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ABSTRACT

The variability of so0il chemical properties exerts a
great influence on the practice of fertilization and other
soil management. Quantitative reliable measurements of the
soil variability are vital to the accuracy of fertilizer
recommendations and the effective uses of fertilizer. The
aim of the thesis is to determine whether soil
classifications and variability assessments can be
facilitated by the wuse of quantitative remote sensing
techniques.

An agricultural field with very cont:asting soils was
selected for this study and field variabiiity in total and
organic C, exchangeable cations, CEC, major  fertility
elements N, P, and K, soil water content and coarse
fragments was examined wusing three different sampling
techniques and laboratory analysis.

The remote sensing techniques evaluated in this study
were: 1) laboratory spectral reflection measurements of soil
samples in the green, red and two near IR bands using a
multi-channel radiometer, and 2) multi-dye layer pixel value
analysis of digitized color aerial photos taken at the time
of sampling. ‘

Conventional, selective and stratified random sampling
techniques' were used to quantify the soils in the field and
although the variability in K, Ca, and P was high no
significant differences were obtained 1in the mean values

among the three techniques. Three distinct soil types were
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identified in the field, which included type i - very dark
soils, type II - gravelly, very light colored soils, and
type II1 - average brown or dominant soils. All three
categories could be separated by Munsell value and chroma
data. Significant differences in C, N, K, CEC, moisture
content and coarse fragment content were obtained among the
three soil types. Once the chemical data were translated
into fertilizer requirements it became evident that soil
type II (gravelly light colored soils) needed a higher K
fertilizer rate than either type I or type 1III, thus
suggesting that a differential fertilizer ‘rate application
within the field should be beneficial to crop performance.
Correlation and regression studies of so0il parameters
with spectral reflection and dye-layer pixel values revealed
the nature of the relationships between soil spectral
properties and physical and chemical conditions. Significant
correlations were found between reflectance values and most
of ‘the chemical parameters, and between pixel values, soil
chemistry and moisture content. In both cases, % organic C
showed the highest " correlation. The results from stepwise
regression and discriminant analysis revealed that organic
C, water content and colo: value were the most-dominant soil
pérameters to influence spectral or pixel value variations.,
The relationship between water content and pixel value was
significant suggesting that the variation in water content
mignt be quantified by an analysis of dye-layer pixel

values. Soil organic matter and soil color proved to be best
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predicted by laboratory reflectance measurements.
Multi-variate cluster- and discriminant analysis
revealed that the soil types could be quantified with both
spectral and multi-dye layer pixel value analysis and that
the remote sensing data were best related to organic matter,
soil color and soil moisture content in the field. The
pattern of soil types in the field was determined visually
by planimetry and by quantitative dye-layer pixel value
analysis. The two results were found to be 1in close
agreement and provided quantitative values for the spatial
extent of the three soil types. These values were used to
determine the total amount of fertilizers required for the
field and the quantified spatial pattern 1is an excellent
medium to facilitate soil sampling for fertilizer assessment

for future cultivation.
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Chapter I

INTRODUCTION

A, PROBLEMS AND AIMS

The spatial wvariability of soil chemical properties
often. leads to a serious problem in soil fertility
management. Beckett and Webster (1971) in their review gquote
median coefficients of variation (CV) of 35 percent for
organic matter and total N, and 60 percent for available K,
P, Mg and Ca within topsoils of a given soil series.
Furthermore, the results they consider show that much of the
variability in a field or landscape as a whole 1is already
present within a distance of a few meters. In many
circumstances, fertilizer recommendation based on mean
sample values is inadequate and knowledge of soil
variability and its subsequent effects on the precision of
predicting field fertility is needed.

The conventional study of soil variability requires the
collection and analysis of a very large number of soil
samples, chosen on a probability basis (Ball and Williams,
1968, 1971: Beckett and Webster, 1971). This work 1is
laborious and tedious. Consequently information on soil
variability 1is rarely included in the soil test/fertilizer
recommendation programs, notwithstanding its importance. The
difficulty is the lack of efficient methods to quantify soil
variability. The traditional way of using standard

deviations or coefficients of wvariation as a measure of



variability gives the magnitude or degree of the variability
of individual soil properties, but it cannot indicate the
spatial trends of those properties nor provide a simple
picture of changing soil patterns.

Multivariate techniques have been used to quantify soil
variability. Bank (1984) wused a cluster analysis to
determine soil management units within fields 1in order to
determine different fertilizer responses, and the
classification results were fairly successful. Herver, the
lack of contiguousness of unit members in some fields, and
the need for more than one P and K recommendation within
many of the cluster wunits reduced the possible practical
uses of these units. Furthermore, to perform such analysis
requires a large amount of work devoted to sample analysis,
which is likely to ‘discourage the frequent wuse of this
approach,

Remote sensing has achieved increasing recognition‘ as
being able to make important contributions to the solution
of many resource related problems. Remoté sensing images are
capable of providing a spectral picture showing the spatial
distribution of earth surface features. With the aid of
guantitative remote sensing techniques it is likely possible
to quantify the spatial pattern of soils and to prediét
selective soil properties. So far, few quantitative
investigations have been carried out to assess soil spatial
variability with regard to fertility status., It is the aim

of this thesis to examine soil wvariability and fertility



conditions in an agricultural field, 1linking conventional
methods with multi-variate remote sensing techniques.
The specific objectives are:

1. To determine soil wvariability and how it affects
conventional soil fertility assessments in an
agricultural field with a high degree of variability.

2. To divide the field into distinct soil units which have,
different fertilizer regquirements.

3. To quantify the soil pattern from a digital analysis of
the dye-layers from color aerial photographs.

4. To determine if spectral reflection measurements and

vmulti—dye layer pixel values of soil samples can be used
to differentiate soils with different fertility status.

5. To relate and compare the remote sensing data with data
obtained from conventional analysis of soil samples, so
as to determine the potential of predicting soil
chemical properties from guantitative remote sensing

techniques.

B. STUDY DESIGN

An agricultural field with a high aegree_of variability
was chosen for this study. The soil wvariability was
determined using »conventional, stratified random, and
selective so0il sampling techniques. Simultaneously with the
sampling a'set of color aerial photographs was flown. The
chemical and spectral properties of all the soil samples

were then examined in the 1laboratory and related to the



dye;layer pixel values from aerial photographs. An overview

of the analysis procedure is provided in Figure 1.1,

C. SITE DESCRIPTION

The study site is a field of approximately 2.9 ha
located near the Abbotsford Airport in the Lower Fraser
Valley, British Columbia, immediately north of the
Canada-United States border. The soils in this field were
mapped as a pure unit belonging to the Abbotsford soil
series (Luttmerding, 1980).

The Abbotsford soil has generally developed from 20 to
50 cm of medium-textured eolian deposits uhderlain by
stratified gravelly " glacial outwash. The surface and
subsurface texture is mostly silt loam, varying sometimes ‘to
loam or fine Sandy loam where the surface capping is thin.
The underlying gravel and gravelly sand is usually stony and
contains lenses of coarse and medium sands. In some places,
tree uprooting and land clearing has mixed some graveis and
stones 1into the surface soils, as in the case of the study
" site. The drainage classes are well to rapidly drained. Soil
classification is Orthic Humo-ferric Podzol.

The reason for selecting this field as a test site is
that very contrasting soils exist within the field as a
result of ﬁnusdal cultivation practices. The agricultural
use in this area started in 1970, shortly after the land was
cleared from forests in 1969. Land clearing left the soils

on the site with a large number of distinct patches: light,



CONVENTIONAL ANALYSIS BASED ON
CHEMICAL ANALYSIS OF SOIL
SAMPLES

CONVENTIONAL SOIL SAMPLING
COMPOSITE SAMPLE

QUANTIFYING SOIL VARIABILITY AND
SOIL FERTILITY USING CONVENTIONAL
AND REMOTE SENSING TECHNIQUES

MEASURING SOIL SPATIAL PATTERN
USING GREEN & RED FILTER PIXEL
VALUES OF AERIAL PHOTO

MEASURING SPECTRAL REFLECTION OF
SOIL SAMPLES AND CLASSIFYING
SPECTRAL CURVES

SELECTIVE SAMPLING BASED ON VISUAL
APPEARANCE OF SOILS

STRATIFIED RANDOM SAMPLING
TO COVER TEST SITE

VARIABILITY AND FERTILITY
AND COMPARISON OF THREE
SAMPLING SCHEMES

COMPARISON OF FERTILITY
ASSESSMENTS FOR THREE SOIL TYPES
FROM THE SELECTIVE SAMPLING

CONVENTIONAL ASSESSMENT OF SOIL;T-:::—"””" ANALYSIS & CLASSIFICATION OF GREEN

& RED FILTER PIXEL VALUES USING
LEVEL SLICING, CATEGORIC AND
MULTIVARIATE TECHNIQUES

ANALYSIS & CLASSIFICATION OF SPECTRAL
PATTERN OF SOILS USING CATEGORIC AND
MULTIVARIATE TECHNIQUES

RELATIONSHIPS AND COMPARISON BETWEEN
PIXEL VALUES AND CHEMICAL PROPERTIES
AND MOISTURE CONTENT IN SOILS

a. WHAT IS THE MAGNITUDE OF SOIL VARIABILITY
AND HOW DOES 1T AFFECT CONVENTIONAL SOIL
FERTILITY ASSESSMENT? )

b. CAN THE FIELD BE DIVIDED INTO DISTINCT
SOIL UNITS WITH DIFFERENT FERTILITY
REQUIREMENTS?

RELATIONSHIPS AND COMPARISON
BETWEEN SPECTRAL AND CHEMICAL
PROPERTIES IN SOILS

COMPARING SPECTRAL MEASUREMENT WITH PIXEL VALUE ANALYSIS

a. CAN SOIL SPECTRAL REFLECTION TECHNIQUES BE USED TO PREDICT
SOIL CHEMICAL VARIABILITY?

1 b. CAN PIXEL VALUE ANALYSIS BE USED TO QUANTIFY THE SPATIAL
PATTERN OF THE SOILS?

€. CAN THESE METHODS BE USED IN COMBINATION TO QUANTIFY SOIL
VARIABILITY AND COMPONENTS OF SOIL FERTILITY?

Figure 1,1 Study Desfgn




gravelly areas showing the underlying coarse material
exposed, dark surface soils having higher content of organic
matter caused by burned tree residue, and average brown
soils. These patterns remain clearly visible today although
the contrasts have been marginally reduced through the
cultivation.

The field had peas grown on it in the previous year,
and was bare at the time of sampling. An aerial view of the

study site is provided in plate 1.

PLATE 1. STUDY SITE.



Chapter II

LITERATURE REVIEW

A. THE DEVELOPMENT OF REMOTE SENSING

1. AERIAL PHOTOGRAPHY

Resource managers require rapid and accurate methods to
acquire and interpret data for the development and
management of our natural resources. Since 1929 when
remotely sensed data in the form of black and white
panchromatic aerial photographs wére first used to prepare
base maps for a soil survey in Indiana (Bushnell, 1951),
aerial photographs have been conventionally used by soil
scientists for soil-boundary detection, land form analyses
and visual perception of tonal qualities associated with the
spatial patterns of soils (Myers, 1983). Aerial photography
has been shown capable of increasing both the speed and
accuracy of soil mapping because of the wealth of ground
detail shown, the availability in areas of difficult access,
and the three-dimensional view of the soil landscape (Stoner
and Baumgaréner, 1980).

The multi-stage photographs were found suitable for
different 1levels of detail in the preparation of large as
well as small scale soil maps. Repetitive aerial images also
proved wuseful in 1identifying and monitoring seasonal and
long-term changes of soil parameters and patterns (Milfred

and Kiefer, 1976). The development of color and color



infrared aerial photography expanded the potentials of
remote sensing for differentiating the boundaries among soil
types, identifying soil drainage characteristics and slopes,
and quantifying organic matter content (Parry et al., 1969).
Near infrared film has the advantage that it allows people
to see past the range’ of the eye perception into the

infrared region of the spectrum.

2. MULTISPECTRAL SCANNER

Success in discerning objects with aerial photography
prompted scientists to investigate more sophisticated remote
sensing techniques involving digitized photographs, optical-
mechanical scanners, and multi—images‘ (Weismiller and
Kaminsky, 1978). The  advent of instruments such | qé
spectroradiometers and multispectral scanners(MSS) along
with computer-assisted pattern recognition techniques for
sorting and classifying quantitative multispectral data made
it possible to extend the study of the spectral properties
of soils beyond the visible portion of the spectrum and
provided increased information for soil survey. The
techniques for overlaying and analyzing of multi-date and
multi-image data also became available in integrating
existing surveys into an updated monitoring system.

Preliminary studies of soil mapping wusing airborne
multispectral scanner data indicated that soil surface
conditions, from dark to light soils, could be mapped with

reasonable accuracy by computer techniques (Kristof, 1971).



Another investigation wused similar multispectral scanner
data to delineate and map surface soils containing different
levels of soil organic matter (Kristof et. al., 1973). Other
scientists studied the interrelationships among the spectral
responses of soils and their physical and chemical
properties with laboratory instruments (Obukhov and Orlov,
1964; Bowers and Hanks, 1965; Shields et al., 1968; Beck et
al., 1976, Montgomery et al., 1974, 1976; Schreier, 1977,

1985} Stoner and Baumgardner, 1980; and Vinogradov, 1981).

3. LANDSAT IMAGERY

The launch of the Landsat-1 satellite in 1972 began a
new era in the acquisition and availability of remotely
sensed data (Baumgardner, 1982). The Landsat-1, -2 and -3
were equipped with the four-channel multispectral scanner
(MSS) and the three-camera return beam vidicon (RBV). The
MSS obtained spectral data in four bands (0.5 - 0.6 um, 0.6
- 0.7 wym, 0.7 - 0.8 wum and 0.8 - 1.t pwm) in 18-day
repetitive cycles and viewed a ground swath approximately
185 km wide, with a ground resolution for each pixel of
about 79 by 79 m. These data were processed to provide
images in the form of various photographic products as well
as nume;ical format magnetic tapes for digital analysis.
Landsat-4 and -5 were also launched in 1982 and 1984
respectively. In addition to the same four band MSS employed
by the earlier Landsats, new equipﬁent was added in the form

of the advanced MSS called the thematic mapper (TM). This
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new sensor system operates over seQen bands 1including two
new bands in the mid-infrared region and one in the thermal
infrared region, and has a grouna resolution of 30 m by 30 m
for all reflective bands (band 1 through 5 and 7). The
improved spectral, spatial and radiometric resolution of TM
compared to earlier sensors pro?ides the opportunity to
examine details, that had previously been available only from
aircraft-acquired data over small areas (Thompson and
Henderson, 1984).

Certain unique characteristics of Landsat imagery were
recognized as advantageous over aerial photographs in low
intenéity< soil surveys for delineation of soil association
boundaries (Westin and Frazee, 1976). The main
characteristics are: 1) the syqoptic view of almost 3.4
million ha on which the conditions of soils and vegetation
were recorded at almost same moment and could be compared
across the entire scene; 2) the near-orthographic character
of the scenes, allowing for the construction of mosaics and
the oVerlaying of ancillary maps with little distortion; 3)
the multispectral capability, permitting establishment of
unique signatures for vegetation and soil-related features,
and 4) the temporal feature for the study of multispectral
changes in the soil/vegetation complex with time. The
application of Landsat data to soil investigation has
progressed beyond the research stage to be used in extensive
soil surveys, generally conducted at the reconnaissance

level (Myers,1983).
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Remote sensing as an aid in delineating soil
differences for s0il surveys and detecting épecial soil
problems such as soil erosion and salinity will continue to
develop with further improvements in sensors and data
processing technigues and better understanding of the
spectral properties of the s0il and their relation to
important physical, chemical and site characteristics.

>

B. REMOTE SENSING TECHNIQUES

Remote sehsing is the acquisition of information about
an object without physical contaét (Colwell, 1983). Although
many forms of remotely sensed information exist,
photography, scanners and radar are considered as the major
components in any earth resource remote sensing package. The
remotely sensed data «can be gathered from the ground, but
most commonly from aircraft and satellite sources, and
processed either manually or automatically by
computer-assisted analyses.

Only those remote sensing techniques pertaining to this

study are reviewed.

1. BASIC CONCEPTS

The detection, recording and analysis of interactions
between the subject and electromagnetic radiation is the
foundation of remote sensing. Most remote sensing techniques
involve the use of different wavelengths of electromagnetic

energy that are reflected or emitted from the sensed object
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as the means of measuring target characteristics. The
electromagnetic spectrum is a continuum of electric and
magnetic wavelengths which is subdivided into various bands
or spectral regions, such as X-ray, ultraviolet, visible,
infrared, and microwave.

The 1level of energy reflected or emitted from objects
normally varies with frequency or wavelength throughout the
electromagnetic spectrum, The spectral behavior, or
'signature’ of the imaged object 1is characterized by the
difference 1in the amount of energy incident upon and
reflected from the object, along with the wavelength
sensitivityl of the sensor at the time the image is acquired
(Estes, 1983). A unigue signature of an object, therefore,
can often be identified by selective recording of energy
within particular wavelength band or bands. That is one of
the - most important features of multiband , multispectral
remote sensing.

Typical spectral curves have been plotted for three
basic types of earth features: green vegetation, bare soil,
and water (Fiqure 2.1). The horizontal axis represents
wavelengths in the visible and reflective infrared portions
of the electromagnetic spectrum. The vertical axis
represents the intensity of reflected energy or reflectance
as measured by a spectroradiometer. These curves reveal that
~there are certain wavelengths that are much better than
others for separating green vegetation, soil and water.

However, spectral analysis becomes more difficult and
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Figure 2.1 Typical spectral curves of green vegetation, bare
soil, and water, (Adapted from Baumgardner, 1982)

sophisticated when the objective is to classify the ground
scene into different subcategories of green vegetation, soil
and water. Another use of spectral curves is to provide a
comparison standard for identifying spectra of unknown
features.

The spectral behaviors of materials derive from a
series of complex internal and external interactions between
energy-matter-environment. Laboratory studies of visible and
infrared spectra .0of minerals, rocks and soils were initiated
in the late 1960's (Hunt and Ross, 1967; Hunt and Salisbury,
1970, 1971; Hunt et al. 1971). They revealed that intrinsic

spectral properties of materials were caused by a variety of
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electronic and vibrational processes. Electronic process is
the electron transformation from one ion to another,
absorbing or reflecting electromagnetic energy. This process
normally produces broad band changes in visible wavelength.
Vibrational process is the excitation of the fundamental
mode of anions within the crystalline structure. This
process often produces relatively sharp ' bands, more
frequently in the infrared region. These two processes
change reflectance spectra of materials in the form of bands
and slopes, providing the basis for the measurement of the

spectral properties of the mineral and soil constituents.

2, SPECTRORADIOMETRIC MEASUREMENT

Detection and recording of spectral responses of
objects to radiant energy can be per formed either
photographically as in the case of aerial photography or
electronically as in the <cases using radiometers or
scanners. One of the commonly used techniques for remotely
sensed data acquisition in the laboratory and field 1is the
spectroradiometric measurement of soil reflectance.

The spectroradiometric technigque 1is to determine or
measure the spectral properties of objects in terms of total
reflectance or reflectance factor (Stoner and Baumgardner,
1980), or coefficient of spectral radiance (Vinogradov,
1981). A reflectance factor is defined as the ratio of the
radiant flux actually reflected by a sample surface éo that

reflected by an 1ideal, perfectly reflecting, perfectly
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diffusing standard surface, irradiated in exactly the same
way as the sample (Robinson and Biehl, 1979). The measured
reflectance value, often expressed 1in percentage, of a
target surface for a given wavelength will depend on the
geometry of the arrangement of radiation source, surface and
detector; the polarization of the irradiance; and the
spectral distribution of the irradiance at the surface
(Colwell, 1983) Since the directional characteristics of the
reflection process are crucial to remote sensing studies, é
method of measuring the bidirectional reflectance factor
(BRF5 has been devolped in the Laboratory for Applications
of Remote Sensing at Purdue University and become a standard
procedure in the study of soil spectral properties (Stoner
and Baumgardner, 1980).

For small fields of view (less than 20 solid angle) the
term bidirectional reflectance factor has been wused to
describe the measurement: one direction being associated
with the wviewing angle and the other direction being the
solar zenith and azimuth angles. (Robinson and Biehl, 1979).
A BRF reflectometer developed as an accessory to a field
spectrofadiometer permits the measurement of variable
incident. irradiance of a horizontally placed soil surface.
In this manner, specially prepared soil samples can be
irradiated and viewed from above, thus simulating the remote
sensing situation as closely as possible. Quantitative
measurements of soil reflectance using this instrument setup

have been successful in relating BRF to important soil



16

properties (Beck et al., 1976; Montgomery and Baumgardner,
1974; Montgomery et al., 1976; Stoner and Baumgardner, 1980;
Latz et al., 1981)

The technical basis for BRF measurements allows for
direct comparison of field-collected data with
laboratory-collected data when a standard calibration
procedure is closely followed (Stoner and Baumgardner,
1980). Field and laboratory calibration procedures consist
of a comparison of the response of the instrument viewing
the subject to the response of the instrument viewing a
level reference surface, often barium sulfate. Experimental
results verified the validity of’ comparing
laboratory-measured soil spectré under controlled moisture
equilibria. to field-measured soil spectral response of bare
moist soils from Indiana (Stoner et al.,1980).

In addition to laboratory measurements of soil spectral
properties, similar spectroradiometric technigues have been
extended to obtain the multispectral data of soils and
vegetation canopy in the field (Gausman et al., 1975, 1977;
Stoner et al., 1980), from the air (Schreier, 1977;
Rondratyev and Fedchenko, 1982; Kondratyev et al., 1983;
Huete et al., 1984, 1985) and used to simulate and compare
to Landsat digital data (Cipra et al., 1980; Thompson et
al., 1983). Results showed that the laboratory and field
measurements of soil reflectance could be used as reliable
ground references or calibration basis for the

characterization of soils from air- and space-borne
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multispectral measurements (May and Peterson, 1975; Cipra et

al., 1980).

