~A}\}$, respectively. Since $\operatorname{Set}_{j+1} \subseteq \operatorname{Set}_{\omega}$, it follows that respectively $\mp \mathrm{A} \in \operatorname{Set}_{\omega}$. So $^{\operatorname{Se}} t_{\omega}$ satisfies condition 5) of 4.1.1.
6) If \pm snt is respectively of the form $\pm(\mathbf{A} \wedge \mathbf{B})$, for some sentences \mathbf{A}, \mathbf{B}, then $\operatorname{Set}_{\omega}$ contains one of $+\mathbf{A},+\mathbf{B}$, respectively, both of $-\mathbf{A},-\mathbf{B}$.

Proof: Assume that $\pm s n t$ is respectively of the form $\pm(\mathbf{A} \wedge B)$. Since for all $j<i, \pm(\mathbf{A} \wedge B)$ $\notin \operatorname{Set}_{j}$, it follows by definition 4.2.3.1. of $\left\langle\mathbb{S e} t_{i}\right\rangle$ that respectively $\operatorname{Ind}(\pm(\mathbf{A} \wedge B)) \notin S_{i}$. Since $\pm(\mathbf{A} \wedge \mathbf{B}) \in \operatorname{Set}_{i}$ and $\operatorname{Ind}(\pm(\mathbf{A} \wedge \mathbf{B})) \notin \mathrm{S}_{i}$, by lemma 4.2.3.3., there is a $j \geq i$ such that $\pm(\mathbf{A} \wedge$ $B)$ is the first signed sentence in $\mathbb{S e t}_{j}$ such that respectively $\operatorname{Ind}(\pm(\mathbf{A} \wedge B)) \notin S_{j}$. Hence, by clause 1) of 4.2.3.1., Set_{j+1} is an S_{i}-reduction of $\mathbb{S e t}_{j}$ of type 2) and so Set_{j+1} contains one of, respectively, both of, A,B. Since $\operatorname{Set}_{j+1} \subseteq \operatorname{Set}_{\omega}$, it follows that $\operatorname{Set}_{\omega}$ contains one of, respectively, both of, A, B. So $\operatorname{Set}_{\omega}$ satisfies condition 6) of 4.1.1..
7) If $\pm s n t$ is respectively of the form $\pm(\mathbf{A} \rightarrow \mathbf{B})$, for some sentences \mathbf{A}, \mathbf{B}, then Set \boldsymbol{H}_{ω} contains both of $-\mathbf{A},+\mathbf{B}$, respectively, one of $+\mathbf{A},-\mathbf{B}$.

Proof: This case is similar to condition 6) above.
8) If, for some formula F, \pm snt is respectively of the form $\pm(x) F$, then $\operatorname{Set}_{\omega}$ contains $+[p / x] F$ for some \boldsymbol{p} in $\mathscr{P}(\mathbb{S e t} \omega)$, respectively, - $[t / x] F$ for every t in $\delta\left(\mathscr{P}\left(\mathbb{S e t}_{\omega}\right)\right)$.

Proof: There are two cases:
i) $\pm s n t$ is of the form $+(x) F$. Since for all $j<i,+(x) F \notin \mathbb{S e t}_{j}$, it follows by definition 4.2.3.1. of $\left\langle\operatorname{Set}_{i}\right\rangle$ that $\operatorname{Ind}(+(x) F) \notin S_{i}$. Since $+(x) F \in \operatorname{Set}_{i}$ and $\operatorname{Ind}(+(x) F) \notin S_{i}$, by lemma 4.2.3.3., there is a $j \geq i$ such that $+(x) F$ is the first signed sentence in Set_{j} such that $\operatorname{Ind}(+(x) F) \notin \mathrm{S}_{j}$. Hence, by clause 2) of 4.2.3.1., $\operatorname{Set}_{j+1} \cong \operatorname{Set}_{j} \cup\{+[p / x] F\}$, where p is in $\mathscr{P}\left(\mathbb{S e t} t_{j}\right) \subseteq$ $\mathscr{\mathscr { S }}\left(\operatorname{Set}_{\omega}\right)$. Since $\operatorname{Set}_{j+1} \subseteq \operatorname{Set}_{\omega}$, it follows that $+[p / x] F \in \operatorname{Set}_{\omega}$. So $^{\operatorname{Set}} \omega$ satisfies condition 8).
ii) \pm snt is of the form $-(x) F$. We want to show that $-[t / x] F \in \mathbb{S e t}_{\omega}$ for every t in $\delta\left(\mathscr{S}\left(\operatorname{Set}_{\omega}\right)\right)$. So let s be any term in $\delta\left(\mathscr{P}\left(\operatorname{Set}_{\omega}\right)\right)$. Since the sequence $\left\langle\mathscr{S}\left(\operatorname{Set}_{i}\right)\right\rangle$ is well ordered under \subseteq, there is a least i such that $s \in \delta\left(\mathscr{\mathscr { O }}\left(\operatorname{Set}_{i}\right)\right.$; let that least i be i^{\prime}. It follows that $\mathscr{S}\left(\operatorname{Set}_{i^{\prime}-1}\right) \subseteq \mathscr{S}\left(\operatorname{Set}_{i^{\prime}}\right)$ but $\mathscr{P}\left(\operatorname{Set}_{i^{\prime}}\right) \subseteq \mathscr{S}\left(\operatorname{Set}_{i^{\prime}-1}\right)$. Since for all i, clause 2$)$ is the only clause of 4.2.3.1. that adds new parameters to a $\mathscr{P}\left(\operatorname{Set}_{i}\right)$, it follows that $\operatorname{Set}_{i^{\prime}}$ is obtained from $\operatorname{Set}_{i^{\prime}-1}$ in $\left\langle\right.$ Set $\left._{i}\right\rangle$ by clause 2). Hence, $S_{i^{\prime}}=\varnothing$. There are two subcases:
a) $i^{\prime}<i$. Since for all $j<i,-(x) F \notin S e t_{j}$, it follows by definition 4.2.3.1. of $\left\langle\right.$ Set $\left.t_{i}\right\rangle$ that Ind $(-(x) F) \notin S_{i}$. Then, since $-(x) F \in \operatorname{Set}_{i}$ and $\operatorname{Ind}(-(x) F) \notin S_{i}$, by lemma 4.2.3.3., there is a $j \geq i$ such that $-(x) F$ is the first signed sentence in Set_{j} such that $\operatorname{Ind}(+(x) F) \notin \mathrm{S}_{j}$. Then, by clause 3) of 4.2.3.1., $\operatorname{Set}_{j+1} \cong \operatorname{Set}_{j} \cup\left\{+[t / x] F: t \in \delta\left(\mathscr{P}\left(\operatorname{Set}_{j}\right)\right)\right\}$. Since $j \geq i>i^{\prime}$, $\mathscr{P}\left(\operatorname{Set}_{i^{\prime}}\right) \subseteq \mathscr{P}\left(\operatorname{Set}_{j}\right)$, and so $\delta\left(\mathscr{P}\left(\operatorname{Set}_{i^{\prime}}\right)\right) \subseteq \delta\left(\mathscr{S}\left(\operatorname{Set}_{j}\right)\right)$. Hence, $-[s / x] F \in \operatorname{Set}_{j+1} \subseteq$ $\operatorname{Set}_{\omega}$. So $^{\text {Set }}{ }_{\omega}$ satisfies condition 8).
b) $i \leq i^{\prime}$. Since $\operatorname{Set}_{i} \subseteq \operatorname{Set}_{i^{\prime}},-(x) F \in \operatorname{Set}_{i^{\prime}}$. Then by lemma 4.2.3.3., since $\operatorname{Ind}(-(x) F) \notin S_{i^{\prime}}$, there is a $j \geq i^{\prime}$ such that $-(x) F$ is the first signed sentence in Set_{j} such that $\operatorname{Ind}(+(x) F) \notin \mathrm{S}_{j}$. Then, by clause 3) of 4.2.3.1., $\operatorname{Set}_{j+1} \cong \operatorname{Set}_{j} \cup\left\{+[t / x] F: t \in \delta\left(\mathscr{S}\left(\operatorname{Set}_{j}\right)\right)\right\}$. Since $j \geq i^{\prime}$, $\mathscr{P}\left(\operatorname{Set}_{i^{\prime}}\right) \subseteq \mathscr{S}\left(\operatorname{Set}_{j}\right)$, and so $\delta\left(\mathscr{P}\left(\operatorname{Set}_{i^{\prime}}\right)\right) \subseteq \delta\left(\mathscr{S}\left(\operatorname{Set}_{j}\right)\right)$. Hence, $-[s / x] F \in \operatorname{Set}_{j+1} \subseteq$ $\operatorname{Set}_{\omega}$. So Set $_{\omega}$ satisfies condition 8).

In all cases, then, Set $_{\omega}$ satisfies condition 8).
9) If $\pm s n t$ is a signed nonatomic elementary sentence of the form $+[u x . \Phi / u] a f m$ for some constant description term $L x$. Φ and atomic formula afm, then $\operatorname{Set}_{\omega}$ satisfies one of the following conditions:
i) Set $_{\omega}$ contains the signed sentence $+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)$ for some variable v.
ii) $\operatorname{Set}_{\omega}$ contains the signed sentence $+[t / x](\Phi \wedge[x / u] a f m)$ for every $t \in \delta(\mathscr{P}(\mathbb{S e t}))$.

