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Abstract

The purpose of this thesis is to compare the results
obtained from two different methods to account for fatigue,
the Root Mean Sqﬁare (RMS) and the Histogram, to determine
which method better represents reality.

_The test prdcedure used subjected compact tension
specimens to randomly selected block loads, then compared
the actual lifetimes obtained by experiment to the lifetimes
predicted by the methods. A statistical analysis was
attempted to determine which method was superior.

The results of the analysis suggest that the RMS model
is superior. However, no firm conclusions can be drawn,
since the data obtained suggest that the Paris Law

parameters used in the analysis are possibly biased.

(ii)



Table of Contents

Abstract

List of Tables

List of Figures

List éf Symbols
Acknowledgements
Introduction
Theoretical Background
Experimental Procedure
Observations

Treatment of Data
Results

Discussion

Conclusion

References

Appendix I -~ Material Properties

- Yield Strength, Ultimate Strength and
Young's Modulus

- Procedure
- Analysis
- Results
- Determining Fracture Toughness
- Procedure
- Analysis

- Results

(iii)

page

ii

vi

vii

21
29
32
40
47
50
51
53

54

54
56
56
56
56
59

63



Table of Contents

page
- Threshold Stress Intensity 63
- Procedure 63
- Analysis : 66
- Results 66
- The Paris Law Parameters 66
- Procedure 66
- Analysis 67
- Results 69
- Grain Structure 69
- Procedure 69
- Results 71
Appendix II - Computer Programs : 73
- Fortran Fatigue Program 73
~ Program to Generate Random Load Sequence 79

(iv)



List of Tables

Table

Table
Table
Table
Table

Table

Table
Table
Table
Table
Table

Table

I

11

III

IV

\'

VI

VII

VIII

IX

X

XTI

XIT

Observations

Test 1 Results

Test 1 Independence Test

Normal Model Fit Test for Test 1
Test 2 Results

Test 2 Results (using published Paris
Law paraameters)

Results from the Sensitive Analysis
Normal Model Fit Test for Test 2

Data Independence Test Results
Results from the Statistical Analysis
Results From the Tension Tests

Results From the Fracture Tests

(v)

page
31

32,40
35

37,44
40

41

42
44
45
46
58

64



List of Figures

page
Figure 1 Elliptical Crack in Infinite Plate | 4
Figure 2 Crack in Infinite Plate 9
Figure 3 The Three Loading Modes for a Crack 12
Figure 4 A Typical Paris Plot 15
Figure 5 Sample Histogram 17
Figure 6 Histogram Method 20
Figure 7 Small Frame MTS 22
Figure 8 Compact Tension Specimen 23
Figure 9 Stress Intensity Factor for a 25
Standard Specimen
Figure 10 A Loading Distribution 26
Figure 11 Creation of a Random Sequence of Loads 27
Figure 12 Load Distributions for Load.Cases 30
One and Two
Figure 13 A Set of Observations (Test 1) 33
Figure 14 Tension Test Specimen 55
Figure 15 Load vs. Displacement Record 57
for a Tension Test
Figure 16 Definition of Crack Length 60
'Figure 17 Load vs. Displacement Record 62
for a Fracture Test
Figure 18 Raw Data Transformation to Stress 68
Intensity and Crack Growth Rate Data
Figure 19 Paris Plot for A-36 Steel 70
Figure 20 A-36 Steel Grain Structure 72

(vi)



c,4,D

FN ’ FI.N

K
K

Kier Kac

Kmaxl Kmin

Krms
Krn

Ly ,Lf

Symbols

One-half or whole crack length or one-half of the

major axis of an elipse.,
Critical, initial crack lengths.
Threshold crack length.

Paris Law parameter.,

Initial cross sectional area.

One-half of the minor axis of an elipse or a di-
mension on a compact test specimen.

Critical value.
Dimensions on a compact tension specimen.

Normal, Log-Normal cumulative distribution
gquency (cdf).

fre-

Function of compact tension specimen dimensions
for determining a stress intensity factor.

Young's Modulus.

Dimension on compact tension specimen.
Hypothesis.

Complex number y-1 or a sample number.
Number of different loads.

Stress intensity factor.

Mode I stress intensity factor.

Plane strain, plane stress critical stress inten-
sity factor.

Maximum, minimum stress intensity factor.
Root Mean Square (RMS) stress intensity factor.
Threshold stress intensity factor.

Initial, final tension specimen lengths.

(vii)



=

-

x|
~

o]

Paris Law parameter.

Cycles per pseudo-histogram or observations.
Cumulative frequency.

Number of cycles.

Number of cycles per load.

Applied load.

Test load for determining K or K .
Fatigue load.

Ultimate, yield load.

Polar coordinate.

Radius of plastic zone.

Standard deviation.

Standard deviation of a particular population.
Value obtained from a t-distribution.

A random number.

elastic energy.

Resistance to crack growth.

Rectangular coordinates or observed value.
Sample average.

-Normal value or a complex number.

Complex function.

Significance level for one-sided tests and type
errors.

Significance level for type II errors.
Specific surface energy.

Polar coordinate.

(viii)



Ho, 1

Pc

Orms
Otip
Oy

Ox, Oy

value for hypothesis Hp,H; .

Crack tip radius or sample correlation
coefficient.

Critical value of sample correlation.
Applied stress.

RMS stress.

Stress at crack tip.

Ultimate stress.

Stress in the x-direction, y-direction or yield
stress.

Yield stress
Shear stress in x-y plane.

Stress function.

(ix)



Acknowledgements

I would 1like to thank Dr. Nadeau, Ph.D. and my
supervisor, Dr. Vaughan, Ph.D., for their helpful
suggestions throughout this work; all the technicians in
both the Mechanical and Metallurgy Engineering Departments
of the University of British Columbia, who assisted me in
all phases of the experimental work; Peter and John Somoya
for their help in the preparation of the manuscript; and

finally Jim Fraser, who spent a great deal of time proof

reading this thesis.

(x)



Introduction

During the past fifty years, engineers have become
increasingly aware of the problem of crack growth caused by
fétigue. v(Fatigué occurs when a structure o¥ part wears out
due to cyclic loading.) Regrettably, thié enlightenment has
only 'arisen as a result of the sudden failure of some
structures, examples of which include the American Liberty
and T2-tankers during the Second World wWar{1] and the bridge
at Point Pleasant, West Virginia in 1967{2). From these and
other similar failures, engineers have been able to
establish the principles of a new science called fracture
mechanics.

The purpose of fracture mechanics is to determine the
effect that a crack has on the strength of a structure.
This 1is done by determining the crack's '"stress intensity
factor", a measurement of stress intensity at a crack tip.
Stress intensity is governed by the geometry of a structure
and the load applied to it. When an applied load reaches a
critical level, called the "critical load", the structure to
which it is applied to will fail. The value of stress
intensity at the critical load is known as the "critical
stress intensity" and it is assumed to be a material
constant. |

Most structures are subjected to some form of cyclic
loading. | This requires consideration of the effects of

fatigue, using a proven design procedure, the most common



of which is the Paris Law equation[3], which statés that the
rate of crack growth is directly proportional to the change
of stress intensity caused by cyclic loading. The Paris Law
has been confirmed experimentally for constant amplitude
cyclic 1loading, but still needs modification to take into
account the effects of random amplitude loading. One such
modification consists of caléulating the Root Mean Sqﬁare
(RMS) value of the cyclic loads, which is then used to
;'calculate stress intensity (also a RMS value) at the crack
tip, which in turn is used in the Paris Law. The method has
been shown to work well[4] but it is not complete; the RMS
method incorrectly assumes that all loads cause crack
growth{[5]. However, crack growth does not occur in some
materials (such as steel) in the presence of stresses below
a level known as a "'stress intensity threshold".

Using this knowledge, an alternative approach known as
the Histogram method[6] has been devised. This paper will
test the Histogram method to determine if it can produce any

statistical improvement over the standard RMS method.



Theoretical Background

The development of fracture mechanics began in the late
19th and eafly 20th centuries when engineers noticed that
many so-called brittle failures seemed to start at a crack.
(A brittle failure occurs when a structure or part fails
suddenly due to rapid crack growth.) Suspecting that such
cracks could weaken structures, various attempts were made
to analyse the effects that they could have on structural
strength.

The first attempt in calculating the stress around a
crack tip was made by Inglis[7] in 1913. Representing the
crack as an ellipse, 1Inglis came up with the following-

equation for the stress at a crack tip (see figure 1).

1/2
Utip = 20(a/e) 1
where Jctip is the stress at the crack tip
o is the applied stress
a is half the crack length
e  1is the crack tip radius

Obviously, the radius of the crack tip must be known in
order to determine the stress around it using this equation,
but that figure is'generaliy not available, so an assumption
is made. Since an assumption of a zero radius produces the

useless result of infinite stress at a crack tip, the usual
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assumption is that the radius is equal to the atomic spacing
in the subject material. This produces a finite answer, but
one which is equally useless, since it yields a product
stress which is much higher than the ultimate strength of
the material.

Griffith[8] sﬁbsequently developed another approach,
which wused an energy method based on Inglis's results.

