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ABSTRACT

A numerical method is presented for simulating the
behaviour of large amplitude nonlinear free surface waves
including wave breaking. Various 1initial conditions are
given and the subsequent surface profiles are calculated by
a time stepping simulation. The flow field is solved as a
boundary value problem for the velocity potential wusing a
complex variable method based on the Cauchy integral
theorem. Waves of varying shape, height, and 1length are
investigated to determine the parameters necessary for wave
breaking and the resulting fluid velocities. The technigue
has proven to be very accurate and stable.

The method is extended to predict the motions of a two
dimensional floating body in large amplitude seas accounting
for non-linear effects and fluid-body interaction. The
presence of singularities at the free surface intersection
points was found to severely limit accuracy of the solution
and attempts to overcome this problem are discussed. An
extension to handle three dimensional ships is also

described.
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1. INTRODUCTION

1.1 INTRODUCTION

Despite advances in ship design, small vessels are
still no match for rough seas and capsizings continue to
occur each year with the 1loss of 1lives and property.
Fundamental to reducing the risk of such tradgedies 1is a
better understanding of the kinematics and dynamics of
extreme waves and the resulting forces and response of a
vessel to them.

Capsizing of a vessel may occur due to any of several
phenomena including extreme rolling in beam seas, roll
excited by a near-resonant encounter frequency while
underway in following or quartering seas (the Mathieu
effect), or broaching or pitch-poling involving steep
overtaking stern waves and loss of directional stability.
These phenomena freguently result 1in water on deck and
subsequent downflooding of deck openings. Model experiments
of fishing boats carried out at the B.C. Research Ocean
Engineering Centre have demonstrated that extreme roll
capsizing in beam seas is very unlikely for a vessel loaded
within the recommended limits. No such capsizings have been
observed in the basin under extensive tests involving large
ampiitude regular wave conditions [26]. The presence of
breaking waves in the vicinity of the vessel, however, can
lead to very large additional forces from the plunging jet

impacting on the side, possibly sufficient to cause



capsizing. Fishermen who have survived accidents have
occasionally reported being hit by "freak waves"™, that is
one or more waves unusually larger than those in the normal
preceding sea state. Such anomalous waves have indeed been
documented (figure 1) and may have contributed as well to.
unwitnessed accidents. The present work concentrates on
examining the motions of a vessel in extreme beam seas.

Current stability criteria are usually based on
guasi-static definitions 1involving the metacentric height
and critical roll angles in calm water. These rules are
largely empirical and become somewhat meaningless in dynamic
conditions encountered in the real sea, especially where
large steep waves are involved. More recently, efforts have
been made to define stability in terms of dynamic parameters
but much work rémains to be done. Occasionally model tests
are performed when experience with a particular design is
lacking, however, such tests are expensive and time
consuming, and frequently 1limited by facility size and
equipment.

The theoretical analysis of wave and body motions
provides important insight into the fundamental processes
involved and permits estimates of dynamic behaviour in
conditions that cannot readily be tested. In addition, the
relative effects of the different governing parameters can
be seen and assessed in theoretical models whereas in actual
model tests the influence of contributing effects wusually

cannot readily be decomposed.



1.2 LITERATURE SURVEY

1.2.1 WAVE SOLUTIONS

Analytical solutions to free surface waves have been
developed to a fairly high degree beginning with the
classical linearized theory of Airy. Stokes (1847) developed
a perturbation expansion to extend the solution to finite
amplitude steady waves and calculated the third order
correction. To date many higher order solutions have been
calculated, more recently using a computer to perform the
coefficient arithmetic as by Schwartz (1974) in an attempt
to find the elusive highest possible steady progressive
wave. Other nonlinear theories have been developed including
Dean's stream function theory for intermediate and deep
water and cnoidal theory for shallow water. Each method has
its limitations and the most appropriate depends on the
intended application. Sarpkaya and Isaacson (1981) provide
an overview of these and other wave theories.

Progress 1in transient wave behaviour has so far
required numerical simulation on a computer. The first
attempt was a marker and cell solution to the incompressible
Navier Stokes equations carried out by Harlow in 1965 at the
Los Alamos Laboratories. The method required unrealistically
high wviscosity to compensate for numerical instability and
accuracy was poor. Chan and Street‘(1970) improved the grid
adjustments and achieved a reasonable simulation of a

solitary wave on a beach up to the point where the free



surface became vertical. On a separate front,
Longuet-Higgins and Cokelet (1976) concentrated on the
inviscid solution using a potential flow boundary integral
method based on Green's theorem to simulate one wavelength
of a periodic deep water breaking wave, again up to a
vertical face. Further applications of their work may be
found in Longuet-Higgins (1977). Vinje and Brevig (1980)
extended the solution by developing a complex variable
boundary integral method based on the Cauchy theorem to
simulate the complete breaking wave in finite water depth
including overturning of the crest. Vinje and Brevig (1981a)
describe how the method might be wused to numerically
estimate breaking wave forces on a fixed object and some
experiments to measure such forces are presented in Kjeldsen

and Myrhaug (1979), and Kjeldsen (1981).

1.2.2 BODY MOTIONS

Calculation of floating body motions poses a very
difficult mathematical problem owing to the complexity and
nonlinearity of the governing equations. Korvin-Kroukovsky
(1955) presented the coupled equations of body motion for
the six degrees of freedom, however, analytical
determination of forces, added masses, and damping
coefficients were only crudely possible in idealized cases.
Analytical solutions developed to date have invariably
required some form of linearization, where body and free

surface boundary conditions are applied on fixed surfaces



and body geometries are simple shapes such as circular
cylinders or spheres. Examples include MacCamY (1964),
Ursell (1964), Lee (1969), and Maskell and Ursell (1970).
Wehausen (1971) gives an overview of these and other
formulations, and additional references. Applications of
these methods are, of course, 1limited to periodic small
amplitude waves and motions. Numerical panel methods based
on Green's theorem have been wused by Kim (1966), and
Garrison (1975) to handle the linearized, steady harmonic
motions of arbitrarily shaped bodies.

The methods described so far are frequency-domain
techniques which predict the response in regular
monochromatic waves. For the more general wave conditions a
transfer function can be constructed and used to obtain a
frequency spectrum of motions given an input spectrum of the
sea state. Statistical quantities can then be estimated.
These techniques are necessarily linear, yet can provide
reasonable results in waves that are not too large, and are
widely used in practice. Details may be found in
Bhattacharyya (1979) and Newman (1980).

The calculation of transient nonlinear motions again
requires application of a numerical time-stepping simulation
from given 1initial <conditions. Examples include Faltinsen
(1977), Chapman (1979), and 1Isaacson (1982). Vinje and
Brevig (1981b,c) extended their nonlinear wave simulation
technique to include the presence of an arbitrary two -

dimensional floating body and describe its application to a



heaving cylinder. Greenhow, Brevig, and Taylor (1982)
applied the method to study the extreme motions of a
rotating wave energy device, however, free surface behaviour
near the body had to be specified empirically. Very few
guantitative results of body motion simulations have been
presented in the literature making comparisons with previous
work difficult. Several problems have yet to be overcome
involving the choice of initial conditions and the presence
of singular points where the body intersects the free
surface. This thesis addresses these problems, and various

attempts to handle them are discussed.

1.3 OBJECTIVES

A theoretical model for predicting ship motions must
solve for the coupled body motions and fluid behaviour. An
exact solution including small scale fluid motions and
viscous effects 1is beyond the state of the art and various
approximations must be made to keep the mathematics
tractible and within the capacity of available computing
resources. The usual assumptions are that the £fluid is
incompressible and inviscid and thus satisfies Laplace's
equation fof a velocity potential.

The first task in the present work is to develop a
numerical technique for solving Laplace's equation and
calculating the velocity potential in a general two
dimensional fluid domain under arbitrary boundary conditions

using a complex variable boundary integral method. This



Laplace solving routine is then used to calculate the fluid
velocities of a free surface wave at discrete time intervals
and allow a time-stepping simulation of the behaviour of an
arbitrary wave up to and including breaking. The effect of
differen£ initial wave conditions can then be assessed to
establish a domain of dependence of breaking waves and the
detailed kinematics of the flow development. Finally, the
wave simulation technique 1is extended to permit the
inclusion of an arbitrary two dimensional body on the free
surface. Fluid velocities and pressures are calculated
around the body at each time step to determine the resulting
hydrodynamic forces. The equations of rigid body motion are
then integrated at each time step to calculate a time

history of the nonlinear body response in the wave field.



Figure 1. Tour ship being buffetted by "freak waves".




2. POTENTIAL FLOW SOLUTION

2.1 INTRODUCTION

The exact calculation of an arbitrary flow field
including viscous and turbulent effects 1is an extremeiy
difficult task due to the. complexity of the governing
Navier-Stokes equations and can only be done in very limited
cases., In general, one must make assumptions that simplify
the problem and permit a tractible mathematical solution.
The usual assumptions are that the fluid 1is incompressible
and irrotational, the latter a consequence of neglecting the
effects of viscosity. These two conditions dictate that the
flow field satisfies Laplace's equation

24 = 0 (2.1)

or in Cartesian coordinates

2
3% , 3% . 9
ax2 3y2

for a scalar velocity potential ¢. Velocities are then found
as the gradient of ¢. The problem is completed by specifying
the appropriate boundary conditions and solving the
resulting boundary value problem. |
Analytical solutions to (2.1) are possible in many
cases using classical methods such as separation of
variables, linear superposition of sources and vortices,
perturbation methods, and conformal mappings, however, for
transient problems involving complicated geometries and

boundary conditions one must resort to a numerical
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procedure. Several numerical methods have béen developed
over the years to solve Laplace's equation including the
traditional finite difference and finite element methods
which solve for the potential along a grid of discrete
interior points. More recently, attention has turned to
boundary integral methods which have the powerful advantage
that the wvalues of ¢ and an orthogonal function are
calculated only on the domain boundary. The problem is
thereby reduced by one dimension allowing much greater
resolution for a given computational effort. Element
generation is also greatly simplified. Furthermore, in many
-problems of fluid dynamics one is interested only in the
fluid velocities and pressures at the boundary. The interior
flow field can be found if desired knowing‘only the boundary
values, however, this 1is wusually of 1little practical
interest.