Proof: Assume that $\pm s n t$ is of the form $+[u x . \Phi / u] a f m$. Since for all $j<i,+[u x . \Phi / u] a f m$ \notin Set $_{j}$, it follows by definition 4.2.3.1. of $\left\langle\right.$ Seq $\left._{i}\right\rangle$ that $\operatorname{Ind}(+[u x . \Phi / u] a f m) \notin S_{i}$. Since $+[u x . \Phi / u] a f m \in \operatorname{Set}_{i}$ and $\operatorname{Ind}(+[u x . \Phi / u] a f m) \notin S_{i}$, by lemma 4.2.3.3., there is a $j \geq i$ such that $+[u x . \Phi / u] a f m$ is the first signed sentence in Set $_{j}$ such that $\mathbb{I n d}(+[u x . \Phi / u] a f m) \notin S_{j}$. Let j^{\prime} be the least such j, i.e., let j^{\prime} be such that $+[u x . \Phi / u] a f m$ is the first signed sentence in Set $_{j}$; such that $\operatorname{Ind}(+[u x . \Phi / u] a f m) \notin \mathrm{S}_{j^{\prime}}$ and for all $k<j^{\prime}$, it is not the case that $+[u x . \Phi / u] a f m$ is the first signed sentence in Set_{k} such that $\operatorname{Ind}(+[u x . \Phi / u] a f m) \notin \mathrm{S}_{k}$. We observe that by definiton 4.2.3.1., for all i and signed sentences ssnt, Ind $(\operatorname{ssnt}) \in D 1_{i}$ only if there is a $j<i$ such
that $s s n t$ is the first signed sentence in Set_{j} such that $\mathbb{I m d}(s s n t) \notin S_{j}$. Hence, $\mathbb{I n d}(+[u x . \Phi /$ $u] a f m) \notin \mathrm{D} 1_{j^{\prime}}$. Hence, by clause 4) of 4.2.3.1., there are two cases:
i) $\operatorname{Set}_{j^{\prime}+1}$ is obtained from $\operatorname{Set}_{j^{\prime}}$ by rule a) of clause 4). Then, $\operatorname{Set}_{j^{\prime}+1} \cong \operatorname{Set}_{j^{\prime}} \cup\{+(x)(v)((\Phi \wedge$ $[v / x] \Phi) \rightarrow x=v)\}$ for some variable v. Since $\operatorname{Set}_{j^{\prime}+1} \subseteq \operatorname{Set}_{\omega}$, it follows that $+(x)(v)((\Phi \wedge[v$ $/ x] \Phi) \rightarrow x=v) \in \operatorname{Set}_{\omega}$. So $\operatorname{Set}_{\omega}$ satisfies i) of condition 9).
ii) $\operatorname{Set}_{j^{\prime}+1}$ is obtained from $\operatorname{Set}_{j^{\prime}}$, by rule b) of clause 4). Then, $\mathrm{D} 1_{j^{\prime}+1}=\mathrm{D} 1_{j^{\prime}} \cup\{\operatorname{Ind}(+[u x . \Phi /$ $u] a f m)\}$. We want to show that $+[t / x](\Phi \wedge[x / u] a f m) \in \mathbb{S e t}_{\omega}$ for everyt in $\delta\left(\mathscr{P}\left(\mathbb{S e t}_{\omega}\right)\right)$. So let s be any term in $\delta\left(\mathscr{S}\left(\operatorname{Set}_{\omega}\right)\right)$. Since the sequence $\left\langle\mathscr{P}\left(\operatorname{Set}_{i}\right)\right\rangle$ is well ordered under \subseteq, there is a least i such that $s \in \delta\left(\mathscr{P}\left(\mathbb{S e t}_{i}\right)\right)$; let that least i be i^{\prime}. It follows that $\mathscr{\mathscr { P }}\left(\mathbb{S e t}_{i^{\prime}-I}\right) \subseteq$ $\mathscr{P}\left(\operatorname{Set}_{i^{\prime}}\right)$ but $\mathscr{P}\left(\operatorname{Set}_{i^{\prime}}\right) \Phi \mathscr{P}\left(\operatorname{Set}_{i^{\prime}-1}\right)$. Since for all i, clause 2) is the only clause of 4.2 .3 .1 . that adds new parameters to a $\mathscr{P}\left(\operatorname{Set}_{i}\right)$, it follows that $\operatorname{Set}_{i^{\prime}}$ is obtained from $\operatorname{Set}_{i^{\prime}-1}$ in $\left\langle\operatorname{Set}_{i}\right\rangle$ by clause 2). Hence, $S_{i^{\prime}}=\varnothing$. There are two subcases:
a) $j^{\prime}+l>i^{\prime}$. We have that $+[u x . \Phi / u] a f m$ is the first signed sentence in $\mathbb{S e t}_{j^{\prime}}$, such that $\operatorname{Ind}(+[x . \Phi / u] a f m) \notin S_{j^{\prime}}$, and that $\operatorname{Set}_{j^{\prime}+1}$ is obtained from $\mathbb{S e t}_{j^{\prime}}$ by rule b) of clause 4). Hence, $\operatorname{Set}_{j^{\prime}+1} \cong \operatorname{Set}_{j^{\prime}} \cup\left\{+[t / x](\Phi \wedge[x / u] a f m): t \in \delta\left(\mathscr{P}\left(\mathbb{S e t}_{j}\right)\right)\right\}$. Clearly, since $j^{\prime} \geq i^{\prime}$ and $s \in \delta\left(\mathscr{P}\left(\operatorname{Set}_{i}\right)\right), s \in \delta\left(\mathscr{P}\left(\operatorname{Set}_{j^{\prime}}\right)\right)$. So $+[s / x](\Phi \wedge[x / u] a f m) \in \operatorname{Set}_{j^{\prime}+1} \subseteq \operatorname{Set}_{\omega}$. So Set ω satisfies ii) of condition 9).
b) $i^{\prime} \geq j^{\prime}+1$. Since $j^{\prime} \geq i$, it follows that $i^{\prime}>i$, so we know that $+[u x . \Phi / u] a f m \in \operatorname{Set}_{i^{\prime}}$. Since $S_{i^{\prime}}=\varnothing, \operatorname{Ind}(+[u x . \Phi / u] a f m) \notin S_{i^{\prime}}$, so by lemma 4.2.3.3. there is a $j \geq i^{\prime}$ such that $+[u x . \Phi / u] a f m$ is the first signed sentence in $\mathbb{S e t}_{j}$ such that $\mathbb{I n d}(+[u x . \Phi / u] a f m) \notin S_{j}$. Now, since $\operatorname{Imd}(+[u x . \Phi / u] a f m) \in \mathrm{D} 1_{j^{\prime}+1}$ and $j \geq i^{\prime} \geq j^{\prime}+1$, it follows by definition 4.2.3.1. that Ind $(+[u x . \Phi / u] a f m) \in \mathrm{D} 1_{j}$. Hence, Set $_{j+1}$ is not obtained from Set $_{j}$ by rule a) of clause 4) of 4.2.3.1., but rather is obtained from Set_{j} by rule b) of clause 4). Hence, $\operatorname{Set}_{j+1} \cong \operatorname{Set}_{j} \cup\{+[t /$ $x](\Phi \wedge[x / u] a f m): t \in \delta\left(\mathscr{P}\left(\right.\right.$ Set $\left.\left.\left._{j}\right)\right)\right\}$. Clearly, since $j \geq i^{\prime}$ and $s \in \delta\left(\mathscr{P}\left(\operatorname{Set}_{i^{\prime}}\right)\right), s$ $\in \delta\left(\mathscr{S}\left(\operatorname{Set}_{j}\right)\right)$. So $+[s / x](\Phi \wedge[x / u] a f m) \in \operatorname{Set}_{j+1} \subseteq \operatorname{Set}_{\omega}$. So $\operatorname{Set}_{\omega}$ satisfies ii) of condition 9).

In all cases, then, $\operatorname{Set}{ }_{\omega}$ satisfies condition 9) of 4.1.1..
10) If $\pm s n t$ is a signed nonatomic elementary sentence of the form -[ux. $\Phi / u] a f m$ for some constant description term $\boldsymbol{x} . \Phi$ and atomic formula $a f m$, then $\operatorname{Set}_{\omega}$ satisfies one of the following conditions:
i) Set ω contains the signed sentence $+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)$ for some variable v.
ii) $\operatorname{Set}_{\omega}$ contains the signed sentence $+[t / x](\Phi \wedge \neg[x / u] a f m)$ for every $t \in \delta(\mathscr{P}(\mathbb{S e t}))$.

Proof: The proof of 10) is similar to the proof of 9) above.

This completes the proof of lemma 4.2.3.4.. Lemma 4.2.3. is established by lemmas 4.2.3.2. and 4.2.3.4. as follows: Let Seq be any sequent which is not strictly 2-derivable. By 4.2.3.2., Seq has an infinite reduction sequence $\left\langle\operatorname{Set}_{i}\right\rangle$ such that $\operatorname{Seq}=\operatorname{Set}_{0}$ and no Set_{i} in $\left\langle\operatorname{Set}_{i}\right\rangle$ is strictly 2 -derivable. Then by 4.2.3.4., $\operatorname{Set}_{\omega}=\mathcal{S S e t}_{i}, 0 \leq i<\omega$, is downward closed. Since $\operatorname{Seq} \subseteq \operatorname{Set}_{\omega}$, it follows that Seq has a downward closed extension $\operatorname{Set}_{\omega}$. We now restate and prove lemma 4.2.4.:

Lemma 4.2.4.: Every downward closed set Set of signed sentences determines a base bse(Set) such that $\operatorname{Set} \cap \operatorname{Cl}(b s e(\mathbb{S e t}))=\varnothing$.

Proof of 4.2.4.: Let Set be a downward closed set of signed sentences. Let \boldsymbol{F} be any formula.
We recursively define a downward closed extension Set^{*} of Set as follows:
0) $\operatorname{Set}_{0}=\operatorname{Set}$;

1) Set_{i+1} is obtained from Set $_{\boldsymbol{i}}$ by adding to Set $_{\boldsymbol{i}}$ all signed sentences of the form $\pm[\boldsymbol{p} / \boldsymbol{x}] \boldsymbol{F}$ such that respectively $\pm[\mathbb{P}(1) / \boldsymbol{x}] \boldsymbol{F}$ is in Set $_{i}$, where p is the first (relative to the enumeration \mathbb{P}) parameter that does not occur in any member of Set $_{i}$. In other words $\operatorname{Set}_{i+1}=\operatorname{Set}_{i} \cup\{ \pm \mathbb{P}(i) / x] F: \pm[\mathbb{P}(1) / x] F \in \operatorname{Set}_{i}$ and $\mathbb{P}(i) \in \operatorname{Par}-\mathscr{S}\left(\right.$ Set $\left._{i}\right)$ and for all

$$
\left.j<i, \mathbb{P}(j) \in \mathscr{P}\left(\mathbb{S e} t_{i}\right)\right\}
$$

2) $\operatorname{Set}^{*}=\bigcup \operatorname{Set}_{i}, 0 \leq i<\omega$.

Lemma 4.2.4.1.: Let $\mathbb{S e t}$ be a downward closed set of signed sentences, and let Set* be as defined above. Then $\mathbb{S e t}^{*}$ is downward closed.

Proof of 4.2.4.1: We show by induction on i in the recursive definition of $\mathbb{S e r}^{*}$ that every Set_{i} is downward closed. Let $\pm s n t$ be any member of $\operatorname{Set} t^{*}$. Then,

Base step: $i=0$. By assumption, $\mathbb{S e t}_{0}=\mathbb{S e t}$ is downward closed. So the claim holds.

Induction step: $i>0$. Assume that for all $j<i, \operatorname{Set}_{j}$ is downward closed. We show that Set_{i} satisfies all of conditions 1)-10) inclusive of definition 4.1.1:

1) For no atomic sentence asnt does Set $_{i}$ contain both of \pm asnt.

Proof: Assume that $\$_{i e t}$ contains both of \pm asnt for some atomic sentence asnt. Now, asnt can be written as $[p / x] a f m$ for some atomic formula afm containing no occurrence of p, where p is the first parameter in $\operatorname{Par}-\mathscr{P}\left(\operatorname{Set}_{i-1}\right)$. Clearly, then, since both of $\pm[p / x] a f m$ are in Set_{i} and $a f m$ contains no occurrence of p, it follows by clause 1) of the recursive definition of $S e b^{*}$ that Set $_{i-1}$ contains both of $\pm[\mathbb{P}(1) / x]$ afm. This contradicts the hypothesis of induction.
2) For no t in $\delta\left(\mathscr{S}\left(\operatorname{Set}_{i}\right)\right)$ does Set_{i} contain the signed sentence $+(t=t)$.

Proof: Assume that Set_{i} contains the signed sentence $+(t=t)$ for some t in $\delta\left(\mathscr{P}\left(\operatorname{Set}_{i}\right)\right)$. Now the signed sentence $+(t=t)$ can be written as $+[p / x](s=s)$ for some basic term s containing no occurrence of p, where p is the first parameter in $\operatorname{Par}-\mathscr{P}\left(\operatorname{Set}_{i-1}\right)$. Since $+[p / x](s=s) \in \operatorname{Set}_{i}$ and s contains no occurrence of p, it follows by clause 1) of the recursive definition of Set* that $+[\mathbb{P}(1) / x](s=s) \in \operatorname{Set}_{i-1}$. But clearly, the signed sentence $+[\mathbb{P}(1) / x](s=s)$ is of the form $+(r=r)$ for some r in $\delta\left(\mathscr{S}\left(\right.\right.$ Set $\left.\left._{i}\right)\right)$. So for some r in $\delta\left(\mathscr{P}\left(\right.\right.$ Set $\left.\left._{i}\right)\right)$, Set $_{i-1}$ contains the signed sentence $+(r=r)$. This contradicts the hypothesis of induction.
3) For no r, s in $\delta\left(\mathscr{\mathscr { S }}\left(\right.\right.$ Set $\left.\left._{i}\right)\right)$ does Set $_{i}$ contain both of $+(r=s),-(s=r)$.

Proof: The proof that $\mathbb{S e t}_{i}$ satisfies condition 3) is similar to the proof above that $\mathbb{S e t}_{i}$ satisfies condition 1).
4) For no r, s in $\delta\left(\mathscr{P}\left(\mathbb{S e t}_{i}\right)\right)$ atomic formula afm, does $\mathbb{S e t}_{i}$ contain all of $-(r=s),-[r /$ $v] a f m,+[s / v] a f m$.