Griffith's equation is:

where U is the elastic energy
a is half the crack length
o is the applied stress

E is Young's Modulus

The elastic energy represents the amount of energy available
to increase the length of a crack by amount "da". Griffith
reasoned that where a crack is produced, elastic energy had
to be equal to the amount of energy resisting the growth of
a crack dwWw/da. He further assumed that the energy resisting
the growth of a crack did not change with crack length and
that when the elastic energy release rate equalled the
energy resisting the growth of a crack, a structure would
break. Griffith reasoned that the critical energy resisting

crack growth should be equal to the energy required to



create new surface, known as surface energy.

where W is the resistance to crack growth

y is the specific surface energqgy

Hence,

which gives
L
op = (2Ey/ma)’*® 5

where Op is the stress at which failure occurs

Surface energy is not an easy material property to
measure, but it can be measured for certain materials 1like
glass. After measuring the surface energy of the glass used
in his experiments, Griffith found that his assumptions
about critical energy were reasonably accurate.

Engineers finally had a reasonable method of determin-
ing when cracks in a structure would lead to failure but
problems still remained. One shortcoming of the Griffith
method was the difficulty of determining critical resistance
to crack growth. In brittle materials, critical resistance

is equal to surface energy, but the latter property cannot



be measured accurately. Resistance in ductile materials
consists Anot only of surface energy but also the amount of
energy required to form a plastic zone in front of a crack.
This is wusually so 1large that surface energy can be
neglected. The easiest way to determine resistance to crack
growth is to measure it indirectly by measuring the stress
required to break a specimen with a certain crack length.
Another shortcoming of the solution was that it was
only correct for a crack in an infinite plate. Griffith
solved this problem in his experiments by using glass bulbs.
(The surface of a sphere has no edges, just like an infinite
plate.) Solutions to practical problems were not available
until the work of Westergaard was published[9].
Westergaard's solution begins with the assumption that
a crack can be represented as either a plane strain or plane
stress elasticity problem. This assumption permits the use

of Airy's stress function[10]:

A2¢ = v2(v2¢) =0 6
where V2 = 32 + 32
—_—2 —2
X 3y

¢ 1s a stress function that satisfies the
above equation and all boundary conditions

Westergaard's contribution was to define the following

function that satisfies Airy's function.



¢ = Re 2 + yIm 2 7
where g? _2, dz _ z, 4z z'
dz dz dz

Re Z + iIm Z : 8

i

Z2(z2)

with z = x + iy

Substituting Westergaard's function in the solution for

the equilibrium equations[11] gives:

o 82¢ Re Z - yIm 2'
X = —2' =
3y
g, _ 32¢ _ Re 2 4+ yIm Z°' 9a-c
Yy = X2
Xy = 32¢ _-yRe 2"
Y = 3xay
where o¢_, o, 1., are the stresses in the
X Y Xy

directions shown in figure 2

For the problem shown in the figure 2, the following

equation for "Z" meets all the boundary conditions:

‘Z _ oz + a) 10
T Vzlz + 2ar '
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Letting the value of "a" be much larger than the value
of "z", i.e. letting the solution only be valid near a crack

tip, gives:
72 = ca//2az 11

Changing this equation to polar coordinates gives:

Z _ o/7ma exp(~-ie/2) 12

= —

Finally, substituting the above into equations Ya-c,

yields the solution for the stresses around a crack tip.

o o/ma cos(6/2)[1 - sin(6/2)sin{(36/2)]
TC

3

cy - c/:i cos(6/2)[1 + sin(8/2)sin(38/2)] 13a-c

o/7a sin(e/2)cos(6/2)cos(36/2)
TC

T
Xy =

1

The solution can be considered to consist of two parts.
The geometric part yields stress distribution around a
crack, 1including the singularity at the crack tip. The
second part consists of a scaling term, oJra® , a simple
function of applied stress. This function is defined as the
"Mode I Stress Intensity Factor" and is givén the symbol Kj.

The different types of stress intensity modes are illus-
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trated in figure 3.

Rewriting the crack tip stress equations wusing the

stress intensity factor produces the equations:

K

o _ I cos(6/2)[1 - sin(e/2)sin(38/2)]

X = 757

oy = Kir cos(6/2)[1 + sin(e/2)sin(30/2)1 ,,
tx _ KI sin(8/2)cos(68/2)cos(36/2)

XY = 7o

It is this stress intensity factor that is relevant,
because when it reaches a critical value, a structure will
break. It 1is assumed that this critical wvalue will be
constant for any given material. The critical stress inten-
sity criterion is similar to the critical energy c¢riterion
Griffith proposed, but unlike Griffith's method,
Westergaard's can be used to solve practical crack prob-
lems{121].

Experimental results confirm the assumption of a criti-
cal stress intensity as long as a structure meets certain
thickness and plane strain requirements which assure that
the plastic zone, which formed at the crack tip, remains
small compared to the crack length. Since the whole of
Westergaard's ahalysis is bééed on a linear elastic ap-
proach; the plastic zone must be small compa:ed to the

dimensions used in the analysis if fracture mechanics is to
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be valid. If a structure does not meet these requirements,
then each thickness of a material proposed for the structure
has its own unique critical stress intensity.

Westergaard's solution is wuseful if failure is the
result of a single load. Most failures are not. Structures
are usually subjected to cyclic loading and in many cases
cracks grow as a result of fatigue. A design procedure for
fatigue 1is helpful and the one suggested by Paris[13] is
the most accepted method of determining the 1life of a
structure under cyclic loading. The life is defined as the
number of cycles necessary to enlarge a crack from its
initial size to its critical size. Paris suggested that
cracks experiencing the same variations of stress intensity
will grow at the same rate.

This solution is expressed as follows:

da f (AK) 15

where da is the incremental crack growth
dN is the incremental life in cycles

AK is the variation of stress intensity

Generally it is invalid to assume that fatigue crack
growth 1s due to the variation of stress intensity alone.
There are other influences such as the maximum stress inten-

sity experienced by a crack and the constraint on a crack.
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Other factors are relevant, but for two crack growth cases
to be considered similar, all the factors that affect crack
growth must be similar.

In most cases, the procedure proposed by Paris is
accurate enough to be useful for practical design. For the
purposes of this paper, the Paris relationship is assumed.
All the tests hereinafter described were designed so that
change 1in stress intensity is the dominant factor in crack
growth,.

Experimental data show that the function required to
relate crack growth rate to the range of stress intensities

is a simple power function of the following form:

da _ A(AK) ‘ 16

where 'A' and 'n' are material properties

This equation is known as the Paris Law. The Paris Law
is useful in many practical situations, but is not valid for
stress intensity at either end of the stress intensity range
(see figure 4). However, if threshold stress intensity and
critical stress intensity are used as limits on the range of
the Paris Law, the error in usihg it is small.

The Paris law in the above form can only be used to
calculate the 1life of a structure undergoing a constant

variation of loads. It must be modified to calculate the
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FIGURE 4 A Typical Paris Plot
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effect of random loads.
One method is to calculate the Root Mean Square (RMS)
value of the loads applied to a structure and use the RMS

value in the Paris Lawl[14]. The consequent changes to the

Paris Law are as follows:

da _ A(AK ) 17
I = rms
k -
where AKrms - .ZNi(AKi)
1=1
k
IN
i=1

k is the number of different loads

N 1s the number of cycles for each load

Barson and Rolfe[15] have shown that this relationship
works well, However, it fails to recognize that c¢rack
growth does not occur in certain materials if the stress
experienced by a structure is less than a critical value
known as the "stress intensity threshold". By including
this wvalue in a "Histogram Method", Vaughan(16] has
developed a methpd for calculating fatigue crack growth that
should be better than the RMS Method. A histogram is a
block representation of a load distribution on a graph
showing load vs. number of cycles that a load is applied to

a structure (see figure 5). The use of the histogram in
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calculating the life of a structure is shown as follows.

First the threshold crack length is calculated. It is
the crack 1length that will cause stress intensity at the
crack tip to be equal to the stress intensity threshold.
Threshold crack lengths are required for each load level on
the histogram. Next, for the largest stress level, critical
crack size is calculated. Critical crack size is reached
when the stress intensity at a crack tip is equal to the
critical stress intensity.

If it is assumed that there is initially a crack of a
certain size in a structure and that crack is smaller than
the the smallest threshold crack length calculated, there
can be no fatigue crack growth. If the initial crack is
larger than the critical crack size, failure of a structure
can Dbe expected almost immediately. If a crack is larger
than some of the threshold crack lengths, but smaller than
the critical crack size, crack growth occurs.

The latter case is studied by constructing a sub-
category of the histogram known as a pseudo-histogram (for'
example see histograms H1-3, figure 5), which is used to
calculate the RMS stress intensity value used in the Paris
Law. This wvalue 1is calculated for currently effective
loads, which make up the pseudo-histogram, and is used until
the crack grows so that the next lowest load in the main
histogram has an effect on crack growth. Then an additionai

section of the histogram is used to construct a new pseudo-
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histogram, which is used to calculate a new RMS stress
intensity factor. This procedure is continued until the
crack reaches critical crack length. The structure.is then
assumed to fail and its lifetime is calculated from the sum

of all the pseudo-histogram lifetimes.]

1. See figure 6 for an example of how the Histogram

Method is used.
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Given: K.=zoV/7ra
Koyl 6.0 ksivin’
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_ . -9 3
PG.FIS Law: da = 144x107(AK, )
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FIGURE
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6

N = 110,830

The initial crack length ‘a_’ is greater than
any; for Histogram H1. I

Critical crack length is the same for all
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NumberTof cycles experienced by each Histogranm.

Total amount of cycles experienced by the

structure during the time that histogram
is applied; N.B. o = lZO/Zn

Histogram Method
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Experimental Procedure

This paper will attempt to determine which method, the
RMS or the Histogram, more accurately represents crack
growth due to fatigue. The experiments which form the basis
for the study require the subjection of a number of
specimens to random loads and the recording of the number of
cycles that each specimen survives. This number is compared
to the number of cycles predicted by each method for that
.specimen. Using statistics, a comparison is then made to
determine which method comes closer to the actual reéults.
The details of the procedure are as follows.