The method used in this work 1is a complex variable
boundary 1integral method based on the Cauchy integral

theorem,

2.2 CAUCHY INTEGRAL METHOD

2.2.1 FORMULATION

The objective of the numerical procedure is to obtain ¢
values around the contour C, however, this alone is
insufficient to determine velocities at the boundary since

differentiaton along C provides only the tangential
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velocity. The normal component must also be determined,
consequently one must evaluate an ofthogonal function along
the boundary as well. Green's function approaches carry out
the calculations for ¢ and 3¢/0n, while the current approach
solves for the velocity potential ¢ and the stream function
V. The normal velocity at the boundary can then be found by
differentiating ¢ along the contour since, by the

Cauchy-Riemann property,

emm—

The stream function can also be shown to satisfy

Lapalace's equation

hence both ¢ and ¢y are harmonic functions. By defining a

complex potential

the problem reduces to one of finding the function B that is
analytic in the domain @ of the complex plane z=x+iy, and
satisfies the boundary conditions of ¢ or ¥ given.

Since B is required to be analytic, it must satisfy the
well-known Cauchy integral theorem [9]

8 = 0
iz-z0 dz (2.2)

provided z, is outside the contour C. If z, is allowed to
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approach C in the limit, this equation becomes

-—-—-—B dz = 1a 8(20)
z"zO
c

with 2z, on C. Derivation of this expression can be found in
Appendix I. B must be found that satisfies this integral
equation.

To solve (2.2) numerically, the contour o is
discretized 1into N linear elements bounded by nodal points
at each end. The integral can then be repreﬁented as the sum

of the integrals over each element

N #1
t {J £ a4z} = 1 a8(zp (2.3)
1 z, 0

A linear variation of B8 1s assumed over each element (a
higher order polynomial distribution could be used, however
this has not been found necessary). Defining upper and lower

nodal values as z., and fB.

5 zj+1, ﬁj' 5+1 as in figure 3, the

distribution of 8 on the element can be expressed as

z-z -z
B = _J—— B + .Jil-—) B 2.<2< 2z,
(zj-i-l-zj) 1 (zj+1 Z; 3 j j+1

This expression is then substituted into the 1lefthand side
of (2.3). ﬂj are éonstants so they can be removed from the
integrals and the remaining kernel functions -evaluated.
After algebraic manipulatién the integral equation (2.,2)

reduces to the linear equation

N

: r. 8, =0
g1 303
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By letting each node take on the value z, in turn, one can

obtain N complex equations for N unknown g

(2.4)
where the influence coefficients are

S Wi T B e T e W [ - W

ij zj zj_1 zj-l-zi zj+1-zJ zj-z1
A L Mk o R PP Lo W o =
234172y %31
Z44172 i=3
= ln (-.1-——1)
zZ, =2
-1 73
z,~z z -z .
= (_1__3;1.) 1n (_L_.lﬂ'_) i=j+1
z,~z zZ, |~z
j -1 -1 "5+l

Details can be found in Appendix Il. Care must be exercised
in evaluating the term Fii to avoid problems with the
multiple-valued complex logarithm function as described in

Appendix III.

2.2.2 BOUNDARY CONDITIONS

Since Laplace's eqguation 1is elliptic in nature, each
point affects every other point and boundary conditions must
be specified on all boundaries. Due to linearity, problems
can also be handled where the boundary conditions on-

segments are linearly related such as being proportional or
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equal by lumping together the unknown guantities
appropriately in the final linear equations,

The solution of Laplace's equation is unique only to
within an arbitrary constant. For example if g(z) is a
solution then so is f(z) + B, where B, is any constant. The
numerical method does not generate this constant and thereby
fix the unique solution, consequently the boundary
conditions given must include contributions from both ¢ and

Yy to eliminate any ambiguity.

2.2.3 SOLUTION

Defining Fij=aij+1bij’ equation (2.4) can be written as
° + 1 0
I (aij + 1 bij)(¢j ¢j)

jﬂ:

with the real part

N

= 0
ji (aij j bijwj)

and the imaginary part

N
I (a
i=1

Yy = 0
1j 3% Pyt

It is clear now that while there are N wunknown quantities
(either ¢j or wj at each node) there are actually 2N real
equations available. The problem is overspecified and one

must make a choice as to which N equations to satisfy.
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Selection of only the real parts provides a satisfactory
solution, as does selection of only the imaginary parts,
albeit slightly different, however an improved solution is
possible if one selects the real part for equation i when ¢:
is the unknown Qquantity and the imaginary part when vy is
unknown. Such selection will ensure that only the
inhomogeneous integral equations are being chosen in each
case and one would expect a more stable solution as a
result. Recently, Schultz et al (1986) formulated a solution
utilizing all 2N equations which are solved in a least
squares sense, resulting in a further improvement.

The N selected equations contain the unknown values xj
as well as terms involving the known boundary conditions. If
these latter terms are transposed to the righthand side and
summed one obtains a set of N 1linear equations for N

unknowns which can be solved in matrix form as

N

I h,,X, = g
o1 1474 3

The complete solution Bj is constructed by combining the
calculated Xj with the known boundary conditions as shown in

figure 5.

2.2.4 VELOCITIES

Once f has been calculated on the boundary, the

velocitites can be determined as
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9B
3z ‘ (2.5)

The derivative of a complex function 1is independent of
direction so this differentiation can be carried out along
the contour C. Since B has been assumed piecewise linear,
08/0Z is discontinuous at the nodal points. A central
difference scheme is used based on a Taylor series expansion
"of B about the point of evaluation. Details may be found in -

Appendix 1IV.

2.2.5 INTERIOR

The method presented allows calculation of § only on
the boundary C. For practical purposes this 1is wusually
sufficient since often one 1is only intetrested 1in the
velocities and pressures on tpe bounding surfaces. The
interior flow field can be found however, if desired, by

reapplying Cauchy's theorem as

and

1 B8

The integrals here can again be evaluated numerically as
linear sums involving the known nodal values ﬁj in a similar

fashion as before resulting in eguations of the form
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B(z) = I A, B
o M

and

N

w(z) = r n,.B
A j=1 1373

where the influence coefficients are functions of the
contour geometry zj. Interior values calculated as such are

not used in the present work.

2.3 TEST CASE

The Cauchy integral method provides a powerful
technique for solving an interior flow field that can be
cast into the form of a mixed boundary value problem
involving ¢ and v.

To test the method an example is chosen of uniform flow
past a circular cylinder as in figure 5, the analytical
solution of which is well known. The velocity potential can

be shown to be

2
B(z) = Uz +3)

with the origin &t the centre of the cylinder, and the
velocity
2
wz) = uQ -%5

z2

For the purpose of numerical solution, boundaries are placed

in the fluid and assumed far enough away from the cylinder



18

that their effect 1is small. By symmetry, the numerical
solution can be set up considering only the upper left
guadrant as shown in figure 6. The upper boundary is assumed
a streamline as 1is the midline axis with ¢y, and ¢, chosen
such that their difference equals the flow between the
streamlines Q = Vi—¥a. The righthand side 1is an
equipotential 1line by symmetry, with ¢ chosen as an
arbitrary constant. The lefthand side is assumed far enough
upstream that uniform flow conditions prevail and ¢y can be
considered to vary linearly.

A test case has been run with R=1, L=5, H=5, and U=1.
-Elements are placed on the cylinder at 5° intervals with a
total of 80 elements on the contour.

The calculated velocity potential and stream function
are shown in figure 7 and agree well with the analytical
solution., Velocities along the cylinder surface, calculated
using the numerical differentiation technique described
above are plotted in figure 8 along with the theoretical
values. Agreement is generally good, with the discrepencies
due primarily to the finite far field boundaries imposed in

the numerical solution,
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Figure 2. General fluid domain in complex plane.

Figure 3. Distribution of complex potential on elements.

o ¢ B N6
O
@ s \. S B \_ /8
Known boundary | Solution Complete
conditions X3 solution

Figure 4. Final construction of complex potential solution on contour.
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Figure 5. Test case of circular cylinder in uniform flow.

¥ linear
variation

Figure 6. Geometry and boundary conditions for test case.
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Figure 7. Velocity potential and stream function calculated in

test case.
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3. WAVE SIMULATION

3.1 INTRODUCTION

3.1.1 THE PROBLEM

A wave is considered of wavelength L, water depth d,
and surface elevation 75(x,t) measured from the still water
level. The wave is periodic of period T, and translates with
a’ phase speed c¢ as in figure 9. The fluid is considered
incompressible and irrotational and again satisfies
Laplace's equation

( 92¢

subject to the following boundary conditions. The seabed is

impermeable and therefore can have no normal velocity

3 _ - -
3% 0 y = -4 (3.1)

The free surface must satisfy a dynamic condition that

Bernoulli's equation is obeyed

RG22 vty

n (3.2)

as well as a kinematic condition which states that surface
fluid particles have velocities identical to the wave

profile velocities

+&HadLy - 2 y

5y n (3.3).

at

If the wave 1is considered periodic in space then explicit

23
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boundary conditions on the vertical control volume segments

are unnecessary.

3.1.2 LINEAR WAVE THEORY

The problem defined above is very difficult to solve
because the two free surface boundary conditions are
nonlinear in ¢ and the surface elevation #n is unknown a
priori. The classical solution of Airy assumes the wave
amplitude 1is small so the problem can be linearized. A

sinusoidal surface is assumed
B
n= i-cos(kx-wt)

and the slope is considered small so the nonlinear terms are
negligible.