3. DIGITAL ANALYSIS OF AERIAL PHOTOGRAPHIC DENSITY

Before the mid 60's, most remote sensing specialists
used aerial photographs from multispectral cameras and
manual photointerpretation with some simple classical
instruments such as stereoscopes to recognize scene features
and extract required information. A black-and-white
photographic print is an image containing a continuum of
shades of gray. The photographic density at any point in the
image is a measure of the integrated brightness or relative
reflectance, in the visible and/or infrared band of
wavelengths, of the corresponding area in the referent world
scene (Kelley, 1983). .The image is, therefore, an analog
model of the scene, in which relevant world brightness is
modelled as shades of visual gray in the image. These analog
models contain the wealth of information that can be
extracted by skilled interpreters. They can be manipulated
photographically to isolate areas of similar gray levels or
to enhance the zones where photographic density changes
rapidly. With the development of digital computer and
analysis techniques during. the past two decades,
computer-assisted image énalysis has now become possible,
providing the capability to store, retrieve, analyze and
interpret vast quantities of multispectral images from

aircraft and satellites.
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Any image may be thought of as consisting of tiny equai
areas called picture elements or pixels arranged in regular
lines and columns. The brightness of each pixel has a
numerical value ranging from zero for black to some higher
number for white. An 1image may be recorded originally in
digital format, as 1in the <case of Landsat MSS, with
numerical terms on a three-coordinate system with X and Y
locating each pixel and Z giving the pixel brightness value.
An analog image recorded initially on photographic film may
be converted into numerical format by a process known as
digitization. High-speed scanning microdensitometers -are
available for this task and capable of digitizing image
pixels as small as 50 um by 50 um square. An ordinary 35mm
slide digitized to this resolution would contain
approximately 323,000 pixels in a pixel matrix.

A multiband image may be digitized into several pixel
matrices, each containing relative reflectance or brightness
values for a different band of the spectrum. Thus, a normal
color aerial photograph can be converted into at least three
pixel matrices according to its briéhtness values of three
dye-layers: yellow, magenta and cyan, and one matrix results
from the digitization or scanning with one of the three-
fitlters: blue, green and red. Resulting pixel matrix data
are usually recorded on computer-compatible tapes and may be
read "into a computer for various processing operations.

One of the simplest methods of digital analysis is

called density slicing which only deals with one pixel
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matrix or single-channel data. Density slicing broadly
refers to a process that converts the continuous gray tone
of an 1image 1into a series of density intervals, each
corresponding to a specified digital range (Sabins, 1978).
BEach digital slice may be displayed in a separate color, as
line printer symbols or bounded by contour 1lines. This
technigue 1is wused to identify where, within the scene, the
area of interest is located. It can also be employed as a
simple classification procedure to separate the features
with different spectral responses. Some features, such as
water, can be isolated successfully by density slicing. Many
features are not nearly so homogeneous. Variations in time,
growing season, spatial location, and other factors occur.
Thus single-channel density slicing as a classification
logic is likely to be less dependable than the multichannel

methodology (Kelley,1983).

4, COMPUTER-ASSISTED PATTERN RECOGNITION TECHNIQUES

The analysis of multichannel remote sensing images can
be accomplished by computer-implemented pattern recognition
techniques. One of the most important applications of these
techniques is to group data points (pixels) with similar
spectral characteristics into spectral classes representing
different objects or features. The multispectral
classification by pattérn recognition techniques not only
examine the relationships between the brightness or

reflectance value for a given pixel and its spatial
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neighbors in a given band but also compare that value with
its spectral neighbors, that is, the pixel values at the
same spatially registered location in the pixel matrices of
all other bands.

The basis of multispectral classification is
illustructed 1in Figure 2.2 using the same data for plotting
the spectral curves in Figure 2.1. The reflectance values
for each landscape feature (vegetation, soil, water) at
three different wavelengths, fepresented by Ay, Az, and uA,,
were plotted in three-dimensional space. Spectral separation
between the classes is obvious. During the <classification,
the computer retrieves thevthree values for each pixel and
determines the position of this data point in the
classification space and, finally, assigns each of the data
points to one of the fesulting categories’ according to
appropriate algorithms . developed for analysis of
multispectral data. Although human experience is limited to
only three-dimensional perception, the computer can operate
in n-dimensional space and examine vast quantities of
.multispectral data such as Landsat- MSS and T data.

Pattern recognition techniques generally follow one of
two approaches. One approach, clustering or non-supervised
classification, uses a mathematical algorithm to direct the
computer to examine the spectral data for the area of
interest and to assign each pixel to a cluster of pixels
having similar . spectral characteristics. The number of

cluster classes to be spectrally separated generally is set
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Figure 2.2 Spectral separation of green vegetation, bare soil,

and water in three-dimentional space. (Adapted from

Baumgardner, 1982)

arbitrarily by the analyst and may or may not be determined
by the analyst's prior knowledge of the area being analyzed.
In the another approach, supervised classification, the

analyst provides the computer with a spectral definition in

the form of a set of training samples of known identity from

specific addresses within the multispectral data. The

quality of the resulting supervised classification depends

on the spectral separability of the desired classes with
existing spectral data and on the degree to which the
training samples selected by the analyst represent the

features to be classified (Baumgardner, 1982).



22

The multispectral analysis by computer-assisted pattern
recognition techniques was initiated in the early 1970's by
a group of scientists at Purdue University (Al-Abbas et al.,
1972; Baumgardner et al,, 1970; Kristof, 1971; Kristof and
Zachary, 1974; Kristof et al.,, 1973, 1975). Using airborne
multispectral scanning data; the spectral maps were produced
and related to important soil properties and conditions such
as the levels of organic matter content, drainage classes,
parent materiais, as well as soil types. Such investigations
were further extended by wusing Landsat MSS and TM
(Weismiller et al., 1977; Kirschner et al., 1978; Thompson
et al., 1981, 1983) and other satellite data (Kondratyev and
Fedchenko, 1980), along with certain ancillary data such as

aerial photographs or digitized topography data.

C. RELATING REMOTE SENSING DATA TO SOIL PARAMETERS

1. SOIL COLOR

Soils types can often be distinguished from one another
by their photographic tones and color characteristics. The
color is the electromagnetic radiation derived from the
properties of the soil materials which can be sensed by
human eye. The color imparted to a soil may be due to
specific absorption 1in the visible region or may be caused
by intense absorptions in either or both the ultraviolet and
near 1infrared, the shoulders of which may ektend forward or

back into the visible region (Stoner and Baumgardner, 1980)
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Surface soil colors that differ from ~one another or
those of parent materials are usually used to indicate the
processes involved 1in soil formation and may also be
indicative of other factors such as excessive soluble salts
or erosion. The most important factors 1influencing soil
color are mineralogy and chemical constituents, soil
moisture, soil structure, particle size and organic matter,
Da Costa (1979) quantified several important relationships
for a number of soils from a broad climatic area when he
published regression equations relating clay content,
organic carbon, soil moisture retained at 15 bars and CEC
with so0il color measured as both Munsell notation and soil
reflectance.

The quantitative relationship between soil properties
and soil color exposes the possibility of wusing remote
sensing techniques to quantify soil properties. Obukhov and
Orlov (1964) found that all of the soils that they
investigated had spectral reflectance characteristics
related to soil color. Minimum reflectance occurred in the
blue-violet portion of the spectrum and ranged from 13% for
the A horizon of thick Chernozem to 18% for the same horizon
of Sod-Podzolic soils. Maximum reflectance was in the red
region where the reflection coefficient of the same samples
increased from 15 to 44 percent. They concluded that the
visible red region aﬁd the near infrared region are the most
favorable for a qualitative and quantitative decription of

soil. Shields et al. (1968) converted spectrophotometric
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measurements of soils at different moisture contents to
Munsell notations in order to relate soil color to organic
matter. The color value was most highly correlated to
organic matter content. Page (1974) also related reflectance
measurements from a color-difference meter to organic matter
in Atlantic coastal plain soils. Within the 0 - 5% range,
reflectance measurements provided a reliable estimate of
organic matter in soils at a considerably faster and cheaper
rate than traditional methods. In all those studies,
spectroradiometric measurements were proved useful in
providing a basis for establishment of quantitative

relationship between soil color and soil characteristics.

2. ORGANIC MATTER

Organic matter in soils, consisting of decomposed
residues and its constituents, has a profound influence on
soil <color. The dark color of surface soils 1is often
associated with high organic matter content. This suggests
that soil organic matter content is inversely related to the
spectral reflectance.

It 1is generally concluded that organic matter is the
single most important variable in the visible and near
infrared bands for explaining reflectance. Baumgardner et
al. (1970) found that soils containing more than 2% organic
matter content appeared to mask out the contributions of
other soil parameters, whereas .soils with less than 2%

organic matter were harder to separate spectrally due to
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iron or mangénese interference. Stoner and Baumgardner
(1980) observed that when mineral soils were grouped into
three levels of organic matter content (0-3%, 3-5% and‘
5-10%), the reflectance curves, which decreased with
increasing organic matter content throughout the 0.52 to
2.32 um wavelength region, behaved differently. Soils in the
5-10% organic matter range showed the concave-shaped curves
while soils in the 0-3% and 3-5% range followed the
convex—-shaped curves. These two types of spectral curve also
corresponed respectively to the Type 1 and Type 2 of soil
reflectance: curves recognized by Condit (1970), which
represented the high surface organic content Mollisols and
low surface organic content Alfisols.

Many studies concluded that reflectance in wavelengths
from 0.5 wum to 1.2 um were the best for separating organic
matter levels in soils (Mathew et al., 1973b; Beck et al.,
1976; Montgomery et al., 1976; Stoner and Baumgardner,1980;
Vinogradov,1981). Krishnan et al. (1980) reported that
reflectance measurements from the visible region were more
closely correlated to the organic matter content of the soil
than the measuremenfs from the infrared region. Regression
studies indicated that organic matter content could be
related to soil reflectance by a curvilinear exponential
function (Schreier, 1977). Vinogradov (1981) supported the
finding by publishing a general equation which describes the
exponential relationship between humus content and

reflection 1in the orange-red part of the spectrum(0.6 -
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0.7um). The equation could be used to explain many data
reported by previous investigators.

vThe guantitative relationship between organic matter
content and soil reflectance from Landsat bands was
investigated by Da Costa (1979). He found that organic
carbon was negatively correlated with Landsat MSS baﬁds 4, 5
and 6. However, correlation coefficients higher than 0.50
were concentrated within the 0.5 to 0.74 um range and the
correlation decreased from band 4 to band 6. This study
.supports previous findings that the best correlation
corresponds to the visible and a small part of thé reflected
infrared region of the spectrum. Although total nitrogen was
not correlated with spectral reflectance, C/N Aratio
relationships were negatively correlated up to 1.89 um of

the spectrum in his studies.

3. IRON OXIDE AND CLAY MINERALS

Iron oxide is another major 'pigment' influencing soil
color and reflectance. Of the cations, iron is the most
common source of electronic processes which change the
reflectance characteristics of soil minerals (Hunt et al.,
1971b). The ferric iron response bands are at approximately
0.4, 0.7 and 0.87 um, and the ferrous ion response bands are
at 0.43, 0.45, 0.51, 0.55 and 1.0 um. Stoner and Bqumgardner
(1980) described the iron absorption bands either as well
resolved dips in the reflectance curve or as broad features

centered on specific wavelengths but extending their
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influence over a wide range of wavelengths.

In general, an increase in iron oxide content can cause
a decrease in visible reflectance of soils. Obukhov and
Orlov (1964) demonstrated that soils with an elevated
content of iron <could be . easily distinguished by the
reflection characteristics for pure Fe,0;. The intensity of
the reflection in the region from 0.5 to .64 um is inversely
proportional to the iron content. Mathews et al. (1973b)
reported that high free iron oxide content reduced
reflectance intensity in the 0.5 to 1.2 um region. Stoner
and Bapmgardner (1980) reported high iron content Oxisols
decreased 1in reflectance with increasing wavelength because
of strong absorption features in the infrared region.
Absorption bands of ferric iron at 0.7 and 0.9 um impart
spectral reflectance curve forms to soils with moderate to
high amounts of free iron oxides. Ferrous iron absorption as
well as hydroxyl absorption, both centered at 1.0 um, can
also be seen to 1influence the shape of soil reflectance
curves.

Most correlations between iron oxide content and
spectral reflectance remained low. However, Montgomery et
al. (1976) 1indicated that the presence of organic matter
might not diminish the contribution of 1iron to soil
reflectance. In carbon free samples originating from mine
tailings, Schreier and Lavkulich (1980) and Schreier (1985)
found good correlations between reflection and total iron

content but the introduction of organic matter to the soils
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tends to obscure this general relationship. Stoner and
Baumgardner (1980) reported that the correlation could be
much improved when samples were separated into the specific
climatic zones where the soils were developed.

In a summary of the spectral features of some common
minerals in the visible and near-infrared portions of the
electromagnetic spectrum, Da Costa (1979) revealed that
several minerals, 1including quartz and feldspar, were
spectrally featureless. Others such as kaolinite, gibbsite,
and muscovite, exhibit spectral response due to hydroxyl
effects. Oxides and hydroxides of iron, aluminum, and

titanium are important for soils in general.

4. PARTICLE SIZE AND SOIL TEXTURE

Soil particle size and soil aggregates influence
reflectance and thermal diffusivity of soils and,
indirectly, soil moisture and other measurements. It is
generally concluded that increasing particle diameter
results in a decrease of reflectivity. Bowers and Hanks
(1965) measured reflectance of pure kaolinite in size
fractions from 0.022 to 2.68 mm diameter (coarse silt to
very coarse particle size classes) and found a rapid
exponential increase in reflectance at all wavelengths
between 0.4 and 1.0 um with decreasing particle size. The
most notable increases in reflectance occurred at sizes less

than 0.4 mm diameter.
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Similar results were obtained by Obukhov and Orlov
(1964). They found that the <change in reflectivity was
associated only with the diameter and shape of the
aggregates and not with their chemical or mineralogical
composition. The fractions less than 0.25 mm in diameter
have maximum reflectivity, while fractions from 5 to 10 mm
diameter have the minimum. Orlév (1966) demonstrated that
the artificial breakdown of aggregates usually led to an
increase in the reflection coefficients caused by the
character of mutual position of aggregates. Fine particles
£ill the volume more completely, thus providing a more even
surface. Coarse aggregates, having irregular shapes, form a
very complex surface with a large number of interaggregate
spaces.

The conclusion that reflection increases with
decreasing particle diameter is true only for the laboratory
case of dispersed soils. Stoner and Baumgardner (1980)
observed that decreasing the particle size among
sand-textured soils increased soil reflectance, possibly due
to forming a smoother surface with fewer voids to trap
incoming light. The inverse response appears for medium to
fine textured soils, possibly because increased moisture
content and organic matter content associated with higher
clay content lead to lower reflectance.

Variations in soil reflectance are known to be affected
by soil texture, the relative porportion of sand, silt and

clay in the soil. The reflectances from varying mixtures of
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clay and sand were measured by Gerbermann and NeherA (1979)
at five wavelengths. Soil samples with 1low sand levels
(10-30%) had the lowest reflectance while pure sand had the
highest reflectance. As the sand level increased from 0 to
100%, percent reflectance increased in the 0.4 to 0.8 um
region, while the percent reflectance for a particular level
of sand increased as wavelength increased. Any one of the
five wavelengths could be used for discriminating among sand
levels in a clay soil.

Soil clays occur 1in intimate combination with other
soil constituents. Mixed clay mineralogies are common in
most soils. Montgomery et al. (1976) analyzed separately a
group of soils rich 1in montmorillonite and noted little
difference between correlations of reflectance and soil
properties for this group and for‘ soils as a whole. The
contribution of the clay fraction to soil reflectance may be
more important than that of c¢lay types. Al-Abbas et al.
(1972) stated that decreasing the clay content of soils
increased the spectral response, but found no clearly
defined relationship between clay content and relative
reflectance, hypothesizing that the relationship may be
secondary due to the high correlation between organic matter
and clay content. The contribution of surface soil texture
to soil reflectance is difficult to separate from other soil
parameters such as organic matter and oxides which coat soil
particles to varying degree. However, multispectral analysis

and pattern recognition techniques may be used to delineate
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and map gross textural differences in surface soils (Myers,
1983).

Cation exchange capacity (CEC) is frequently to have a
high negative correlation with reflectance, especially in
the middle-infrared region (Montgomery et al., 1976; Stoner
and Baumgardner, 1980). Although there 1is not a direct
physical basis for this relationship, it seems that CEC is
acting as a natural integrating factor for clay type and
content as well as organic matter content which exhibit

inherent spectral behavior.

5. MOISTURE CONTENT

Most soils appear darker when wet than when dry and the
decrease in reflectance with increasing moisture is apparent
throughout the reflective wavelengths (Bauer et al., 1981).
The effect of moisture on soil reflectance 1is due to the
internal total reflection within the thin water film
covering soil particles. A portion of the energy reflected
from the soil surface would not be reflected to space but
would be re-reflected between the surface of the particle
and the surface of the water layer (Stoner and Baumgardner,
1980).

The absolute magnitude of reflectance changes with soil
water content and varies considerably because of differences
associated with other soil parameters and site
characteristics. Bower and Hanks (1965) demonstrated a

potential for measuring surface moisture content by the
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reflectance methods and noted a lowering in reflectance for
Newtonia silt loam at six increasing soil moisture contents
over the wavelength range of 0.5 to 2.5 um. The amplitude
and shape of soil reflectance curve 1is affected by the
presence of strong water absorption bands at 1.45 and 1.94
um. The band at 1.94 um is the most sensitive to water, and
has been found best for relating reflectance measurements to
soil moisture content. Unfortunately, this band 1is also a
region of strong atmospheric water absorption, which makes
it impractical to measure soil 'moisture in the field by
reflectance method.

Another absorption band at 2.2 um was identified as a
vibrational mode of the hydroxyl ion (Hunt and Salisbury,
1970). They found that absorption due to the hydroxyl ion
also gave rise to 1.45 um band, the same as that of ligquid
water. The appearance of the 1.45 um band without the 1.95
pm band in the reflectance curve indicates that hydroxyl
groups and not free water are present in the material. Sharp
bands at 1.45 and 1.95 um indicate that water molecules are
located in well defined ordered sites while broad bands at
these wavelengths indicate that they are relatively
unordered, as is often the case in naturally occurring
soils,

Idso et al. (1975) measured bare soil albedo (0.3 to
2.5 um) and water content for a smooth Avondale loam at
various depth intefvals from 0 to 10 cm. A linear

relationship with soil moisture was found over the range of
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0 to 0.18 cm/cm in the 0 to 0.2 cm layer. They also found
similar relationships for deeper layers apparently due to
the close correlation between soil moisture at the surface
and at deeper layers. Reflectance measurements in the field
and from the air- or space-craft seem to be only sensing the
moisture content in a layer of 5 to 10 cm thick ét the
surface. This limitation implies that remote sensing
approaches may not be able to directly satisfy the
application which requires knowledge of the moisture
condition in the root zone of the soil. Meyer (1983) <cited
that AMoore et al., correlated Skylab S-192 multispectral
scanner measurements at six wavelength range from 0.56 to
2.35 um with soil moisture content of three different layers
(0 to 2, 2 to 14, and 10 to 30 cm) for 13 fields. The most
highly significant correlation wés obtained for the 2.10 to
2.35 um band and for a depth of 0 to 2 c¢m. Wavelengths
greater than 2.10 um were required to reliably separate wet
and dry bare surfaces. From a laboratory study with
controlled moisture tensions, Stoner and Baumgardner (1980)
also found a negative correlation existed between
reflectance and moisture peréentage by weight of 481 soils

in the 2.08 to 2.32 um wavelength band.

D, SPECTRAL CHARACTERIZATION QOF SURFACE SOILS
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1. SOIL SPECTRAL CHARACTERISTIC CURVES

Soil spectral curve, representing an overall reflected
radiation of soils as a function of the visible and infrared
regions of the spectrum, can be used to identify some so0il
features and differentiate among soil groups.

Classification of soils with respect to their curve
shape has been done successfully by Condit (1970). Spectral
reflectance values extending from 0.32 to 1.00 pum
wavelengths were obtained for 100 soil samples collected
from 36 states. Measurements were made of both wet and dry
samples, which wvaried widely 1in color and reflectance.
Procedures were established for classifying the soil spectra
into three general types with distinct curve shapes. As a
result of a characteristic vector analysis of the spectral
reflectance data it was concluded that reflectance of a wide
variety of soils for all wavelengths could be predicted with
sufficient accuracy from measurements at five wavelengths
0.45, 0.54, 0.64, 0.74 and 0.86 um. However, Condit's study
did not relate these general soil spectral curve types to
soil characteristics or classification. Cipra et al. (1971),
based on field spectroradiometric studies, showed the
properties and classification of seven soil series in terms
of Condit's spectral curve types.

A comprehensive study of the reflectance properties of
soils conducted by Stoner and Baumgardner (1980), using a
spectroradiometer in the laboratory, measured the spectral

reflectance of 485 surface soil samples from the U.S. and
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Brazil. Five distinct soil spectral reflectance curve types
were identified according to curve shape and the presence or
absence of absorption bands. These curve types were
distinguished as having in common certain differentiating
characteristics pertaining mainly to the organic matter and
iron oxide content of the soils. Drainage characteristics
were also taken 1into account. The first three curves.were
similar to those described by Condit (1970), which dominated
the soils (Stoner and Béumgardner, 1981a).

Soil parameters which influence spectral reflectance
curve were summarized by Stoner and Baumgardner (1980,
1981a). Based on a statistical discriminant analysis,
Thompson et al. (1983) noted that Stoner's five curve types
for different soils represent genetically homogeneous soil
properties and are generally separable within simulated

Landsat greenness and brightness vector space.

2. FIELD CHARACTERISTICS OF SOIL SPECTRA

Field spectra of soils measured by either ground-based
spectroradiometer or airborne or spaceborne sensors may
differ substantially from spectra measured under laboratory
conditions due to the differences of the environmental and
radiation factors experienced in two situations. Aside from
the atmospheric conditions and solar radiation change
itself, soil surface conditions such as green vegetative
cover, nonsoil residue, and surface soil structure ana other

factors all have a substantial influence on reflectance
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spectra of surface soils.

Spectral composition of the reflected radiation from
green vegetation is strikingly different from that from bare
soils. Much work relating to soil-vegetation interactions on
reflectance of the earth canopy has been done recently
though the effort 1is often devoted to the effect of soil
background on vegetation discriminations. Hoffer and
Johannsen (1969) indicated that density, morphology, and
condition of the geometrical arrangement of leaves 1in a
plant canopy were the factors which determined the extent to
which green vegetative cover affected the reflectance from
surface soils.

Although dense vegetative cover of c¢rops or natural
plants may mask soils themselves, inherent fertility,
drainage pattern, and moisture holding capacity differences
among soils tend to influence the vegetation growth on these
soils. Thus although the soil itself eventually is masked by
plant canopies, different soil features may still be
identified to some degree by means of the canopy variation
in phenological and morphological characteristics (Westin
and Lemme, 1978). Even at the point of maximum canopy
devolopment, soil patterns have been observed in aircraft
MSS data of crop land (Kristof and Baumgardner, 1975).