Since it 1is a common material wused for engineering
purposes, it was decided that ASTM-36 type steel would be
used 1in the experiments. Once it was selected, various
tests were conducted on the metal to determine its material
properties (see Appendix T).

The next step was to select the geometry of the test
specimen; "the writer chose a compact tension specimen
commonly used in determining fracture toughness and other
kinds of fracture experiments. Its size was made as large
as possible to produce a  satisfactory range for crack
growth. The apparatus used for the experiments was the
small frame MTS testing machine (see figure 7) located in
the Metallurgical Engineering building at the University of
British Columbia (UBC). Within the limits imposed by this

machine, the final specimen size was determined and the
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result is shown in figure 8.

Bascom-Turner :

FIGURE 7 Small Frame MTS

The specimens were prepared as shown in figure 8 and
polished using a wet sanding process with the following grit
sizes; 180,320,400,600. Polishing a specimen made it easier
to measure the crack length, as was necessary to do for
determining the Paris Law parameters (see Appendix 1I).
It also makes it easier to measure the initial crack length
of about .7 inches that each specimen was precracked to.
Precrack length was measured on both sides of the specimen
before fatigue tests were begun. Since the experiment

measures the number of cycles applied to a specimen from the
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FIGURE 8 Compact Test Specimen
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-

initial crack length to the critical crack length, the
initial crack created by precracking should be affected by
the first load applied experimentally to the specimen. The
only way to ensure that this is so is to require the plastic
zone size resulting from the appliéd load to be greater than
that created by the precrack load, thus the load used for
- precracking .was less than the first load applied in the
test.

The next problem was to construct a random sequence of
block loads. The first step was to select a loading
distribution that would produce a significant difference
between specimen 1lifetime predictions made by the RMS and
the Histogram methods. The loading distribution selection
was restricted by time and operating constraints on both the
MTS machine and its operator. Various loading distributions
were tried, wusually based on some polynomial relationship
between stress and cycles, until two loading distributions
met the constraints. This. was done by constructing a
histogram for each aistribution from which the life of the
specimen for both the RMS and Histogram methods could be
calculated and compared. A computer program was used to
determine these lifetimes (see Appendix II), since the
stress intensity function "K;" used is not a simple function
to invert (See figure 9). The general procedure used by the
computer program to calculate these lifetimes is the same as

the example shown in the Theoretical Background, with the
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Standard Specimen

For ,3 £ a/b £ .7

K, = ovaFla/b,h/b,d/b)

where ¢ = P/b

h =.6b
d=.275b
D =.25b
¢ = .25b

E = 29.6 - 185(a/b) + 655.7(a/b)* - 1017(a/b)*+ 638.9(a/b)*

FIGURE 9

Stress Intehsity Factor for

a Standard Specimen [I2]
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material properties, initial crack length and a histogram of

the loading distribution being the inputs to the program.

Load Case One

Cycles
(kc)
45

39

30

15

0 i 1 1
0 A5 1 2 3315
Load{kips)

" FIGURE [0 A Loading Distribution

Once a load distribution is selected (see figure 10), a
means must»be devised to create a random sequence of loads.
The eaéiest way of doing this is to choose a random number
between 0 and 1 and transform the random number into the
equivalent random load. The frequency with which any load
occurs can be obtained from the loading distribution. The
remainder of the sequence is created in the same way with
the selection of more random loads. (See figure 11 for an

example of the procedure.)
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Stress
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30¢r
2.5 ¢
2.0
1.5+
1.0+
5k S
0 | 1 1 ! ] { | t } | 1
0 50 100 -
Kilocycles
. A random number
Load Case One (0cu<)
Linear
Cycles If us= 56 mapping
(kc) i ,
- Omax® 45 + U(3.15 - 45)
39 = 2,0 ksi
30 eNo. of cycles = 30 ke
[f u= .24
Omox= 11 Kksi
15} '
No. of cycles = 39 ke
0o 45 1 2 313.15

Load (kips)

FIGURE I Creation of a Random
| Sequence of Loads
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It would have been tedious to calculate a random load
sequence of 20 to 30 loads, so a computer program (see
Appendix II) was written to generate the sequences to be
applied to a prepared Specimen. " The same load sequence was
ran on a number of test specimens in order to observe the
random variations of the experiment. With more than one
-result for each sequence, a statistical analysis could be
attempted.

The final step of course is the test itself. The test
is simply a matter of applying loads to a specimen for the
required number of cycles per load. The MTS was programmed
to shut itself off when the crack opening reached a critical
value, which was predetermined by visual inspection and set
so that a test would end before any great amount of plastic

work was done in fatigquing the specimen.
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Observations

The load distributions selected for this work are shown
in figure 12. Each load distribution was tested on a group
of specimens; known as test 1 for load case one and test 2

for load case two.



Load Case One Load Case Two

Cycles Cycles
(ke) ' (kc)
Al 45 |-
39 /
30 F _ 30
15| - 15F
0 1 1 1 0 | |
0 45 1 2 3315 0 .2 1 2 3
Load kips) Load (kips)

FIGURE (2 Load Distributions for Load Cases One and _Two

11
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The observations are shown in Table 1I. The first
column shows the specimen number, a number system used to
keep track of data on each individual specimen; the second
’shows'the test groﬁp to which the specimen belongs (i.e. the
load distribution); the third column shows the initial crack
length in the specimen and the fourth shows the number of

- cycles a specimen endured to the point of failure.

Spec- Test Initial Cvcles
imen Crack (in)
10 1 .710 399,780
11 1 . 701 420,040
12 1 .700 391,810
13 1 .704 401,290
15 1 .699 401,170
4?2 1 .698 422,000
43 1 .699 398,000
44 1 .690 420,520
45 1 .695 399,000
a5 1 .712 396,700
48 2 .697 681,820
49 2 .706 751,010
50 2 .722 749,000
51 2 .702 843,570
52 2 .691 737,930
53 2 .689 846,000
54 2 .708 747,600
55 2 .691 785,390
56A 2 .716 594,640
568 2 .690 741,600
57 1 .707 281,500
58 1 . 686 244,000
59 1 .695 367,000
60 1 .695 401,730
6l 1 . 715 405,800

TABLE I Observations
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Treatment of Data

Once the experiments were completed, a statistical

analysis of the data was performed to determine which method

fit the data better. First the expected lifetime of each

specimen was calculated for both the methods using the same

computer program used to select loading distributions, then

-~ divided by actual lifetimes recorded in the experiments,

yielding a set of ratios to be used in the analysis. If the

method used to predict the lifetime of a specimen is

perfectly accurate, the ratio should have a value of one;

the method that predicts the 1life of a specimen more

accurately should yield a ratio closer to one than that

yielded by the rival method. Figure 13 shows these effects

and Table II illustrates the results obtained for the first
test run, group 1.
Spec- Actual RMS Ratio |Histogram .| Ratio
imen - Cycles Cycles BM3 Cycles Histogram
No. _ Predicted Actual |Predicted Actual
10 399,780 265,970 .665 252,560 .632
11 420,040 280,600 .668 265,890 .633
12 391,810 282,250 . 720 267,390 .682
13 401,290 275,670 .687 261,390 .651
15 401,170 283,920 .708 268,910 .670
47? 422,000 285,580 .677 270,430 .64l
43 398,000 283,920 L7132 268,910 .676
44 420,520 299,160 711 282,800 .673
45 399,000 290.630 .728 275,030 .689
46 396.700 262,790 .F62 249,660 .829
Mean .h34 .658
Standard Deviation .025 .023
TABLE II Test 1 Results

4
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The last five observations for test 1 were not used in
any of the following analysis. The reason for this is that
a statistical test, known as a sample test, shows that the
dispersion and mean of these five obsefvations is different
than that of the first ten observations. The sample test
used was a rank sum[18], wusing significance levels (the
. meaning of which is discussed below) of 0.05 and 0.1. The
reason for this rejection is unknown, but may be attributed
to some improper control settings on the MTS.

The next statistical test performed was designed to
determine whether the observations are independent of one
another. The test used was the Label test[19], which is
performed by considering the sequence of results as a
variable and applying a test of independence to the
sequence. This produces a sample correlation coefficient
which 1is wused to analyze whether there is a relationship
between the set of numbers. The Label test can only
"reject" or "not reject" (that is, show that the data does
not conflict with) the hypothesis that the data is random.
This 1is known as a significance type of test, since no
alternative hypothesis can be selected.

For all statistical tests, a significance level " a"
must be selected. | The higher the significance, the more
significant is the test, with values of .01, .05 and .1

being typical values for "a". No sample is rejected for a

value for " a'" equal to zero. The value of "a", along with



the 'sample size,

is used to select a critical value
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of a

parameter that is used to "reject" or '"not reject" a
hypothesis. For the Label test, this is the samplé
correlation coefficient. If it is less than the critical
value, then the hypothesis that the data is not random
cannot be rejected. An example of a Label test shown
below for the data from group test 1.
Label Ratio (y) Label Ratio
(x) RMS
Actual Mean 5.5 .6394
Standard Deviation 3.03 . 025
1 .665 r(Label)(Ratio) 38.37
2 .668 o
3 .720 , P _ LXY - Xyn 38.37 - 5.5(.694)(10}
4 .687 ' (n—1)SxSy (10 - 1)(3.03)(.025)
5 .708 = 295 :
6 .677
7 .713
8 711 For a=.20 and n=10: p.= 443
S .728
10 .662 Hence, p<pc
Therefore, the hypothesis that each
reading 1is independent of the previous
results cannot be rejected.
TABLE III Test 1 Independence Test
The group of ratios Were then fitted to the Normal
distribution model selected for its ease of use in
hypothesis testing. The Kolmogoroff "goodness-of-fit"
test[20] was carried out to see how well the distribution

fitted. The purpose

absolute

difference between sample cumulative

of this test is to find the

maximum

distribution
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and the cumulative distribution predicted by a distribution
model (see Table IV). This test is also a significance test
and a critigal Value' must be selected for a given
" significance and sample size. - If the largest difference is‘
less than the critical value, the hypothesis that the data
- fits a Normal distribution cannot be rejected.

