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Abstract 

This thesis examines a new algorithm, to be c a l l e d 

secondary range compression (SRC), for s i g n i f i c a n t l y 

improving the range resolution of the range/Doppler 

synthetic aperture radar (SAR) processing algorithm when the 

radar antenna i s s i g n i f i c a n t l y squinted away from the zero 

Doppler d i r e c t i o n . The algorithm was recently introduced by 

J i n and Wu [13] for application to the SEASAT SAR sensor. 

S i g n i f i c a n t extensions of the i r algorithm and models are 

presented. 

F i r s t the model of range broadening in the basic 

range/Doppler algorithm i s extended by using a more general 

form for the range compressed p r o f i l e . A mathematical theory 

i s developed to examine more c l o s e l y the approximations 

involved in both basic range/Doppler processing and SRC and 

to explore alternate SRC implementations. The theory i s used 

to derive the SRC algorithm as a matched f i l t e r d i r e c t l y 

from the point target response model rather from the 

si m p l i f i e d range compressed response used by J i n and Wu. 

Two new discrete implementations (azimuth SRC and range 

SRC) are developed for both single-look and multilook 

processing. In addition two new alternate methods of 

multilook SRC are presented : fixed SRC and look-dependent 

SRC. The s e n s i t i v i t y of the SRC algorithms to parameter 

errors i s investigated. 

Extensive simulations are developed to quantify the 

image q u a l i t y produced by each algorithm for a variety of 

i i 



processing parameters. The simulation results with nominal 

RADARSAT parameters show that the SRC algorithms can 

s i g n i f i c a n t l y extend the range of squint angles which can be 

processed with the range/Doppler type of algorithm. 
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1. INTRODUCTION 

This thesis discusses the application of a new 

secondary range compression (SRC) algorithm to the 

range/Doppler synthetic aperture radar (SAR) processing 

algorithm. Part i c u l a r consideration i s given to the 

application of SRC to Canada's proposed RADARSAT SAR sensor. 

1.1 BACKGROUND 

The range/Doppler algorithm [6,18,19,24,26] i s a well known 

method for the e f f i c i e n t compression of SAR data. The 

compressed point target response of the algorithm becomes 

severely broadened in the range d i r e c t i o n when the -3dB 

azimuth time-bandwidth product (TBP) becomes small (less 

than u n i t y ) . SRC i s a new e f f i c i e n t algorithm which 

s i g n i f i c a n t l y reduces the range broadening and associated 

image qu a l i t y degradations. 

The TBP has a multitude of d e f i n i t i o n s depending on the 

desired use. For t h i s thesis the TBP i s defined as the 

product of the actual -3dB widths in the time and frequency 

domains. The TBP of any signal has a fixed lower bound which 

is somewhat less than 0.5 using the current d e f i n i t i o n . A 

small azimuth TBP may occur in SAR when there i s large range 

c e l l migration (RCM). RCM i s the migration of a point 

target's energy through more than one range resolution c e l l 

over the antenna illumination period. Large RCM may occur in 

spaceborne SARs, such as Canada's proposed RADARSAT SAR [22] 

or NASA's SEASAT SAR [11], when the equivalent squint angle 

1 



2 

of the antenna r e l a t i v e to the zero Doppler d i r e c t i o n i s 

large. 

Large RCM causes the azimuth time exposure of a point 

target in a given range c e l l to decrease since the target 

energy migrates rapidly across range c e l l s . Under large 

azimuth TBP conditions, the time and frequency domain 

azimuth signals exhibit an approximate one-to-one 

correspondence. Thus the decrease in azimuth timewidth 

results in a decreased bandwidth and consequently a 

decreased azimuth TBP. The time-frequency correspondence i s 

predicted by the p r i n c i p l e of stationary phase [17] for 

large TBP signals. When the azimuth TBP f a l l s below unity, 

the correspondence is no longer v a l i d and the azimuth 

spectrum becomes broadened r e l a t i v e to i t s predicted 

bandwidth. This spectrum broadening appears after the 

azimuth FFT, which i s used for fast azimuth convolution in 

the range/Doppler algorithm. 

Since the point target energy l i e s along a sloped curve 

(the RCM curve) in both range-time/azimuth-time and 

range-time/azimuth frequency space, the azimuth spectrum 

broadening causes the point target energy to be s i m i l a r l y 

broadened in the range time d i r e c t i o n . If the range 

broadening i s l e f t uncorrected as in the basic range/Doppler 

algorithm, the f i n a l compressed point target response 

becomes broadened in range. 

SRC was f i r s t proposed by J i n and Wu [13] in 1984 as a 

method for extending the maximum squint angle which can be 



3 

p r o c e s s e d b y t h e r a n g e / D o p p l e r a l g o r i t h m . T h e i r p a p e r 
p r e s e n t e d a m o d e l f o r t h e r a n g e b r o a d e n i n g o f t h e r a n g e 
c o m p r e s s e d p o i n t t a r g e t r e s p o n s e a f t e r t h e a z i m u t h F o u r i e r 
t r a n s f o r m . T h e i r i m p r o v e d m o d e l a c c o u n t e d f o r t h e b r o a d e n i n g 
i n m a g n i t u d e a n d p h a s e o f t h e a z i m u t h s p e c t r u m . H o w e v e r t h e 
m o d e l i d e a l i z e d t h e r a n g e c o m p r e s s e d p r o f i l e a s a s i m p l e 
i n f i n i t e d u r a t i o n s i n e f u n c t i o n . T h i s a p p r o x i m a t i o n d o e s n o t 
i n c l u d e t h e e f f e c t s o f t h e r a n g e a n d a z i m u t h w i n d o w s w h i c h 
a r e u s u a l l y a p p l i e d i n t h e r e s p e c t i v e f r e q u e n c y d o m a i n s t o 
c o n t r o l s i d e l o b e l e v e l s . A l s o s e v e r a l a p p r o x i m a t i o n s 
r e q u i r e d t o d e v e l o p t h e m o d e l w e r e n o t f u l l y s t a t e d o r 
v a l i d a t e d . A c o n t i n u o u s t i m e , i n f i n i t e d u r a t i o n , a z i m u t h 
c o m p r e s s i o n f i l t e r m a t c h e d t o t h e a p p r o x i m a t e r a n g e 
c o m p r e s s e d s i g n a l m o d e l wa s d e r i v e d . T h e f i l t e r i n c l u d e d a 
s e p a r a t e S R C f i l t e r w h i c h w a s a p p l i e d a s a c o n t i n u o u s r a n g e 
t i m e c o n v o l u t i o n t o t h e a z i m u t h s p e c t r u m . T h e d e t a i l s o f t h e 
d i s c r e t e i m p l e m e n t a t i o n o f t h i s f i l t e r w e r e n o t p r e s e n t e d . 
Q u a l i t a t i v e s i m u l a t i o n r e s u l t s w e r e s h o w n f o r S E A S A T SAR 
p a r a m e t e r s . 

1.2 O B J E C T I V E S 
T h e o b j e c t i v e s o f t h i s t h e s i s a r e s u m m a r i z e d a s f o l l o w s : 

1. T h e r a n g e b r o a d e n i n g m o d e l o f J i n a n d Wu i s t o b e 
e x t e n d e d t o a c c u r a t e l y m o d e l t h e r a n g e c o m p r e s s e d 
p r o f i l e i n c l u d i n g t h e e f f e c t s o f r a n g e w i n d o w i n g . A l l 
a p p r o x i m a t i o n s a n d a s s u m p t i o n s a r e t o b e e x p l i c i t l y 
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stated and examined for their range of v a l i d i t y . 

2. J i n and Wu state that the range compressed point target 

response may be used as the azimuth matched f i l t e r 

reference function (see equation (20) in [13]). However 

t h i s i s only true when the range compressed p r o f i l e i s 

approximated by a sine function and no range 

bandlimiting or windowing i s applied during range 

compression. The azimuth f i l t e r i s to be reformulated 

for the more general case by matching the f i l t e r 

d i r e c t l y to the point target response before range 

compression. 

3. The basic SRC algorithm i s to be rederived using the 

extended azimuth matched f i l t e r model. Alternate methods 

for implementing SRC are to be examined and evaluated in 

terms of e f f i c i e n c y and accuracy. 

4. The SRC algorithm derived by J i n and Wu consisted of a 

range time convolution with a continuous-time SRC f i l t e r 

of i n f i n i t e time duration. Methods of implementing th i s 

f i l t e r as a discrete f i n i t e length SRC f i l t e r are to be 

developed. In p a r t i c u l a r , combinations of the SRC f i l t e r 

with the frequency domain RCMC interpolator are to be 

explored. This algorithm w i l l be c a l l e d azimuth SRC. 

5. J i n and Wu state that i t i s possible to perform SRC 
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d u r i n g range compression but do not d e r i v e the theory or 

an a l g o r i t h m . The p o s s i b i l i t i e s of implementing SRC 

dur i n g range compression are to be explored and 

ev a l u a t e d . T h i s a l g o r i t h m w i l l be c a l l e d range SRC. 

6. SAR images are prone to high l e v e l s of speckle noise due 

to the coherent nature of the radar i l l u m i n a t i o n . To 

reduce the speckle n o i s e the processed a p e r t u r e i s o f t e n 

s u b d i v i d e d i n t o separate " l o o k s " which are then 

i n c o h e r e n t l y summed. New methods of implementing SRC 

with m u l t i l o o k range/Doppler p r o c e s s i n g are to be 

developed. 

7. The s i g n a l parameters used i n p r a c t i c a l SAR systems may 

c o n t a i n e s t i m a t i o n e r r o r s or e r r o r s caused by the use of 

constant parameters i n block p r o c e s s i n g . The s e n s i t i v i t y 

of the SRC f i l t e r to parameter e r r o r s i s t o be examined. 

8 . In order to choose the necessary p r o c e s s i n g a l g o r i t h m s 

and parameters f o r a given image q u a l i t y requirement, 

q u a n t i t a t i v e design curves of expected image q u a l i t y are 

needed. Computer s i m u l a t i o n s a re to be performed i n 

order t o q u a n t i f y the f o l l o w i n g items with p a r t i c u l a r 

c o n s i d e r a t i o n being given t o the RADARSAT SAR sensor. 

The s i m u l a t e d image degradations and improvements are to 

be measured as a f u n c t i o n of s q u i n t angle: 
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a. measure the range and azimuth broadening of the 

compressed p o i n t t a r g e t response of the b a s i c 

range/Doppler a l g o r i t h m to determine the sq u i n t 

l i m i t a t i o n s of both s i n g l e - l o o k and m u l t i l o o k 

a l g o r i t h m s 

b. determine the accuracy of the range broadening model 

i n comparison with a c t u a l broadening measurements 

c. q u a n t i f y the image q u a l i t y improvements f o r the new 

SRC a l g o r i t h m s f o r s i n g l e - l o o k and m u l t i l o o k 

p r o c e s s i n g with v a r i o u s p r o c e s s i n g parameters 

d. examine the image degradations caused by SRC 

parameter e r r o r s f o r a l l a l g o r i t h m s . 

1.3 STRUCTURE OF THE THESIS 

The t h e s i s i s d i v i d e d i n t o s e v e r a l s e c t i o n s . Chapter 2 

i n t r o d u c e s the b a s i c concept of SAR image formation as a 2-D 

matched f i l t e r i n g o p e r a t i o n of a r e c e i v e d radar s i g n a l which 

i s approximately l i n e a r FM i n both dimensions. A model of 

spaceborne SAR geometry i s developed to d e f i n e the 

v a r i a t i o n s of t a r g e t range with azimuth time and other key 

s i g n a l parameters. The image q u a l i t y measurements of 

i n t e r e s t are i n t r o d u c e d and the measurement procedures are 

o u t l i n e d . 
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Chapter 3 examines the theory and l i m i t a t i o n s of basic 

range/Doppler compression without SRC. A model of the signal 

returned from a point target i s developed to use as a 

reference function for the matched f i l t e r . The model i s also 

used in the simulations for creating a simulated range 

compressed point target response. The results of extensive 

simulations with nominal RADARSAT parameters are summarized. 

Chapter 4 develops a mathematical model of the azimuth 

spectrum broadening and range broadening which occurs with 

the basic range/Doppler algorithm at large squint angles. A 

simple accurate model of azimuth broadening i s also 

presented. 

Chapter 5 extends the theory used in chapter 4 to 

develop an improved matched f i l t e r which includes SRC. Two 

new alternate techniques for the discrete implemention of 

SRC (azimuth SRC and range SRC) are presented. Extensive 

simulation results are discussed to evaluate the new 

algorithms. 

Chapter 6 examines the application of SRC to multilook 

range/Doppler compression. The new concepts of fixed 

(look-independent) and look-dependent SRC f i l t e r s are 

presented. Simulations of multilook compression (with 

4-looks) with and without SRC are performed to quantify the 

improvements. 

Chapter 7 examines the e f f e c t s of SRC parameter 

estimation errors and block processing invariance regions on 

image q u a l i t y . A model i s developed to relate these errors 
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to equivalent phase errors which occur in processing without 

SRC. 

F i n a l l y chapter 8 presents f i n a l conclusions and 

suggests areas for further research on SRC. 



2. THE SYNTHETIC APERTURE RADAR (SAR) CONCEPT 

Synthetic aperture radar processing i s a method of 

obtaining image resolutions much finer than the along-track 

beamwidth of the radar antenna from a moving platform. It 

has been successfully applied to both airborne and 

spaceborne radars to provide all-weather high resolution 

imaging c a p a b i l i t i e s . Strip-map mode sensors, such as 

RADARSAT and SEASAT, orient the boresight of the antenna 

perpendicular to the d i r e c t i o n of travel of the platform, 

i . e . , in the cross-track d i r e c t i o n , and off to one side of 

the ground track. 

An azimuth (along-track) antenna aperture much larger 

than the size of the physical antenna i s synthesized by 

properly combining the received radar pulses over a coherent 

integration period with appropriate weighting. The azimuth 

resolution i s inversely proportional to the synthesized 

aperture length. The returns from point targets at d i f f e r e n t 

ground positions are resolved in range (cross-track) by 

differences in the time delay of the transmitted radar 

pulses and in azimuth by t h e i r Doppler s h i f t . 

The radar pulse i s t y p i c a l l y a l i n e a r l y frequency 

modulated (FM) pulse with large TBP. In range/Doppler 

processing the received pulses are compressed in range using 

standard pulse compression techniques to get a range 

compressed signal with a small TBP. The azimuth signal has a 

similar modulation (approximately linear FM) due to the 

changing distance between the sensor and target. By applying 

9 
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pulse compression techniques in the azimuth d i r e c t i o n a well 

resolved image can be obtained. 

An additional complication of the processing occurs 

when the change in range to a point target over the azimuth 

integration period i s larger than the range c e l l s i z e . This 

e f f e c t , c a l l e d range c e l l migration (RCM), causes the signal 

energy from a point target af t e r range compression to 

migrate across several range c e l l s . Consequently the azimuth 

compression becomes a 2-D operation. The basic range/Doppler 

algorithm separates t h i s 2-D azimuth operation into two 1-D 

operations : 

1. Range C e l l Migration Correction (RCMC) in which the 

range compressed point target energy i s interpolated and 

shi f t e d in range so that the energy l i e s along a single 

azimuth l i n e . 

2. Azimuth c o r r e l a t i o n with a 1-D reference phase function. 

For computational e f f i c i e n c y these operations are 

performed in the azimuth frequency domain via fast 

convolution. For large azimuth TBP, linear FM type signals, 

the magnitude and phase c h a r a c t e r i s t i c s of the azimuth 

frequency domain signals can be simply related to the 

azimuth time domain signals by a linear scale factor using 

the p r i n c i p l e of stationary phare [17]. In such cases, which 

occur when there i s l i t t l e RCM and a small squint angle, a 
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zero-phase sinc-type interpolator can be used for RCMC. 

Block processing e f f i c i e n c y can be achieved since the 

tr a j e c t o r i e s of point targets which are adjacent to each 

other in azimuth time follow a common RCM curve in the 

azimuth frequency domain. This allows RCMC and azimuth 

compression to be applied to many targets simultaneously. 

However when the azimuth time exposure in a range c e l l 

becomes small due to RCM and the azimuth TBP f a l l s below 

unity, the magnitude and phase c h a r a c t e r i s t i c s of the 

frequency domain signal become broadened r e l a t i v e to their 

corresponding time domain signals. The broadened frequency 

domain signal can be properly compressed by applying a 

secondary compression in either the range time or azimuth 

frequency d i r e c t i o n . Since the width in samples of the 

broadened function i s much smaller in range than in azimuth, 

the f i l t e r i s more e f f i c i e n t l y implemented in range, hence 

the name secondary range compression (SRC). 

The SRC f i l t e r can be viewed as convolution with a 

quadratic phase range f i l t e r which recompresses the 

broadening which occurs in the azimuth Fourier transform. 

Two e f f i c i e n t implementations of thi s secondary range f i l t e r 

have been investigated : 

1. Azimuth SRC in which the secondary range f i l t e r i s 

combined with the RCMC interpolator during azimuth 

compression. 
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2. Range SRC where the secondary range f i l t e r i s combined 

with the range frequency domain, reference function 

during range compression. 

The next section discusses a model of the spaceborne 

SAR sensor geometry which i s used to derive the range c e l l 

migration equation ( i . e . , the v a r i a t i o n of range with 

azimuth time) and other signal parameters. For the 

simulations in l a t e r sections, a set of nominal RADARSAT 

parameters has been chosen. These are l i s t e d in table 1. 
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Parameter Symbol Value Units 

range -3dB chirp bandwidth Br 17.28 MHz 
single-look azimuth Kaiser-Bessel * A 1.5 
parameter 
multilook azimuth Kaiser-Bessel 2.7 
parameter 
SRC/RCMC Kaiser-Bessel parameter 01 2.5 
incidence angle Pi 20 deg 
range Kaiser-Bessel parameter 0R 2.7 
azimuth antenna length D 14.0 m 
azimuth processed bandwidth (0 S=O°) fPBW 942 Hz 
complex range sampling rate Fsr 19.872 MHz 
s a t e l l i t e a l t i t u d e h s 1007.4 km 
# of SRC/RCMC f i l t e r versions I 16 
SRC/RCMC FFT array length K r 128 
length of SRC/RCMC f i l t e r versions L 4,8,16,32 
length of range FFT M 2048 
length of single-look azimuth FFT N 1024 
wavelength X 0.05656 m 
azimuth processing i n t e r v a l P̂BW 0.513 s 
pulse r e p e t i t i o n frequency PRF 1 177.9 Hz 
slant range c e l l size ( c / [ 2 F s r ] ) Psr 7.543 m 
earth radius at equator re 63716 km 
slant range of closest approach r 0 

1 072. 1 km 
range pulsewidth T 36.4 *xs 
orbit i n c l i n a t i o n angle «i 99.5 deg 
beam v e l o c i t y V b 7.4575 km/s 
earth r o t a t i o n a l v e l o c i t y v e 0.4638 km/s 
s a t e l l i t e o r b i t a l v e l o c i t y v s 7.35 km/s 
equivalent s a t e l l i t e v e l o c i t y v e q 7.4575 km/s 
azimuth oversampling factor 1 .25 
range oversampling factor 1.15 

Table 1. Nominal Radarsat Parameters 
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2.1 MODEL OF SAR GEOMETRY 

The production of high resolution SAR images requires an 

accurate model of the physical geometry of the space 

platform with respect to the earth's surface. This study 

uses a s i m p l i f i e d f l a t earth geometric model which exhibits 

the e s s e n t i a l properties of SAR signals. A more 

sophisticated spherical earth, c i r c u l a r orbit geometric 

model i s used to derive accurate estimates of the actual 

signal parameters which are then applied to the s i m p l i f i e d 

model. 

