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Abstract

Being an application area of programming languages,
graphics languages should keep pace with the development‘ of
today's programming languages. Data types, structural
operations and free layout of statements provide a more
effective means of picture generation, 1i.e., modelling,
rendering and viewing. The Graphical Kernel System (GKS), an
international standard graphics language since 1984, is
specified on a subroutine basis, therefore suffering from the
lack of such high-level 1language features. This thesis
investigates and implements the FORTRAN language binding of GKS
into a  high-level programming lénguage (HL/GKS) by a generated
precompiler. The weaknesses and restrictions of GKS and its
FORTRAN binding are discussed. The advanced features and
functions of HL/GKS are addressed. The graphical syntax and
semantics rules of the extended portion of HL/GKS are
introduced. It 1is expected that HL/GKS will have more
attractive features and effective productivity for GKS
applicatibns compared to the procedure-level GKS system. The
input statements of HL/GKS have the «capability of picture
communication by interactive devices and hence enable the

implementation of sophisticated graphical application programs.
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I. INTRODUCTION

As a communications carrier between computers and human
beings, a computer language takes the responsibility of -
conferring a wuser's intention expressed in the language to the
computer, and of reporting related results processed by the
computer back to the user. In_order to communicate naturally
and freely, _the,‘implementation' of high-level programming
languages has been investigated through many. yearé. _ The
_language FORTRAN is .characterized by its natural arithmetic
ekpressions, the languagev PASCAL originated from a need to
define data structures flexibly; and LISP 1is based on its
attractive featurés of logical relationships. Basically, all
High-level programming languages emphasize the différences of
actual and abstract, realistic and virtual modeis‘during the
communication process.

The interrelationship between two models is shown in Figure

USER 777777 sostract r-----—) Actual

Figure 1 - Two Models in Language Communications

When following the development of programming languages,
~ beginning from machine codes, to assembly languages, and to

_today's programming ianguages, high-level 1languages tend to



offer more freedom to users so that a programmer is able to
concentrate fully on research problems réther than on system
details. To meet this requirement, data types, variables, block
structures, and control facilities have formed a necessary part
of high-level programming languages. In fact, transparency to
the real world and closeness to a natural language became the
major characteristics of a high—level.programming language.
Graphics languages can be considered as an application area

of programming languages. Three aspects of computer graphics
need to be dealt with in languages, namely,

. picture modelling,

. Dpicture rendering,

. picture viewing.
A picture is modelled by picture elements, rendered through data
processing, and viewed on ‘different graphical devices. 1In a
graphics language, picture modelling and viewing are affected by
programming functions and interactive facilities; picture
rendering 1is mainly processed on the basis of a built-in
database and data structures. Similar to high-level programming
languages, graphical types and hierarchical picture structures
should be included in a high-level graphics language.

Regarding the hierarchical structure of graphical objects,

two kinds of element references are distinguished:

. single level reference,

. multiple level reference.
Single level reference Imeans that only a single graphical

object, composed of a collection of one or more graphics



primitives, can be referenced; multipleﬂ level reference means
that subelements, at various levels of an object structured
tree, can be accessed. Superposition and deletion are the two
graphical operations to deal with hierarchical structures. A
graphical object can be constructed by superposing its subparts
level by level and by deleting some of its subparts at certain
levels. Other processing functions, such as replacment,
zooming, etc., can be simulated with those two functions.
Therefore, an evgluation of a graphics language usually focuses
on the data structures and basic functions of the language
provided;

During the research process of high-level graphics
languages, two main approaches have emerged:

. entirely new graphics language,
. graphics extension on a standard language.

A new graphics 1language offers full freedom in providing
graphical tools for programmers. A picture grammar,
comprehensive modelling, and versatile facilities are provided
via the language definition. However, this approach has not
been popularly adopted except for some special cases. The
reason is that a more or less extensive compiler needs to be
developed and that providing the necessary non-graphical
computing support is difficult. The language GLIDE(77)[East77]
is designed within this class. An example of its code is
demonstrated in Figure 2.

The second class, language extensions, has further diverged

into two subbranches:



ATTRIB TEXT title, notes;

ATTRIB REAL shelflength, deskft, filespace;
ATTRIB BOOL phone;

FORM WORKSPACE =

BFORM title <—- 'secretary';
shelflength <-- 15; deskft <-- 5;
phone <-- true; notes <-- 'none’

EFORM;

COPY WORKSPACE[10] = {; phone <-- false};
COPY WORKSPACE = {; title<--'chairman';
deskft<—--10;
notes<--'likes red wallpaper'};
Figure 2 - A Piece of Code of the Language GLIDE(77)
. subroutine packages,
. extended languages.
Both of these incorporate graphics constructions into a host
language but by different approaches. 1In subroutine packages,
some graphical subroutines are simply added to the host's
runtime library, thus no additional compilation is required for
its implementation. The system 1is easily extendable and
portable to serve different needs and installations. Therefore,
subroutine packagés are adopted as a common design approach in
practice. On the other hand, subroutine packages are not the
proper candidates for high-level graphics languages because of
the shortage of data types and structures. The functions of
picture modelling, rendering and viewing are processed only by
subroutine calls via parameter lists. For a large system with
many subroutines and even more parameters, programming becomes
difficult. Also, most programming errors can only be detected
at execution time, thus 1leading to a loss of its appeal as a

language. A comparison between subroutine packages and

high—-level graphics languages is presented in Figure 3.



Subroutine Packages High-Level Languages
numerical coordinates graphical variables
arrays of coordinates structured graphical variables
input and output calls interactive statements
functions calls graphical keywords and symbols
attributes calls name assignments
controls calls syntax parsing

Figure 3 - Comparison of Subroutine Packages and High-
’ Level Languages

Consequently, no distinction is made between graphical
processing and conventional processing in the form of subroutine
calls, resulting in a lack of explicitness of the syntax and the
semantics of the language.

Extended languages, in contrast, include graphical data
types and operators in their extended portion. Frequently
referred-to picture elements can be defined formally as standard
data types of a language; commonly used picture operators can be
expressed symbolically as reserved words in its syntax. As an
example, the graphical data type ellipse in the language
MIRA[Magn81] is presented in Figure 4.

TYPE ellipse = FIGURE (centre: vector; a,b: real);
VAR theta, step: real; x1,x2: vector;
BEGIN theta := 0.0;
x1 := <<a,0,0>> + centre; step:= 0.1;
WHILE theta <= 2.0*pi DO
BEGIN theta := theta + step;
x2 := <<a*cos(theta),b*sin(theta)>>
+ centre: '
CONNECT(x1,x2); x1 := x2
END
END;
Figure 4 - Data Type Ellipse in the Language MIRA

Another example is the wunion operator U, appearing in the

language GRAPHEX68[Dene75] as:



.

menu <-- and SCAL 0.25 POS (0.8,0.8)

U or SCAL 0.25 POS (0.8,0.6)

Obviously, an extended 1language shows many attractive
points due to its graphical types, picture structures, and
symbolic expressions. These are implemented at the expense of
efforts in precompiler construction or compiler extension. From
the analysis above, subroutine packages are appropriate for
generative (of vertices and patterns) graphics 1in picture
viewing; and an extended 1language 1is more sﬁitable for
inferential (relational description) graphics in picture
modelling and rendering.

The Graphical Kernel System (GKS)[Ende84], recommended as
an international graphics standard since 1984, is specified on
the subroutine basis. Obviously, all the shortcomings of
subroutine ° packages will influence the wutilization and
popularization of the GKS system. To further better programming
using GKS, this thesis investigates the design and
implementation the high-level GKS language (HL/GKS) by a built-
in preprocessor. Besides removing the restrictions of
subroutine calls, HL/GKS has hidden many details of the GKS
specification, simplified the performance of GKS functions and
introduced new graphical types and operators while staying
compatible with the concepts of GKS.

HL/GKS is 1implemented as a FORTRAN extension for the
FORTRAN language binding of the GKS standard. The built-in
preprocessor; which translates HL/GKS programs into GKS

subroutine invocations, is synthesized by means of the Top-Down



Compiler Writing System. (cws) [schr82]. Details  of the
preproceésor design and generation will be presented in Chapter
4.

Chapter 2 introduces several ancestors of high-level
' graphics languages in the extended class. Advanced graphics
features and individual design styles are explored 1in some
depth.

A brief overview and analysis of GKS and its FORTRAN
binding is presented in Chapter 3. The system organization and
specification are discussed. Some of the restrictions and
weaknesses of GKS and its FORTRAN binding are pointed out.

Chapter 4 describes the design principles and
implementation steps of the HL/GKS 1language. The design
objectives, the new graphical types and structures are
addressed. The 1internal data structures and related issues of
the preprocessor are illustrated.

Four examples of HL/GKS with each output picture are
provided in Chapter 5. Example 1 and Example 2 are written in
both HL/GKS and GKS to offer a direct comparison of the two
languages for identical picture generation. Example 3 and
Example 4 are HL/GKS programs that provide additional
programming styles and application instances of the HL/GKS
language. More facilitate features and praétical implementation

of HL/GKS can be inferred from those examples.



II. A SURVEY : OF HIGH—.LEVEL GRAPHICAL LANGUAGES

Coming from different applieetion areas and practical
installation environments, a number of hign—level graphical
languages have been proposed and implemented in " the past with
different styles. For example, the language IMAGE[Brie75],
designed in 1975, concatenates on an OBJECT/ACTION control
structure, the display picture aescription syntax and the
hardware independent handling of input.devices. An applieation
program written in iMAGE is functiOnaliy constructed by four

independent blocks, as follows, (Figure 5).

W
ENTRY

first block for
initialization

0BJECT
definition of |
graphical objects

ACTION
disp]ay objects-
by identification

PROCEDURE
Yocal subroutine
capability

Figure 5 - Blocks Structure of the Language IMAGE



Departing from conventional serial programming, the language
IMAGE shows up as an action-oriented language.

ESP?® (Extended SNOBOL Picture Pattern Processor)[Shap75],
also designed in 1976, has a different orientation. The
language 1is based on the premise that structural descriptions
are an essential part of both picture construction and pattern
recognition. Basic picture expressions in ESP® appear in

statements as illustrated in Figure 6.

t = draw('line','start=(1,2); end=(1.5,3);")
t1 = transpic(T,'point(T,"TC") ==> (1.5,1)")
t2 = turnpic(T, 'about=point(T,"TC"); deg=180;")

Figure 6 - Basic Expressions in the Language ESP3
Originating from a linguistic approach, ESP3 has been
successfully implemented for the field of pattern recognition
with most of its features being of the nature of a high-level
graphics language.

GLIDE (Graphical Language for Interactive Design)[East77],
proposed in 1977, exhibits some new design characteristics. It
attempts to organize commonly-needed database features and
operations for the design of physical systems in la high-level
computing environment. The hierarchical definition of an
graphical object in GLIDE is shown in Figure 7.

Based on a three-dimensional object database, GLIDE provides an
effective means of spatial modelling and manipulations for
application programs in CAD.

MUMBLE[Guib82], built in 1982, is another graphics language

appropriate for describing bitmaps and digital computations for
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Euler Operators

| TOPOLOGY o

Vertex Coordinates

SHAPE
PROCEDURE
" Parameters
POLYHEDRON
. . Attribute Initializations
e[ FORM
Operators

Location and Copy
Attributes

COPY

Figure 7 - Hierarchical Definition of the'Language GLIDE
raster displéys. Boolean operations.liée AND, OR‘and XOR are
performed forﬂéaéh pixel of the 1image plané on a bit-by—bit»
basis. An éxample of the computations in MUMBLE is7shown_in
Figure 8. |

A <- B OR (((B SHIFT[0,1]) + (B SHIFT[0,-1])
+ (B SHIFT[1,0]) + (B SHIFT[-1,0]))> ALL 2 )
Figure 8 - Computatiqn Expressions in the Language MUMBLE
Moreover, primitives and geometric operations - are preciseiy
specified 1in lfhe language MUMBLE . As raster devices are
becoming increasingly important, - the ihteresting and useful
features of MUMBLE will become apparent dﬁe to its specific
design; |
~ From the above brief overview, it becomes obvious that,

unlike other wuniform programming languages, g;aphicé languages
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have been created of highly individual character and versatile
styles stemming from different motivations, facilities and
practical requirements. However, what are the common <criteria
for every high-level graphics language to follow? What are the
basic principles and crucial factors to be kept 1in languages
design? In praptice, as mentioned before, the three main
research approaches existihg in graphics language design are:

. subroutine packages,

. entirely new graphics languages,

. extended languages.

Subroutine packages ére easily portable and extendable but
structureless; entirely new languages have the freedom of a
totally new graphics syntax and semantics but at the cost of an
entirely new compiler involved. Therefore; the approach of
extended languages has attracted most research attention due to
economics considerations. The host language can provide all
non-graphic computation and control facilities, thus the cost of
a language implementation is restricted to its extended graphics
part.

Using the same principles of a high-level programming
language design, a graphics language should contain its
graphical types, variables, and operators via name reference and
hierarchical structuring towards a higher level. Three kinds of
structures are generally considered in the design of graphical
languages:

. data structures,

. picture structures,
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. language structures,.

Data structures deal with the internal representation of
graphical objects in the data base; picture structures focus on
the 1interrelationships between graphical objects in a picture
space; and language structures consider both internal procedures
of system functions and external procedures of statement types.
In some sense, the picture structures will somehow be reflected
by the 1internal data structures. Data structures and language
structures are mainly concerned with the structures of database
and language layout.

In the following section, some typical examples of extended
languages are investigated in some depth, concentrating on the
aspects of graphics syntax, semantics, and the creation of high-
level 1language features such as' graphical data types,

structures, and picture operations.

2.1 CADEP (1971)

(Computer Assisted Description Patterns)

CADEP[Brac71] is a problem-oriented graphics language
extended in FORTRAN for positioning geometric patterns in a two-
dimensional space. The graphical types defined in CADEP are:

. geometric,
. graphic,
. unilevel graphic,
. multilevel graphic.
A geometric type is employed to build up geometric entities

viewed as auxiliary patterns. It can be assigned by geometric



13

primitives and processed by the .following operators and
functions.

. / intersection,

. + union,

. - difference,

. * concatenation,

. copyl(g,s),

. trans(g,x1,y1,s),

. rot(g,x1,y1,alfa,s).

The wunilevel graphic type represents physical two-
dimensional entities lying on a particular graphical plane. An
operation and function used for geometric types can be used as a
unilevel type as well. The multilevel graphic type is composed
of several wunilevel patterns -lying on different planes -and
belonging to the same physical object (for instance, in
integrated «circuit masks, the same gate 1lying on different
levels). The operations on multilevel types can be performed on
each of the unilevel types separately and then link all of them
by the concatenation operator *.