Dead or diseased leaves behave differently in the near
infrared wavelength region in comparison with live, healthy
leaves. Field spectroradiometeric investigations showed that

sugarcane crop residue littered on the soil surface had
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higher feflectance than bare soils, but that standing crop
residue had 1lower reflectance than bare soils (Gausman et
al., 1975). Residue-covered soils for a variety of crops and
grasses were best discriminated from bare soils with Landsat
reflectance measurements from 0.5 to 0.6 wum. Further work
with wheat straw suggested that the near-infrared region
from 0.75 to 1.3 um was best for distinguishing among
reflectances of soil-tillage-straw treatments (Gausman et
al., 1977).

Surface roughness (soil aggregation), as governed by
tillage treatments, affects soil reflectance by means of
reflectance surface and shadows. The general conclusion has
been reached that rougher soil surface results in lower
reflectance (Myers, 1983). Cipra et al.(1971) found that
crusted surfaces gave higher reflectance values in the 0.43
to 0.73 um wavelengths than did soils with the crust broken.
The lower reflectance of the disturbed soil was attributed
to the rough surface which presumably caused scattering of
light as well as a shadowing effect.

Reflectance of undisturbed soils measured in the field
is generally the inverse of that measured in the laboratory.
This 1is readily apparent on aerial photos which show sands
to have higher reflectance than silts and clays (Myers,
1983). This is because fine-textured soils in the
undisturbed condition generally have structure, which gives
them the characteristic .of aggregates coarser than sand.

Thus, measurements for the identical soils, in an
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undisturbed condition iﬁ the field, shows sand having the
highest reflectance ' whereas the fine-textured soil the
lowest. Obukhov and Orlov (1964) showed that soils with
well-defined structure in the plow layer were found to
reflect 15 to 20% less 1light energy than structureless
soils.

Technically, many methods can be used to reduce the
influences of 1illumination variation and soil surface
conditions on spectral interpretation of soil properties or
patterns. One promising technique is ratioing of multiband
images or multispectral data. Although the ratio approach is
particularly used to enhance differences associated with
soil conditions such as color, drainage and texture, it has
the effect of reducing spectral or image tone variations
related to directional and intensity variation of scene
illumination caused by sun angle, slope, aspect, surface
roughness etc. (Wagner et al., 1973). The technical
assumption for a successful ratio method 1is that those
variations which can be eliminated or reduced are not or

'only slightly wavelength dependent.

3. IDENTIFICATION AND CHARACTERIZATION OF SOIL PATTERNS

The wunderstanding of soil inherent behavior resulting
from soil parameters along with the knowledge of field
spectral properties of surface soils provides the basis for
soil pattern identification and characterization by airborne

and spaceborne remote sensing. Shockley et al. (1962)
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demonstrated the wvalue of a soil moisture signature in
identifying soils. Some soils that were otherwise difficult
to differentiate could be distinguished from each other when
using values of reflectance measured with variable moisture
contents. If reflectance at six wavelengths - 1.40, 1.75,
1.94, 2.25, 4.00 and 4.50 um - were known, any soil that
they tested could be identified.

The good relationship between soil organic matter and
reflectance has been wutilized to produce spectral maps
relating to soil types (Baumgardner et al., 1970; Kristof et
al., 1973). Prairie soils, forest soils and transitionai
soils were included in their studies. By using airborne MSS
data and  computer classification, they successfully
delineated and mapped surface soil area into five spectral
clasées which represented five 1levels of organic matter
ranging from 1.5 to 7%. Since the organic matter content in
the soil affects the color, heat capacity, water holding
capacity, CEC, soil structure and érodability, the spectral
maps can be of special importance in soil productivity
assessment. Erosion classes separated spectrally were
reported to be comparable in location and extent to field
observations (Mathews et al., 1973a). This is attributable
to the close relationships between erosion classes and
surface organic matter and iron oxide contents.

Extending laboratory and field results of
spectroradiometry to the level of airborne or spaceborne

remote sensor, it is 1likely that reflectance data from
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carefully selected wavelength bands can be used to extract
information from bare soil areas that may be related to
levels of organic matter, soil moisture, particle size
distribution , iron content, or used as an ‘indicator of
potential productivity such as CEC (Myers, 1983). Where
prior information 1is' available about soil drainage and
parent materials, even better correlations can be expected
within more homogeneous areas of soil inference.

As a site characteristic integrating the effects of
climate, local relief, accuﬁulated organic matter and soil
texture, soil drainage can be expected to be closely
associated with surface reflectance (Stoner and Baumgardner,
1981b). " Kirshner et al.(1978) wused digital analysis of
Landsat MSS data to produce a spectral map of non-vegetated
soils interpreted according to drainage characteristics. By
corrélating drainage classes with the so0il series, soil
mapping units could be more accurately defined. A procedure
of partitioning the area 1into different parent material
areas based on photointerpretation together with automatic
spectral classification within parent matérial zones led to
the preparation of 1:15,840 scale spectral map sheets which
was intended for use in a soil survey (Weismiller et al.,
1979). Again, spectral classes represented were most closely
correlated with soil drainage. Although it was sometimes
possible to correlate soil properties such as organic matter
and surface texture with the spectral classes, these

correlations did not prove as consistent as those with
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drainage characteristics.

Weismiller et al. (1977) and Wong et al. (1977) point
out that a spectral analysis of soils alone cannot
distinguish between widely different soils exhibiting
similar spectral responses. vThe accuracy of soil
identification has been considerably degraded by data noise
characteristics. By combining quantitative ancillary data
such as digital terrain factors with MSS data, a more
reliable delineation of soils can be provided than can be
derived solely from spectral classification. Following this
approach, Weismiller et al. (1977), by wutilizing soil
spectral information combined with digitized topographic
boundary and parent material boundary data, has presented a
detailed soil map showing 14 subgroups, 7 soil families and
18 soil series classes.

The usefulness of spectral information for soil pattern
recognition over a vast territory in the U.S.S.R. has been
tested by Kondratyev and Fedchenko (1980). Spectral
brightness coefficients (SBC) were measured from an altitude
of 100-150 m by an aircraft equipped with a high-speed field
spectrometer with discrete spectral scanning 1in the
wavelength region of 0.4 to 0.9 um. A supervised approach of
pattern recognition was performed, under a test site which
included all types of soils in arable lands of the region
under investigation. The final product was a soil map for
the entire area of Ukraine and Moldavia ‘territories. This

map was then compared to the conventionally accepted map
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with a coincidence level of 94.3%.

Kondratyev and Fedchenko (1982) made another spectral
map for 1identification of soil organic matter contents for
the same area. In this study, the ground measurements of
spectral brightness coefficients for selected plots
measuring 50 by 50 m with different contents of organic
matter instead of soil types were performed for the
construction of a calibration curve, Again, the
air-measurements were carried out by an AN-2 aircraft with
the same spectrometer at an average flight altitude of about
100 m. Because all measurements were in cloudless sunny
weather at a solar elevation of no less than 40° and after
plowing, the influences of soil moisture content, degree of
cultivation, and 1illumination conditions on spectral
properties were assumed to be eliminated, thus, the readings
from ground measurements used in the calibration procedure
would be approximately the same as those from
air-measurements. They used this approach to map soil
organic matter for entire areas of the Ukraine and Moldavia.
This work was further extended to other areas but combined
with a density analysis of Meteor satellite 1images
(Kondratyev et al., 1983). The results of aircraft
measurements were used to construct a training sequence from
which they could estimate organic matter content in the
soils of an area where no aircraft measurements were
performea in that period, but which appeared on the same

space photograph.
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Although the aerial photographic images'have been long
used for identification of so0oil features, the use of
airphoto tone (density) as a measure of the variability of
individual soil properties cannot be regarded, as promising
as the multispectral classification. Cihlar and Protz (1972)
found that infrared color film recorded some specific
information about soil mapping units but correlation between
photo-density values and soil properties was poor. Evans et
al. (1976), after examining the correlations of photo
densities with organic matter contents within an area of 60
km? and with organic matter contents as well as othef soil
properties within fields, concluded that tonal patterns were
good indicators of different soils but the correlation
between tonal densities and specific soil properties was not
good enough for those properties to be accufately predicted.
Moreover, correlations were even lower when larger areas
were 1involved. They suggested that tonal values are best
used in conjunction with other criteria, such as pattern and
landform analysis. In another study, Evans (1979) evaluated
aerial photos collected over bare soils and found that the
color changes related to soil moisture varied with different
soils. He concluded that it was wunlikely that changes in
soil water-content could be estimated using photo density.
The level of importance of. tone varies between localities,
and tonal density could not always be used as a definitive
criterion for a particular soil nor predicting particular

soil properties.
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However, Piech and Walker (1974) reported that an
empirical reflectance ratio method obtained from the red and
blue spectral bands of conventional color air-photos could
be used to delineate relative so0il moisture and texture
patterns. If the darker soil element has a greater
red-to-blue reflectance ratio than the lighter soil element,
the tonal wvariation between the so0il elements is caused
principally by moisture. If the darker soil element has a
smaller red-to-blue reflectance ratio, the soil elements
differ principally due to texture. To perform the ratio
analysis, the interpreter must relate soil image densities
to reflectances by calibrating the color 1imagery through

density variations in shadow images.

E. SUMMARY

Based on this literature review it is evident that that
remote sensing techniques show significant promise as a tool
ﬁo predict soil properties and soil-variability. However, a
lot of parameter 1interactions influence and reduce the
predictive reliability of such methods. The most prémising
direction is in the spatial delineation of soil types and
the quantification of organic matter and soil moisture. The
former must be based on an analysis using spectral curves
over a wide wavelength range while the latter can most
likely be p;edicted from the reflection at _specific
wavelength bands. How this can be applied to detailed soil

assessments on a field specific basis and how this can be
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translated into fertility assessments will be the focus of

the present thesis research.



Chapter III

MATERIALS AND METHODS

A, SAMPLING DESIGN

The soil wvariability 1in the test field was examined
using three different sampling schemes: conventional,
selective, and stratified random. The sample collection took
place on May 13, 1984, when the field was prepared for
planting and prior to fertilizer application. The surface
soils were sampled at 0-20 cm depth using a shovel and the
sample collecﬁion was carried out independently for each

sampling scheme.

1. CONVENTIONAL SAMPLING

Conventional sampling was carried out‘according to the
B.C. Ministry of Agriculture (BCMAF, 1978) guidelines and
consisted of collecting 12 soil samples 1in a sﬁbjective
manner so as to sample only the dominant soil conditions and
to avoid extreme dark or gravelly patches which were present
in the field. Twelve samples were then combined into one

bulk sample for subsequent analysis.

2. SELECTIVE SAMPLING

Selective sampling was carried out to show the contrast
of the soil pattern and to determine if the visual
perception of the surface soils could be translated into

chemical differences in the field. Forty-seven soil samples

46
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were selected and the samples could visually be classified
into three groups: dark soils (approximately 20% of all
samples) gravelly soils (approximately 20% of all samples),
and dominant, brown soils (approximately 60% of the
samples). The samples were selected in such a way that the
dominant soils in each of 28 equal size grid cells were
examined. The field was stratified into grid blocks of 30 m
by 30 m dimensions and these were the same units used for
the stratified random sampling, except that the samples
collected 1in each grid cell were chosen subjectively on the

basis of visual appearance (Appendix 1).

3. STRATIFIED RANDOM SAMPLING

The plot design for the stratified random sampling is
illustrated in Figure 3.1. The entire study site was divided
into 28 equal-sized, 30 m by 30 m squares. Because of the
uneven shape of the field, 6 additional half size plots were
also sampled. Two random samples were collected in each full
size plot and one random sample was collected for each half
size plot. Pairs of random numbers selected from random
number tables provided the <coordinates for the sample
location. Sixty-one samples were collected independently
using the stratified random sampling technigque which was
assumed to provide best estimates of true field conditions.

All samples were described in the field and the
location of the sample points was recorded 1in coordinate

numbers in order to facilitate the sample location
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Figure 3.1

Illustration of stratified random
sampling plot design: two samples
were randomly taken from each plot.
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, identification on aerial photographs.
In addition, small metal cans with tight-fitting lids
were filled with soils from each of those sampling locations

for gravimetric soil moisture determination.

B. SOIL PHYSICO-CHEMICAL ANALYSES

1. SAMPLE PREPARATION AND PHYSICAL MEASUREMENTS

Samples were air-dried in the laboratory, crushed with
a wooden rolling pin, and passed through a 10 mesh sieve to
remove all coarse materials larger than 2 mm in diameter.
Coarse fragment content was measured by weighing and then
discarded. Sieved soil samples were stored in air-tight
containers . for further chemical and reflectance
measurements,

Soil moisture content was determined gravimetrically by
drying in the oven at 110°C. Munsell color notations were
taken from each of the soil samples in both moist and dry

conditions.

2. CHEMICAL ANALYSIS

All chemical analyses were carried out on sieved,
air-dried soil samples, following standard analysis methods.
Soil pH was measured in 1:1 soil water solution by a
Radiometer pHM62 Standard pH meter. Total carbon analysis
was conducted using a Leco Carbon Analyzer(Leco, 1959).

Organic matter content was determined by the Walkley-Black
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method and expfessed as % organic carbon (Allison, 1965).
Exchangeable calcium, magnesium, sodium, and potassium were
determined by the ammonium acetate extraction method at pH
7.0 (Chapman, 1965). The concentrations of cations in the
extracts were measured on a Perkin Elmer 306 atomic
absorption spectrophotometer. Cation exchange capacity was
determined by the analysis of NH,; concentration of the
extract with a Technicon Autoanalyzer II (Technicon, 1974).
Total nitrogen was determined using the colorimetric
method under the Technicon Autoanalyzer II (Technicon,
1974). The Bray P-1 method was employed for determining
available phosphorus (Olsen and Dean, 1965). The
concentration of P was measured colorimetrically with a
Gilford Stasar II spectrophotometer at 660 um (Murphy and

Riley, 1962).

C. CONVENTIONAL VARIABILITY AND FERTILITY ASSESSMENT

The variability . of soil chemical properties was
determined and assessed in a conventional analysis based on
soil data from samples collected by stratified random
sampiing technique, following the methods used by Beckett
and Webster (1971). Comparisons were made using sample data
from the selective sampling as well as the conventional
sampling.

Fertilizer requirement assessment and recommendation
were made for P and K only. The soil test value was

estimated using the composite sample from the conventional
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sampling method which consisted cf 12 sub-samples. The
fertilizer rate and the amount of fertilizer required for
the field were then determined according to 'the guidelines
in the Soil Testing Methods and Interpretations published by
BCMAF (Neufeld, 1980). This manual is routinely used for
soil testing and for making fertilizer recommendations in

the province, including the Lower Fraser Valley.

D..REMOTE SENSING TECHNIQUES

1. SPECTRAL REFLECTANCE MEASUREMENTS

Bidirectional reflectance factor measurements of soil
samples were performed iﬁ the laboratory wunder artificial
illumination condition, wusing a multi-channel spectrometer
(Exotech Model 100 A). The samples were distributed on a
flat 30 cm * 30 cm surface and the spectrometer was mounted
in a fixed position approximately 50 c¢m above the sample
stage with a field of view about 15°. A bariuﬁ sulfate
paint, Eastman Kodak white reflectance standard, was used to
calibrate spectral readings for all sample measurements.
After every sixth soil sample the BaSO, paint was measured
to account for any changes -in instrument setup and
illumination condition. The <calibration and measuring
procedure outlined by Robinson and Biehl (1979) was followed
in this study.

Spectral readings (expressed as % reflection) in

Landsat spectral band 4(0.5 - 0.6 wm), 5(0.6 - 0.7 um),
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6(0.7 - 0.8 um, and 7(0.8 - 1.1 um) were obtained for each
sample and were placed in a computer file for subsequent

statistical analysis.

2. AIRPHOTO PIXEL VALUE ANALYSIS

A Wild RC-10 camera with a 152 mm focal length and
Kodak 2445 color negative film was used for the aerial
mission. The test area was covered at the time the soil
samples were collected in the field, and the 1:4000 scale 9
* 9 inch color prints obtained from the air photo mission
were used for the guantitative multi-dye layer pixel value
assessment of the spatial pattern of the soils. Color
infrared film at the time was not available for this study.

The field test area which was identified on the aerial
. photos was digitized wusing an Optronics C-4500 color film
scanner. The scanning was done for both the magenta and the
cyan dye-layers using the green and the red filters. The
optical aperture of detection was selected at 100 um and the
data was stored on the computer tape for digital analysis on
a Raster Technology (Model 25) image analysis system. The
blue 'sensitivé layer was not chosen because the light in
this wavelength band is‘subject séattering by haze and dust
particles 1in the atmosphere and the contrast and detail of
the image would be reduced (Carroll, 1973).

After digitization, the pixel matrices of both
dye-layers were read into a computer, with the numerical

scale of pixel values from 0 for black to 255 for white. The
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pixel size is 100 um by 100 um and represents the ground
spatial resolution about 0.4 m by 0.4 m. The digitized
image, then, was portrayed on a Raster Technology color
display screen for various analyses such as area
delineation, histogram and classification.

The area of the study site was delineated on the
display screen and all areas outside the target field were
eliminated. Reflectance or ©pixel value variations were
examined by profiling and frequency distribution analysis.
The latter showed the relative frequency of appearance of
given pixel values for the entire study site.

Before using a line printer to output pixel matrix
data, a computer program was written'and used to average the
pixel values for every 10 by 10 pixels, with a resultant
ground resolution of about 4 m by 4 m in area per pixel
point. The reason for reducing the volume of data 1is the
difficulty of handling such a large volume of original data.
Printer outputss of the image pixel value matrices 1in
individual dye-layers (magenta and cyan) for the entire site
were obtained and pixel values for each sampling location
were taken from the printouts according to the sample point
coordinates on record. The printout data were also used for
cluster analysis to classify the pixel values of soil
samples into groups in two dimensional space (similar to

non-supervised classification).



54

E. STATISTICAL METHODS

An outline of the statistical methods used 1in this
study 1is presented in Figure 3.2. All analyses, if not
specified, were performed using the procedures in the MIDAS

package (Fox and Guire, 1976).

1. VARIABILITY ASSESSMENTS

Various descriptive statistics were calculated for soil
variability assessments. They are the mean, standard
deviation, minimum, maximum, and coeffecient of variation
(%CV). CV is a>unitless value defined as:

%CV = standard deviation/mean * 100
CV was used to express the variability of parameters becaﬁse
it accounts for both mean and range(standard deviation)
differences, and the results can be directly compared one

another.

2. SIGNIFICANCE TESTS

T-test compares the means from two sets of samples by
calculating student's T value and tests the significance of
the difference between the means. The T-test was used to
test soil differences between samples from different
sampling methods at the 95% confidence 1level when both
sample sizes were larger than 12 samples.

The Mann-Whitney U-test (Siegal, 1959) was also a
significance test used for comparing sample differences. The

Mann-Whitney U-test 1is a nonparametric test with minimal
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assumptions on saﬁple data, permitting sample size of less
than 12 to be compared. The Mann-Whitney vU—test was
performed mainly to determine if the <cluster analysis
groupings .were significantly different from one another at

the confidence level of 95%.

3. RELATIONSHIP ANALYSIS

A collinearity study of the data was performed by means
of a correlation matrix, which expressed the linear
relationship between any two variables = in the form of a
correlation coefficient. All basic data: soil parameters, %
reflectances, and pixel values for soil samples were entered
into the program. Spectral band ratio and band combination
were also considered, and for some so0il parameters, a
logarithmic transformation was performed. The resﬁlting r
values for the soil properties gave a first order indication
of how well each property could be predicted from spectral
reflectances and pixel values and which spectral band wés
best.

For those pfoperties and bands which showed high
prediction potential, scattéfgrams were generated, and
simple linear regressions were performed. The four 'spectral
bands and two dye-layers were used as independent variables,
respectively, whereas the soil properties were chosen as
predictive variables.

The stepwise multiple regression was carried out to

determine which soil properties and parameter interactions
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were best related to reflectance or pixel values. Soil
parameters which entered 1in stepwise regression at the
significance level of 90% were used to express the

variations in reflectance or pixel value.

4, CLASSIFICATION

The procedure outlined by UBC CGROUP (Patterson and
Whitaker, 1978) was employed to perfofm a éluster analysis
for soil samples on the basis of soil spectral reflection
and dye-layer pixel values, Cluster analysis 1is a
multivariate classification method based on the statistical
similarity of 1individuals or groups of individuals. The
hierarchical average distance linkage grouping (Ward, 1963)
was used in this procedure. Another program, UBC CORDER, was
used in combination with CGROUP to ‘rearrange the original
data set 1in a manner which is comparable to the grouping
order. CGROUP output included a dendrogram of the grouping
and indexes associated with each grouping step which
indicated the compactness of clusters relative to the
separation between clusters. The properties associated with
the soils in each cluster were avefaged tob indicate the
nature of each <cluster in terms of its soil physical and

chemical properties.

5. DISCRIMINANT ANALYSIS

Discriminant analysis 1is a multivariate statistical

method in which linear combinations of variables are used to
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distinguish between two or more categories of samples.
Stepwise discriminant analysis chooses the linear
combination of variables that best separates groups in a
stepwise manner and, after the discriminant functions have
been computed, group membership can be predicted using
coefficients. The discriminant analysis can be used not only
to classify a sample in which actual group membership is
unknown but also to identify the misclassified samples and
place them into their proper groups.

Stepwise discriminant analysis was carfied out using
the UBC-BMDO7M program (Dixon and Brown, 1979). The groups
obtained from a cluster analysis of the spectral and pixel
value analysis served as a basis for the discriminant
analysis and the analysis was performed 1in order to
determine which of the chemical and physical properties best
differentiated the spectral reflective properties of the
soil samples and soil types. The output from the procedure
included a 1list of those properties which appeared
significant in distinguishing among clusters at the
confidence level of 95%. The classification aspect of the
discriminant analysis was not emphasized in the present

study.



Chapter IV

RESULTS AND DISCUSSION

The laboratory results of soil physical, chemical,
reflection and digitized airphoto measuremnts on soil
samples are presented in Appendix 2 and 3. Appendices 4 and
5 give the computer printouts of green and red filter pixel
value data for the entire test field. Results interpretation

and discussion are given in the following four sections.

A, CONVENTIONAL ASSESSMENT OF SOIL VARIABILITY AND FERTILITY

The principal aim ﬁnder this section 1is to determine
the lateral variability of soil properties within the field
using mean sample values and coefficients of wvariation and
compare the different sampling techniques and sample
groupings. The emphasis is placed upon those soil parameters

pertaining to soil fertility status.

1. THE MAGNITUDE OF SOIL VARIABILITY

The overall variability of selected soil properties
obtained from the different sampling schemes are displayed
in Table 4.1.1. The %CV wvalues for all {08 samples
(selective + stratified random sampling) were compared with
data obtained from the stratified random and selective
sample sets and literature values.