The spherical earth, c i r c u l a r o r b i t geometric model i s 

used to derive an equivalent r e l a t i v e v e l o c i t y between the 

s u b - s a t e l l i t e point and the surface of the earth. After 

mapping into the slant range plane (the plane containing the 

platform v e l o c i t y vector and the vector joining the platform 

and a point target on the ground), the equivalent v e l o c i t y 

is applied to a l o c a l l y f l a t model of the region of the 

earth under the s a t e l l i t e . Second order e f f e c t s caused by 

l o c a l curvature of the earth, or variations in the earth's 

radius or s a t e l l i t e height above the surface are excluded 

from the simulations since the added complexity adds l i t t l e 

insight into the range broadening process. These secondary 

e f f e c t s can usually be accounted for by using modified 

estimates of the signal parameters. 

Vant [23] provides a good discussion of a similar 

spherical earth model. For s i m p l i c i t y , the s a t e l l i t e 

p o s i t i o n i s a r b i t r a r i l y chosen to be above the equator since 
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the rotation of the earth t y p i c a l l y has i t s greatest effect 

there. Figure 2.1 shows the geometry of the s u b - s a t e l l i t e 

point in an i n e r t i a l frame of reference. The s u b - s a t e l l i t e 

point moves with v e l o c i t y v and the earth's surface moves 

at tangential v e l o c i t y v g beneath i t , where 

v = v / C (1 ) ss s a 

and v g i s the tangential v e l o c i t y of the s a t e l l i t e in i t s 

o r b i t . The factor C , the r a t i o between the s a t e l l i t e 

v e l o c i t y and the s u b - s a t e l l i t e point v e l o c i t y , i s given by 

C a = ( r e - h s ) / r e (2) 

where r i s the radius of the earth and h i s the height of e s 3 

the s a t e l l i t e above the earth's surface. The equivalent 

r e l a t i v e ground v e l o c i t y , V g , between the s u b - s a t e l l i t e 

point and the earth's surface i s given by : 

v = v - v g ss e 

v I = [ v 2 + v 2 - 2v v cos(0.) ] 1 / 2 

g i ss e ss e 1 

(3) 

(4) 

where 8^ i s the i n c l i n a t i o n angle of the s a t e l l i t e o r b i t . 

This ground v e l o c i t y i s translated back into an equivalent 

s a t e l l i t e v e l o c i t y , v , in the slant range plane as 
eq 
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Figure 2.1. Spherical earth model for velocity calculation. 
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v = v C (5) eq g a 

In order to simulate the azimuth antenna weighting 

function, i t i s necessary to know the v e l o c i t y at which a 

point target travels through the antenna beam in the antenna 

azimuth d i r e c t i o n . For convenience, the beam v e l o c i t y , v^, 

w i l l be assumed to be constant and equal to v 
eq 

The derived equivalent v e l o c i t i e s are applied to the 

f l a t earth model shown in figure 2.2. The s a t e l l i t e travels 

with v e l o c i t y v ^ at a height h g above the ground. The slant 

range of closest approach, r 0 , i s determined by the 

incidence angle, p\ , as 

r 0 = h_ / cos( B. ) (6) 

The antenna boresight may be squinted away from the r 0 

d i r e c t i o n by the squint angle 6 in the slant range plane. 

The squint angle i s defined to be posit i v e when the antenna 

is pointing behind the zero Doppler d i r e c t i o n r e s u l t i n g in a 

negative Doppler beam center frequency. Azimuth time, v, i s 

measured r e l a t i v e to the ground position of closest approach 

as shown in figure 2.3. From t h i s figure, the following 

quantities can be deduced 

r(rj) = [ r 0
2 + ( v E G T } ) 2 ] L / 2 (7) 

T J c = r 0 tan(0 s) / v e g (8) 



F i g u r e 2.2. F l a t e a r t h model f o r l o c a l g e o m e t r y . 



Figure 2.3. Slant range plane. 
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r c = r(rj c ) (9) 

where r(r/) i s the range migration equation which defines the 

instantaneous range to a point target with range of closest 

approach, r 0 , and rj c and r c are the beam center azimuth time 

and range respectively. 

It i s useful at t h i s point to examine an approximation 

to the RCM equation in greater d e t a i l . The RCM curve can be 

expanded into a Taylor series form about the azimuth beam 

center crossing time, r)r, as follows : 

The f i r s t term represents the range to the beam center 

point which i s constant in the spherical earth/orbit model. 

The second term i s the linear component of RCM and i s 

commonly referred to as range walk. The higher terms w i l l be 

c o l l e c t i v e l y referred to as range curvature. 

In most sate l l i t e - b o r n e systems such as RADARSAT range 

walk i s the dominant component of RCM. For nominal RADARSAT 

parameters, range walk increases almost l i n e a r l y with squint 

angle from zero at 0°, to 8.9 range c e l l s at 1°, to 88 range 

c e l l s at 10°. Range curvature i s comparatively small being 

an approximately constant 0.23 range c e l l s . When range walk 

and/or curvature exceed the range resolution, some form of 

RCM correction (RCMC) i s required to maintain good azimuth 

r(r?) = r{nr) + r ' (j?r) ( r ? - 7 j r ) + 

r"(rj c) (T7-TJ c ) 2 /2 + . . . (10) 
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and range resolutions. 

Range walk increases approximately l i n e a r l y with 

wavelength whereas range curvature increases approximately 

as the square of the wavelength. Consequently, for longer 

wavelength sa t e l l i t e - b o r n e SAR's such as SEASAT, range walk 

may be several times larger and range curvature may be an 

order of magnitude larger. 

Terms up to the quadratic are usually s u f f i c i e n t for 

characterizing RCMC whereas higher order terms may be 

necessary to accurately represent azimuth phase. By dropping 

terms higher than the quadratic and substituting for r'(j? c) 

and r " ( 7 j ^ ) in terms of the instantaneous frequency f ^ and 

frequency rate K A at the beam center crossing time, the 

Taylor series can be written as : 

r ( 7 j ) * r ( T ? C ) - ( X / 2 ) [ f C ( T ? - T ? C ) + K a ( T J - T J c ) 2 / 2 ] (11) 

- ( X / 2 ) [ f , T } + K A T ? 2 / 2 ] (12) 

where 

= r(r? c) + ( X / 2 ) [ f c T j c - K A 7 j c
2 / 2 ] (13) 

f (14) 

This approximate form o! the RCM equation w i l l be used in 

subsequent sections to define the azimuth phase response and 
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i t s Fourier transform. 

2.2 IMAGE QUALITY MEASUREMENTS 

This section discusses the relevent image quality measures 

of the point target response and outlines the methods used 

in the simulations for th e i r measurement. Several measures 

computed from the point target response are commonly used to 

determine the quality of a SAR image. These are as follows : 

1. Impulse Response Width (IRW). 

The -3dB impulse response widths in both range and 

azimuth are standard measures of resolution. They are 

measured by interpolating in the range and azimuth 

directions by a factor of 128. The peak magnitude in 

each d i r e c t i o n i s determined. Then the distance between 

the -3dB points i s computed using linear interpolation 

between the already interpolated samples. 

2. Integrated Sidelobe Ratio (ISLR). 

The I SLR i s the r a t i o of the integrated energy in the 

sidelobe region to the integrated energy in the mainlobe 

region. The sidelobe region i s defined as a l l samples 

inside of a rectangle whose sides are located at the 

measured -3dB positions in range and azimuth. The 

sidelobe region i s defined as a l l samples outside of a 

rectangle which i s 3 times the size of the mainlobe 

rectangle and which i s centered at the same pos i t i o n . 
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The 2-D ISLR i s measured on a 2-D array of size 256x256 

which has been interpolated by a factor of 8 in both 

directions from a 32x32 array. The integrations are 

performed by summing squared magnitudes. Although this 

array does not extend out to the ends of the sidelobe 

regions, i t contains most of the sidelobe energy and was 

chosen because of memory constraints. Summing the 

sidelobe region over a limited area i s a good 

approximation when l i t t l e broadening occurs, i . e . , for 

low squint angles. However, the approximation breaks 

down for large broadening as w i l l be shown in the 

simulations. Fortunately, the approximation i s v a l i d 

over the broadening lev e l s of interest in the simulated 

system. The ISLR i s also measured on 1-D arrays in range 

and azimuth. These provide indications of the broadening 

in each d i r e c t i o n . The 1-D ISLR i s measured on an array 

of length 4096 which has been interpolated by a factor 

of 128 from a length 32 array. 

3. Peak Sidelobe Ratio (PSLR). 

The PSLR is the r a t i o of the magnitude of the largest 

sidelobe in the sidelobe region to the magnitude of the 

peak of the point target response. In 1-D, range or 

azimuth, the PSLR i s measured on an array which has been 

interpolated by a factor of 128. In 2-D, the peak 

sidelobe is measured in the 2-D sidelobe region of an 

array which has been interpolated by a factor of 8 in 
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both d i r e c t i o n s . 

4. Peak Magnitude Degradation. 

As more energy i s spread into the sidelobes, the 

magnitude of the point target response peak decreases 

causing a decrease in signal-to-noise r a t i o (SNR). The 

decrease in peak magnitude has been measured as a 

function of squint angle. However the SNR i s not 

d i r e c t l y related to the measured peak magnitude since a 

normalization based on the noise power d i s t r i b u t i o n must 

be used. In the simulations the peak magnitudes are 

normalized to the sum of squares of the RCMC or combined 

SRC/RCMC f i l t e r c o e f f i c i e n t s . This normalization i s 

appropriate for a white d i s t r i b u t i o n of noise over a l l 

range c e l l s . The peak magnitudes are also normalized by 

the azimuth processed bandwidth which decreases with 

increasing squint angle. The processed bandwidth i s 

proportional to the noise power i f the noise in the 

azimuth signal i s white. 



3. BASIC RANGE/DOPPLER COMPRESSION 

This section presents a theory to describe the basic 

range/Doppler compression algorithm. Discrete 

implementations of the range and azimuth compression 

operations are presented. Extensive simulations are used to 

quantify the image degradations which occur for large squint 

angles. 

The range/Doppler algorithm, also known as a frequency 

domain interpolation algorithm or a frequency domain 

corr e l a t i o n algorithm, has been described in several good 

papers [2,6,20,21,24,26]. The theory developed here provides 

further insight into the approximations involved in deriving 

the basic range/Doppler algorithm as a f i l t e r matched to the 

point target response. The approximate one-to-one 

correspondence between the time and frequency domain azimuth 

signals which i s v a l i d for large azimuth TBP signals i s 

used. Later sections provide a refinement of t h i s 

approximation which accounts for the spectrum broadening 

process and provides the basis for the SRC algorithm. 

A model of the return from a point target which was 

presented by J i n and Wu [13] i s extended to include the 

range window. The model i s used in the simulator to generate 

a 1-D point target return signal which i s subsequently 

compressed in range. Range compression i s performed by range 

matched f i l t e r i n g and windowing in the range frequency 

domain to produce a 1-D range compressed p r o f i l e . From t h i s , 

a 2-D range compressed signal i s simulated by s h i f t i n g the 

25 
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range p r o f i l e peak in range along the RCM curve defined by 

r(rj) and multiplying by the azimuth phase coding which i s 

approximately linear FM. Azimuth compression, which i s also 

performed as a fast convolution in the frequency domain, 

consists of applying an azimuth fast Fourier transform 

(FFT), performing RCMC, multiplying by a 1-D azimuth 

reference phase function and window function, and 

transforming back to the azimuth time domain using an 

inverse FFT. 

The image quality of the simulated compressed point 

target responses are measured for several squint angles. 

These measurements provide a baseline for comparison with 

l a t e r simulations using SRC. 

3.1 POINT TARGET RESPONSE MODEL 

The complex received signal after quadrature demodulation 

from a point target with range of closest approach r 0 can be 

modelled in continuous range and azimuth time as [26] 

h(t,7?) = h A ( t , T j ) * h R ( t , r ? ) (15) 

h A(t,T?) = w a ( t j ) exp [ - j 4 7 T r(T7)/X] 5[t - 2r(r?)/c] (16) 

h R ( t , i ? ) = 8(T?) s T ( t ) (17) 

where t i s c o n t i n u o u s range time measured from the time of 

t r a n s m i s s i o n of the p u l s e of i n t e r e s t , W ^ T J ) i s the a z i m u t h 
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antenna function, c i s the speed of l i g h t , and * denotes 2-D 

convolution. 

The function h R(t,rj) represents the response in the 

range d i r e c t i o n after quadrature demodulation and can be 

clo s e l y approximated by the transmitted complex modulation 

function, s T ( t ) . This approximation i s v a l i d when the 

Doppler s h i f t i s much smaller than the transmitted bandwidth 

as i s usually the case. 

The function h A ( t , 7 ? ) represents the hypothetical 

continuous azimuth response to an impulse-type radar pulse 

assuming that the radar does not move appreciably during the 

tr a n s i t time of the pulse. A good discussion of the v a l i d i t y 

of t h i s stop-start approximation in which the sensor i s 

assumed to be stationary during pulse transmission and 

reception i s given by Barber [2]. Although azimuth time i s 

actually sampled at the pulse re p e t i t i o n frequency (PRF) of 

the radar, the continuous azimuth time model i s v a l i d i f the 

PRF i s chosen s u f f i c i e n t l y high to prevent s i g n i f i c a n t 

a l i a s i n g of the azimuth s i g n a l . 

Optimum SAR processing in a least mean squared error 

sense consists of f i l t e r i n g the return signal with a 2-D 

matched f i l t e r which is matched to the point target si g n a l . 

Therefore the ideal matched f i l t e r impulse response can be 

written as : 

h*(-t,-7j) = h*(-t,-r?) * h*(-t,-77) (18) 
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The f i l t e r consists of two parts : 

* 
1. a range matched f i l t e r , h R ( - t , - T j ) , which compresses the 

coded range pulse 

* 
2. and an azimuth matched f i l t e r , h A ( - t , - r j ) , which 

compresses the azimuth phase coding and compensates for 

RCM. 

Additional range and azimuth f i l t e r i n g in the form of 

frequency domain windows i s often applied in order to 

control the tradeoff between sidelobe levels and impulse 

response widths. In addition the azimuth weighting due to 

the antenna aperture i s dropped from the azimuth matched 

f i l t e r since i t s ef f e c t i s similar to the azimuth window. 

The following sections describe the approximations 

required to derive the range and azimuth matched f i l t e r s of 

the basic range/Doppler algorithm. 

3.2 RANGE COMPRESSION 

Range compression may be viewed as a convolution of the 
* 

received signal with a f i l t e r , h R ( - t , - 7 j ) , matched to the 

transmitted pulse and a window function, w R ( t ) , which i s 

designed to reduce the energy in the sidelobes. The 

continuous 2-D range compressed signal may be written as 

h R C ( t , 7 ? ) = h ( t , 7 j ) * h * ( - t , - T ? ) * [ 6 ( r j ) w R ( t ) ] (19) 
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= h A ( t , 7 j ) * [6(7}) h R C p ( t ) ] (20) 

where 

h R C p ( t ) = 8 T ( t ) * t S*(~t) \ W R ( t ) (21) 

i s the 1-D range compressed p r o f i l e which i s usually similar 

in shape to a sine function, and * f c denotes convolution in 

range time. In t h i s form the range compressed signal i s 

expressed as a range time convolution of the 1-D range 

compressed p r o f i l e with a 2-D phase function, h A ( t , r j ) , which 

i s non-zero only along the RCM curve. 

It should be noted that the time o r i g i n of the range 

compressed signal has been selected so that the range 

compressed p r o f i l e i s symmetric about t=0. For RADARSAT and 

most other s a t e l l i t e SAR's, the transmitted signal is a 

linear FM pulse which can be represented at baseband as 

where a(t) i s the amplitude function, <p(t) i s the phase 

modulation function, T i s the pulsewidth, and K R i s the 

range l i n e a r FM rate. 

s T ( t ) = a(t) e x p [ - j * ( t ) ] (22) 

a(t) = rect(tA) (23) 

*(t) = - * K R t 2 (24) 
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After some manipulation, the range compressed p r o f i l e 

can be shown to have the form of a weighted sine function 

[23] : 

h R C p ( t ) = { ( T - | t | ) r e c t ( t / 2 T ) s i n c [ i r K R t ( T - | t | ) ] } * t w R(t) 

(25) 

The range compression convolution i s performed more 

e f f i c i e n t l y in the range frequency domain using fast 

convolution. Fast convolution i s computationally e f f i c i e n t 

when the length of the convolution kernel in samples is a 

power of 2 larger than about 32. The fast convolution method 

consists of : 

1. Fourier transforming the range matched f i l t e r (which i s 

the complex conjugate of the Fourier transform of the 

transmitted pulse) and the received pulse (for the 

simulations the received pulse i s assumed to be the same 

as the transmitted pulse with appropriate delay); 

2. multiplying together the received signal, the matched 

f i l t e r , and the sidelobe control window; 

3. and inverse Fourier transforming the r e s u l t . 

In continuous time and frequency theory, the fast 

convolution range compression operation can be expressed as 
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h R c p ( t ) = f l W R(f R) |S T<f R>|* } (26) 

where w
R ( f R ) a n o" S T ^ R ^ a r e fc^e F o u r i e r transforms of w

R ( t ) 
and s T ( t ) respectively, 

3.3 SIMULATION OF THE RANGE COMPRESSED PROFILE 

This section describes the method used in the simulations to 

generate a discrete, range compressed p r o f i l e , h R^ p(m). 

Where necessary, the symbol " w i l l be used to denote 

discrete signals. A discrete, l i n e a r FM modulation function, 

s T(m), i s formed in the range time domain as 

s T(m) = a(mT) exp[-j^CmT)] , -(M/2) < m < (M/2) (27) 

where T i s the range sampling period and a(mT) i s the 

rectangular pulse envelope of width T . This function i s 

transformed with a range F F T of length M where M > T / T . The 

frequency samples are squared and a m u l t i p l i c a t i v e sidelobe 

control window i s applied to get 

H R C p ( k ) = WR(k) | S T ( k ) | 2 , -(M/2) < k < (M/2) (28) 

where S T(k) i s the F F T of s T(m), w
R ( k ) i s the frequency 

domain window function, and k i s the frequency index. 

Many window functions are available for c o n t r o l l i n g the 

sidelobes. The p r i n c i p a l window vsed in the simulations i s a 

Kaiser-Bessel window defined as [12] 
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WR(k) = / 0{/3 R[l-(2k/M) 2] l / 2} / /0{/3R) , 
-(M/2) < k < (M/2) (29) 

where 0 D is a window parameter which controls the amount of 

weighting. As 0 R i s increased, the mainlobe width of the 

range compressed p r o f i l e increases whereas the energy in the 

sidelobes and the magnitude of the peak sidelobe decrease. 

The zeroth-order modified Bessel function of the f i r s t 

kind, I 0 , i s approximated by the power series : 

P 

7 0(x) = Z [ (x/2) P / pl V (30) 

p=0 

The number of terms used in the simulations (P=15) provides 

an accuracy of about 14 s i g n i f i c a n t figures for the Bessel 

function. 