The final analytical procedure was a test of which
fatigue method fitted the data better. It was performed on
the hypothesis that the two distributions from the ratios
resulting from the RMS and Histogram methods could be
distinguished from one another, as opposed to the hypothesis
that no difference could be detected.

This 1is a hypothesis test and it differed from the
significance tests previously described in that two
hypotheses are proposed. The charactistic behind the test
is the acceptance of one hypothesis and the rejection of the
other. Again, a critical wvalue 4must be selected to
determine which hYpothesis is correct. The critical wvalue
'is. determined according to sample size and the possibility
of error in determining the result. For the hypothesis test
however, there are two possible types of error. One 1is
called type I error and its probability 1is assigned the
symbol "a", Type I error occurs when the first hypothesis
should be accepted but is not. The second type of error,
type II, occurs when the first hypothesis should be rejected

but is not. Type II error is given the symbol "g" and it ,



Class Observed Observed Cumulative Sample Normal Normal Absolute

i Value Frequency Frequency Dis. Value c.d.f. Difference

Xi n; EnJ Enj /n Zi Fn IEHJ/"‘ - FN,
1 .6624 1 1 .1 -1.270 .1020 L0020
2 .6653 1 2 .2 -1.555 .1240 .0760
3 .6680 1 3 .3 -1.045 .1480 .1520
4 .6767 1 4 .4 - .696 .2432 .1568
5 .6870 1 5 .5 - .285 .3859 .1141
6 .7078 1 6 .6 :553 .7098 .1098
7 .7114 1 7 .7 .695 .7564 .0564
8 .7134 1 8 .8 .774 .7806 .0194
9 .7204 1 9 .9 1.055 .8542 .0458
10 .7284 1 10 1.0 1.377 .9158 . 0842

TABLE IV Normal Model Fit Test for Test 1

LE
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like type I, should be as small as possible.

For type I error, the critical value is calculated on
sample size and the desired magnitude of the error. Type II
“error depends on sample sizé, magnitude of type I error and
the nature of the hypothesis. Type II errors are difficult
to determine and are calculated only for those tests for
~which the diagram showing the amount of type II error in
reference 21 applies. An example of a two-sided hypothesis
test for the data obtained in test 1 follows:

Hypothesis Hg: u_ - u_ =0

X y
Hypothesis Hq: nu_ - u_ # 0

x Y ,
Let type I error be no greater than 0.05
Let type II error be no greater than 0.05
With every value used to estimate the mean "wuyx" having
a corresponding value used to estimate the mean "uy ",
obtained from the same test piece, the method of correlated
pairs can be used to select one of the hypothesis[22].
For test 1:
For a= 0.05, 8= 0.05, and n = 10 (d.o.f.; v= 9)
From reference 21: A/og/2'= 2.87
where “A” is the critical value for test statistics.
Test statistic: d = X - ¥ = 0.03643
o0,= 84 = 0.00213
Hence, A = 0.009 and is less than the test statistic
"gv.

Therefore, hypothesis Hg is rejected in favor of



hypothesis Hq, that is;

Hx

u

y

£ 0

39
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Results
The first results (see Tables II, V) show the ratio
obtained by dividing the expected lifetime by the actual
lifetime for each of the specimens. The mean and the
standard deviation are also given.
Spec- | Actual RMS Ratio [Histogram Ratio
imen Cycles Cycles RMS Cycles Histogram
No. Predicted Actual |Predicted Actual
10 399,790 | 265,970 .665 252,560 .632
11 420,040 280,600 .668 265,89¢ .633
12 391.810 282,250 .720 267,390 .682
13 401,290 275,670 .687 261,290 .651
15 401,170 283,920 .708 268,910 .670
4?2 422,000 285,580 .677 270,430 bl
43 298,000 283,920 .713 268,910 .675
44 420,520 299,160 .711 282,800 .B73
45 399,000 290.630 .728 275,030 .5689
46 396,700 262.790 .662 249,660 829
Mean .694 .658
Standard Deviation .025 .023
TABLE II (repeated) Test 1 . Results
Spec- | Actual RMS Ratio Histogram Ratio
imen Cycles Cycles RMS Cycles Histoaran
No. Predicted Actual | Predicted Actual
43 681,820 587,850 .862 530,370 .778
49 751,010 563,130 .. 750 508,900 .678
50 749,000 521,230 L .0696 472,070 .630
51 848,570 574,020 .676 518,350 .611
52 737.929 504,800 .820 545,089 . 739
53 845,000 610,530 .722 550,060 .650
54 747,600 557,760 .746 504,230 .674
55 785,390 604,800 .770 545,080 .694
S6A 594,640 | 536,640 .902 485,740 .817
568 741,600 607,660 .819 547,570 . 738
Mean 776 .700
Standard Deviation .073 .066
TABLE V’ Test 2 Results
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The results are far from the ideal ratio of one. To

discover why, a sensitivity analysis was conducted to show

the effects that changes in the input and material

parameters have on the results.

The results are shown in

Table VII

(following page) and it is submitted that they

demonstrate that changes in the Paris Law parameters cause

~the greatest changes in the results. To see how such

changes would change the predicted lifetimes,

test two was recalculated,

obtained from literature[23] (see Table VI).

the data

but using Paris Law parameters

Actual

Spec- RMS Ratio Histogram Ratio
imen Cvcles Cycles RMS Cycles Histogram
No. Predicted Actual | Predicted Actual
48 681,820 | 763,850 1.120 695,990 1.021
49 751,010 732,410 .975 668,310 .B90
50 749,000 746,260 .9906 680,500 . 909
51 848,570 785.380 .926 714,960 . 843
52 737.920Q 679,040 .820 .. 8620.800 .841
53 846,000 792,670 .937 721,380 .8532
54 747,600 725,570 .971 662,280 . 886
55 785,390 785,380 1.000 714,960 .910
S6A 534,649 698,680 1.175 638,429 1.074
568 741,600 729,020 1.064 718,160 .968
Mean 1.008 .919
Standard Deviation .086 .C78

- TABLE VI Test 2 Results (using published Paris Law parameters)

Using the published Paris Law parameters results

ratios

the conclusions about which method produces better

predictions does not change for these values (see Table X,

that are closer to the ideal ratio of

one.,

for

Though

lifetime
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n Cycles Log(A) Cycles
A% A% AR A%
-3.03 29.98 1.01 30.00
-1.52 13.90 0.51 18.18
0. 0. 0. 0.
1.52 -12.28 -0.51 - 7.14
3.03 -23.04 -1.01 -18.75
Paris Law Parameter Paris Law
' ' Parameter ‘Log(A)’
a; Cycles
A% A%
-1.14 3.87
-0.57 1.92
0. 0.
0.57 -1.89
1.14 -3.75
Initial Crack
Length P
Kye Cycles«T Ky Cvcles
A3 A% A% A%
-10. -2.03 ~16.67 2.53
- 5. -0.88 - 8.33 1.06
0. 0. 0. 0.
5. 0.69 8.33 -1.16
10. 1.23 16.67 -2.10
Fracture Toughtness ‘K.’ Fracture Threshold "Kry
Footnotes: 1. A% = Changed Parameter - Base Parameter x 100

TABLE VII

Base Parameters:

Base Parameter

a, = 0.700"

Kic = 40. ksi./in.
KTH= 6.0 ksi./in.
n = 3.3

Log(A) = -9.9

Results from the Sensitivity

Analysis



43

page 46), it does show how critical it is to use accurate
values for the Paris Law parameters in order to obtain valid
conclusions about ﬁethod accuracy.

The next set of tables (page 44) shows goodness-of-fit
results for the Normal distributions used at a significance
level of 0.20. It should be noted that the test was based
.only on the results for one set of Paris Law parameters. It
is submitted that changing the parameters will not change
the shape of the distribution curve, since shape would
depend more on the variation of the experimental results.

-Table IX (page 45) illustrates that the observations
obtained are independent of one another.

The last set of results, (table 19, page 46) reveals
which method produced better results in each set of
experiments.