Considerable variations were present in all parameters
except pH. In eight out of nine parameters, the data from

the selective sampling showed the highest variability. This
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Within-field variability (%CV) of selected soil
properties and comparison with the median values
from Beckett and Webster (1971).

SOIL COEFFICIENT OF VARIATION (%)
PROPERTY
Stratified Selective Combined Beckett and
random samples samples samples Webster's
n = 61 n = 47 n = 108 Median Value
MC 21.5 34.8 29.1 ‘ -
CF 26.4 38.4 31.4 -
pH 4.3 5.2 4.6 -
oC 23.3 37.2 30.3 25-30
N 21.4 35.7 27.8 25-30
P 37.6 44.6 40.6 45
K 46.9 79.9 62.7 70
Ca 43.7 41.4 42.6 30
CEC 18.3 30.5 25.8 -
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is expected because the selective sampling placed more
emphasis on the extreme conditions in the field. If we
combine the data from the stratified random and the
selective sample set then the variability is slightly hiéher
than in the set sampled with the stratified random technique
but smaller than in the selectively sampled data set. These
trends and comparisons were consistent for all parameters
except Ca, which was more variable in the stratified random
sample set.

K was found to be the most variable parameter showing
the highest &CV and the greatest difference between sample
sets. Ca and P had %CV above 40% and moisture content,
coarse fragment content, % organic C, N and CEC all showed
%CV values which were in the range of 25-30%. This implies
that K, Ca and P are the most variable parameters in the
field and are, therefore, more difficult to quantify for
fertilizer recommendation work. .

The values obtained 1in this study compared very
favorably with those obtained by Beckett and Webster (1971)
which were based on a literature review. The median values
were all very close except for Ca which had a coefficient of
variation approximately 10% higher in the study site than

that quoted in the literature.

2., COMPARING MEAN VALUES OF THREE SAMPLING METHODS

The mean and range values obtained from the

conventional, stratified random and selective sampling data
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set were compared in Figure 4.1.1. In spite of 1large
differences in %CV values between different sampling
methods, the mean values were very close. Based on a further
comparison showing the % differences between means, the
difference was in all cases 1less than 12% wusing the
stratified random data set as a basis for comparison (Table
4,1.2). The mean differences between the stratified. random
and the selective sampling were checked by a student-T test
and the results showed that there were no significant
difference for any of the tested soil properties at the
confidence level of 95%. This indicated that the selective
sampling, which was based on selecting the -dominant soil
types in each 30m by 30m sampling grid, was representative
of the field conditions.

Similar results were obtained when the conventional
sample mean was compared with the other data sets (Table
4.1.2 and Figure 4.1.1). The estimates never differed by
more than 13.1% from the stratified random sampling. The
latter method was considered the most objective method of
sampling for assessiqg soil variability (Ball and Williams,
1971; Bank, 1984) and should therefore be used as a base for
comparison. We can thus conclude that the mean values
obtained from the three sampling methods are representative
of the field conditions with the exception of P values which
show a 13% difference between conventional sampling and the

other two methods.
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Comparisons of three sample sets

from conventional, stratified
random and selective sampling.

SOIL CONVENTIONAL SELECTIVE STRATIFIED
PROPERTY SAMPLING SAMPLING RANDOM
SAMPLING
MEAN 27.6 29.6 26.5
MC SD - 10.3 5.7
$ D# 4.2 11.7 z
MEAN 28.2 29.4 29.7
CF SD - 11.3 7.8
g D -5.1 -1.0 -
MEAN 6.87 6.94 6.97
pH SD - 0.36 0.30
$ D ~1.8 -0.4 -
MEAN 2.41 2.53 2.4
oc SD - 0.94 0.56
$ D -0.4 5.4 -
MEAN 0.142 0.145 0.143
N SD - 0.051 0.031
% D -0.7 1.4 -
MEAN 95. 1 08.9 109.4
p SD - 48.4 41.1
% D -13.1 -0.7 -
MEAN 0.53 0.50 0.49
K SD - 0.27 0.23
$ D 8.2 2.0 -
MEAN 10.3 10.3 10.8
Ca SD - 4.2 4.7
$ D -4.6 -4.6 -
MEAN 19.8 20.1 18.1
CEC SD - 6.14 3.50
$ D 9.4 11.0 -

# Percent mean difference from the sample set of the

stratified random sampling.
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3. IDENTIFYING THREE SOIL TYPES FROM THE SELECTIVELY

COLLECTED SAMPLES

As previously discussed, there were no significant
differences between means among the different sampling
methods. However, the samples collected selectively can be
grouped 1into three categories based on their visual
appearance (see Appendix 1). The three categories of samples
represent very dark soils (Type 1), gravelly, light colored
soils (Type II) and generally brown or dominant soils (Type
I1I) respectively. The average Munsell color notations of
hue, value and chroma measured on the air-dry condition for
each of three soil sample categories are given 1in Table
4.1.3. The distributions of these three soil types is
readily visible on the aerial photograph (Plate 1).

Although <color hue was similar among the three soil
sample categories, the measurements of color value and
chroma were different from each other, with the highest
numerical values for soil type II and the lowest values for
type I. It is noted, however, that the differences between
type II and 1III are much smaller than the differences
between type 1 and other two types, which implies that the
same trend may be observed in soil chemical differences. The
Mann-Whitney test showed that the differences of color value
and chroma between soil type II and type III were not
significant at the confidence level of 95%

Figure 4.1.2 and Table 4.1.4 show the mean values and

standard deviations of selected soil fertility properties
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Table 4.1.3 Average Munsell color notations for three soil
categories from the selective sampling.

SOIL TYPE HUE VALUE CHROMA
1 10YR 4.50 3.10
11 10YR 6.11 4.33
I11 10YR 5.86 4.04

obtained from these three categories of the soil that were
classified according to their visual appearence using the
selective sampling method. Mean values from the stratified
random sampling and the percent mean differences of the
three soil sample categories from the stratified random
method are also provided in Table 4.1.4 for comparison. The
Mann-Whitney U-test was wused to test the significant
difference between means for selected soil fertility
properties from various sample groups and results are given
in éigure 4.1.3.

Significant differences were obtained between all three
soil types , and OC, N, K and CEC were found to be the best
distinguishing parameters. Soil .type I and II were also
found to be significantly different ffom the soil data set
collected using the stratified random method. Soil type III

as shown in-Figure 4,1.3 did not differ from the stratified
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Table 4.1.4 Comparisons of three soil categories from
the selective sampling and samples from
the stratified random sampling.

SOIL SELECTIVE SAMPLES GROUP STRATIFIED

RAMDOM
PARAMETER 1 I 111 SAMPLE SET
MEAN 44.7 19.5 27.6 26.5
MC SD 6.8 6.8 5. 1 5.7
% D¢ 68.7 -26.4 4.1 .
MEAN 21.2 43.1 28.2 29.7
CF SD 3.6 12.4 9.4 7.8
§ D -28.6 45. 1 5.1 -
pH SD 0.30 0.34 0.36 0.30
§ D -2.6 3.0 0.7 -
MEAN 3.96 1.90 2.21 2.40
oc SD 0.23 0.62 0.58 0.56
$ D 65.0 -20.8 -7.9 Z
, MEAN 0.210 0.108 0.133 0.143
N SD -0.053 0.027 0.032 0.031
$ D 46.9 -24.5 -7.0 Z
MEAN 156.6 93.2 95.3 109.4
P SD 67. 1 24.3 34.9 81.1
$ D 43.4 - 14.8 -12.9 -
MEAN 0.70 0.26 0.50 0.49
K SD 0.20 0.11 0.27 0.23
$ D 42.9 . -46.9 2.0 Z
MEAN 14.3 7.7 9.6 10.8
Ca SD 4.0 2.5 3.9 4.7
$ D 32.0 -28.7 -11.1 z
MEAN 28.9 14.5 18.8 18.1
CEC  SD 5.45 3.57 3.13 3.5
9.9 3.9 -

$ D 58.7 -1

# Percent mean difference of three soil categories from
the samples of the stratified random sampling.
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11 P, K, CEC,
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111 K, CEC, K, CEC
VALUE , CHROMA
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SRS K, CEC, CEC

VALUE , CHROMA

I:

Figure 4.1.3

dark soils (Type 1),

I11: gravelly/light soils (Type I1I),
II1: dominant soils (Type I11I), SRS: stratified random samples.

Significant differences between three soil

types from selective sampling and stratified

random sample set by Mann-Whitney U-test

(0=0.05), tests were made on pH, OC, N, P, K,

CEC, and color value and chroma.
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random soils and was thus representative of the average
field conditions.

The samples from soil type I tend to overestimate the
stratified random means, and the samples from soil type 11
underestimate the means for most soil properties.' The
exception is the coarse fragment content which 'shows an
opposite trend. However, the differences between type II and
the randomly selected samples are much smaller than those
between type I and the random samples for all soil
properties but coarse fragment content and K. Differences
larger than 40% appear in soil moisture content, OC, N, P, K
and CEC between so0il type I and the randomly selected
samples and in coarse fragment content and K between soil
type II and the random samples. Significance tests indicated
that the soil types could be differentiated at the
confidence level of 95% based on soil fertility parameters
(Figure 4.1.3) as well as moisture content and coarse
fragment content. Only P does not appear on the significance
table between soil type II and the random sample set or type
IIT.

These results show that the three soil types which can
be identified visually from the aerial photographs and in
the field are also chemically different. What is now needed
is to examine whether these soils require different
fertilizer treatments and whether their spatial extent is
large enough-to be . considered of importance in applying

variable rates of fertilize:s.
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4. EFFECT OF DIFFERENCES AMONG THREE SOIL TYPES ON

FERTILIZER RECOMMENDATION

Table 4.1.5 presents the results of P and K fertilizer
recommendations for corn which is in crop Group 3 specified
by the BCMAF handbook (Neufeld, 1980). This was based on
mean values estimated from conventional composite samples
and the selective samples in which three soil types were
considered separately. An attempt was made to show how the
variability of so0il fertility led to different fertilizer
rates recommendations.

The calculations for P fertilizer recommendation showed
that the P values were well above the required levels for
all soil types in spite of significantly higher mean value
observed for soil type I. In fact, all soil test values are
higher than the «critical value needed for fertilizer
application listed in the BCMAF handbook. This suggests that
heavy application of P fertilizer has likely taken place in
the recent past.

The same situation occurred for K, where large
differences between soil type I and the other soil types
were present. Once again the values were above the necessary
test value, therefore, only a minimum rate of fertilizer
(starter effect) was needed for type I and I1I. However, the
low mean K value for soil type II did show the need for a
higher K fertilization rate for those soils than the rate
for the average soil condition estimated by the conventional

method. This means that a different rate of K should be



Table 4.1.5 P and K fertilizer recommendations for crop group
three based on the conventional sampling and the
selective sampling (three soil types).

SOIL SET SAMPLE MEAN FERTILIZER TOTAL FERTILIZER
NUMBER (ppm) RATE (kg/ha) APPLICATION (kg)*
Conventional
composite 1 95 28 (P2 0g) 81
P Type-1 10 157 28 (P20¢) -
Type-11 10 93 28 (P,0¢) -
Type-111 28 95 28 (P,0,) - -
Conventional ‘
composite 1 207 45 (K,0) 130
K Type-I 10 273 45 (K0) -
Type-11 9 101 67 (K,0) -
Type-111 28 195 45 (K,0) -

* Total fertilizer applications for three soil types from the
selective sampling can not be determined based on the
presently available information.

ZL
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applied to the light colored gravelly soils in order to
achieve a maximum yield.

These calculations were based on mean values obtained
from chemical analyses of soil samples less than 2 mm in
particle size and, accordingly, the coarse fragment content
was not taken into account in determining different rates of
fertilizer application for different soils. Considering the
nearly 43% of coarse fragments 1in soil type II (Table
4.1.4), one can anticipate that actual soils would show even
larger chemical differences between type II and other soil
types. This would likely result in a higher application rate
of K than that showed in Table 4.1.5 for type II, and may
have a similar effect on P recommendations which showed only
one rate was needed for all soil types in the present study.

Total fertilizer applications for the study site (2.90
ha) were estimated using the conventional composite sample.
Since the areas represented by individual soil types are
unknown, we are not able to determine how much_fertilizers
should be applied to each of three soil types at the present
stage.

No recommendations of different rates of N fertilizer
were made in this study because presently no such standard
soil testing method for N is available in the Lower Fraser

Valley area.
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5. SUMMARY

Reliable soil sampling is a prerequisite to accurately
carry out soil—fertility tests. The conventional sampling
provided results comparable to the detailed stratified
random sampling with respect to the prediction precision of
the mean values of so0il qualities. This statement also
applies to the selective sampling data and the combined data
set. By grouping samples according to their  visual
appearence, three general categories were identified. They
could be separated on the basis of mean values and range
differences for most soil properties. The significance test
proved that the major soil fertility elements behaved
differently among the soil groups and the importance of this
effect on soil management and crop'performance should not be
underestimated. This is of particular importancé in
intensively managed fields.

Based on the current observations, it is obvious thét
high rates of fertilizer were being applied to the study
field, and a different rate is required only for K for soil
type II at the present. With a more moderate fertilizer
application rate the differences among the soil types will
be more dramatic in successive years and application of
variable rates would then be of greater importance. It is
expected that in other fields, where éhe soil tests are low,
the soil fertility wvariability within the field will be
larger, therefore, further justifying the use of different

fertilizer recommendations and soil management practices.
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B. SPATIAL ANALYSIS OF SOIL PATTERNS FROM THE AIRPHOTO

In the previous section, soils from the selective
sampling were grouped into three categories based on the
visual appearance on the ground. Each of these categories
represented a certain portion of the field in which the
soils were.sampled. The diffefeﬁces on the ground are easily
detected from the aerial photos on the basis of differences
in tone and density patterns. In this section the airphoto
pattern and its relationships to soil properties and soil
types will be evaluated. The objective is to differentiate
the field into soil units which correspond to the three soil
groups obtained from the selective sampling analysis, 1i.e.,
to divide the study field into very dark soils, gravelly

soils and dominant soils.

1. QUALITATIVE DELINEATION OF PHOTO TONAL PATTERNS

Tonal variations in the airphotos are significantly
affected by soil texture, water content and organic matter.
Sands and gravels, which are generally well drained and 1low
in organic matter, are 1light in tone and may even appear
white when they are fully exposed. Fine textured soils often
present dark tones, since their moisture and organic matter
contents are generally high. Three distinct tonal patterns
were clearly recognized from the airphoto within the study
site (Plate 1).

The very dark tones can be considered to be associated

with soil type I which represents dark soils with high
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organic matter and/or high soil watér content. In .contrast,
very light to white tonal patterns are attributable to soils
containing large amounts of gravel and low organic matter
content (Type II). The other areas which show moderate grey
tones are dominant brown soils (Type 1I1II). The three
contrasting tonal patterns were delineated from the air
photo. Using a digital planimeter (LASICO Model 1250D) the
areas of these soil patterns were éstimated and the results
showed that approximately 10.5% and 11.5% of the total 2.90
ha 1in area were occupied by the dark énd gravelly soils
respectively, and the rest (78%) was represented by the

dominant soils. This method is easy and fast, but the

accuracy is questionable because of the limitaton of human

eyes and the subjective nature of the analysis.

2. QUANTITATIVE DETERMINATION OF REFLECTION VARIATION

A .more objective method to define photo tonal or
density patterns was carried out by a quantitative analysis
of dye-layer pixel values. This was examined by scanning
micro density of the aerial image, using an Optronics C-4500
" color film scanner with the scanning interval of 100 um. Two
pixel matrices of dye-layers using green and red fitlers
were obtained with the numerial scale of the pixel values
from 0 for black to 255 for white. Three methods were used:
i.e. profiling, analysis of pixel value frequency
distribution, and multi-dye layer pixel value classification

in a Raster Technology (Model 25) image analysis system.
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Two transects across the study field were seiected to
compute the pixel value profiles using original (unaveraged)
data. The red and the green fitler pixel values were
presented in Figure 4.2.1. These profiles revealed that high
reflection variation existed across the field and provided a
general idea about median value and range of pixel‘values.

Profile B, which was in W-E direction and 40 m from the
northern end of the field, <crossed two very dark soil
patches which showed the low pixel values (160 and 170 or
below for green and red layers, respectively) comparing with
the median level pixel values as around 180 to 200. Profile
A was also in W-E direction but 160 m to the north and had
several high pixel value peaks (210 and 220 or above), which
indicated that the profile transected the gravelly areas.
The reflectance curve shapes across the field in the red and
the green filter pixel values resembled each other and the
values of red filter pixels were slightly higher than those
of green filter pixels.

The pixel value frequency distribution within the
entire field was examined uéing the histogram method and the
results were shown in Figure 4.2.2. Again the histograms
were computed using unaveraged pixel value data. The
frequency distributions of pixel values is somewhat skewed
and partially polymodal. No obvious classification is
possible based on single dye-layer pixel value frequency
distributions. These histograms were further modified to

show the four pixel value classes obtained from a multi-dye
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pixel value classification.

The multi-dye layer pixel value classification was
carried out wusing an unsupervized average distance'linkage
cluster analysis on the computer data using two dimensional
space. Four classes were 1identified as the result of the
classification (Table 4.2.1). 242 out of 1862 pixels were
classified as class A, which represents 13.0% of the total.
For other pixel value classes B, C and D the pixels counts
were 682, 676 and 262 and the areas represented are
approximately 36.6%, 36.3% and 14.1%,respectively. The mean
values observed from each of four classes were clearly
different from one another, with class D having the highest
mean pixel value and class A the lowest. Similar trends were
found for both red and green filter pixel values, indicating
the close relationship between the two dye-layers.
Overlapping pixel values only occurred between immediate
neighbors ambng the classes, as shown in Figure 4.2.2.
Statistically, these classes were found to be different
based on the Mann-Whitney U-test at the confidence level of
95%. Figure 4.2.3 illustrates that the four groups are
separable within the two dimensional vector space.

The four distinct clusters can be related to the tonal
patterns shown on the airphoto and, indirectly, to ground
soils distribution. Class A, which has the lowest mean pixel
values, corresponds to very dark tones and class D which has
high overall pixel values shows thé pattern where 1light

tones are dominant. Pixel value classes A and D are further
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Table 4.2.1 Summary of classification results from the cluster
analysis on the red and green filter pixel values
for the entire study site.

PIXEL MEAN VALUE RANGE (min to max)

VALUE n

CLASS - Green Red Green Red
A 242 168.7 176.7 147-188 139-191
B 682 181.3 196.4 173-192 181-201
C 676 191.2 205.0 185-204 192-216
D 262 210.3 220.2 194-230 210-236

Table 4.2.2 Area estimation for different soil types by
planimetry and multi-dye layer pixel values
classification.

TYPE 1 TYPE 11 TYPE 111 TOTAL
dark tones) (average tones) (light tones)
METHOD
area % area % area % area
(ha) (ha) (ha) (ha)

Planimetry 0.305 10.5 2,262 78.0 0.334 11.5 2.90

Pixel value
classification 0.387 '13.0 2.173 72.9 0.419 14.1 2.98

82
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inferréd to be associated with soil type I (dark soils) and
type I1 (gravelly soils), respectively. Pixel value class B
and C generally refer to soil type III, that is, dominant
soils. Although manual interpretation failed to discern the
subtle tonal differences between moderate grey tones, the
cluster analysis allowed theif separation into two classes
(B and C). The separation between the classes may be
attributable to the combination or interaction of densities
in two spectral bands, though the real mechanism remains

unknown.

3. COMPARING THE PIXEL VALUE CLASSIFICATION TO THE

SUBJECTIVE DELINEATION OF SOIL TYPES BY PLANIMETRY

The results from the pixel value classification can be
utilized to calculate the areas that each of the pixel value
groups represents, using the pixel counts of each class and
its spatial resolution (one pixel point = 4 m * 4 m). Table
4.2.2 shows these estimates and compares them with the
results from the manual delineation of photo tone pattern by
a planimeter. Pixel value class B and class C were combined
in order to make the results comparable.

The comparison showed that the two methods were in
close agreement and the largest relative error was less than
20%. Generally, the planimetry method estimated either dark
or gravelly soil areas to be slightly less than the cluster
analysis did, but the difference cannot be regarded as

substantial.
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In the previous section when we discussed whether
variable fertilizer recommendation rates should be applied
to different soil types, we found soil type 1II, gravelly,
light colored soils, need a higher rate of K than the
average and dark soils. According to the area estimates from
this section approximately 10 to 14% of the total area
belongs to this type of soils. This means that if we apply
an average rate to the field, 12% of area will receive
insufficient K-fertilizer., |

In summary, the spatial delineation of soils from
remote sensing images is possible since~ differences are
clearly reflected on the image by changing tonal or pixel
value patterns. Both subjective method (e.g. planimetry) and
objective method (e.g. multispectral classification) can be
used for this task. The guantitative multispectral analysis
generally provides more reliable information in
differentiating soil patterns and quantifying soil

variability.

C. PREDICTING SOIL VARIABILITY USING SPECTRAL REFLECTANCE

VALUES
The prediction potential of soil properties and types
with respect to their spatial distributiops via quantitative
remote sensing techniques depends on the nature of the
relationships between soil parameters and spectral
reflection characteristics. It is evident from the

literature that a number of physical and chemical properties
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have a profound influence on soil spectral reflectance in
certain sensitive wavelengths and thus have great predictive
value. Ho@ever, such relationships are wusually very
complicated and in some cases may not appear distinct due to
the interactions of soil properties. Furthermore, a
prediction model well suitable for this area may not be
applicable to other areas in different climatic regions.

The principal aim ‘of this section is to determine
whether the relations between soil properties and spectral
characteristics appear significant and whether these
relationships can be utilized to quantify soil chemical
properties and types from spectral reflectance measurements
of soil samples.

These questions are to be examined in two ways: (a) a
correlation/regression study to examine the relationship
between the spectral measurements and the observed physical
and chemical properties of soils on a single parameter basis
using all sample déta, and (b) a clustering/discriminant
"multivariate analysis to determine soil spectral categories
to be used for prediction of important soil properties and
soil types. The multivariate method is likely more useful
because it allows for a determination of parameter

interactions.