Since the simulated range compressed p r o f i l e defines 

the weighting along each azimuth l i n e of the simulated 2-D 

range compressed si g n a l , a close approximation of the 

continuous p r o f i l e i s desired. Thus the discrete p r o f i l e is 

interpolated by a factor I (1=16 in the simulations) by zero 

padding the frequency array to a length of MI before 

transforming back into the time domain . This e f f e c t i v e l y 

performs interpolation [2] with a time-aliased sinc(x) 

function. Except for the small differences caused by 

a l i a s i n g errors, the interpolated samples provide a good 
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simulation of the samples which would be obtained by 

compressing a set of time delayed return pulses. 

In order to interpolate properly, the zero padding must 

be performed at the ends of the pulse spectrum, i . e . , in the 

middle of the FFT array, as follows 

H R C p ( k ) , -(M/2) < k < (M/2) 

(31 ) 

0 , -(MI/2) < k < -(M/2) 

and (M/2) < k < (MI/2) 

where ' i s used to denote the interpolated s i g n a l . After an 

inverse FFT of length MI i s applied, the interpolated, range 

compressed p r o f i l e , h R C p(m'), -MI/2 < m' < MI/2, i s obtained 

where m' i s the interpolated array index and the sampling 

period i s T/I. The peak of the p r o f i l e occurs at m'= 0. 

Since the FFT i s being used to perform a linear 

convolution, the FFT length, M, must be large enough to 

exclude i n v a l i d samples which occur because of the FFT's 

c i r c u l a r convolution. If the pulsewidth i s T and the desired 

number of v a l i d compressed samples before interpolation is 

Q, M must s a t i s f y M > (r/T) + Q - 1. The length M i s usually 

chosen to be the next larger power of 2 to allow the use of 

e f f i c i e n t FFT algorithms. After interpolation, v a l i d samples 

occur for -(QI/2) < m' £ (QI/2). 

Figure 3.1 shows the simulated range compressed p r o f i l e 

a f t e r interpolation for the nominal RADARSAT parameters 

H R C p ( k ) -
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given in Table 1. The window parameter, 0 R = 2.7, was chosen 

to produce a 1-D peak sidelobe r a t i o (PSLR) of -21.7 dB and 

a 1-D integrated sidelobe r a t i o (ISLR) of -21.0 dB. 

3.4 SINGLE-LOOK AZIMUTH COMPRESSION 

This section describes the theory and approximations used in 

developing the basic range/Doppler azimuth compression 

algorithm for single-look processing. 

As described e a r l i e r , the basic range/Doppler algorithm 

makes use of the approximate s i m i l a r i t y between the time and 

frequency domain signals of large TBP linear FM type 

signals. Azimuth compression consists of convolving the 

range compressed signal with an approximation to the azimuth 

matched f i l t e r , h A(-t,-r?), and an azimuth window to control 

sidelobes. The antenna function w (rj) i s usually dropped 

from the azimuth f i l t e r since i t s ef f e c t i s sim i l a r to that 

of the azimuth window. Excluding the azimuth window for the 

time being, an azimuth reference function (the time-reversed 

complex conjugate of the azimuth matched f i l t e r ) can be 

written as : 

h p(t,r/) = exp[-j47rr (Tj)/X] 6 [ t-2r ( T J ) / C ] (32) 

In order to understand the discrete implementation of 

th i s approximate matched f i l t e r , the f i l t e r must be 

bandlimited in range to the range sampling frequency, F
s r -

This excludes frequencies which would be a l i a s e d by range 



R a n g e C o m p r e s s e d P r o f i l e 
betar = 2.7 
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sampling and also provides the basis for interpolation in 

the range d i r e c t i o n . Continuous time signals w i l l be used to 

develop the algorithm. These can be d i s c r e t i z e d in range and 

azimuth and time-aliased according to the length of the 

FFT 1s in order to provide a discrete model of the algorithm. 

The ideal rectangular range bandlimiting f i l t e r has the 

form of a sine function. Thus the range bandlimited 

reference function can be formulated as : 

h F R B ( t , r j ) = h p ( t , T j ) * t sinc( 7 r F s r t ) (33) 

= exp[-j4?Tr(T?)/X] sinc( ?rF s r[ t - 2 r ( i j ) / c ] ) (34) 

The shape of t h i s 2-D reference function i s shown in 

figure 3.2. 

Cross-sections of the function in the azimuth time 

d i r e c t i o n exhibit a lin e a r FM type of phase c h a r a c t e r i s t i c 

which i s the same as the phase along the RCM curve in the 

previous i n f i n i t e bandwidth reference function, h p ( t , 7 j ) . The 

envelope of t h i s signal in the azimuth d i r e c t i o n is a sine 

function centered at the RCM curve with a time-warping 

e f f e c t created by the range curvature terms of the RCM 

equation, r{n). Since the RCM over the azimuth time interval 

defined by the azimuth antenna beamwidth i s predominantly 

l i n e a r , e s p e c i a l l y for RADARSAT parameters, the time-warping 

of the sine envelope i s small. 



Figure 3.2. Range c e l l migration curve in azimuth time 
domain. 
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The approximate azimuth timewidth of the reference 

function can be determined by using a linear aproximation to 

rin) and determining the -3dB azimuth times of the sine 

envelope. Using the Taylor series expansion of chapter 2 

with only f i r s t order terms and evaluating at the beam 

center range time, t = 2r(r}^)/c, the approximate azimuth 

envelope i s sine (7rF s rXf c [ T J - 7 J c ] / c ) . The -3dB timewidth of 

this envelope is given by : 

Ar, 3 d B - 0.884 c / U f ^ ) (35) 

When the squint angle (and therefore the beam center 

frequency, f^) i s small, the TBP in the azimuth d i r e c t i o n 

near the beam center range i s large. For a large azimuth TBP 

signal, the Fourier transform of the azimuth signal i s 

similar in phase and magnitude to the azimuth time domain 

signal except for a scaling constant. Using the p r i n c i p l e of 

stationary phase [17], the scaling between the time and 

frequency axes can be determined by expressing the 

instantaneous frequency as a function of azimuth time : 

f ± (77) = -(2/X) r'(rj) (36) 

Substituting for r'(r?) with the derivative of equation (7) 

and rearranging gives the inverse mapping 

r ^ U ) = r 0 / { v e g [ ( 2 v e g / ( X f ) ) 2 - 1 ] i / z } (37) 
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where 7?^(f) i s the azimuth time corresponding to the 

instantaneous azimuth frequency f. Substituting back into 

equation (7) gives the approximate frequency domain RCM 

curve : 

r . ( f ) = r d j . l f ) ) = r 0 d + 1 /[ ( 2 v & q / ( Xf)) 2 - (38) 

Thus the azimuth Fourier transform of the range 

bandlimited reference function excluding amplitude constants 

can be approximated as : 

H F R B ( t f f ) * h F R B ( t , r ? i ( f )) (39) 

= exp[-j4irr. (f )/X] sine d r F f t-2r . (f )/c ]) (40) 

The shape of thi s azimuth frequency domain reference 

function i s shown in figure 3.3. 

This approximate equation forms the basis for the 

azimuth frequency domain, fast convolution implementation of 

azimuth compression in the basic range/Doppler algorithm. 

The approximate azimuth matched f i l t e r i s the complex 

conjugate of thi s frequency domain reference function. An 

azimuth sidelobe control window i s also applied in the 

azimuth frequency domain. The basic range/Doppler azimuth 

compression algorithm i s expressed as : 
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Figure 3.3. Range c e l l migration curve in azimuth frequency 
doma i n. 
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a ( t , T ? ) = F' 1{[ H R C ( t , f ) * t H * R B ( - t , f ) ] W A(f-f c)} (41) 

= F- 1{exp[ j47rr i(f )/X] W A(f-f c) 

• H R C ( t ' , f ) s i n c ( 7 r F s r [ t ' - t - 2 r i ( f )/c])dt'} (42) 

where a(t,rj) i s the f i n a l compressed point target image. The 

procedures may be summarized as follows : 

1. Apply an azimuth Fourier transform (approximated by an 

FFT) to the range compressed point target return to get 

H R C ( t , f ) . 

2. Interpolate in range time with a sine function matched 

to the range sampling frequency in order to extract the 

energy at the range defined by the RCM curve. In 

practice the RCMC interpolation i s performed as a range 

time convolution with a short windowed sine function to 

minimize the number of computations. A Kaiser-Bessel 

window (^=2.5) i s used in the simulations. 

3. Multiply by the complex conjugate of the azimuth 

frequency domain reference phase function and the 

azimuth sidelobe control window. Rather than using the 

approximate reference function above, a closer 

approximation i s formed by computing the FFT of a 

discrete time domain reference phase function of unity 

magnitude. This i s the approach used in the simulations. 
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4. Apply an inverse azimuth Fourier transform (approximated 

by an inverse FFT) to obtain the f i n a l compressed image. 

3.5 SIMULATION OF SINGLE-LOOK AZIMUTH COMPRESSION 

This section develops a simulation model of single-look 

azimuth compression for the basic range/Doppler algorithm. 

The steps involved in generating and compressing a simulated 

2-D range compressed azimuth signal are described. 

The main steps of the simulation are : 

1. generation of the azimuth time domain phase function 

2. generation of a frequency domain, single-look, reference 

phase f i l t e r 

3. simulation of azimuth weighting due to the azimuth 

antenna function and RCM 

4. azimuth FFT 

5. frequency domain RCMC 

6. m u l t i p l i c a t i o n by the frequency domain azimuth reference 

phase f i l t e r and window 

7. azimuth interpolation performed by zero-padding in the 

frequency domain 
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8. inverse azimuth FFT to produce a time domain point 

target image 

The azimuth time domain phase function can be expressed 

in discrete azimuth time as 

p(n) = exp[jtf(n)] , 1 < n < N (43) 

<Mn) = -(4ir/X) r( TJ C + ( 2 n-N - 1)T A / 2 ) (44) 

where T A i s the azimuth sampling period, n i s the azimuth 

time index, and N i s the length of the azimuth FFT (a power 

of 2 ) . For convenience, the beam center time, TJ^,, i s placed 

at the center of the FFT at n = (N+l ) /2 . The hyperbolic RCM 

equation given in equation (7) i s used throughout the 

simulations instead of the Taylor series approximation. 

A single-look, azimuth reference phase f i l t e r in the 

azimuth frequency domain i s formed by computing the FFT of 
it 

p(n) and taking i t s complex conjugate to get P (k), 1 < k < 

N. 

Each azimuth l i n e of the discrete 2-D range compressed 

signal, hR(,(m,n), i s created by applying two forms of 

weighting to p(n). The f i r s t form of weighting i s the 

azimuth antenna function, w (n). In actual SAR's, the 
a 

azimuth time width of the antenna function varies slowly 

with squint angle and becomes s l i g h t l y asymmetrical. Since 

t h i s complicates the geometric model and introduces small 
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variations which are not of interest here, the antenna 

function w i l l be assumed to be constant in time width and 

shape for the squint angles considered. The two-way azimuth 

antenna function i s approximated by a sincMx) type^ 

function, as produced by a uniform, continuous aperture 

antenna, and i s defined in discrete azimuth time as 

w a(n) = sinc 2[irDv b(2n-N-1 )T A/(2Xr 0) ] , 1 < n < N (45) 

where D i s the azimuth antenna length and the beam center 

time occurs at n = (N+l)/2. The two-way -6 dB width of the 

antenna function i s 

The second form of weighting i s due to RCM. The 

weighting i s applied by determining the range distance 

between each azimuth sample and the range migration curve 

and selecting the nearest amplitude from the interpolated, 

range compressed p r o f i l e . The distance between the range 

migration curve and the desired azimuth l i n e in 

uninterpolated range samples i s computed as 

A r j 6 d B = 0.884 Xr 0/(Dv f a) (46) 

d(m,n) = m - 1 - (2/cT) [ r ( T J C + [ 2n-N-1 ]T A/2) - r m i n ] , 

1 < n < N 1 < m < M max (47) 

where m i s the range c e l l index, and M max i s the number of 
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azimuth l i n e s being generated. The positioning of the 

azimuth l i n e s in range time i s a r b i t r a r y since i t depends 

only on the phase of the range sampling clock. Therefore the 

azimuth l i n e s are a r b i t r a r i l y positioned so that the nearest 

l i n e (m=l) corresponds to range time 2 r m ^ n / c , and the 

farthest l i n e (m=M_= ) corresponds to range time 2 r m = / c . 

These ranges, r . and r , are the ranges of the nearest 3 mm max 3 

and farthest azimuth l i n e s required for processing. They are 

determined by the length of the interpolator, the amount of 

RCM over the processed bandwidth, and the number of desired 

azimuth l i n e s in the output image. 

In order to retrieve the nearest sample from the 

interpolated range compressed array, hR^.p(m'), the distance 

d(m,n) must be converted to an interpolated index as 

m'(m,n) = round[ I d(m,n) ] (48) 

where the function round[x] rounds x to the nearest integer. 

Combining the antenna and RCM weightings, the discrete 2-D 

range compressed signal can be expressed as 

h(m,n) = w a(n) p(n) h R C p ( i r i j (m,n) ) (49) 

Once a l l the required azimuth lines are generated, each 

l i n e i s transformed to the frequency domain with an azimuth 

FFT of length N to get the range compressed frequency domain 

signal, H(m,k) , 1 < k < N. 
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As with the range FFT in the previous section, the 

azimuth FFT must be long enough to produce the desired 

number of v a l i d compressed samples. However, since the 

azimuth time domain signal does not f a l l abruptly to zero 

due to the s i n e 2 form of the antenna function, an a r b i t r a r y 

processing time interval containing most of the signal 

energy must be chosen. Denoting the processing i n t e r v a l as 

7 j p B W , and the desired number of compressed azimuth samples 

after convolution as R, the FFT length must s a t i s f y 

N ^ * ? p B W

/ T A + R " 1 { 5 0 ) 

to prevent wraparound errors due to the c i r c u l a r 

convolution. For the current simulations, the processing 

in t e r v a l i s set equal to the two-way -6 dB antenna width. 

Before the azimuth reference phase f i l t e r can be 

applied to H(m,k), i t i s necessary to correct for RCM in the 

azimuth-frequency, range-time domain using a range 

interpolator. This correction, RCMC, e f f e c t i v e l y straightens 

the range migration curve so that the matched f i l t e r need 

only be applied to a single azimuth l i n e to produce a single 

azimuth l i n e of the f i n a l image. The ideal range 

interpolator for a discrete range signal i s a sine function 

which i s range time alias e d according to the length of the 

range compression FFT. 

In order to reduce the length of the interpolator and 

thereby reduce the number of computations, a f i n i t e length 
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approximation i s usually used. Also, rather than generating 

a d i f f e r e n t set of interpolator c o e f f i c i e n t s for each 

azimuth time, several shifted versions of the interpolator 

are precomputed for a set of equally spaced f r a c t i o n a l range 

sample s h i f t s and the nearest closest version i s used. In 

the current simulations, the approximate interpolator i s 

formed by applying a discrete Kaiser-Bessel window to a sine 

function to get 

h j d r q ) = sinc [7r(q+lL)T] w :(q+lL) , 

-(L/2) < 1 < (L/2) , 0 < q < Q-1 (51) 

W j ( i ) = / 0 { ^ I [ l - ( 2 i / Q L ) 2 ] l / 2 } / /ot/Jj} , 

-(QL/2) < i < (QL/2) (52) 

where Q i s the number of f r a c t i o n a l l y shifted versions of 

the interpolator, q denotes the f r a c t i o n a l s h i f t , L i s the 

length of each s h i f t e d version, 1 i s the index within each 

shi f t e d version, and i s the window weighting factor. 

These parameters were a r b i t r a r i l y chosen to be Q = 16, 

0j = 2.5, and L = 4, 8, 16, or 32. 

To extract the peak energy at each azimuth sample time 

for a given point target with a range of closest approch, 

r 0 , the interpolator peak i s shifted in range so that i t s 

peak coincides with the frequency domain RCM curve defined 

in equation (38). This s h i f t i s implemented in two steps. 

F i r s t the interpolator i s moved an integer number of samples 
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so that i t s peak i s less than one sample away from the RCM 

curve. Secondly, one of the Q interpolator versions i s 

chosen such that the chosen.interpolator version has i t s 

peak closest to the actual position of the range migration 

curve. This e f f e c t i v e l y performs a f r a c t i o n a l s h i f t of the 

interpolator. The range l i n e and the interpolator are then 

mult i p l i e d to complete the approximate interpolator 

convolut ion. 

RCMC and azimuth reference phase m u l t i p l i c a t i o n are 

performed only over the processed bandwidth, f p B W r which 

corresponds to the processing i n t e r v a l , *?pBW^ This bandwidth 

i s centered at the beam center frequency, f r , given by 

The processed bandwidth i s computed from the azimuth 

processing i n t e r v a l , r ? p B W r with the assumption that phase 

terms higher than the quadratic are small over the 

processing i n t e r v a l , as 

f c = f.<„c> (53) 

f PBW PBW 
(54) 

K a ( T ? ) = - ( 2 / X ) r"(r?) 

= - ( 2 v * / [Xr(rj)]) [ 1 - (v » / r (rj) ) 2 ] 

(55) 

(56) 

where K. i s the azimuth li n e a r FM rate which i s A 
approximately constant over the processing i n t e r v a l . Since a 
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discrete azimuth signal i s used, the processed band i s 

aliased by the PRF. Figure 3.4 shows the form of the range 

compressed signal after the azimuth FFT including the 

spectrum a l i a s i n g which is caused by azimuth sampling. 

RCMC straightens the point target range migration curve 

into a single azimuth frequency l i n e . This l i n e i s 

compressed by m u l t i p l i c a t i o n with the frequency domain, 

azimuth reference phase f i l t e r and a sidelobe reduction 
* 

window. As stated previously, the f i l t e r i s P (k). 

The azimuth window i s computed over the processed 

bandwidth and set to zero outside. A Kaiser-Bessel azimuth 

window containing N p B W = f p B WN/(PRF) nonzero samples i s 

computed over frequency indices k = 1 to N as : 

WA(k) - / 0{/3 A[l-(2[k-1 ]/N) 2]} / / O(0 A} , 

1 < k < N p B W/2 +1 

70{/3A[ 1-(2[k-1-N]/N) 2]} / 7 0{j3 A} , 

N-NpBW/2+2 < k < N 

0 , otherwise (57) 

Before m u l t i p l i c a t i o n , the window i s c i r c u l a r l y s h i f t e d 

modulo N so that the peak of the window function i s at 

frequency sample k̂ ., which i s the nearest sample equal to or 

less than the ali a s e d beam center frequency. 
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F i g u r e 3 . 4 . R a n g e c e l l m i g r a t i o n c u r v e i n d i s c r e t e a z i m u t h 
f r e q u e n c y d o m a i n . 



51 

A s i n g l e l i n e o f t h e f i n a l c o m p r e s s e d i m a g e i s p r o d u c e d 
b y a p p l y i n g a n i n v e r s e F F T o f l e n g t h N t o t h e s p e c t r u m . T h i s 
l i n e c o n t a i n s t h e c o m p r e s s e d r e t u r n s f r o m t a r g e t s w i t h t h e 
s a m e r a n g e o f c l o s e s t a p p r o a c h , r 0 , b u t d i f f e r e n t a z i m u t h 
p o s i t i o n s . 