In addition, predicate functions to acquire the state and
relationship between graphic objects as well as display commands
are supplied in CADEP.

Without interactive activities involved, CADEP proves to be
a passive language applicable to two-dimensional pattern layout
possessing a simple syntax and natural semantics, which lead to
a well-defined language structure in CADEP. The introduction of

multilevel types provides a clear concept for each level
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modelling and three-dimensional modelling where the same object
can overlap different levels. Being an extended FORTRAN
language, CADEP keeps a consistent form in its declaration and

assignment statements with those of host language FORTRAN.

2.2 GPL/I (1971)

(PL/I Extension for Computer Graphics)

GPL/I1[Smit71] is an interactive graphics language intended
to handle graphical situations such as three-dimensional
modelling, hardcopying, display, picture storage, colour
attributes, and picture animation.

- The graphical types in GPL/I are:
. vector,
. 1image,

. vattr,

. text,
. graphic.

The operations on vectors are
. + addition,
. - deletion,
. *,* dot product,
. *** cross product;

on images are

. > inclusion,
. 1 connection,
. @ position,

. <> scaling,
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. x> rotation.

Some operations and attributes, such as' perspective
projection, intensity, and thickness, are implemented by
functions. Graphical types are processed into graphical files
with sets of attributes which can be displayed as an image.
Functionally, they are classified as

. design files,
. display files,
. hardcopy files,
. softcopy files,
. storage files.

In GPL/I, graphical attributes can be assigned directly to
an image or indirectly to an ATTR variable for global reference.
Interactive programming is achieved by extending the standard
PL/I interrupt management statements. An interesting feature of
the GPL/I system 1is 1its animation function. Both the IMINTR
function and the ANIMATE statement can dynamically process
images. With all the predefined display procedures, picture
viewing in the GPL/I language is well performed.

The use of character sets instead of names for graphical
operators does not convey readily their meaning. Also, as most
attributes of variables are set by function calls, the GPL/I

system requires a larger runtime library than other systems.



2.3 GRAPHEX68 (1975)

(Graphical Language Features in ALGOL 68)

Departing from other languages, GRAPHEX68[Dene75] uses

16

the

facilities of ALGOL 68 for defining new graphical data types and

operators.

Much flexibility is gained thereby which is valuable

during the experimental definition and evaluation phase of

system.

The two graphical types in GRAPHEX68 are

point,

pict.

Correspondingly, the operators are

- connection (of points),
<- assignment,

pos, rot, scal;

U union (of pictures),

extended by or reduced by.

In an application, graphical types and two versions of
operator connection '~' are declared in GRAPHEX68 as shown
Figure 9.

Figure

mode point = struct( real x,y )
mode string = [1:0 flex] char

op - = ( point pt1, point p2 ) ref poly:
heap poly := ((0,p1),(1,p2));
op - = ( ref poly p0, point q ) ref poly:

(int n= upb p0;
heap[1:n+1 flex] struct ( int beammode,
point p) pon;
pon{1:n]:= pO0;
pon[n+1]:= (1,q);
pon ) ; .

9 - Data Types and Operators of Language GRAPHEX68

the

the

in
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Several ©procedures are constructed for handling various
interrupt situations. Being problem oriented, GRAPHEX68 defines
its graphical syntax and semantics in a concise and natural wvay.
Graphical variables are declared and processed by graphical
operators in a rather obvious manner. Moreover, interactive
features in GRAPHEX68 provide a facile approach on picture
modelling and viewing. Since no specific specialized compiler
activities are involved, GRAPHEX68 is completely portable to any

system which has an ALGOL 68 compiler installed.

2.4 MIRA (1981)

(A Graphical Extention of PASCAL)

MIRA[Magn81] is a graphical-oriented language. VIt provides
users the means of defining graphical types much 1like 'other
types of the host language PASCAL. Nested type definitions
allow simulating a hierarchical structure of graphical objects.
Graphical variables under each data type are semantically
checked to avoid any mismatches.

The two graphical types defined in MIRA are:

. Vvector,
. figure.
The operations on vector are:
. + addition,
. * scalar product,
. read and write.
The operations on figures are

. connect,
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. include,

. Create,
. delete,
. draw,

The create statement dynamically creates new figures in memory

and the delete statement deletes them. The draw statement

permits a created figure to be drawn on a graphical terminal.
Five standard figure types are predefined in the system:

. segment,

. line,
circle,
. SsQuare,

. triangle.

Picture operations such as rotation, scaling and
translation are perf9rmed by stanaard procedures in MIRA. With
user-defined types and a number of predefined procedures, the
syntax and semantics of MIRA appear quite straightforward for a
naive wuser who wishes to learn the language. MIRA emphasises
picture modelling, and pays less attention to picture rendering
and viewing. The superposition operation is simulated by nested
type specification, but the facility of partial deletion is
missing. Consequently no updating is possible after an object
is built. The graphical data types and operations of MIRA are
implemented like a précedure and possess an argument list, an

unusual characteristic, and hence somewhat "immaterial".
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2.5 LIG (1982)

(Lanquage for Interactive Graphics, Version 6)

LIG[Ross82] is a three-dimensional, interactive, and
object-oriented language extension of FORTRAN. In the system,
versatile functions and wvirtual models are provided by its
extensive preprocessor and internal database.

The two graphical types defined in LIG are:

. Vvector,
. graphical.
The operations on vectors are:
. + addition,
. # cross product,
. || magnitude,
. / scalar division,
. - subtraction,
. . dot product,
. * scalar product,
. .EQ. .NE. vector comparison.
The operations on graphical type are:
. + superposition,
. delete statement.
Formally, four standard graphical primitives are provided

by the runtime library:

. blank,
. polyline,
. polygon,

. text.
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In addition, LIG 1includes a programmable primitive model
definition. Picture transformations are defined similarly to
picture attributes. Additional control structures like the case
and repeat statements are made available. A camera model is
built into LIG to allow viewing three-dimensional objects from
different viewpoints. In pérticular, as the preprocessor of LIG
parses all statements, not only graphics statements, full
communication between graphical types and non-graphical types is
provided.

Being a self-sufficient graphics‘system, some incomﬁatible
language <constructs appear 1in LIG. For example, a reference
point is set separately from transformations, the deletion

operation is expressed in statement form rather than the
symbolical one l}ike the supefposition operator. In contrast,
the data structure in LIG is well defined and 1is fully

accessible,

2.6 PASCAL/GRAPH (1982)

(Extension of PASCAL)

PASCAL/GRAPH[Bart82] is another language extending PASCAL
which offers device-independent programming. A device-
independent lénguage éllows a programmer to focus his attention
on the creation of abstract models, the use of intelligible
algorithms, and the clarity of the results.

The data types in PASCAL/GRAPH are:

. picture,

. outunit,
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. 1lnunit.

Operations on picture are:

. over,
. conn,
« app,

. encl,

The functions on each graphics device are distinct from
each individual call, such as:

. readcoord (digitizer, x, y),
. readpicture (digitizer, p),
. readreal (valuator, x),

. readchar (keyboard, c).

Graphical primitives and operations are declared as
standard functions in PASCAL/GRAPH, providing a powerful means
for model building. '

In PASCAL/GRAPH, the function over corresponds to the
superposition operation; the deletion operation is partly
realized by the substitute function. The main feature of
PASCAL/GRAPH appears to be its machine independence,
accomplished by adapting the system to the available graphical
hardware using description tables. With hardware devices mapped
to logic devices, it is possible to write interactive programs

for arbitrary graphical device installations in PASCAL/GRAPH.

As introduced above, language extensions for graphics allow
the creation of graphical types and structures, and the
processing of graphical objects based on the predefined

graphical syntax and semantics. Procedures and statements are
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the two alternative syntactical constructs for expressing
graphics. Statements require more processing effort by the
preprocessor but have a natural appearance; procedures 1increase
the size of the runtime library with restricted clarity. Both
symbolic operators and identifiers representing graphical
operators are adopted 1in language design as both are suitable
for different situations. Interactive facilities are considered
to be an important means in picture modelling especially for
engineering applications.

In summary, data structures and language structures are the
most important research areas for the implementation of high-

level graphics languages.
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III. THE GRAPHICAL KERNEL SYSTEM

3.1 Overview

The Graphical Kernel System, GKS, has been developed by the
International Standards Organization in a long process since
1976 and finally evolved as the internationally recognized
standard in computer graphics in 1984.

GKS belongs to the class of subroutine packages. With GKS,
a programmer can incorporate graphical tasks within an
application program to produce and manipulate pictures. The
most important feature of GKS system is its independence from
any particular programming language and from any graphical
device, which makes GKS totally transportable and indepéndent of
hardware updations and configurations.

To realize the idea, the concepts of 1logic input devices
and functional workstations were introduced. There are six
logic input devices defined in GKS:

. locator,
. valuator,
. choice,

. pick,

. string,

. Stroke.

The concept of workstation ties a flexible wvirtual system
to a variety of real-world devices. Each workstation consists

of a single display surface with zero or more input devices.
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For 1instance, a plotter 1is considered to be the simplest
workstation.

The data types of GKS are specified independently of any
specific programming language. For instance, the data type

enumeration comprises an ordered set of values which can be

mapped, e.g., to the scalar type in the language PASCAL or to
the integer type in FORTRAN.,

Three sets of coordinate spaces are avaiiable in GKS to
facilitate 1independent transformations of graphical data. They
are

. world coordinate spaces (WC),

. normalized device coordinate space (NDC),

. device coordinate spaces (DC).
WC spaces are the application spaces to be used by a programmer
independently of graphical output devices. A DC space is the
coordinate space specific to a display device. The NDC space is
chosen as the uniform coordinate space of a virtual device,
conceived to 1lie between the WC spaces and DC spaces. To map
the data from one coordinate space to another, two types of
system transformations are specified:

. normalization transformations (NT),

. workstation transformations (WT).
The relationships of the coordinate spaces via the
transformation mappings are illustrated in Figure 10.

Another main concept in the GKS system besides workstations

is segments.
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GKS system = segments +

workstations + ...

The‘workstétions correspond to the intérface between a GKS
program and graphi@él terminals while segments are the basic
objects which are easily referred to for picture processing.

Generally, the "syUtax of GKS is represented by the

following two aspects.

(1) The Protocol of Subroutine Calls .

There are 201 subroutines épecified in the FORTRAN 1ahguage
bihding of GKS. For_each subroutine call, the parameter order,
paramefer data types, and the subroutine name have to observe
strict. reference rules. For examplé, "~ to evaluate a
’fransformation matrik in fhe FORTRAN binding of GKS, the routine
needing to be ‘invoked are shown in Figure 11,

Any mismatch in number, order, or dafa type will cause a failure

of the performance.v
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GEVTM(x0,y0,dx,dy,phi,fx,fy,sw,mout)

where x0,y0(real) --- reference point to the transformations
dx,dy(real) --- shift vector,
phi(real) --- the rotation angle,
fx,fy(real) --- scale factors for x and y coordinates,
sw(integer) --- a parameter indicating the coordinate
space,

. 0 world coordinates,
. 1 normalized device coordinates,

mout (real) --- the name of a 2 by 3 array which will
contain the resulting transformation
matrix.
Figure 11 - The Routine for Evaluating Transformations of
GKS

(2) GKS States
There are five system states defined in GKS:
. GKS closed,
. GKS open,
. at least one workstation open,
. at least one workstation active,
. at most one segment open.
The legal transitions of the states is presented in Figure 12.
Under each state, only certain subroutine calls are allowed to
be 1issued. For example, the statement "deactivate workstation"
is not legal in the state "workstation open"; the command "open
GKS" isl not acceptable in the state "workstation active". The
legal set of subroutine invocations under each state shows the
proper syntax order of GKS.
The semantics of GKS are implicitly passed to each
subroutine 1invocation. The subroutine of the primitive
POLYLINE(n,px,py) implies that N points are to be connected by

line segments as a polyline. The call of the primitive
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Figure 12
TEXT(px,py,chafs) confers -that a string of characters is output,
starting at point (px,py).
3.2 Evaluation of GKS
A review of GKS will reveal some restrictions and

inconveniences of

definition.

the system performance,'stemming from its own
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3.2.1 Poor Syntax Definition

To wuse GKS, a programmer needs not only to understand all
the details of the system specification but also to take the
responsibility of correct invocation of subroutines, and similar
details. When can a segment be opened? Which subroutines can
be called in the present state? What is the proper subroutine
name and which are the proper parameters wﬁich need to be
referred to? Which workstation is open and active? Taking care

of such restrictions undoubtly becomes an unnecessary burden.

3.2.2 Restricted Semantics Performance

In GKS, segments represent picture wunits, thus segment
operations refer to picture operations. The segment functions
defined in GKS are given in Figure 13,

create segment

close segment

rename segment

delete segment (from workstation)
associate segment with workstation
copy segment to workstation

insert segment

Figure 13 - The Segment Functions in GKS

The pair "create segment"” and "close segment” deals with
‘the state flow of GKS. "Rename segmenF" reassigns a new segment
name to a created segment. "Delete”, "associate" and "copy
segment"” perform thev specified functions on display
workstations. Among these segment opérations, "insert segment"
is the only one which simulates the superposition function for
picture modelling. As only a single level reference of segments

is provided, the deletion operation is not supported by GKS.
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The absence of this function may cause trouble when it 1is
required’ in an application. For example, it is not possible to
have a situation like:

house:- house - window(1) + window(2)
For GKS, a programmer needs to rebuild a new segment which
contains all the original objects in the segment house with thé
exception that segment window(1) is replaced by window(2), then
delete segment house and rename the new segment as house.
Indirect processing leads to a rather confusing and troublesome
situation. Even for the superposition operation, done by each
insert call, the interrelationship of picture models 1is rather
ambiguous. Consider a picture model:

house :- door + window + roof
The equivalent processing steps in GKS 1is the sequence cof

subroutine invocations as shown in Figure 14.

CALL GEvTM(0.,0.,0.,0.,0., {evaluate trans matrix}
1.,1.,0,trant) A

CALL GCRSG(4) {create segment}

CALL GINSG(1,trant) {insert segment from WISS}

CALL GINSG(2,trant)
CALL GINSG(3,trant)
CALL GCLSG {close segment}
Figure 14 - Superposition Operation in GKS
where segments 1, 2, 3 and 4 represent the objects door, window,
roof and house.
The parameter settings 1in the GKS subroutines are not
uniquely specified. As a simple example, the range in the call
of cell array appears as:

CALL GCA(px,py.,gx,qy,dx,dy,dimx,colla)

Here, px, py and gx, gy correspond to the lower-left and upper-
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right hand corners of the cell'éfray; which are arranged in a
vertex order. Yet the range in the call of normalization
transformation is:

CALL GSWN(tnr,xmin, xmax, ymin, ymax)
in which the range of the window is arranged in an axis order of
x and y ‘instead of a veftex order. The irreqularity and
incompleteness of the’ subroufine invocation will deter the

efficiency and utilization of the system functions.