The boundary conditions then reduce to

29; = =0
e + 8" 0 y

and
3¢ _3n _ =
ay t 0 y 0

Solution of the boundary value problem by separation of

variables yields:

_ TH cosh k(y+d) ey
® = XT sinh kd sin(kx-wt)
(3.4)

2 - 8L
c o tanh(kd)
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3.1.3 STOKES WAVE THEORY

Early work by Stokes (1847) extended the analytical
solution to include nonlinear effects by expanding variables

in a perturbation series. Variables are expressed as

¢=€¢1+52¢2+.oo

n=enl+€2n2+o.-

where ¢ is a small parameter of the order H/L. These
expressions are substituted into equations (3.2) and (3.3),
and terms of like order of magnitude are gathered yielding
successively higher order solutions, linear theory providing
the first approximation. Stokes originally calculated a
third order solution, as the algebra quickly becomes
involved. Skjelbreia and Hendrickson (1960) presented a

Stokes fifth order solution of the form:

5
n = T n_ cos(nkKx)
n=1 n
5
¢ = I ¢n sin(nKx)
n=1

The effect of higher order terms is to sharpen the «crests
and flatten the troughs. The regions of validity of linear
and higher order solutions can be seen in figure 10 from

Sarpkaya and Isaacson (1981).
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3.1.4 WAVES IN NATURE

Most ocean waves are generated by winds exerting shear
on the sea surface forming small disturbances which then
grow as a result of work done by aerodynamic forces. Steady
periodic progressive waves have been well studied in theory,
but probably exist only under 1ideal <conditions. The real
sea, by contrast, 1is very unsteady. More generally, real
wave trains are irregular and undergo distortion over time
due to amplitude and frequency dispersion effects. 1In
addition, the real ocean is characterized by many
intersecting wave trains from storms in different locations
.and from changes in wind speed and direction.

Wave breaking is a form of instability that can develop
whenever the local energy density of the wave field exceeds
some critical 1limit. Examples of when this may occur are
when deep water waves overtake or collide raising the
surface to unstable heights, or due to shoaling in shallow
water. Winds may also induce shear forces at the wave
crests.

Breaking waves are commonly classified as surging,
spilling, or plunging as shown 1in figure 11, Surging
breakers usually occur only on steeply sloped beaches and
are not considered in the present work. Spilling and
plunging breakers may occur in deep or shallow water, the
resulting type depending on the available energy.

Spilling breakers are characterized by a sharpening of

the wave «crest until the forward face begins to curl over.
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The ejected jet is weak and immediately succumbs to gravity,
simply flowing down the forward face dissipating energy in
viscous turbulence. This 1is the <classic white cap. More
dramatic are plunging breakers which contain much more
energy and are able to eject a well defined jet ahead of the
forward face resulting in the surface completely overturning
on 1itself. The momentum of the plunging jet can be very

large.

3.2 NUMERICAL SOLUTION

3.2.1 FORMULATION

The analytical theories described above suffer the
severe restriction that they can handle only steady state
symmetric waves. To overcome this limitation one must resort
to a numerical time-stepping simulation of the wave from a
given initial condition. The problem i; solved as an initial
value problem where equations (3.2) and (3.3) are integrated
numerically 1in time and a boundary value problem for the
potential field is solved at each time step to provide the
right-hand side parameters. A control volume is considered
consisting of a segment of the sea surface, the seabed, and
vertical boundaries through the water column. This region is
considered to be periodic in space furnishing the remaining
necessary condition,

The seabed impermeability condition, equation (3.1),"°

can be rewritten as the seabed being a streamline of
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arbitrary constant value

The free surface kinematic condition, expressed in terms of

the material derivative, becomes

Dz
= = w (3.5)

stating that the free surface particles move according to
their fluid velocities, and the dynamic condition, equation

-(3.2), can be rewritten as

36 oM _
3t 2 8y

or, as seen by the fluid particles,

D wwk
% = -y (3.6)

Equations (3.5) and (3.6) are evaluated at each time step to

determine the new positions and potentials of the free

surface nodes. Velocities are then determined as

= 38
v 9z

following the procedure described in Chapter 2.
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A flow chart for the time stepping algorithm is shown

in figure 12.

3.2.2 CONSTRUCTION OF MATRIX

The control volume consists of one wavelength, with
nodal points numbered as shown in figure 13. The free
surface‘nodes, 1 to N2, have known values of ¢ and the real
parts of equation (2.4) are selected here, while the seabed
nodes, N3 to N4, have known values of y and the imaginary
parts are chosen. The vertical boundaries, however, have
both ¢ and ¥ as unknowns, hence both the real and imaginary
eqguations must be used for these points. When the
collocation point 2z, is on the lefthand boundary, ¢ is
considered to be the unknown quantity and the real equation
is taken here. Similarly, on the righthand side ¢ is
considered as the unknown quantity and the 1imaginary
equations are selected here. A set of N equations results
for the N unknowns. An improvement can be made however by
recognizing that 1 and N2 are the same point as are N3 and
N4 allowing elimination of two unknowns. The actual

equations used are given in Appendix V.

3.2.3 CHOICE OF INITIAL CONDITIONS

Initialization of the simulation requires starting
values for the surface position p(x) and surface velocity.
The latter is achieved indirectly by specifying the velocity

potential ¢(x) as there is a one to one correspondence
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between ¢ and w on the surface. Selection of ¢ to match a
given velocity distribution, however, would be an inverse
problem requiring either integration of the tangential

velocity or trial and error.

3.2.4 TIME STEPPING PROCEDURE

Several standard numerical procedures were compared for
integrating equations (3.5) and (3.6) with respect to time.
The preliminary version of the simulation program used the
single step FEuler method which uses time derivative values
at the present step to predict the new function values. This
"simple scheme yielded satisfactory results. Higher order
methods were then tested for comparison beginning with a
second order Heun method [2]. This method calculates
derivatives at the current time and uses them to make an
estimate of the wvalues of z, and ¢i after At where the
derivatives are again calculated. An average of these

derivative values before and after At is used to take the

actual step forward in time. Specifically,

61, = b o Bt
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where subscript n indiéates current values and subscript n+1
refers to the new values of surface nodal points. This
scheme provides a slight improvement over the single step
Euler method and results in a very stable solution in terms
of both smoothness and stationarity of energy as discussed
in a later section.

To test the adequacy of the two step scheme test runs
were then carried out wusing a fourth order Adams-Moulton
predictor-corrector method [2]. Values from three previous
steps are required and new values are predicted as a first
approximation. New derivatives are then calculated and a
correction made to obtain the actual time derivatives used

to step forward. Specifically,

. 1 . . . -
\ = m—— - -
-¢n+l 24 (55¢u 59¢’n—1 + 37¢n—2 9¢n—3)
1 -
w;+l = %% (55wn - 59wn_1 + 37wn_2 9Wn_3)

¢n+1 = ¢ + ¢' At

n ]l
' + e At
Zorl - Zn T Voml
b L. = A (9. +19% - 56 _.+d )
n+l 24 nt+l n n-1 n-2
= Lo, 41w - Sw _ + o)
Yntl 24 n+l n n-1 n-
J - b
d)n-i-l ¢n + ¢n ot
L + *-
zn+1 = zn wn At

The results of the second order method have been found to be
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virtually indistinguishible from those of the fourth order
method. The latter reguires more programming effort with the
only possible advantage of increasing the permissible time
step interval At, thereby reducing computational time. As
will be shown in the next section, however, At is dictated
by a numerical stability criterion. It is concluded that the
two step integration scheme is sufficient and higher order
technigues are not necessary. Each time step in the

simulation as such requires two matrix solutions.

3.2.5 SEGMENT SIZE AND TIME STEP

Program perfomance depends on the segment size selected
for the elements. Too few elements result in poor resolution
and large errors while too many elements result in excessive
computational time and the risk of numerical instability.
The optimum number of elements selected depends somewhat on
the situation.

A non-breaking wave with relatively 1low surface
curvature can be simulated reasonably well with as few as 30
surface points for one wavelength. Fewer than this results
in undesirable cusps in the regions of high curvature, most
notably at the wave <crest. Excessive errors in the
calculated velocities follow with subsequent instability and
breakdown. Breaking waves have regions of high curvature and
therefore require more elements. Fortunately, nodal points
tend to migrate into the crest region as the simulation

proceeds, automatically providing better resolution here
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where it is needed. Most breaking waves require about 60
surface elements. Occasionally more may be needed,
especially in cases where the plunging jet is thin and the
elliptical surface under the wave crest becomes poorly
resolved due to nodal point migration away from this area.
Such situations may require up to 100 surface elements.
Simply increasing the number of surface elements, however,
can lead to additional problems as the increasing element
density in the crest region may result 1in nodes crossing
over creating a multiply-connected £fluid domain and
immediate breakdown of the simulation. A solution to this
problem would be to remove elements from the high density
crest region to the more sparse trough region. This
procedure ‘would be useful if the detailed structure of the
jet tip was being examined.

The number of elements recommended for the vertical
boundary depends on the water depth. For deep water waves at
least 15 should be used if elements are uniformly spaced, or
20 for higher waves. This number could be reduced slightly
by using progressively larger elements as the depth
increases. On the seabed 20 elements usually proves
sufficient for deep water waves. In shallower water,
however, where seabed velocities become significant, more
elements are required with 30 being used typically. The
greatest number of elements, therefore, are required for
large amplitude shallow water breaking waves where N may be"

up to 180.
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Once element sizes have been determined the time step
interval At is selected according to the Courant stability
criterion which states that a particle should not be
permitted to move a distance greater than approximately the

element size. This condition can be expressed roughly as

Ax

X < C
or

At Ax

T <1

wvhere Ax is the element size and ¢ is the phase velocity of
the wave. A convenient time step interval 1is selected
following this criterion based on the initial element size.
One further disadvantage of too many elements on the free
surface apparent now is the smaller time step required and
the resulting increase in computation time.