T h e p r o c e s s o f RCMC, a z i m u t h r e f e r e n c e p h a s e 
m u l t i p l i c a t i o n a n d w i n d o w i n g i s r e p e a t e d f o r e a c h o f t h e 
d e s i r e d o u t p u t r a n g e c e l l s . I n t h e o r y , a d i f f e r e n t RCM c u r v e 
w i t h d i f f e r e n t v a l u e o f r 0 s h o u l d b e u s e d f o r e a c h r a n g e . 
H o w e v e r , i f t h e r a n g e e x t e n t i s s m a l l , a s i n t h i s c a s e w h e r e 
we a r e o n l y i n t e r e s t e d i n t h e i m m e d i a t e r e g i o n o f a p o i n t 
t a r g e t r e s p o n s e , t h e same r a n g e m i g r a t i o n c u r v e c a n b e u s e d 
f o r a l l l i n e s b y s h i f t i n g i n r a n g e b y a n a p p r o p r i a t e n u m b e r 
o f r a n g e c e l l s . When l a r g e r r e g i o n s a r e p r o c e s s e d , a c a r e f u l 
a n a l y s i s i s r e q u i r e d t o d e t e r m i n e t h e r a n g e i n v a r i a n c e 
r e g i o n w h i c h i s t h e d i s t a n c e i n r a n g e o v e r w h i c h t h e 
c o m p r e s s i o n f i l t e r s d o n o t v a r y a p p r e c i a b l y . I n p r a c t i c e , 
t h e e n t i r e i n v a r i a n c e r e g i o n i s p r o c e s s e d a s a b l o c k t o 
i n c r e a s e e f f i c i e n c y . T h e i s s u e o f r a n g e i n v a r i a n c e o f t h e 
a z i m u t h r e f e r e n c e p h a s e f u n c t i o n h a s b e e n e x a m i n e d i n o t h e r 
r e p o r t s . C h a p t e r 7 e x a m i n e s r a n g e i n v a r i a n c e f o r t h e new SRC 
f i l t e r f u n c t i o n . 

F i n a l l y , i t i s d e s i r a b l e t o i n t e r p o l a t e t h e c o m p r e s s e d 
a z i m u t h s i g n a l f o r t h e p u r p o s e s o f i m a g e q u a l i t y m e a s u r e m e n t 
a n d t o d e c r e a s e t h e l o s s o f i n f o r m a t i o n i n t h e s u b s e q u e n t 
d e t e c t i o n o f t h e c o m p l e x s i g n a l . T h e m e t h o d u s e d i s z e r o 
p a d d i n g i n t h e a z i m u t h f r e q u e n c y d o m a i n b e f o r e t h e i n v e r s e 
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FFT. F i r s t the spectrum i s c i r c u l a r l y s h i f t e d so that the 

beam center frequency l i e s nearest to the f i r s t FFT array 

sample. The array i s then padded with zeros in the middle to 

form a length NJ array where J i s the interpolation factor. 

By applying an inverse FFT of length NJ, the desired 

interpolated signal i s obtained. 

3.6 SIMULATION RESULTS OF BASIC RANGE/DOPPLER COMPRESSION 

This section presents and discusses the resu l t s of quality 

measurements of simulated point target responses which were 

produced for a range of squint angles. The simulation 

programs were implemented on an Amdahl 470 V/8 computer in 

RATFOR (ra t i o n a l FORTRAN) under the MTS (Michigan Terminal 

System) operating system. RATFOR i s a structured precompiler 

which produces FORTRAN code. 

The f i r s t step in the simulation was the production of 

a range compressed p r o f i l e as in figure 3.1. The second step 

in the simulation was the production of a simulated range 

compressed azimuth sig n a l . Figure 3.5 shows the azimuth time 

domain magnitudes of the simulated antenna weighting, and 

the antenna plus RCM weightings for a squint angle of 5.0°. 

The magnitudes are shown for the range c e l l closest to the 

beam center range. 

The azimuth spectrum produced by the azimuth FFT i s 

shown in figure 3.6. Before RCMC the azimuth bandwidth i s 

quite small. The f i n i t e length interpolator used for RCMC i s 

shown in figure 3.7. The figure shows the length 16 
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i n t e r p o l a t o r and i n c l u d e s a l l 16 f r a c t i o n a l l y s h i f t e d 

v e r s i o n s . F i g u r e 3.8 shows the c o r r e c t e d spectrum a f t e r RCMC 

i n which the processed bandwidth i s c l e a r l y seen. 

The azimuth r e f e r e n c e phase f i l t e r spectrum f o r a 5.0° 

squ i n t angle i s shown i n f i g u r e 3.9. The f i l t e r i s generated 

i n the azimuth time domain without weighting and then 

transformed with an azimuth FFT. The azimuth K a i s e r - B e s s e l 

window with 0 A = 1.5 i s shown i n f i g u r e 3.10. The point 

t a r g e t azimuth spectrum a f t e r RCMC, azimuth r e f e r e n c e phase 

f i l t e r i n g , and windowing i s shown i n f i g u r e 3.11. The 

spectrum r i p p l e s are c h a r a c t e r i s t i c of the azimuth r e f e r e n c e 

phase f i l t e r spectrum. 

Upon a p p l i c a t i o n of an i n v e r s e FFT, the f i n a l 

compressed p o i n t t a r g e t response i s produced. Sample 1-D 

c r o s s - s e c t i o n s of the compressed response are shown i n 

f i g u r e s 3.12 and 3.13 f o r squ i n t angles of 0° and 5°. The 

azimuth window f a c t o r was chosen to produce comparable 

s i d e l o b e l e v e l s i n the range and azimuth d i r e c t i o n s f o r 

small s q u i n t angles as would be done i n a p r a c t i c a l system. 

F i g u r e 3.12 shows that severe range broadening occurs 

f o r a sq u i n t angle of 5.0°. The range and azimuth broadening 

are summarized i n f i g u r e s 3.14 to 3.16 f o r a range of squ i n t 

a n g l e s . Range broadening i n c r e a s e s r a p i d l y f o r squint angles 

above 4° with 5% and 10% broadening o c c u r i n g at about 3.65° 

and 4.23° r e s p e c t i v e l y ( f o r L = 16). However, azimuth 

broadening i s r e l a t i v e l y i n s i g n i f i c a n t remaining below 2% 

f o r s q u i n t angles up to 6°. 
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The 1-D and 2-D ISLR measurements are summarized in 

figures 3.17 to 3.19. It shows that both ratios increase 

s i g n i f i c a n t l y as the squint angle increases indicating that 

the point target response not only becomes broader in range, 

but also becomes f l a t t e r spreading more energy into the 

sidelobes. The ISLR measurement i s seen to be l i m i t e d to 

less than 5° since a large amount of the sidelobe energy 

l i e s outside of the f i n i t e integration region for larger 

squint angles. This causes the ISLR to drop sharply above 

5°. 

Another r a t i o of i n t e r e s t , the PSLR, i s summarized in 

figures 3.20 to 3.22. This shows that the peak range 

sidelobe i s usually the peak 2-D sidelobe as well. The 

discrepancy at small angles between the three figures is due 

to the higher interpolation factor used in measuring the 1-D 

PSLR. At some of the higher angles, the range PSLR dips well 

below the 2-D curve. This occurs since the closer range 

sidelobes merge with the mainlobe causing sidelobes further 

out to be measured as the peak sidelobe. This behaviour can 

be seen in figure 3.12. 

The f i n a l measurement of interest i s the degradation of 

the peak magnitude which i s plotted in figure 3.23. This 

measurement was normalized to the sum of squares of the 

interpolator c o e f f i c i e n t s and the azimuth processed 

bandwidth as would be appropriate for a white noise model 

with nqise equally d i s t r i b u t e d over the range and azimuth 

c e l l s . Since the actual noise d i s t r i b u t i o n may be somewhat 
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d i f f e r e n t , care should be taken in r e l a t i n g the peak 

magnitude degradation to changes in signal-to-noise r a t i o . 

The figure shows a reduction in peak magnitude with 

increasing squint angle caused by poor compression. At the 

5% and 10% range broadening squint angles, the degradations 

are approximately 0.47dB and 0.83dB respectively. The 

degradation r i s e s rapidly above t h i s . 
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(8P) ftpnjiufiDN 

Figure 3.5. Simulated azimuth antenna weighting, and antenna 
plus RCM weightings in range c e l l nearest to 
beam center range for 5° squint. 
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(SP) •pnuufiDN 

Figure 3 .6. Azimuth spectrum before RCMC in range c e l l 
nearest to beam center range for 5° squint. 



Figure 3.7. Windowed range interpolator of length 16 
including 16 f r a c t i o n a l l y s h i f t e d versions. 
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( 8 P ) •prujuCDN 

F i g u r e 3 . 1 1 . A z i m u t h s p e c t r u m a f t e r RCMC, matched f i l t e r , 
and w i n d o w i n g . 
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( g p ) • p r u j u f i D H 

igure 3.12. F u l l y compressed range p r o f i l e without SRC for 
0° and 5° squint using a length 16 RCMC 
interpolator. 
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(8P) •pnimfiDW 

Figure 3.13. F u l l y compressed azimuth p r o f i l e without SRC 
for 0° and 5° squint using a length 16 RCMC 
interpolator. 
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Figure 3.14. Range broadening of point target response 
withdut SRC for various RCMC interpolator 
lengths. 
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Figure 3.15. Range broadening of point target response 
(expanded) without SRC for various RCMC 
interpolator lengths. 
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fiuiuopDojq mnuijzv % 

Figure 3.16. Azimuth broadening of point target response 
without SRC for various' RCMC interpolator 
lengths. 
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Figure 3.17. 1-D range integrated sidelobe r a t i o s without 
SRC for various RCMC interpolator lengths. 
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Figure 3.18. 1-D azimuth integrated sidelobe r a t i o s without 
SRC for various RCMC interpolator lengths. 
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Figure 3.19. 2-D integrated sidelobe r a t i o s without SRC for 
various RCMC interpolator lengths. 
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Figure 3.20. 1-D range peak sidelobe r a t i o s without SRC for 
various RCMC interpolator lengths. 
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Figure 3.21. 1-D azimuth peak sidelobe r a t i o s without SRC 
for various RCMC interpolator lengths. 
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Figure 3.22. 2-D peak sidelobe r a t i o s without SRC for 
various RCMC interpolator lengths. 
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Figure 3.23. Degradation of peak magnitude without SRC for 
various RCMC interpolator lengths. 



4. ANALYSIS OF BROADENING IN RANGE/DOPPLER COMPRESSION 

This section presents a theory which characterizes the 

broadening, primarily in range, which occurs at high squint 

angles in basic range/Doppler processing without SRC. The 

theory extends the range broadening model of J i n and Wu [13] 

to include the ef f e c t s of the range sidelobe control window. 

The p r i n c i p l e of stationary phase, which was used in the 

previous chapter to relate the azimuth spectrum to the 

azimuth time domain signal, i s replaced by an approximate 

Fourier transform which accounts for the spectrum broadening 

which occurs in low TBP linear FM signals. Measurements of 

the simulated azimuth TBP and spectral broadening in both 

the azimuth frequency and range time directions are 

presented. 

Azimuth broadening i s shown to be accurately predicted 

by the decrease in processed bandwidth with increasing 

squint angle, a qual i t y which i s inherent to the simulation 

models. L i t t l e , i f any, azimuth broadening i s caused by the 

azimuth spectral broadening. 

4.1 BROADENING MODEL FOR RANGE/DOPPLER COMPRESSION WITHOUT  

SRC 

The previous chapter presented a theory of range and 

azimuth compression for the basic range/Doppler algorithm. 

It was shown that the 2-D range compressed signal can be 

expressed as : 

75 
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h R C ( t f „ ) = h A ( t f , ) * t h R C p ( t ) (58) 

where 

h A(t,rj) = w (7?) exp[-j47rr ( T ? ) / X ] 6[t-2r (T?)/C ] (59) 

and h R C p ( t ) is the 1-D range compressed p r o f i l e which i s 

usually similar in shape to a sine function. 

The f i r s t step after range compression in basic 

range/Doppler azimuth compression i s the computation of the 

azimuth fast Fourier transform (FFT) of the range compressed 

s i g n a l . In continuous-time theory t h i s i s replaced by a 

continuous azimuth Fourier transform. In general, the 

azimuth Fourier transform of the range compressed signal 

cannot be represented exactly in closed form, or even in a 

separable form. 

A major approximation i s now made which allows the 

azimuth spectrum to be expressed in a form which r e s t r i c t s 

the range-azimuth coupling to a delta l i n e function as in 

the azimuth time domain signal in equation (58). A similar 

approximation was o r i g i n a l l y presented in [13] but i t s 

v a l i d i t y was not f u l l y discussed. The convolution in range 

is approximated by a convolution in azimuth as : 
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hRC ( t' T j ) * h
A

( t ' , » ) % h R C P ( C l T ? ) (60) 

= { WJTJ) exp[-j (47r/X)r(7j) ] 6 [ r?-r - 1 (ct/2) ] } 
a 

* h 7? RCP (C 1 T?) (61) 

where r _ 1 ( r ) i s the inverse function of the RCM equation, 

r(ri), and c, i s the slope of the RCM curve at the beam 

center time given by : 

The approximation can be viewed as a li n e a r projection 

of the range p r o f i l e about the RCM curve into azimuth time 

with the position of the peak of the p r o f i l e corrected to 

l i e along the RCM curve. Two major assumptions have been 

made : 

1. The shape of the amplitude p r o f i l e in the azimuth 

d i r e c t i o n i s assumed to be the same as the range 

compressed p r o f i l e with the exception of a scaling 

constant. In r e a l i t y the azimuth p r o f i l e i s s l i g h t l y 

asymmetric due to range curvature. 

- - X f c / c (62) 

2. The scaling constant, which i s the slope of the RCM 

curve, i s assumed to be constant over the azimuth 

processing i n t e r v a l . Actually the slope varies slowly 
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over the processing i n t e r v a l again due to range 

curvature. 

The f i r s t assumption seems reasonable when the azimuth 

timewidth i s small, i . e . , when the amount of range curvature 

over the -3dB azimuth timewidth i s much less than the range 

resolution. Fortunately, t h i s condition occurs at larger 

squint angles where spectrum broadening i s of most interest. 

The assumption may break down at small squint angles where 

l i t t l e broadening occurs. 

The second assumption may be more sensitive to range 

curvature since l i n e a r i t y i s assumed over the entire azimuth 

processing i n t e r v a l . For RADARSAT parameters range curvature 

is very small and the slope of the RCM curve does not vary 

appreciably over the processed azimuth aperture. However for 

longer wavelength SARs, the slope may vary somewhat. The 

chapter on multilook processing addresses t h i s assumption in 

more d e t a i l . 

Applying the azimuth Fourier transform and using the 

convolution theorem leads to the following equation for the 

range compressed spectrum : 

H R C ( t , f ) = W g(f) * f F{ exp[-j(47r/X)r(rj) ] } * f 

[ F{6[n-r-'(ct/2)]} • F { h R C p ( c , 7 J ) } ] (63) 

where W (f) i s the Fourier transform of the azimuth antenna 
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weighting function, w (r?). In thi s form the azimuth spectrum 

consists of the convolution of three functions in azimuth 

frequency. 

The second two functions w i l l be evaluated e x p l i c i t l y . 

The middle function i s the Fourier transform of the phase 

along the RCM curve. Using the quadratic approximation of 

equation (12), i t can be evaluated in closed form [17] as : 

F{ exp[-j(47r/X)r ( T 7 ) ] } * (l//|K A |) exp[ jtf(f) ] (64) 

where 

iMf) = - w t f - f , ) 2 / ^ + U/4)SIGN(K A) + * 0 (65) 

\jj0 = -4rrr 1/X (66) 

and SIGN(x) denotes the sign of x. Although the quadratic 

approximation to the azimuth phase i s used here, the exact 

transform w i l l be substituted back after extracting a 

broadening function. 

The delta function in the t h i r d term contains the 

range-azimuth coupling. Its transform i s a linear phase 

complex exponential in which the rate of change of phase i s 

a function of range : 

F{ Sin-r- 1 (ct / 2 ) ] } = exp[ -j2irfr- 1 (ct /2 ) ] (67) 
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F i n a l l y the transform of the scaled range compressed 

p r o f i l e including the range window i s given by : 

F{ h R C p ( C l T } ) } = (1/|c,|) H R C p ( f / C l ) (68) 

The following substitutions and approximations were not 

shown in the paper by J i n and Wu but are essential to 

understanding the broadening model. Using the above 

transforms the second convolution in equation (63) can be 

rewritten as : 

1 H R C p ( f 7 c J e ^ ( f " r )
 e - J 2 * f ' r - ' ( c t / 2 > d r 

|c,| v/|KA| ( 6 g ) 

= e W f > f ! H R C p ( f V C l ) e ^ V ^ 

| c , | • l ^ l 

ej2irf ' [ ( f - f ,)/K A - r - 1 ( c t / 2 ) ] flf, ( ? 0 ) 

The leading exponential can be recognized as the transform 

of the azimuth phase along the RCM curve in equation (64). 

Thus the exact time domain phase function w i l l be 

substituted back. 

The remaining integral defines the amplitude broadening 

and phase deviation along each azimuth l i n e . Using the 

change of variable, 

U, = f / K A 
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the integral can be expressed as : 

A , ( f ) * f 6 [ f - f i ~ K A r - 1 ( c t / 2 ) ] (72) 

where 

A,(f) - (1/|c a|) H R C p ( „ / c 2 ) e - ^ K A ^ 2
 e3 2* f l»t dr, i 

(73) 

= ( l / | c 2 | ) H R C p ( i ? 1 / c 2 ) e ^V*'* } ( ? 4 ) 

and 

c 2 = c,/K A = -Xf c/(cK A) (75) 

As i t stands, the broadening i s expressed as a 

convolution in azimuth frequency which i s dependent on 

range. To express the broadening in terms of range time, 

A,(f) must be projected back into range using the 

approximately constant slope, c 2 , of the RCM curve in the 

azimuth frequency domain. This second projection of the 

signal model about the RCM curve was not discussed by J i n 

and Wu. The same conditions apply for t h i s projection as 

before except that the signal i s now in the azimuth 

frequency domain. The result i s : 
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A,(f) * f 5 [ f - f i " K A r - 1 ( c t / 2 ) ] 

- A ^ t / c j ) * t 6 [ t - ( 2 / c ) r ( [ f - f , ]/KA) ] (76) 

Since the azimuth antenna function i s a slowly varying 

function of azimuth time and the remainder of equation (63) 

is an approximately linear FM signal, i t s convolution with 

the above terms can be approximated by a m u l t i p l i c a t i o n [17] 

with a scaled version of the antenna function. The scaling 

i s defined by the azimuth frequency to azimuth time mapping, 

rj ^ ( f ) . This gives the f i n a l form of the azimuth transformed 

range compressed signal as : 

H R C ( t , f ) = w a ( r ? i ( f ) ) • F{ exp[-j(47r/X)r(7j) ] } 

• { A,(t/c 2) *fc 6 [ t - ( 2 / c ) r ( [ f - f , ] / K A ) ] } (77) 

Azimuth compression without SRC does not s i g n i f i c a n t l y 

a l t e r the range dispersion defined by equation (77) since 

azimuth compression occurs primarily p a r a l l e l to the RCM 

curve. Therefore the approximate range p r o f i l e after azimuth 

compression i s determined by A,(t/c 2) which i s the inverse 

Fourier transform of a weighted linear FM si g n a l . 

When the width of the linear FM signal i s small ( i . e . , 

when the phase at the -3dB points i s much less than it/2 

radians), the quadratic phase exponential in equation (74) 

produces l i t t l e broadening of the inverse transform. This 
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occurs when c 2 and therefore also f^ and the squint angle 

are small. Thus for small squint a igles, the range p r o f i l e 

before and after the azimuth Fourier transform i s 

approximately the same and l i t t l e range broadening appears 

af t e r compression without SRC. 