Data in table X.summarizes the differences observed
between the histogram and RMS lifetime ratios. It also
contains the results of the hypothesis tests (see treatment
of data) that were conducted to determine whether or not
these differences are significant. The differences are
shown to be significant, using limits of 0.05 for type I and
IT error. For test one and two this means that the method
that produces a lifetime ratio closer to the ideal ratio of
one is more accurate. For these cases, this method is the

RMS one,



Normal

Class Observed Observed Cumulative Sample Normal Absolute
i Value Frequency Frequency Dis. Value c.d.f. Difference
X n;j EnJ En_l mn Zy Fy Iznyn - FNI
1 .6624 1 1 .1 -1.270 .1020 .0020
2 .6653 1 2 .2 -1.555 .1240 .0760
3 .6680 1 3 .3 -1.045 .1480 .1520
4 .6767 1 4 .4 .696 .2432 .1568
5 .6870 1 5 .5 - .285 .3859 .1141
6 .7078 1 6 .6 <553 .7098 .1098
i .7114 1 7 .7 .695 .7564 .0564
8 .7134 1 8 .8 .774 .7806 .0194
9 .7204 1 9 .9 1.055 .8542 .0458
10 .7284 1 10 1.0 1.377 .9158 .0842
TABLE IV (repeated) Normal Model Fit Test| for Test 1
Class Observed Observed Cumulative Sample Normal Normal Absolute
i Value Frequency Frequency Dis. Value c.d.f. Difference
Xy n Znj Znj /n Z Fy ’E",l/n - Fy
1 . 6765 1 1 .1 -1.367.| .0858 .0142
2 .6959. 1 2 .2 -1.101 .1355 .0645i
3 L7217 1 3 .3 - .748 .2272 .0728
4 .7461 1 4 .4 - .414 .3394 . 0606
5 .7498 1 5 .5 - .363 .3583 .1417
6 .7701 1 6 .6 - .008 .4960 .1040
7 .8194 1 7 .7 .589. .7221 .0221
8 .8196 1 8 .B .591 .7227 .0773
9 .8622 1 9 .9 1.174 .8798 .0202
10 .9025 1 10 1.0 1.725 .9591 .0409
TABLE VIl Normal Model Fit Test for Test 2

RS



Comments

No. of Significant Sample Critical Is
Samples Level. Correlation | Correlation | p<p ?
n a Coefficient | Coefficient
P p
Test 1 10 .20 .295 .433 Yes |H, cannot be rejected
Test 2 10 .20 .292 .433 Yes Hd cannot be rejected
H -

0°

Table IX Data Indepenaence Test>Results

That each_réading is ihdépendent of previous results.

Sy



Test | Type I | Type II n ?6 ?i §a= S 4 Critical | Is X, > Comments
Error Error X -X Point Critical |-
: B o 1 : K —u Point ?
a . ) o l ke
1 .05 .05 10| .694 | .658 .036 | .002 .009 Yes Accept Hl
2 .05 .05 10| .776 | .701 .075 [ .007 .030 Yes Accept‘Hl
2Pub .05 .05 10 41.008 | .919 .089 | .007 .030 Yes Accept H,

Hypothesis: HO: Hg ~ Hy < 0
0

Notes:

Hl: ‘JO

The variables with subscribt '0' represent the lifetimes for the RMS method.

The variables with subscript 'l' represent the lifetimes for the Histogram method.
The variables with subscript 'd' represent the differences in the lifetimes
between the two methods.

Table X Results from the Statistical Analysis

234
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Discussion

A Dbrief comment should be made on the results obtained
from the significance tests that were conducted to test the
quality of the experiment. For example, the significance
test for independence of observations shows that the
experiment has little or no bias, since the order of the
data appears independent for a reasonable given significance
level. The selection of the Normal distribution also
appears to be a good choice, as confirmed by the
significance level used for the Kolmogoroff test.

The results from tests of fatigue method superiority
indicates that the RMS method is superior for the load
distributions tested. However, the lifetime prediction
produced by either method is quite inconsistent with actual
lifetimes measured in the experiment. The sensitivity
analysis suggests that the most likely source of error is
the estimate of the Paris Law parameters.

Other possible sources of error do not have such a
large effect on the lifetime prediction of the specimen.
For example, Table VII (page 42) shows that changing the
fracture toughness of the material has little effect on the
lifetime prediction of the specimen. This is to be
\ expected, since most of the lifetime of the specimen occurs
when the crack is short and craék propagation speed is low.
That means that initial crack length can have a considerable

effect on the life of a specimen, and this is confirmed by
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the sensitivity analysis. The accuracy in the measurement
of initial crack length in the experiment is high, so that
this 1is an unlikely source of error. ‘Sensitivity analysis
also shows that small changes in the stress intensity
threshold have 1little effect on the predicted life of a
specimen.

In summary, the bias seen in the_ results probably
results from error in the estimation of the Paris Law
parameters. The source of this error is probably errors
incidental to determining the change in crack length that
has occurred in a given number of cycles. In the procedure
used to determine the Paris Law parameters, changes in crack
length "da" were quite small, wusually about a hundredth of
an inch or less, but error in the measurement of change in
crack length could be as high as two thousandths of an inch,
that is, an error of as much as twenty percent. Error of
this magnitude would possibly produce bias in parameter
estimation([24]. However, if enough measurements were taken
of the crack growth rate, the error in determining "da"
could be reduced. The bias observed in the lifetime
predictions made the Paris Law parameters obtained for this
experiment, suggest that too few measufements'were faken.

The error in the Paris Law parameters is probably not
great, since by changing one of the parameters obtained in
this work by its 80% confidence limit, the parameters match

some of the results found in the literature[25]. The result
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is that the new predicted lifetimes are much closer to the
actual lifetimes measured. However, the RMS method still
gives better results.

The results obtained in this work show that the RMS
method gives a higher accuracy than the Histogram method.
This result conflicts with the basic notion that methods
that incorporate more influential parameters than similar
rival methods should be more accurate. For this case, the
Histogram method incorprates a "stress intensity threshold",
that the RMS method does not. The net result is a RMS
method that neglects stresses that do not cause craqk
growth. Therefore, it would be expected that the Histogram
method would give better results. The fact that it does not
can be explained by the following.

The most reasonable explaination is that the Paris Law
parameters used are biased. It has already been shown that
a small change in a Paris Law parameter can produce large
variations in the resulting lifetime predictions, It also
has been demonstrated that the lifetime predictions obtained
were not highly accurate. It is therefore submitted that
the lifetime predictions made in this thesis would possibly
support the Histogram method if "correct" values for the

Paris Law parameters were used.
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Conclusion

The various statistical methods wused to test the
experimental procedﬁre suggest that it was sound and that
its results should be accurate. The lifetimes predicted by
both methods for any specimen were considerably different
from the actual lifetimes measured, due to suspected error
~in the Paris Law parameters. The use of vParis Law
parameters published in literature confirmed this suspicion.

The results show that the RMS method is superior to the
Histogram method. This result was not expected, since by
including an extra parameter, the '"stress intensity
threshold", the Histogram method should model reality more
accurately. The most likely reason given for it not doing

so was that the Paris Law parameters used in the 1lifetime

predictions were biased.



51

References

(11

(2]

(31

4]
[5]

(61
(7]

(8l

(9]
(101

(111
[12]

(131

(14]

[15]
[16]
(171

Broek, D., "Elementary Engineering Fracture Mechanics",
Martinis Nijhoff, (1981).

Barson, J. M. and Rolfe, S. T., "Fracture and Fatigue
Control in Structures", Prentice-Hall, (1977).

Paris, P. C., "Fatigue - An Interdisciplinary
Approach", Proc. 10th Sagamore Conf., Syracuse Univ.
Press, (1964) p. 125. '

Barson, J. M. and Rolfe, S. T., op. cit.

Vaughan, H., "Fatigue and Fracture of Structure
Elements under Random Loads'", Royal 1Inst. of Naval
Architects, (1983) pp. 209-220.

see Ibid.

Inglis, C. E., "Stresses in a Plate due to the Presence
of Cracks and Sharp Corners'", Trans. Inst. Naval
Architects, 55 (1913) pp. 219-241.

Griffith, A. A., "The Phenomena of Rupture and Flow in

Solids", Phil. Trans. Roy. Soc., London, A 221 (1921)
pp. 163-197.

Westergaard, H. M., "Bearing Pressure and Cracks", J.
Appl. Mech., 61 (1939) pp. A49-53,

Timoshenko, S. P. and Goodier, J. N., "Theory of
Elasticity", McGraw-Hill, (1970).

see Ibid.

Tada, H., "The Stress Analysis of Cracks Handbook", Del
Research Corporation, (1973).

Paris, P. C., op. cit.

Barson, J. M., "Fatigue Crack Growth Under Variable
Amplitude Loading in ASTM A514 Grade B Steel', ASTM
536, ASTM (1973).

Barson, J. M. and Rolfe, S. T., op. cit.
Vaughan, H., op. cit.

Tada, H., op. cit.



[18]

[19]
[20]

[21]

(22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]
[30]
[31]

[32]

[33]

[34]

52
Bury, K. V., "Statistical Models in Applied Science",
John Wiley and Sons, (1975).
see Ibid.

see Ibid.

Pearson, E. S. and Hartley, H. O., "Biometrika Tables
for Statisticians", Vol. I, 3rd Edtion, Cambridge Uni-
versity Press, 1966.

Lapin, L. L., "Statistics: Meaning and Method",
Harcourt Brace Jovanovich, New York, 1975,

Barson, J. M. and Rolfe, S. T., op. cit.

Wei, R. P., Wei, W. and Miller, G. A., "Effect of
Measurement Precision and Data Processing Procedure on
Variability in Fatigue Crack Growth Rate'", Journal of
Testing and Evaluation, JTEVA, Vol. 7, No. 2, March
1979, pp. 90-95, _

Barson, J. M. and Rolfe, S. T., op. cit.

Le May, I., "Principles of Mechanical Metallurgy”,
Elservier, (1981).

Bury, K. V., op. cit.

American Society for Testing and Materials, "1978
Annual Book of ASTM Standards", Part 10, (1978).

Bury, K. V., op. cit.
Broek, D., op. cit.
Barson, J. M. and Rolfe, S. T;, op. cit.