Proof: Assume that for some r, s in $\delta\left(\mathscr{P}\left(\right.\right.$ Set $\left.\left._{i}\right)\right)$ and atomic formula $a f m, \operatorname{Set}_{i}$ contains all of $-(r=s),-[r / v] a f m,+[s / v] a f m$. Now $-(r=s),-[r / v] a f m,+[s / v] a f m$ can be respectively written as $-[p / x]\left(t_{1}=t_{2}\right),-[p / x]\left[[p / x] t_{1} / v\right] a f m^{\prime},+[p / x]\left[[p / x] t_{2} / v\right] a f m^{\prime}$ for some basic terms t_{1}, t_{2} and atomic formula $a \mathrm{fm}^{\prime}$ such that none of $t_{1}, t_{2}, a f m^{\prime}$ contain an occurrence of p, where p is the first parameter in $\operatorname{Par}-\mathscr{P}\left(\operatorname{Set}_{i-1}\right)$. Since all of $-[p / x]\left(t_{\boldsymbol{I}}=t_{2}\right)$, $-[p / x]\left[[p / x] t_{1} / v\right] a f m^{\prime},+[p / x]\left[[p / x] t_{1} / v\right] a f m^{\prime}$ are in Set $_{i}$, and none of $t_{1}, t_{2}, a f m^{\prime}$ contain an occurrence of p, it follows all of $-[\mathbb{P}(1) / x]\left(t_{1}=t_{2}\right) \cong-\left([\mathbb{P}(1) / x] t_{1}=[\mathbb{P}(1) / x] t_{2}\right)$, $-[\mathbb{P}(1) / x]\left[[\mathbb{P}(1) / x] t_{1} / v\right] a f m^{\prime},+[\mathbb{P}(1) / x]\left[[\mathbb{P}(1) / x] t_{1} / v\right] a f m^{\prime}$ are in $\mathbb{S e t}_{i-1}$. This contradicts the hypothesis of induction.
5) If $\pm s n t$ is respectively of the form $\pm \neg \mathbf{A}$, then Set $_{i}$ contains respectively $\mp \mathbf{A}$.

Proof: Assume that $\pm s n t$ is respectively of the form $\pm \neg \mathbf{A}$. Now $\neg \mathbf{A}$ is of the form $[\boldsymbol{p} / \boldsymbol{x}] \neg \boldsymbol{F}$ for some formula \boldsymbol{F} containing no occurrence of \boldsymbol{p}, where \boldsymbol{p} is the first parameter in $P a r-$ $\mathscr{S}\left(\operatorname{Set}_{i-1}\right)$. Since respectively $\pm[p / \boldsymbol{x}] \neg F$ is in Set $_{i}$ and F contains no occurrence of p, it follows that the signed sentence respectively $\pm[\mathbb{P}(1) / \boldsymbol{x}] \neg F$ is in Set_{i-1}. Set_{i-1} is downward closed by the hypothesis of induction, so by condition 5) of 4.1.1., Set $_{i-1}$ contains respectively $\mp[\mathbb{P}(1) / x] F$. Then by clause 1) of the recursive definition of $\operatorname{Set}^{*}, \operatorname{Set}_{i}$ contains respectively $\mp[p / x] F \cong \mp A$. So the claim holds.
6) If $\pm s n t$ is respectively of the form $\pm(A \wedge B)$, then Set contains one of $+A,+B$, respectively, both of -A, -B.

Proof: Assume that \pm snt is respectively of the form $\pm(\mathbf{A} \wedge \mathbf{B})$ for some signed sentences \mathbf{A}, \mathbf{B}. Now A, B are respectively of the form $[p / x] F,[p / x] G$, for some formulas F, G containing no occurrence of p, where p is the first parameter in $\operatorname{Par}-\mathscr{P}\left(\operatorname{Set}_{i-1}\right)$. Since respectively $\pm(\mathbf{A} \wedge \mathbf{B})$ $\cong \pm([p / x] F \wedge[p / x] G)$ is in $\operatorname{Set}_{\boldsymbol{i}}$ and neither \boldsymbol{F} nor \boldsymbol{G} contains an occurrence of \boldsymbol{p}, it follows by clause 1) of the recursive definition of $\mathbb{S e t}^{*}$ that $\mathbb{S e t}_{i-1}$ contains respectively $\pm([\mathbb{P}(1) / \boldsymbol{x}] \boldsymbol{F} \wedge$ $[\mathbb{P}(1) / x] G)$. By the hypothesis of induction, Set \boldsymbol{i}_{i-1} is downward closed, so by condition 6) of 4.1.1., $\operatorname{Set}_{\boldsymbol{i}-1}$ contains one of $+[\mathbb{P}(1) / x] F,+[\mathbb{P}(1) / \boldsymbol{x}] \boldsymbol{G}$, respectively, both of $-[\mathbb{P}(1) / \boldsymbol{x}] F$, $-[\mathbb{P}(1) / x] G$. Then by clause 1) of the recursive definition of Set *, Set $_{i}$ contains one of $+[p /$ $x] F,+[p / x] G$, respectively, both of $-[p / x] F,-[p / x] G$. So Set ${ }_{i}$ contains one of $+\mathrm{A},+\mathrm{B}$, respectively, both of $-\mathbf{A},-\mathbf{B}$. So the claim holds.
7) If \pm snt is respectively of the form $\pm(\mathbf{A} \rightarrow \mathbf{B})$, then Set_{i} contains both of $-\mathbf{A},+\mathbf{B}$, respectively, one of $+\mathbf{A},-\mathbf{B}$.

Proof: The proof that $\mathbb{S e t}_{\boldsymbol{i}}$ satisfies condition 7) is similar to the proof above that $\boldsymbol{S e t}_{\boldsymbol{i}}$ satisfies condition 6).
8) If $\pm s n t$ is respectively of the form $\pm(x) F$, then $\mathbb{S e t}_{i}$ contains $+[p / x] F$ for some p in $\mathscr{P}\left(\right.$ Set $\left._{i}\right)$, respectively, $-[t / x] F$ for every t in $\delta\left(\mathscr{P}\left(\right.\right.$ Set $\left.\left._{i}\right)\right)$.

Proof: Assume that \pm snt is respectively of the form $\pm(x) F$, for some formula F. Now, F is of the form $[p / y] G$, for some formula G containing no occurrence of p, where p is the first parameter in Par $-\mathscr{P}\left(\operatorname{Set}_{i-1}\right)$. We treate the two cases seperately:
i) \pm snt is of the form $+(x) F$. Since $+(x) F \cong+(x)[p / y] G \cong+[p / y](x) G$ is in Set_{i} and G contains no occurrence of \boldsymbol{p}, it follows by clause 1) of the recursive definition of Set* that Set $_{i-1}$ contains $+[\mathbb{P}(1) / \boldsymbol{y}](\boldsymbol{x}) \boldsymbol{G} \cong+(\boldsymbol{x})[\mathbb{P}(1) / \boldsymbol{y}] \boldsymbol{G}$. By the hypothesis of induction, Set \boldsymbol{t}_{i-1} is downward closed, so by condition 7) of 4.1.1., Set $_{i-1}$ contains $+[q / x][\mathbb{P}(1) / y] G \cong+[\mathbb{P}(1) /$ $\boldsymbol{y}][\boldsymbol{q} / \boldsymbol{x}] \boldsymbol{G}$ for some \boldsymbol{q} in $\mathscr{\mathscr { P }}\left(\boldsymbol{S e t}_{\boldsymbol{i}-1}\right)$. Then by clause 1) of the recursive definition of $\operatorname{Set}^{*}, \operatorname{Set}_{\boldsymbol{i}}$ contains $+[p / y][q / x] G \cong+[q / x][p / y] G \cong+[q / x] F$ for some q in $\mathscr{S}\left(\operatorname{Set}_{i-I}\right) \subseteq$ $\mathscr{P}\left(\right.$ Set $\left._{i}\right)$. So the claim holds.
ii) \pm snt is of the form $-(x) F$. Since $-(x) F \cong-(x)[p / y] G \cong-[p / y](x) G$ is in Set ${ }_{i}$ and G contains no occurrence of p, it follows by clause 1) of the recursive definition of Set^{*} that Set_{i-1} contains $-[\mathbb{P}(1) / y](x) G \cong+(x)[\mathbb{P}(1) / y] G$. By the hypothesis of induction, Set $_{i-1}$ is downward closed, so by condition 8) of 4.1.1., Set \boldsymbol{t}_{i-1} contains $-[t / x][\mathbb{P}(1) / y] G$. Let r be any term in $\delta\left(\mathscr{P}\left(\operatorname{Set}_{i}\right)\right)$. Now, \boldsymbol{r} is of the form $[\boldsymbol{p} / \boldsymbol{y}] s$ for some variable \boldsymbol{y} and term s such that s contains no occurrence of p. Then $[\mathbb{P}(1) / y] s$ is a term in $\delta\left(\mathscr{P}\left(\operatorname{Set}_{i-1}\right)\right)$. So Set_{i-I} contains $-[[\mathbb{P}(1) /$ $\boldsymbol{y}] s / x][\mathbb{P}(1) / \boldsymbol{y}] \boldsymbol{G}$. Hence, by clause 1) of the recursive definition of Set^{*}, since neither \boldsymbol{G} nor s contain an occurrence of $p, \operatorname{Set}_{i}$ contains $-[[p / y] s / x][p / y] G \cong-[[p / y] s / x] F \cong-[r /$ $\boldsymbol{x}] F$, which is what we want to show.

In both cases, then, the claim holds.
9) If $\pm s n t$ is a signed nonatomic elementary sentence of the form $+[\nu x . \Phi / u] a f m$ for some constant description term $\mathbf{u x}$. Φ and atomic formula $a f m$, then Set_{i} satisfies one of the following conditions:
i) $S e t_{i}$ contains the signed sentence $+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)$ for some variable v.
ii) Set_{i} contains the signed sentence $+[t / x](\Phi \wedge[x / u] a f m)$ for every $t \in \delta\left(\mathscr{P}\left(\mathbb{S e t}_{i}\right)\right)$.

Proof: Assume that $\pm s n t$ is a signed nonatomic elementary sentence of the form $+[u x . \Phi / u] a f m$ for some constant description term $u x . \Phi$ and atomic formula $a f m$. Now, the formulas $\Phi, a f m$ are respectively of the form $[p / y] \Psi,[p / y] a f m^{\prime}$ for some variable y and formulas Ψ,afm' such that Ψ and $a f m^{\prime}$ contain no occurrence of p, where p is the first parameter in $P a r-$ $\mathscr{P}\left(\operatorname{Set}_{i-1}\right)$. Since $+[u x . \Phi / u] a f m \cong+[u x .[p / y] \Psi / u][p / y] a f m^{\prime} \cong+[p / y][u x . \Psi /$ $u] a f m^{\prime}$ is in Set_{i} and neither Φ nor $\boldsymbol{a f m}$ contain an occurrence of p, it follows by clause 1) of the recursive definition of Set^{*} that Set_{i-1} contains $+[\mathbb{P}(1) / y][u x . \Psi / u] a f m^{\prime} \cong+[u x .[\mathbb{P}(1) / y] \Psi /$ $u][\mathbb{P}(1) / y] a f m^{\prime}$. By the hypothesis of induction, Set \boldsymbol{S}_{i-1} is downward closed, so by condition 9) of 4.1.1., there are two cases:
i) Set $_{i-1}$ contains the signed sentence $+(x)(v)(([\mathbb{P}(1) / y] \Psi \wedge[v / x][\mathbb{P}(1) / y] \Psi) \rightarrow x=v)$.

Now, the signed sentence $+(x)(v)(([\mathbb{P}(1) / y] \Psi \wedge[v / x][\mathbb{P}(1) / y] \Psi) \rightarrow x=v)$ may be written as $+[P(1) / y](x)(v)((\Psi \wedge[v / x] \Psi) \rightarrow x=v)$. So by clause 1) of the recursive definition of Set *, since Ψ contains no occurrence of $p, \operatorname{Set}_{i}$ contains $+[p / y](x)(v)((\Psi \wedge[v / x] \Psi) \rightarrow x=$ $v) \cong+(x)(v)(([p / y] \Psi \wedge[v / x][p / y] \Psi) \rightarrow x=v) \cong+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)$. So the claim holds.
ii) For every $t \in \delta\left(\mathscr{P}\left(\operatorname{Set}_{i-1}\right)\right)$, Set t_{i-1} contains the signed sentence $+[t / x]([\mathbb{P}(1) / y] \Psi \wedge[\mathbb{P}(1)$ $\left./ y] a f m^{\prime}\right)$. Now let r be any term in $\delta\left(\mathscr{\varnothing}\left(\right.\right.$ Set $\left.\left._{i}\right)\right)$. Now, r is of the form $[p / y] s$ for some term s such that s contains no occurrence of p. Then $[\mathbb{P}(1) / y] s$ is a term in $\delta\left(\mathscr{P}\left(\operatorname{Set}_{i-1}\right)\right)$. So Set_{i-1} contains the signed sentence $+[[\mathbb{P}(1) / y] s / x]\left([\mathbb{P}(1) / y] \Psi \wedge[\mathbb{P}(1) / y] a f m^{\prime}\right) \cong+[\mathbb{P}(1) / y][s /$ $x]\left(\Psi \wedge a f m^{\prime}\right)$. Since none of $s, \Psi, a f m^{\prime}$ contain an occurrence of p, by clause 1) of the recursive definition of Set*, Set ${ }_{i}$ contains $+[p / y][s / x]\left(\Psi \wedge a f m^{\prime}\right) \cong+[[p / y] s / x]([p / y] \Psi \wedge[p /$ $\left.y] a f m^{\prime}\right) \cong+[r / x](\Phi \wedge a f m)$, which is what we want to show.