4.2 BROADENING SIMULATIONS AND MEASUREMENTS 

This section presents the results of simulating the range 

broadening function developed in the previous section. These 

are compared to measurements of the broadening of the range 

compressed point target response used in the previous 

simulations. These simulations are similar to those 

presented by J i n and Wu. However the range window has been 

added and detailed quantitative image qual i t y measurements 

are performed. 

Measurements of the azimuth TBP are presented to relate 

measurements of azimuth spectral broadening to the decrease 

in azimuth TBP. 

A predicted azimuth broadening curve i s shown which i s 

based on the decrease in processed bandwidth with increasing 

squint angle. 

The range broadening function, A , ( t / c 2 ) , provides a 

model for the range broadening of the azimuth spectrum which 

occurs in the azimuth Fourier transform. This function has 

been simulated with nominal RADARSAT parameters with the 

same range window parameter (0 R=2.7) that was used in 

previous simulations. The -3dB range widths have been 
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measured for various squint angles and are summarized in 

figure 4.1. 

The simulated broadening function was generated 

according to equation (74) with f replaced by t / c 2 and the 

inverse Fourier transform integral approximated by an 

inverse FFT. The range compressed range spectrum, 

H R £ p ( TJ ,/c 2), was simulated as having zero phase with a 

magnitude defined by the range window function. This was 

multiplied by the quadratic phase broadening term. The 

functions were generated in a length N (N=2048) discrete 

frequency domain array with maximum frequency equal to the 

range sampling rate. An inverse FFT was applied to form a 

discrete, range time domain, broadening function. The 

re s u l t i n g response width was measured with the image quality 

measurement programs discussed e a r l i e r . 

The range broadening predicted by the broadening 

function agrees well with the actual range broadening 

results shown in figure 3.14 of the previous chapter. 

Additional broadening occurs with smaller RCMC 

interpolators, e s p e c i a l l y at large squint angles, due to the 

interpolator windowing. 

Since the range broadening model is based upon 

predictions of azimuth spectrum broadening, the shapes of 

the azimuth time and frequency domain signals were examined. 

Figures 4.2 to 4.6 show the relationship between the azimuth 

timewidth of the simulated range compressed signal and i t s 

bandwidth aft e r the azimuth FFT. The upper graphs show the 
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Figure 4.1. Range broadening 
range broadening 

of the simulated, t h e o r e t i c a l , 
function without SRC. 
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timewidths with the time scale converted to predicted 

frequency using the azimuth FM rate at the beam center as 

follows : 

* j - t j " f^ - Kjrrr?-,) (78) predicted C A C 

The lower graphs show the actual bandwidths. The graphs are 

plotted for squint angles of 0, 1, 5, 10, and 15 degrees. At 

small squint angles (0° and 1°) the time and frequency 

domain signals are very s i m i l a r . At 5° s i g n i f i c a n t spectrum 

broadening i s evident. At 10° and 15° the broadening is so 

severe that the actual spectra no longer resemble the 

predicted spectra. 

The amount of range and azimuth broadening of the 

simulated range compressed azimuth spectrum was measured to 

determine the accuracy of the range broadening model. The 

broadening measurements are summarized in figures 4.7 to 

4.10. These measurements were performed after the azimuth 

FFT but before RCMC. Broadening in both the azimuth 

frequency and range time directions was measured at three 

points on the RCM curve as shown in figure 4.11 : at the 

lower azimuth processed bandwidth frequency (the far range 

c e l l ) ; at the beam center frequency (the range c e l l nearest 

the beam center range); and at the upper azimuth processed 

bandwidth frequency (the near range c e l l ) . 

The spectrum broadening measurements in the azimuth 

frequency di r e c t i o n at low squint angles are inaccurate due 



F i g u r e 4 . 7 . M e a s u r e d a z i m u t h s p e c t r u m b r o a d e n i n g i n t h e 
a z i m u t h f r e q u e n c y d i r e c t i o n i n t h e n e a r , b e a m 
c e n t e r ( m i d ) , a n d f a r r a n g e c e l l s . 
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Figure 4.8. Measured azimuth spectrum broadening in the 
azimuth frequency d i r e c t i o n in the near, beam 
center (mid), and far range c e l l s (expanded). 



F i g u r e 4 . 9 . M e a s u r e d a z i m u t h s p e c t r u m b r o a d e n i n g i n t h e 
r a n g e t i m e d i r e c t i o n a t t h e l o w e r , t h e b e a m 
c e n t e r , a n d t h e u p p e r p r o c e s s e d b a n d w i d t h 
f r e q u e n c i e s . 
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Figure 4.10. Measured azimuth spectrum broadening in the 
range time d i r e c t i o n a; the lower, the beam 
center, and the upper processed bandwidth 
frequencies (expanded). 
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Figure 4 . 11 . Points on the azimuth frequency domain RCM 
curve used for spectrum broadening measurements. 
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to the large spectrum r i p p l e s . At larger squint angles the 

azimuth spectrum i s smoother allowing more accurate 

measurements. The broadening measurements agree well with 

the actual broadening re s u l t s with large RCMC interpolators 

and the range broadening predicted by the broadening model. 

The broadening i s somewhat greater at the low frequency (far 

range) end of the RCM curve and s l i g h t l y smaller at the high 

frequency (near range) end. This i s due to the small change 

in RCM slope over the processed bandwidth caused by range 

curvature. 

As the squint angle increases, the slope of the RCM 

curve in the beam center range c e l l increases causing a 

decrease in the azimuth time width and TBP. For small TBP's, 

the shape of the azimuth spectrum after the azimuth FFT 

broadens and no longer c l o s e l y resembles the azimuth time 

domain si g n a l . Azimuth -3dB time width measurements of the 

range compressed signal were performed in order to calculate 

the azimuth time-bandwidth products (TBP) in the three range 

c e l l s noted above as a function of squint angle. The 

resul t i n g curves, figure 4.12, can be used to relate range 

broadening to the azimuth TBP. From a lin e a r interpolation 

of the test points, the beam center azimuth TBP's 

corresponding to 5% and 10% range broadening are 0.76 and 

0.57 respectively. 

Azimuth broadening i s much smaller than range 

broadening. The azimuth broadening which does occur can be 

att r i b u t e d to the decrease in azimuth processed bandwidth 



Measured Azimuth TBP's before SRC 
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with increasing squint angle which i s inherent to the 

simulation model of the azimuth antenna function. Since the 

azimuth -6dB (two-way) antenna time width was kept constant 

over changes in squint angle whereas the azimuth frequency 

rate varied, the processed bandwidth calculated by equation 

(54) decreased with increasing squint angle. Since the 

azimuth resolution i s inversely proportional to the 

processed bandwidth, the percentage azimuth broadening can 

be predicted by c a l c u l a t i n g the percentage decrease in 

processed bandwidth as shown in figure 4.13. The predicted 

azimuth broadening agrees very c l o s e l y with the measured 

r e s u l t s . 

Very l i t t l e azimuth broadening i s caused by the 

spectrum broadening which causes range broadening since the 

d i s t o r t i o n of the azimuth phase spectrum under low azimuth 

TBP conditions i s very small over the -3dB azimuth 

bandwidth. Since azimuth compression i s mainly a function of 

the phase spectrum, l i t t l e azimuth broadening occurs. 

F i n a l l y , figure 4.14 shows how the t o t a l amount of RCM 

over the processed aperture varies with squint angle for the 

given set of RADARSAT parameters. RCM increases almost 

l i n e a r l y with squint angle as i s expected for a 

predominantly quadratic curve. 
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Figure 4.13. Azimuth broadening predicted by decrease in 
azimuth processed bandwidth. 
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5. SECONDARY RANGE COMPRESSION (SRC) 

This chapter introduces a new secondary range 

compression (SRC) algorithm which compensates for the range 

broadening which occurs in the azimuth FFT and which i s not 

accounted for in the basic range/Doppler algorithm. A 

mathematical theory for the SRC algorithm i s developed 

d i r e c t l y from the point target response model in chapter 3. 

Two new discrete implementations are developed : azimuth SRC 

and range SRC. It i s shown with simulations that the SRC 

algorithms provide excellent recompression of the energy 

which i s spread by the azimuth FFT at large squint angles 

(small azimuth TBP's) for nominal RADARSAT parameters. 

5.1 THEORY OF AZIMUTH MATCHED FILTERING AND SRC 

This section extends the theory of azimuth compression 

developed in chapter 3 to show how SRC can be used to 

recompress the energy which is dispersed by the azimuth 

Fourier transform. 

The ideal matched f i l t e r for a point target signal i s : 

h*(-t,-rj) = h*(-t , - 7 ? ) * h*(-t,-rj) (79) 

Chapter 3 described the theory of range compression in which 

the range compressed signal h R C ( t , 7 ? ) i s formed by convolving 
* 

with the range matched f i l t e r h R ( - t , - T ? ) and a range window 

used to control sidelobes. 

102 
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Azimuth compression consists of convolving the range 

compressed signal with an azimuth reference phase f i l t e r , 
* 

h p ( - t , - 7 ? ) , and an azimuth window to control sidelobes. The 

id e a l i z e d azimuth reference phase function was given 

previously in equation (32) as : 

Its azimuth Fourier transform can be evaluated using the 

Fourier transforms from chapter 4 : 

h F(t,7j) = exp[-j47rr (T?)/X] 6[ t-2r ( T?)/C ] (80) 

H p ( t , f ) = F{exp[-j47rr (T?)/X]} * F F{ 6 [ t-2r (r?) /c ]} (81 ) 

J<Mf> * -j27rfr- 1 (ct/2) (82) f 
V/|KA| 

00
 eJ<Mf-f) e-j27rf'r- 1 (ct/2) df' (83) — oo 

= e j ^ ( f ) r " e-3 ( f f/ KA ) f' 2 

e J 2 j r f ' [ ( f - f ' ) / K A - r - 1 ( c t / 2 ) ] df' 

(84) 

Using the same change of variables as before, 7j1 = f'/K A, and 

substituting back the exact Fourier transform of the azimuth 

phase, the f i l t e r becomes : 
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H p ( t , f ) = F{ exp[-j47rr(T?)/X] } 

• { A 2 ( f ) * f 6 [ f - f i - K A r " 1 ( c t / 2 ) ] } (85) 

where 

A 2 ( f ) = |KA| e 
2

 e J 2 7 r f T } , 
d r j . (86) 

= F" 1{ |KA| e~i*KhV'2 } (87) 

= •IK.I e ^ / V f 2

 e - J ( » / 4 ) S I G N ( K A ) (88) 

The azimuth spectrum broadening function A 2 ( f ) i s similar in 

form to A ^ f ) of chapter 4 except that no range windowing i s 

applied. 

The reference phase f i l t e r defined by equation (85) 

could be applied to the range compressed response as a 

convolution in the azimuth frequency d i r e c t i o n . However, 

since the width of the azimuth spectrum i s usually larger in 

the azimuth dir e c t i o n than in the range time d i r e c t i o n (in 

terms of the number of samples), i t i s more e f f i c i e n t to 

apply the f i l t e r in the range time d i r e c t i o n . This i s 

accomplished by projecting the f i l t e r into range time using 

the approximately linear slope, c 2 , of the azimuth frequency 

domain RCM curve : 



1 0 5 

H p ( t , f ) F{ exp[-j47rr(Tj)/X] } 

• { A 2 ( t / c 2 ) * t 6 [ t - ( 2 / c ) r ( [ f - f , ] / K A ) ] } (89) 

This projection uses the same assumption of a linear RCM 

curve which was used in chapter 4. 

This f i l t e r can now be applied to the range compressed 

spectrum along with an azimuth window function W^f-f^) to 

perform azimuth compression with SRC. The peak of the window 

function i s centered at the beam center frequency, f c , for 

proper windowing. This produces the following form for the 

azimuth compressed frequency domain signal : 

a(t,rj) = F-'{ [ H R C ( t , f ) * t H F ( - t , f ) ] W A ( f - f c ) } (90) 

= F- 1 { [ H R C ( t , f ) * t g c ( t , f ) ]F*{exp[-j47rr(Tj)/X]}W A(f-f c)} 

(91 ) 

where 

g c ( t , f ) = g(t) * t 6 [ t + ( 2 / c ) r ( [ f - f , ] / K A ) ] (92) 

= g( t + ( 2 / c ) r ( [ f - f , ] / K A ) ) (93) 

g(t) = k*2(-t/c2) (94) 

= V/|KA| eJ(^/4)SIGN(K A) e - J 7 r K S R C t 2 (95) 
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KSRC = l / ( K A C * } = KA [ c / ( X f
C

) P ( 9 6 ) 

Equation (91) describes one form of SRC algorithm in 

which the SRC f i l t e r , g ( t ) , i s applied during azimuth 

compression as a range time convolution. Instead of applying 

the SRC f i l t e r , g ( t ) , separately as suggested by J i n and Wu 

[13], i t can be combined with the RCMC interpolator to form 

a combined SRC/RCMC f i l t e r , g c ( t , f ) . This type of 

implementation w i l l be c a l l e d azimuth SRC. 

Alte r n a t i v e l y the SRC f i l t e r can be implemented during 

range compression in the range frequency domain. This type 

of algorithm w i l l be c a l l e d range SRC. If the transmitted 

range pulse i s linear FM, the SRC f i l t e r can be combined 

with the range compression matched f i l t e r by simply 

modifying the linear FM rate of the f i l t e r . Both of these 

implementations w i l l be examined in following sections. 

5.2 AZIMUTH SRC 

This section describes the azimuth SRC implementation. 

Equation (91) describes the basic form of the azimuth SRC 

azimuth compression algorithm. After transformation into the 

azimuth frequency domain, the 2-D range compressed signal, 

H R C ( t , f ) , i s convolved in range with a combined SRC/RCMC 

f i l t e r , g c ( t , f ) , which is azimuth frequency dependent. The 

result i s a 1-D azimuth sig n a l . This i s then mult i p l i e d by 

the azimuth reference phase f i l t e r and the azimuth window. 

Upon inverse transformation with an inverse azimuth FFT, a 
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single compressed azimuth l i n e i s obtained. 

The SRC/RCMC f i l t e r , g c ( t , f ) , i s formed by the 

convolution of two components : 

1. the SRC f i l t e r , g ( t ) , which compresses the dispersion 

caused by the azimuth Fourier transform in both range 

and azimuth. 

2. a range-azimuth coupled delta function which extracts 

energy along the RCM curve, i . e . , performs RCMC. 

Since the range compressed signal exists only for 

discrete range and azimuth time, discrete SRC and RCMC 

f i l t e r s are required. These can be formed by bandlimiting 

the ideal continuous f i l t e r s to the range and azimuth 

sampling rates. 

There are several ways of implementing the f i l t e r s . For 

SRC processing in the azimuth frequency domain, i t i s most 

e f f i c i e n t to combine the SRC f i l t e r and RCMC interpolator. 

This combined f i l t e r , g^,(t,f), i s the same as the 1-D SRC 

f i l t e r , g ( t ) , but i s shi f t e d in range by an amount which 

varies with azimuth frequency. Although azimuth frequency i s 

discrete, the range time s h i f t required for the SRC/RCMC 

f i l t e r can take on any continous value due to the coupling 

between range and azimuth. 

To avoid creating a new shifte.d f i l t e r version for each 

discrete azimuth frequency, the continuous s h i f t may be 
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approximated by an integer s h i f t and a f r a c t i o n a l s h i f t as 

was done with the RCMC interpolator in chapter 3. Integer 

range sample s h i f t s are handled by s h i f t i n g the entire 

f i l t e r the required number of samples. Fractional s h i f t s are 

approximated by choosing the best of several precomputed 

versions of the f i l t e r each of which i s sh i f t e d by a 

frac t i o n of a range sample. The sh i f t e d versions are 

produced by interpolating the f i l t e r by an integer factor I 

and then extracting the di f f e r e n t phases. This i s the same 

approximation that was previously used to form the basic 

RCMC interpolator except that the combined f i l t e r now has a 

small quadratic phase and i s broadened in amplitude. 

Several steps are required to produce a suitable 

discrete SRC/RCMC f i l t e r : 

1. Form an a n a l y t i c a l SRC f i l t e r in the continuous range 

frequency domain. 

2. Bandlimit the function to the range sampling frequency, 

F , to prevent a l i a s i n g . 

G ( f r ) = F{ g(t) } (97) 

= (Xf c/c) e ^ f r / K SRC (98) 

rect( f / F c r ) G(f ) (99) 



109 

3. Sample the continuous range frequency function with 

sample spacing 1/T = F /K to get K samples. T i s one 

period of the corresponding range time domain function. 

It must be chosen to be much larger than the -3dB range 

timewidth of H R^.(t,f) to prevent serious time domain 

a l i a s i n g . 

G(k r) = r e c t ( k r / K r ) GU r/T) , -Kf/2 < k r < Kr/2 (100) 

4. Zero pad the array on both ends to a length of IK r where 

I i s the interpolation factor which defines the number 

of f r a c t i o n a l l y s h i f t e d versions of the f i l t e r . 

G j(k r) = G(k r) , -Kr/2 < k r < Kr/2 

0 , -IK r/2 < k r < -Kr/2 

, Kr/2 < k r < IK r/2 (101) 

5. Apply an inverse range FFT of length IK . 

gjdnj) = FFT-H G(k r) } , -IK r/2 < m1 < (102) 

6. Multiply by a length IL window, w , ^ ) , to get a f i l t e r 

of minimum length where L i s the length of each f i l t e r 

version. 

g J(m I) w^nij) -IL/2 < mx < IL/2 (103) 
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7. Extract the f r a c t i o n a l l y s h i f t e d versions of the f i l t e r . 

g^m) = gjdnl + i) w,(ml + i) , 0 < i < 1-1 , -L/2 < m < L/2 

(104) 

In the current simulations, 16 versions (1=16) and four 

d i f f e r e n t f i l t e r lengths (L = 4, 8, 16, or 32) are used. 

Figure 5.1 shows the magnitudes of several SRC/RCMC f i l t e r s 

of length 16 after interpolation by a factor of 16 for 

several squint angles. It i s seen that the f i l t e r s resemble 

the sine type of interpolator for small angles but broaden 

for larger angles. Consequently, larger squint angles also 

require longer f i l t e r s to gather a l l the dispersed energy. 

In basic range/Doppler processing without SRC, g^(m), 

is approximated by a zero phase f i n i t e length interpolator 

which corresponds to the zero squint SRC/RCMC f i l t e r . The 

approximation holds for small squint angles since the 

nonlinear phase v a r i a t i o n of G(k r) approaches zero as | f ^ | 

and the squint angle approach zero. Consequently, G(k r) 

approaches a rectangular signal with constant phase and 

gj(mj) approaches a time a l i a s e d sine function (or sampling 

function). The RCMC interpolator i s shortened by 

mu l t i p l i c a t i o n with a f i n i t e length window, such as a 

Kaiser-Bessel window, to minimize the amount of computations 

while also minimizing the spreading and a l i a s i n g of the 

interpolator spectrum. 



F i g u r e 5 . 1 . M a g n i t u d e s o f t h e S R C / R C M C f i l t e r s o f l e n g t h 16 
f o r s q u i n t a n g l e s o f 0 ° , 5 ° , 1 0 ° , 1 5 ° , a n d 2 0 ° . 
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5.3 SIMULATIONS OF AZIMUTH SRC 

This section describes the results of computer simulations 

of the azimuth SRC algorithm. The algorithm i s similar to 

the basic range/Doppler azimuth compression algorithm except 

that the RCMC interpolator is replaced by a combined 

SRC/RCMC f i l t e r . 