~

3.2.6 NUMERICAL ADJUSTMENTS

Several checks and adjustments of elements must be made
at each time step to ensure smooth execution of the
simulation. The vertical nodes are fixed points, however,
the surface corner nodes 1 and N2 are free to move and will
tend to stretch and compress the uppermost vertical element
resulting in poor accuracy in this region. To overcome this
problem the elements on the vertical boundary are evenly
redistributed at each time step by dividing the wvertical

boundary length by the number of elements on the side.
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Element size here then becomes (d+n)/NV. Failure to do so
will usually result in "sawtooth" instabilities developing
on the surface near the edges.

A similar problem results from excessive horizontal
excursion of the surface corner points. The situation is
compounded by nonlinear effects causing a gradual downstream
migration of surface particles. If 1left unchecked the
control volume wiil distort as shown in figure 14. A check
of the region 1is made at each step and the corner points
readjusted if necessary to ensure that they are always those
closest to the vertical boundary. Surface nodal point
indices are incremented if such a shift is required.

The simulation 1is very stable and smoothing of the
surface has not been found necessary in most cases.
Occasionally, altering initial element size slightly will

correct rare unstable situations.

3.2.7 ENERGY

A wave contains kinetic energy due to fluid motion and
potential energy due to displacement of the free surface.
Under the assumption of =zero viscosity 1in potential flow
there is no mechanism for energy dissipation, and the total

control volume energy
Et=EK+EP

must in theory remain constant. Due to numerical

approximations and computer roundoff errors, however, one
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would expect a slight "numerical viscosity" to cause
artificial changes in energy. A perfect solution should
exhibit no such change, therefore, stationarity of the total
energy provides an excellent assessment of simulation
accuracy.

Kinetic energy can be expressed as

no gl

which, by invoking Green's theorem, can be evaluated
numerically as
N2

Potential energy is given by

(3.8)

L
- P2 2
Ep 2 {, n® dx

or numerically as

N2
2 2
s %g'ifl(xi " %) O ¥y F V" YY)

Derivation of these equations may be found in Appendix VI,
Linear theory predicts kinetic and potential energies
are exactly equal, while nonlinear theories predict that the

kinetic component is slightly larger. Breaking waves exhibit

a shift from potential to kinetic energy as time proceeds.
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3.2.8 COMPUTER SOLUTION

The wave simulation 1library developed consists of
preprocessing programs for generating the various types of
wave initial conditions which are then passed to the main
simulation program. The primary output file provides all
numerical values for each time step in formatted tables
suitable for analysis. A secondary output file can be used
for hard-copy plotting.of the waves or animated display on a
graphics terminal.

All programs were written in FORTRAN, and compiled and
run on a VAX 11/750. Matrix solutions were obtained using
standard Gaussian elimination wifh double precision
variables used throughout. Regquired CPU times for different
numbers of elements are shown in figure 15. CPU time for a
single step increases roughly as N?, however, as N increases
a smaller At is required so CPU time actually increases by a
power approaching N?. Simulation of a typical breaking wave

with N=120 requires about four hours.

3.3 RESULTS

The simulation procedure described provides a powerful
tool for analysing the behaviour of arbitrary nonlinear
waves under the assumptions described previously.

To test the accuracy of the simulation a Stokes fifth
ordér wave was chosen. Linear wave theory predicts that
fluid motions should be negligible below a depth of about-

d/L = 0.5 which is considered the transition between shallow
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and deep water. Since Stokes theory is valid only for deep
water, the sea bed was placed at a depth of 4/L = 0.6 and
negligible fluid motions were confirmed. The height ratio
was selected to be H/L = 0.06 which can be seen from figure
10 to lie well within the region of validity of Stokes
theory. As such, one would expect the wave. to translate
steadily with no deformation over time. Figure 16 shows the
results of a simulation carried out using NS§=60, NV=15,
NB=20, L=100 feet, and At = 0.05 sec. The resulting surface
profile after one wave period is shown superimposed on the
initial wave. The simulation in this case is remarkably
.accurate showing little distinguishible difference after one
period. Following three complete wave periods the wave still
showed negligible distortion. Total control volume energy
exhibited fluctuations of 1less than 0.1%. Figure 17 shows
the trajectory over time of a typical nodal point
representing a marked fluid particle. The nonlinear Stokes
drift results in a net migration of fluid in the downwave
diréction. Net excursion at the surface in this case was x/L
= 0.036 and increased with wave height.

Generation of a breaking wave requires an initial
condition that is wunstable. As discussed eariier this
selection 1is somewhat arbitrary, and many waves would
satisfy this criterion. To be specific, however, a
particular class has been chosen of a cosine surface profile
with ¢ from linear theory applied at the exact free surface.

Such waves cannot remain steady in form and would be
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expected to break if given sufficient initial height.

A deep water cosine wave was run with H/L = 0.06. 1In
this case nonlinear effects were guite small and after two
wave periods the only discernible change was a slight
increase in the slope of the forward surface. Increasing the
initial wave height to H/L = 0.10 produced a spilling
breaker as shown in Figure 18. Fluid particle velocities at
the wave crest reached the phase speed around this time. The
horizontal acceleration of the fluid here was about 0.04 g
and the vertical acceleration -0.22 g, having changed little
from the 1initial condition. Acceleration in the forward
direction was very small and fluid in the incipient jet
would simply flow down the forward face of the wave under
the influence of gravity. Further computation beyond this
pbint is not possible as the nodal points at the crest fall
inside the control volume producing a multiply connected
region.

The results of a deep water cosine wave with H/L = 0.13
are shown 1in Figure 19. The initial energy in this case is
much higher and a well defined plunging breaker results. The
simulation 1in this 'case looked qualitatively identical to
that presented in Vinje and Brevig (1980) for the same
initial condition, however, no numerical results were given
in their work. At the time of the forward face becoming
vertical the horizontal fluid acceleration near the crest
was 0.58 g while the vertical acceleration was -0.76 g. As"

the jet became well developed, the horizontal acceleration
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at the tip dropped to near zero while the vertical
acceleration approached -0.98 g characteristic of a pure
gravity Jjet. For comparison, the same initial conditions
were run in shallow water using 4&4/L = 0.25. A spilling
breaker of H/L = 0,10 1is shown 1in fiqure 20 and is
remarkably similar to the deep water case demonstrating that
spilling 1is a 1local phenomenon and not very sensitive to
water depth. As can be seen in figure 2t for the shallow
water plunging breaker, the jet resulted in a greater fluid
volume ejected at a slightly higher velocity.

Numerous wave simulations have been run using the deep
.water cosine initial conditions. Waves of small amplitude
exhibit only a gradual'sharpening of the crest over several
wave periods. As the 1initial height ratio 1is 1increased,
however, a transition from spilling to plunging behaviour
occurs as shown in figure 22. Simulations terminate when
velocities cannot be resolved in the jet tip region due to
nodal point crossover or when the plunging jet touches the
forward face.

Figure 23 shows the time course of maximum £fluid
velocities on the surface for deep water waves of increasing
initial height ratios. Figure 24 shows the same thing for
shallow water waves of depth ratio d4/L = 0.25. Fluid
velocities in the shallow water waves are greater for the
same initial height ratios. Breaking wave jet velocities can
approach twice the phase speed of the corresponding linear

wave. For the plunging breakers these maximum velocities
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tend to occur on the advancing top surface just above the
jet tip and are directed almost horizontally as seen. in
figure 25. For the class of waves studied, breaking usually .
occﬁrs in less than one wave period. The breaking 1limits
indicated 1in figures 23 and 24 are not really well defined
but indicate roughly a transition between the plunging jet
touching the forward face and spilling breakers reaching the
critical point where further computation is not possible due
to problems in spatial or temporal resolution.

The energy histories for plunging breakers of H/L =
0.13 in deep and shallow water are shown in figures 26 and
27. At t = 0 the cosine initial condition has a kinetic
component only slightly larger than the potential component.
As the wave breaks, however, there 1is a transfer from
potential to kinetic energy which becomes increasingly rapid
as the plunging jet forms. The total energy remains nearly
constant throughout most of the simulation showing a'typical
slight increase near termination due to imperfect resolutién

in the jet region.
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4, FLOATING BODY MOTION

4.1 INTRODUCTION

The formulation of a general two dimensional time
stepping body motion simulation is presented. Development of
such a simulation would permit extreme ship motions to be
assessed 1in arbitrary steep nonlinear waves. Water on deck
and capsizing could be modelled, and further extensions
would allow breaking. wave forces against the hull to be

included.

4,2 NUMERICAL SOLUTION

4.2.1 FORMULATION

The <control volume used for the wave simulation is
modified to include an arbitrary two-dimensional surface
piercing body 1in the «contour of integration as shown in
figure 28. The domain is again considered periodic with the
free surface satisfying the kinematic and dynamic conditions
discussed previously

o0 4 (2by8ny _ 3
e T RIG - 3% (4.1)

3 . P, 3
¥+7[<'a—i>2+<£>2]+gn=f<t) (1.2}

The stream function distribution on the body can be found by

integrating the normal velocities along the surface giving
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8R2
v = - -—2—+ uG(y-yG) - véx-xc) + 'Po (4.3)

Details are described in Appendix VII. The constant of
integraticn y, can take on any value and is arbitrarily set
to zero. The seabed is again a streamline, however, in this
case the wvalue cannot be chosen arbitrarily since y, was
fixed above and vy here-must be determined as part of the
solution. The matrix for solving the complex potential is
constructed such that terms involving ¢y on the seabed are
lumped together appropriately and ¢ here is considered a
single unknown.