1. CORRELATIONS OF SOIL PARAMETERS WITH SPECTRAL REFLECTION

VALUES
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Using spectral reflectance values in the four Landsat
MSS bands versus individual soil parameters, a correlation
analysis was carried out for all 108 soil samples. A matrix
showing correlation coefficients is given 1in Table 4.3.1,
and serves as an indication of the degree in collinearity
among the variables. The original correlation matrices of
all soil parameters, reflection bands and pixel values in
two dye-layers, as well as ratioed or logarithmic
transformed variables can be found in Appendix 6 and 7. With'
the exception of pH and exchangeable Na, significant
correlations were found between most soil parameters,
spectral reflectance bands and pixel values (Table 4.3.1).
The organic matter content, expressed by percent organic C
showed the highest correlation coefficient with reflectance
Band 4 (r=0.80), followed by total N, though this
relationship may be attributed to the fact that C and N were
correlated. CEC, exchangeable Ca and Mg, and available P all
showed significant correlations with reflectance but the
correlation coefficients obtained were low (generally around
0.50), in comparison with r wvalues for reflection and
organic C. This indicates that the 1influence of these
parameters on reflection may be of secondary nature and
considerably smaller than the contribution from organic
matter. Also, their predictivity will 1likely be of lower
accuracy.

Coarse fragment content and moisture values cannot be

used 1in predictive equations in this study because the



Correlation matrix showing correlation coefficient
between any two variables. (R@ 0.05=0.1891 0.01=0.2469)

Tabte 4.3.1

10.
11.
12.

13.

14

24 .

25.

27

28.

29.

30.

31

32.

K

VARIABLE Soil Parameters vs Reflectance and Density Values
. MC .4324 - .2859 .3806  -.2559 .3895 1560 .4289  -.3562  -.6870 .7360 3819 -.7191
.CF .0765  -.0039 .0123  -.0673 . 1266 .0189 1831 - .0054 .3257 .4346 .4758 .3847
.PH . 1306 .0388 0292 - .0756 .1939 .0205 .2996 .027% 0572 1180 .2395 .0888
.TC .7914 - 7541 .7696 - .7188 .3510 .1164 2608 - .BO1O  -.7499 .6974 .0461  -.7309
.oc .7950  -.6850 .7015  -.5904 . 4637 .0973 .4245  -.7287 - .7508 .7282 .1519  -.7470
.NA .0972 -.1524 .1496 - .0474 . 0509 .0313 .2932  -.1168  -.0881 .0580 . .0721 -.0737
.2125  -.1907 .1923 - .1225 1119 .0189 .2187  -.1878  -.1859 . 1799 .0408 - . 1847
.CA .4056  -.3990 .4073  -.3744 . 1606 .0663 1511 -.4190  -.5002 .4290 .1126  -.4690
.MG .5261  -.4757 .5445 - .4314 .2850 .0508 4100  -.5223  -.5791 .5595 .1210  -.5751
CEC .5667 -.4673  :.4893  -.3610 .3619 .0302 4474 - .4941 - 5850 .5960 .2196  -.5967
P .5106  -.5080 .5385  -.4951 .2073 .0439 2129  -.5425 - .3743 .3089 .1052  -.3448
N .7403  -.6659 6229 - .5281 . 3880 .2263 .3673  -.6705 -.6259 .5877 .0540 -.6129
v .5756 .6115 .6916 .6548 . 1807 .0403 L2115 .6735 .5839 .5360 .0124 .5655
.CH .2563 .2707 .3866 .3470 .0928 .1750 . 1566 .3379 .2806 .2302 .0864 .2578
LNTC .B062  -.7646 .7365  -.7102 .3488 . 1965 1940 -.7952 -.6794 .6305 .0351  -.6615
LNOC .8213  -.7014 .6733  -.5835 .4761 .1824 .3644  -.7291 -.6753 .6503 .1175 - .6695
. LNK .3163 - 2684 .2870 -.1775 .1824 .0017 3379 -.2746  -.2570 .2605 .0906  -.2615
LNCA .5468  -.5093 .4811  -.4618 .2499 1327 1594 -.5290  -.5065 .4534 .0425 - 4847
LNMG .5786  -.4950 5333 -.4188 .3430 .0142 .4043  -.5328 - .5169 .5093 .1338  -.5184
LNCEC .5648  -.4616 .4590  -.3350 .3595 .0755 4298  -.4761  -.5487 .5653 .2235 -.5629
.LNP .5317  -.5188 5269  -.4920 .2215 .0935 .1850 -.5466 -.3184 . 2666 .0755  -.2953
LNN .7819  -.6889 6136  -.5402 .4201 .2833 .3098 - .6869 .5857 .5570 L0721 -.S771
15. 16. 17. 18. 5. 36. 7. 38. 19. 20. 39. 40.
B4 BS B6 87 84/BS BS/86 B6/87 BANDS RED GRE GRE/RED GRE+RED

L8
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effect of these parameters on soil reflection was removed by
screening and drying of the samples in the laboratory prior
to spectral measurements. Good relationships between soil
moisture and spectral reflectance were found in the
2.02-2.32 um region of wavelengths (Moore et al., 1975;
Stoner and Baumgardner, 1980). However, soil moisture
content was found to be the second highest so0il parameter
next to organic matter to be correlated with pixel value
data, especially in green sensitive dye-layer. It is evident
that soil moisture content is also an indirect factor since
it is connected with soil texture, drainage and organic
matter, all of which 1influence surface soil reflectance
characteristics in visible and near infrared wavelength
bands.

Many studies have noted that the relationship of
laboratory-measured soil spectral reflectance versus soil
chemical properties can best be described as a curvilinear
function. Scatter diagram of reflectance in the specific
bands plotted against total carbon revealed a definite
negative curvilinear relationship between soil organic
matter and reflectance (Figure 4.3.1). A natural logarithmic
transformation was performed prior to the correlation
analysis with spectral reflectance values (Table 4.3.1). It
was found that the natural Log C content was best for
relating organic matter to reflection in two visible bands
(B4 and B5) and the correlation coefficient was found to be

highest between Band 4 and Ln OC (r=0.82). Considerable
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Figure 4.3.1 % total carbon carbon plotted against
reflectance in Band 4 (0.5-0.6 m) showing
a negative curvilinear relationship.

* Numbers indicate overlapping pcints
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improvements were observed in most relationships éfter
log-transformation and these results are in agreement with
the findings reported by Schreier (1977). The
log-transformed N and P also showed a higher correlation
coefficients with the visible bands. No significant
improvement was observed between the transformed CEC and the
spectral bands, but r values for transformed Ca, Mg and K
were higher.

Band ratios and combinations were considered in this
correlation study and lower r values were found for band
ratios than for spectral bands. Table 4.3.1 also shows no
significant improvements over individual bands using
additive band combinations. It is likely that the individual
band will be superior to band ratios and combinations in
predicting soil parameters.

The Munsell color notations, especially color wvalue,
were found to be significantly correlated with spectral
reflectance and dye-layer pixel values. Their correlations
with so0il parameters such as percent OC were also noted.
Quantitative relationships between color and organic matter
of soils were found to be significant but r values were
lower than those obtained from the use of spectral values
and organic matter.

The conclusions drawn from the correlation results are
in agreement with previous findings from the literature. The
logarithmic transformation of organic matter accounts for

the highest correlation with reflectances, which means that
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on the .basis of all measured soil properties organic C has
the highest potential to be predicted from spectral remote
sensing data. The correlations of spectral data with Munsell
color wvalue, CEC, and exchangeable cations are also
significant but their predictions are more complicated and
simple linear relationships are 1insufficient because the
presence of soil organic matter may mask the effects of
other pfoperties on reflectance characteristics of soils.
The 1importance of water content is evidenﬁ, however, it is
unlikely to bevpredicted using the spectral bands employed

in this study.

2. REGRESSION ANALYSIS FOR PREDICTING SOIL PARAMETERS AND

SPECTRAL VARIATIONS

Although the degree of correlation between the soil
properties and the individual spectral bands has been seen
in Table 4.3.1, the significance of each band in predicting
the level of certain soil parameters 1is not fully
understood. This was examined by using a stepwise multiple
regression procedure to develop regression equations for
prediction of selected soil parameters from reflectance data
in four spectral bands. Independent variables also included
the pixel values of two dye-layers because our purpose here
was to determine the relative contributions of individual
wavelength reflectance or pixel values to the prediction of
soil parameters vrather than to use these band values

together for predictions. Dependent variables, or the
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variables being estimated‘from reflectance data were the
natural 1logs of total C, organic. C , N, moisture content,
CEC and color value.

Spectral bands which entered the regression equations
with their significance levels and the cumulative R? wvalues
are given 1in Table 4.3.2 for each of the predictive soil
parameters. R? values as high as 0.78 for prediction of 0C,
0.66 for N, 0;59 for moisture content were obtained at the
significance 1level of 90%. Approximately 50% of the
variability of <color value and CEC can be explained by
spectral reflectance and pixel values. The low R? values in
this study compared with those from literature reported by
Stoner and Baumgardner (1980) are attributable to broad
bands and few observations used in this study. This means
that the satisfactory prediction equaéion may not be
established for those soil parameters having low R? values.,

In order to summarize the important contributions of
each band in predicting the overall soil parameters and
identify optimum wavelengths for future uses, the number of
times each band or dye-layer entered into the prediction
equations at the 90% significance level was counted 1in the
order of entry and total inclusions. The results are
presented in Table 4.3.3. Clearly, the green portion of
wavelength is the most promising band to predict soil
. properties. Band 4, which entered the regression three times
in the first place position, 1is the most important for

spectral band predicting soil organic matter-related
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Table 4.3.2 Stepwise multiple regression of spectral
band and pixel value as predictors of soil

parameters at a significance level of 90%.

SOIL SPECTRAL BAND . PIXEL VALUE CUMULATIVE
PROPERTY B4 BS B6 B? GRE RED R2
TC 1% 3 2
0.00004 0.0153 0.0000 0.76
1 4 3 2
ocC 0.0000 0.0068 0.0390 0.0000 0.78
1 4 3 2
N 0.0000 ©0.0308 0.0355 0.0155 0.66
3 2 1
MC 0.0024 0.0665 0.0000 0.59
1 2
VALUE 0.0000 0.0031 0.52
2 4 3 1
CEC 0.0003 0.0177 0.0408 0.0000 0.49

* oOrder of inclusion of the variable(band) into regression eguation.
4 Significant level obtained for the variable.

Table 4.3.3 Freguency of inclusion of spectral bands into

regression (Table 4.3.2) at a significance
level of 90%.

BAND ORDER OF ENTRY* TOTAL#
1st 2nd 3rd 4th

B4 3 1 4
BS ' 1 1
B6 1 2 2 5
B? 1 3 4
GREEN 2 2
RED 4 4

* Only the first four entries were counted.
# All entries were included.
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parameters and dgreen filter pixel value which was first
included in moisture content and CEC regression equations,
shows its potential for predicting these parameters and soil
texture-related parameters. Near infrared Band 6 is of most
importance, in relating color value with spectral
properties, which is in agreement with the correlation study
discussed earlier. This band, as well as B7, another
infrared band, also contributed to variations of many other
soil parameters, but to a lesser extent. Red filter pixel
value often entered the equation as the second largest
contributor to the prediction model for soil parameters.

The ultimate objective of the correlation regression
study 1is to be able to predict the level of soil parameters
using optimum spectral reflectance band values. Simple
linear or curvilinear regressions were carried out using
soil parameter values versus their best correlated spectral
bands. The examples are only given for OC and N. Their
natural log transformed values against the corresponding
spectral wvalues in Band 4 were plotted in Figure 4.3.2 and
Figure 4.3.3. The best regression equations for Ln OC and Ln
N were obtained with the highest correlation coefficients.
Nearly 67% of the total variability for OC and 61% for N
were found to Dbe accounted for by the spectral reflection
values in 0.5-0.6 um wavelength region. In the cases of
other soil parameters, the regression 1lines are not as
significant énd, accordingly, accurate predictions are not

expected.
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Figure 4.3.2 Regression: Log OC vs reflectance_in Band 4.
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Figure 4.3.3 Regression: Log N vs reflectance in Band 4.

* Numbers indicate overlapping points.
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The ‘spectral variations in soil reflectance in given
wavelength regions in terms of observed soil paraheters were
examined again by employing a stepwise multiple regression
model. The approach has proved to be useful in identifying
the important contribution of individual soil parameters and
parameter interactions responsible for spectral variations.
This time, soil data were entered into the regression model
as estimators of spectral reflectance values of all samples
in four wavelength bands. The 10 independent variables used
were coarse fragment content, % organic C, K, Ca, Mg, CEC,
P, N, color value and chroma. The use of the natural log
transformation values of some soil parameters for the gi&en
spectral band was decided according to the r values obtained
in the correlation analysis.

The results are provided in Table_4.3.4. The order of
inclusion of the independent variables into regressions for
individual spectral bands reveals the importance of the
specific soil parameters in explaining spectral variations.
Organic C was found to be the first variable to enter the
regression equation for all given speétral bands except for
Band 7 which had the Munsell value as the first entry. This
suggests that the influence of so0il organic matter on
spectral variations in near infrared bands is less effective
than in the visible bands. In addition to Band 7, color
value was also selected to enter the regression equations
for Band 5 and 6 as the second variable and for Band ¢ as

the third variable, indicating its close relationship with



Table 4.3.4 Stepwise multiple reqression of soil parameters as predictors
of reflectance bands at a significance level of 90%.

ocC K MG CA P N CUMULATIVE
BAND CF or or or or CEC or or VALUE CHROMA >
LNOC LNK LNMG LNCA LNP LNN R
B4 2% 1 3

0.0133% 0.0000 0.0338 0.71

BS 1 6 [ 3 2 5
0.0000 0.0847 0.0237 0.0185 0.0001 0.0552 0.63

B6 1 6 5 4 2 3
0.0000 0.0678 0.0127 0.0021 0.0000 0.0020 0.70

B7 5 4 2 " 3
0.0079 0.0067 0.0001 0.0000 0.0041 0.60

* Order of inclusion of the variable (soil parameter} into regression eguation.
# Significance level obtained for the variable.

86
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spectral measurements. Coarse fragment content was included
in the regression as the second important soil parameter for
predicting spectral reflectance values in green band (Band
4). The inclusion of this parameter may imply that there is
a relationship between reflectance and soil texture. Other
parameters -such as P, Ca and CEC played a role in the
equations, but to a lesser extent. Total N was not observed
to be 1included into the regressions where organic C was
dominant. This suggests that the role of N 1in explaining
spectral variations has already been accounted for since
they are closely correlated with soil organic matter. The
frequency of each soil parameter to enter the regressions is
summarized in Table 4.3.5.

The cumulative R? values 1in Table 4.3.4 indicate to
what extent the variability of spectral .reflection in
specific bands can be explained by the interactions of
variables included in the regressions. R? values varied from
the highest (Band 4) to the lowest (Band 7). In the case of
reflectance values in Band 4, 71% of the wvariability was
accounted for by the interactions of three variables. The
significance of the next variable entered dropped to less
than 90%. For the Band 7 values, five variables were needed
and explained only 60% of the variability. The prediction of
reflectance difference in Band 4 seems to require the fewest
soil parameters and obtain the highest estimation accuracy.
However, overall R? values obtained in this study are lower

in comparison with the literature data (Stoner and
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Table 4.3.5 Frequency of inclusion of soil parameter
into regressions (Table 2.3.4) at
significance level of 90%.

SOIL ORDER OF ENTRY* TOTAL#
PROPERTY 1st 2nd 3rd 4th
oc 3 o 3
\' 1 2 1 4
CF 1 1
P 1 1 1 3
CHROMA 2 3
ca 1 3
CEC 1 2

* Only the first four entries were counted.
# All entries were included.

Baumgardner, 1980). This is suggestive that other
parameters, such as site characteristics may be involved in
this process and account for an important part of spectral
variations.

The significance of the results developed from these
regression studies is twofold. First, with respect to soil
parameters the results are consistent with the findings from
correlation analysis and further explain why those
relationships are significant and how the spectral
properties of soils are affected. Soil organic matter and
color value are most important among -soil parameters in

terms of being able to explain the difference of spectral
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values, especially in Band 4. The variations of these
properties, in turn, are 1likely to result in spectral
reflectance curve changes, thus, the prediction becomes
possible. The prediction model for organic C using a single
spectral band was illustrated. Secondly, the regression
models help us to identify the optimum spectral wavelength
band for prediction. Variable results were found in this
study and even with the best band such as Band 4, the
predictions are not entirely satisfactory. This leads to the
use of multivariate methods to quantify the spectral

reflectance curves for predicting soil properties and types.

3. MULTIVARIATE CLASSIFICATION OF SOILS USING SPECTRAL

REFLECTANCE VALUES

Over the years, many quantitative numerical ‘methods
have been developed to quantify soil types and the
variability of soil properties. A cluster analysis was used

by Schreier and Lavkulich (1980) and Schreier (1985) to
| predict soil and mine sample'types in terms of their organic
matter, iron content and sample origin based on the
characteristic spectral curves. Crouse et al., (1983) also
used cluster/discriminant analysis to identify the important
soil parameters which were highly correlated with six TM
reflectance bands. The same approach was ﬁsed in this study
in order to examine how well it can be used to predict the
variability of 1important soil properties and define soils

with different fertility conditions.
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The spectral reflectance data in four dimensional space
were classified with an average distance linkage cluster
analysis. The total 108 soil samples from the stratified
random and selective sampling sets were grouped into five
unique spectral classes and the resulting dendrogram which
provided a measure of the degree of similarity between the
various spectral characteristics of soil samples is shown in
Figure 4.3.4. The summary data of each of the spectral
dlasses are given in Table 4.3.6 and the data from
reflectance and pixel value.measurements are also included.
Although the spectral differences among clusters can be seen
in an individual band by band basis, it is difficult to
visualize the overall spectral separation among five
spectral classes. Figure 4.4.5 gives the characteristic
spectral reflectance curves of each spectral <class, where
means, plus and minus one standard deviation, were plotted.

The individual soil spectral classes (A to E), as
illustrated in Figure 4.3.5, were found to be very different
from one another. Significaﬁt differences between classes,
on a parameter-by-parameter basis, were further examined by
using a Mann-Whitney U-test with a confidence level of 95%,
and the results are shown in Figure 4.3.6. The significant
separation was obtained between any pair of classes in all
spectral bands. This suggests that each class has formed a
distinct spectral category.

Since significant correlations have been found between

the spectral reflection values and a number of soil physical



Table 4.3.6 Summary of soil data for different spectra]
classes obtained from cluster analysis.

(a) Physical and chemical data

Unit n MC CF pH TC oc K Ca Mg CEC P N

A 24 32.5* 30.7 6.91 3.78 3.29 0.555 12.82 0.750 22.7 145.9  0.186
11.5¢4 12.4 0.36 0.7t 0.69 0.24 4.08 0.47 7.0 56.5 0.05

B 39 26.6 29.0 6.93 2.71 2.47 0.557 11.04 0.472 18.8 106.2 0.146
6.2 7.7 0.27 0.44 0.50 0.28 5.37 0.17 3.2 38.2 0.03

c 10 24.0 30.3 6.83 1.94 1.66 0.379 6.73 0.327 15,3 83.6 0.101
5.5 1.1 0.37 0.62 0.50 0.28 2.34 0.28 4.01 32.2 0.03

D 15 23.9 33.6 7.16 2.22 1.83 0,387 9.29 0.334 16.3 95.0 0.113
5.3 9.4 0.32 0.20 0.27 0.14 3.68 0.13 2.67 25.5 0.02

E 20 29.4 26.1 6.98 2.55 2.30 0.549 9.80 0.417 18.7 93.6 0.133
6.9 6.9 0.33 0.60 0 58 0.53 2,78 0.19 3.56 26.9 0.03

(b) Color, spectral and pixel value data

UNIT n Value Chroma B4 B5 B6 B? Red Green
A 24 4.38* 3.17 13.6 17.5 23.1 24.6 183.2 170.1
0.70% 0.48 1.2 1.4 2.0 2.1 15.7 16.7
B 39 5.64 3.79 15.6 19.8 26.5 28.0 199.9 186.1
0.54 0.80 0.8 0.7 0.6 0.8 10.2 10.4
C 10 5.90 3.90 20.2 23.5 30.2 31.7 207;9 194.6
0.57 0.88 1.61 1.7 1.2 2.0 7.2 9.6
D 15 5.87 4.07 18.1 21.1 27.8 28.6 204.0 190.9
0.35 0.59 0.6 1.4 0.5 0.9 7.5 7.9
E 20 5.95 3.95 16.3 21.7 28.7 30.1 200.0 185.2
0.22 0.60 0.8 1.0 0.7 0.6 8.8 9.9

* mean 4 standard deviation

0L
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Figure 4.3.6

Parameters separated between soil spectral classes
identified by Mann-Whitney U-test (X=0.05).

901
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and chemical properties, it is possible to characterize each
cluster «class in terms of soil parameters. Table 4.3.6
provides the soil parameter mean and standard deviation for
each spectral class. A comparison can be made. among classes
using single soil parameters. To get a statistical
evaluation of the soil properties which best separate the
multi-spectral classes, the Mann-Whitney U-test was again
used to test significant differences of individual soil
parameters between classes (Figure 4.3.6). If a soil
parameter is 1identified to be significantly different
between spectral classes, it suggests that the spectral
classification by the clustering is successful and can thus
be used for predictive purposes.

It is evidént from these figures that no single soil
property was separated by spectral classes in all cases. It
means that those spectral classes cannot be differentiated
on the basis of any one soil parameter. The best parameters
were TC, OC, N and CEC, in which cases 80% of all classes
appeared to have unique characteristics of those properties.
About 70% of classes showed that they could be separated by
green filter pixel value, and followed by Ca, Mg, red filter
pixel wvalue (60%), and color value (50%). For the rest of
the soil parameters, only a partial classes separation was
observed. The results reveal a good relationship exists
between multi-spectral reflectance data and soil properties
with high degree of separation such as organic matter and

CEC.
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The results shown in Figure 4.3.6 can be wused to
evaluate the spectral class separations in terms of overall
soil characteristics or soil types. Highly successful
separation was found between spectral class A and the rest
of classes. Almost all soil properties that were highly
correlated with spectral reflectance were differentiated. A
good classification was achieved between class B and D, only
P and moisture content were not separated in this case. The
results of class B vs C, C vs E and D vs E are also fairly
good. The ©poorest differentiations of soil parameters were
found between class C and D, and class B and E, though they
did show distinct spectral separations.

By examining the soil data across spectral classes from
Table 4.3.6, we found class A represents the type of soils
with high fertility status in terms of high average levels
of organic matter, CEC and fertility elements N and P (Type
I). The average concentration of K in class A is among the
highest but it is not different from the levels of class B
and E. Class C with highest spectral values corresponds to
an overall low levels of soil chemical properties including
organic matter content, CEC, and N, P, K, although this
class 1s very close to class D. Spectral class D shows the
lowest soil water content and the highest <coarse fragment
content. Its overall soil chemistry and fertility status are
a little higher than those of <class C but substantially
lower than those in other classes except for P content which

is similar to class E. Classes B and E generally represent
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average soil conditions (Type III) and hold over 55% of soil

samples studied.