3.2.3 Ambiguous Attibute Settings

By définition, besides processing functions, the abundant
attribute settings and inquiry facilities of GKS are also

bothersome for programmers. A topological view of them is given

Attributes

('Segment Attributes) v Pr1m1t1ve REFIBUEeS 1

Polymarker

Text -

in Figure 15. .

0

Width Scale

Figure 15 - Topological View of GKS Attributes

Each attribute .in its family is set by an integer number
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rather than an individual name. Consider the colour attribute,

it is set in GKS as in Figure 16.

colour GKS setting

blank
green
blue
orange
yellow
red
purple
white

NoOY A Ww N - O

Figure 16 - The Colour Attributes of GKS
The attribute of text alignment is set in GKS as in Figure 17.

text alignment GKS setting
(horizontal)
normal
left
center
right

WN — O

(vertical)
normal *
top
cap line
half
base line
bottom

b W~ O

Figure 17 - The Text Alignments of GKS

Basically, numbers do not provide any clue for a programmer
as to its Imeaning. The overlapping of numeric values for the
setting of primitives, workstations, segments and transformation
attributes results in a rather misleading and confusing
situation. For example, the number 1 represents green as a
colour attribute, dot as a polymarker type attribute, segment 1
as a segment name attribute, etc. The repetition of numbers

strongly block programmers to choose the proper candidate during
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the assignment process.

In addition, being built on a subroutine basis, the GKS
system carries all the weaknesses and shortcomings of a
subroutine package and presents its users the real model of GKS
specifications rather than the virtual model at a higher level.

From above analysis, the high-level GKS language (HL/GKS),
designed on a level above the GKS system, 1is studied and

implemented in this thesis.
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IV. STUDIES ON THE HIGH-LEVEL GKS LANGUAGE (HL/GKS)

4.1 Objectives

Being one important application area, graphics languages
should keep pace with the development of today's programming
languages with regard to abstract data structures and advanced
programming features. However, the development of high-level
graphics 1languages is still far from where it could be. Either
lower-level drawing commands are performed or a set of
subroutine patterns is issued. What special characteristics of
graphics languages distinguishes today's programming languages?
Stimulated by Wirth's definition on programming languages:
"Programs = Algorithms- + Datastructures", a similar formula
defining computer graphics is: "Computer Graphics =
Datastructures + Computer Algorithms + Languages". All
structures and advanced features of programming languages are
also relevant for the design of graphics languages.

From the software supporting point of view, graphics

languages are classfied into different levels as shown in Figure

18.
Consider two classes, subroutine packages and extended
languages. Extended languages maintain more graphical

structures and process functions, which are very appealing for
learning and wutilizing a language. GKS, built on a subroutine
basis, suffers from the shortage of high-level programming

features and structures. As an international standard, GKS
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Level 0 no support
Level 1 subroutine or macro libraries
a) low level
b) high level
Level 2 language extension
Level 3 special purpose graphic languages

a) graphical approaches
b) command languages

Figure 18 - The Levels of Software Support in Graphical
Languages

provides all the basic graphics functions, terminal facilities
and multiple processing for general applications. On the other
hand, being a subroutine oriented system, GKS carries its
céntrol states, transformations, and function invocations into a
poor background of frequent parameter assignments and subroutine
calls. It 1is the programmer's responsibility to maintain the
.proper states, to set attributes correctly and invoke a
subroutine for each function of GKS. As a simple example, a
created segment can be displayed on an active workstation from
the open workstation WISS (workstation independent segment
storage). Therefore, to display a segmen£ in such way, a series

of actions need to be performed, as presented in Figure 19.

CALL GOPWK(1,8,100) {open WISS}

CALL GOPWK(2,9,100000) {open a workstation}

CALL GACWK(2) {activate the workstation}
CALL GCSGWK(2,3) {copy segment 2}

CALL GDAWK(2) - {deactivate the workstation}
CALL GCLWK(1) {close WISS}

Figure 19 - A Segment Display in GKS
It is preferable to use a single display statement in a higher
working environment, which replaces all control details, e.g.,
display house on screen

An abundant set of attributes, which are grouped as to the
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primitive they apply to, provide wversatile choices for the
display of pictures. Consider the text attribute, for which a

toplogic view of its components is given in Figure 20.

Path

Coloun

Spacing

Text Attribute Expansion

Font € Precisio

> Alignment

Upvectqr

' : Height '
Figure 20 - The Toplogic View of—TFext—Attribute

As pointed out before, the overlap of integer values
representing' the GKS attributes can. cause difficulties to a
programmer when choosing the proper value of an attribute for
assignment. Using a name reference instead of a number for the
attributé,assignmént will be more éCceptable and reasonable,
being more natural . and providing clarity. A cohparison éf name
and number assignments of the POLYLINE attribute 1is shown in
Figure 21, |
Another majér motivation for the HL/GKS implementation is

'to supplement graphiCal types, data structures, and programming



36

In HL/GKS:

POLYLINE T(1:5) < TYPE: 'dash',
COLOUR: 'yellow',
WIDTH: 0.5 >

In GKS:
CALL GSLN(2) {line type assignment}
CALL GSPLCI(4) {colour assignment}
CALL GSLWSC(0.5) {line width assignment}

CALL GPL(5,tx,ty) { POLYLINE output}

Figure 21 - Name and Number Setting of Polyline Attributes
format in terms of the graphics syntax and semantics-specified
in the extended portion of HL/GKS, elevating the poor background
of the GKS system to a better GKS programming style at a higher

level.

4.2 Graphical Types and Structures

Derived from GKS concepts, four graphical types are

implemented in the HL/GKS language:

. Vvector,

. Segment,

. trans,

. workstation.
Each of them can be declared as a single variable or as an array
variable. Single vectors can replace any coordinate pair in GKS
assignments or the output of primitive polymarker; an array
vector then constructs a single output object. Array segments
supply the alternatives to some elements of a structured object

while a single segment remains an individual entity. An array
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trans simulates the multiple mapping of GKS coordinate space
transformations. An array variable of type workstation produces
multiple output by the hardcopy terminal. With the array type
supplied, graphical variables of types vector, segment, trans,
and workstation can be easily processed together with the
programming structures of the host language FORTRAN 77. The
graphical declaration statements are kept consistent with the
other declaration statements of FORTRAN 77. Some instances of
graphical expressions of HL/GKS are provided in Figure 22.

VECTOR v1(5), v2(5), v3

SEGMENT window, house(3), door(3)

TRANS n1(2)

WORKSTATION plotter(3), screen

DO 10 i=1,3

house(i) = window + door (i)
10 CONTINUE
DO 20 i=1,5 ‘
IF s(i)>10 THEN
vi(i) = wv2(i) - v3
20 ENDIF

Figure 22 - Some Graphical Expressions of HL/GKS

The type vector of HL/GKS 1is expressed in the form of
(vx,vy) for the two-dimensional GKS situation. Obviously, it is
easily extended to the three-dimensional space by the form of
(vx,vy,vz). A vector variable can be assigned by a DATA
statement of FORTRAN 77, .a pair of real numbers or real
expressions, or another vector variable' name. A vector
initialization in a DATA statement can be freely‘ interspersed
with other types of FORTRAN 77. No continuation character is
required for the cross-line initialization of a vector 1in the

DATA statement. The different forms of the vector assignment
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are presented in Figure 23,

VECTOR v1(2), vs(6), v2, v3(3)

DATA vi1/1.0,2.3; 3.8,4.5/, r1/2.0, 0.8/

DATA vs/0.0,0.0; 7.8,9.0; 5.4,2.8; 7.0,5.0;
8.4,9.0; 0.0,0.0/

v2 = (2.9, 1.8)

v3(1) = v2

v3(2) = (r1,r2)

v3(3) = (3*sin(i)+5.2, cos(i+2)/3.4)

Figure 23 - Vector Assignments of HL/GKS
For convenience, the subelements of a vector can be selected
with the post £fix .xcoord or .ycoord appended to the vector
identifier, e.qg.,
v3(1) = (v2.xcoord+1.9, v2.ycoord)

The vector operators applicable to vectors are listed in Figure

24,

+ addition

- subtraction

* gcalar product

. dot product

/ scalar division

Figure 24 - The Vector Operators

With the introduction of the data type vector, graphical objects
are easily modelled and processed since they are based on
vertices, which form the necessary foundation for the
applications of computational algorithms. Any coordinate pair
can be assigned by a vector name; primitive objects are
specified by the indicated range of vector arrays. Figure 25
shows some common occurrences of the type vector in HL/GKS.

Alternatively, a subpart of a graphical object can be selected

by the related subrange of its vector such as:
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VECTOR atv,sclv, tree(15), table(10)
TEXT 'welcome to GKS' AT (1.5,0.8)
TEXT 'this is a text primitive' AT atv
star < AT: (1.0,0.9),

SCALE: (0.5,2.0) >
star < AT: atv,

SCALE: sclv >

POLYLINE tree(1

HE
FILLAREA table(1:

5)
10)
Figure 25 - Vector Placements in HL/GKS
POLYLINE tree(3:12)
The type segment of HL/GKS directly reflects segments of
GKS. As from GKS, two working environments for segments are
provided by the keywords OPEN and CLOSE. In the open
environment, segment can be super imposed by predefined
primitives and previously created segments within its specified
coordinate space. In the closed environment, a segment can be
modelled and processed by previously created segments through
the superposition and deletion functions. A simple example of

segment operations under both environments is given in Figure

26.
OPEN house
house = POLYLINE <TYPE: 'dash'>
square(1:5)
+ POLYMARKER <TYPE: 'circle',
CLOUR: 'red' >
handle
+ door + window(1)
CLOSE
flag = star + stars + frame
house = house - window(1) + window(2)

Figure 26 - Segment Operations in HL/GKS Environments

The data type trans of HL/GKS implements the
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transformations of the GKS coordinate spacés. The mappings are
specified by rectangles. The rectangle to be mapped from is
called the window of a transformation; the rectangle to be
mapped to is called the viewport of a transformation. The
keywords FROM and TO in a transformation pattern signal the
window and viewport assignment 4 of the transformation,
respectively, such as:

TRANS nt

nt = < FROM: (3.8,2.9); (6.8,12.0)

TO: (0.0,0.0); (0.5,1.0) >

A window or viewport assignment which is not specified in a
transformation pattern will be set to the default assignment of
GKS, wviz. (0.,0.) to (1.,1.), or the one assigned previously.
Normalization transformations and workstation transformations
are distinguished by the assignment context. A transformation
assigned to an opened segment as the segment open attribute is a
normalization transformation; a transformation assigned to a
viewing workstation as the workstation viewing attribute is a
workstation transformation. A transformation can be specified
either by a trans variable or by a transformation pattern.
Examples of transformation assignments are presented in Figure
27.

The input priority of normalization transformation, to
select the transformation order 1in the normalized device
coordinate space, are indicated by the keywords of ABOVE and
BELOW for each transformation pair.

OPEN house WITH nt(1) BELOW nt(2)



41
The data type workstation is designed to minimize state

TRANS nt(1)

TRANS wt

wt = <TO: (0.,0.);: (3.6
0

5.8)>
nt(1) = <FROM: (3.5,2.0);

): (4.8,7.0)>

OPEN house WITH nt(1)
. DISPLAY house ON screen WITH wt

OPEN house WITH < FROM: (3.5,2.0); (4.8,7.0) >
DISPLAY house ON plotter WITH < TO: (0.0,0.0);(3.6,5.8)>

Figure 27 - The Alternate Settings of Two Transformations
assignments of workstations such as "workstation open",
"workstation active", etc. Workstations are opened when
declared as a workstation type and activated when referred to in
a display statement. Some long-term running workstation types
are systematically defined in the precompiler, which are easily
changed for wupdating a configuration. The workstation types
used in HL/GKS are:

. Sscreen,
. printer,

. plotter,

. t4027,
. t4025,
. t4105,
. t4112,
. t4113,
. t4115,

The display functions of GKS "associate segment with
workstation" and "copy segment to workstation" are expressed by

the keywords SEND and DISPLAY in a display statement of HL/GKS.
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SEND house TO plotter

DISPLAY house ON screen
Using natural names, workstations are much more distinctly
controlled and processed 1in HL/GKS in contrast to the use of
numeric references of GKS. This is especially true in a multi-
workstation system.

With the introduction of graphical data types, more high-
level programming features and freedom from supplying system
function details can be provided. Type declarations, type
checking, and type parsing of HL/GKS aid in detecting mismatched
graphical types and avoid passing incorrect parameters to .the
GKS system. Using types, the functions of the GKS system are
simply performed as units by HL/GKS. Display statements in both

GKS and HL/GKS are shown in Figure 28.

CALL GOPWK(1,8,100) {open workst}

CALL GOPWK(2,9,100000) {open works2}

CALL GACWK(2) {activate works2}

CALL GSvP(1,0.,0.5,0.,1.0) {set viewporti}
CALL GSELNT(1) {select norm transi}

CALL GCSGWK(2,3) {copy seg3 to works2}
CALL GDAWK(2) {deactivate works2}

CALL GCLWK(2) {close works2}

CALL GCLWK(1) {close worksi}

WORKSTATION plotter, screen
TRANS ni1,n2

nl = <TO: (0.,0.); (0.5,1.0)>
DISPLAY house ON plotter WITH ni

Figure 28 - A Display Fragment in GKS and HL/GKS Language
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4.3 HL/GKS Implementation

" HL/GKS is implemented as a high-level graphics language on
the basis of the GKS system by a pfecompiler. The precompiler
is specified by two separate but intertelated‘ files and -
generated with the Top-Down Compiler ertlng System [Schr82].
The files of the precompller are: |

integrated BNF descrlption file,

. global file in standard PASCAL."
The source file contains the syntax aﬁd semantics fqles of the
language; the global fiie is_designated for additicnal semantics
actiens. The interface ef the precompiler of HL/GKS to the CWS-

TD system is shown in Figure 29.