In both cases, then, $\operatorname{Set}_{\boldsymbol{i}}$ satisfies condition 9).
10) If $\pm s n t$ is a signed nonatomic elementary sentence of the form -[ux. $\Phi / u] a f m$ for some constant description term $\mathbf{u x} . \Phi$ and atomic formula $a f m$, then Set_{i} satisfies one of the following conditions:
i) Set ${ }_{i}$ contains the signed sentence $+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)$ for some variable v.
ii) Set_{i} contains the signed sentence $+[t / x](\Phi \wedge \neg[x / u] a f m)$ for every $t \in \delta\left(\mathscr{S}\left(\operatorname{Set}_{i}\right)\right)$.

Proof: The proof that Set_{i} satisfies condition 10) is similar to the proof above that $\operatorname{Set}_{\boldsymbol{i}}$ satisfies condition 9).

That Set* is downward closed follows immediately from the facts that, by definition, $\operatorname{Set}^{*}=\bigcup$ Set $_{i}, 0 \leq i<\omega$ and that for all $i, 0 \leq i<\omega$, Set $_{i}$ is downward closed. This completes the proof of lemma 4.2.4.1.

Lemma 4.2.4.2.: Let Set be a downward closed set of signed sentences, and let Set* be as defined above. Let $\pm s n t$ be any signed sentence in Sec^{*}. Then, if $\pm s n t$ is of the form $-(x) F$ for
some formula \boldsymbol{F} containing free occurrence of \boldsymbol{x}, then $\mathscr{S}^{(}\left(\right.$Set $\left.^{*}\right)=$ Par .

Proof of 4.2.4.2.: Let $\pm s n t$ be any signed sentence in $\mathbb{S e t}^{*}$ such that $\pm s n t$ is of the form $-(x) F$ for some formula \boldsymbol{F} containing free occurrence of \boldsymbol{x}. Since by lemma 4.2.4.1. Set* is downward closed, by condition 8) of definition 4.1.1., Set* contains the signed sentence - $[\boldsymbol{t} / \boldsymbol{x}] \boldsymbol{F}$ for every \boldsymbol{t} in $\delta\left(\mathscr{P}\left(\right.\right.$ Set $\left.^{*}\right)$. Since by definition 1.1.1.4., $\mathbb{P}(1) \in \delta\left(\mathscr{P}\left(\mathbb{S e t}^{*}\right)\right.$, it follows that Set * contains the signed sentence $-[\mathbb{P}(1) / x] F$. Then it is easily verified by induction on i in the definition of Set* that Set* contains the signed sentence $-[\mathbb{P}(i) / \boldsymbol{x}] \boldsymbol{F}$ for every $i<\omega$. Since \boldsymbol{F} contains free occurrence of x, it follows that $\mathscr{P}\left(\operatorname{Set}^{*}\right)=$ Par.

Lemma 4.2.4.3.: Let Set be a downward closed set of signed sentences, and let Set* be as defined above. Let $\pm s n t$ be any signed sentence in Set*. Then, if $\pm s n t$ is of the form $\pm[u x . \Phi /$ $u] a f m$ for some constant description term $\boldsymbol{u x . \Phi}$ and atomic formula afm containing free occurence of \boldsymbol{u}, and for no variable \boldsymbol{v} does $\mathbb{S e t}^{*}$ contain the signed sentence $+(\boldsymbol{x})(\boldsymbol{v})((\Phi \wedge[v /$ $x] \Phi) \rightarrow x=v)$, then $\mathscr{\mathscr { D }}\left(\operatorname{Set}^{*}\right)=$ Par.

Proof of 4.2.4.3: Let \pm snt be any signed sentence in Set* of the form $\pm[u x . \Phi / u] a f m$ for some constant description term $u x . \Phi$ and atomic formula afm containing free occurence of u such that for no variable v does $S e t^{*}$ contain the signed sentence $+(x)(v)((\Phi \wedge[\boldsymbol{v} / \boldsymbol{x}] \Phi) \rightarrow \boldsymbol{x}=\boldsymbol{v})$. Since, by lemma 4.2.4.1., Set* is downward closed and i) of condition 9), respectively, 10) of 4.1.1. is not satisfied, by ii) of condition 9), respectively, 10) of 4.1.1., Set* contains the signed sentence $+[t / x](\Phi \wedge[x / u] a f m)$, respectively $+[t / x](\Phi \wedge \neg[x / u] a f m)$, for every t in $\delta\left(\mathscr{O}\left(S e^{*}\right)\right.$. Since, by definition 1.1.1.4., $\mathbb{P}(1) \in \delta(\mathscr{P}(S e t)$, it follows that Set* contains the signed sentence $+[\mathbb{P}(1) / x](\Phi \wedge[x / u] a f m)$, respectively, $+[\mathbb{P}(1) / x](\Phi \wedge \neg[x / u] a f m)$. Then it is easily verified by induction on i in the definition of Set^{*} that Set^{*} contains the signed sentence $+[\mathbb{P}(i) / x](\Phi \wedge[x / u] a f m)$, respectively, $+[\mathbb{P}(i) / x](\Phi \wedge \neg[x / u] a f m)$ for every $i<$ ω. Since afm contains free occurrence of u, it follows that $\mathscr{P}\left(\right.$ Set $\left.^{*}\right)=$ Par.

Now, let Set be a downward closed set of signed sentences, and let Set* be as defined above. Let B1 be the set of atomic sentences \mp asnt such that respectively \pm asnt is in Set*. We extend B1 to a base bse(Set) with domain $\delta\left(\mathscr{P}\left(\operatorname{Set}^{*}\right)\right)$ by the following operations:
a) Let \boldsymbol{t} be any term in $\delta($ Par $)$. Then B2 is obtained from B1 by adding to B1 all signed atomic sentences of the form $+(t=t)$.
b) Let r, s be any terms in $\delta(P a r)$ such that neither of $\pm(r=s)$ is a member of B2. Then B3 is obtained from B2 by adding $-(r=s)$ to B2.
c) Let asnt be any atomic sentence such that neither of \pm asnt is in B3, and let $r, s \in \delta($ Par $)$. Then B4 $=b s e(\mathbb{S e t})$ is obtained from B3 by adding to B3 one and only one of $\pm a s n t$ with the following proviso: if asnt is of the form $[r / x] a f m$ for some atomic formula afm and $+(r=s) \in$ B3, then if $+[r / x] a f m$ is added to B3, then so is $+[s / x] a f m$.

Lemma 4.2.4.4.: Let Set be a downward closed set of signed sentences, and let bse(Set) be as defined above. Then $b s e(S e t)$ is a base with domain $\delta(P a r)$.

Proof of 4.2.4.4.: We show that bse(Set) satisfies all of conditions 1), 2), 3) of definition 1.3.1. :

1) For every atomic sentence asnt, exactly one of $\pm a s n t$ is in $b s e(\mathbb{S e t})$.

Proof: By operation c) above, bse(Set) contains at least one of $\pm a s n t$ for every atomic sentence asnt. To show that bse(Set) contains at most one of $\pm a s n t$ for every atomic sentence asnt, we show that B1 has this property and that operations a), b), c) preserve the property. Since by hypothesis Set^{*} is downward, by condition 1) of definition 4.1.1.1., Set^{*} contains at most one of $\pm a s n t$ for every atomic sentence asnt. It follows by the definition of B1 that B1 contains at most one of $\pm a s n t$ for every atomic sentence asnt. Now we show that operation a) preserves this property: Assume that B2 contains both of \pm asnt for some atomic sentence asnt. In case asnt is of the form $(t=t)$, since operation a) adds to B1 signed sentences with positive signature only, B1 contains the signed sentence $-(t=t)$. Then by the definition of $\mathrm{B} 1, \operatorname{Set}$ * contains the signed sentence $+(t=t)$. But since Set* is downward closed, by condition 2) of 4.1.1., Set* contains no such signed sentence. Contradiction. In case asnt is not of the form ($t=t$) for some $t \in$ $\delta\left(\mathscr{\mathscr { F }}\left(\right.\right.$ Set $\left.\left.^{*}\right)\right)$, since operation a) adds to B1 signed sentences of this form only, B1 contains both of $\pm a s n t$. Now we show that operation b) preserves the desired property: Assume that B3
contains both of \pm asnt for some atomic sentence asnt and that for no atomic sentence asnt does B2 contain both of $\pm a s n t$. Then we know that at least one of $\pm a s n t$ is added to B2 by operation b) and since the only type of signed sentence operation b) adds to B2 are identity statements of negative signature, it follows that asnt is of the form $(r=s)$ for some $r, s \in \delta(P a r)$ and that by operation b) adds the signed sentence $-(r=s)$ to B2. Then, by operation b), B2 does not contain $+(r=s)$, i.e., + asnt $\notin \mathrm{B} 2$. Contradiction. Finally, it is trivial to show that operation c) preserves the desired property.
2) For all terms $t \in \delta(P a r),+(t=t)$ is in $b s e(\mathbb{S e t})$.

Proof: By operation b$), \mathrm{B} 2 \subseteq b s e(\mathbb{S e t})$ satisfies this condition.
3) For all terms $r, s \in \delta($ Par) and atomic formulas afm, if both of $+[r / x] a f m,-[s / x] a f m$ are signed sentences in bse(Set), then so is $-(r=s)$.

Proof: Let r, s be any terms in $\delta($ Par $)$ and let $a f m$ be any atomic formula. We want to show that if both of $+[r / x] a f m,-[s / x] a f m$ are signed sentences in $b s e(S e t)$, then so is the signed sentence $-(r=s)$. So we show the contrapositive, that if $-(r=s) \notin b s e(\mathbb{S e t})$, then it is not the case that both of $+[r / x] a f m,-[s / x] a f m \in b s e(\mathbb{S e t})$. So assume that $(r=s) \notin b s e(\mathbb{S e t})$. We show first that B2 does not contain both of $+[r / x] a f m,-[s / x] a f m$: We may assume that x has free occurrence in afm, since otherwise the claim holds trivially by the fact that bse(Set) satisfies condition 1). Since by condition 1) above bse(Set) contains at least one of $\pm a s n t$ for every atomic sentence asnt, it follows that $+(r=s) \in b s e(S e t)$. Since neither operation b) nor c) adds signed sentences of the form $+(r=s)$ (i.e., positive identity statements) to B2 or B3, it follows that $+(r=s$ $) \in \mathrm{B} 2$. In case r is syntactically identical to s, so that the signed sentence $+(r=s)$ is of the form $+(r=r)$, it is trivially the case that if the signed sentence $+[r / x] a f m$ is in B2, then so is $+[s /$ $x] a f m$. In this case, then, since by condition 1) bse(Set) contains at most one of $\pm a s n t$ for every atomic sentence asnt, it is not the case that both of $+[r / x] a f m,-[s / x] a f m$ are in B2. In case r is not syntactically identical to s, since operation a) adds to B1 signed sentences of the form $+(t=$ t) only, it follows that $+(r=s) \in \mathrm{B} 1$. Since $+(r=s) \in \mathrm{B} 1$, by the definition of B1, $-(r=s) \in$

Set*. Since Set* is downward closed and $-(r=s) \in S e t^{*}$, by condition 4) of 4.1.1., Set* does not contain both of $-[r / x] a f m,+[s / x] a f m$. So, by the definition of B1, B1 does not contain both of $+[r / x] a f m,-[s / x] a f m$. It follows that $B 2$ does not contain both of $+[r / x] a f m$, $-[s / x] a f m$, for suppose that B2 does contain both of $+[r / x] a f m,-[s / x] a f m$. Since B1 does not contain both of $+[r / x] a f m,-[s / x] a f m$ and operation a) adds to B1 signed sentences with positive signature only, it follows that B1 contains $-[s / x] a f m$ and operation a) adds $+[r / x] a f m$ to B1. Since operation a) adds to B1 signed sentences of the form $+(t=t)$ only and x has free occurrence in afm, $+[r / x]$ afm is of the form $+(r=r)$. Then $-[s / x] a f m \in B 1$ is of one of three forms: $-(s=s),-(s=r)$, or $-(r=s)$. Since Set * is downward closed, by condition 2$)$ of 4.1.1., Set* does not contain $+(s=s)$ and hence, by definition, B1 does not contain $-(s=s)$. Since $+(r=s) \in$ B1 and bse(Set) satisfies condition 1), $-(r=s) \notin$ B1. Hence, $-[s / x] a f m \in$ B1 is of the form $-(s=r)$. So B1 contians both of $+(r=s),-(s=r)$, and hence Set* contains both of $-(r=s),+(s=r)$. But since Set^{*} is downward closed, by condition 3) of 4.1.1., Set* does not contain both of $-(r=s),+(s=r)$. Contradiction. So we have shown that B2 does not contain both of $+[r / x] a f m,-[s / x]$ afm: But, trivially, operation c) preserves this property, so $\mathrm{B} 4=b s e($ Set $)$ does not contain both of $+[r / x] a f m,-[s / x] a f m$:

Lemma 4.2.4.5: Let $\mathbb{S e t}$ be a downward closed set of signed sentences, and let $\mathbb{S e t}^{*}$, bse(Set) be as defined above. Then, $\mathbb{S e}^{*} \cap \operatorname{Cl}(b s e(\mathbb{S e} t))=\varnothing$.