Range compression i s performed as in chapter 3 to 

produce a 1-D range compressed p r o f i l e . This p r o f i l e is used 

by the azimuth compression simulation routine to form a 

simulated 2-D range compressed s i g n a l . This signal i s 

Fourier transformed in azimuth using an FFT of length 1024 

for RADARSAT parameters. The combined SRC/RCMC f i l t e r i s 

then applied as a discrete range time convolution to 

compensate for the dispersion caused by the azimuth FFT. The 

res u l t i n g 1-D azimuth signal i s multiplied by the FFT of the 

exact azimuth reference phase f i l t e r and a Kaiser-Bessel 

window to control sidelobes. F i n a l l y the 1-D azimuth signal 

is passed through an inverse FFT to produce one azimuth l i n e 

of the compressed image. The processing i s repeated for each 

desired azimuth l i n e . The processing parameters are as in 

Table 1. 

The res u l t i n g compressed range and azimuth p r o f i l e s are 

shown in figures 5.2 to 5.5. It i s seen that very l i t t l e 

broadening occurs in range when L is large. However severe 

broadening can s t i l l occur for smaller f i l t e r s since an 

appreciable amount of energy i s dispersed beyond the width 

of the shorter f i l t e r s . The length of the SRC/RCMC f i l t e r 
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has l i t t l e e f fect on the azimuth p r o f i l e . 

The -3dB percentage broadening measurements are 

summarized by figures 5.6 and 5.7 in range and figure 5.8 in 

azimuth. The results are shown for the four d i f f e r e n t 

lengths of SRC/RCMC f i l t e r . 

The azimuth broadening results are the same as the 

results without SRC. The predicted azimuth broadening curve 

of chapter 4, figure 4.13, agrees closely with the actual 

r e s u l t s . The range broadening measurements show that for 

squint angles below about 7° with a length 16 f i l t e r the 

percentage range broadening and azimuth broadening are 

comparable and small (below 3%). Above 7° the range 

broadening quickly r i s e s since s i g n i f i c a n t energy i s 

dispersed outside of the 16 sample width of the f i l t e r . It 

is seen that longer f i l t e r s produce less range broadening. 

Figures 5.9 and 5.10 summarize the 1-D ISLR 

measurements. From these i t i s seen that the azimuth ISLR 

remains almost constant whereas the range ISLR decreases 

(improves) as squint increases. The decrease i s more rapid 

for the shorter f i l t e r lengths. This decrease in range ISLR 

for shorter f i l t e r s corresponds to the larger range 

broadening. It appears that the windowing applied to shorter 

f i l t e r s causes the range spectrum to be tapered. The result 

is more range broadening with lower range sidelobes. 

Figure 5.11 summarizes the 2-D ISLR measurements. Whereas 

the ISLR without SRC deteriorated with increasing squint 

angle, the ISLR with SRC improves slowly. 
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The peak sidelobe ratios (PSLR) in range, azimuth, and 

2-D are summarized in figures 5.12 to 5.14. As with the 

ISLR's, the azimuth PSLR's are v i r t u a l l y constant with 

squint angle while the range PSLR's decrease with increasing 

squint angle and decreasing f i l t e r length. By comparing 

graphs, i t can be seen that the decreases in ISLR and PSLR 

are less than about 3dB for squint angles smaller than the 

angle at which the range broadening i s 5%. 

In order to compare the peak magnitudes after 

compression, the peaks were normalized to the sum of the 

squares of the SRC/RCMC c o e f f i c i e n t s and the azimuth 

processed bandwidth. The results are summarized in 

figure 5.15. Whereas the peak s t r i c t l y decreases without 

SRC, the normalized peak actually increases s l i g h t l y for 

small squint angles before decreasing at larger squints. The 

reason for t h i s increase is not c l e a r l y understood. However 

the smaller variations in peak magnitude with SRC indicate 

that an improved signal-to-noise r a t i o i s achieved. 
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i g u r e 5 . 2 . 1-D r a n g e p r o f i l e s a f t e r SRC c o m p r e s s i o n f o r 
s q u i n t a n d v a r i o u s f i l t e r l e n g t h s . 
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F i g u r e 5.3. 1-D range p r o f i l e s a f t e r SRC c o m p r e s s i o n f o r 10° 
s q u i n t and v a r i o u s f i l t e r l e n g t h s . 
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Figure 5.6. Percentage range broadening with single-look 
azimuth SRC as a function of squint angle and 
f i l t e r length. 



Figure 5 . 7 . Percentage range broadening with single-look 
azimuth SRC as a function of squint angle and 
f i l t e r length (expanded sca l e ) . 
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Figure 5 . 8 . Percentage azimuth broadening with single-look 
azimuth SRC as a function of squint angle and 
f i l t e r length. 
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Fiqure 5.9. 1-D range ISLR with single-look azimuth SRC as a 
Figure f u n c t i o ^ o f s q u i n t angle for various f i l t e r 

lengths. 
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Figure 5.10. 1-D azimuth ISLR with single-look azimuth SRC 
as a function of squint angle for various f i l t e r 
lengths. 
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Fiaure 5 11. 2-D ISLR with single-look azimuth SRC as a Figure 5 - , 1 - f ^ t i o n o f s q u i n t a n g l e for various f i l t e r 
lengths. 
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Figure 5.12. 1-D range PSLR with single-look azimuth SRC as 
a function of squint angle for various f i l t e r 
lengths. 
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Figure 5.13. 1-D azimuth PSLR with single-look azimuth SRC 
as a function of squint angle for various f i l t e r 
lengths. 
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Figure 5.14. 2-D PSLR with single-look azimuth SRC as a 
function of squint angle for various f i l t e r 
lengths. 
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Figure 5.15. Peak compressed magnitude with single-look 
azimuth SRC as a function of squint angle for 
various f i l t e r lengths. 
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5.4 RANGE SRC 

This section describes an alternate implementation of the 

SRC f i l t e r c a l l e d range SRC. This method performs SRC in the 

range frequency domain during range compression. The SRC 

f i l t e r i s combined with the range compression f i l t e r by 

simply a l t e r i n g the li n e a r FM rate of the range compression 

f i l t e r . Since the r e s u l t i n g modified range compression 

f i l t e r has the same number of c o e f f i c i e n t s , no additional 

computations are required. In addition a shorter RCMC 

interpolator can be used for the subsequent azimuth 

compression even at large squint angles since the azimuth 

spectrum remains well compressed aft e r the azimuth FFT. 

One complication of th i s method is the range invariance 

of the SRC f i l t e r . Depending on the radar parameters and 

size of the range swath, the range swath may need to be 

subdivided into smaller range invariance regions for the 

purpose of range compression. The issue of invariance 

regions, which i s also of concern in azimuth SRC, i s 

examined in chapter 7. 

The modified range compression f i l t e r can be expressed 

in the range time domain as : 

h R M ( t ) = s*(-t) * t g(t) ( 1 05 ) 

= [ r e c t ( t A ) e^V ] * t g(t) ( 1 0 6 ) 

The range compression f i l t e r i s implemented using fast 
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convolution in the range frequency domain. Applying the 

range Fourier transform to the f i l t e r gives the following 

form : 

H R M ( f r ) = F{ r e c t ( t A ) e^V } G ( f f ) (107) 

Since the f i r s t term i s the Fourier transform of a large TBP 

linear FM signal, i t may be approximated using the p r i n c i p l e 

of stationary phase as : 

F{ r e c t ( t A ) e J 7 r KR f c 2 } 

« rect(f /[K_T]) e 3 W F
R

2 / K R (108) 

The Fourier transform of the SRC f i l t e r , g ( t ) , was given 

previously as : 

G( f r ) = (Xf c/c) e J 7 r f r 2 / K S R C (109) 

Substituting back these transforms and dropping the constant 

magnitude terms gives the following form for the frequency 

domain combined f i l t e r : 

H R M ( f r ) - r e c t ( f r / [ K R r ] ) e " ^ r V K R M (110) 

where K r m - K R/[ 1 - ( K R / K S R C ) ] (111) 
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Since K g R C >> KR, the modified reference function i s also a 

large TBP si g n a l . Therefore the p r i n c i p l e of stationary 

phase can again be used to evaluate the inverse Fourier 

transform of the modified range compression f i l t e r : 

h R M ( t ) =* r e c t ( t A ) e j , r KRM t 2 (112) 

This equation shows that the combined SRC/range compression 

f i l t e r i s a lin e a r FM pulse with a modified FM rate, 

The modified FM rate i s a function of both the range of 

closest approach of the point target, r 0 , and the squint 

angle. The range of closest approach primarily a f f e c t s the 

azimuth FM rate, K., and to a lesser extent the beam center 

frequency, f c . The squint angle mainly a f f e c t s the beam 

center frequency and to a smaller extent the azimuth FM 

rate. As the squint angle approaches zero, f^ also 

approaches zero and K A approaches a constant. Therefore K S R C 

= K A [ c / ( X f c ) ] 2 approches i n f i n i t y and the modified FM rate, 
KRM' a P P r o a c n e s t n e unmodified FM rate, K R. 

The range SRC algorithm i s es s e n t i a l l y the same as the 

basic range/Doppler algorithm presented in chapter 3 except 

that the linear FM rate of the range compression f i l t e r i s 

modified according to the squint angle. Range SRC i s 

superior to azimuth SRC since the equivalent range time 

domain SRC f i l t e r i s much longer than p r a c t i c a l SRC/RCMC 

f i l t e r s used in azimuth SRC. Since the SRC f i l t e r in range 

SRC i s applied over the entire range bandwidth, the 
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equivalent range time domain f i l t e r i s very long, much 

longer than the p r a c t i c a l SRC/RCMC f i l t e r lengths of between 

8 and 16 samples used in azimuth SRC. The longer equivalent 

f i l t e r allows more of the dispersed energy to be 

recompressed (eventhough the recompression i s implemented as 

a p r e f i l t e r ) . 

5.5 SIMULATIONS OF RANGE SRC 

This section presents the results of simulating the range 

SRC algorithm with nominal RADARSAT parameters. The same 

simulation programs that were used for basic range/Doppler 

compression are used except that the modified l i n e a r FM 

rate, developed in the previous section i s used in the 

range compression f i l t e r . A single RCMC interpolator length, 

L = 16, was used for a l l the simulations. 

Figure 5.16 shows the broadening of the range 

compressed p r o f i l e after range SRC for squint angles of 5° 

and 10°. The broadening occurs because of the mismatch of 

the linear FM rates of the transmitted range pulse and the 

modified SRC/range compression f i l t e r . This predistorton 

becomes recompressed by the azimuth FFT. 

Figures 5.17 and 5.18 show the range and azimuth 

p r o f i l e s after azimuth compression. It i s seen that very 

l i t t l e broadening occurs in range whereas some broadening 

does occur in azimuth as predicted by the decrease in 

processed bandwidth. The percentage range and azimuth 

broadening with range SRC i s summarized in figures 5.19 and 
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5.20. For squint angles below 15°, the range broadening i s 

very small, less than 0.55%. 

The ISLR and PSLR measurements are summarized in 

figures 5.21 and 5.22. Since l i t t l e broadening occurs, both 

the ISLR and PSLR are approximately constant with squint 

angle. In fact the range ISLR and PSLR improve slowly with 

increasing squint angle. 

The peak magnitudes are compared in figure 5.23. The 

absence of large variations indicates that the 

signal-to-noise r a t i o remains r e l a t i v e l y constant with 

changes in squint angle. 
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Figure 5.17. 1-D range p r o f i l e s after azimuth compression 
with single-look range SRC for 0°, 5°, and 10° 
squint and a length 16 RCMC f i l t e r . 
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Figure 5.18. 1-D azimuth p r o f i l e s a f t e r azimuth compression 
with single-look range SRC for 0 ° , 5°, and 10° 
squint and a length 16 RCMC f i l t e r . 
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Figure 5.19. Percentage range broadening with single-look 
ramje SRC and a length 16 RCMC interpolator as a 
function of squint angle. 
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Figure 5.20. .Percentage azimuth broadening with single-look 
range SRC and a length 16 RCMC interpolator as a 
function of squint angle. 



139 

I I I I 
(SP) aisi 

•Figure 5.21. Range, azimuth, and 2-D integrated sidelobe 
r a t i o s with single-look range SRC and a length 
16 RCMC, interpolator as a function of squint 
angle. 
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Figure 5.22. Range, azimuth, and 2-D peak sidelobe ratios 
with single-look range SRC and a length 16 RCMC 
interpolator as a function of squint angle. 
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Figure 5.23. Peak magnitude degradation with single-look 
range SRC and a length 16 RCMC interpolator as a 
function of squint angle. 
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5.6 SUMMARY OF SINGLE-LOOK SRC 

This chapter has presented the results of investigations 

into the use of an SRC algorithm for improving the 

range/Doppler compression algorithm at large squint angles. 

An SRC f i l t e r was developed by projecting the ideal matched 

f i l t e r into the range dimension after applying the azimuth 

FFT. This projection assumes l i n e a r i t y of the RCM curve over 

the processing i n t e r v a l . The approximate quadratic phase 

form of the azimuth phase is used to derive the SRC f i l t e r . 

Two implementations were developed and simulated. The 

simulations show that both implementations work well at 

recompressing the energy dispersed by the azimuth FFT. Since 

the dispersion increases with squint angle, longer SRC/RCMC 

f i l t e r s are required to recompress the dispersion at higher 

squint angles. The range SRC implementation provides an SRC 

f i l t e r which i s e f f e c t i v e l y much longer than the SRC/RCMC 

f i l t e r s used in azimuth SRC. Consequently at large squint 

angles range SRC performs much better than azimuth SRC. 

For a length 16 f i l t e r the azimuth SRC algorithm 

extends the squint angle which causes 5% range broadening 

from 3.65° to 8.03°. For 10% range broadening, the squint 

angle i s increased from 4.23° to 9.29°. In addition the 

range sidelobes are actually improved by the SRC algorithm 

indicating excellent compression. 

For the range SRC algorithm with a length 16 RCMC 

interpolator, the range broadening remains very small over 

a l l the squint angles which were simulated being less than 
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1.3% for squint angles up to 20°. Thus the range SRC 

implementation provides better compression than the azimuth-

SRC algorithm. In practice t h i s improved performance must be 

weighed against the possible complications caused by range 

invariance of the SRC f i l t e r . This issue i s discussed 

further in chapter 7. 



6. MULTILOOK RANGE/DOPPLER PROCESSING WITH SRC 

In t h i s chapter, methods of implementing SRC for 

multilook ( s p e c i f i c a l l y 4-look) processing are examined. In 

multilook processing the aperture i s divided into several 

looks which are compressed separately and then summed 

incoherently in order to reduce speckle noise. Two new 

methods of implementing SRC are proposed and investigated : 

1. Fixed Multilook SRC. This method uses the same SRC 

f i l t e r for each look. The f i l t e r i s matched to the 

center frequency of the f u l l aperture, i . e . , the Doppler 

centroid. This i s the same f i l t e r that was used 

previously for single-look processing. 

2. Look-Dependent Multilook SRC. In t h i s method, a 

dif f e r e n t SRC f i l t e r i s used for each look. This 

compensates for any changes in the slope of the range 

c e l l migration (RCM) curve between looks since each 

f i l t e r i s matched to each look center frequency. 

Simulations of multilook processing of a point target 

response are performed with and without the above SRC 

algorithms to quantify the improvements in image quality 

possible with multilook SRC. 

144 
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6.1 MULTILOOK PROCESSING WITH SRC 

This section further extends the theory of azimuth 

compression presented in chapter 5 to describe multilook 

range/Doppler processing both with and without the use of 

two new multilook SRC algorithms. 

Multilook azimuth compression with the range/Doppler 

algorithm i s e s s e n t i a l l y the same as f u l l aperture 

range/Doppler processing except that the processed bandwidth 

i s divided into separate, often overlapping, processing 

bands or looks, which are compressed i n d i v i d u a l l y and then 

incoherently summed. Due to the approximate correspondence 

between the time and frequency domains of the azimuth signal 

each frequency domain look corresponds to d i f f e r e n t 

intervals of the azimuth time domain aperture. For a point 

target signal, each look contains data c o l l e c t e d from 

d i f f e r e n t time inte r v a l s which cover d i f f e r e n t ranges of 

incidence angles, or look angles. This change in look angle 

causes the speckle noise to have l i t t l e c o r r elation between 

looks. Thus incoherent summation of the compressed looks 

reduces the speckle noise l e v e l . Figure 6.1 shows how the 

processed bandwidth i s divided into separate looks (in t h i s 

case, 4 looks). Figure 6.2 shows the corresponding time 

domain look angles. 

In multilook processing, range compression i s performed 

as in single-look processing to produce a 2-D range 

compressed s i g n a l . In chapter 5, single-look azimuth 

compression was developed as an approximation to an exact 
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Figure 6.1. Di v i s i o n of the azimuth frequency domain 
aperture into 4 looks. 
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Figure 6.2. Corresponding time domain looks. 
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matched f i l t e r implemented in the azimuth frequency domain. 

For multilook processing, a similar compression algorithm is 

applied to each frequency band or look. 

The formulation of the azimuth compression f i l t e r for 

each look proceeds as in chapter 5 up to equation (85) which 

expresses the 2-D compression f i l t e r in the azimuth 

frequency domain. 

For single-look ( f u l l aperture) processing, the f i l t e r 

is usually truncated near the -3dB azimuth frequencies with 

some form of window function. The exact selection of 

processing bandwidth is a trade-off between factors such as 

ambiguity errors, a l i a s i n g noise, the desired azimuth 

resolution, and the type of window used. For the current 

research, the f u l l aperture processed bandwidth has been 

a r b i t r a r i l y chosen to be the -3dB one-way (-6dB two-way) 

azimuth antenna bandwidth. 

As stated e a r l i e r , multilook processing divides the 

processed bandwidth into several looks which are often 

overlapping. For ease of implementation and computational 

e f f i c i e n c y of the inverse azimuth FFT's, each look has been 

chosen to be 256 samples long. For 4-look processing, which 

has been simulated here, these looks are overlapped to f i t 

into the processed bandwidth. Since the processed bandwidth 

varies slowly with squint angle, the number of frequency 

domain samples in the processed bandwidth varies from 820 

samples at zero squint down to 680 samples at 20 degrees of 

squint. The corresponding percentage overlaps range from 
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26.6% to 44.8% respectively. 

A Kaiser-Bessel azimuth window function i s applied 

separately to each look to control the azimuth sidelobe 

l e v e l s . Therefore the e f f e c t i v e combined window for the f u l l 

aperture, which is the summation of the individual look 

windows, extracts more energy from the outer looks than an 

equivalent single-look Kaiser-Bessel window applied to the 

f u l l aperture. Since the bandwidth of each look is fixed, 

the compressed resolution of each look i s approximately 

constant regardless of squint angle. The antenna weighting 

has l i t t l e e f fect over the smaller look bandwidths since for 

the inner looks the amount of weighting i s less and for the 

outer looks the weighting does not have a central maximum 

and i s approximately l i n e a r . 

In order to convert the above azimuth look compression 

f i l t e r from an azimuth frequency convolution to a more 

computationally e f f i c i e n t range convolution,' the f i l t e r is 

projected into range as in chapter 5 using the approximately 

li n e a r slope of the RCM curve. However there i s now a choice 

of slopes to use for the individual look f i l t e r s . 