Source |
CWS-TD
Global > Sysiem — Preconpiler
Semanti
(optional)

Figure 29 - The Interface of the Precompller of HL/GKS to
the CWS-TD System
The precompiler translates graphical statements of an
HL/GKS program into GKS subroutines invocations which are then .
compiled by the FORTRAN 77 compiler and executed with the GKS
runtime library. The sequence of transformation steps of a

HL/GKS program is illustrated in Figure 30.
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Figure 30 - The Transformation Steps of the HL/GKS Language
To provide a better wOfking environment and on é higher
level, most system control and specification details of the GKS
system are hidden or are transparent Eo the HL/GKS programmer.
Thus, a HL/GKS programmer specifies the GKS functions fand‘
facilities in his programs uncénsciously and implicitly.
Four system models vafe "internally built up duriﬁg the
precompiling phase by means of the graphicél data types:
. . vector moael, |
. Ssegment model,
. transformation model,
. workstation model.
The conérete structure of each of phe' models 1is depicted in

Figﬁre 31. -

During precompilation, type _checking, state changes, and

function mappings are carried out based on the information
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provided from above models. Consider the segment mode. Each
entry of the segment table contains three pointers --- seg, pri,
and next. The pointer seg 1links all the present segment
components of the entry segment which were constructed
previously, the pointer pri stores all the information of the
output primitives of the entry segment in its opening state, and
the pointer next «collects all the superimposed segments which
are referred to in the present operation. 1In addition, M-link
is a globally defined pointer chain which keeps all the segments
which are to be deleted 1in the present operation. The
transformations to be associated with each segment are also
recorded for each instance of a model when needed. With models
so constructed, the operations of superposition and deletion of
segments are executed based on the stored models; the system
updates them both internally and externally.

In HL/GKS, the two kinds of statements, namely host
language and graphics extension statements, can be interspersed
freely in a program. The graphical statements of HL/GKS are
identified and translated by the following steps: lexical scan,
syntactic parsing, semantic analysis, and GKS code generation.
A language L(G), produced by a grammar G, is formulated as:

L(G) = { SeT* | S ==> s }

Here, T --- a finite set of terminal symbols,
S --- non-terminal start symbol,
s --- legal sentence in language.

Accordingly, the graphical extension of a language must follow

the same definition. What syntax and semantics rules need to be
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supplied for the HL/GKS language? What lexical layout Iis
adopted for the graphical part of HL/GKS? To answer these
questions, the implementation of HL/GKS 1is explored from the
following aspects:
‘ . lexical usage,
. Ssyntax rules,

. semantics rules.

4.3.1 Lexical Usage

In HL/GKS, all identifiers and keywords can be entered
using either lower case or upper case characters. Intermixing
of characters is acceptable and not distinguished. For
instance, the keywords VECTOR, vector or VecTor are equivalent.
No continuation mark in column 6 1is required to flag the
continuation of a line of a graphical statement as long as the
proper syntax rules for the statement are followed. An example
of a graphical layout of HL/GKS is presented in Figure 32.

curve = POLYLINE <TYPE: 'dash'> xsin(1:51)
+ TEXT <HEIGHT: 0.03,
SPACE: 0.8>
'sine curves' AT (0.05,0.1)
Figure 32 - The Graphical Layout of HL/GKS
Other card restrictions of FORTRAN 77, such as characters "C" or
"k" in column 1 for a comment line, columns 2 to 5 for statement
labels, and columns 7 to 72 for language statements are not
effective for the layout of graphical statements of HL/GKS.
Labels can be set in columns 7 to 72, some programming portion

can be expressed in columns 2 to 5. Blank lines may be used 1in

HL/GKS programs for improved readability. Comments included
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between the delimiters "{" and "}" can be freely placed in
HL/GKS, and will be ignored during the precompiling process.

Two loop structures are supplied by HL/GKS to have more
control on the language flow. Figure 33 shows the syntactical
expression of the structures.

WHILE <boolean expression> DO
<statements>
ENDWHILE
REPEAT
<statements>

UNTIL <boolean expression>

Figure 33 - Syntactical Expression of New Structures

Block compiling is possible in the precompiling phase of
HL/GKS to give freedom of model programming and local debugging.
The main block and subroutine blocks of a program may be
compiled separately or 1in an arbitary sequence, which 1is
represented in the syntax rule of:

<HL/GKS blocks> ::= { <main block>

| <sub block> 1},

All graphical data types can be passed to a subroutine when
declared in its parameter 1list. The declaration of the
graphical types in subroutine blocks follows the same
declaration rule as for the main block.

Identifiers for all graphical data types except vector can
be up to 15 characters 1long, providing a more reasonable
reference of a full name. Vector identifiers are presently
restricted to 5 characters as each vector variable will be

translated into a pair of real variables in the compiled output.
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If the programmer refrains from introducing identifiers
beginning with the characters G or g, no conflicts will arise

with the identifiers of the GKS system.

4,3.2 Syntax Rules

As pointed out earlier, the syntax of the GKS system is

mainly represented by the following aspects:

. state flows,

. subroutine protocols.

GKS should always be in one of the following states:

. GKS closed (a),

. GKS open (b),

. at least one workstation open (c),

. at least one workstation active (d),

. at most one segment open (e).
State changes are restricted to a sequential order of flow in
both directions. Within each flagged state, only some
subroutines can be legally invoked. As a result, in GKS it is
the programmer's responsibility to be in the proper state for
legal subroutine invocations. In HL/GKS, only one state
restriction is imposed on the programmer:

. at most one segment open

Outlines of the states in both languages are presented in Figure

34,
The other states are internally controlled by the precompiler
according the syntax and semantics definition of HL/GKS. The
BEGIN statement in the main block sets the state of "at least

one workstation active" through the states of "GKS open" and "at



Figure 34 - The Outlines of the States in Both Languages
least one workstation open"; the END statement in the main block
returns the system to the state of "GKS closed". The state of
"at most one segment open" is optionally switched on or off by
the. appropriate statements. of HL/GKS. The segment open
statement sets the state of "ét most one segment open" on; :the
segment' close statement turns it off. With only one state
.outlined, the graphical "statements of HL/GKS ‘are simply
partitioﬁed into two groups, "segment open" and "segment not
open". A display statement (to copy segments to ‘the specified
workstations) may not be issued in the state "ségment open", the
cleér statement (to clear all segmenté from the specified
workstations) is also not accepted when a segment is open. The
"segment closed" environment is assumed to be the state in éachA
subroutine block, Unless_it'has been changed. with the ‘keyword
OPEN appended to a segment parameter.

SUBROUTINE find( ts:OPEN, r)

SEGMENT ts - |
Few restrictions on state changés for proper function executipn
are levied on a HL/GKS programmer. | |

"~ Using the language extension approach,'HL/GKS- removes - the
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restrictions of the -subroutines protocol of. GKS. The GKS
control °~ and system specifications are abstracted and
incorporated 1into the HL/GKS definition. The major components

of the GKS systém are presented in Figure 35.

GKS

N
_ (Segment) @rkstation) ‘(Trans!ornations)

(Attribute?) @inmves) |

Figure 35 - The Major Components of the GKS System

Five standard output primitives are defined in the GKS

document: |

. polyline,

. polymarker,

. fillarea,

. cellarray,

. te#t. _
Instead of 1invoking ‘a subroutine for each primitive, keywords
are combined with vectors to represent primitives. The keywords
via the primitive names indicate'the output types; a modelled
vector array resembles the structured object through.the feature
points in the vector. Some examples of primitive generation in
HL/GKS are preéented'in Figure 36.

For convenience, the primitive cellarray is specified based on a
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POLYLINE pg(1:10)

POLYMARKER mg(1:10)

FILLAREA £g(3:10)

CELLARRAY <RANGE: (px,py); (gx,qy)
MAXROW: dimx>
colia(dx,dy)

TEXT 'GOODBYE' AT (ax,ay)

Figure 36 - Output Examples of HL/GKS
two-dimensional real array.

Appropriate attributes may be applied to an output
primitive which are subsequently assigned to each primitive
keyword to form a whole primitive concept. Two assignment
approaches of bundled and individual attributes of GKS are
implemented in HL/GKS. The keyword TABLE set in the attribute
pattern flags the bundled function of GKS; the assignment of an
attribute places each attribute to individual one at a time. An
assignment of type individual is specified by a related keyword,
directly inferred from the GKS document, such as TYPE, COLOUR,
and FONT. Common attributes of primitives are distinguished by
the assignment context. For example, the keyword TYPE refers to
either a type of polyline or a type of polymarker. Parameters
of two data types, CHARACTER and REAL, are used in attribute
assignments and the examples are the attribute COLOUR, set by
the name of the colour, and the attribute SPACE, set by a number
of type real. Constants, variables, as well as expressions are
acceptable in assignment statements. Several alternative
attributes assignments are shown in Figure 37.

Multiple primitive specification of the same primitive type

is supported in HL/GKS, but still allowing individual attribute

assignment for each primitive. An instance of a multiple
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POLYLINE <TABLE: 2>

POLYLINE <TYPE: 'dash’',
WIDTH: 0.6 >

‘POLYLINE <WIDTH: 0.1+0.5>

CHARACTER*5 ptype

ptype = 'dash'

rt = 0.6

POLYLINE <TYPE: ptype,

WIDTH:r1 >
Figure 37 - Alternative Settings of Attributes
assignment of the primitive polyline is given in Figure 38.
house = POLYLINE <TYPE: 'dot'>

round(1:16); block(2:20);
<TYPE: 'solid'>
side(1:5)

Figure 38 - Multiple Output of the Primitive Polyline

The workstation independent segment storage (WISS) is
opened and activated at the time of system opening to provide a
global processing environment for segments. Other workstations
are opened when declared in the declaration statement and
activated when referred in the display statement. This use of
workstations combined with the global modelling of segments
simplified most system restrictions.

The wutilization of 1input functions allows an interactive
approach to picture modelling. Pictures can be defined by their
vertices read on-line, avoiding input by meaningless data
patterns. The graphical input statements of HL/GKS are
implemented in a form consistent with the input statements of
FORTRAN 77. They are:

READ (wkid, devicetype) graphical variable
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{ , graphical variable }

In comparison to FORTRAN 77, wkid resembles the logic unit name
from which data is to be read while devicetype imitates the read
format specification to be applied. Five logic input devices of
GKS are implemented in the HL/GKS language as:

. locator,

. string,

. stroke,

. valuator,

. choice.
Each logic device is distinguished by the type of graphical
variables which ié specified 1in the 1input statement. The

corresponding data types for the logic devices are 1listed in

Figure 39.

Logic Device Data Type
locator vector
string character
stroke array vector
valuator real
choice integer

Figure 39 - The Data Types for the Logic Devices

Two .transformations, normalization transformation and
workstation transformation, defined in the GKS document to aid
in device independence, are combined in one transformation type
(type trans) and are distinguished by different syntactical
assignment rules. When a trans variable is assigned to an open
segment statement, it refers to a normalization tfansformation,
otherwise to a workstation transformation assigned to a viewing

workstation.
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The clipping function of the GKS transformation, to remove
the overlapping part of the clipping rectangle (normalization
transformation viewport) with a workstation window on NDC space,
is flagged on of off by the statements CLIPPING ON or CLIPPING
OFF, respectively.

In GKS, one or several segments can be displayed on one or
several workstatidns by means of the display statement. The
symbols of "+" .and "," serve as separators on the multiple
assignment of segments and workstations in an output statement.
As for GKS, output primitives issued duringvstate are "segment
closed"” included 1in the display streams of HL/GKS. The two
segment viewing attributes visibility and highlighting can be
assigned to a segment name in the display statement. Figure 40

shows several statements in HL/GKS which cause multiple output.

VECTOR vstar

DISPLAY tree + house<highlighting> ON screen
DISPLAY flag, polymarker<type:star> vstar
ON screen, plotter
REDRAW 4027, 4014
SEND curve, title + axis TO plotter
Figure 40 - Multiple Output Display Statements of HL/GKS
A comparison of multiple output in HL/GKS and GKS 1is given in
Figure 41,
The detailed syntax rules of the HL/GKS extension are

presented in BNF form in Appendix A.
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4,3.3 Semantics Rules

In HL/GKS:
DISPLAY flag, flags ON screen, plotter, printer
In GKS:

CALL GOPWK(2,9,100000)

CALL GOPWK(3,10,100000)
CALL GOPWK(4,11,100000)
CALL GACWK(2)

CALL GACWK(3)

CALL GACWK(4)

CALL GCSGWK(2,1)

CALL GCSGWK(2,2)

CALL GCSGWK(3,1)

CALL GCSGWK(3,2)

CALL GCSGWK(4,1)

CALL GCSGWK(4,2)

CALL GDAWK(4)

CALL GDAWK(3)

CALL GDAWK(2)

CALL GCLWK(2)

CALL GCLWK(3)

CALL GCLWK(4)

Figure 41 - Multiple Output in HL/GKS and GKS

Implemented on the basis of GKS, the semantical definitions
of HL/GKS have been kept as close as possible to the GKS
concepts. The keyword BEGIN in a main block opens the GKS
system and the declared workstations; the keyword END in the
main block <closes the system and all workstations. The
assignment rules of GKS are applied in HL/GKS. Attributes and
transformations which are not assigned a specific value are
assigned default values. As examples, the default value for the
attribute polyline type is solid; the default viewport of a
normalization transformation 1is the entire NDC space. A value
once assigned will be effective until a new value is assigned.

Some instances of assignments are given in Figure 42,
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OPEN trees WITH nt

CLOSE
OPEN house

house:- POLYLINE outs(1:5);

<TYPE:'dash'> left(

1:5
right(1:

);
5)
CLOSE

Figure 42 - Some Assignment Instances of HL/GKS
In Figure 42, the normalization transformation nt is assigned to
the segments trees and house; the attribute polyline type dash
is assigned to the polylines left and right while the default
value solid is used for the attribute of polyline outs.

A grammar for a 1language to be parsed by the Compiler
Writing System is required to be of type LL(1); it determines
the language parts by only one character look ahead from its
left-most derivation, and in the order of 1left to right.
Therefore, certain graphical symbols and operators are specified
in the extended portion of HL/GKS to allow proper language
parsing. The symbols "<" and ">" act as delimiters of attribute
assignments; the symbol ":" precedes each parameter 1in an
individual assignment. The operators "+" and "-" are overloaded
and have different meanings for each pfocess type. They are
referred to as vector addition and subtraction for the vector
operands or as segment superposition and deletion for ;he
segment operands. The semantics of the graphical symbols and
operators in the HL/GKS definition is presented in Figure 43.

No special symbol is applied for the graphical assignment
of HL/GKS, it 1is parsed by means of the system semantics

checking on each graphical type, thus unifying the concept of
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< left delimiter of attribute assignment

> right delimiter of attribute assignment

: 1individual attribute assignment

; delimiter of vectors

, delimiter of multiple attributes, segments
and workstations

+ vector addition or segment superposition

- vector subtraction or segment deletion

* wvector product with a scalar )

/ vector division by a scalar

. vector dot product

Figure 43 - The Semantics of Symbols and Operators of
HL/GKS

graphical and nongraphical assignment. For segment modelling, a
segment object may be modelled level up with reference to itself
or redefined directly by other segment components.

house + tree

house
house = tree

Each declared workstation 1is matched with the standard
workstation types of HL/GKS to check any misuse of workstation
types.