Myers, R. H., and Walpole, R. E., "Probability and

Statistics for Engineers and Scientists", MacMillan,
(1978).

Barson, J. M. and Rolfe, S. T., op. cit.

American Society of Metals, '"Metals Handbook", Vol. 7,
(1972).



53

Appendix I

Material Properties

In order to obtain an accurate analysis of the data
presented in this thesis, a detailed knowledge of the
material properties of the metal being tested was necessary.
These had to be determined from seperate tests rather than
"using published values, which are for a large number of
specimens taken from many different plates. The specimens
used in the experiments came from one small section of a
large. plate, so the material property values obtained and
used herein should be more specific than those found in
literature. Test results were also useful for comparison
with published values as a check on the techniques used by
the author.

The material properties required for the analysis of
the experiment are fracture toughness, threshold stress

intensity and the constants "n" and "A" for the Paris Law

equation. . Other material properties measured were yield
strength, ultimate strength and Young's Modulus. A
microstructure analysis was also carried out. Details of

the measurements and the results obtained are described

below.
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Yield Strength, Ultimate Strength and Young's Modulus

A tension test was performed on the test specimens
machined to the specifications shown in figure 14 to
determine ‘yield Strength; ultimate strength, and Young's
Modulus. The tests were performed with the Tinus Olsen
matérials testing machine at the Department of Mechanical
Engineering.

Procedure

Before tension tests were began, it was necessary to
select a strain rate that would produce consistent results.
It is known[26] that a rate of between .01/s and .0001/s has
little or no effeqt on the stress-strain curve at room
temperature. Accordingly, a rate of approximately .001/s
was selected for these tests.

Each specimen was then measured and loaded into the
machine. Testing was carried out in two stages. The first
stage consisted of recording the load vs. the displacement
. of the Specimen using the Tinus Olsen model $-1000-2A strain
gauge,. which is accurate to .000& inch, giving an accurate
measure of Young's Modulus. The Tinus Olsen was then
stopped and the strain gauge was removed. The second stage
consisted of the same recording procedure but utilized the
Tinus Olsen type D-2 Deflectometer, which measures the
entire.load vs. the displacement curve. Both curves were
recorded on the same sheet of graph paper and were used to

determine the various loads and displacements required to
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calculate the material properties.
Analysis

For a simple tension test, Young's modulus can be
determined quite easily as the slope of the line shown in
figure 15. This simple calculation is shown in figure 15,
as are the yield and the ultimate loads, the‘initial and
final dimensions of the specimen and the calculatioﬁs
required to determine the yield and ultimate strength bf the
material.
Results

The results from six tests are summarized in Table XIV.
An analysis was performed on the data assuming it fitted a

Log-Normal distribution(27]. The results are summarized in

Table XIV.

Determining Fracture Toughness

The fracture toughness of the steel used for the
experiments was determined using a standard compact tension
specimen (see figure 8). The test machine used was the
Materials Testing System MTS 810 (referred to as Jjust the
MTS) operated by U.B.C.'s Department of Metallurgy
Engineering.

Procedure

The test procedure followed was that described in the

ASTM E399-72 standard "Plane-Strain Fracture Toughness of

Metallic Materials"[28], using the MTS to apply the loads



25,000

[~ Yield LLoad 'P,’=13,000 Ib. ) )
Yield Stress ‘oy=13000 b/.35 in? Failure of Specimen
Load (ib.) =371 ksi.
20,000
15,000 Ultimate Load ‘R’=22500 Ib.
Ultimate Stress ‘0.'=22,500 [b./35 in,
=64.3 kst.
10,000 F Slope-= Young's Modulus ‘E’ _ -
-2 (13,000 Ib.-0 1b.)/35 in® Area of Specimen = 5"x 7"
(.0025°-0")/2"" = .350 in®
: 297 «10* ksi.
5000
0 (4 | 1 1 1 1 ! | J
0 .0025 55 2 4 3 8 1.0 12 14 1.6

Displacement (in.)

FIGURE [5 Load vs. Displacement Record for a Tension Test q



Footnotes:

TABLE XI

1. Not Measured (N.M.)

Results From the Tension Tests

Test Initial Initial Final Percent Yield Ulimate Yield Ulimate Young'’' s
Speci- Area Length Length Elonga- Lpoad Load Stress Stress Mcdulus
ment A; Lj Ls tion Py Py Oy Oy (ksi)
{in**2) (in) (in) (1b) (1b) {ksi) {ksi) E
A . 351 6. 7.60 21 % 13,000 22,200 37.0 63.2 N.M.1
B . 350 6. 7.60 21 % 12,750 22,000 36.4 62.9 N.M.
C . 357 6. 7.65 22 % 15,000 22,900 42.0 64,1 31,700
D .361 6. 7.65 22 % 12,800 | 22,400 38.2 62.0 31,600
E .362 6. 7.50 20 % 15,000 22,800 41.4 61.9 28,900
F . 362 6. 7.50 20 % 15,400 22,800 42.5 63.0 32,200
Expected Value: 39.6 62.9 31,100
Standard Deviation: 2.7 0.8 1,500
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and a Barson-Turner Instruments series 8000 DataCenters

Program Version 4 to record the load vs. crack displacement.

Crack displacement was measured with a Instrom Crack Opening
2670-004.

One non-standard modification was made, reducing
specimen thickness by a factor of about one-half the
standard, so that specimens would have a larger crack growth
region for use in the experiment. The chances of the plane
strain conditions of the standards being met were slim, so
these conditions were ignored. Thus, instead of measuring
the plane strain fracture toughness, which is a material
constant, the fracture toughness value obtained was a
function of the test specimen geometry, which remained the
same throughout the experiment, except fbr a change in crack
length during the test. The results of the fracture
toughness tests suggest that there was 1little change in
fracture toughness due to different crack lengths.

Analysis

The analysis required to determine the fracture
toughness of the specimen is described clearly in the ASTM
standards. However, a brief discussion of the procedure
follows for convenience.

The first step is to  determine crack length by
measuring it directly with a vernier caliper at three
locations along the crack front.  These locations are the

gquarter, the half and the three-quarter points along the
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1, pe)

172 pt.>Crack Lengths

Crack Front 34 pt,

Final Fracture

\—Width of Specimen

Fatigue Surface

FIGURE 16 Definition of Crack Length
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length of the crack front (see figure 16).

The average of these crack length values is nominated
the crack length for the specimen. However; if the length
of the crack deviates more than five percent along the crack
front, as compared to the average length of the crack, tﬁe
specimen cannot be used to determine fracture toughness.

Once crack length has been determined, the next step is
to calculate the fracture load by determining the initial
slope of the load vs. the crack displacement plot shown in
figure 17, determining the 95 percent slope and drawing it
on the plot. The fracture load of the specimen is that
value at the intersection of this slope and the locad vs. the
crack displacement curve. If the fatigue load used to
create the initial crack is less than or equal to 60 percent
of the fracture léad, then the fracture test meets the load
criteria of the standard and is acceptable.

The 1last step in the analysis is to calculate fracture
toughness, which can be done by employing the equationvshown
in figure 9. For the 1load and crack 1length values

determined by the above procedure: (see page 63)



4000
Load (Ib.)
3000 |
Ry=2550 Ib.
2000 ¢t
95 Slope = .95»2.95;10r Ib./in.
= 2.80x10° Ib./in.
1000 |
Initial Slope = 2950 (b.£01in.
= 295x10° Ib./in.
0 | 1 } J
0 .005 .01 .015 .02

Displacement (in.)

FIGURE [7 Load vs. Displacement Record
for a Fracture Test
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K

I o/a Fl(a/b)

Fl(a/b) = 29.6 - 185(a/b) + 655.7(a/b)2 - 1017(a/b)3
+ 638.9(a/b)?
for a = .735"; b = 2." — a/b = .368°
?l = 11.3 |
for P = 4.25 kips; t = .510"
o = P/bt = 4

.25 kips/((2")(.510")). = 4.167 ksi

40.3 ksi/in

Il

. Hence, KIC 4.167 ksi/.735"(11.3)

Results

The results from the five tests are summarized in
Table XV.

The analysis was carried out by assuming that the data
fits a Log-Normal distribution[29]. The results of the

analysis are also shown in Table XV.

Threshold Stress Intensity

Threshold stress intensity is critical in testing the
Histogram and the RMS methods for predicting specimen life;
unfortunately, it is also one of the hardest material
properties to measure.

Procedure

The MTS testing machine was used to carryséut this test
as well and was set to the constant stroke mode, which
causes the MTS to decrease the load as the crack grows, so

that the crack displacement (stroke) on the specimen remains

constant.



Test Crack Length (in) Ave. Crack Slope 95% Fracture Maximum Is Fracture

No. 1/4 1/2 3/4 Crack Crite Slope Load Load Py /P¢ | Tough-
pt. pt. pt. Length -rion (kips (kips " Pe {.6 ?| ness

{on the specimen) {in) Met 7? /in) /in) {kips)| (kips) (ksiJin)
16 . 740 .734 .725 .735 Yes 372 354 4,25 2.50 Yes 40.3
19 .720 717 .716 .718 Yes 453 430 4.20 2.50 Yes 39.0
20 .771 .766 | .758 . 765 Yes 457 430 4.10 2.50 ok 40.3
34 .972 . 967 .961 .967 Yes 260 247 3.10 1.68 Yes 39.7
35 1.009 11.020 11.014 1.014 - Yes 254 241 2.85 1.68 Yes 39.1
’ Expected Value: 39.7
Standard Deviation: 0.6

TABLE XII Results From the Fracture Tests

v9




65

Since load is decreased as crack length increases,
there is an instant in ﬁhe growth of a crack where "stress
intensity, upon which the crack tip becomes equal to
threshold stress intensity, and the crack stops growing. -By
recording the load and the length of the c¢rack, threshold
stress intensity can be determined. An accurate means of
measuring crack 1length can be obtained by breaking the
specimen in half with a large force and measuring the
fatigﬁe crack using_the same technique used in the fracture
toughness test.