Solution of the resulting boundary value problem using
the Cauchy method provides velocities along the contour
which are used to step the free surface nodal points as in

the wave simulation

Dz

e - W
Do _ ww*
Dt IR 24

The pressure distribution on the hull is found by applying'

Bernoulli's eguation

P o= ‘p(%%*i;*—*sy) (4.4)

where 0¢/0t remains to be determined. The obvious choice is

to use a backwards finite difference approximation, however,
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Vinije anderevig (1981b) claim such a scheme is unstable and
another technigque must be used. An alternative method can be
obtained by recognizing that since ¢ and ¢ are harmonic
functions, then so must be 3¢/3t and 3y/dt, consequently,
.aB/at is also an analytic function in the fluid domain. The
Cauchy integral method 1is again applied in an identical
fashion as for B using the time derivatives in this case. On
the free surface 3¢/t is found from

9% _ | oww*
ot 2 gy

‘and on the body 8y/dt may be found by differentiating (4.3)
giving

W (y- - (x- _ 8R2

ot (y-ygla, - (x xG)ay 2

+uv - veu + [(x-xc)(uG-u) + (Y‘YG)(VG‘V)]é (4.5)

The seabed has constant but unknown 98y/dt which comes out
from the solution. The result yields 3¢/dt on the body from
which the pressure distribution can be found wusing (4.4)

Body forces and moment about G are found as

F = - [ Pnds
s

M = -] P rxnds
.
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which are evaluated numerically as

N6-1 P, .-P
F =-1 1('1§1"1° (z441724)
1=N5
N6~1 P -P z -z
= - I S0 S 3 2 S R
M 1§N5 () 11— 2 (2421720 *]

Derivations are found in Appendix VIII. Accelerations are

then determined from the equations of motion

F
a = 3

Fy
ay = @

M
6 = I

which can then be integrated twice in time to find the

heave, surge and roll motions.

4,2,2 THE CLOSURE PROBLEM

The technigue outlined above suffers a closure problem
in that the accelerations a,r ay and 6 in (4.5) are unknown
a priori and must come out as part of the solution.
Fortunately Cauchy's theorem 1is 1linear and 388/3dt can be

considered as being composed of four physically unreal

components as

as _ 9B 98 . Eﬁ_
3 - (5oh + 3, (30)2 * 2y (505 * 8(50),



63

The problem 1is then decomposed 1into four independent
solutions for the four contributing terms as shown
schematically in figure 30. The boundary conditions on the

surface are

Ay, = - -y
@, = o0
@Y, =0
<§%x. =0

while those on the body are
(%%91 = UV - Vou + [(x-xc)(uc-u) + (y-yG)(vG-v)]é
3 -
(3%)2 = (y-yg)

9
3D, = (xx)

(at)‘0 2

The body pressure distribution (4.4) can be written as

P = P] + Pzax_"r P3ay+ Phe

where
3 *
b =-pdd), - B2 - g
Y
P, P(S%)z
3
P, =-P(sH,

= _prd
r, --D,
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Forces and moments are then calculated for each individual
problem using equations (4.5), and substituted into the

equations of motion (4.7) which take on the form

F +F a +F a +F 68 = ma
X, X, X X3y X, X

F +F a F a +F 6 -W = ma
b A Yo X Y3 ¥ Yy y

Ml +M28x+M3ay+M‘+e = 18

These three eguations can be solved for the three unknown

accelerations ayr ay and 6, thereby closing the problem.

Given accelerations at each time step, velocities and
motions are determined by successive integrations. A simple
finite difference Euler scheme is used for these

integrations

u =un+axAt

vn+1 =Vn.*.ay ot

8 =0 + 86 At
n

X_.. = x_+u_ At + = (At)2
n n 2

a
Vb1 = YV, 0t + % (ar)2

[ -]
|

ntl = Oyt 0 At + 3 (at)?
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A flow chart for the body motion simulation is presented in

figure 31.

4.2.3 BODY POSITION

The body geometry is stored as a set of points defined
in a ship coordinate system (xs, ys) attached to the body
with the origin at G as shown in figure 29. Body position is
specified by the location of G in the global frame (x, vy)
and the roll angle 6 measured counterclockwise from the
vertical. These three variables are known at each time step
allowing the location of ship nodal points to be calculated

in the global frame using the following transformation

= - +
X =X cosb Y sind Xq

y = X sind + Vs cosf + Ye

The intersection points between the free surface and the‘
body are difficult to determine due to the possible presence
of singularities here and for practical purposes approximate
methods must be used as discussed in a later section. Once
the intersection points are located, nodes are placed there
on each side and others added or removed at each time step
to keep the same number of elements NH on the hull as the
wetted surface changes throughout the simulation. Depending
on the direction of fluid motion near the hull, a free

surface nodal point may enter the body. This condition must
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be checked at each time step and if necessary the offending
point replaced outside the body. Conversely, if a nodal
point migrates excessively far from the bodi, the resulting
large free surface element should be subdivided

appropriately.

4.2.4 INITIAL CONDITIONS

Initialization of the simulation requires a free
surface profile 7n(x) and potential ¢(x), as well as body

position (xG, Yo ) and velocities (u 6). There are

G’ VG’
consequently six free parameters to specify when placing the
"body on the wave. Unlike the wave simulation, however, these
initial conditions cannot be chosen arbitrarily. The free
surface velocity is specified by ¢(s) and must match the
body velocity at the intersection points to avoid
erroneously forcing fluid into or away from the body. This

condition is ensured by adjusting the potential distribution

in the neighbourhood of the body to satisfy the relation

.ai=v .’E\

9s n

at the intersection point P, where £ is the unit vector
along the free surface. The ¢ distribution is adjusted by a
guadratic polynomial extrapolation over a region of length
Lc on either side of the body to match the derivatives at

the intersection points.
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4.2.5 INTERSECTION SINGULARITIES

The intersection points between the body and the free
surface present spe;ial problems because the fluid velocity
w(z) may be singular here. Yim (1985) describes the
analytical solution to a semi-infinite flate plate moving
downward on the free surface. The complex velocity has a
square root singularity at the plate edge where the velocity
becomes infinite. Greenhow and Lin (1985) describe a series
solution to an impulsively moved vertical boundary that
predicts a logarithmically infinite surface elevation next
to the wall. These two idealized cases are analogous to the
. heave and surge of a floating body, which for general
motions 1is obviously a much more complicated problem.
Singularity behaviour at the free surface 1in the more
general case 1is 1less clear. Lin et al (1984) describe
experiments which closely examined the fiow behaviour next
to an impulsively moved wavemaker, suggesting that the
singularity may actually have a physical interpretation.
Photographs show a very small £fluid jet being ejected
perpendicularly from the paddle at the intersection. This
peculiar phenomenon 1is an example of how potential flow
modelling can break down in certain regions, where effects
such as viscosity and surface tension keep the real fluid
behaviour finite.

One further problem at the intersection points is that
even in the absence of singularities, the variation of ¢ or

Yy may be rapid close to the body. Maskell and Ursell (1970)
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-give a second order solution for a heaving cylinder which
shows a steep gradient of Yy and high velocities near the
body. Hiéh element density would be required here to achieve
good resolution, though it is not clear if this 1is really
necessary for a stable solution. Furthermore, excessive
element density can cause additional numerical problems both
in computational stability and further complication of
element redistribution near the body. It has been found that
reducing the number of free surface elements often improves
numerical stability, though resolution 1is obviously the

cost. One may have to be sacrificed for the other.

4.2.6 INTERSECTION SOLUTION

Several techniques were tried to handle the numerical
solution in the intersection region, each requiring a
separate simulation program. Boundary conditions for the
three main versions are shown in figure 32. Version I was
the same as that used by Vinje and Brevig (1981c) where a
node is placed at the intersection point and the stream
function specified as a boundary condition. The velocity
potential here comes out from the solution and as such does
not necessarily satisfy the free surface boundary condition.
Experience with this formulation showed the complex
potential to be poorly resolved near the body, and the
velocity potential indeed did not satisfy the free surface
boundary condition at the intersection. The discrepency was

often large. Examination of the numerical solution at each
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time step revealed that the fluid velocities were péorly
calculated 1in the intersection regions, often yielding
unrealistically large values that were not even of the
correct sign. |

Version II attempted to reduce the singularity problem
by displacing nodes a small distance on either side of the
true intersection points and thereby avoid integrating
through the singularity. This method did not appear to offer
any improvement. Since the small diagonal connecting
elements are 1included 1in the contour integration, this
formulation is really equivalent to version I with the nodes
shifted appropriately. In the usual formulation each node is
considered to héve contributions from each of the adjacent
elements. To avoid integrating through the singlarities,
however, these small elements must be left out of the
contour. As such, the matrix coefficients for these special
points must be rederived considering the contribution to §
from one element only.

Version III attempts to improve the solution by placing
a node directly at each intersection and specifying both ¢
and ¥y here. Lin et al (1984) wused this formulation for
modelling a wave maker in a basin and claimed greatly
improved results. The number of unknowns in this case is two
less and the matrix must be reconstructed accordingly. The
actual -equations wused are given 1in Appendix IX. This
formulation resulted in a more stable solution, although the -

fluid velocities near the interéections were still
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qguestionable.

In all the above formulations the velocities at the
intersection points could not bé determined directly by the
numerical procedure and the values calculated at these two
points were discarded. Without these velocites, however, the
free surface position atn the next time step cannot be
determined. This 1is certainly the most challenging problem
in achieving a good simulation. For practical purposes,
these velocities must be estimated by other means using some
sort of approximation. The most obvious choice is to use a
polynomial extrapolation into the body, however, since the
immediately adjacent points are also under the influence of
the singularities their positions are questionable as well.
Furthermore, surface irreguarities can produce large errors,
especially if the element nearest the body requires a long
extrapolation. A more tenable solution is to simply extend
the adjacent nodes horizontally 1into the body. This
alternative works well provided the surface is not
excessively steep and allows the simulation to proceed. For
steeper waves three point smoothing must be used in the
region next to the body. Results are presented in a later

section,

4.2,7 A NUMERICAL PERTURBATION CORRECTION

Throughout the simulations both the fluid volume and
total system energy were monitored as a measure of numerical

stability. The volume was usually quite stable although the
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total energy often grew significantly. These errors were no
doubt due 1largely to the problems of accuracy 1in the
intersection regions and the need to impose artificial
values here. While these errors are obviously undesirable
they do, however, provide a possible means for «correcting
the positions of the intersection points. Conservation of
mass and energy can be considered as two equations for the
two unknown intersection locations.