Proof of 4.2.4.5.: We show by transfinite induction on μ in definition 1.3.3. that for all $\mu, \operatorname{Set}^{*}$ $\cap b s e(\mathbb{S e t})_{\mu}=\varnothing$. So assume that there is an ordinal μ such that $\mathbb{S e t}^{*} \cap b s e(\mathbb{S e t})_{\mu} \neq \varnothing$. Since $\left\langle b s e(\operatorname{Set})_{\mu}\right\rangle$ is well ordered under \subseteq, there is a least ordinal μ such that $\operatorname{Set}^{*} \cap b s e(\operatorname{Set})_{\mu} \neq \varnothing$. So let $\pm s n t \in \mathbb{S e t}^{*} \cap b s e(\mathbb{S e t})_{\mu}$. There are three main cases:
i) $\mu=0$: Since $\pm s n t \in b s e(S e t)_{0}$, snt is atomic. So, since $\pm s n t \in S e t^{*}$, by the definition of B 1 , respectively $\mp s n t \in \mathrm{~B} 1$. Since $\mathrm{B} 1 \subseteq b s e($ Set $)=b s e(S e t)_{0}$, it follows that both of $\pm s n t \in$ bse(Set). This contradicts lemma 4.2.4.4..
ii) μ is a nonzero limit ordinal: Since $\pm s n t \in b s e(\operatorname{Set})_{\mu}$ and $b s e(\operatorname{Set})_{\mu}=\bigcup b s e(\operatorname{Set})_{\beta}, 0 \leq \beta$
$<\omega$, there is a $\beta<\omega$ such that respectively $\pm s n t \in b s e(\operatorname{Set})_{\beta}$. Contradiction.
iii) μ is a successor ordinal: There are five subcases:

1) \pm snt is respectively of the form $\pm \neg \mathbf{A}$, for some sentence \mathbf{A}. Since $\pm \neg \mathbf{A} \in$ Set * and, by lemma 4.2.4.1., Set^{*} is downward closed, by condition 5) of 4.1.1., Set^{*} contains the signed sentence respectively $\mp \mathbf{A}$. Since $\pm \neg \mathbf{A} \in b \operatorname{se}(\text { Set })_{\mu}$ and $\left\langle b s e(\operatorname{Set})_{\mu}\right\rangle$ is well ordered under \subseteq, there is a least ordinal $\beta \leq \mu$ such that respectively $\pm \neg \mathbf{A} \in \operatorname{bse}(\operatorname{Set})_{\beta}$. So, since $\pm \neg \mathbf{A} \in \operatorname{bse}(\operatorname{Set})_{\beta}$ but for all $\gamma<\beta$, respectively $\pm \neg \mathbf{A} \notin b s e(\mathbb{S e t})_{\gamma}$, it follows that $\pm \neg \mathbf{A} \in \operatorname{Sc}\left(b s e(\operatorname{Set})_{\beta-1}\right)$ by virtue of the semantic rule 1.3 .2 .1 .. Hence $b s e(\mathbb{S e t})_{\beta-1}$ contains the signed sentence respectively $\mp \mathrm{A}$. Hence $\mp \mathbf{A} \in \operatorname{Set}^{*} \cap \operatorname{bse}(\operatorname{Set})_{\beta-1}$. But since $\beta \leq \mu, \beta-1<\mu$. So there is a $\beta<\mu$ such that $\operatorname{Set}^{*} \cap b s e(\operatorname{Set})_{\beta} \neq \varnothing$. Contradiction.
2) \pm snt is respectively of the form $\pm(\mathbf{A} \wedge B)$ for some signed sentences \mathbf{A}, \mathbf{B}. Since $\pm(\mathbf{A} \wedge \mathbf{B})$ \in Set* * and, by lemma 4.2.4.1., Set * is downward closed, by condition 6) of 4.1.1., Set* contains one of $+\mathbf{A},+B$, respectively, both of $-A,-B$. Since $\pm(A \wedge B) \in b s e(\text { Set })_{\mu}$ and $\left\langle b s e(S e t)_{\mu}\right\rangle$ is well ordered under \subseteq, there is a least ordinal $\beta \leq \mu$ such that respectively $\pm(\mathbf{A} \wedge \mathbf{B})$ $\in b s e(\mathbb{S e t})_{\beta}$. So, since $\pm(\mathbf{A} \wedge \mathbf{B}) \in b s e(\operatorname{Set})_{\beta}$ but for all $\gamma<\beta$, respectively $\pm(\mathbf{A} \wedge \mathbf{B}) \notin$ $b s e(\operatorname{Set})_{\gamma}$, it follows that $\pm(\mathbf{A} \wedge B) \in \operatorname{Sc}\left(b s e(\operatorname{Set})_{\beta-1}\right)$ by virtue of the semantic rule 1.3.2.2.. Hence bse $(\operatorname{Set})_{\beta-1}$ contains both of $+\mathbf{A},+\mathbf{B}$, respectively, one of $-\mathbf{A},-\mathbf{B}$. Hence $\operatorname{Set}^{*} \cap$ bse $(\mathbb{S e t})_{\beta-1}$ contains one of $+\mathbf{A},+\mathbf{B}$, respectively, one of $-\mathbf{A},-\mathbf{B}$. But since $\beta \leq \mu, \beta-1<\mu$. So there is a $\beta<\mu$ such that $\operatorname{Set}^{*} \cap b s e\left(\operatorname{Set}_{\beta} \neq \varnothing\right.$. Contradiction.
3) \pm snt is respectively of the form $\pm(\mathbf{A} \rightarrow \mathbf{B})$ for some signed sentences \mathbf{A}, \mathbf{B}. This subcase is similar to subcase 2) above.
4) $\pm s n t$ is respectively of the form $\pm(x) F$ for some formula F. Since $\pm(x) F \in$ bse(Set $)_{\mu}$ and $\left\langle b s e(\text { Set })_{\mu}\right\rangle$ is well ordered under \subseteq, there is a least ordinal $\beta \leq \mu$ such that respectively $\pm(x) F \in$ $b s e(\operatorname{Set})_{\beta}$. So, since $\pm(x) F \in b s e(\operatorname{Set})_{\beta}$ but for all $\gamma<\beta$, respectively $\pm(x) F \notin b s e(\operatorname{Set})_{\gamma}$, it follows that $\pm(x) F \in \operatorname{Sc}\left(b s e(\operatorname{Set})_{\beta-1}\right)$ by virtue of the semantic rule 1.3.2.4.. We treate the two
cases seperately:
a) \pm snt is of the form $+(x) F$. Hence $b s e(\mathbb{S e t})_{\beta-1}$ contains the signed sentence $+[t / x] F$ for every t in $\delta($ Par $)$. Since $+(x) F \in S e t^{*}$ and, by lemma 4.2.4.1., Set* is downward closed, by condition 8) of 4.1.1., Set ${ }^{*}$ contains the signed sentence $+[p / x] F$ for some p in $\mathscr{O}\left(\operatorname{Set}^{*}\right)$. Since $p \in \operatorname{Par}, \boldsymbol{p} \in \delta(P a r)$. So bse $(\mathbb{S e t})_{\beta-1}$ contains the signed sentence $+[\boldsymbol{p} / \boldsymbol{x}] \boldsymbol{F}$. Hence $\operatorname{Set}^{*} \cap b \operatorname{se}(\operatorname{Set})_{\beta-1}$ contains the signed sentence $+[p / x] F$. But since $\beta \leq \mu, \beta-1<\mu$. So there is a $\beta<\mu$ such that $\operatorname{Set}^{*} \cap \operatorname{bse}(\operatorname{Set})_{\beta} \neq \varnothing$. Contradiction.
b) $\pm s n t$ is of the form $-(x) F$. Hence $b s e(\mathbb{S e t})_{\beta-1}$ contains the signed sentence $-[\boldsymbol{t} / \boldsymbol{x}] \boldsymbol{F}$ for some \boldsymbol{t} in $\delta(P a r) . \quad$ Since $-(x) \boldsymbol{F} \in \operatorname{Set}^{*}$ and, by lemma 4.2.4.1., Set \boldsymbol{S}^{*} is downward closed, by condition 8) of 4.1.1., Set* contains the signed sentence $-[t / x] F$ for every t in $\delta\left(\mathscr{S}\left(\mathbb{S e t}^{*}\right)\right)$. In case \boldsymbol{x} does not occur free in $\boldsymbol{F},[\boldsymbol{t} / \boldsymbol{x}] \boldsymbol{F} \cong \boldsymbol{F}$, and so $\operatorname{Set}^{*} \cap b s e(\operatorname{Set})_{\beta-1}$ contains the signed sentence $-\boldsymbol{F}$. In case \boldsymbol{x} occurs free in \boldsymbol{F}, by lemma 4.2.4.2., $\mathscr{P}\left(\operatorname{Set}^{*}\right)=P a r$. Then, in this case, Set* contains the signed sentence -[t/x]F for every t in $\delta(P a r)$. Hence $\mathbb{S e t}^{*} \cap b s e(\operatorname{Set})_{\beta-1}$ contains the signed sentence $-[\boldsymbol{t} / \boldsymbol{x}] F$ for some t in $\delta(P a r)$. But since $\beta \leq \mu, \beta-1<\mu$. So in either case there is a $\beta<\mu$ such that $\operatorname{Set}^{*} \cap b s e(\operatorname{Set})_{\beta} \neq \varnothing$. Contradiction.
5) $\pm s n t$ is a signed elementary sentence of the form $+[u x . \Phi / u] a f m$ for some constant description term $u x . \Phi$ and atomic formula afm: If $+[u x . \Phi / u] a f m$ is atomic, $+[u x . \Phi / u] a f m \in$ $b s e(\mathbb{S e t})_{0}$ and this case reduces to case $\left.\mathbf{i}\right)$. So we may assume that u occurs free in afm. There are two subcases:
a) Set* contains the signed sentence $+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)$ for some variable v. Since $+[u x . \Phi / u] a f m \in b s e(\operatorname{Set})_{\mu}$ and $\left\langle b s e(\operatorname{Set})_{\mu}\right\rangle$ is well ordered under \subseteq, there is a least ordinal $\beta, 0<\beta \leq \mu$, such that $+[u x . \Phi / u] a f m \in b s e(\mathbb{S e t})_{\beta}$. So, since $+[u x . \Phi / u] a f m \in$ $b s e(\operatorname{Set})_{\beta}$ for $\beta>0$, but for all $\gamma<\beta,+[u x . \Phi / u] a f m \notin b s e(\operatorname{Set})_{\gamma}$, it follows from the fact that $+[u x . \Phi / u] a f m$ is a signed elementary sentence (and as such cannot be the output of an instance of any semantic rule other than 1.3.2.5.) that $+[u x . \Phi / u] a f m \in \operatorname{Sc}\left(b s e(\operatorname{Set})_{\beta-1}\right)$ by virtue of an instance \mathbb{I} of the semantic rule for descriptions 1.3 .2 .5 .. Hence $b s e(\operatorname{Set})_{\beta-1}$ contains the
uniqueness presupposition $+(x)(z)((\Phi \wedge[z / x] \Phi) \rightarrow x=z)$ to \mathbb{I} for some variable z. Now it is clear that by semantic rule 1.3.2.4., if $b s e(\operatorname{Set})_{\beta-1}$ contains the signed sentence $+(x)(z)((\Phi \wedge[z /$ $x] \Phi) \rightarrow x=z)$ for some variable z, then $b s e(\operatorname{Set})_{\beta-1}$ contains the signed sentence $+(x)(z)((\Phi \wedge$ $[z / x] \Phi) \rightarrow x=z)$ for all variables z. So Set $^{*} \cap b s e(\operatorname{Set})_{\beta-1}$ contains the signed sentence $+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)$ for some variable v. But since $\beta \leq \mu, \beta-1<\mu$. So there is a $\beta<\mu$ such that $\mathbb{S e} t^{*} \cap b s e(\mathbb{S e t})_{\beta} \neq \varnothing$. Contradiction.
b) For no variable v does $S_{e t} t^{*}$ contain the signed sentence $+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow \boldsymbol{x}=\boldsymbol{v})$. Since $+[u x . \Phi / u] a f m \in \operatorname{Set}^{*}$ and, by lemma 4.2.4.1., Set* is downward closed, by condition 9) of 4.1.1., Set * contains the signed sentence $+[t / x](\Phi \wedge[x / u] a f m) \cong+([t / x] \Phi \wedge[t /$ $u] a f m)$ for every $t \in \delta\left(\mathscr{P}\left(S e t^{*}\right)\right)$. Then by condition 6) of 4.1.1., for every $t \in$ $\delta\left(\mathscr{P}\left(\right.\right.$ Set $\left.\left.^{*}\right)\right)$, Set * contains one of the signed sentences $+[t / x] \Phi,+[t / u] a f m . \quad$ Since $+[u x . \Phi /$ $u] a f m \in \operatorname{Set}^{*}$ and \boldsymbol{u} occurs free in $\boldsymbol{a f m}$ and for no variable v does $\mathbb{S e t}{ }^{*}$ contain the signed sentence $+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)$, it follows by lemma 4.2.4.3. that $\delta\left(\mathscr{\mathscr { S }}\left(\operatorname{Set}^{*}\right)\right)=$ Par. So, for every $t \in \delta($ Par $)$, Ser* contains one of the signed sentences $+[t / x] \Phi,+[t / u] a f m$. Since $+[u x . \Phi / u] a f m \in b s e(\operatorname{Set})_{\mu}$ and $\left\langle b s e(\operatorname{Set})_{\mu}\right\rangle$ is well ordered under \subseteq, there is a least ordinal $\beta, 0<\beta \leq \mu$, such that $+[u x . \Phi / u] a f m \in \operatorname{bse}(\operatorname{Set})_{\beta}$. So, since $+[u x . \Phi / u] a f m \in$ $b s e(\operatorname{Set})_{\beta}$ but for all $\gamma<\beta,+[u x . \Phi / u] a f m \notin b s e(S e t)_{\gamma}$, it follows from the fact that $+[u x . \Phi /$ $u] a f m$ is a signed elementary sentence (and as such cannot be the output of an instance of any semantic rule other than 1.3 .2 .5 .) that $+[u x . \Phi / u] a f m \in \operatorname{Sc}\left(b s e(\operatorname{Set})_{\beta-1}\right)$ by virtue of an instance \mathbb{I} of the semantic rule for descriptions 1.3 .2 .5 .. Hence $b s e(\mathbb{S e t})_{\beta-1}$ contains the existence presupposition $+[s / x] \Phi$ as well as the major statement $+[s / u] a f m$ to \mathbb{I} for some constant, possibly nonbasic, term \boldsymbol{s}. In case \boldsymbol{s} is not in $\delta(P a r)$, by lemma 1.3.10., there is a descriptum $\boldsymbol{t}_{\boldsymbol{s}}$ for s in bse(Set) such that both of $+\left[t_{s} / x\right] \Phi,+\left[t_{s} / u\right]_{a f m}$ are in bse $(\text { Set })_{\beta-1}$. So bse(Set) $)_{\beta-1}$ contains both of $+[s / x] \Phi,+[s / u] a f m$ for somes $\in \delta($ Par $)$. So, since for every $t \in \delta(P a r)$, Set* contains one of the signed sentences $+[t / x] \Phi,+[t / u] a f m$ and there is an $s \in \delta($ Par $)$ such that bse(Set) $)_{\beta-1}$ contains both of $+[s / x] \Phi,+[s / u] a f m$, it follows that there is an $s \in \delta($ Par $)$ such that $\operatorname{Set}^{*} \cap b s e(\operatorname{Set})_{\beta-1}$ contains one of $+[s / x] \Phi,+[s / u] a f m . \quad$ But since $\beta \leq \mu, \beta-1<$
μ. So there is a $\beta<\mu$ such that $\operatorname{Set}^{*} \cap b s e(\operatorname{Set})_{\beta} \neq \varnothing$. Contradiction.