4, IDENTIFICATION OF SIGNIFICANT SOIL PARAMETERS FOR

DIFFERENTIATING SOIL SPECTRAL CLASSES

In order to evaluate the role of each soil parameter in
the contributions of overall soil characteristics to
spectral curve separations, an investigation was wundertaken
to identify which soil property and property combination
could actually serve to discriminate among spectral classes.
This is of particular importance if soil parameter
interactions are common in the data set. Some soil
parameter, which appears to be distinguished between
spectral classes, may not  present cause and effect
relationships with spectral characteristics, but may be the
result of auto-correlation and associated indirect
relationships.

A stepwise discriminant analysis was run on five
spectral classes with all thirteen soil parameters as
variables in order to evaluate which soil properties could
best be wused to discriminate spectral classes. Total C was
not entered simply because a very large part of its
contribution had been accounted for by organic C. The
results identified that organic C, color value and moisture
content were the first three variables that entered the
discriminating funcfion to separate spectral classes at a

probability of 95%. Table 4.3.7 lists, in order of entry,
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the selected pafameters. The separability of these
properties among clusters is shown in Figure 4.3.7, in which
the property means and standard deviations weré plotted on a
cluster-by-cluster basis. |

As illustrated in Table 4.3.7, organic C appears as the
most influential soil property for spectral class
separations. The appearance of Munsell color value as the
second most important variable is not unexpected due to its
high correlation with spectral reflection. Although CEC and
N appeared most of the times separated by spectral classes,
they were excluded from the list of discriminant variables.
This can be explained by their <close relationships with
organic C (r = 0.81 and 0.87 for CEC and N, respectively);
It is an important feature of the stepwise discriminant
analysis that once a variable is entered into the model,
variables which are highly correlated to the entered
variable will have less chance of being selected on the next
step since most of their discriminanting power has already
been accounted for. The selection of moisture content is
somewhat suspect since no direct relationship was measured
between this parameter and reflectance in this study. Its
selection may be due to the associations of water content
with other soil properties. When those soil properties are
removed, the importance of the moisture content increases.
The inclusion of color chroma is more difficult to explain,
it seems to be attributable to the big separation between

class A and other classes.



Table 4.3.7 Soil properties selected by discriminant
analysis for discriminating among spectral
classes (= 0.05). :

PROPERTY U-STATISTIC F PROB
oC 0.5060 0.0000
VALUE -0.4176 0.0006
MC 0.3574 0.0033
CHROMA 0.3162 0.0148

Figure 4.3.7 visually illustrates some points made in
the above discussion. It 1is evident that none of these
single properties can be used to differentiate spectral
classes. Considerable overlaps exist between classes,
especially 1in the cases of moisture content and chroma. The
successful results obtained by cluster analysis with respect
to soil parameter separation must thus be viewed as the
result of the combination of these discriminating properties

and their interactions with other important properties.

D. QUANTIFYING SOIL CONDITIONS USING PIXEL VALUE DATA OF

SOIL SAMPLES

In the spatial analysis discussed in section B, we have
determined soil patterns based on digitized airphoto
dye-layer pixel value data and using an unsupervised

multivariate classification procedure. The assumption was
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made tﬁat a good relationship must exist between the so0il
parameters and the pixel values. If this is true it should
be possible to quantify the soil pattern on the aerial
photograph by numerical analysis wusing the digital pixel
values. This will allow us to détermine how well we can rely
on the pixel value data to predict the variability of soil
parameters and types. It is the objective of this section to
compare the relationship between the 108 soil samples with
the corresponding red or green filter pixel values. The
numerical methods used to relate soils to spectral
properties were once agaiﬁ used to compare soil properties-

with pixel values.

1. DETERMINATION OF THE RELATIONSHIPS BETWEEN PIXEL VALUES

AND SOIL PROPERTIES VIA CORRELATION/REGRESSION ANALYSIS

A correlation analysis was carried out for all 108 soil
samples using individual soil variables versus the green and
red dye filter pixel value data obtained from computer
printouts in each sample location. Some results have already
been discussed in the 1last section where a correlation
matrix was presented (Table 4.3.1). Generally,‘most soil
properties showed a significant correlation with both the
green and the red filter pixel values except for pH and
exchangeable K and Na. Among these highly correlated soil
parameters, organic C received the highest coefficient
(r=0.75) with red filter pixel value, followed by soil

moisture content (0.69) and total N (0.63). For the green
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filter pixel value, the carbon-pixel value relationship was
lower than the moisture-pixel value relationship which
showed the highest r value of 0.74. A scatter diagram was
plotted in Figure 4.4.1, to show their close relationship.
Moisture proved to be more highly correlated with pixel
values than with spectral data because spectral reflection
measurements were performed on air dry samples whereas
dye-layer pixel values which accounted for photo tonal
variations represented the undisturbed site conditions at
the time of the flight. This indicates that soil water in
the field exerts a large 1influence on soil spectral
variations and this may have a larger effect on relection
than organic matter. Spectral analysis of soils under
different moisture conditions needs to be carried out to
determine the ultimate effect. Since water itself is no£
sensitive to absorbed 1light in the wvisible bands, the
influence of soil moisture content on photo pixel values is
attributed to its association with other soil and site
characferistics, such as texture and drainage.

The correlations between exchangeable cations, CEC, and
pixel wvalues in both red and green fitler dye-layers were
also significantly higher. The exception was K which only
showed a low correlation coefficient with the pixel value
data after logarithmic transformation. However, the
correlation coefficients with Ca, Mg, and CEC were usually
within the range of 0.5 to 0.6, this means that predictions

may not entirely be reliable based on the values from a
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single dye-layer pixels. Coarse fragment content also showed
a moderate correlation with pixel value data and correlation
coefficients were significantly improved in comparison with
correlations with spectral reflection.

Dye-layer ratioing and additive combination were
considered, but rejected because almost no advantage over
correlations with individual dye-layers was expected. It is
also noted from the correlation matrix(Table 4.3.1) that the
correlation between green and red filter'pixel values was
very high (r=0.95), but they behaved differently with regard
to soil properties.

Simple linear regressions were performed for % organic
C and moisture content, as well as other soil parameters
‘with red and green filter pixel values. Two examples of
these results are provided in Figure 4.4.1 and Figure 4.4.2.
Although the <correlations were highly significant, the
variance explained by the respective regression.equations
was at best 56% for organic C versus red filter pixel value,
and 54% for moisture content versus green filter pixel
value. In most instances, the correlation of single
dye-layer data with specific soil properties was not good
enough for predictive purposes.

In order to examine to what extent the pixel value data
can be explained by soil parameters, a stepwiSe regression
analysis was carried out with the green and the red filter
dye-layer pixel values as dependent variables. The

independent variables entered 1into the regression were
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moisture content, coarse fraction, % organicAC, Ca, Mg, CEC,
P, N, Munsell color value and chroma. No log transformed or
ratioed data were used, since the previous correlation study
showed that the transformation did not significantly improve
the relationships.

The order of inclusions of the independent variables
into the regressions with individual dye-layers was shown in
Table 4.4.1. Soil moisture content and organic C were found
to be the first two soil parameters to enter the regression
equations. These two parameters explained most of the
variability in pixel values. The moisture content entered
first in the estimation of green filter pixel value. whereas
organic C was selected to be the largest contributor to the
variation of red filter pixel value. These results were
consistent with the order of correlation coefficients
obtained between moisture, organic C and pixel value data.
Munsell <color ‘value was the third important soil parameter
included into the regressions for predicting both green and
red filter pixel values. Coarse fragment content was
selected as the fourth variable in the regression of the
green filter pixel value, but it did not appear to be able
to predict the red filter pixel value. The color chroma and
CEC were active 1in explaining the red filter pixel value
variation but to a lesser extent. The frequency of each soil
parameter to enter the regressions is summarized in Table

4.4.2.



Table 4.4.1 Stepwise multiple regression of soil parameters as predictors
of red and green pixel values at a significance level of 90%.

PIXEL MC CF oc MG CA CEC P VALUE  CHROMA CUMULATIVE
VALUE : R?
GREEN 1% 4 2 3
0.0000¢ 0.0576 0.0000 0.0143 0.66
RED 2 1 5 3 4
0.0004 0.0000 0.0873 0.0027 0.0286 0.67

* Order of inclusion of the variable (soil parameter) into regression equation.
# Significance level obtained for the variable.

6Ll
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The cumulative R? value for each of the regression
models indicated to what extent the variability of pixel
values in the two dye-layers could be explained by the
interactions of variables. Similar R? values were found for
predicting both green and red filter pixel values. These R?
values were lower, in comparison with the wvalues obtained
for corresponding visible reflectance bands (Section 4.3)
which suggests the site characteristics have more influence
on photo dye-layer pixel value than on.spectral reflectance

in visible bands and account for large portion of reflection

variation.

Table 4.4.2 Frequency of inclusion of soil parameter
into regressions (Table 4.4.1) at a
significance level of 90%.

SOIL ORDER OF ENTRY* TOTAL#
PROPERTY ' 1st 2nd 3rd 4th
ocC 1 1 2
MC 1 1 2
VALUE 2 2
CF 1 1
CHROMA 1 1
. CEC ' 1

* Only the first four entries were counted.
$# All entries were included.
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2. MULTIVARIATE CLASSIFICATION OF SOILS USING TWO DYE-LAYER

PIXEL VALUE DATA

The correlation and regression analysis revealed that
photo dye-layer pixel values were highly correlated with
organic matter, moisture content and exchangeable cations.
However, linear regression equations to predict these
properties from single dye-layer pixel values were notvve:y
satisfactory because of the wvariablilty of soils, the
surface conditions and the parameter interactions. Also, the
conditions associated with image processing and the image
quality all play a role in affecting the prediction
accuracy. More complex models are needed in order to predict
individual soil properties and quantify soil types.

It is evident from the stepwise multiple regression
study that several soil parameters which act together appear
to have a profound influence on pixel value variation. This
implies that the relationship of pixel values with overall
soil characteristics may be of more importance than with a
single parameter. In order to examine this relationship, the
same clustering procedure used in the spectral énalysis was
used to classify 108 soil samples according to their two
dimensional pixel value data. The resulting dendrogram shown
in Figure 4.4.3 revealed that four pixel value groupings
existed based on the degree of similarity of so0il samples.
The soil data for each of those pixel value classes (A to D)
are summarized in Table 4.4.3, which provides the means and

standard deviations of all 20 observed parameters.
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Table 4.4.3 Summary of soil data for different pixel value

classes obtained from cluster analysis.

(a) Physical and chemical data
"UNIT n MC CF pH TC oc K Ca Mg CEC P N
A 12 41.7* 23.5 6.91 4.32 3.87 0.660 15.16 0.984 27.4 148.1 0.205
9.44 9.1 0.38 0.50 0.45 0.19 . 0.55 6.0 64.1 0.05
B 33 29.4 27.7 6.89 2.96 2.68 0.598 - 11.58 0.524 19.6 116.6 0.152
6.4 10.0 0.36 0.58 0.51 0.43 5.0 0.21 3.6 49.9 0.02
c 45 25.3  30.1 7.02 2,40 2.08 0.398 9.35 0.349 16.8 92,1 0.129
4.3 7.1 0.29 0.48 0.46 0.22 3.8 0.11 2.7 30.0 0.03
/
D 18 21.9 35.8 6.94 2,35 2.04 0.558 B.73 0.454 17.7 111.4 0.124
6.3 10.8 0.31 0.51 0.52 0.32 2.2 0.25 4.4 26.4 0.04
(b) Color, spectral and pixel value data
,UNIT n Value Chroma B4 BS" B6 B7 Red Green
A 12 4.50* 3.i7 13.1  17.5 22.9 24.8 168.8 155.0
0.80#.-0.58 1.3 1.9 3.0 3.3 8.6 7.0
B 33 5.52 3,79 15.5 19.7 26.3 27.7 192.0 178.9
0.51 0.86 1.3 1.5 2.0 2.2 5.4 4.8
o 45 5.82 3.84 16.8 20.7 27.5 28.7 202.6 188.3
0.49 0.74 1.99 2.1 2.0 2.1 2.3 3.1
D 18 5.78 3.72 17.2 21,3 27.7 29.4 214.1 202.3
0.43 0.46 2.0 1. 1.3 1.5 5.0 6.1
* mean standard deviation

€cl
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The separations among pixel value classes were best
illustrated in two dimensional vector space using mean pizxel
values, and plus and minus one standard deviation (Figure
4.4.4)., It is evident that each pixel value class had formed
a unique characteristic category which was different from
all other categories. Figure 4.4.5 shows the result of the
Mann-Whitney U-test which 1identified the parameters which
best separated the cluster categories. The result proved
that all pixel value classes were significantly different
from one another with respect to their mean pixel value
value separatiqns in both dye-layers. The mean pixel values
from the lowest to highest classes were identifed as group
A-B-C-D.

The characterization of each pixel value <cluster in
terms of so0il properties was performed 1in two ways:
Mann-Whitney U-test to examine the significant differenceé
between clusters on a parameter-by-parameter basis, and by
employing a stepwise discriminant analysis to examine the
nature of the <cluster separations and identify those soil
parameters that were best able to serve as discriminants
among the pixel value classes.

Table 4.4.3 gave soil property mean and range values
within each pixel value class. A statistical comparison was
carried out using significance tests and Fiqure 4.4.5 shows
these results. Tests were made for all soil parameters as
well as spectral bands. The success of classifications in

terms of specific soil properties can be evaluated by
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MC, TC, OC, CA,
MG, CEC, N,
VALUE, CHROMA,
B4, BS5, B6, B7,
RED, GREEN

MC, CF, TC, OC,
K, CA, MG, CEC,
N, P, VALUE, B4,
CHROMA, B5, B6,
B7, RED, GREEN

MC, TC, OC, K,
CA, MG, CEC, P,
N, VALUE, B4,
B5, B6, RED,
GREEN

MC, CF, TC, OC,
CA, MG, CEC, N,
VALUE, CHROMA,
B4, B5, B6, B7,
RED, GREEN

MC, CF, TC, OC,
CA, N, B4, B5,
B6, B7, RED,
GREEN

MC, K,
GREEN

P, RED

Figure 4.4.5

Parameters separated between pixel value classes

identified by Mann-Whitney U-test (X = 0.05).
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examining whether the soil property can be separated between
two classes.

The successful separation of most soil properties is
evident from the results of classification (Figure 4.4.5).
Soil moisture content was the best parameter to separate the
soil types and showed to be significantly different 1in all
cases. This indicates that soils with different soil
moisture conditions have been distinguished by the
combination of two airphoto dye-layer pixel value data. The
potentials of wusing the multi-dye layer pixel value
classification to quantify soil types were also demonstrated
as the good separability of TC, OC, N and Ca between
classes. In five out of 6 cases the class separation could
be made on the basis of these parameters. In about 67% of
cases, significant differences were observed in terﬁs of
color value, CEC and Mg, and 50% were separated by coarse
fragment content, P, K, and chroma.

With respect to overall soil properties or soil types,
the pixel value classes were significantly different from
one another. The only poor separation was seen between class
C and D, for which only moisture content and two fertility
components have been differentiated. Most soil parameters
were apparently discriminating factors for separating
classes A and B from the rest of classes. This suggests that
class A and B are the most distinct units in which a unique

s0il characteristic category has been established.
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The relationships between the four pixel value classes
from cluster analysis and the field soil conditions and
variability of soil properties were further examined by
using the average values of soil properties in'Table 4.4.3.
Clearly, class A is the most distinct class with very low
mean pixel values and the levels of soil moisture content
and overall chemistry (organic matter and CEC) in class A
are much higher than those from other classes. The soil
fertility levels are also distinctly higher for class4A than
for any otherl class, althoﬁgh P and K were not different
from class B. In contrast, coarse fragment content in class
A 1is considerably lower‘in comparison with other classes.
Class B, which 1is also distinct from other classes,
represents soils with moderately high soil chemical contents
and fertility status, but the mean values of P and K are not
different from those in class D.

Although class D represents the type of soils with the
largest volume of gravel and the lowest water content, its
overall soil chemistry was not found to be distinguishable
from class C which holds over 40% of all collected soil
samples and corresponds to the most common soil type in the
study site. This 1is in partial agreement with the results
from data obtained from the selective sampling (Section 4.1)
in which we found no substantial differences  in soil
fertility between soil type II (gravelly soils) and type III
(average soils). This implies that the soil type with high

coarse fragment content 1is not necessarily different in
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fertility status from average soil condition in the field
under investigation. It 1is anticipated that if we account
for coarse fragment content in the measurements of soil
chemical conditions, the difference between the two types of
soils would probably then be displayed.

Soil spectral reflectance values within each pixel
value class were qQuantified in order to test whether soil
groups with distinct difference in pixel values were also
separated by their spectral characteristic curves. The
results from the Mann-Whitney U-test (Figure 4.4.5) clearly
showed that class A and B were significantly different 1in
terms of their spectral band separations. It was also found
that these two classes were spectrally distinguished from
other classes and only spectral Band 7 did not appear on the
list between class A and B. None of the spectral bands wefe
found to differentiate class C from class D, ihdicating that
the two classes were very close not only chemically but also
spectrally, 1in spite of their distinct difference in pixel
values. The only reason to cause pixel value separation
between these classes is due to their difference in moisture
and, possibly, K content. Spectral separations among pixel
value classes are 1illustrated 1in Figqure 4.4.6, which
provides the spectral characteristic curves (mean relectance
value and plus and minus one standard deviation) for each of
the pixel value classes. Considerable overlaps are evident
between class C and D. Class B and D appear to have some

separation, but it is not as good as the separation of class
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A from other classes.

Again, a stepwise discriminant analysis was carried out
on four pixel value classes to determine the role and
contribution of. individual soil parameters 1in separating
piiel value classes. All thirteen soil properties were
entered into the analysis as variables. Table 4.4.4 gives
the result and lists the soil properties, in order of entfy,
that could serve as discriminants among pixel value classes.
The mean values, plus and minus one standard deviation, were
plotted for each pixel value cluster (Figure 4.4.7). One can
subjectively determine the extent to which each soil
parameter performed as discriminanting factors in separating
the classes.

The results presented 1in Table 4.4.4 are generally
consistent with the earlier conclusions from correlation and
stepwise regression analyses. It 1is evident that organic
matter and moisture content are the most influential
discriminants among soil properties and seem to take a
dominant part of the contribution to pixel value class
separations. Color value which appears on the list 1is also
not unexpected since 1its correlation with pixel value is
significantly high. The soil parameters such as N and €CEC do
not appear on the list because their discriminating power
has already been accounted for by OC which entered the
discriminating function _ as the first parameter. The
inclusion of K is interesting, but difficult to explain.

However, when we check the results from the significance
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Table 4.4.4 Soil properties selected by discriminant analysis
for discriminating among pixel value classes (™= 0.05),

PROPERTY U-STATISTIC F PROB
oC 0.4130 0.0000
MC 0.3640 0.0046
VALUE 0.3223 0.0060
K 0.2932 , 0.0192
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Figure 4.4.7 Soil properties as discriminants in each
pixel value class (A to D).
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test in Figure 4.4.5 and Figure 4.4.7, it was shown that K
had a significant separating capability between class C and
other classes, which probably explains the selection of K.

The most notable absence from the list is the coarse
fragment content. We expected that differences 1in this
parameter would facilitate class separation. It suggests
that a secondary relationship exists between this soil
property and pixel values in this study. The role of coarse
fragment content has probably been masked by good
correlations between pixel wvalue and organic matter or
moisture content.

The result 1in Table 4.4.4 was compared with soil
properties listed in Table 4.3.7, which were selected by the
same discriminant procedurg but for different spectral
classes. The first three so0il parameters are the same,
indicating that they are the‘most promising soil properties
to influence both pixel value and spectral variations. The
difference in the order of importance 1is obvious since
moisture content was held constant in the spectral
measurements. It suégests that the moisture content is best
guantified by ﬁsing pixel value data and color value is best
guantifyed by spectral reflectance measurements. The
Mann-Whitney U-test also proved that the moisture content
was the only soil parameter which separated pixel value

classes in all cases.
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E. SUMMARY AND COMPARISONS

1. SPECTRAL REFLECTION VS DYE LAYER PIXEL VALUE

In this study, soil parameters and conditions have been
determined by two remote sensing techniques: laboratory
spectral reflection measurement and airphoto digital
analysis. A comparison made on summary of results from this
two methods is given in Table 4.5.1.

It is evident from this comparison that slightly better
relationships exist between spectral reflection wvalues and
overall soil chemical parameters than between pixel values
and soil properties. This 1is because spectral reflection
measurements were conducted in a controlled laboratory
environment and were exclusive of the effects of surface
variation, site and atmospheric factors, and soil moisture
conditions, all of which influenced the airphoto dye-layer
pixel value measurements. In both cases, % organic C was
found to be the most important soil chemical parameter which
related to spectral reflection and pixel wvalues. Soil
moisture content was another important soil parameter which
entered the stepwise regression and discriminant function,
but its importance was only relevant in relation to the
dye-layer pixel wvalue. Soil moisture was found to be best
predicted using green filter pixel values.

Cluster analyses using 4-dimensional spectral data and
2-dimensional pixel value data have classified 108 soil

samples into five soil spectral classes (A to E) and four



Table 4.5.1.

Summary- and comparisons of two remote sensing
techniques to quantify soil parameters and types.