The graphical input statements of HL/GKS are distinguished
from the read statements of FORTRAN 77 by the identifiers wkid
and devicetype. The five logic devices of GKS are parsed by the
type of the graphical wvariable in the read statement. For
example, the data read from the device locator should be a pair
of real numbers, which are represented by the type vector in
HL/GKS. No distinction is made between the format of graphical
input statements, FORTRAN input statements, or 1logic device
input statements. Two kinds of device types of GKS (keyboard

and graphical tablet) are referred to by literals in the read
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statement of HL/GKS. Figure 44 demonstrates read statements of
HL/GKS of each logic device.

CHARACTER*10 title, axis

VECTOR vp1,vp2,vps(10)

REAL rs1,rs2

INTEGER cil1,ci2

READ (4027, keyboard)vp! {locator}

READ (screen,keyboard) title {string}

READ (4027, tablet) vps(1:10) {stroke}

READ (4012, keyboard) rsi {valuator}

READ (screen,keyboard)cit {choice}

Figure 44 - Read Statements of HL/GKS

More than one variable (but of same type) may appear in the list
of an input statement. A subrange can be specified by an upper
and lower bound of vector array for input of the stroke device.

READ (4027, keyboad) vpi, vp2

READ (4027, tablet) vps(2:8)
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V. EXAMPLES OF GKS AND HL/GKS LANGUAGE PROGRAMS

There are four examples presented in the following section.
Example 1 and Example 2 are given both in HL/GKS and GKS, the
programs produce the identical picture output, and provide a
direct comparisén for an evaluation of the HL/GKS
implementation. Example 3 and Example 4 in HL/GKS show further
characteristics and application examples of the HL/GKS language.
Each output produéed follows the program listing to present the
visual effects. Among the examples, Example 1 is taken from the

original demonstration example of the GKS document.
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{ }
{ EXAMPLE 1 IN HL/GKS }

SEGMENT CURVE
CHARACTER*9 SETS

VECTOR XSIN(51)

WORKSTATION PLOTTER, SCREEN

BEGIN {GKS}

OPEN CURVE WITH <FROM: (0.0,-1.0); (1.0,1.0)>
MESSAGE 'GKS CAN GENERATE TEXT' ON SCREEN
CURVE= TEXT <HEIGHT:0.03,
SPACE:0.8> 'SINE CURVES' AT (0.05,0.0)
MESSAGE 'GKS CAN GENERATE POLYLINES' ON SCREEN

DO 10 K=1,51
R1 = FLOAT(K-1)*0.02
XSIN(K)= (R1, SIN(R1*6.283))
CONTINUE

CURVE= CURVE + POLYLINE XSIN(1:51)

DO 30 K=1,3
DO 20 KK=1,51
XSIN,YCOORD(KK)=XSIN,YCOORD(KK)*0.667
GO TO (1,2,3),K
SETS= 'DASH'
GO TO 35
SETS= 'DOT'
GO TO 35
SETS= 'DASHDOT' ‘
CURVE= CURVE + POLYLINE <TYPE: SETS> XSIN(1:51)
CONTINUE

MESSAGE 'GKS CAN GENERATE POLYMARKERS' ON SCREEN

DO 40 K=1,21
R1 = FLOAT(K-1)*0.05
XSIN(K)= (R1, -SIN(R1*6.283))
CONTINUE

CURVE= CURVE + POLYMARKER XSIN(1:21)

DO 60 K=1,5
DO 50 KK=1,21
XSIN.YCOORD(KK)=XSIN,YCOORD(KK)*0.75
Go 10 (5,6,7,8,9),K
SETS= 'DOT'
GO TO 65
SETS= 'PLUS'
GO TO 65
SETS= 'CIRCLE'



GO TO 65
SETS= 'CROSS'
GO TO 65
SETS= 'SQUARE'

CURVE= CURVE + POLYMARKER <TYPE: SETS>

CONTINUE
CLOSE
DISPLAY CURVE ON PLOTTER

STOP
END

XSIN(1:21)

62
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PROGRAM DEMO1

This program demonstrates how GKS may be used

The following primitives will be used:
- POLYLINE
- POLYMARKER
- TEXT

INTEGER K,L,M
REAL SINX(51),SINY(51),TWOPI/6.28318/
CHARACTER *7 FNAME, CFNAME

Open unit 21, the error message file. The open statement
attaches the unit to the temporary file "-GKSERR".

FNAME = '-GKSERR'
OPEN (UNIT=21,FILE=FNAME, STATUS="'UNKNOWN')

Specify the output metafile. It is assigned to unit 20.

CFNAME = '-~METAFL'
OPEN (UNIT=20,FILE=CFNAME,IOSTAT=I0S,STATUS="UNKNOWN')
IF (IOS.NE.0O) THEN
WRITE(6,*) 'Cannot open output metafile'’
STOP
END IF

Open the Graphical Kernel System
CALL GOPKS(21)
Open and activate a workstation.
The workstation selected is "metafile out”

defined by the systems constant '100000'.

CALL GOPWK(1,20,100000)
CALL GACWK (1)

Define and select a transformation that directs output
to a window of (0.0,1.0) x (-1.0,1.0)

CALL GSWN(1,0.0,1.0,-1.0,1.0)
CALL GSELNT(1)

Begin output:
Start with a set of polylines, to be output with four ‘
different linetypes starting with the default (1 = solid)

CALL GMSG(1,'GKS can generate polylines')
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DO 10 K=1,51
SINX(K) = FLOAT(K-1)*0.02
SINY(K) = SIN(SINX(K)*TWOPI)
10 CONTINUE

CALL GPL(51,SINX,SINY)

DO 30 K=2,4
L = K
CALL GSLN(L)
DO 20 M=1,51

SINY(M) = SINY(M)*0.667
20 CONTINUE
CALL GPL(51,SINX,SINY)
30 CONTINUE

Next output a set of polymarkers starting with
the default marker (3 = asterisk)

CALL GMSG(1,'GKS can generate polymarkers')

DO 40 K=1,21
SINX(K)
SINY(K)

40 CONTINUE

FLOAT(K-1)*0.05
~-SIN(SINX(K)*TWOPI)

CALL GPM(21,SINX,SINY)

DO 60 K=1,5
M = K
CALL GSMK(M)
DO 50 M=1,21
SINY(M) = SINY(M)*0,75
50 CONTINUE
CALL GPM(21,SINX,SINY)
60 CONTINUE

Finally, output a text string - default is font 1,
select a reasonable character height and spacing

CALL GMSG(1,'GKS can generate text')
CALL GSCHH(0.03)

CALL GSCHSP(0.80) -

CALL GTX(0.05,0.00,'sine curves')

Deactivate and close the workstation and GKS

CALL GDAWK(1)
CALL GCLWK(1)
CALL GCLKS
STOP

END
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{ }
{ EXAMPLE 2 IN HL/GKS }

subroutine maker( radius, v)
{ generate up the vectors of a circle }

real radius
vector v(37)

begin
angle= 0.0

do 10 i=1,37
r= angle* 3.14159/180.
v(i)= (radius*cos(r)+1.5, radius*sin(r)+1.5)
angle= angle+10

continue

return
end

SEGMENT CIRCLES, SUBCIR, TITLE(2), CURVE(2),
XAXIS, YAXIS, FRAME, PICTURE(2)
VECTOR CUR(38), ROUND(37), POINT(2),
CUR1(100), CUR2(100), SIDE(5)
TRANS NT(2)
WORKSTATION PLOTTER, T4014
DATA SIDE/0.0,0.0; 3.0,0.0; 3.0,2.0; 0.0,2.0; 0.0,0.0/

BEGIN {GKS open}

{ set two transformations }

NT(1)= <FROM: (-1.5,0.0); (4.5,3.0)
TO: (0.0,0.5); (1.0,1.0)>
NT(2)= <FROM: (-1.0,-1.0); (4.0,3.0)
TO: (0.0,0.0); (1.0,0.5) >
ANGLE= 0.0 :

DO 10 I=1, 38
R=ANGLE* 3,14159/180.
CUR(I)=( 0.2*(COS(R)+R*SIN(R))+1.
0.2*(SIN(R)-R*COS(R))+1.5)
ANGLE= ANGLE+10.
CONTINUE

{ create the images on the upper-half plane of output }

OPEN CIRCLES WITH NT(1)
R=0.2
CALL MAKER(R,ROUND)
CIRCLES= POLYLINE ROUND(1:37)
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DO 20 I=1,6

R=R+0.1

CALL MAKER(R,ROUND)

CIRCLES= CIRCLES+POLYLINE ROUND(1:37)
CONTINUE

CLOSE

OPEN SUBCIR
CALL NUMBER(0.0,0.3,30.0,SUBCIR)
CALL NUMBER(0.3,0.6,15.0,SUBCIR)
CALL NUMBER(0.6,0.8,4.0,SUBCIR)
CLOSE

OPEN CURVE(1)
CURVE(1)= POLYLINE CUR(1:38)

DO 30 I=1,19 '
CUR(I)=(CUR.XCOORD(2*I), CUR.YCOORD(2*I))
CONTINUE

CURVE(1)= CURVE(1)+POLYMARKER CUR(1:19)
CLOSE

OPEN TITLE(1)
TITLE(1)= TEXT <HEIGHT: 0.09,
SPACE: 0.15>
'A POLAR PLOT WITH GRID'
AT (0.6,2.6)
CLOSE

PICTURE(1)= TITLE(1)+ CURVE(1) < SCALE: (0.5,0.7)
AT: (1.5,1.5) > + CIRCLES

{ create the images on the lower-half plane of'output

OPEN TITLE(2) WITH NT(2)
TITLE(2)= TEXT <HEIGHT: 0.1,
' SPACE: 0.2 >
'XGRAF WITH A GRID' AT (0.5,2.5)
CLOSE

OPEN FRAME
FRAME= POLYLINE SIDE(1:5)
POINT(1)= (0.0,0.0)
POINT(2)= (0.0,2.0)

DO 50 I=1,10
DO 60 J=1,2
POINT.XCOORD(J)=POINT.XCOORD(J)+0.3
FRAME= FRAME+POLYLINE POINT(1:2)
CONTINUE
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DO 70 I=1,10
DO 80 J=1,2
POINT,.YCOORD(J)=POINT.YCOORD(J)+0.2
FRAME= FRAME+ POLYLINE POINT(1:2)
CONTINUE
CLOSE

DO 90 I=1,100
X= FLOAT(I)/ 100.
CUR1(1)=(X*3,0,EXP(-3.*X)*SIN(X*8.%3,14159)+1,0)
CUR2(I)=(X*3,.0,EXP(-3.*X)*COS(X*8.*3.14159)+1.0)
CONTINUE

OPEN CURVE(2)
CURVE(2)=POLYLINE CUR1(1:100); CUR2(1:100)
CLOSE

OPEN XAXIS
XAXIS= TEXT <HEIGHT: 0.05,
SPACE: 0.93>
'0.0 0.1 0.2 0.3 0.4 0.5 0.6"
AT (-0.1,-0.2);
'0.7 0.8 0.9 1.0'" AT (1.96, -0.2);
< HEIGHT: 0.08, SPACE: 0.15>
'X AXIS WITH GRAF TYPE' AT (0.5,-0.5)
CLOSE

OPEN YAXIS
YAXIS= TEXT <UPVEC:(-1.0,0.0)
HEIGHT: 0.05,
SPACE: 0.8 >
'-1,0 -0.6 -0.2 +0.2 +0.6 +1.0°
AT (-0.1,-0.1);
<SPACE: 0.12, HEIGHT: 0.07 >
'Y AXIS WITH GRAF TYPE' AT (-0.32,0.2)
CLOSE

PICTURE(2)= FRAME+ CURVE(2)+ TITLE(2)+ XAXIS+ YAXIS
DISPLAY PICTURE(2) ON PLOTTER

DISPLAY PICTURE(1), SUBCIR ON PLOTTER

STOP

END {GKS close}

{ number the radius lines between two circles }
SUBROUTINE NUMBER(r1,r2,degree,sub:OPEN)

VECTOR p(2)

SEGMENT sub

REAL degree

BEGIN
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angle= 0.0
j=360./degree

DO 10 I=1,]j
p(1)= (r1*cos(angle)+1.5, r1*SIN(angle)+1.5)
p(2)= (r2*CoS(angle)+1.5, r2*SIN(angle)+1.5)
sub= sub+ POLYLINE p(1:2)
angle=angle+degree*3.14159/180.

CONTINUE

RETURN
END
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EXAMPLE 2 IN GKS

generate two circle arrays
SUBROUTINE MAKER(RIDUS,VX,VY)
REAL VX(37),VY(37)

REAL RIDUS

ANGLE= 0.0

DO 10 I=1,37

R= ANGLE* 3.14159/180.
VX(I)=RIDUS*COS(R)+1.5
VY(I)=RIDUS*SIN(R)+1.5
ANGLE= ANGLE+10
CONTINUE

RETURN

END

REAL CURX(38),CURY(38)

REAL ROUNDX(37),ROUNDY(37)

REAL POINTX( 2),POINTY( 2)

REAL CUR1X(100),CUR1Y(100)

REAL CUR2X(100),CUR2Y(100)

REAL SIDEX( 5),SIDEY( 5)

CHARACTER*4 GWF1, GWF2, GF

REAL GTRAN1(2,3), GTRAN2(2,3)

DATA SIDEX/ 0 , 3.00, 3.00, O , 0 /
DATA SIDEY/ O , 0 , 2.00, 2.00, O /

open GKS system

GF='-ERR'

OPEN{(UNIT=20,FILE=GF, STATUS="'UNKNOWN"')

CALL GOPKS(20)

CALL GOPWK(1,8,100)

CALL GACWK(1)

GWF1='-PLOTTE'

GWF2='-T4014 '
OPEN(UNIT=14,I0STAT=10S,FILE=GWF1,STATUS="'UNKNOWN')
OPEN(UNIT=15,I0STAT=10S,FILE=GWF2,STATUS="UNKNOWN"')
CALL GOPWK( 2,14,100000)

CALL GOPWK( 3,15,100000)

set two transformatlons of number 1 and number 2
CALL GSWN( 5,4.5,0. 0 3.0)

CALL GSVP( 0 6,1.0,0 5,1.0)
CALL GSWN( 1.0,4.0,-1. 0 3.0)
CALL GSVP( 0.0, .0,0.0,0.5)

create the upper-half image
ANGLE= 0.0

DO 10 I=1, 38

R=ANGLE* 3,14159/180.
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CURX(I)= 0.2*(COS(R)+R*SIN(R))+1.3
CURY(I)=0.2*(SIN(R)-R*COS(R))+1.5
ANGLE= ANGLE+10.