Referring to eguations (3.7) and (3.8) it can be seen

that the energy of the fluid is of the form

E = EP(X.Y) + Ek(¢,w)A

Unfortunately, this expression cannot be caét into a closed
form solution for the unknown intersection positions since
the contour geometry (x,y) and the complex potential (¢,¢)
are linked numerically. An iterative trial and error
solution to satisfy the two constraints might be possible,
however, computational time would become prohibitive with no
guarantee of convergence.

An alternative is to consider a "numerical
perturbation” method where small changes in system energy
and volume can be derived as functions of small changes in

the intersection positions. That is,

Av

[
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where AyL and AyR represent upward vertical displacements of
the 1left and right intersection points and 1l;and 1, are the
lengths of the elements next to the body. These expressions

take on the form

Av A(AyL) + B(AyR)

AE C(ay;) + D(Ayp) + E(AyL)2 + F(AyR)2

.where the coefficients are functions of known quantities.
These equations can then be solved for AyL and AyR. Detailed
derivations may be found in Appendix X. To implement the
procedure, a preliminary solution 1is obtained by the
previously described method and the changes in volume and
energy noted. These are then used to calculate corrections
to the intersection positions. As only two constraints are
availabie, only the fwo elements adjacent to the body are
involved. A more elaborate correction scheme involving
adjacent points as well would be possible using polynomial
segments, however, the derivation would be much more
complicated. Only the first order approximation described
above is considered in the present work. This

self-correcting simulation is referred to as version IV.
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4.3 RESULTS

For the purpose of testing the simulation a simple case
is examined first of a rectangular body heeled over in calm
water. Upon release the body should undergo roll
oséillations while disturbance waves radiate outward
removing energy from the body and damping the motion. The
roll period 1in this case can be calculated theoretically
from the standard formula for small angles found in any text
such as Comstock (1967). For the present case the following
conditions applied: beam = 10 feet, draft = 3 feet, weight =
1900 1b/ft, radius of gyration = 2.5 feet, and initial angle
-= 30°. The theoretical roll period for this body is 2.5 sec.
For preliminary tests the sharp corners were rounded to keep
velocities well-behaved and avoid creating unnecessary
additional complications. Figure 33 shows the results of a
simulation carried out using version III with L=100 feet,
NS=25, NH=15, N=100, and At = 0.05 sec. Close inspection of
the figure reveals very low disturbances radiating outward
as the body oscillates. As expected, fluid velocities were
poorly resolved in the intersection region, however, as the
forces in this simple case were primarily hydrostatic the
behaviour was good. The actual roll period was about 2.6
seconds during which the system gained energy causing an
increase in roll amplitude of about five degrees over one
cycle. The calculated motions are plotted in figure 34.

The second test case examines the motion of the same

body on a 1low amplitude wave. Figures 35 and 36 show the
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results of a motion simulation on a cosine wave of length L
= 100 feet and height ratio H/L = 0.04 wusing wversion 1III.
The initial conditions in this case were chosen carefully by
placing the body at the midpoint of the trough where the
velocity potential gradients on the free surface are equal
on both sides of the body and match the initial horizontal
body velocity. The initial roll angle was chosen arbitrarily
to be 15°., As can be seen in the figure the nonlinear
effects were 1large and the wave underwent considerable
modification as the crest passed the body. Energy was
imparted to the body resulting in an increased roll angle
and water on deck after one cycle. Hull pressure
distributions are shown in figure 37 for various positions
on the wavevand the motions for sway, heave, and roll are
plotted 1in figure 38. Of particular interest are the rather
large horizontal displacements. Accelerations in this case
were as much as 0.5 g. These characteristics have also been
noted in model experiments [26].

The third test case involved increasing the wave height
further to H/L = 0.08 to invoke large nonlinear effects and
examine the 1limitations of the model. Placing the body in
the trough with an initial horizontal velocity to match the
velocity potential gradient resulted in almost immediate
water on deck. By giving the body an additional negative
angular velocity of -0.15 rad/sec deck wetting was delayed
and eventually came about from the downwave side as the body

rolled too far back. Figures 39 and 40 show the actual
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simulation. The resulting motions are plotted in figure 41.

One final test case is that of the body in a very steep
wave of H/L = 0.12. Undisturbed, this initial condition
would result in a distinct plunging breaker as shown earlier
in chapter 3, however, as can be seen in figures 42 and 43
the presence of the body modified the wave considerably and
breaking did not occur before water on deck terminated the
simulation. Several initial conditions were tried for this
wave and all resulted 1in water on deck in less than one
second. The motions for this case are plotted in figure 44.

For steep waves one would expect the body to act
somewhat as a wave damping device removing energy much 1like
a floating breakwater. This wave energy, of course, is
converted to body motion and, as a result, would tend to
keep the wave from breaking. Achievement of a breaking wave
next to the body will require some other type of initial
wave configuration.

Version 1V of the ’'simulation employing the
'self-correction scheme met with 1limited success and was
useful only for nearly calm water. It became apparent that
correcting the positions and boundary conditions of only the
intersection nodal points was insufficient, and really the
method should be used in conjunction with polynomial
segments to allow the adjacent free surface points to be
corrected as well, both in position and velocity potential.

Having demonstrated the ability to simulate extreme

body motions in steep nonlinear waves, the next step was to
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use the simulation program to carry out numerical
experiments under varying initial conditions. The current
versions have been found to accumulate energy due to
numerical problems at the intersection singularities and are
therefore really only wuseful for short time periods.
Furthermore, previous experience with a simpler linearized
simulation [3] has shown that roughly two wave periods are
required for transient effects to aecay and allow the body
to acheive steady state rolling in a wave train. Therefore,
if capsizing is to be modelled with the present version of
the simulation it must be induced in a short period of time.
-Bearing this in mind, the selection of 1initial conditions
becomes very important. 1Initial position placement can be
arbitrary, however, the choice of the three corresponding
initial velocities and their relative phases will have a
great influence on the subsequent motions. For example,
figure 45 shows the effect of zero initial angular velocity.
Water on deck is almost immediate due to rotational inertia.
More 1likely, a ship at this point would have a negative
angular velocity, although this would really depend on the
prior unsteady response history.

It is clear now that conditions leading' to water on
deck or capsizing can indeed be simulated and one must now
ask whether or not the chosen initial conditions are 1likely

to occur in nature.
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4.4 EXTENSION TO THREE DIMENSIONS

Comparisons made with a constant element Green's
function method used by other investigators [3], to simulate
a breaking wave produced somewhat differing results. The
Cauchy integral method remained remarkably constant in both
energy and volume ‘and therefore for two dimensional free
surface problems appears to be the preferred technique.
Unfortunately, because the method uses complex variables it
cannot be extended to three dimensions., For some cases,
however, one may be able to make an approximation. Since
ship motions and stability are dominated by the midbody, end
. effects would be 'expected to be of minor significance,
especially for short time periods involved in ship
capsizing. If in addition the beam/length ratio is
reasonably low one can use a "slender ship" approximation
where the <crossflow term 82¢/9%2z in Laplace's equation is
assumed small enough to neglect and the flow is locally two
dimensional. Strip theory can then be used where the ship is
considered equivalent to a composite of representative
prismatic sections as shown 1in figure 46 and independent
simulations are carried out for each. The forces and moments
can then summed over each section to obtain the total body

accelerations and resulting motions.
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Figure 28. Control volume for body motion simulation.

Figure 29. Definition of coordinate systems.



Figure 30,

73

wle
i

3
&b,

3
&,

?
&b,

?
(at)3

3
g%u

s ls

Decomposition of time derivatives into four independent
problems.



GENERATE
ELEMENTS

INITIAL
CONDITION
¢ 7
:G Yo ©

Y V¢ 8

SET Up
BOUNDARY
CONDITIONS

80

SOLVE MATRIX

fos

CALCULATE
VELOCITIES

38

dz

CALCULATE
Dz D¢
Dt Dt

CALCULATE NEW
SURFACE

2z ¢

CALCULATE

3
at 3t

CALCULATE
P, P, Py P,

TIME STEP
t=1t+At

CALCULATE
R, F R,
M MMM,

SOLVE FOR

DETERMINE NEW
BODY POSITION

X Yo @

STOP

Figure 31.

Flow chart for body motion simulation algorithm.




VERSION 1

« e € <

ety

v VERSION II
v
Vv

6 ¢6¢°
VERSION III

e €€

Figure 32. Boundary conditions tested.

81



" 0.0 sec

82

g

0.6 sec

1.2 sec

(]

1.8 sec

Figure 33.

2.4 sec

O

Simulation of roll motion in calm water.



83

T

o
<

g

o o
o~

-20 1

(ssa163p) 110y

—401
|

1.97

- n o

. =
S T

(99s/P0J) T3IA ¥VINONV

m—

n 0
-
)

n o
~

-2.5

(2os/P0J) 1300V ¥V INONY

3.5

2.5

1.5

0.5

TIME (sec)

Ro11 motion for calm water case.

Figure 34.



Simulation of motion in wave H/L = 0.04.
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Simulation of motion in wave H/L = 0.04.
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Figure 37.

Hull pressure distributions for H/L = 0.04.

87



4.0 sec

88



ROLL (degrees)

SWAY (ff)

HEAVE (i)

0 - r y

\

]
-
o ©

0 0.5 1 1.5 2 2.5

TIME (sec)

Figure -38. Motions for case H/L = 0.04.

3.5

89



4

7

Simulation of motion in wave H/L = 0.08.
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Figure 40. Simulation of motion in wave H/L = 0.084.
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Figure 42.
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of motion in wave H/L = 0.12.
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Figure 43. Simulation of motion in wave H/L = 0.12.
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Figure 46.