Unfortunately in this case, this procedure simply did
not work. The MTS was not stable enough to keep the
displacement at the crack opening constant at the low loads
required for the test, so the procedure was changed to the
simple alternative of measuring average grain size in the
composition of the metal. A picture of the grain structure
was made according to the instructions laid out in the
section of this appendix treating the subject of grain
structure, A section of the picture was markéd off and the
number of grains within the section were counted. The
average area of each grain was calculable once the area of
the section and the number of grains per section were
determined. If it is assumed that the average grain is
round, an average grain radius can be calculated. According
to reference 30, the plastic zone has a diameter of the size

of the average grain when the threshold stress intensity is
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reached. Assuming the plastic zone is also round, threshold

stress intensity may be calculated as follows.

Analzsis

From the photograph in figure 21:
Average diameter of grain: .0067"

Radius of plastic zone: r_ = K2/1ro2
p I ys

2= _ — —2 _ .y
Hernce, KTH = /rpncys = /.0067"xmx(39.6ks1i) "= 5.7 ksi/1in
Results

The result of 5.7 ksi in is within five percent of the
value published in reference 31 for mild steels of the type

used in the experiments.

The Paris Law Parameters

The Paris Law states that the rate of crack growth is
directly proportional to the nth power of the stress
intensity factor. This means that two parameters have to be
determined in order to calculate the rate of crack growth.

The parameters are the proportional factor "A" and the power

factor "n", and are constants for a given material.
Procedure

To determine the parameters, a standard test specimen
was precracked and the crack length was measuréd' on both
sides of the specimen with an optical crack measuring device
made Dby Grertner Scientific Corporation and having an

accuracy of approximately one thousandth of an inch. After

the crack had been measured, the specimen was placed back
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into the MTS, the crack measuring device was set up to
measure relative crack growth on the specimen and the
specimen was then placed under a constant cyclic load. When
cyclic loading had begun, a reading was taken from the crack
measuring device and the cycle counter on the MTS machine.
After sometime, the crack in the specimen was measured to
record how much it had grown, and the number of cycles
applied to the specimen to that point was recorded. These
measurements were taken intermittenly during crack growth,
from precrack 1length until the crack was growing in a
unstable manner.

Analysis

The first task in determining the Paris Law parameters
is to transform raw data into stress inteﬁsity factors and
crack growth rate values. The latter is the easiest of the
two values to calculate. = The difference between two crack
lengths gives the chénge in length of the c¢rack: "da".
Dividing "da" by the number of cycles recorded to grow " the
crack by "da" produces the crack growth rate "da/dn".
Examples of these calculations are shown in figure 18.

To calculate the related stress intensity, the total
crack length to that instant must be determined from the
readings obtained from the crack measuring device. Once
crack length is known, the stress intensity factor can be
calculated by wusing the equation shown in figure 9.

Examples of these calculations are also shown in figure 18.



CRACK NO. OF
LENGTH | CYCLES
READING | COUNTER
58.370 0.
' 59.173 21800.
59.559 31800.
59.695 37300.
59.897 44200.
60.165 50600,
60.428 57800.
60.628 63800.
61.141 72900.
61.395 78900.
61.625 84000,
61.973 90200.
62.140 95400.
62.442 100400.
62.873 105000.
63.007 106800,
63.133 107600.
63.207 109100,
63.496 111300,
63.534 113000.
63.649 114600.
63.761 116100.

Initial crack length "ag=.636"
Load ‘P*=188 kips

da=(59173mm-58.370 mm)/(254 mm/in) =.032"
dN =21,800 - 0 = 21800 cycles

da/dN = .032'721,800 cycles = 145010 8in./cycle

.. Log(da/dN) = -5.8386

a=.636"+.032"/2 =.652 inches
From Figure b=2"

Ky= P/E'(296 - 1855(a/b) - 6557(a/b) 1017(a/b)’
 +6389(a/b)]
216372 ksifin

. Leg(K;) = 12144

LOG(Ky )

LOG/da
dN

.2144
.2254
.2303
.2336
.2381
.2433
.2479
. 2551
.2629
.2679
.2739
.2793
.2842
. 2920
.2981
. 3009
.3031
.3070
.3123
.3148
.3182

b e b b e et b e el b e et b et e

-5.8386
-5.8182
-6.0117
-5.9383"
-5.7829
-5.8422
-5.8820
-5.6538
-5.7781
-5.7507
-5.6556
-5.8981
-5.6238
-5.4331
-5.5330
-5.2076
-5.7117
-5.2864
-5.5483
-5.5317
-5.4833

FIGURE 18 Raw Data Transformation to Stress Intensity &

Crack Growth Rate Data

89
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Once the stress intensity factor and crack growth rate
are known, the Paris Law parameters can be determined by
plotting the crack growth rate against the stress intensity
factor on log paper. A straight line should be produced and
by using linear regression techniques[32], the Paris Law
parameters '"n" and "A" can be determined. |
Results

A plot of all the points used in the linear regression

and the results of the analysis are shown in figqure 19.

Grain Structure

It was decided that the metal used for the specimens
should be subjected to a optical grain structure analysis to
determine the rolling direction of the plate, since the
orientation of a specimen to the rolling direction would
effect the values obtained for the material properties.
Procedure

An approximately half inch by three quarter inch
section of steel was cut from one specimen wused for the
tests and polished on one side to a one-micron surface
finish. A sequence of‘rough polishing using wet sandpaper
of 180,320,400, and 600 grits was followed by fine polishing
using diamond powder of six and then one-micron size. All
polishing was done in the Metallurgy polishing lab using
motorized polishing wheels. At each stage, the specimen was

polished in alternate directions to minimize grain



“LO0r—
Paris Law Parameters
n=33 =1
Log(A) = -99 =1 .
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=
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Paris Plot for A-36 Steel
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distortion.

The polished surface was etched in two percent nital, a
solution of two percent nitric acid in alcohol, for ten
seconds, examined and photographed using a Carl Zeiss
"ULTRAPHOT" Camera Microscope.

Results

The picture in figure 20 shows the grain structure of
the steel used. As is obvious from the photograph, the
rolling direction of the plate , which would be shown by the
enlongation of the grains in a predominant direction, cannot
be determined. This does not invalidate the experiments,
since as long as each test specimen has the same orientation
to the plate as all the others, the results will be
consistent and valid.

A comparison of the photograph of the grain structure
of the steel used in the experiment and a photograph of the
same kind of steel taken from the Metals Handbook([34] (figure

20), reveals that the grain structure of each are similar.



2% nital

Figure 20

265x
Grain Structure From A-36 Steel Tested
(172" Plate)

A-36 Steel Grain Structure

1% nital 250X

116 ASTM A36 steel plate, 3 in. thick, as
rolled. Structure consists of equiaxed fer-

rite (white areas) and pearlite (black areas).

From the Metals Handbook [34]

clL
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APPENDIX II

FORTRAN FATIGUE PROGRAM

NO. OF CYCLES TO FAILURE DUE TO
. VARIABLE LOADIND

INPUT PARAMETERS

ClK=CRITICAL FRACTURE TOUGHNESS
HTH=THRESHOLD FRACTURE TOUGHNESS
AP=PARIS LAW CONSTANT

AN=PARIS LAW EXPONENT

INOL=NO. OF LOADS

ANTIC=NO. OF CYCLES PER LOAD
XP=LOAD P

AI=INITIAL CRACK SIZE

NO=NO. OF LOAD CASES

oo nNnNann

IMPLICIT REALA8B(A-H,0-Y)
DIMENSION ANIC(30),ANN(2),XP(30),AT(30),AC(30)
FORMAT(I2)
FORMAT(F7.0,F15.4)

0 FORMAT(F15.4)
CALL ASSIGN(1, ‘'FATIN.DAT’)
CALL ASSIGN(2,’FATOUT.DAT’)
READ(1,5) NO ‘
WRITE(2,1500)NO
DO 230 II=1,NO
READ(1,10)C1K
READ(1.10)HTH
READ(1,10)AP
READ(1,10)AN
READ(1,10)AI
READ(1,5)INOL

=~

ECHO INPUT DATA

aanon

WRITE(2,1510) IX,C1K,HTH,AP,AN,AT,INOL
WRITE(2,1520)
DO 20 I=1,INOL
READ(1,7) ANIC(I) . XP(I)
WRITE(2,1530) I,ANIC(I) , XP(I)
0 CONTINUE

CALULATE CRITICAL CRACK LENGTHS

aaae

A=AT
ATMI=1000.
DO 22 I=1,INOL



CALL CRAC(HTH,XP(I),A,AT(I))
IF(AT(I).LT.ATMI) ATMI=AT(I)
CALL CRAC(CI1K.XP(I) ,A,AC(I))
WRITE(S5,21) AT(I),AC(I)

21 FORMAT(2(1X,F7.4))

22 CONTINUE

IF(AT.LT.ATMI) GOTO 500

C
C HISTOGRAM METHOD
c
70 XN=0.
J=0
AT1=AI
ATM=AT(1)
ACM=AC(1)
SC=ANIC(1)

DO 85 I=2,INOL
SC=SC+ANIC(I)
IF(AT(I).GT.ATM) ATM=AT(I)
IF(AC(I).LT.ACM) ACM=AC(I)
85 CONTINUE
IF(ATM.GT.ACM) ATM=ACM
AT2=ACM
AT3=ACM
90 AL=0.
TC=0.
DO 100 I=1,INOL
IF(AT(I).GT.AT1) GOTO 95
AL=AL+ANIC(I)*XP(I)*4*2
TC=TC+ANIC(I)
IF(AT(I).LE.AT1) GOTO 100
95 IF(AT(I).LT.AT2) AT2=AT(I)
100 CONTINUE
AL=(AL/TC)**.5
IF((AT2.EQ.ATM) .AND. (J.EQ.2)) AT2=ACM
IF(AT1.EQ.AT2) GOTO 110
N=20
WRITE(5,105) AT1,AT2
105 FORMAT(2(1X,F8.4))
CALL CRAF(AT1,ATZ2Z,AL,XN1,N,AP,AN)
XN=XN+XN1*(3C/TC)
IF(AT2.EQ.ACM) GOTO 110

AT1=AT2
IF(AT2.EQ.ATM) J=2
AT2=ATM
GOTO 90

110 WRITE(2,1110) XN

C

C RM3 METHOD

C
XN=0.