For a fixed azimuth SRC implementation, the same 

SRC/RCMC f i l t e r is used for a l l looks. Thus the slope at the 

center of the f u l l aperture is used for the projection as in 

single-look SRC. This may introduce very small errors in the 

outer looks since the slope of the RCM curve in the outer 

looks d i f f e r s s l i g h t l y due to range curvature. For systems 

such as RADARSAT in which the range curvature i s small over 
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the f u l l aperture (about 0.23 range c e l l s ) , the error i s 

extremely small as w i l l be demonstrated in the simulations. 

For systems with larger range curvature such as longer 

wavelength SAR's including SEASAT, the error may be more 

s i g n i f i c a n t . In such cases a look-dependent SRC 

implementation i s possible in which the differences in RCM 

slope between looks are compensated by designing a separate 

SRC/RCMC f i l t e r for each look. For t h i s method, the slope 

used for projecting the f i l t e r into range i s taken as the 

slope at the look center frequency rather than the f u l l 

aperture center frequency. This complicates the control and 

memory requirements for the azimuth processor since several 

SRC/RCMC f i l t e r s (in t h i s case 4 of them) need to be 

precomputed and stored. 

For single-look SRC, the slope of the azimuth frequency 

domain RCM curve at the center frequency of the f u l l 

aperture, or the beam center frequency, f c , was expressed 

as : 

c 2 = C i / R

A = " X f
C

/ ( c K A ) ( 1 1 3 ) 

where K A i s the azimuth frequency rate at the beam center 

frequency. 

This equation can be used to calculate the slope at any 

a r b i t r a r y look center frequency, f L« To do t h i s accurately, 

i t i s necessary to know the azimuth frequency rate at that 

frequency. This is accomplished by using equations (37), 
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(38), and (56) : 

r j ^ f ) = r 0 / { v e g [ ( 2 v e g / ( X f ) ) 2 - 1 ] i / z } (114) 

r. ( f ) = r 0 / [ 1 - ( X f / ( 2 v e g ) ) 2 (115) 

K.(f) = -(2v 2 /[Xr. (f )]) [1 - (v T J. (f )/r. (f ) ) 2 ] (116) 

The f i r s t two equations determine the azimuth look center 

time, T j . ( f r ) , and look center range, r - ( f r ) . These are 
1 Li 1 Li 

substituted into the t h i r d equation to determine the look 

center frequency rate, K (f ). F i n a l l y the slope, c , of the 
A Li LI 

azimuth frequency domain RCM curve at the look center 

frequency i s calculated by substituting into the equation 

for c 2 : 

c L = - X f L / [ c K A ( f L ) 3 (117) 

The f i l t e r i s projected into range as in equation (89) 

of chapter 5 with c 2 replaced by c L : 

H p ( t , f ) ~ F{ exp[-j47rr(r?)/X] } 

• ( A 2 ( t / c L ) * f c M t - ( 2 / c ) r ( [ f - f , ] / R A ) ] } (118) 

where denotes the azimuth frequency rate at the beam 

center frequency, i . e . K ( f r ) . For fixed SRC, c. i s computed 
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using the beam center frequency, f^,, while for 

look-dependent SRC, the look center frequency of each look 

is used. 

The resulting algorithm for compressing each look i s 

given by equations (90) to (96) with c 2 again replaced by 

the appropriate c L . 

As in single-look processing, there are several 

alternative methods for implementing the SRC f i l t e r . Fixed 

range SRC can provide better compression due to the longer 

e f f e c t i v e length of the SRC f i l t e r . However the range SRC 

method becomes less e f f i c i e n t i f look-dependent SRC i s 

required because a separate range compression would be 

required for each look. Look-dependent azimuth SRC i s more 

e f f i c i e n t since only the additional look-dependent f i l t e r s 

need to be generated. 

For the azimuth SRC implementation, the combined 

SRC/RCMC f i l t e r , g^,(t,f), is implemented as a range 

convolution with the azimuth spectrum. As in single-look 

azimuth SRC, the f i l t e r i s approximated by precomputing 16 

interpolated versions of the SRC f i l t e r g ( t ) . The 

convolution i s implemented by computing the integer and 

f r a c t i o n a l range c e l l s h i f t s for RCM correction (RCMC) and 

using the appropriately shifted version of the precomputed 

f i l t e r . The window, w
A ( f " f L ) ' * s s n i f t e c * t 0 t n e appropriate 

look center frequency for each look. The time domain image 

for each look is computed by applying an inverse azimuth FFT 

of length 256. 
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Before look detection and look summation, each look 

image, which i s s t i l l in-complex form, must f i r s t be 

interpolated in order to reduce a l i a s i n g of the increased 

bandwidth of the detected s i g n a l . Although an interpolation 

factor of 2 i s s u f f i c i e n t , the simulations interpolate each 

look by a factor of 8 in both range and azimuth before 

detection and look summation as part of the image qua l i t y 

measurement process. The interpolated look images are 

detected and summed together to form the f i n a l multilook 

image. 

For simulations of multilook processing without SRC, 

the combined SRC/RCMC f i l t e r g ( t , f ) was replaced by the 

zero phase RCMC interpolator of chapter 3 which i s the same 

for each look. 

For multilook range SRC, only fixed SRC was simulated 

since look-dependent multilook range SRC was i n e f f i c i e n t . 

The same modified linear FM rate was used for the combined 

SRC/range compression f i l t e r as in single-look range SRC. 

The following sections describe the results of 

simulations of the both fixed and look-dependent multilook 

SRC algorithms as well as simulations of multilook 

processing without SRC which are used as a baseline for 

compari son. 

The simulations were performed using the nominal set of 

RADARSAT parameters l i s t e d in Table 1. The azimuth 

Kaiser-Bessel window parameter was changed from 1.5 to 2.7. 

More weighting i s required in multilook processing since the 
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antenna weighting has much less e f f e c t over the reduced look 

bandwidths. The value of 2.7 was chosen to produce azimuth 

sidelobe l e v e l s which are comparable in size to the range 

sidelobes as in e a r l i e r simulations. 

6.2 SIMULATIONS OF 4-LOOK PROCESSING WITHOUT SRC 

This section discusses simulations of 4-look, range/Doppler 

processing without SRC. Simulations were performed with a 

length 16 RCMC f i l t e r . The simulation results are summarized 

by figures 6.3 to 6.14. 

Figures 6.3 and 6.4 show the 1-D range and azimuth 

p r o f i l e s a f t e r 4-look azimuth compression for squint angles 

of 0°, 5°, and 10°. The simulations were performed as 

outlined in the previous section including look detection, 

and look summation. The p r o f i l e s were interpolated by a 

factor of 8 before detection by zero padding in the 

frequency domain to preserve the signal bandwidth after 

detection and to increase the accuracy of the image quality 

measurements. 

The range p r o f i l e s are very similar to the single-look 

p r o f i l e s shown e a r l i e r . This i s expected since the range 

broadening i s primarily due to the azimuth FFT which i s 

applied in both single-look and multilook compression. Small 

differences are expected because of small variations in 

range width over the azimuth spectrum before azimuth 

compression which are caused by range curvature. 
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The azimuth p r o f i l e s are also similar to the 

single-look r e s u l t s . However the mainlobe widths are 

approximately 3.3 times wider than the single-look r e s u l t s . 

This i s primarily due to the smaller bandwidth of each look 

compared to the f u l l aperture processed bandwidth. The 

azimuth sidelobe le v e l s d i f f e r s l i g h t l y because of the 

larger azimuth window parameter. 

The range and azimuth broadening results for both 

single-look processing and 4-look processing are shown in 

figures 6.5 to 6.7 for squint angles of 0 to 6 degrees. The 

4-look range broadening results are the same as the 

single-look r e s u l t s . As explained above, th i s i s expected 

since range broadening occurs primarily in the azimuth FFT. 

Azimuth broadening for single-look processing increases 

with squint angle due to the reduced processed bandwidths. 

In contrast, there i s very l i t t l e azimuth broadening for 

4-look processing since each look contains e s s e n t i a l l y the 

same bandwidth. The azimuth antenna weighting has less 

broadening effect on the reduced bandwidths of the 

indi v i d u a l looks. 

Figures 6.8 to 6.10 show that the range, azimuth, and 

2-D integrated sidelobe ra t i o s (ISLR) for 4-look and 

single-look processing behave s i m i l a r l y with increasing 

squint angle. The range ISLR curves increase with increasing 

squint angle due to the spreading of energy from the 

mainlobe to the sidelobes. The apparent drop in ISLR past 5 

degrees i s due to the f i n i t e integration area of the image 
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qu a l i t y measurements. For squint angles over 5 degrees, the 

range broadening i s over 25%. This causes a s i g n i f i c a n t 

amount of energy to l i e in the sidelobes outside of the 

integration area. Consequently the ISLR measurements are 

inaccurate for large amounts of broadening. The azimuth ISLR 

curves show very l i t t l e v a r i a t i o n with squint angle whereas 

the 2-D ISLR curve i s a composite of the range and azimuth 

curves. 

The peak sidelobe r a t i o (PSLR) measurements are shown 

in figures 6.11 to 6.13. Again the single-look and 4-look 

results are similar with the range results varying with 

squint angle and the azimuth results e s s e n t i a l l y constant. 

The 2-D measurements are somewhat lower than the 1-D 

measurements since they are measured with a much coarser 

sample spacing (interpolated by 8) than the 1-D measurements 

(interpolated by 128). 

F i n a l l y the peak magnitude r a t i o s , which compare the 

peak compressed magnitude to that obtained for zero squint, 

are shown in figure 6.14. The peak magnitudes are normalized 

by the sum of squares of the RCMC f i l t e r c o e f f i c i e n t s as 

would be appropriate for white noise i d e n t i c a l l y d i s t r i b u t e d 

over the range c e l l s . In r e a l i t y the noise i s only 

approximately evenly d i s t r i b u t e d over range c e l l s so that 

care must be used in r e l a t i n g the peak magnitude results to 

signal-to-noise r a t i o s . 
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Figure 6.3. Interpolated 1-D range p r o f i l e s a f t e r 4-look 
compression without SRC for squint angles of 0 ° , 
5°, and 10° and a length 16 RCMC interpolator. 
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Figure 6.4. Interpolated 1-D azimuth p r o f i l e s a f t e r 4-look 
compression without SRC for squint angles of 0°, 
5°, and 10° and a length 16 RCMC interpolator. 
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Figure 6.5. Range broadening for single-look and 4-look 
compression without SRC using a length 16 RCMC 
interpolator. 
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gure li.6. Range broadening for single-look and 4-look 
compression without SRC using a length 16 RCMC 
interpolator (expanded scale). 
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Figure 6.7. Azimuth broadening for single-look and 4-look 
compression without SRC using a length 16 RCMC 
interpolator. 
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Figure 6.8. 1-D range integrated sidelobe r a t i o s for 
single-look and 4-look compression without SRC 
using a length 16 RCMC interpolator. 
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Figure 6.9. 1-D azimuth integrated sidelobe r a t i o s for 
single-look and 4-look compression without SRC 
using a length 16 RCMC interpolator. 
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Figure 6.10. 2-D integrated sidelobe r a t i o s for single-look 
and 4-look compression without SRC using a 
length 16 RCMC interpolator. 
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Figure 6.11 . i - D rarge peak sidelobe ratios for single-look 
and 4-look compression without SRC usinq a 
length 16 RCMC interpolator. 
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Figure 6.12. 1-D azimuth peak sidelobe r a t i o s for 
single-look and 4-look compression without SRC 
using a length 16 RCMC interpolator. 
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Figure 6.13. 2-D peak sidelobe r a t i o s for single-look and 
4-look compression without SRC using a length 
RCMC interpolator. 
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Figure 6.14. Peak magnitude r a t i o s for 
4-look compression without 
RCMC inter p o l a t o r . 

single-look and 
SRC using a length 16 
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6.3 SIMULATIONS OF 4-LOOK, FIXED AND LOOK-DEPENDENT, AZIMUTH  

SRC PROCESSING 

The next section discusses simulations of 4-look processing 

performed with both fixed and look-dependent azimuth SRC. 

The results for the two algorithms were i d e n t i c a l within the 

l i m i t s of the measurements. Consequently only one set of 

results are presented. This s i m i l a r i t y shows that 

look-dependent processing i s not necessary for RADARSAT. 

The results are almost i d e n t i c a l since the slope of the 

RCM curve varies very slowly over the aperture for RADARSAT 

parameters. Consequently the slopes at the individual look 

center frequencies are v i r t u a l l y the same. As stated 

e a r l i e r , systems such as SEASAT which exhibit larger range 

curvature may have larger variations in RCM curve slope over 

the aperture requiring look-dependent SRC processing. 

The results of the simulations are contained in figures 

6.15 to 6.26. A smaller selection of squint angles was used 

than in the single-look azimuth SRC simulations since the 

results are very s i m i l a r . Simulations were performed for 

squint angles of 0, 1, 5, and 10 degrees and for SRC/RCMC 

f i l t e r lengths of 4, 8, 16, and 32. 

Figures 6.15 and 6.16 show the range and azimuth 

p r o f i l e s a f t e r azimuth 4-look compression for squint angles 

of 5 and 10 degrees. As in the previous section the 

processing included interpolation, look detection, and look 

summation. The range p r o f i l e s show the broadening which 

occurs.with smaller length SRC/RCMC f i l t e r s at larger squint 
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angles. The azimuth p r o f i l e s show ne g l i g i b l e changes with 

f i l t e r length. 

Figures 6.17 and 6.18 summarize the range and azimuth 

broadening results respectively. The broadening figures are 

computed from the -3dB response widths r e l a t i v e to the zero 

squint width for each f i l t e r length. Differences between the 

impulse response widths at zero squint for d i f f e r e n t f i l t e r 

lengths are very small (less than 0.2%) and are shown in 

figure 6.19. 

The multilook broadening results can be compared to the 

single-look azimuth SRC results in figures 5.6 and 5.8. The 

4-look range broadening results agree very clo s e l y with the 

single-look r e s u l t s . As in the simulations without SRC, 

almost no azimuth broadening occurs for 4-look processing. 

The ISLR and PSLR measurements are shown in figures 

6.20 to 6.22 and figures 6.23 to 6.25 respectively. The 

results agree clo s e l y with the single-look azimuth SRC 

curves. The azimuth sidelobes are lower by about 0.7dB due 

to the larger azimuth window parameter. 

Figure 6.26 shows the peak magnitude variations with 

squint angle with the peaks normalized by the sum of the 

squared SRC/RCMC f i l t e r c o e f f i c i e n t s . 
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Figure 6.15. Interpolated 1-D range p r o f i l e s after 4-look 
compression with both fixed and look-dependent 
SRC for squint angles of 0°, 5°, and 10° and a 
length 16 f i l t e r . 
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Figure 6.16. Interpolated 1-D azimuth p r o f i l e s after 4-look 
compression with both fixed and look-dependent 
SRC for squint angles of 0°, 5°, and 10° and a 
length 16 f i l t e r . 
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F i g u r e 6 . 1 7 . R a n g e b r o a d e n i n g f o r 4 - l o o k c o m p r e s s i o n w i t h 
b o t h f i x e d a n d l o o k - d e p e n d e n t S R C a n d v a r i o u s 
S R C / R C M C f i l t e r l e n g t h s a s a f u n c t i o n o f s q u i n t 
a n g l e . 
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Figure 6.20. 1-D range integrated sidelobe r a t i o s for 4-look 
compression with both fixed and look-dependent 
SRC and various SRC/RCMC f i l t e r lengths as a 
function of squint angle. 
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Figure 6.21. 1-D azimuth integrated sidelobe r a t i o s for 
4-look compression with both fixed and 
look-dependent SRC and various SRC/RCMC f i l t e r 
lengths as a function of squint angle. 
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Figure 6.22. 2-D integrated sidelobe r a t i o s for 4-look 
compression with both fixed and look-dependent 
SRC and various SRC/RCMC f i l t e r lengths as a 
function of squint angle. 
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Figure 6.23. 1-D range peak sidelobe ra t i o s for 4-look 
compression with both fixed and look-dependent 
SRC and various SRC/RCMC f i l t e r lengths as a 
function of squint angle. 
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Figure 6.24. 1-D azimuth peak sidelobe r a t i o s for 4-look 
compression with both fixed and look-dependent 
SRC and various SRC/RCMC f i l t e r lengths as a 
function of sguint angle. 
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Figure 6.25. 2-D peak sidelobe r a t i o s for 4-look compression 
with both fixed and look-dependent SRC and 
various SRC/RCMC f i l t e r lengths as a function of 
squint angle. 
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Figure 6.26. Peak magnitude r a t i o s for 4-look compression 
with both fixed and look-dependent SRC and 
various SRC/RCMC f i l t e r lengths as a function of 
squint angle. 
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6.4 SIMULATIONS OF 4-LOOK, FIXED, RANGE SRC PROCESSING 

This section presents the results of simulations of 4-look 

processing with a fixed range SRC algorithm. 

Since the range SRC algorithm uses an SRC f i l t e r which 

is e f f e c t i v e l y much longer than the f i l t e r used in azimuth 

SRC, the range broadening caused by windowing of the SRC 

f i l t e r i s expected to be much smaller. This was shown with 

the single-look range SRC simulations and i s also true of 

the multilook implementation. Since very l i t t l e broadening 

occurs, the range and azimuth compressed p r o f i l e s are veri

similar to the zero squint, multilook p r o f i l e s shown e a r l i e r 

and are therefore not shown here. Simulations are performed 

with a length 16 RCMC f i l t e r . 

The measurements of range and azimuth broadening are 

summarized in figure 6.27. For squint angles up to 20° the 

range broadening i s less than 1.8%. The integrated sidelobe 

rat i o s shown in figure 6.28 show that there i s l i t t l e 

v a r i a t i o n in ISLR with squint angle (less than -1 dB for 

squint angles up to 20°). S i m i l a r l y the peak sidelobe ratios 

summarized in figure 6.29 show an even smaller v a r i a t i o n . 

F i n a l l y the peak magnitude measurements shown in figure 6.30 

display only a small variation with squint angle. This 

indicates that there i s l i t t l e change in SNR for changes in 

squint angle. 
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Figure 6.27. Range and azimuth broadening for 4-look 
compression with range SRC and a length 16 RCMC 
interpolator as a function of squint angle. 
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Figure 6.28. Range, azimuth, and 2-D integrated sidelobe 
r a t i o s for 4-look compression with range SRC and 
a length 16 RCMC interpolator as a function of 
squint angle. 
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Figure 6.29. Range, azimuth, and 2-D peak sidelobe ratios 
for 4-look compression with range SRC and a 
length 16 RCMC interpolator as a function of 
squint angle. 
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Figure 6.30. Peak magnitude degradation for 4-look 
compression with range SRC and a length 16 RCMC 
interpolator as a function of squint angle. 
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6.5 SUMMARY OF MULTILOOK SRC 

This chapter has presented two forms of SRC algorithms to be 

used with multilook range/Doppler compression: fixed azimuth 

SRC, and look-dependent SRC. Both methods have been shown to 

be e f f e c t i v e in reducing the range broadening which occurs 

at large squint angles. Comparisons of the simulation 

re s u l t s of both multilook SRC algorithms for 4-look 

processing have shown that there are no measurable 

differences in image quality for RADARSAT parameters. As a 

re s u l t , fixed azimuth SRC should be used since i t requires 

less memory and computation for i t s single SRC/RCMC f i l t e r . 