Equivalent prismatic representation of ship.
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5. CONCLUSIONS AND RECOMMENDATIONS

A complex variable boundary integral method has been
used to numerically simulate the behaviour of nonlinear free
surface waves. Breaking waves in deep and shallow water have
been simulated and profile velocities determined. The method
has pfoven to be powerfﬁl and robust. Virtually any
continuous smooth wave can be simulated provided initial
conditions can be assigned.

The method was extended to 1include the nonlinear
motions of a body on the free surface, and simulations were
carried out for several test cases. The presence of
singularities at the free surface intersection points
prevented the direct determination of velocities in the
surrounding regions, limiting accuracy of the simulation. No
accurate solutions to this intersection problem have been
developed to date.

A two step perturbation correction procedure was
introduced to force the additional constraints of mass and
energy conservation; This first order <correction was used
for 1locating the two intersection points. The accuracy of
the 1immediately adjacent points, however, was also
questionable and work 1is needed to make the correction
procedure more robust to allow these additional points to be
included. Local smoothing of function distributions may be
required. Free surface smoothing may be helpful as well,
however, care must be taken that important details of the

surface behaviour are not lost in the process. Empirical
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information would be useful here as a guide.

There is wide scope for further work on the body motion
problem. One possible alternative solution method that has
so far not been attempted is to reformulate the problem as
an inner and outer solution. The outer solutidn would
involve the usual Cauchy integral around a path that is
clear of the singular points and well behaved, while inner
solutions on each side of the body could utilize additional
information such as conservation of mass, momentum flux, and
energy while ensuring matched values of complex potential
and velocities along the common boundaries. Polynomial
distributions of functions could be -assumed close to the
body provided their coefficients could be determined.

The forces due to a wave breaking on the side of a
vessel are of great interest in studying the safety of ships
at sea. These forces could be estimated by a simulation
either by means of applying an explicit boundary condition
on the recipient surface, or more simply by considering the
breaking wave Jjet to be approximately egquivalent to an
idealized jet whose force on a flat plate can be calculated
from momentum considerations knowing the fluid velocity and
effective flow rate as a function of time.

Empirical 1input 1is still required to define the free
surface behaviour near the intersections, but is lacking. It
is recommended that experiments be carried out on two
dimensional bodies in a wave basin under both small and

large amplitude waves so that detailed empirical results may
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be obtained as a baseline for numerical experiments. Strobe
photographs and floating marker particles are needed to
accurately obﬁain the free surface profiles and fluid
velocities. This information would be useful for
establishing realistic initial conditions and assessing the
progress of numerical simulations as various formulations
are tried.

The importance of viscous effects such as boundary
layer development and vortex shedding remain to be
determined and may be quite significant, especially in cases
where the hull geometry is not smooth. Flow visualization
.studies should be <carried out using dye injection to
elucidate the flow structure. Such experiments would also
provide a useful assessment of the validity of strip theéry
by allowing observation of the 1longitudinal crossflow

component.
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APPENDIX I

THE CAUCHY INTEGRAL THEOREM

According to the Cauchy Theorem the path integral of an

analytic function around a closed contour is zero

}f(z) dz = 0
therefore
§ B4z = 0 (a1.1)
z—z
' 0

so long as z, is outside the enclosed region

For the purpose of numerical solution z, must take on
the values of the nodal points on the contour and hence must
be allowed to approach C. The contour C can be considered as
composed of C, and C, where C, subtends z, with a circular

arc of radius e.

In this case Cauchy's Theorem can be written as
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dz 4 [
1 Cc

dz = 0 (A1.2)

On C,

z = 20 + € eie

dz = ieeiede

so equation (A1.2) reduces to

o
B 16 -
161 € e de 0

E €

f —E—; dz + I
Z'Zo o

1
where a 1is the interior angle at z, equal to = when C is

smooth and n/2 at a corner. Evaluating 1in the limit as

e — 0, C, becomes C and

8
—— dz = 1 a 8(z,)
i z Zg 0



APPENDIX 11

FORMULATION OF INTEGRAL EQUATION

The contour is discretized into N elements and the
values of B(z) are calculated at the nodes joining each. The
integral equation (2.2) can then be reduced to a linear
equation for numerical solution, as described below.

As outlined 1in Chapter 2, Cauchy's theorem can be

written ' .
§ 2—dz = 1a8(z) (A2.1)
J Z-Zo
N Z41 6
t {f = — dz} = 1 a B(zp) (A2.2)
1 z4 0
p 8
I v B = 1ia i
=1 13 73

To evaluate the integral in (A2.2), and hence calculate Yij'
1 4

a linear distribution of B 1s assumed over each element.

f(z) can then be ekpressed by the linear interpolation

formula

N

z ~Z
B = —-1— B 54 + (2 8 ; :
(5 ) (zﬁl zj) j 2j< 2< 2544

which is then substituted into (A2.2). Integration is then

carried out as .

z z
g s )
P dz = f {(-—t——) By + (;_1:_) By} =22
z, 2, 251773 #172y I e
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B z 1 -z z
L N - il M. L W
(zj+1-zj) 2, z=z, P ;
(z59729) 71 (24472
where
z z
H+1l =z i+
I1 = f —Iﬂ'-dz - f Z dz
z Z"'Zo z Z-ZO
h| b
23541 %0
= (zj+1-20) 1n (z -z, ) (zj"'l- j)
Z
i+l Z41
I, = zfz dz - | TLdZ
zj 0 zj z z '

T =

Substituting I, and I, back into (A2.4) gives

z +1
] -z
Ry, . [(—7*——) 1n (L0 - g
2 0 2§17 i
Z2a"2 z, -2
8 [(2—dm) 10 (<0 4+ 1)

Zj+l‘2 0

zj-zo
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Returning to (A2.2) and using the above result one obtains

<]
1ia B(zo) = iz_zo dz

where
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zi-z -1 Zz -zi Z +1-zi z l-zi
Yy, = (z—:;j—) n (3 . =) + (zj =) 1o (—-2+.z )
5231 24177 41724 3 %1

(A2.3)

This expression represents the influence coefficient

for Bj at any zj away from the control poin£ z,. It can be
seen however that problems arise when the control point is
in the neighbourhood of zj and these special cases must be

examined separately.

i=g-1

In this case, Y41,y €Quals the expression (A2. ) in the
Ly

The first term becomes

limit as~zi*.zj_1.

z -

z z -Z
i -1 -1 “1
o [(F52) 10 (22
2 oz 3 %1 17
1”24+
which is of thé form li% [z In(1/2)] = 0, and hence vanishes
2>

leaving only the second term

S W o R Lo W 2 8

Y
}1,3 zj+1—zj zj-zj_1

The quantities premultiplying the 1ln terms in (A2, )
reduce to 1 in the limit i - j leaving
-Z

= 1im [1g (_L%) + 1n (.z_lﬂﬁ)]
1%

z
Y1,3 143 2541 z. -2
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z -z
- um [1a (G
i+ Z4-17%4

I LN
-1 7]

i=9+1

Here‘de'jequals (A2.3) in the limit as i _» j+1. The
?
second term becomes

lim [(;ﬂ;zz-i-) 1n (M)]
#17%3 1

N zj-z
212 341

which is of the form %i? [z In(z)] = 0, and hence vanishes

leaving only the first term

z -z

+17%4-1 441
Y = (== 1 )
31,3 zj zj"l ) n (zj‘l Zj+1

The lefthand side of (A2.3) has actually been taken
care of when the limit was taken of i-+ j and is set to zero

to prevent duplication, resulting in the final form for

solution .

where



1j

Z,"2 -
Gt w (2
3231 1% 24172y
Zz -2 - z
z+1 — 1) ln z+i -1)
#1723 3251
1n (ij.“—l-—zi)
2 -z
1723
4 Z - z.~Z
(21_23 1y 1, (2 bzt
1231 2317241

i=j+1
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APPENDIX III

CALCULATION OF rii TERM

Calculation of the Fi terms is straight forward wusing

]
the Cauchy principle values for the complex 1logarithm

function. Calculating r however, requires special

ii’
attention since it contains the term -ia from equation (2,3)

as its imaginary part. To clarify the problem rii can be

written in polar form as

z b4
A A
=y = 1nl-2] + 8 -8
ln(z ) nlz | i(

)
B B B
where (9A - GB) should equal -a.
a
//— N
8, \
B

N o2
!

OB J//

\\ //
. ~ | -~ a

The figure on the left above shows the angle that
results when the branch cut at -7 is inside a. Here (6, -
GB) erroneously yields the exterior angle. If the branch cut
is outside a, as in the figure on the right, then there |is

no problem. In general, this error occurs whenever the
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branch cut of the 1log function lies inside the included
angle a. In these cases 27i must be subtracted from the
imaginary part of rii'

Alternatively, since a¢ is by definition a positive
number, an equivalent rule is that if Im(Fii) < 0 then

subtract 27i to ensure that it is equal to -ia.



APPENDIX IV

CALCULATION OF VELOCITIES

The velocity of each point on the contour is found as

3B
w 9z

The complex potential B has been assumed piecewise linear so

98/9z is discontinuous at each node. Provided elements

small, 38/3z can be approximated by

8,
(3;)j aj-lej-l + aij + aj+18j+1

are

(Ag 1)

where the coefficients are to be determined. Bj+1 and 6j-1

can be written as Taylor series expansions away from Bj

- g (M
n
Bsy1 = nio ar (24 7 29
w g (M .
Bspr = I o (24 72y

n=0

which are then substituted into (A4.1) giving

28 = (a, ) +ay+a

520 5 gt a8

k|

-2z.,)+ a B!