6) \pm snt is a signed elementary sentence of the form $-[u x . \Phi / u] a f m$ for some constant description term $u x . \Phi$ and atomic formula afm: If -[ux. $\Phi / u] a f m$ is atomic, $-[u x . \Phi / u] a f m \in$ $b s e(\mathbb{S e t})_{0}$ and this case reduces to case i). So we may assume that \boldsymbol{u} occurs free in $\boldsymbol{a f m}$. There are two subcases:
a) Set* contains the signed sentence $+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)$ for some variable v. Since $-[u x . \Phi / u] a f m \in b s e(\mathbb{S e t})_{\mu}$ and $\left\langle b s e(\mathbb{S e t})_{\mu}\right\rangle$ is well ordered under \subseteq, there is a least ordinal $\beta, 0<\beta \leq \mu$, such that $-[u x . \Phi / u] a f m \in b s e(\text { Set })_{\beta}$. So, since $-[u x . \Phi / u] a f m \in$ $b s e(\operatorname{Set})_{\beta}$ for $\beta>0$, but for all $\gamma<\beta,-[u x . \Phi / u] a f m \notin b s e(\mathbb{S e t})_{\gamma}$, it follows from the fact that $-[u x . \Phi / u] a f m$ is a signed elementary sentence that $-[u x . \Phi / u] a f m \in \mathbb{S c}\left(b s e(\mathbb{S e t})_{\beta-1}\right)$ by virtue of an instance \mathbb{I} of the semantic rule for descriptions 1.3.2.5.. Hence $b s e(\mathbb{S e t})_{\beta-1}$ contains the uniqueness presupposition $+(x)(z)((\Phi \wedge[z / x] \Phi) \rightarrow x=z)$ to \mathbb{I} for some variable z. Now it is clear that by semantic rule 1.3.2.4., if $b s e(\mathbb{S e t})_{\beta-1}$ contains the signed sentence $+(x)(z)((\Phi \wedge[z /$ $x] \Phi) \rightarrow x=z)$ for some variable z, then $b \operatorname{se}(\operatorname{Set})_{\beta-1}$ contains the signed sentence $+(x)(z)((\Phi \wedge$ $[z \mid x] \Phi) \rightarrow x=z)$ for all variables z. So Set ${ }^{*} \cap b s e(\operatorname{Set})_{\beta-1}$ contains the signed sentence $+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)$ for some variable v. But since $\beta \leq \mu, \beta-1<\mu$. So there is a $\beta<\mu$ such that $\operatorname{Set}^{*} \cap b s e(\operatorname{Set})_{\beta} \neq \varnothing . \quad$ Contradiction.
b) For no variable \boldsymbol{v} does $S e t^{*}$ contain the signed sentence $+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow \boldsymbol{x}=\boldsymbol{v})$. Since $-[u x . \Phi / u] a f m \in$ Set * and, by lemma 4.2.4.1., Set* is downward closed, by condition 9) of 4.1.1., Set* contains the signed sentence $+[t / x](\Phi \wedge \neg[x / u] a f m) \cong+([t / x] \Phi \wedge \neg[t /$ $\boldsymbol{u}] a \mathrm{fm})$ for every $t \in \delta\left(\mathscr{O}\left(\operatorname{Set}^{*}\right)\right)$. Then by condition 6) of 4.1.1., for every $t \in$ $\delta\left(\mathscr{P}\left(\operatorname{Set}^{*}\right)\right)$, Set * contains one of the signed sentences $+[t / x] \Phi,+\neg[t / u] a f m$. Since $+[u x . \Phi / u] a f m \in \operatorname{Set} t^{*}$ and u occurs free in afm and for no variable v does Set* contain the signed sentence $+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)$, it follows by lemma 4.2.4.3. that $\delta\left(\mathscr{P}\left(\right.\right.$ Set $\left.\left.^{*}\right)\right)=$ Par. So, for every $t \in \delta($ Par $)$, Set* contains one of the signed sentences $+[t /$ $x] \Phi,+\neg[t / u] a f m$. If Set * contains the signed sentence $+\square[t / u] a f m$, then by condition 5) of
4.1.1., Set* contains the signed sentence -[t/u]afm. So, for every $t \in \delta($ Par $)$, Set* contains one of the signed sentences $+[t / x] \Phi,-[t / u] a f m$. Since $+[u x . \Phi / u] a f m \in b s e(S e t)_{\mu}$ and $\left\langle b s e(\operatorname{Set})_{\mu}\right\rangle$ is well ordered under \subseteq, there is a least ordinal $\beta, 0<\beta \leq \mu$, such that $-[u x . \Phi / u] a f m$ $\in b s e(\operatorname{Set})_{\beta}$. So, since $+[u x . \Phi / u] a f m \in b s e(\operatorname{Set})_{\beta}$ for $\beta>0$, but for all $\gamma<\beta,-[u x . \Phi /$ $u] a f m \notin b s e(\operatorname{Set})_{\gamma}$, it follows from the fact that $-[u x . \Phi / u] a f m$ is a signed elementary sentence that $-[1 x . \Phi / u] a f m \in \operatorname{Sc}\left(b s e(\operatorname{Set})_{\beta-1}\right)$ by virtue of an instance \mathbb{I} of the semantic rule for descriptions 1.3.2.5.. Hence $b s e(\operatorname{Set})_{\beta-1}$ contains the existence presupposition $+[s / x] \Phi$ as well as the major statement $-[s / u] a f m$ to \mathbb{I} for some constant, possibly nonbasic, term s. In case s is not in $\delta($ Par $)$, by lemma 1.3.10., there is a descriptum $\boldsymbol{t}_{\boldsymbol{s}}$ for s in bse(Set) such that both of $+\left[t_{\boldsymbol{s}} /\right.$ $x] \Phi,-\left[t_{s} / u\right] a f m$ are in $b s e(\operatorname{Set})_{\beta-1}$. So bse $(\text { Set })_{\beta-1}$ contains both of $+[s / x] \Phi,-[s / u] a f m$ for somes $\in \delta($ Par $)$. So, since for every $t \in \delta($ Par $)$, Set ${ }^{*}$ contains one of the signed sentences $+[t / x] \Phi,-[t / u] a f m$ and there is an $s \in \delta(P a r)$ such that bse $(\mathbb{S e t})_{\beta-1}$ contains both of $+[s /$ $x] \Phi,-[s / u] a f m$, it follows that there is an $s \in \delta($ Par $)$ such that Set $^{*} \cap$ bse $(\mathbb{S e t})_{\beta-1}$ contains one of $+[s / x] \Phi,-[s / u] a f m$. But since $\beta \leq \mu, \beta-1<\mu$. So there is a $\beta<\mu$ such that $\operatorname{Set}^{*} \cap$ $b s e(\text { Set })_{\beta} \neq \varnothing$. Contradiction.

In all cases, then, the assumption that there is an ordinal μ such that $\operatorname{Set}^{*} \cap b s e(\operatorname{Set})_{\mu} \neq \varnothing$ leads to a contradiction. Hence, for all $\mu, \operatorname{Set}^{*} \cap b s e(\operatorname{Set})_{\mu}=\varnothing$. Then it follows by the fact that, by definition, $C l(b s e(\operatorname{Set}))=\bigcup b s e(\operatorname{Set})_{\mu}, 0 \leq \mu<\epsilon_{o}$, that $\operatorname{Set}^{*} \cap \operatorname{Cl}(b \operatorname{se}(\operatorname{Set}))=\varnothing$.