CONTINUE

CALL GSELNT( 1+1-1)

CALL GCRSG( 1)

R=0.2

CALL MAKER(R,ROUNDZX, ROUNDY)

CALL GPL(37,ROUNDX, ROUNDY)

DO 20 I=1,6

R=R+0.1

CALL MAKER(R,ROUNDX, ROUNDY)

CALL GPL(37,ROUNDX, ROUNDY)
CONTINUE

CALL GCLSG

CALL GCRSG( 2)

CALL NUMBER(0.0,0.2999,30.0)

CALL NUMBER(0.2999,0.5999,15.0)
CALL NUMBER(0.5999,0.7999,4.0)
CALL GCLSG ‘

CALL GCRSG( 5)

CALL GPL(38,CURX, CURY)

DO 30 I=1,19

CURX(I)=CURX(2*1I)
CURY(I)=CURY(2*1)

CONTINUE

CALL GPM(19,CURX, CURY)

CALL GCLSG

CALL GCRSG( 3)

CALL GSCHSP( 0.15)

CALL GSCHH( 0.09)

CALL GTX(0.6,2.6,'A POLAR PLOT WITH GRID')
CALL GCLSG

CALL GCRSG(12)

CALL GEvTM(0.,0.,0.,0.,0.,1.,1.,0,GTRAN1)
CALL GINSG( 3,GTRAN1)

CALL GEVTM(1.5,1.5,0.0,0.0, O ,0.5,0.7,0,GTRAN1)
CALL GINSG( 5,GTRAN1)

CALL GEVTM(O0.,0.,0.,0.,0.,1.,1.,0,GTRAN1)
CALL GINSG( 1,GTRAN1)
CALL GCLSG

CALL GRENSG(12,10)

create lower-half image
CALL GSELNT( 2)

CALL GCRSG( 4)

CALL GSCHSP( 0.2 )

CALL GSCHH( 0.1)

CALL GTX(0.5,2.5,'XGRAF WITH A GRID')
CALL GCLSG

CALL GCRSG( 9)

CALL GPL( 5,SIDEX, SIDEY)
POINTX(1)=0.0
POINTY(1)=0.0
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POINTX(2)=0.0
POINTY(2)=2.0
DO 50 I=1,10
DO 60 J=1,2

POINTX(J)=POINTX(J)+0.3
CALL GPL( 2,POINTX, POINTY)

CONTINUE
POINTX(1)=0.0
POINTY(1)=0.0
POINTX(2)=3.0
POINTY(2)=0.0
DO 70 I=1,10
DO 80 J=1,2

POINTY(J)=POINTY(J)+0.2
CALL GPL( 2,POINTX, POINTY)

CONTINUE

CALL

GCLSG

DO 90 I=1,100
X= FLOAT(I)/ 100.
CUR1X(I)=X*3.0

CUR1Y(I)=EXP(-3.*X)*SIN(X*8.,%*3,

CUR2X(I)=X*3.,0

CUR2Y(I)=EXP(-3.*X)*COS(X*8.%*3

CONTINUE

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

GCRSG( 6)

GPL(100,CUR1X, CUR1Y)
GPL(100,CUR2X, CUR2Y)

GCLSG

GCRSG( 7)-

GSCHSP( 0.

GSCHH( 0.
GTX(-0.1
GTX(1.

GSCHSP( 6.

GSCHH( 0.
GTX(0.5,
GCLSG

GCRSG( 8)

GSCHSP( 0.

GSCHH( 0.
GSCHUP(-1
GTX(-0.1

GSCHSP( 0.

GSCHH( 0.
GTX(-0.32
GCLSG

'GCRSG(12)

GEVTM(O0.

-0.5,

93)
05)

y~0.2,

15)
08)

8 )
05)

'0.0 0.1
-0.2,

.0,0.0)

-0.1
12)
07 )
,0.2,

, 0.

'Y AXIS WITH GRAF TYPE')

1

GINSG( 9 GTRAN1

GEVTM(O0.

, 0.

0.
)
0.

GINSG( 6, GTRAN1)

GEVTM(O0.

,0.

,0.

GINSG( 4, GTRAN1)

GEVTM(O0.

0.

, 0.

y 0.
, 0.
0.
/0.

.14159)+1.,0

14159)+1.0

0.2 0.3 0.4 0.5 0.6")
'0.7 0.8 0.9 1.0")

r

'X AXIS WITH GRAF TYPE')

.0 -0.6 -0.2 +0.,2 +0.6 +1

,0,GTRAN1)
1.,0,GTRANT)
,0,GTRAN1)

,0,GTRAN1)

.0")
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CALL GINSG( 7,GTRAN1)

CALL GEvVTM(O0.,0.,0.,0.,0.,1.,1.,0,GTRAN1)
CALL GINSG( 8,GTRAN1)
CALL GCLSG

CALL GRENSG(12,11)

display the created images onto the workstation 2
CALL GACWK ( 2)

CALL GCSGWK ( , 11)
CALL GCSGWK( 2,10)
CALL GCSGWK( 2, 2)
CALL GDAWK( 2)

CALL GDAWK (1)
CALL GCLWK(1)
CALL GCLWK( 2)
CALL GCLWK( 3)
CALL GCLKS
STOP

END

SUBROUTINE NUMBER(R1,R2,DEGREE)

number the radius lines between two circles
REAL PX( 2),PY( 2)

REAL DEGREE

ANGLE= 0.0
J=360./DEGREE

DO 10 I=1,J
PX(1)=R1*COS(ANGLE)+1.5
PY(1)=R1*SIN(ANGLE)+1.5
PX(2)=R2*COS(ANGLE)+1.5
PY(2)=R2*SIN(ANGLE)+1.5
CALL GPL( 2,PX, PY)
ANGLE=ANGLE+DEGREE*3.14159/180.
CONTINUE

RETURN

END
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{ }
{ EXAMPLE 3 IN HL/GKS }

VECTOR ROUND(37), MARKS(2), MARK

VECTOR PART1(18),PART2(18), PART3(18)

VECTOR PART4(18), OUTP(18), SIDES(5), PSIDE(5),DT

SEGMENT PICTURE, CENTER, PIE, PART

SEGMENT TITLE, PATHS

TRANS NT(3)

WORKSTATION PLOTTER

DATA MARKS/-1.0,0.0; 1.0,0

DATA SIDES/0.0,0.0; 0.3,0.
0.0,0.0/

.0/
0; 0.3,0.2; 0.0,0.2;
BEGIN {GKS}

REST= 10.%*3.14159/180.
ANGLE= REST

DO 10 I=1,37
ROUND(I)= (COS(ANGLE), SIN(ANGLE))
ANGLE= ANGLE+REST

NT(1)= <FROM:(-2.0,-5.5); (5.5,2.0)>
NT(2)= <FROM:(0.0,0.0); (5.2,5.2)>
NT(3)= <FROM:(-4.5,-3.0);(2.0,3.5)>

{ CREATE THE UPPER-LEFT PORTION OF THE IMAGE }
{ }
OPEN CENTER WITH NT(1)

CENTER= POLYLINE ROUND( 1:37)
CLOSE

OPEN PICTURE
PICTURE= POLYMARKER <TYPE:'CIRCLE'>
MARKS(1:2)
+ CENTER
CLOSE

PICTURE= PICTURE <SCALE: (1.5,0.5)>
+ PICTURE <SCALE: (1.5,0.5)

ROT: 60.0D >
+ PICTURE <SCALE: (1.5,0.5)

ROT: 120.0D >

{ CREATE THE LOWER-LEFT PORTION OF THE IMAGE }
{ }
OPEN PATHS WITH NT(2)
MARK= (1.0,2.0)
PATHS= TEXT <FONT: 'C_ITALIC',
HEIGHT: 0.1,
SPACE: 0.15>
"GKS' AT (1.1,2.0);
<PATH:'LEFT'>
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'"GKS' AT (0.9,2.0);
<PATH: 'UP'>

"GKS' AT (1.0,2.1);
<PATH: 'DOWN'>

'"GKS' AT (1.0,1.9)

+ POLYMARKER <TYPE: 'CIRCLE'>
MARK
CLOSE

PATHS=PATHS <AT:(1.0,2.0)
ROT: -45.0D>
+PATHS <AT:(1.0,2.0)
ROT: 45.0D
SHIFT:(1.0,0.0) >

OPEN TITLE
TITLE= TEXT <FONT: 'ENGLISH'
PATH: 'RIGHT',
HEIGHT: 0.15>
'"WELCOME TO' AT (0.65,1.02)
CLOSE

% CREATE THE RIGHT PORTION OF THE IMAGE %
CALL GETP(-120.0,360.0,PART1)

CALL GETP(0.0,70.0,PART2)

CALL GETP(70.0,110.0,PART3)

CALL GETP(110.0,155.0,PART4)

CALL GETP(155.0,240.0,0UTP)

OPEN PART WITH NT(3)
CALL BLOCK(198.0,SIDES,PSIDE,DT)
PART= POLYLINE OUTP(1:18); PSIDE(1:5)
+ TEXT <FONT: 'S _ROMAN'
HEIGHT: 0.04,
SPACE: 0.15>
'"FOUR' AT(DT.XCOORD+0,04,DT.YCOORD+0.11);
'23.6%' AT (DT.XCOORD+0.03,DT.YCOORD+0.01)

CLOSE
OPEN PIE
PIE= FILLAREA <INSIDE:'SOLID'>
PART1(1:18);
PART2(1:18);
PART3(1:18);
PART4(1:18)

CALL BLOCK(300.0,SIDES,PSIDE,DT)
PIE= PIE + FILLAREA
<COLOUR:'WHITE'> PSIDE(1:5)
+ TEXT 'FIVE' AT (DT.XCOORD+0.04,
DT.YCOORD+0.11);
"33.3%' AT (DT.XCOORD+0.03,
DT.YCOORD+0.01)
CALL BLOCK(35.0,SIDES,PSIDE,DT)



PIE= PIE + FILLAREA PSIDE(1:5)
+ TEXT 'ONE' AT (DT.XCOORD+0.05,
DT.YCOORD+0.11):
'19.4%"' AT (DT.XCOORD+0.04,
DT.YCOORD+0.01)
CALL BLOCK(100.0,SIDES,PSIDE,DT)
PIE= PIE+ FILLAREA PSIDE(1:5)
+ TEXT 'TWO' AT (DT.XCOORD+(0.05,
DT.YCOORD+0.11);
"11.1%' AT (DT.XCOORD+0.04,
DT.YCOORD+0.01)
CALL BLOCK(145.0,SIDES,PSIDE,DT)
PIE= PIE+ FILLAREA PSIDE(1:5)
+ TEXT 'THREE' AT (DT.XCOORD+0.03,
DT.YCOORD+0.11);
'12.5%' AT (DT.XCOORD+0.,03,
DT.YCOORD+0.01);

<HEIGHT: 0.15,
FONT: 'C_ITALIC',
SPACE: 0.2>
'"PIE CHARTS' AT (-0.6,1.7);
<FONT: 'S_GREEK',
‘“HEIGHT: 0.09,
SPACE: 0.20>
"FIRST' AT (-0.25,1.3)
CLOSE
PIE= PIE+PART<SHIFT: (-0.1,-0.1)>

DISPLAY PIE ON PLOTTER
DISPLAY TITLE+PATHS ON PLOTTER
DISPLAY PICTURE ON PLOTTER
STOP

END

{ GET SOME PART OF A CIRCLE }
{ }
SUBROUTINE GETP(A1,A2,POINT)
VECTOR POINT(18), DIST

REAL RADIUS

BEGIN

IF (A1.LT.0.0) THEN
Al= 360.+A1

ENDIF

IF (A2.LT.0.0) THEN
A2= 360.+A2

ENDIF

ANGLE= A1

R1=((A2-A1)/2.+A1)*3,14159/180.
DIST= (0.1*COS(R1), O,1*SIN(R1))
POINT(1)= (DIST.XCOORD,DIST.YCOORD)
POINT(18)= POINT(1)
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ADDING= (A2-A1)/14.

DO 10 I=1,15
RADIUS= ANGLE*3.14159/180.
POINT(I+1)= (COS(RADIUS)+DIST.XCOORD,
SIN(RADIUS)+DIST.YCOORD)
ANGLE= ANGLE+ ADDING
CONTINUE

RADIUS= A2*3,14159/180.

POINT(17)= (COS(RADIUS)+DIST.XCOORD,
SIN(RADIUS)+DIST.YCOORD)

RETURN

END

{ GET A LABELLING BLOCK }

{ }
SUBROUTINE BLOCK(A,VS,PS,VT)
VECTOR VS(5), VT

VECTOR PS(5)

BEGIN
A= A*3,14159/180.
VT= (0.7*%COS(A), 0.7*SIN(A))

DO 10 I=1,5
PS(I)= (VS.,XCOORD(I)+VT.XCOORD,
VS .YCOORD(I)+VT.YCOORD)
CONTINUE

RETURN
END
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{ }
{ Example 4 in HL/GKS }
{ : }
SEGMENT STAR(2),STARS(2),FLAG(2),FLAGS(2),NAME(2),
TITLE
VECTOR POINT(11), SIDE1(5), DIST,OUT(5), IN(5),
LEAF(26), SIDE2(5), PART1(5), PART2(5)
TRANS NT(3)
WORKSTATION PLOTTER, T4010
DATA SIDE1/1.0,3.0; 4.0,3.0; 4.0,5.0; 1.0,5.0; 1.0,3.0/
paTa our/1.0,2.0; 0.0,1.3; 0.41,0.2; 1.61,0.2; 1.9,1.3/,
IN/0.8,1.35; 0.65,0.9; 1.0,0.65; 1.38,0.9;
.25,1.35/
DATA SIDEZ/O 0,0.0; 6.0,0.0; 6.0,3.0; 0.0,3.0; 0.0,0.0/
DATA LEAF/3. 0,2 5; 2.8,2.0; 2.6,2.2; 2.9,1.5; 2.25,1.75;
2.3,1.5; 1.9,1.4; 2.3,1.3; 2.15,1.05; 2.9,1.2;
2.5,0.8; 2.9,1.0; 2.9,0.2; 3.1,0.2; 3.1,1.0;
3.5,0.8; 3.1,t.2; 3.85,1.05; 3.7,1.3; 4.2,1.4;
3.7,1.5; 3.8,1.7; 3.1,1.5; 3.4,2.2; 3.2,2.0;
3.0,2.5/,
PART1/0.0,0.0; 1.5,0.0; 1.5,3.0; 0.0,3.0; 0.0,0.0/
BEGIN { GKS initialisation }
{ set transformations }
NT(1)= <FROM:(0.0,-4.0); (9.0,9.8)
TO:(0.5,0.0); (1.0,1.0)>
NT(2)= <FROM:(0.0,-3.2); (18.0,17.8)
T0:(0.0,0.0); (0.5,1.0)>
NT(3)= <FROM:(0.0,0.0); (1.0,0.2)
TO:(0.0,0.75); (1.0,0.95)>
{ create Chinese national flags onto the }
{ right-half plane of the output image }
DO 10 I=1,5
J=(2%1)~1
K=2%*1
POINT(J)= OUT(I)
POINT(K)= IN(I)
CONTINUE
POINT(11)= POINT(1)
{ create the centre Chinese flag }
OPEN STAR(1) WITH NT(1)
STAR(1)= FILLAREA <INSIDE: 'SOLID'
COLOUR: 'WHITE' >