+ [aj-l(zj‘l 3 j"'l(zj“'l B zj)] J

z)2+ a -z

1 21"
+ 3 [aj_l(zj_l -2y j+1(zj+l )28

3
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Coefficients can

116

be eqguated giving three linear equations

for the three unknown guantities

aj-1+aj+aj+1 = 0
aj—l(zj-l-zj)+aj+l(zj+1_zj) = 1
aj—l(zj-l—zj)2+8j+1(zj+1-zj)2 = 0
Solution yields

a, Zj+1 Zj

2y - 2y) (g - 25)

I i

i+l (ZJ.+1 - zj) (zj_1 - zJ+1]
ay=Cay ;) ~ay,



APPENDIX V

EQUATIONS FOR WAVE SIMULATION

The set of linear eguations to be solved to obtain the
unknown quantities Xj which are either ¢j or wj' can be

written as

There are N nodal points in the contour, however, there are
actually N-2 unknowns since points t and N2 are identical as
are N3 and N4. The number of linear equations is therefore
also N-2.

The actual equations are:

1 <1 < N2
Nd < i< N
N2-1 N3-1 : N4-1
T a, .y, + T (b, +b,. ).+ I b,.¢.
=1 33 senen 13 4K775 0 gy 1373
N N2
+ (a,,va, )y, = = I b ,.¢.
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N2 <i«g€ N4

=1 j=N2+1 13 AKTTS O pg Ta5%y
IZ‘II (b, +b, ) 2

- !
j=N4+1 1k 13773 %405

where k represents the nodal point on the vertical

exactly opposite j and is equal to

k=N+NS+2-75

By periodicity the following relations also hold

118
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APPENDIX VI

CALCULATION OF ENERGY

The kinetic energy for a fluid volume is

EK'=.%Hvzdv‘

f

In order to evaluate this expression the volume integral
must be rewritten as a contour integral involving function
values on the boundary. The fluid velocity at any point can

be expressed as

V2 = V¢ « Vo

which can be substituted into Green's first identity

[ (6926 + Vo « Voldv = [ [¢V$] + n ds
v c

yeilding

n
njo

a2
[0 Gy ds

P A2
-5 e Gbas
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Since the normal velocity component is zero on the seabed
and cancels on the vertical boundaries, this integral need
only be evaluated on the free surface. Considering the

surface to be piecewise linear the integral becomes

I
njo
)t~ 2
-
|
<

N2 bg4n T Oy
= % iil ( 7 )(‘Pﬁ_l - ll)i)

which by periodicity reduces to

2

B = %

o~

@g¥ian ™ g ¥y

i=1

E =

By considering the volume to be made up of trapezoidal

sections under each element this expression becomes

N2 Fi+l
= %E- I ] y? dx
i=1 Xy
N2 X
2 i=1 3 Xy Ay
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yielding finally

= £ - 2 2
Ep &1 Gy = x0T LR LTS R A

Again only free surface values are required.

The floating body kinetic energy includes both
translational and rotational contributions. Potential energy
can be measured from any arbitrary datum with ﬁhe still
water level being chosen for convenience. The total body

energy is therefore

= B2 2y + L a2 4
EB 2(u‘G+vG)+26 mgyG



APPENDIX VII

CALCULATION OF BODY BOUNDARY CONDITIONS

The position and velocities of the body are assumed
known at each time step hence the velocity component normal
to the body can be written as

J 3
T

n 9s

This expression is then integrated numerically to determine
Vv as

yp = v ds + wo
s

faaz_
ika

=>

P (x,y) B

i dy
(XGin) )

The normal velocity component Vn is found as follows. The

velocity of a point P on the hull is

P G P/G
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where
- _ +
VG uG1 VGJ
T =6kxR
Vo /6

R = (x-x )1 + (y-yg)3

The unit normal vectorna

k x Swhere

_dx i +dy j
ds

0>
I

The velocity at P is therefore

Vb = {uG i+ A i+ 6 [-(y-yG)i + (x-xG)]}

and the normal component is

The stream function is found by integrating

dy = u, dy - v

G dx - é[(y-yG)dy + (x—xG)dx]

G

to finally obtain

*

w:-e_gz..g. (-)_ o
7t uelyTye) = vix=xp) + ¢

123

(A7,1)

(A7.2)



124

where

R2 = (X-XG)Z + (Y'YG)2

For time stepping purposes the time derivative ay/dt is
needed. Equation (A7.2) represents ¢y on the moving fluid
boundary so the material derivative must be taken following

the fluid particles.

BR2
oL = (yya, - (xmxy)a

D D .
+ u, o= (y yG) v (x-x.)

where

Dt (¥7%g) = §p = ug = =8(y-y,)

1]
|

D .- Dy o A(ee
bt YV = pp ~ Vg = 0(xxp)

The last step was obtained by referring to equation (A7.1)

since Dx/Dt and Dy/Dt are just the velocity components of

points on the boundary Vp. Therefore,

-
Dy _ /o - (w= _ SRZ
5c = (vglay (x XG)ay 5

+ é[uG(x-xG) + v (y-yg)]

For applying a boundary condition in the numerical solution,
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however, the derivative is needed as seen by the

instantaneous boundary. That is,

Sy _Dy _
ot _ﬁ% MR

where the advective term in this case is due to motion of

the rigid body and its velocity must be used for v giving

2 (32)1 + (%%)j ==-vi+uij

ax

<
1]

[uG-é(y-yG)]i + [VG+é(x-xG)]j

Completing the algebra yields for the final boundary

condition

L - - _ 6R2

+ ugvV = veu + [(x—xb)(uc-u) + (Y'YG)(VG'V)]é



APPENDIX VIII

CALCULATION OF BODY FORCES AND MOMENTS

The body force vector is determined by integrating the

pressures over the wetted hull as

F = - [ Pa-ds
8
or, for numerical evaluation, as the sum of the
contributions over each element.
’ F=- L PnAs

The pressure is taken as the average of the values at the
bounding nodal points and acts in the directon normal to the

hull.

The unit normal vector is found fi = i§ where

>
]
|

As
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The total force Fx + iFy can therefore be computed as

N6-1 P _-P
141 71 _
F o= - I i(—5) (2472,)
1=N5

The moment acting on the hull about G is equal to

M = - [ P rxids
]
where the pressure over each element is again taken as the
average of the bounding nodal values and considered to act
at the centroid of the pressure distribution. R is the

radius vector from G to the body surface point where the

pressure is acting

M=-1IP(r x fi)as
s

The cross product is evaluated by considering R and i to be

*
complex numbers and using the identity Z, X 25 = Im(ZA z.).

B
The moment is therefore computed as

N6-1 P -p z -z
1411 141 %4
= - v ———— — - *
M I (=5 Im{i( 3 z20)(z, 172, )%}



APPENDIX IX

EQUATIONS FOR BODY MOTION SIMULATION

The set of linear equations used in version II1I of the
body motion simulation are given below., In this version both
¢ and ¢ are specified at the intersection points N5 and N6
hence there are two less unknowns than in the wave
simulation. The stream function on the seabed is an unknown
constant evaluated at N3. There are consequently N-3
equations.

The actual equations are:

1 £1< N5

N5 < i £ N2

Nd < i< N
i = N3
N5-1 N6-1 N2-1
b a,.p, + z b,.¢, + P a,.y
=1 3 gegstr 13 genesnr 13
N3-1 N4-1 N N4-1

+ I (b, +b, D¢, + I b ¢, + I (a, +a, DV, + I aiij3

B B B T B A S T T B
N5 N6 N2
- - - V.- I b
S Pty L e T Ly Pt
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N5 < i < N6

N2 <i < N3

N3 £ 1< N4

N5-1 N6-1 N2-1 X
- £ b Y.+ I a, 6, - L V.
1 3 g 13 genen 19
N3-1 N4~1 N ) N4-1 by
+ I (a,+a, )6, + L a 6. - I (b b b - I 1153
j=N2+1 13 k3 j=N3 1373 j=N4+1 ik 13777 j=N3 J
N5 N6 N2
=-3% a, 6,+ Z b Yy - T a.¢

where k represents the nodal point on the vertical boundary

exactly opposite j and in this case is equal to

k=N+NS+NH+2- 3

By periodicity the following relations also hold
by

by = ¢j N4
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The stream function on the seabed is a constant evaluated at
N3 so



APPENDIX X

NUMERICAL PERTURBATION CORRECTION

The control volume energy for the first approximate
solution is E and the volume 1is V. The two intersection
points are then displaced upward on the body by AyL and AyR
resulting in new values for the energy and volume of E' and
¥'., The total change in energy including the known change in

body energy is

+ AE
AE AEB+ AEK AP

while the change in volume is

AV vt - V¢

The problem is to find the position corrections Ay, and Ayn
required to offset the errors in energy and volume resulting
from the numerical solution at each time step. The two

elements adjacent to the body are adjusted accordingly.
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Referring to the above figure the change in volume 1is the

area of the two triangles

_ 1
&= 5 (g Ayg + 4y Ayp)
where lL and lR are the left and right element lengths. This
is the first constraint. Using eguation (3.8)

N2
- LB - 2 2
o7 e, D% T F) Oy e YY)

the potential energy for the preliminary configuration can

be expanded and subtracted from the expansion for the

displaced configuration. The difference is then

AE, = 28 {(3 g yys)(hyp) + Lp(ayp)?

+ (3 1 yye)(8y) + 2,8y )2}

Similarly, using equation (3.7)

N2
Be = % 5, Cota T iabo)

i=1
the kinetic energy before displacement 1is subtracted from
the expression resulting after displacement. By using the

following Cauchy Riemann approximations

%a " s _ Y5 T ws-1

AYr R
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AyR 'Q'R

' " *ne _ Yme+r1 " Yme
AyL R,L
AyL 'Q'L

and carrying out the algebra, the difference works out to

A
K & g

2 - 42 - 2
[ofs-1 = ks * Oy = ¥ys-10?)
AyL

—_— 2 - 42 - 2
+ T [0%6 = ¢36+1 * Wnevr ~ Vw2l