In fact the 4-look results are very similar in range to the 

single-look results indicating that the number of looks does 

not a l t e r the effectiveness of the SRC algorithm. 

The multilook SRC simulations show that use of the 

azimuth SRC algorithm can s i g n i f i c a n t l y reduce the point 

target response broadening which occurs at larger squint 

angles. The improvements increase with larger SRC/RCMC 

f i l t e r lengths since the larger f i l t e r s can c o l l e c t more of 

the energy which has been spread out by the azimuth FFT. For 

a nominal length 16 f i l t e r the 5% and 10% range broadening 

squint angles can be extended from 3.65° to 8.0° and from 

4.23° to 9.3° respectively. 

With the multilook range SRC algorithm the e f f e c t i v e 

f i l t e r length i s much longer. Thus the broadening i s much 

less than with azimuth SRC. For squint ancjles up to 20° .the 

range broadening i s less than 1.8%. 



7. EFFECTS OF SRC FM RATE ERRORS 

This chapter examines the s e n s i t i v i t y of the SRC f i l t e r 

to SRC FM rate errors. SRC FM rate errors are caused by 

errors in both the beam center frequency, f^, and the range 

pf closest approach, r 0 . Limits on the processing block 

siz e , or the invariance region, and parameter estimation 

errors are developed for s p e c i f i c broadening l i m i t s . 

Simulations are performed to quantify the broadening caused 

by SRC FM rate errors with various algorithms and f i l t e r 

lengths. Only errors in the SRC FM rate are simulated since 

the e f f e c t s of parameter errors on other processing 

operations (e.g., RCMC, and the azimuth reference phase 

function) can be modelled and predicted independently. 

The broadening results are parameterized in terms of 

the band-edge phase error in range frequency. The broadening 

without SRC i s s i m i l a r l y parameterized by evaluating the 

equivalent band-edge phase error caused by not applying an 

SRC f i l t e r . 

7.1 SENSITIVITY ANALYSIS OF THE SRC FM RATE 

SRC FM rate errors arise from two sources : parameter 

estimation errors and f i l t e r invariance errors. Estimation 

errors occur since both the the beam center frequency, f c , 

and the range of closest approach, r 0 , are usually estimated 

from inexact measurements of the position and attitude of 

the radar platform. The beam center frequency estimate is 

often refined with a Doppler centroid estimation algorithm 

189 
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[143. 
S R C f i l t e r i n v a r i a n c e e r r o r s - i r e a r e s u l t o f b l o c k 

p r o c e s s i n g . T h e v a l u e o f r 0 v a r i e s a c r o s s t h e p r o c e s s e d 

b l o c k b u t t h e S R C FM r a t e i s o n l y m a t c h e d t o o n e v a l u e o f 

r 0 , u s u a l l y a t t h e c e n t e r o f t h e b l o c k . T h e r e s u l t i n g 

m i s m a t c h i n t h e S R C F M r a t e l i m i t s t h e r a n g e d i m e n s i o n o f 

t h e p r o c e s s e d b l o c k s i n c e p o i n t t a r g e t s n e a r t h e b l o c k e d g e 

b e c o m e b r o a d e n e d . T h e r a n g e b l o c k s i z e l i m i t i s c a l l e d t h e 

S R C r a n g e i n v a r i a n c e r e g i o n . B o t h r 0 e s t i m a t i o n e r r o r s a n d 

r 0 i n v a r i a n c e e r r o r s m u s t b e a d d e d w h e n d e t e r m i n i n g t h e S R C 

r a n g e i n v a r i a n c e r e g i o n . 

F o r t h e a p p r o x i m a t e g e o m e t r i c m o d e l u s e d i n t h i s 

t h e s i s , t h e b e a m c e n t e r f r e q u e n c y i s i n d e p e n d e n t o f r 0 . 

H o w e v e r m o r e s o p h i s t i c a t e d m o d e l s p r e d i c t a s l o w v a r i a t i o n 

i n b e a m c e n t e r f r e q u e n c y a c r o s s t h e p r o c e s s e d r a n g e s w a t h . 

T h u s a b e a m c e n t e r f r e q u e n c y i n v a r i a n c e e r r o r c a n a l s o 

o c c u r . A l t h o u g h t h i s e r r o r i s n o t t a b u l a t e d i n t h i s t h e s i s , 

i t s e f f e c t c a n b e p r e d i c t e d b y a d d i n g t h e f c i n v a r i a n c e 

e r r o r t o t h e f ^ e s t i m a t i o n e r r o r . 

T o e x a m i n e t h e e f f e c t s o f p a r a m e t e r e r r o r s o n t h e S R C 

f i l t e r , t h e S R C F M r a t e c a n b e e x p r e s s e d i n t e r m s o f f c a n d 

r 0 a s : 

K S R C " K A c 2 / ( X f C ) 2 
(119) 

= - ( 2 v e q

2 / [ X r 0 3 ) ( c / [ X f c 3 ) 2 ( 1 - ( X f c / [ 2 v e g 3 ) 2 } 3 / 2 

(120) 



191 

In order to normalize the analysis to the range -3dB 

bandwidth, B^, the phase of the SRC f i l t e r at the range 

band-edge frequency i s used as a parameter. The band-edge 

phase i s given in radians by : 

*(B r/2) = 7 r ( B r / 2 ) 2 / K S R C (121) 

Using p a r t i a l derivatives, the band-edge phase error can be 

expressed approximately in terms of the beam center 

frequency error, A f c , and r 0 error, A r 0 , as : 

A<//(Br/2) = Ar 0 3 tf(Br/2) + A f c 9 tf(Br/2) (122) 
3 r 0 3f C 

- [ , ( B r / 2 ) V K S R C ] 

• { ( A r 0 / r 0 ) + 2 ( A f c / f c ) [ l + (3/2)/[(2v / [ X f c ] ) 2 - 1 ] ] } 

(123) 

Range broadening i s small, t y p i c a l l y less than 10%, 

when the magnitude of the band-edge phase error i s less than 

7r/2 radians. The corresponding error l i m i t s on A f c and Ar 0 

vary depending on the squint angle and the parameters used. 

Figures 7.1 and 7.2 show the SRC band-edge phase error in 

the range frequency domain for various squint angles (1° to 

20°) as a function of A f c and A r 0 . The curves use exact 

c a l c u l a t i o n s of the phase errors rather than the p a r t i a l 

d erivative expansion above. However the curves are almost 
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Figure 7.1 SRC band-edge phase error in the range frequency 
domain for squint angles of 1°, 5°, 10°, 15°, 
and 20° as a function of beam center frequency 
error. 
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Figure 7.2. SRC band-edge phase error in the range^ requency 
domain for squint angles of 1°, 5°, 10 , 15 , 
and 20° as a function of r 0 error. 
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linear which agrees with the p a r t i a l derivative expansion. 

The magnitude of the phase error increases with increasing 

squint angle and increasing parameter error. For RADARSAT 

with squint angles less than 10°, the phase error i s less 

than 7r/2 for beam center frequency errors less than 

+/- 3000 Hz and r 0 errors less than +/- 15%. The maximum 

expected beam center frequency error i s much less (on the 

order of 100 Hz excluding range variances). The maximum 

expected r 0 i s also less being on the order of +/- 5%. 

More exact measurements of range broadening as a 

function of band-edge phase error for p a r t i c u l a r algorithms 

and f i l t e r lengths are performed by simulation in the next 

sect ion. 

The range broadening which occurs without SRC can be 

parameterized by an equivalent range frequency band-edge 

phase error. Since the broadening results in chapter 3 were 

shown as a function of squint angle, i t is s u f f i c i e n t to 

relate the squint angle to the equivalent phase error. The 

error is given by the band-edge phase of the ideal SRC 

f i l t e r which can be computed from equation (121) by 

rewriting i t in terms of the squint angle, 6 , and r 0 to 

get : 

i / / ( B /2) = -2TT ( B / [ 2 c ] ) 2 X r 0 tan 20 [ 1 +tan 2 0 ] 1 / 2 (124) 
IT IT S S 

This r e l a t i o n is plotted in figure 7.3. The 5% and 10% range 

broadening squint angles given in chapter 3 correspond to 
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equivalent range phase errors of -74° and -100° 

respectively. Thus the 90° phase l i m i t used e a r l i e r as a 10% 

range broadening l i m i t i s reasonably close. For comparison 

with the results in the next section, the broadening results 

without SRC are replotted in figure 7.4 as a function of 

equivalent range phase error instead of squint angle. 
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F i g u r e 7.3. E q u i v a l e n t SRC band-edge phase e r r o r i n the 
range f r e q u e n c y domain w i t h o u t SRC as a f u n c t i o n 
of s q u i n t a n g l e . 
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Figure 7.4. Actual range broadening without SRC with a 
length 16 RCMC interpolator and predicted range 
broadening as a function of equivalent range 
band-edge phase error. 
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7.2 SIMULATIONS OF SRC FM RATE ERROR BROADENING 

This section present?? simulations of range broadening 

caused by SRC FM rate errors with various SRC algorithms. 

The results indicate that the band-edge phase error in range 

frequency is a good general measure of the expected range 

broadening. The s p e c i f i c amount of broadening varies 

somewhat with the size of SRC f i l t e r and the type of SRC 

algorithm. 

As noted e a r l i e r , parameter errors were only simulated 

in the SRC f i l t e r . The remainder of the processing (RCMC, 

azimuth reference phase m u l t i p l i c a t i o n , etc.) was simulated 

without parameter errors. Thus the measured range broadening 

i s s o l e l y the result of SRC FM rate errors. The range 

broadening was measured r e l a t i v e to the range response width 

without SRC FM rate errors so that only the additional 

broadening caused by the FM rate error was measured. Only 

negative band-edge phase errors were simulated since the 

p o s i t i v e phase error results are very s i m i l a r . 

The f i r s t simulation involved the single-look azimuth 

SRC algorithm. The maximum phase error simulated for each 

squint angle was chosen to include largest expected error 

from figures 7.1 and 7.2 of the previous section. Two squint 

angles, 5° and 10°, were simulated. The maximum simulated 

phase errors were -17° for 5° of squint and -68° for 10°. 

The range broadening measurements are summarized by figures 

7.5 and 7.6 for SRC f i l t e r lengths of 4, 8, 16, and 32 

samples. At 5° of squint the range broadening i s less than 
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2% for a l l f i l t e r lengths. At 10° of squint, only the longer 

f i l t e r s (of length 16 and 32) were used since the shorter 

f i l t e r s produced unacceptably large broadening even without 

SRC FM rate errors (greater than 85%). The largest range 

broadening (for a phase error of -68°) was less than 8%. 

The azimuth SRC simulations were repeated for multilook 

processing with almost i d e n t i c a l results as shown in figures 

7.7 and 7.8. This i d e n t i c a l behaviour shows the independence 

of the range broadening process from the look extraction 

process. 

The next simulation was performed with the single-look 

range SRC algorithm. A 16 sample range interpolator was used 

for RCMC. Since the broadening results without errors 

indicated that range SRC could be used for larger squint 

angles, squint angles of 15° and 20° were used in addition 

to the 5° and 10° squints used before. The maximum simulated 

phase errors were again selected to include the maximum 

expected phase errors at each squint angle. The chosen 

values were -17° for 5° of squint, -68° for 10° of squint, 

and -136° for both 15° and 20° of squint. The range 

broadening i s summarized in figure 7.9. The broadening 

leve l s vary only s l i g h t l y with d i f f e r e n t squint angles. The 

maximum broadening at 10° of squint (again for a phase error 

of -68°) is smaller with range SRC than with azimuth SRC 

(less than 5% compared with 8% for azimuth SRC). 

Since the multilook azimuth SRC measurements of 

broadening wih SRC FM rate errors were e s s e n t i a l l y the same 
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as the single-look r e s u l t s , the multilook range SRC results 

should also be very similar to the single-look range SRC 

r e s u l t s . Consequently the multilook range SRC algorithm was 

not simulated. 
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F i g u r e 7.5. Range 'broadening w i t h s i n g l e - l o o k a z i m u t h SRC a t 
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l e n g t h s as a f u n c t i o n of range band-edge phase 
e r r o r . 
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F i g u r e 7.6. Range broadening with s i n g l e - l o o k azimuth SRC at 
10° of s q u i n t with v a r i o u s SRC/RCMC f i l t e r 
l e n g t h s as a f u n c t i o n of range band-edge phase 
e r r o r . 
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Figure 7 .7. Range broadening with multilook azimuth SRC at 
5 of squint with various SRC/RCMC f i l t e r 
lengths as a function of range band-edge phase 
error. 
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Figure 7.8. Range broadening with multilook azimuth SRC at 
10 of squint with various SRC/RCMC f i l t e r 
lengths as a function of range band-edqe phase 
error. ' ^ 
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Figure 7.9. Range broadening with single-look range SRC at 
5 ° , 1 J ° , 1 5 ° , and 2 0 ° of squint with a length 16 
RCMC interpolator as a function of range 
band-edge phase error. 



8. SUMMARY AND CONCLUSIONS 

This thesis has shown that a new algorithm, c a l l e d 

secondary range compression (SRC), s i g n i f i c a n t l y reduces the 

amount of range broadening which occurs at large squint 

angles in the basic range/Doppler compression algorithm. The 

SRC algorithm was f i r s t suggested by J i n and Wu [13] in 1984 

for use with the SEASAT SAR. This thesis has extended the 

theory of the SRC algorithm to examine the approximations 

involved and to explore alternate implementations. In 

addition to the azimuth SRC implementation presented by J i n 

and Wu, a new implementation of SRC, c a l l e d range SRC, which 

i s performed during range compression, has been presented 

and examined. Also, two new multilook SRC algorithms have 

been developed for use in multilook azimuth compression. 

Many simulations with nominal RADARSAT parameters have 

been performed to quantify the image quality improvements 

possible with SRC. A s e n s i t i v i t y analysis of SRC with 

respect to parameter errors has been included. The analysis 

indicates that the SRC algorithm i s very tolerant to 

parameter estimation and invariance errors. In p a r t i c u l a r , 

with a range broadening l i m i t of 5%, no SRC f i l t e r updating 

i s required over the nominal 150 km. RADARSAT ground range 

swath for squint angles up to 15° using the range SRC 

implementation (assuming an r 0 error of less than +/- 5% and 

a beam center frequency error of less than +/- 200 Hz). 

SRC provides a closer approximation to exact matched 

f i l t e r i n g when the azimuth time-bandwidth product (TBP) of 
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the range compressed point target response, as measured in 

the range c e l l nearest the beam center range, f a l l s below 

unity. The SRC f i l t e r i s formulated by using a quadratic 

phase approximation of the azimuth phase coding and a linear 

approximation to the range migration curve over the 

processed azimuth bandwidth. These approximations allow the 

azimuth Fourier spectrum to be derived a n a l y t i c a l l y . The 

derived spectrum accounts for the spectrum broadening which 

occurs with low azimuth TBP's. The basic range/Doppler 

algorithm without SRC does not account for azimuth spectrum 

broadening since i t i s derived with the p r i n c i p l e of 

stationary phase which is v a l i d only for large TBP signals. 

It has been shown that the range bandlimited azimuth 

matched f i l t e r exhibits s i m i l a r azimuth spectrum broadening 

under low azimuth TBP conditions. When range curvature i s 

small enough that the RCM curve can be considered linear 

over the processed azimuth aperture, as i s the case for 

RADARSAT, the azimuth matched f i l t e r can be projected into 

the range time d i r e c t i o n . The re s u l t i n g application of the 

SRC f i l t e r in range instead of azimuth allows shorter and 

more e f f i c i e n t f i l t e r s to be used. Combination of t h i s range 

f i l t e r with the frequency domain RCMC interpolator leads to 

the new azimuth SRC algorithm. The effectiveness of t h i s 

algorithm is proportional to the length of the SRC/RCMC 

f i l t e r . An e f f e c t i v e l y longer SRC f i l t e r can be formed by 

combining the SRC f i l t e r with the range compression f i l t e r 

during range compression. This results in a new range SRC 
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algorithm. When the range pulse i s a large TBP linear FM 

signal as for RADARSAT the combined SRC/range compression 

f i l t e r d i f f e r s from the o r i g i n a l range compression f i l t e r 

only by a small change in linear FM rate. 

Computer simulations with nominal RADARSAT parameters 

have v e r i f i e d the accuracy of the new SRC algorithms for a 

variety of f i l t e r parameters and squint angles. For 

single-look azimuth SRC processing with a 16 point SRC/RCMC 

f i l t e r , i t was found that the squint angles which produce 5% 

and 10% range broadening can be extended from 3.65° and 

4.23° respectively without SRC to 8.03° and 9.29° 

respectively with azimuth SRC. For single-look range SRC 

processing with a 16 point RCMC interpolator, the range 

broadening was shown to less than 1.3% for squint angles up 

to 20°, which i s the largest squint angle simulated. The 

simulations of multilook SRC processing showed very similar 

results indicating that the separation of looks does not 

greatly a f f e c t the range broadening process. Somewhat 

sur p r i s i n g l y , the simulations showed that n e g l i g i b l e azimuth 

broadening i s caused by the azimuth spectrum broadening of 

the azimuth FFT. This indicates that frequency domain RCMC, 

with or without SRC, adequately extracts the azimuth phase 

spectrum along the RCM curve for compression in azimuth. 
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8.1 RECOMMENDATIONS FOR FURTHER RESEARCH 

Since the concept, of SRC i s r e l a t i v e l y new, several areas 

remain to be examined further. 

The approximate geometric model used in t h i s thesis, 

which assumes a l o c a l l y f l a t earth below the radar platform, 

could be replaced with a more refined model which accounts 

for parameter variations over the curved earth. One 

alter n a t i v e would be to use a consistent approximation to 

the range migration equation based on an e l l i p s o i d a l earth 

model such as presented by Barber [2]. Rather than the f l a t 

earth hyperbolic equation used here, a Taylor series 

approximation to the e l l i p s o i d a l model with several terms 

could be used. Such a model could also be used to 

incorporate s a t e l l i t e motions outside of the nominal o r b i t . 

The refined model would be useful for deriving more accurate 

f i l t e r parameters, esp e c i a l l y for spaceborne SARs, and for 

determining more precise bounds on signal parameter errors 

and variations over the range and azimuth swaths. 

In azimuth SRC and in range/Doppler processing without 

SRC, the SRC/RCMC f i l t e r i s windowed in the range time 

domain in order to reduce the number of c o e f f i c i e n t 

m u l t i p l i c a t i o n s . This causes additional range broadening of 

the point target response. The action of the window is only 

p a r t i a l l y understood and i t s optimality has not been 

established. It may be possible to develop a method of 

compensating fo:: the range broadening e f f e c t s of the window 

by modifying the SRC/RCMC f i l t e r spectrum before windowing. 
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Since one of the eff e c t s of the window i s to taper the 

f i l t e r amplitude spectrum, the f i l t e r spectrum could be 

predistorted by amplifying the higher frequencies before 

windowing in order to obtain a spectrum closer to the ideal 

f l a t spectrum after windowing. 

F i n a l l y the SRC algorithm has been examined for nominal 

RADARSAT parameters which involve very l i t t l e range 

curvature over the processed azimuth bandwidth. Since the 

SRC f i l t e r i s derived using a linear RCM assumption and a 

quadratic azimuth phase assumption, range curvature and 

higher order effects may be more s i g n i f i c a n t in systems 

which exhibit larger range curvature such as longer 

wavelength spaceborne SAR's. Simulations of systems with 

much larger wavelengths should be performed to determine the 

l i m i t s to the above assumptions. 
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