AT1=AT
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500
1000

230

1110

1120
1500

1510

1520

1530

a

aaaaoa
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AL=0.

TC=0.

DO 115 I=1,INOL
AL=AL+ANIC(I)AXP(I)##42

TC=TC+ANIC(I)

AL=(AL/TC)Y**.5

N=20

CALL CRAF(AT1,AT3,AL,XN1,N,AP,AN)

XN=XN+XN1

WRITE(2,1120) XN

GOTO 230
WRITE(2,1000)

FORMAT(1X,//6X,’  INITIAL CRACK LENGTH IS BELOW THE
1THRESHOLD' /1X., ‘CRACK LENGTH. THEREFORE, THE LIFE
20F THE SPECIMEN IS‘/1X,’'INFINITE FOR THE HISTO-
3GRAM AND RMS METHODS.'//)

CONTINUE

CALL CLOSE(1)

CALL CLOSE(2)

FORMAT(1X,//6X,'THE LIFE OF THE SPECIMEN AS
1DETERMINED BY THE',/1X, 'HISTOGRAM METHOD IS:°
2,D12.5," CYCLES. /)

FORMAT(6X, 'THE LIFE OF THE SPECIMEN AS DETERMINED
1BY THE’,/1X,’'RMS METHOD IS:’,D12.5,' CYCLES.'/)

FORMAT(1X,//11X,’RESULTS FROM FATIGUE PROGRAM’,
17//76X,’'THE NUMBER OF LOAD CASES IS: *,I2,/)

FORMAT(1X,/1X, 'THE INPUT DATA FOR LOAD CASE ' .I2,
1 IS:’,//6X,’CRITICAL FRACTURE TOUGHNESS:’,D12.5.
2/6X, 'THRESHOLD FRACTURE TOUGHNESS:’ ,D12.5,
3/6X,’PARIS LAW CONSTANT:’,D12.5,/6X, 'PARIS LARW
4EXPONENT:’ ,D12.5,/6X, ' INITIAL CRACK SIZE:’,
5D12.5,/6X'N0O. OF LOAD3: ‘,I2,/7/)

FORMAT (1X, 'LOAD NO. OF’.,7X,'LOAD’,/2X,
1'NO. CYCLES’ ,9%X,'P’ ,/)

FORMAT(2X,I2,2D12.5)

STOP
END

SUBROUTINE CRAC(FT,AL,AI,A)

SUBROUTINE TO CALCULATE CRITICAL CRACK SIZE
GIVEN FRACTURE TOUGHNESS ‘FT' AND LOAD ‘AL’

IMPLICIT REAL#8(A-H,0-Y)

CALL FRAC(AI,AL,FT1.I03)

IF(I0S.EQ.0) GOTO 5

WRITE(Z.7) :
FORMAT(1X,//1X, ' ***WARNINGA** AT I3 OUT OF
1BOUNDS' 7/)

Al=AI
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A2=2.%A1

CALL FRAC(A2,AL,FT2,I0S)
IF((I0S.EQ.1).AND.(I.EQ.1)) GOTO 32
IF(I0S.EQ.1) I=1

C=FT2-FT
IF((B.GE.0.).AND.(C.LE.0.)) GOTO 32
IF((B.LT.0.).AND.(C.GT.0.)) GOTO 32
IF(J.EQ.1) GOTO 15

IF(J.EQ.2) GOTO 20

B1=DABS(B)

C1=DABS(C)

IF(B1.LT.Cl) GOTO 20

Al=A2

A2=2.%A2

B=C

J=1

GOTO 10

AZ=Al

Al=.5%A1

C=B

J=2

CALL FRAC(Al,AL,FT1,IO0S)
IF((I0S.EQ.1).AND.(I.EQ.1)) GOTO 32
IF(I0S.EQ.1) I=1

B=FT1-FT

GOTO 12

A=(A1+A2)/2.

T=DABS( (A-A2)/A)

IF(T.LT.5.D-06) GOTO 40

CALL FRAC(A,AL,FT1,IO0S)

B=FT1-FT

IF(B.LE.O0.) Al=A

IF(B.GE.O.) AZ2=A

GOTO 32

RETURN

END

SUBROUTINE CRAF(A,A2,AL,XN,N,AP,AN)"

SUBROUTINE TO CALCULATE THE NO. OF CYCLES 'DELTA
N’ TO GROW CRACK FROM CRACK LENGTH A TO AZ

IMPLICIT REALA8(A-H,0-Y)
DIMENSION ANN(2)

IM=1 |
CALL FRAC(A,AL,C1K,IO0S)
X0=1./(C1KA*AN)

CALL FRAC(A2,AL,C1K,IOS)
IF(I0S.EQ.1) GOTO 40
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X0=X0+1./(C1KA*AN)

DO 25 K=IM,2

M=K*N

X1=0.

X2=0.

Al=A

H=(A2-A)/(2.%*M)

J=2*M-1

bo 20 1=1,J

X=A1+I4H
ZE1=FLOAT(I) /2.

I11=1I/2

ZE2=FLOAT(TI1)
IF(ZE1.EQ.ZE2) GOTO 10
CALL FRAC(X,AL,C1K,IO0S)
X1=X1+1./(ClK**AN)

GOTO 20

CALL FRAC(X,AL,C1lK.IO0S)
X2=X2+1./ (C1lK*x*AN)
CONTINUE
ANN(K)=H*(X0+2.4AX2+4.*X1)/(3.*AP)
T=DABS(ANN(2)-ANN(1))/ANN(2)
IF(T.LT.3.125D-07) N=N/2+1
WRITE(5,27) ANN(2)
FORMAT(1X,F10.2)
IF(T.LT.5.D-06) GOTO 30
ANN(1)=ANN(2)

IM=2

N=2*N

GOTO 3

XN=ANN(2)

RETURN

END

SUBROUTINE FRAC(A,AL,C1K,IO0S3)

SUBROUTINE TO CALCULATE FRCTURE TOUGHNESS K1
GIVEN CRACK SIZE 'A’, LOAD 'AL’': ‘08’ IS A LIMIT
FLAG

IMPLICIT REALAB(A-H,0-Y)
105=0
IF((A.LT.0.6).0R.(A.GT.2.)) I0S=1
IF(A.LT.0.6) A=0.6
IF(A.GT.2.) A=2.
AB=A/2.
IF(AB.GT.0.7) GOTO 10 :
F1=29.6-185.5*%AB+655. 7AAB4A42-1017.*ABx*32+638.9%
1ABA*4
GOTO 20 »
F2=0.03651067*(AB-.7)+.6520468
IF(AB.EQ.1.) AB=0.39999D 00
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Fl=%,4(2,+ARM)*F2/( (1, -AB)**1,5*(AB**.5))
ClK=F1*ALA(A*x%.5)/1.01

RETURN

END
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PROGRAM TO GENERATE RANDOM LOAD SEQUENCE

aOaon

IMPLICIT REAL*B(A-H,0-Y)
DIMENSION F(30)
WRITE(5,100)
READ(5,120) Il
WRITE(5,110)
READ(5,120) I2
WRITE(5,130)
READ(5,125) ICL
WRITE(5,160)
READ(5,170) B,S,SF
DO 1 I=1.30
1 F(I)=0.
A=1,
Cl=1./¢1.-DEXP{-(B-A)/S))
CALL ASSIGN(1l, 'RAN.DAT’)
DO 5 I=1,ICL
U=RAN(I1,I2)
X=A-S4*DLOG(1.-0/Cl)
DO 5 J=1,29
IF((X.GT.J).AND.(X.LE. (J+1))) F(J)=F(J)+1.
S CONTINUE

DO 7 I=1.,29
7 WRITE(1,180) I,F(I)/F(29)
10 CALL CLOSE(1l)

100 FORMAT(1X, 'I1=72")

110 FORMAT(1X, '12=2")

120 FORMAT(I5) -

125 FORMAT(1I7)

130 FORMAT(1X, ' ICL=7")

160 FORMAT(1X, 'B=7,5=7,5F=7?")
170 FORMAT(E12.5,/E12.5,/E12.5)
180 FORMAT(1X,I2,1X,E12.5)

STOP
END