POINT(1:11)
CLOSE
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STAR(1)= STAR(1) <AT:(1.0,1.0)
SCALE:(0.3,0.3)>
STAR(2)= STAR(1) <AT:(1.0,1.0)
SCALE: (0.54,0.54)>
STARS(1)= STAR(1) <AT:(1.0,1. 0)
SCALE:(0.3,0 3)>
STARS(2)= STARS(1)<AT:(1.0,1.0)
SCALE: (0.5 0 5)>
STAR(1)= STAR(1) <SHIFT:(0.6,3.5)>

OPEN FLAG(1)
FLAG(1)= FILLAREA <COLOUR:'BLACK'>
SIDE1(1:5)
+ TEXT <HEIGHT: 0.3,
FONT: 'C_ROMAN',
SPACE: 0.8>
"CHINA' AT (1.4,2.2)
+ STAR(1)
CLOSE

FLAGS(1)= FLAG(1) <AT:(1.6,4.5)
SCALE:(0.3,0.3)>
R= 0.65
DIST= (R*COS(10.*3.14159/180.)+0.6,
R*SIN(10,%¥3.14159/180.)+3.5)
STAR(2)= STAR(2) <SHIFT:(DIST.XCOORD,DIST.YCOORD)>
STAR(2)= STAR(2)+ STAR(2) <ROT:-36.0D
AT:(1.6,4.5)>
+ STAR(2) <AT:(1.6,4.5)
ROT:-72.0D>
+ STAR(2) <AT:(1.6,4.5)
ROT:-108.0D>
FLAG(1)= FLAG(1)+ STAR(2)

{ create the surrounding Chinese flags }

R= 0.24
DIST= (R*COS(10.*3.14159/180.)+0.6,
R*SIN(10.%¥3,14159/180.)+3.5)
STARS(2)= STARS(2) <SHIFT:(DIST.XCOORD,DIST.YCOORD)>
STARS(2)= STARS(2)+ STARS(2)<AT:(1.6,4.5)
ROT:-36.0D>
+ STARS(2)<AT:(1.6,4.5)
ROT: -72.0D>
+ STARS(2)<AT:(1.6,4.5)
ROT:-108.0D>
FLAGS(1)= FLAGS(1)+ STARS(2)
R=4.5
DIST=(R*COS(260.0*3.14159/180.)+1.5,
R*SIN(260.0*%3,14159/180.)+0.5)
FLAGS(1)= FLAGS(1) <SHIFT:(DIST.XCOORD,DIST.YCOORD)>
FLAGS(1)= FLAGS(1) <AT:(2.5,4.0)
ROT: 45.0D>
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+FLAGS(1) <AT:(2.5,4.0)
ROT: 80.0D>

+FLAGS(1) <AT:(2.5,4.0)
ROT:10.0D>

{ create the title of the output image }

OPEN TITLE WITH NT(3)
TITLE= TEXT <FONT: 'ENGLISH'
HEIGHT: 0.06,
'SPACE: 0.04>
'"FRIENDSHIP' AT (0.15,0.1);
'"OF' AT (0.38,0.0)

CLOSE

{ create Canadian national flags onto the }
{ left-half plane of the output image }
DO 50 I=1,5

PART2(I)= (PART1.XCOORD(I)+4.5, PART1.YCOORD(I1))
CONTINUE

{ create the centre Canadian flag }

OPEN FLAG(2) WITH NT(2)
FLAG(2)= POLYLINE SIDE2(1:5)
+ FILLAREA <INSIDE:'HATCH'> LEAF(1:
<INSIDE:'SOLID'> PARTI1 (1
PART2(1:5) ‘

26);
:5);

CLOSE

OPEN NAME(1)
NAME(1)= TEXT <FONT:'S GREEK',
HEIGHT: 0.6,
SPACE: 0.3>
"CANADA' AT (0.0,0.0)
CLOSE
OPEN NAME(2)
NAME(2)= TEXT <FONT:'C_4ITALIC',
: HEIGHT: 0.10,
SPACE: 1.0 >
"CANADA' AT (0.0,0.0)
CLOSE

{ create the surrounding Canadian flag }

FLAGS(2)= FLAG(2) <SCALE: (0.3,0.36)
SHIFT: (8.0,3.0)>
+ NAME(2) <SHIFT: (8.5,2.5)>

FLAG(2)= FLAG(2) <SHIFT: (6.5,7.5)>
+ NAME(1) <SHIFT: (7.0,6.2)>

FLAGS(2)= FLAGS(2) <ROT: -10.0D,
"~ AT: (9.5,7.5) >
+ FLAGS(2) <ROT: -50.0D,



AT: (9.5,7.5) >
+ FLAGS(2) <ROT: -90.0D,

AT: (9.5,7.5) >

DISPLAY FLAG(2), FLAGS(2) ON PLOTTER

DISPLAY FLAG(1)+ FLAGS(1), TITLE ON PLOTTER
STOP
END
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VI. CONCLUSION AND PROPOSALS

As an extended language, a number of syntax and semantics
rules, based on the GKS system, are supplemented 1in the
graphically oriented extension of HL/GKS. The two kinds of
statements, the host language FORTRAN 77 statements and the
graphical extension statements of HL/GKS, can be freely
interspersed 1in an HL/GKS program, providing full graphical and
nongraphical support. Some examples of interspersed statements
are presented in Figure 45.

REAL r1, r2
VECTOR vg, vt(2)

SEGMENT house
DATA ri1/1.3/, vt/0.0,0.0: 1.0,1.5/, r2/2.0/
)

vg = (1.5, 2.8*sin(0.2)
vg = (rt, r2)
OPEN house
{any FORTRAN statements}
house = POLYLINE side(1:10)
{any FORTRAN statemets}
house = house +TEXT 'welcome to GKS' AT vg
{any FORTRAN statements}
CLOSE
DO 10 i=1,15
{any graphical statements}
=k + 1

vg = (vg.xcoord+i, vg.ycoord+k)
house = house + house <SCALE: (r1,r2),
AT: vg >
{any FORTRAN statements}
10 CONTINUE

Figure 45 - Some Interposing Instances in HL/GKS

The precompiler is not case sensitive as to keywords and
variables, i.e., upper and lower case characters may be used.
The programming structures WHILE and REPEAT blocks and a free
layout of statements have been introduced in HL/GKS. Moreover,

blank lines and freely-placed comments within the braces "{" and



86

"}" are allowed. Modular programming 1is available with the
possibility of'precompiling parts of a program. More reasonable
and understandable language patterns compared to the subroutine
invocations of GKS render HL/GKS appealing for both learning and
utilizing the system. The state restrictions of GKS and many
system specifications are simplified in HL/GKS, they are
basically controlled and generated by the precompiler.

In GKS, the segment transformation order is predefined and
fixed to the order of scaling, rotation and translation. For
any other order, it is the responsibility of the programmer to
accumulate tﬁe transformations in the order desired one by one
into an appropriate transformation matrix.

CALL GEVTM(x0,y0,dx,dy,phi,fx,fy,sw,mout)

CALL GACTM(mout,xO,&O,dx,dy,phi,fx,fy,sw,mall)
The declaration and setting of the evaluate and accumulate
matrices for differently ordered transformations are also the
programmer's responsibility. In contrast, a pattern of
transformations is applied in HL/GKS instead of the matrix
assignment of GKS. The keywords in a transformation pattern
refer to the individual transformation steps and the order of
the keywords 1is significant. The character D appended to the
rotation angle means that it is measured by degrees instead of
radians. A compariSon of segment transformations in the order
of translation, rotation, and scaling, in HL/GKS and GKS, 1is
given in Figure 46.
The basic picture entity of GKS, the segment, is only

single—level’structured. No access is possible to the elements
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house < AT: atv,
SHIFT: shv,
ROT: ra D,
SCALE: scv >
REAL trani(2,3), tran2(2,3)
ri = ra *(3.14159/180.)
CALL GEVTM(atvx,atvy,shvx,shvy,0.,1.,1.,0,trant)
CALL GACTM(trant,0.,0.,0.,0.,r1,1.,1.,0,tran2)
CALL GACTM(tran2,0.,0.,0.,0.,0.,scvx,scvy,0,trant)
CALL GSSGT(3,trant)

Figure 46 - An Arbitrarily Ordered Segment Tansformation in
Both Languages

of a compounded segment. A segment can not be updated after it
has been created. In addition, most segment operations are
restricted to the system state bounds. For example, the
insertion segments into an open segment must occur in the state
of "at most one segment open" with the additional condition that
there are segments . in WISS (workstation independent segment
storage). In HL/GKS, with the data type SEGMENT supplied, a
hierarchical modelling facility for segments has been provided.

A segment can be superimposed or updated with any element after
it has been created. Multiple modglling of a segment is
available by allowing a reference to 1itself; segment
redefinition is also possible by referring to other segments.

Some instances of segment modelling are presented in Figure 47.

house = house + door < AT:(4.0,5.2)>
+ window(1) <scale:(0.8,1.2)>
+ roof

house = house - window(1) + window(2)

house = building + tree

Figure 47 - Segment Modelling in HL/GKS
No state restrictions of GKS are imposed by the segment

operations of HL/GKS except the state of "at most one segment
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open"” which 1is provided by the statement pair of segment open
and close.

The two attribute assignment modes of GKS, bundled and
individual, are internally flagged and assigned to a bundle
table only by the keyword TABLE or to individual by keywords in
the attribute assignment. No restrictions have been placed on
the assignment modes provided. The states of "GKS open", "GKS
closed", "at least one workstation open", and "at least one
workstation active" are all transparent to the HL/GKS
programmer. The function restrictions on the states of GKS have
been reduced by the clarified syntax and semantics of HL/GKS.
Most specifications of GKS éystem are collected as attribute
groups to be assigned to a related data type, thus providing the
éoncept of functional performance .instead of individual
invocations of subroutines in GKS. The syntax design of HL/GKS
keeps the form for 1its statements consistent with the host
language FORTRAN 77, e.g., declaration, assignment, and input
statements. The semantics of HL/GKS have been kept aé close as
possible to the definition of GKS. Most keywords used in HL/GKS
are directly inferred from the corresponding definitions of the
GKS document, providing a natural meaning for each. The
workstation types of a configuration are predefined in the
precompiler for proper reference of the workstations.

The viewing pipeline of GKS is reflected in definitions of
HL/GKS. Multiple assignment of segments and workstations 1in a
display statement is parsed to multiple output of segments onto

several display workstations simultaneously. Output primitives



89

are included in the output streams of HL/GKS, as for the GKS
definition. The concept of multiple assighment is also
applicable to primitive modelling, simplifying multiple
primitive assignment with an identical primitive type.

The overloading of numerical parameter assignments of
segments, transformations, and attributes of GKS has been
removed by the wuse of name references of the parameters.
Graphical parameters may appear in a subroutine formal parameter
list, opening the graphical communications among main program
and subroutines, which facilitates the graphical processing to
each global and local function.

The main disadvantage of the HL/GKS implementation is due
to the extra storage space required for the precompiler and the
additional execution time required for the precompiling. The
shortcoming will becgme less important with the development of a
GKS chip and the popularity of GKS applications.

Stemming from the experience with the HL/GKS
implementation, several suggestions and proposals for further

development of HL/GKS are offered as follows:

. extending HL/GKS for three-dimensional graphics, either
based on the functional mapping of the three-dimensional GKS ISO
draft or by the development of new system routines to be

included in its runtime library.

. supplementing the set of output primitives, e.g., by
square and circle, wusing the same assignment rules as the

primitives of HL/GKS. The parameters of a new primitive type
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can be assigned with the same syntax as for primitive attributes
while the new primitive is named with an appropriate keyword.
For example, the primitive circle may be specified as:

CIRCLE left <CENTRE: (0.0,1.2),

RADIUS: 1.5 >

. adding more practical functions to the runtime library
of HL/GKS, such as a comparison of two segments egseg(f1,f2:
segment ), or test for presence of a vector in a segment
member (v:vector; f:seément), etc., to facilitate implementation

of graphical algorithms.

extending the syntactic and semantic definitions of
HL/GKS to other GKS levels, as for instance adding the input

modes sample and event of GKS, to the GKS level 2C.