Lemma 4.2.4., the claim that every downward closed set Set of signed sentences determines a base $b s e(\operatorname{Set})$ such that $\operatorname{Set} \cap C l(b s e(\operatorname{Set}))=\varnothing$, now follows from lemmata 4.2.4.1., 4.2.4.4., 4.2.4.5. established above: Let Set be any downward closed set of signed sentences. Then by 4.2.4.1., Set has a downward closed extension Set*. By lemma 4.2.4.4., there exists a base $b s e(\operatorname{Set})$, which, by lemma 4.2.4.5., is such that $\operatorname{Set}^{*} \cap \operatorname{Cl}(b s e(\operatorname{Set}))=\varnothing$. Since $\operatorname{Set} \subseteq$ $S e t^{*}$, it follows that $\operatorname{Set} \cap \operatorname{Cl}(b s e(\operatorname{Set}))=\varnothing$.

Theorem 4.2.2., the claim that every valid sequent is strictly 2 -derivable, now follows from lemmata 4.2.3. and 4.2.4. Hence, lemma 4.2.1. and the completeness of Pld has been established.

Section 5: Corollaries to Soundness and Completeness.

Abstract

In this section we state and prove some normal form results concerning Pld derivations which fall out of theorems 2.1. and 4.2.2. and then give a characterization of the set of sentences of Pld for which excluded middle holds.

Corallary 5.2 (Normal Form Lemma): Every derivable sequent is strictly derivable.

Proof of 5.2: Let Seq be any derivable sequent. Then, by soundness theorem 2.1., Seq is valid. Then by lemma 4.2.2., Seq is strictly 2 -derivable. So by lemma 3.5., Seq is strictly derivable.

Corollary 5.3: Every derivable sequent can be derived as endsequent of a derivation tree containing no application of the cut rule 1.2.2.8..

Proof of 5.3: By corollary 5.2. and definition of strictly derivable.

Corollary 5.4: Every derivable sequent can be derived as endsequent of a derivation tree all of whose applications of the description rule 1.2.2.6. have elementary output sentences.

Proof of 5.4: By corollary 5.2. and definition of strictly derivable.

Notice that corollary 5.3. allows us to give a proof of the syntactic consistency of Pld that is an alternative to the proof given in section 2. We restate and reprove the syntactic consistency of Pld:

Corollary (Syntactic Consistency): For no sentence snt are both of $\{+s n t\},\{-s n t\}$ derivable sequents.

Proof: Assume there is a sentence snt such that both of $\{+s n t\},\{-s n t\}$ are derivable. Since the null sequent can be derived by appending an application of the cut rule 1.2.2.8. to the derivations
of $\{+s n t\},\{-s n t\}$, it follows that the null sequent is derivable. Then by corollary 5.3 ., the null sequent is derivable as endsequent of a derivation tree containing no applications of 1.2.2.8. But since all Pld axioms are non-null sequents and every Pld deduction rule \mathbb{R} except for 1.2.2.8. is such that if all of an applications of \mathbb{R} 's premises are non-null then that applications conclusion is non-null, it follows by a simple induction on the depth of derivation trees that the null sequent is not derivable without application of 1.2.2.8.. Contradiction

We say that excluded middle holds for a sentence snt of Pld iff for all bases bse, one of \pm snt belongs to $\mathbb{C l}(b s e)$. Then, it follows from soundness and completeness by definition 1.2.5. that the set of sentences of Pld for which excluded middle holds is precisely the set Gred of grounded sentences. Since $\mathbb{G r d}$ is r.e., we have an r.e. characterization of set of sentences of Pld for which excluded middle holds.

Section 6: Some Remarks on the Frege-Strawson Doctrine.

The "Frege-Strawson doctrine" (F-S D) has thus far been characterized as the claim that a sentence of a natural language that is grammatically of subject-predicate form and that contains a vacuous singular subject term cannot have a (classical) truth value associated with it. We have suggested that Pld formalizes the semantic intuition behind F-S D as applied to improper definite description in terms of a theory of truth which allows truth value gaps. In this section we evaluate the extent to which Pld can be said to be a formalization of the F-S D and then consider the problem of integrating F-S D with a general theory of truth for compound sentences of natural language. Indeed, we find that Pld suggests a natural such extension of the F-S D.

A definite description of English can be informally characterized as a noun phrase of the form $\Gamma_{\text {the }} \Phi^{7}$ where ' Φ ' is an English noun phrase, qualified or unqualified, in the singular. A proper definite description of English can be informally characterized as a definite description of the form $\left\lceil_{\text {the }} \Phi^{\top}\right.$ such that there is exactly one Φ. The formal analog to an English definite description within Pld syntax is, of course, the description term. Let us say that a Pld constant description term of the form $\boldsymbol{x} . \Phi$ is proper relative to a base bse iff for some constant term \boldsymbol{t} and variable $v, \mathbb{C l}(b s e)$ contains both of the signed sentences $+[t / x] \Phi,+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x$ $=v$). We say that $u x . \Phi$ is improper relative to a base bse iff $u x . \Phi$ is not proper relative to a bse.

When we consider that the formal analog within predicate logic to a singular subject-predicate sentence of natural language is the atomic (or, in the terminology of Pld, the 'elementary') symbolic sentence, that is, a sentence consisting of an n-ary predicate letter followed by n-many singular terms, it is easy to see that Pld offers a precise formalization of the F-S D as applied to definite descriptions. For, if \mathbf{A} is an elementary sentence, then \mathbf{A} lacks a truth value relative to a model bse if and only if A contains a description terms that is improper relative to bse, as we now show:

Theorem 6: Let bse be any base, A any elementary sentence. Then, one of $\pm \mathbf{A}$ belongs to $\mathbb{C l}($ bse $)$
iff every constant description term $u x . \Phi$ occurring in \mathbf{A} is proper relative to $b s e$.

Proof of 6.:

\Rightarrow Assume that $\pm \mathbf{A}$ belongs to $\mathbb{C l}(b s e)$. Let $u x . \Phi$ be any constant description term occurring in A; we may assume that there is one, since otherwise it is trivially the case that every constant description term $\mathbf{u x} . \Phi$ occurring in \mathbf{A} is proper relative to bse. So \mathbf{A} is of the form $[u x . \Phi / u] F$ for some elementary formula F containing free occurrence of a variable u. Then, since $\pm[u x . \Phi /$ $u] F$ belongs to $\mathbb{C l}(b s e)$ and $\mathbb{C l}(b s e)=\cup_{b s e}, 0 \leq \mu<\epsilon_{0}$, there is a $\mu<\epsilon_{0}$ such that $\pm[u x . \Phi$ $\langle u] F$ belongs to $b s e_{\mu}$. Let respectively $\Phi^{\prime}, F^{\prime}$ be the result of uniformily replacing every occurrence in respectively Φ, F of any constant description term u. $\Psi \neq v . \Phi$ occurring in [ux. Φ $/ \boldsymbol{u}] \boldsymbol{F}$ by a descriptum $t_{\mathrm{L} z .} \Psi \in \delta(P a r)$ for $\mathrm{tz} . \Psi$ in bse whose existence is guaranteed by lemma 1.3.10.. By lemma 1.3.10., respectively $\pm\left[u x . \Phi^{\prime} / u\right] F^{\prime}$ belongs to $b s e_{\mu}$. Since bse $e_{\mu}=$ $\bigcup_{b s e_{\beta},}, 0 \leq \beta<\mu$, and $\left\langle b s e_{\mu}\right\rangle$ is well ordered under \subseteq, there is a least $\beta<\mu$ such that $\pm\left[u x . \Phi^{\prime} /\right.$ $u] F^{\prime}$ belongs to $b s e_{\beta}$. Since $\left[u x . \Phi^{\prime} / u\right] F^{\prime}$ is not atomic, $\beta \neq 0$. Clearly, then, β is a successor ordinal. So $b s e_{\beta}=b s e_{\beta-1} \cup \mathbb{S c}\left(b s e_{\beta-1}\right)$. Then $\pm\left[u x . \Phi^{\prime} / u\right] F^{\prime}$ belongs to $\mathbb{S c}\left(b s e_{\beta}\right)$ by virtue an instance \mathbb{I} of some semantic rule. Since $\left[u x . \Phi^{\prime} / u\right] F^{\prime}$ is an elementary sentence, \mathbb{I} is an instance of the semantic rule for descriptions 1.3.2.5. Since $\boldsymbol{x} . \Phi$ is the only constant description term occurring in $\left[u x . \Phi^{\prime} / u\right] F^{\prime}$, there are presuppositions to \mathbb{I} of the form $+[t / x] \Phi,+(x)(v)((\Phi \wedge$ $[v / x] \Phi) \rightarrow \boldsymbol{x}=\boldsymbol{v}$) for some constant term t and variable v. Hence, there are constant term t and variable v such that $b s e_{\beta-1} \subseteq \mathbb{C l}(b s e)$ contains both of the signed sentences $+[t / x] \Phi,+(x)(v)((\Phi$ $\wedge[v / x] \Phi) \rightarrow x=v) . \quad$ So $\boldsymbol{x} . \Phi$ is proper relative to bse.
\Leftarrow Assume that every constant description term $u x . \Phi$ occurring in \mathbf{A} is proper relative to $b s e$. We show that one of $\pm \mathbf{A}$ belongs to $C l(b s e)$ by induction on the number \#(A) of description terms occurring in \mathbf{A}.

Base step: $\#(\mathbf{A})=0$. Since \mathbf{A} contains no description terms, \mathbf{A} is a sentence of classical logic. Now it is easy to show that for all sentences \mathbf{B}, if \mathbf{B} contains no occurrence of any description term, then the sequent $\{-\mathbf{B},+\mathbf{B}\}$ is derivable, by induction on the syntactic complexity (defined in the usual way for sentences of classical logic) of \mathbf{B}; indeed this is precisely the proof of the
redundancy of Gentzen's original set of axioms containing the sequent $S \rightarrow S$ for every sentence \mathbf{S} of first order classical logic. So, by semantic completeness, $\{-\mathbf{A},+\mathbf{A}\} \cap \mathbb{C l}(b s e) \neq 0$. Hence, one of $\pm \mathbf{A}$ belongs to $\mathbb{C l}(b s e)$.

Induction step: $\#(\mathbf{A})>0$. Assume that one of $\pm \mathbf{B}$ belongs to $\mathbb{C l}(b s e)$ for all sentences \mathbf{B} of Pld such that $\#(\mathbf{B})<\#(\mathbf{A})$. Let u. Φ be any constant description term occurring in \mathbf{A}; since $\#(\mathbf{A})>0$ we know there is one. So A is of the form $[u x . \Phi / u] F$ for some elementary formula F containing free occurrence of a variable u. Since one of $\pm[u x . \Phi / u] F$ belongs to $\mathbb{C l}(b s e)$ and $C l(b s e)=\bigcup_{b s e}, 0 \leq \mu<\epsilon_{0}$, there is a $\mu<\epsilon_{0}$ such that $\pm[u x . \Phi / u] F$ belongs to bse μ_{μ}. Then by lemma 1.3.10., there is a descriptum $t_{1 x . \Phi} \in \delta(P a r)$ for $1 x . \Phi$ in bse such that respectively $\pm\left[t_{1 x .} \Phi^{/ u}\right] F$ belongs to $b s e_{\mu}$. Clearly, $\#\left(\left[t_{u x .} \Phi^{/ u}\right] F\right)<\#(\mathbf{A})$. So by the hypothesis of induction, one of, not respectively, $\pm\left[t_{u x .} \Phi^{/ \dot{u}}\right] F$ belongs to $C l(b s e)$. By assumption $\boldsymbol{x} . \Phi$ is proper relative to $b s e$, so there are constant term t and variable v such that $\mathbb{C l}(b s e)$ contains both of the signed sentences $+[t / x] \Phi,+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)$. Then $\mathbb{C l}(b s e)$ contains both of $+[t / x] \Phi,+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)$ and one of $\pm\left[t x . \Phi^{/ u] F}\right.$. Then by lemma 1.3.11., $\mathbb{C l}(b s e)$ contains one of $\pm[u x . \Phi / u] F$. So the claim holds.