LABORATORY SPECTRAL
REFLECTION MEASUREMENT

MULTI-DYE LAYER
DIGITAL ANALYSIS

Number of variables

4 spectral bands

2 dye layer pixel values

Best correlation with
soil parameters

Band 4 vs Ln Organic Carbon
: r = 0.82

Red Filter Pixel Value vs Organic Carbon
r = 0.75

Best regression for
prediction of soil
parameters

Ln Of = 2.81-0.122%B4
R = 0.67
SE = 0.18

OC = 10.68-0,.0146*Red
R? 0.56
0.495

n

SE

Best stepwise regression
for prediction of spectral

or pixel value variables

Band 4 = ag+a; *Ln OC+a, *CF
+aj*Value
R? = 0.71

Red Filter Pixel Value = a;+a,*OC+aj;*MC
+ag*Value+as*Chroma
R2= 0.67

The importance of soil
parameters in discriminant
functions

OC > Color Value

OC > MC > Color Value

Multi-variate classification
(cluster analysis)
Soil Type 1

Soil Type 11

Soil Type 111

Five Spectral Classes

Four Pixel Value Classes

A (n=24) A'(n=12)
| 10 samples identical |
C,D (n=25) D'(n=18)
| 8 samples identical |
B,E (n=59) B',C'{(n=78)

| 47 samples identical N

Gel
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pixel value classes (A' to D'), respeétively. A comparison
between these two classifications was made in Table 4.5.1 on
the basis of three soil types which were visually identified
by the selective sampling. In the case of soil type I, which
was considered as dark soils with high MC, OC, CEC, N, P énd
K contents and 1low CF, color value, spectral and pixel
values, 10 out of 12 soil samples in pixel value class A'
were in common with the corresponding spectral class A.
About 80% of spectral classes B and E were found within the
pixel value class B' and C'. These spectral or pixel value
classes were representative of soil type III, the dominant
soils with -median values for all soil, spectral and pixel

Vvalue variables. The poorest correspondence was found
between spectral classes C and D and pixel value class D',
all of which related to soil type II, with the 1lowest soil
chemistry and moisture content and the highest spectral and
pixel values as well as coarse fragment content. 1In this
case, only 8 samples were found to be identical, which
accounted for 32% of spectral classes C and D and 44% of
pixel value class D'. This 1implies that very different
classifications of gravelly soils can be obtained wusing
different techniques. Since spectral reflection measurements
did not take coarse fragments and moisture content into
account, digital pixel value analysis should be considered
as a more reliable procedure to quantify this type of soils.
The disagreement is partially due to the sample size

differences between corresponding spectral and pixel value
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classes. For example, the spectral classification identified
24 soil samples which were representative of soil type 1
(class A) while the pixel value <classification only
identified 12 samples for this soil type (class A'). The
differences in soil sample size can be reduced if we use the
same dimensional classification procedures. An increasing
degree of agreement 1is 1likely to be achieved between
spectral and pixel value classifications if color infrared
photographs would have been flown so that the pixel values

in IR dye layers could have been included in the analysis.

2. LINKING REMOTE SENSING MEASUREMENTS WITH CONVENTIONAL

METHOD FOR SOIL FERTILITY ASSESSMENT

The approach used to make soil fertility assessments in
this study can be described as follows: 1) to‘sample soils
according to the visual appearance of the soil pattern and
2) to determine different fertilizer rates based on the
laboratory measurements of each individual soil sample
group. The soil type distribution in the field, which is
directly related to total fertilizer applications, can be
estimated by field observations or, more precisely,
determined with a planimeter from aerial photographs.

The application of remote sensing technigues to soil
ferfility assessments was found useful in the following two
aspects. First, these new technigques had an advantage over
the conventional metﬁod with regard to spatial pattern

delineations and area measurements for different soil types.
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Secondly; since good relationships were often found between
chemical, spectral reflection and pixel value data,
predictions could be made for some soil chemical properties,
such as organic matter, which provided a general picture of
field fertility status.

The use of soil spatial pattern delineation and soil
chemistry prediction 1is 1illustrated in Table 4.5.2. The
measurement of areas represented by three so0il types was
conducted wusing the multi-dye layer analysis which was
discussed in Section 4.2. Using the regression equation
shown  in Figure 4.4.2 % organic C for each photo pixel was
calculated and average values for each of four pixel value
classes are presented 1in Table 4.5.2. This method can be
used to produce a soil organic matter distribution map which
provides a spatial picture of general fertility of the
field. Higher accuracy of prediction and spectral maps can
be obtained with higher resolution multi-spectral data and
narrower wavelength bands.

It is noted that remote sensing measurements can not
replace the conventional approach, but can provide a better
assessment of the spatial pattern and extent of soil types
and organic matter distribution. To this end it may be more
desirable to wuse these techniques in combination with the
conventional soil fertility assessment. The conventional
method gives fertilizer rates for different types of soils

from field sampling and laboratory measurements,
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Table 4.5.3 presents the results of K fertilizer
recommendation for the three different soil types identified
by the selective sampling (Section A) and quantitative
remote sensing measurements (Section C and D). The two
different rates were translated into total fertilizer
application for three soil types, according to the area
estimations from the planimetry method and the multi-dye
layer pixel value <classification, both were discussed in
Section B, Table 4.5.4 provides a direct comparison on the
total amount of K fertilizer required for the entire field
estimated by various methods, including the conventional
one-rate blanket application. The higher rate of K
recommendation for soil type II resulted in an increase 1in
total fertilizer application over conventional one-rate
recommendation, especially in the case of using the
multi-dye layer pixel value classification to measure soil
type areas. Using the multi-variate élassification, the area
estimates of so0il type I and II were slightly higher than
the values obtained by the planimetry method. This resulted
in 5 kg difference 1in the total amount of fertilizer
applied. Since the former is generally considered to be more
objective and more accurate than the latter, the
quantitative remote sensing measurements are more advisable
to be used in the future.

The effort devoted to field sampling and 1laboratory
work can be much reduced using remote sensing data in

fertility assessment, without affecting the fertilizer
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Average organic carbon contents of three soil

types estimated by red filter pixel values.

Pixel Value Soil Type Area (%) % Carbon
Class mean range
A I 13.0 3.33 2.73-4.90
B ITI-1 36.6 2,51 2.32-3.15
(o I11-2 36.3 2.15 1.69-2.69
D II 14.1 1.52 0.86-1.94

Table 4.5.3

K fertilizer recommendations for three soil types

using the planimetry and multi-dye layer pixel
value analysis to measure areas of soil types.

Rate

Soil Type Area (ha) Total Application (kg)
(kg/ha) planimetry dye layer planimetry dye layer
analysis analysis
I 45 K90 0.305 0.387 14 17
11 67 K,0 0.334 0.419 22 28
I11 45 K50 2.262 2.173 101 98

Table 4.5.4 Comparison of total K fertilizer application

estimated by different methods

Recommendation Area Measurement Total Application
(ha) (kg)
1 blanket rate planimeter 131
2 variable rate planimeter 138
2 variable rate dye layer analysis 143
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recommendation accuracy. It 1is thought that the number of
soil samples which 1is needed to determine variable
fertilizer rates for specific types of soil can be reduced
to a lowest limit if we select sampling points based on
remote sensing images or, more desirably, the spectral maps
showing current fertility status, i.e. digital soil organic

matter map. Such maps should be available in the near

future.



Chapter V

CONCLUSIONS

The aims of this thesis were to evaluate the extent to
which remote sensing techniques can be used fo facilitate
the quantification of soil wvariability in agricultral
fields. The thesis research was carried out in a field which
contained three very contrasting soils. The spatial
distribution of the soil pattern was quantified wusing
multi-dye layer analysis of digitized color aerial
photographs. The actual chemical and spectral differences
among soil types were determined from soil sample analysis
in the laboratory. These methods were examined to determine
if fertilizer effectiveness can be improved by considering
the application of wvariable rates of fertilizers  in
accordance to the soil pattern.

The following conclusions can be made from the present

study:

1. DETERMINING SOIL VARIABILITY WITHIN THE FIELD

Analysis of overall wvariability of selected soil
properties showed that K, Ca and P were the most variable
parameters in the field with the highest CV values (above
40%). However, these large within-field wvariabilities can
not be taken into account in making fertilizer
recommendations by different sampling methods. The
conventional sampling and selective sampling method

generally provided comparable results to the detailed
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stratified random sampling technique with fespect to the
prediction accuracy of the mean values of major fertility
gualities. This implies that there will be no significant
differences in the one-rate fertilizer recommendations based
on the mean values estimated by any one of three sampling

methods.

2, VARIABLE FERTILIZER REQUIREMENTS FOR DIFFERENT SOIL TYPES

By grouping samples according to their visual
appearance from selective sampling, three general categories
which represent three different soil‘types were identified:
very dark soil (Type I), gravelly and very light soils (Type
I1) and dominant soils (Type III). These three soil types
were found to be statistically different on the basis of
mean values and ranges for most soil properties and these
soil types should be treated differently in making
fertilizer application recommendations. For P application
only the minimum starting fertilizer rate was required for
all three soil types, and this despite large differences in
mean P values among so0il types. This likely represents heavy
applications of fertilizer 1in the past. However, for K
application two different rates were identified and
recommended for the three soil types. Type II (gravelly,
light colored) requires a higher application rate than
either soil type I or 1III. This suggests that the
application of variable rates of K fertilizer is desirable

within the field.



144

3. QUANTITATIVE AERIAL MEASUREMENTS OF SOIL TYPES

The areal extent of the three soil types in the field
was determined quantitatively using a multi-variate analysis
of airphoto dye-layer pixel values. As the result 13.0%,
14.1% and 72.9% of a total field area of 2.98 ha were found
to be represented by soil types I, II and III, respectively.
These results were comparable with the results from the
subjective delineation of airphoto tonal pattern of three
soil types by a digital planimeter. In the latter case, the
areas occupied by soil types I, II and III were 10.5%, 11.5%

and 78%, respectively, of the total 2.90 ha in area.

4. PREDICTING SOIL CONDITIONS FROM SPECTRAL REFLECTANCES

Spectral reflection measurements on soil samples
revealed that good relationships existed between reflection
values in the four spectral bands and such soil chemical
properties as organic C, N, CEC, and exchangeable Ca and Mg,
as well as Munsell color value, The best correlation was
found in the <case of spectral band 4 vs natural log
transformation of % organic C which présented the highest r
value (0.82). This relationship can be used to predict %
organic C from reflection, as expressed by a simple 1linear
regression model:

Ln 0C=2.81-0.122*B4 (R?*=0.67 and SE=0.18)

Using the stepwise multiple regression and discriminant
analysis, it was found the % organic C and Munsell color

value were the most important soil parameters which
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influenced spectral reflection variations. The
multi-spectral cluster analysis successfully classified
soils according to their spectral differences and the
resulting five spectral classes were separated on the basis
of important soil parameters. The classification results
were related to soil conditions and a good agreement was
achieved between spectral classes and the three soil types

in the field.

5. PREDICTING SOIL CONDITIONS FROM DYE LAYER PIXEL VALUE
DATA

Good relationships were found between dye-layer pixel
values from color aerial photographs and corresponding soil
properties. The highest correlations were found in the cases
of red filter pixel value vs.% organic C (r=0.75) and green
filter pixel value vs water content (r=0.73). A stepwise
regression and discriminant analysis showed that organic
matter, water content, and Munsell color value were the the
most dominant soil parameters to influence pixel value
variations. However, correlation/regression analysis was not
found to be satisfactory for predicting individual soil
parameters from pixel value data. Cluster analysis was thus
used to quantify soil conditions -and the resulting four
pixel wvalue classes could be separated on the basis of
important soil parameters,'which proved to be representative

of the three soil types in the field.
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6. COMPARISON BETWEEN SPECTRAL REFLECTION, PIXEL VALUE DATA
AND SOIL CONDITIONS

Evidence was produced to show that the relationships
between spectral reflection and chemical soil conditions
were better than those between dye-layer pixel values and
soil chemistry. The opposite trend was found in the
relationship between spectral reflection, pixel value and
soil water content. The difference is due the fact that soil
moisture was held constant during the spectral reflection
measurements. The airphoto measurements represented the
undisturbed site condition and were subject to be influenced
by factors other than soil chemistry. The results suggest
that organic matter and other soil chemical parameters can
best be quantified using spectral reflection data and
moisture content can best be predicted by dye-layer pixel
values, but further testing 1is needed. Soils grouped
according to their spectral reflection and pixel values
showed a partial agreement between corresponding classes,
but this correspondence needs to be improved and this can be
accomplished by examining the spectral response to moisture
variations and using the'additional IR dye-layer data in the

pixel value classification,

7. FERTILIZER REQUIREMENT PREDICTION LINKING REMOTE SENSING
MEASUREMENTS TO THE CONVENTIONAL ASSESSMENT.
An approach integrating remote sensing measurements

into conventional assessment and prediction of field
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fertility was explored. The conventional field sampling was
used to determine different soil fertility requirements and
the multi-spectral measurements were carried out to quantify
the soil patterns., The technique allows the prediction of
the general soil fertility status and measurement of the
extent of different soil types and, therefore, can be used
to facilitate the determination of the amounts of fertilizer
required. The results were compared with the conventional
sampling method as well as with the planimetry method in
making K fertilizer recommendation. A total 131 kg K
fertilizer is required if only one blanket rate 1is applied
to the entire field. Using planimetry and multi-spectral
classification to determine the areas represented by the
different soil types, a two-rate application is suggested,
which leads to 138 and 143 kg of total K fertilizers. It is
anticipated that with the development of higher resolution,
multi-spectral devices, the prediction accuracy for
fertility status and fertilizer requirements can be
considerably improved. Further investigations involving
these techniques are likely to be a promising direction of

research.
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Appendix 1
Sample Descriptions of Selective Sampling Method

Sample ID Plot Description Class#
s-1 A1l first dark spot 1
s-2 A2 dark 1
S-3 A2 light brown 3
s-4 A3 dark 1
s-5 B3 very dark 1

*s-6 A4 light brown 3
s-7 A5 light 3
s-8 A5 very light grey/gravel 2

*5-9 A4 light brown 3
s-10 B5 light 3
s-11 B4 dark, depression 1
s-12 B4 very dark !
s=-13 B3 very dark 1
s-14 B2 light 3

*s-15 B2 - light 3
€-16 B1 first dark spot 1
s=17 B1 very dark, wet 1

*s-18 C1t light brown 3
s-19 Cc2 brown 3

*s-20 C2 light brown 3
s-21 C3 dry, light/gravel 2
s-22 C3 dark brown 3
s-23 C4 dark brown 3

*5-24 Cc4 dry, brown 3

*s5-25 C5 dark brown 3
s~25 C5 light brown 3
s-27 D5 light brown gravel 2
s-28 D4 dark brown 3
§-29 D4 brown 3

*5-30 D3 brown 3
s-31 D3 brown 3
s-32 D2 light 3

*s-33 D2 brown 3
s-34 D1 very dark, second spot 1

*5-35 D1 brown 3
s-36 F3 brown/gravel 2
s-37 F3 dry, light/gravel 2
s-38 F2 dry, light/gravel 2
s-39 F2 light brown 3

*s-40 F1 brown 3
s-41 Fi brown 3
s-42 G1 dry brown 3
s-43 G1 dry, light grey/gravel 2
s-44 G2 dry, light grey 2

*s-45 H1 brown 3
s-46 H2 light brown 3
s-47 G2 light grey/gravel 2

$ Classes were assigned according to visual appearance
of soils. Class 1| -- dark wet soils; class 2 -- dry,
gravelly soils; class 3 -- generally brown soils.

* Samples were also used to compose of a bulk sample in

the conventional spmpling.
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Appendix 2. Selective Sampling Data

SAMP Mo .Ct Cs.Fg PH Tot.C Org.C EXCHANGEABLE CATION (meg/100g) Ava.P Tot.N COLOR --- SPECTRAL BAND ---- PIXEL VALUE
NAME % % 1:1 % % Na K Ca Mg CEC ppm % v C 4 5 6 7 red green
S-01 41.6 17.9 6.5 3.5 3.3 0.00 0.65 10.24 0.55 23.7 97.0 0.177 S 3 14.3 19.0 24.2 25.7 1182 179
S-02 49.1 23.8 6.9 4.8 4.6 0.10 0.95 19.01 t1.66 33.1 200.0 0.336 4 3 13.2 17.% 23.0 25.3 166 154
S-03 27.9 26.9 6.6 2.3 t.9 0.06 1.29 9.84 0.78 19.8 84.8 0.122 6 4 15.7 20.3 26.%1 29.3 218 207
S-04 46.2 21.4 7.2 4.7 4.4 0.04 0.54 14.96 1.17 ,28.6 193.9 ©0.186 4 3 12.9 16.5 20.0 22.0 163 {50
S-05 53.4 14.0 7.2 4.7 4.1 0.05 0.87 21.29 2.28 33.2 315.1 0.269 4 3 11.8 15.9 20.1 22.7 154 142
S-06 29.6 23.7 6.4 2.1 2.0 0.09 0.98 8.62 0.94 22.4 151.5 0.136 6 4 19.1 21.6 29.1 30.7 219 21t%
S-07 31.2 33.2 6.8 2.6 2.5 0.06 0.86 +{1.14 0.69 24.6 133.3 0.157 6 4 15.3 20.0 26.1 29.0 219 205
S-08 17.5 61.8 7.3 4.0 3.2 0.01 0.38 11.55 0.40 13.0 109.t 0.137 6 4 13.6 8.t 23.0 24.0 192 189
$-09 25.2 30.0 6.6 3.1 2.7 0.04 0.98 7.90 0.63 22.6 103.1f 0.139 6 4 5.3 20.6 26.7 28.7 224 213
S-10 20.0 9.9 6.9 2.4 1.6 0.04 0.40 6.18 0.22 17.9 74.0 0.094 6 4 19.1 16.1t 29.1 30.3 202 187
S-11 30.7 25.6 6.4 4.4 4.0 0.00 0.4% 8.94 0.50 40.3 169.7 0.213 4 3 13.2 18.1 24.2 26.7 181 165
S-12 388.1 19.9 6.8 3.9 3.6 0.00 O0.54 13.03 0.76 27.1 133.3 0.179 4 3 12.5 16.8 21.8 24.0 169 155
S-13 42.3 24.3 6.6 4.5 3.6 0.02 0.67 10.86 0.73 26.% 121.2 0.164 4 2 10.1 13.8 17.0 1{18.2 1157 146
S-14 25.5 18.0 7.1 1.7 1.4 0.01 0.23 7.90 0.36 16.6 82.0 0.090 6 4 16.7 23.0 29.0 238.7 202 186
S-15 32.2 204 6.8 2.7 2.5 0.00 0.44 9.90 0.56 20.%5 139.4 0.124 6 4 15.8 22.3 29.7 31.0 212 198
S-16 46.5 19.6 6.9 3.8 3.6 0.0t 0.53 17.20 0.69 21.f 90.9 0.191 6 4 14.3 19.7 26.7 28.0 t70 156
S-1{7 47.7 24.9 7.0 4.5 4.0 0.07 0O.81% 15.38 1.02 26.8 133.2 0.187 &6 4 14.6 21.0 27.9 30.7 175 160
S-18 28.8 36.4 7.3 1.9 1.8 0.00 0.35 10.33 0.40 18.3 97.0 0.11S 6 4 {6.9 23.0 29.t 31.0 202 190
S-19 32.6 24.2 7.1 2.1 2.0 0.00 0.48 10.22 0.42 19.5 67.0 0.123 6 4 16.9 21.6 28.9 31.2 200 183
S-20 29.8 16.4 7.0 2.5 2.3 0.00 0.40 10.94 0.53 19.1 39.4 0.148 6 4 16.4 22.3 29.5 30.6 198 182
S-2t 23.2 25.2 7.1 2.9 2.4 0.00 0.42 11.40 0.60 19.3 127.2 0.t51 6 4 15.5 19.7 27.t 28.0 197 182
$-22 27.1. 24.4 6.8 2.3 1.8 0.02 0.33 7.50 0.34 16.9 107.7 0.161 6 4 17.1¢ 22.3 29.% 30.6 199 183
$-23 28.1 24.4 7.0 2.4 1.9 0.00 0.3t 8.60 0.32 11.8 897.0 0.120 6 4 15.6 21.0 28.3 29.9 20t 186
S$S-24 25.8 20.8 7.% 2.3 1.9 0.00 0.55 8.16 0.37 15.5 52.0 0.121 6 4 17.2 22.3 29.% 30.6 204 189
S-25 29.3 2t.9 6.8 2.5 2.3 0.00 0.38 6.97 0.27 15.6 97.0 0.129 6 4 17.2 23.9 29.3 30.1 204 189
S-26 24.7 8.6 7.0 2.3 1.7 0.00 0.30 6.02 0.22 13.3 92.0 0.096 6 6 19.6 23.2 29.9 29.4 204 190
S-27 31.4 254 6.4 2.4 2.2 0.00 0.15 4.97 0.26 18 .4 73.0 0.120 6 4 21.3 24.5 31.6 31.4 204 121
S-28 26.2 38.0 7.1 2.4 2.0 0.00 0.38 8.12 0.30 16.6 60.0 0.126 6 4 1.7 21.9 28.1 29.4 199 195
$-29 18.7 52.0 7.0 2.8 2.4 0.00 0.39 9.40 0.50 18.9 {i5.1 0.160 5 4 5.6 20.6 27.5 128.8 207 196
$-30 26.5 27.7 7.4 2.2 1.9 0.00 0.34 11.14 0.34 18.4 109.1 0.13% 6 4 17.4 22.6 29.9 30.7 203 188
S-31t 24.4 35.7 7.4 2.5 2.3 0.0t 0.33 9.52 0.32 18.2 73.0 0.113 6 3 16.7 21.6 28.5 29.4 200 186
S-32 25.6 26.5 7.1 3.1 2.7 0.00 0.41 11.93 0.48 22.3 97.0 0.132 6 3 15.6 21.0 28.5 29.4 199 185
S-33 35.6 27.1 6.5 2.8 2.7 0.00 O.64 B.64 0.48 18.5 73.0 0.145 6 3 i5.6 20.3 27.9 29.4 196 179
S-34 51.6 20.8 6.4 50 4.4 0.00 0.98 12.17 1.33 28.4 115.1 0.187 4 3 12.6 16.5 21.8 23.0 178 150
$-35 37.2 260 7.2 2.8 2.7 0O0.00 2.69 14 .12 0.44 22 .4 108.1 0.153 6 4 t6.C 20.3 28.5 29.4 180 175
S-36 26.4 42.% 7.0 2.0 1.8 0.00 O0.26 6 .80 0.22 14.5 53.0 0.123 6 4 19.5 22.2 30.3 3t.7 203 189
S-37 1.9 50.3 7.5 2.3 1.2 0.00 O0.14 7.24 0.16 9.8 93.0 0.07% 7 5 20.4 23.5 29.3 30.1 212 203
5-38 14.6 36.7 7.4 3.3 1.9 0.00 0.18 9.69 0.26 12.1 103.0 0.116 6 4 14.9 17.8 25.1 24.3 203 193
S-39 18.1 43.4 7.1 4.6 3.3 0.00 0.29 13.5%58 0.94 17.9 212.1 0.204 S5 4 2.3 15.9 22.1 23.0 197 {85
S-40 28.0 20.2 6.7 3.2 3.0 0.00 0.45 10.96 Q.44 20.6 84.8 0.163 6 6 t15.3 19.0 27.% 29.0 193 177
S-41 3%5.4 17,9 6.6 2.5 2.3 0.05 0.74 7.70 0.28 18.5 75.0 0.143 6 4 16.9 22.2 29.3 30.4 196 182
S-42 23.6 50.4 7.8 4.4 3.3 0.00 0.5 24.94 0.47 20.8 98.t 0.199 4 3 14.2 17.1 23.2 24.0 162 162
S-43 1.3 44.4 7.2 1.7 1.5 0.00 0.26 6.03 0.14 11.8 76.9 0.081 6 4 1.8 21.9 27.6 29.9 213 209
S-44 13.0 48.4 7.5 2.0 t.4 0.00 0©0.38 8.49 0. 14 14 .1 117.3 0.086 6 4 18.7 21.2 27.6 27.0 22t 212
5-45 35.4 29.6 6.0 2.7 2.5 0.00 0.25 4.84 0.14 22.9 90.4 0.151 S 6 14.6 20.0 27.6 29.9 195 177
S-46 19.0 3%5.6 6.%5 0.8 0.6 0.03 0.33 2.50 0.20 13.t 48.1¢ 0.04¢f 7 4 23.8B 27.5 32.4 35.8 208 191
S-47 13.2 47 .4 7.2 1.9 1. 000 0.19 5.44 0.16 11.6 113. 0.085 6 6 17.9 21.2 27.1 28.0 21t 200
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Appendix 3. Stratified Random Sampling data