With the development of GKS chips and an increasing
popularity of the GKS standard, the characteristics of the high-
level graphics language HL/GKS will become attractive and
significant, as it promises higher productivity of programmers

and increased efficiency of GKS application programs.
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APPENDIX A - SYNTAX IN BACKUS-NAUR FORM

<GKS Program>::= { <Main Block>
| <Sub Block> 1},

<Main Block>::= {<Declaration>},
BEGIN <GKSTMT>
STOP END

<Declaration>::= <Graph Types> <Identifier> <Array>
{ , <Identifier> <Array> 1},

| DATA <Identifier>
/ <Real List> { ; <Real List> }, /

<Graph Types>::= VECTOR

SEGMENT

TRANS

WORKSTATION
<Identifier>::= <Letter> { <Letter> | <Digit> }'*
<Digit>::= 0 | <First Int>

<First Int>::= 1| 2| 3| 4| 5| 6| 7| 8| 9

<Letter>::= a| bl c| d| e} £| g| h| i| J| k| 1| m| n}
ol p| g r| sy t| u| v| wj x| y| 2
al B| ¢| p| E| F| G| H| 1| J| K| L| M| N]
ol p| | R| s| T| U} v| w| x| ¥

<Array>::= ( <Int> ) | <Empty>

<Int>::= <Sign> <First Int> { <Digit> 1},
<Sign>::= +| -| <Empty>

<Real>::= <Sign> <Digit> . {<Digit>},
<Real List>::= <Real> , <Real>»

<GKSTMT>::= { <Seg Create>

<Seg Operatel>
<Read STMT>

<Seg Operate2>
<Seqg Operate>
<Message>

<Clear Works>
<Redraw Works> 1},

<Seg Create>::= OPEN <Identifier> <Array>
<Norm Trans>
{ { ABOVE



| BELOW }
<Identifier> <Array>
| <Empty> '}
<Seg Operate>
<Seg Operatel>
<Redraw Works>
<Message> 1},
CLOSE

<Norm Trans>::= WITH { <Identifier> <Array>
’ | <Norms> }

| <Empty>
<Norms>::= < { FROM : <Range> ; <Range>
TO : <Range> ; <Range>
’ }1 >

<Range>::= <Identifier> <Array>
| ( <Expression> , <Expression> )

<Seg Operate>::= CALL <Sub Call>
| WHILE ( <Boolean Exp> ) DO
<GKSTMT>
ENDWHILE
| REPEAT  <GKSTMT>
UNTIL ( <Boolean Exp> )
CLIPPING ON
CLIPPING OFF
<Idnetifier> <Array>
= { <Norms> _
( <Expression> , <Expression> )
<Expression> }

<Terms>::= <Term> | <Primitives>
<Expression>::= <Terms> { { +| - } <Terms> },
<Term>::= <Factor> { { *| /| . } <Factor> 1},
<Factor>::= éInt>

<Real>

<Identifier> <Array> <Seg Trans>
( <Expression> )

<Seg Trans>::= < { AT: <Range>

SHIFT: <Range>

ROT: { <Real> { D| <Empty> }
| <Identifier> }

SCALE: <Range>

’ }1 >

| <Empty>

<Int List>::= <Int> : <Int>
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<Primitives>::= POLYLINE <Poly Attri>
<Identifier> ( <Int List> )
{ ; <Poly Attri>
<Identifier> ( <Int List> ) 1},
| POLYMARKER <Poly Attri>
<Identifier> { ( <Int List> )
| <Empty> }
{ ; <Poly Attri>
<Identifier> { ( <Int List> )
| <Empty> 1} 1},
| TEXT <Text Attri> <String>
AT <Range>
{ ; <Text Attri> <String>
AT <Range> }o
| FILLAREA <Filla Attri>
<Identifier> ( <Int List> )
{ ;: <Filla Attri>
<Identifier> ( <Int List> ) },
| CELLARRAY <Cella Attri>
<Identifier> ( <Int> ,
: <INT> )
{ ; <Cella Attri>
<Identifier> ( <Int> ,
<INT> ) }o

<Type>::= TYPE : { <String>
<Idnentifier> }

<Colour>::= COLOUR : { <String>
| <Identifier> }

<Poly Attri>::= < { <Type>
<Colour>
TABLE : { <Int>
|<Identifier>}
I B
| <Empty>

<Text Attri>::= < { FONT : { <String>
| <Identifier> }
| PREC : { <String>
' | <1dentifier> }
| EXP : { <Real>
| <Identifier> }
: { <Real>
<Identifier> }
| HEIGHT : { <Real>
| <Identifier> }
| UPVEC : ( <Expression> ,
<Expression> )
| PATH : { <String>
<Identifier> }
| ALIGN : { <String>
| <Identifier> }

| SPACE



<Colour>
TABLE : { <Int>
|<Identifier>}
lr by >
| <Empty> :

<Filla Attri>::= < { INSIDE : { <String>
| <Identifier> }
{ = { PSIZE: ( <Expression>

<Expression>
| PREF: ( <Expression>
<Expression>

3 Yo

| STYLE : { <String>
| <Identifier> }
<Colour>
TABLE : { <Int>
' |<Identifier>}
l ’ } 1 >
| <Empty>

<Cella Attri>::= < { RANGE : <Range> ; <Range>
| MAXROW : <Int>
[ }1 >

<String>::= ' { <Character> }, '

<Sub Call>::= <Identifier>
{ ( { <Identifier> <Array>
\ <Int>
<Real> }
{ , { <Identifier> <Array>
<Int>
<Real> } 1}, )
| <Empty> }

<Seg Operatei>::= RENAME <Identifier> <Array>
<Seg Attri>
AS <Identifier> <Array>
| DELETE <Identifier> <Array>
{ , <Identifier> <Array> 1},
{ FROM <Identifier> <Array>
{ , <Identifier> <Array> 1},
| <Empty> }

<Redraw Works>::= REDRAW <Identifier> <Array>
{ , <Identifier> <Array> 1},

<Message>::= MESSAGE <String>
ON <Identifier> <Array>
{ , <Identifier> <Array> 1},

<Seg Attri>::= < { VISIBLE
| INVISIBLE

— S

98
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HIGHLIGHT

NORMAL

' }1 >
| <Empty>

<Read STMT>::= READ ( { <Identifier> <Array>
| <Int> } o,
<Identifier> )
<Identifier> { ( { <Int List>
| <Identifier> } )
| <Empty> }
{ , <Identifier> { ( { <Int List>
| <Identifier> } )
| <Empty> } 1},

<Seg Operaté2>::= SEND <Identifier> <Array>
<Seg Attri>
{ , <Identifier> <Array>

<Seg Attri> }o
TO <Identifier> <Array>
{ , <Identifier> <Array> 1},

| DISPLAY { <Identifier> <Array>
<Seg Attri>
<Primitives> '} -
{ { ,] +1 { <Identifier> <Array>
<Seg Attri>
| <Primitives> } },
ON <Identifier> <Array> <Norm Trans>
{ , <Identifier> <Array>
<Norm Trans> 1},

<Clear Works>::= ERASE <Identifier> <Array>
{ , <Identifier> <Array> }o

<Sub Block>::= { SUBROUTINE
| <Types> FUNCTION }
<Identifier> { ( <Idnetifier> { : OPEN
| <Empty> 1}
{ , <ldentifier> { : OPEN
) | <Empty>} 1o

| <Empty> 1}
{ <Declaration> },
BEGIN <GKSTMT>
RETURN END

<Types>::= CHARACTER { * <Int>

_ <Empty> }
COMPLEX
DOUBLE PRECISION
INTEGER
LOGICAL

REAL



For HL/GKS, as an extended language, there are graphical
symbols and reserved keywords which are part of the syntax

definition.

APPENDIX B - RESERVED WORDS AND SYMBOLS
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The complete set are shown in the two tables below.

V ol ~e s~ o~

BEGIN
SEGMENT
CLOSE
DELETE
TO
CLIPPING
WHILE
UNTIL
ABOVE
REDRAW
ROT
POLYLINE
FILLAREA
INVISIBLE
COLOUR
FONT
SPACE
PATH
PSIZE
RANGE

Graphical Symbols

% e

Reserved Keywords

OPEN
TRANS
RENAME
FROM
DISPLAY
OFF
REPEAT
WITH
BELOW
AT

D

TEXT
CELLARRAY
NORMAL
TYPE
PREC
HEIGHT
ALIGN
PREF
MAXROW

AN

VECTOR
WORKSTATION
AS

SEND

ON

DO
ENDWHILE
MESSAGE
ERASE
SHIFT
SCALE ,
POLYMARKER
VISIBLE
HIGHLIGHT
TABLE

EXP

UPVEC
INSIDE
STYLE
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APPENDIX C - EXECUTION INSTRUCTIONS

As for the installation of GKS FORTRAN binding in UBC, all
workstation outputs are assigned to individual output metafiles,
which are then translated into the graphical file of each
terminal by post-processors. The name of each output metafile
is the first six characters of the translated workstation name,
beginning with the minus sign "-", as a temporary output file.
For instance, the metafile name of the workstation screen will
be the name -SCREEN.

There are three metafile post-processors (for the Tektronix
4027, Printronix printer, and plotfile) available to view the
metafile output from GKS. A detailed description of metafile
post-processors is provided in the write-up UBC GKS[Mair84].

HL/GKS programs can be interactively executed by built-in
macros. An example of HL/GKS interactive execution is shown
below where the lower-case lines represent the prompts of a
terminal while the upper-case ones are the input strings of a
user, :

SHLGKS

gol S$r HL:GKS

go2 $r FORTRANVS

go3 Sr -fort+GKS:GKS

"give the step name. GO

“give the name of your file. TEST
next step is go2.

“do you want to continue? Yes
next step is go3.

“do you want to continue? YES

$

Arbitary entrance to the execution steps can be selected by
the input of GO1, Go2, or Go3 respectively. Freedom of
continuous processing is provided with the inquiry prompt (do
you want to continue?) which can be replied to with Y, YES, OK,
N, or NO, Any error in typing causes a return with some warning
information provided. An example of single execution of step
GO2 is given below.

SHLGKS

gol S$r HL:GKS

go2 $r FORTRANVS

go3 $r -fort+GKS:GKS

“give the step name. GO2
next step is go3. ‘
“do you want to continue? NO

$

The running instructions of the post-processors are:
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(translation to Tektronix)

Srun GKS:Metintd427 scards=metafile,
(translation to printronix printer)

Srun GKS:Metintptx scards=meatfile,
(translation to plotfile)

Srun GKS:Metintplt scards=metafile.

For detailed running steps, refer to the write-up of UBC
GKS[Mair84].



APPENDIX D - A SAMPLE OF GKS OBJECT CODE

C This is a sample of GKS

C preprocessor

C
' REAL
REAL
REAL
REAL
REAL

DATA
DATA
DATA
DATA
DATA
DATA
+ , 0
DATA
+ , 0
C

GV1X( 5),GviY( 5)
GV2X( 5),Gv2Y( 5)
GV3X( 5),Gv3Y( 5)
GV4x( 7),Gvay( 7)
GVX, GVY
CHARACTER*4 GWF1
CHARACTER*4 GWF2
REAL GTRAN1(2,3), GTRAN2(2,3)
INTEGER GPOLYL(13),GPOLYM(13)
INTEGER GTEXT(13),GFILL(13),GG(13)
CHARACTER*4 GF
REAL GAX(100),GAY(100)
INTEGER GT,GN,GSTAT

GV1X/ 0
GV1Y/ 0
1/2/

14

’

Gv2x/ 0.20,

Gv2Y/ 0
GV4x/ 0

/
GV4Y/ 0
/

14

14

r

0.50,
o .,

0.70
0.50

0.70,
o
5.00,

0.50
0.50
5.00

0 y 3.20

C GKS-system initialization

DATA
DATA
DATA
DATA
DATA

OPEN(UNIT=14,I0STAT=10S,FILE=GWF 1, STATUS="'UNKNOWN" )

GPOLYM/1,1,
GTEXT /1,1
GFILL /1
GG /1
GF='-ERR'
OPEN(UNIT=20,FILE=GF,STATUS="UNKNOWN')
CALL GOPKS(20)
CALL GOPWK(1,8,100)
CALL GACWK(1)
GWF1='-PLOTTE'

, 1
) 1

CALL GOPWK( 2,14,100000)
GWF2="'~SCREEN'

OPEN(UNIT=15,10STAT=10S,FILE=GWF2,STATUS="UNKNOWN"' )

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

GOPWK( 3,15,100000)
GMSG( 3,'WELCOME TO GKS')

GSWN (
GSvP( 1
GSWN( 2
GSVP( 2
GSELNT(
GCRSG(

r
’
r

3

0
1
0
1
)

)

0
5
7

5

0.45
3.5

O~

0

, 0.20,
, 0.50

, O

, 0.50,
y 2.50

1,0.0,5.0,0.0,7.0)

.0)

codes produced by the HL/GKS
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CALL GSLN( 3)
CALL GPL( 5,GViX, GV1Y)
CALL GCLSG
CALL GCRSG( 5)
GV3X(1)=0.0
GV3Y(1)=0.0
GV3X(2)=1.0
Gv3¥(2)=0.0
GV3X(3)=1.0
GV3Y(3) 5
GV3X(4) 0
GV3Y(4) 5
GV3X(5) 0
GV3Y(5) 0
GVX=0.8
GVY=0.7
CALL GSLN( 1)
CALL GPL( 5,GV3X, GV3Y)
CALL GSMK( 4)
CALL GPM(1,GVX, GVY)
CALL GCLSG
CALL GCRSG( 1)
CALL GPL( 6,GV4X, GV4Y)
CALL GCLSG
- CALL GCRSG( 7)
CALL GEvVTM(O0.,0.,
“CALL GINSG( 1,GTR
CALL GEVTM(0.,0.,
CALL GINSG( 5+1-1
H
1
r’
1

OO - QO — —
« o o e o

CALL GEVTM(O0.,0.
GINSG( 3+1-
GEVTM(O0.,0,.
GINSG( 3+1-
GCLSG

GDSG( 1)
GRENSG( 7,
GSELNT( 2)
GCRSG( 4)
GSLN( 3)
GPL( 5,GV2X, GV2Y)
GCLSG

GCRSG( 6)

GSLN( 1)

GPL( 5,GV3X, GV3Y)
GSMK( 4)
GPM(1,GVX, GVY)
CALL GCLSG :
CALL GCRSG( 2)
GvV4x(4)=3.0

GV4aY(4)=3.7

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

1)

GV4x(5)=2.0
GV4Y(5)=3.7
GV4xX(6)=0.0
GV4Y(6)=3.2

«¢1.,1.,0,GTRAN1)

0 ,1.0,1.0,0,GTRAN1)
0 ,1.0,1.0,0,GTRAN1)
0 ,1.0,1.0,0,GTRAN1)



CALL GPL( 7,GV4X, GV4Y)
CALL GSCHSP( 1.5)
CALL GSCHH( 0.10)
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CALL GTX(1.0,5.0, 'WELCOME TO GKS')

CALL GCLSG

CALL GCRSG( 7)

CALL GEvTM(O0.,0.,0.,0.,0.,1.,1.,0,GTRAN1)

CALL GINSG( 2,GTRAN1)

CALL GEVTM(0.,0.,2.0,0.0, ,1.0,1.0,0,GTRAN1)
CALL GINSG( 5+2-1,GTRAN1)

CALL GEVTM(0.,0.,0.8,2.0, ,1.0,1.0,0,GTRANT1)
CALL GINSG( 3+2-1,GTRAN1)

CALL GEvVTM(0.,0.,3.7,2.0, ,1.0,1.0,0,GTRAN1)
CALL GINSG( 3+2-1,GTRAN1)

CALL GCLSG
CALL GDSG( 2)
CALL GRENSG( 7, 2)
CALL GACWK( 2)
CALL GSHLIT( 1+1-1,1)
CALL GCSGWK( 2, 1+1-1)
CALL GDAWK( 2)
CALL GACWK( 2)
CALL GSHLIT( 1+2-1,0)
CALL GCSGWK( 2, 1+2-1)
CALL GDAWK( 2)
© CALL GMSG( 3, 'GOODBYE')
o]
C GKS-SYSTEM CLOSE

' CALL GDAWK(1)
CALL GCLWK(1)
CALL GCLWK( 2)
CALL GCLWK( 3)
CALL GCLKS
STOP
END