As explained in the introductory section 0 , the $\mathrm{F}-\mathrm{S} \mathrm{D}$, as a doctrine concerning the primitive linguistic operations of reference and predication, is prima facie plausible to one who holds what we have called the "naive" view of the semantics of grammatically singular subject-predicate sentences. However, when we consider the difficulty of formulating a compositional semantic theory for sentences of natural language that satisfies the F-S D, that doctrine loses much of its initial attractiveness. For, if the semantic value of grammatically compound sentences is determined by the semantic value of its syntactic constituents, in particular, if the truth value of a compound sentence is a function of those of its subsentences, then every sentence is such that its truth evaluation depends ultimately on the truth evaluation of subject-predicate sentences. So, on any compositional semantic theory, the F-S D has ramifications for the evaluation of all types of sentences of natural language.

In particular, a compositional semantic theory for natural language that satisfies the F-S D
must decide how the "undefinedness" of a subsentence of a given compound sentence effects the truth value the given sentence. Now, the simple-minded solution of straight forwardly generalizing the F-S D to all sentences of natural language, so that (on this generalized view) any sentence that contains a vacuous sigular term must lack a truth value, has obvious counter-intuitive consequences. For on this generalization of the F-S D, the English sentence 'Either grass is green or the present king of France is bald.' lacks a truth value. But clearly this consequence (of the generalized F-S D) threatens the monotonicity of many intuitively monotonic natural language inferences, since from the truth of a sentence S we may infer the truth of the sentence ${ }^{〔} \mathbf{S}$ or \mathbf{P}^{\top}, where \mathbf{P} is any English sentence.

More poignant examples of counter-intuitive consequences of the generalized F-S D can be found: Let S be any English sentence containing no occurrence of a vacuous singular term. Then, the English sentence ${ }^{\text {E }}$ Either S or not-S or the present king of France is bald. \rceil, though seemingly a logical truth, lacks a truth value on this view. So does the the following English sentence which may be considered axiomatic of the Russellian Theory of Descriptions: 'If there is exactly one present King of France and he is bald, then the present king of France is bald'.

So there is a class of intuitively true (false) English sentences containing improper definite descriptions that present (at least prima facie) counterexamples to the acceptablity of the simple-minded generalization of the F-S D. Now, it is reasonable to require of any acceptable (compositional) semantic theory for natural language that satisfies the F-S D that it respect our intuitions concerning the truth value of the sentences in this "target" class. And certainly this requirement is all the more pressing on semantic theories for artificial logical languages designed to formalize the intuitive logical relationships holding between sentences of natural language. Then it is a virtue of Pld that it does respect the truth value of (the symbolic sentences corresponding to) the sentence in this class, as we now show.

We may characterize the target class of intuitively true (or false) English sentences containing improper definite descriptions whose truth value we are interested in preserving as being the union of the following three classes: 1) the class of English sentences whose truth (falsehood) seems to be guaranteed by the truth (falsehood) of their contingently true (false) subsentences, 2) the class of

English sentences S whose truth (falsehood) seems to be guaranteed by the (logical) truth (falsehood) of subsentences of S that correspond to theorems of the first order identity calculus without descriptions, and 3) the class of English sentences that correspond to theorems of a Russellian first order description calculus (which are not theorems of the conservative extension of first order identity calculus obtained by adding description terms to the elementary syntax of that theory).

The English sentence 'Either grass is green or the present king of France is bald.' is a representative of the class of English sentences containing improper definite descriptions whose truth seems to be guaranteed by the truth of their contingently true subsentences. Now, the formal analog to the notion of the contingent truth of an English sentence is the defined notion of "truth (validity)-relative-to a-base" of a symbolic sentence of Pld. Clearly, the unrestricted monotonicity of the semantic rules 1.3.2.2., 1.3.2.3 governing the binary sentential connective of Pld insures that if \mathbf{A} is true relative to a given base bse, then so is (the unabreviated form of) the sentence $\mathbf{A} \vee$ B where \mathbf{B} is any symbolic sentence, in particular, one that contains a constant description term that is improper relative to bse.

The English sentence, [Either S or not-S or the present king of France is bald.], where \mathbf{S} is any English sentence containing no occurrence of a vacuous singular term, is a representative the class of logically true English sentences containing improper definite descriptions whose truth seems to be guaranteed by the truth of their logically true subsentences. The formal analog within Pld of the intuitive notion of the logical truth of an English sentence is, of course, the defined notion of validity, or truth relative to all bases, of a symbolic sentence. Again, relative to a base bse, the formal analog within Pld of the notion of a vacuous singular term of English is the defined notion of a description term that is improper relative to bse. Now, it is easily shown (by an argument similar to the proof of lemma 6 from right to left) that, for any base $b s e$, if \mathbf{A} is a sentence of Pld in which the only occurring description terms are proper relative to bse, then (the unabreviated form of) the sentence $\mathbf{A} \vee \neg \mathbf{A}$ is true relative to bse. Hence, it follows that the sentence $(\mathbf{A} \vee \neg \mathbf{A}) \vee \mathbf{B}$ is true relative to bse for every sentence \mathbf{B}. So we can say that if \mathbf{A} is a sentence of Pld in which the only occurring description terms are proper relative to all bases bse,
then $(\mathbf{A} \vee \neg \mathbf{A}) \vee \mathbf{B}$ is a logical truth of Pld, even if \mathbf{B} contains an description term that is improper to some or all bases.

At this point one might object that since we have argued for the acceptability of Pld as a formal semantic theory satisfying the F-S D on the grounds that Pld insures the truth (falsehood) of symbolic sentences that correspond to intuitively true English sentences, we should bite the bullet and admit that the failure of excluded middle in Pld is a failure of Pld, period, since most people accept ${ }{ }^{\mathbf{S}}$ or not-S \boldsymbol{S}, for any sentence \mathbf{S}, as a logical truth of English. However, one would here be objecting to the F-S D itself, rather than our particular formalization of it, since it is the basic intuition behind the F-S D that English sentences of the form ${ }^{\lceil }$S or not-S ${ }^{\dagger}$ are not, in general, logically true.

The English sentence, 'If there is exactly one present king of France and he is bald, then the present king of France is bald', is a representative the class of intuitively true English sentences that correspond to theorems of a Russellian first order description calculus that are not theorems of the first order identity calculus (nor may be obtained from such theorems by the uniform weak substitution of description terms for terms of the first order identity calculus). Now, it is not the case that all symbolic sentences of Pld of the form $\left(\exists_{x}\right)\left(\forall_{y}\right)((\Phi \leftrightarrow y=x) \wedge F) \rightarrow[1 x . \Phi / x] F$ are valid for arbitirary formulas Φ, F, since sequents of the form $\{-[t / x] \Phi,-(x)(v)((\Phi \wedge[v /$ $x] \Phi) \rightarrow \boldsymbol{x}=\boldsymbol{v}),-[\boldsymbol{t} / \boldsymbol{u}] F,+[u x . \Phi / u] F\}$ are not in general valid for arbitirary formulas Φ, F. However, if we restrict Φ and F so that all of the signed sentences $[t / x] \Phi,(x)(v)((\Phi \wedge[v /$ $\boldsymbol{x}] \Phi) \rightarrow \boldsymbol{x}=\boldsymbol{v}),[\boldsymbol{t} / \boldsymbol{u}] \boldsymbol{F}$ are grounded, equivalently, obey excluded middle, then it is trivially the case that, by the semantic rule for descriptions 1.3.2.5., $\{-[t / x] \Phi,-(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x$ $=v),-[t / u] F,+[u x . \Phi / u] F\}$ is a valid sequent. So, for every base bse, if neither of Φ, F contain description terms that are improper relative to bse, then the sequent $\{-[t / x] \Phi$, $-(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v),-[t / u] F,+[1 x . \Phi / u] F\}$ is valid relative to bse. In particular, if neither of Φ, F contain any description terms, the sequent in question is valid. So, if we construe the English predicates ' x is a present King of France', ' x is bald' as primitive, that is, corresponding to predicate letters of Pld, then the symbolic sentence of Pld corresponding to the English 'If there is exactly one present king of France and he is bald, then the present king of

France is bald' is valid.
We should note that sequents of the form $\{-[t / x] \Phi,-(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v),-[t$ $/ u] F,+[u x . \Phi / u] F\}$, where all of the signed sentences $[t / x] \Phi,(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=$ $v),[t / u] F$ are grounded but neither of $[t / x] \Phi,(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)$ are valid/derivable, are examples of sequents that are valid relative to the semantics of Pld, but that are not derivable within a Pld version of logical syntax suggested for descriptions in Gilmore [3]. This is because the rule for descriptions given in [3] require the "presuppositions" to the application of the rule to be themselves derivable, rather than merely members of a derivable sequent. A simplified version of the rule given in [3], modified in the manner of Pld, is as follows:

$$
\{+[t / x] \Phi\} \quad\{+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)\} \quad \operatorname{Seq} \cup\{ \pm[t / u] F\}
$$

$S e q \cup\{ \pm[u x . \Phi / u] F\}$
It is clear that a logical syntax $\mathbb{L S}$ treating description terms with this rule only allows a sequent of the form $\operatorname{Seq} \cup\{ \pm[u x . \Phi / u] F\}$ to be derivable only if either there are term t and variable v such that both of the signed sentences $+[t / x] \Phi,+(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v)$ are derivable or Seq is itself derivable (in which case $\pm[u x . \Phi / u] F$ is obtained in the derivation of $\mathbb{S e q} \cup$ $\{ \pm[u x . \Phi / u] F\}$ by thinning $)$. Now, consider a sequent $\operatorname{Seq} \cong\{-[t / x] \Phi,-(x)(v)((\Phi \wedge[v /$ $x] \Phi) \rightarrow x=v),-[t / u] F,+[u x . \Phi / u] F\}$, where all of the signed sentences $[t / x] \Phi,(x)(v)((\Phi$ $\wedge[v / x] \Phi) \rightarrow x=v),[t / u] F$ are grounded but neither of $[t / x] \Phi,(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x$ $=v)$ are derivable, which is such that $\{-[t / x] \Phi,-(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v),-[t / u] F\}$ is not a derivable sequent. Clearly such a sequent exists. Since neither of $[t / x] \Phi,(x)(v)((\Phi \wedge[v /$ $x] \Phi) \rightarrow x=v)$ are derivable sentences and $\{-[t / x] \Phi,-(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v),-[t /$ $u] F\}$ is not a derivable sequent, it follows that Seq is not derivable in $\mathbb{L S}$. But, since all of the signed sentences $[t / x] \Phi,(x)(v)((\Phi \wedge[v / x] \Phi) \rightarrow x=v),[t / u] F$ are grounded, $S e q$ is valid in Pld.

Bibliography

Carnap, R.
[1] Meaning and Necessity, Chicago, 1947

Frege, G.
[1] Über Sinn und Bedeutung, Zeitschrift fur Philosophie und Kritik, vol. 100 (1892), pp. 25-50. English translation in Translations from the Philisophical Writings of Gottlob Frege, edited by Geach and Black, Oxford, 1960.
[2] Grundegesetze der Arithmetik, vol. 1, Jena, 1893. English translation in The Basic Laws of Arithmetic, translated and edited with an introduction by M.Furth, Berkeley and Los Angeles, 1964.

Gilmore, P.C.
[1] Combining Unrestricted Abstraction with Universal Quantification, To H. B. Curry: Essays on Combinatorial Logic, Lambda Calculus and Formalism, J.P. Seldin and J.R. Hendley (eds.), Academic Press, i980, pp. 99-124.
[2] Natural Deduction Based Set Theories: A New Resolution of the Old Paradoxes, Journal of Symbolic Logic, June 1986.

Hilbert, D., and Bernays, P.
[1] Grundlagen der Mathematik, vol. 1, Berlin, 1934.

Kalish, D., Montague, R., Mar, G.,
[1] Logic: Techniques of Formal Reasoning, New York, 1980.

Quine, W.V.
[1] Mathematical Logic, New York, 1940.

Russell, B.
[1] On Denoting, Mind, vol. 14 (1905), pp. 479-93.

Strawson

[1] On Referring, Mind, vol. 59 (1950), pp. 320-344.

Whitehead, A. N., and Russell, B.
[1] Principia Mathematica, vol. 1, London, 1910; 2nd edition, 1925.