SAMP Mo.Ct. Cs.Fg PH Tot.C Org.C EXCHANGEABLE CATION (meg/100g) Ava.P Tot.N COLOR --- SPECTRAL BAND ----PIXEL VALUE
NAME % % 1:1 % % Na K Ca Mg CEC ppm % vV C 4 5 6 7 red green
A-¥1 31.9 27.2 6.8 3.2 2.8 0.04 0.68 11.60 0.71 23.9 257.6 O0O.170 6 4 14.8 19.4 26.5 28.0 18% 180
A-12 37.8 25.7 6.5 3.2 3.1 0.01 0.74 9.33 0.87 25.9 i99.1 0.182 S5 3 i15.0 19.4 24.3 25.3 182 169
A-21 33.6 28.0 6.7 3.5 3.0 0.05 0.87 10.70 0.87 24.2 i184.6 0.164 S 3 14.2 17.6 22.6 24.0 194 180
A-22 33.9 30.9 6.7 3.3 3.3 0.00 0.39 11.05 0.57 25.1 128.8 0.169 6 3 14.9 19.4 24.3 26.7 184 169
A-31 23.2 22.4 7.4 2.1 1.6 0.03 0.58 8.55 0.45 18.4 111.5 0.112 6 4 i8.8 21.2 27.8 28.7 211 196
A-32 29.0 26.2 6.7 2.7 2.6 0.04 O.71 9 .80 0.62 20.3 78.8 0.145 5 3 16.0 20.6 26.7 28.3 207 196
A-449 25.0 24.4 7.% 2.7 2.0 0.03 0.53 10.21 0.38 i8.9 113.5 0. 125 6 4 19.6 22.4 28.4 31.0 216 200
A-42 19.4 33.2 6.7 2.5 2.3 0.03 0.64 9. 34 0.59 20.8 134.6 0.146 6 3 i15.8 20.0 26.1 27.8 213 199
A-51t 29.%5 31.7 6.9 2.9 2.7 0.04 0©0.36 10.56 0.41 19.2 84.6 0.135 6 4 i.8 20.0 26.t 27.8 204 187
A-52 21.0 45.9 6.9 3.6 2.7 0.06 0.89 8.20 1.05 15.5 190.4 O0.161 5 3 14 .4 17.9 25.5 25.8 187 182
8-11 41.9 20.3 6.8 3.% 3.5 0.02 0.53 t2. .17 0.62 21.8 109.6 0.176 S5 3 14.1 t9.1 24.9 26.5 178 162
B8-12 35.9 33.5 6.3 2.6 2.4 0.07 0.80 8 .05 0.54 19.1 184.6 0.147 6 3 15.5 20.1 25.%5 26.8 205 190
B-21 21.6 46.4 6.7 2.2 1.9 0.03 0.50 6.33 0.38 14.8 138.5 0.107 6 4 18.0 22.1¢ 27.8 29.7 209 194
8-22 30.0 27.5 7.t 2.1 2.1 0.0t 0.17 9.74 0.47 18.3 121.2 0.133 5 6 i8.4 22.1 28.4 29.5 204 188
B-31 33.8 16.7 6.5 3.5 3.5 0.0 0.51 10. 18 0.55 22.4 94.0 0©0.168 S5 4 15.0 19. 1 25.5 27.3 192 177
B-32 28.2 2t1.6 7.1 2.9 2.6 0.0t 0.45 12.01 0.48 20.0 80.1 0.143 6 3 1.8 20.3 27.2 27.6 188 178
B-41 29.5 t17.1 6.9 3.6 3.3 0.01 0.53 12 .01 0.58 20.7 87.0 0.t68 S5 4 14 .1 17.9 23.2 25.7 173 158
B-42 33.0 15.6 6.9 3.t 2.8 0.02 0O.62 10.91 0.56 19.3 {i15.ft 0.144 5 3 15.4 20.3 26.1% 28.9 192 176
B-5t 26.8 22.7 8.0 2.1 1.4 0.02 0.46 20.43 0.34 15.0 51.0 0.10f 6 4 18.4 22 .1 27.8 27.9 194 179
B-52 24.% 30.0 B.0 2.4 1.6 0.04 1.50 28.94 0.46 1.3 42.0 0.09%5 5 3 t7.6 20.3 25.1 26.2 20% 190
CcC-11 28 .1 36.4 7.2 2.1 2.0 0.0t 0.43 9.83 0.37 20.8 83.0 0.122 6 4 17.6 21.4 27.4 28.9 204 188
C-12 28.8 28.7 7.3 2.2 2.0 0.01 0O.64 11.64 0.54 19.0 103.0 ©0.124 &6 4 17.6 21.4 28.0 29.2 207 192
Cc-21 22.6 33.7 7.0 2.4 2.3 0.0t O 44 9.60 0.49 17.8 90.9 0.138 6 4 17.6 20.9 27.4 28.6 204 188
c-22 27.8 30.3 7.3 2.% 2.0 0.0t 0.47 12.05 0.42 i8.3 101.9 0.135 6 4 17.6 21.4 28.0 28.9 204 188
C-31 26 .1 23,9 7.2 2.3 2.2 0.0 0.57 10. 41 0.48 17.4 156.8 0.148 6 3 15.8 19.7 26.3 27.19 198 182
C-32 23.0 3¢6.8 7.3 2.4 1.9 0.01 0.28 9.80 0.31 15.0 111.% O0.114 6 4 18.3 20.8 27.0 27.3 198 187
CcC-41 24.2 2B.1 7.t 2.7 2.2 0.01 0.32 9.91 0.44 i5.8 107.7 0©0.131 5 4 16.5 19.2 25.9 27.3 195 184
c-42 23.9 23.9 6.7 2.5 2.1 0O0.01 0.27 7.32 0.37 15.9 92.3 0.118 6 3 6.5 20.8 27.6 28.5 202 187
C-51 24.4 25.0 6.8 2.5 1.8 0.01 0.26 7.27 0.28 15.1 8B8.5 0.114 6 4 17.3 20.8 27.9 27.9 202 186
c-52 20.3 t8. t 7.0 2.9 1.7 0.0t 0O.44% 6.43 0.30 13.5% 63.5 0.105 S5 3 17.3 20.8 25.9 26.1 204 187
D-11 30.3 27.7 €.8 2.7 2.7 O0.01 0.853 10.22 0.50 20.6 150.0 0.153 5 6 15.2 19.2 25.9 27.9 197 180
D-12 37.6 19.2 6.6 3.5 3.3 0.02 0.41 12.19 0.54 13.2 t17.3 0.169 5 3 13.8 17.8 23.3 26.0 186 170
D-21 24.7 33.9 7.0 2.5 2.3 0.0t 0.52 10. 19 0.47 18 .4 117.3 0.136 6 4 14.8 18.9 26.1 27.3 200 185
D-22 30.6 32.1 7.2 2.7 2.4 0.04 0.67 11.88 0.54 20.5 126.9 0.148 6 4 16 .2 19.4 26.7 27.9 196 179
D-31 26.3 31.6 6.8 1.9 1.7 0.0f 0.34 6.03 0.30 14.3 92.3 0.103 6 4 16.9 20.6 27.2 28.5 203 187
D-32 25.9 26.7 7.1 2.1 2.0 0.0t O0.45 9.08 0.32 15.4 t07.7 0O.126 6 4 16. 9 20.0 26.7 28.5 20t 185
D-41 26.8 26.7 7.1 2.8 2.7 0.01 0.55 10. 10 0.34 18.9 98.f 0.1%59 €6 3 14.8 18.9 25.6 27.3 201 185
D-42 t9.0 33.3 6.9 2.4 1.9 0.03 0.33 7.4Q0 0.22 2.1 80.8 0.1t3 6 6 16.5 20.9 26.7 27.3 203 130
D-51% 22.4 30.9 7.1 2.6 2.4 0.0 0.37 9.18 0.30 16 .2 7.7 0.145 5 4 16.0 20.3 27.2 28.5 196 181
E-119 35.6 i8.2 6.9 3.7 3.6 0.09 1.10 34.67 1.06 25.9 151.9 0.207 6 4 14.9 19.1 26 .1 28.2 180 174
E-12 30.9 20.8 7.t 3.2 3.2 0.06 0.39 14 .03 0.46 23.5 7.8 0.170 6 3 15.3 20.3 27.2 29.1 185 169
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SAMP Mo.Ct Cs.Fg PH Tot.C Org.C EXCHANGEABLE CATION (meg/100g) Ava.P Tot.N COLOR --- SPECTRAL BAND ---~ PIXEL VALUE
NAME % % 1:1 % % Na K Ca Mg CEC ppm % vV C 4 5 6 7 red green
E-2¢ 25.2 23.8 7.1 2.8 2.6 0.02 0.56 1{2.68 0.52 18.6 128.8 0.134 6 4 16.0 20.9 27.8 29.8 195 179
E-22 20.9 21.1 6.7 1.6 1.5 0.00 0.12 6 .86 0.10 13.6 7.0 0.087 6 4 19. 1 22.8 30.1% 29.8 200 184
E-31 26.5 28.4 7.0 2.8 2.9 0.0t 0.42 12.26 0.50 19.2 -90.4 0.202 5 3 14.8 18.8 24.6 27.7 205 190
E-32 22.8 36.2 6.9 2.6 2.4 0.0t 0.76 9.4% 0.47 20.6 115.4 0.15% 6 4 1I5.0 19.4 27.4 28.3 200 184
E-419 20.6 31.7 7.1 2.4 2.3 0.01 0.28 9.94 0.37 16.1 98.{ 0.1%5% 6 3 5.7 19.4 26.9 28.6 205 190
E-42 15.3 42.7 7.0 2.7 2.6 0.0 0.30 10.869 0.35 17.9 119.2 0.19% 5 4 14 .4 i8.8 26.9 2B.6 211 199
€E-5t 21.6 27.9 7.3 2.5 2.3 0.03 0.24 11.81 0.32 16 . ¢ 117.3 0.166 5 4 15. ¢ i8.8 26.9 27.t 200 188
F-11 30.1 22.8 6.9 2.9 3.0 0.0t 0.43 t1t.16 0.50 21.6 94.2 0.158 &6 3 15. 1 18.8 26.9 27.7 201 1919
F-12 29.9 20.4 6.6 2.2 2.2 0.06 O.71% 9.41 0.69 18 3 88.5 0.145 5 4 1.3 22.4 30.3 233.6 198 182
F-21 19.1 45 .1 7.0 2.8 2.3 0.02 0.13 7.08 0.20 12.8 94.2 0.122 6 3 14 .3 17.6 24.6 26.3 201 189
F-22 19.4 43.5 7.2 3.8 3.0 0.0t 0.24 113.71 0.%52 17.4 210.8 0.242 S5 4 12.2 5.2 21v.7 22.9 201 198
F-3f 28.7 3%5.2 7.1 2.3 2.2 0.02 0.32 9.05 0.24 1614 71.2 0.137 6 4 16.5 20.6 25.7 29.0 20t 185
F-32 19.3 35.3 6.8 1.7 1.7 0.0f 0.33 5.50 0.16 12.9 65.4 0.108 S5 4 16.2 20.0 26.9 27.2 205 193
F-41 24.% 36.9 7.3 2. 2.0 0.05 0.50 13.37 0.40 18.8 88.5 0.156 6 4 14.4 18.2 25.7 26.6 208 191
G-11 29.4 36.6 7.1 2.9 2.8 0.07 0.65 15.30 0.62 19.4 123.1 0.168 5 4 13.9 17.9 24.0 24.8 194 177
G-12 29.2 3%93.9 6.9 2.0 t.9 0.02 0.23 5.87 0. 14 t1.7 59.6 0.109 5 4 17.0 21.3 28.0 27.9 190 183
G-21 17.5 41.7 7.1 1.0 1.4 0.02 0.27 4.62 0.10 10.8 48.1 0.064 6 3 20.9 24,4 30.3 33.3 215 205
G-22 20.7 30.9 7.0 2.9 2.8 0.04 0.50 13.54 0.60 20.2 126 .9 0.168B 6 4 16.5 21.3 28.6 29.t 210 198
H-11 30.1 42 9 6.7 2.8 2.9 0.02 0.5%3 9.76 0.34 19.8 92.3 0.171 4 4 14.8 i8.8 25 .7 27.3 202 186
H-22 15.3 36.9 6.9 2.2 2.1f 0.00 O0O.41 7.36 0.30 16.8 63.0 0.10% 6 3 15 .1 19.4 26.9 28.8 196 179

6ST



194
189
184
183
181
t76
179
178
177
176
179
1902
179
176
179
184
188
168
164
167
164
173
179
t80
169
173
171
173
178
180
174
t74
t74
174
168
163
159
159
150
139
tas
167
176
186
192
192
1914
186
1886
186
189
176
162
161t
161
157
158
156
162
170
170
177
182
183
185
175

188
185
187
104
191
179
179
179
177
117
183
186
103
182
1014
1484
183
ALk}
178
178
180
182
ALAJ
182
184
183
183
177
178
179
174
1t
167
1638
166
167
166
164
154
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174
179
178
181
199
190
188
192
t87
189
187
104
186
160
162
158
156
185
157
167
169
169
168
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188
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138
179
187
186
180
169
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178
178
177
183
188
182
178
177
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183
182
179
177
178
183
184
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181
184
180
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17
173
179
1793
178
156
168
173
172
174
171
163
t73
181
18%
187
188
186
186
188
185
184
188
183
188
184
177
164
162
163
158
162
t66
157
152
167
183
180

179
186
AL L]
178
176
177
179
178
180
18t
183
178
180
107
196
196
209
185
189
183
180
ies
108
187
187
186
183
1814
179
176
176
169
169
157
157
166
170
169
169
163
173
183
188
183
182
107
187
184
18
183
101
197
188
189
187
182
o
184
111
160
172
160
166
185
189
185

108
186
179
178
179
180
182
189
188
184
180
189

211
207
213
208
190
182
179
179
177
181
183
177
176
170
179
176
73
1t
168
163
158
162
167
110
163
e
1”7
186
ta?
188
189
183
187
188
189
187
188
197
184
190
192
190
179
174
161
157
57
154
178
201
196
191

t73
187
184
183
182
180
185
204
199
181
186
209
219
219
218
215
207
187
t82
178
1798
180
192
108%
176
t70
174
172
173
176
7S
172
172
161
160
163
169
177
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Red Filter Pixel Values for the Field.
(One number represents 4*4 m in area)

199
22
23
23t
227
220
219
203
205
209
209
202
193
196
186
175
180
t81
180
182
179
182
183
184
1898
18]
184
183
186
187
186
1A%
182
180
185
183
178
180
183
184
185
186
188
184
172
17t
169
175
182
169
182
192
207
202
207
168

175
207
209
204
205
210
220
224
224
209
206
200
19%
186
179
173
177
182
178
177
180
18t
182
182
181
183
185
185
186
166
188
1a7
184
182
182
182
182
183
183
182
183
186
184
178
174
172
176
178
172
181
191
206
207
207
174

184
196
202
204
218
223
221
218
2117
213
207
t92
187
182
179
182
18%
179
176
1716
183
188
187
188
18%
187
198
185
187
188
183
181
181
186
183
t8o
180
182
185
187
180
173
172
177
170
1BO
175
185
191
202
206
201
185

167
191
196
210
212
212
214
213
213
217
200
200
188
179
174
teo
188
186
188
191
tes
195
191
185
186
186
184
184
184
185
182
1873
182
18t
176
179
187
187
189
184
180
174
176
180
184
181
192
19%
207
208
tae6
19¢

179
191
204
208
213
220
217
215
209
206
19%
188
187
183
83
187
190
189
185
187
191
192
188
185
(LR
183
185
tat
182
182
184
18
179
176
179
185
185
189t
186
1RO
175
11y
166
170
186
196
196
201
204
ty4
tes

190
191
199
204
206
203
207
201
199
189
193
187
8
182
190
193
194
191
186
192
194
187
183
182
101
188
ta0
182
182
183
1R]
st
1719
180
183
177
180
178
1710
158
152
142
159
181
191
192
197
202
197
194

197
204
198
199
190
196
192
191
187
12t
181
180
182
184
inae
181
183
91
1908
188
185
ta7
182
187
187
188
183
181
182
182
179
184
180
179
177
171
159
154
151
146
150
178
188
192
1937
206
193
198
173

193
199
200
197
186
194
197
199
194
182
178
176
180
184
191
189
19t
t82
184
189
179
185
182
187
188
184
178
182
183
a0
192
180
173
171
161
154
1419
148
157
154
168
180
192
197
201
194
197
182

177
196
202
191
190
194
189G
193
19)
195
191
190
87
192
t9)
183
183
192
194
188
188
190
190
166
180
188
188
186
185
186
188
177
1710
172
166
148
152
155
163
166
174
186
196
201
197
195
183

173
192
208
206
193
193
191
196
196
196
196
190
184
191
183
192
211
201
196
190
19¢
187
186
184
182
185
188
190
189
185
179
173
178
158
154

158
163
169
180
177

191

193

198

198

198

183

181
208
216
2t
204
201
202
193
199
200
201
179
184
t84
194
204
194
193
190
190
185
186
186
182
186
187
86
187
189
tal
176
166
i70
166
165
166
174
1758
184
189
194
200
200
200
189

t93
197
200
202
208
194
193
197
203
189
186
176
184
195
196
194
192
186
187
184
182
184
178
179
18%
184
187
187
188
183
174
170
165
165
177
180
179
188
190
203
199
202
197
179

172
191
199
22
212
208
199
198
188
189
184
90
195
19%
197
168
182
183
183
183
81
176
176
184
183
184
186G
189
185
181
181
179
t76
180
180
181
189
192
201
200
202
20t
172

118
20%
219
206
205
205
198
197
187
192
194
197
198
190
185
tat
182
180
181
184
180
182
187
t83
185
109
185
184
184
83
t8s
104
181
tes
192
199
202
206
203
204
179

186

197

192

207 189
210 190
199 192
199 198
194 199
188 130
190 184
201 184
19% 184
186 180
182 188
180 tB4
181 166
183 195
187 186
183 108
189 191
193 194
186 192
187 191
187 189
ta4 190
180 180
176 182
177 183
177 184
181 189
179 183
184 181
106 180
194 {85
194 195
205 205
199 199
20t 200
179 180

161
198
199
191
183
176
181
189
192
189
184
tea
183
186
189
190
188
189
187
198
187
183
170
180
182
189
182
195
202
210
203
197
179
177

179
192
194
188
181
176
178
191
197
189
184
18%
190
1R6
196
184
186
181
184
194
1683
178
178
180
184
186
197
204
208
205
198
188
181

167
187
1914
i84
182
185
193
197
191
188
193
82
188
190
192
188
180
191
188
t82
181
182
192
183
188
202
204
205
200
187
188

167

177

186 183
189 181
187 186
188 186
185 183
188 181
196 189
196 $80
194 190
196 189
182 184
182 176
185°' 182
186 182
184 184
184 187
184 203
187 219
183 193
187 197
210 2t4
209 214
203 207
196 20t
194 198
187 188

179
104
186
179
191
183
177
179
177
190
218
229
216
219
226
218
209
202
198
185

179
179
173
1995
189
192
219
2123
230
224
213
200
183
183

189
195
199
192
185
159
167
177

091



210
206
202
200
199
194
197
195
19%
194
18§
197
190
181
188
198
201
162
157
168
170
186
19%
196
167
177
17%
182
191
193
189
190
180
189
172
172
172
172
162
150
155
177
190
201
207
207
206
196
201
202
20%
193
178
164
171
168
167
169
1715
176
181
191
196
198
197
153

197
202
204
201t
199
196
197
1896
195
194
198
20t
199
199
198
197
200
199
196
193
196
198
197
198
197
199
199
192
193
194
191
187
183
179
180
181
181
178
166
176
189
184
192
196
205
208
204
207
203
204
203
201
201
178
177
173
170
169
170
181
182
182
181
191
202
157

146
1985
203
203
197
196
195
193
192
194
199
203
198
195
194
196
198
198
195
194
195
198
200

197
2014
197
184
189
180
194
191
191
i1
182
187
188
190
186
180
190
196

20t
204
202
203
203
202
200
201
200
204
200
193
180
1717
t78
172
176
179
t69
163
180
198
171

189
202
205
196
194
195
194
t96
196
197
199
195
196
201
208
207
219
198
200
198
196
201
203
202
202
202
198
196
195
192
193
186
185
171
170
179
186
184
185
180
188
198
201
199
199
202
202
200
198
200
198
203
204
204
203
198
197
199
185
174
185
173
178
198
204
185

204
202
197
197
198
198
198
202
202
199
t97
203
218
221
216
222
218
202
196
194
194
193
195
199
193
191
193
195
194
192
187
194
181
102
176
191
186
188
187
193
2014
202
204
204
207
202
203
204
203
204
210
209
207
207
205
194
189
173
170
169
166
190
214
211
196

173
203
201
20t
201
198
201
214
210
197
202
219
227
228
226
224
216
198
196
193
180
194
204
197
189
186
189
189
190
193
199
188
188
176
175
177
184
193
195
198
199
200
200
201
205
204
207
203
204
209
211
206
203
203
208
204
204
190
167
169
197
215
2ty
205
160

204
2CS
208
204
199
202
220
219
206
219
229
226
223
228
226
221
213
206
197
199
202
216
204
201
192
188
188
193
196
196
194
196
187
190
196
199
197
196
196
197
202
202
200
198
199
204
203
204
209
206
205
206
207
206
205
209
203
188
193
196
212
213
209
155

171
204
207
207
205
247
22%
223
218
224
226
228
219
220
227
223
214
211
208
203
205
213
213
209
205
194
188
194
194
197
200
200
200
197
200
202
197
197
197
201
201
200
200
200
203
202
204
208
204
202
205
206
209
208
209
210
204
204
201
203
219
212
210
162

181
208
209
205
215
228
228
221
221t
223
213
208
215
216
215
212
197
197
210
220
216
211
213
21t
205
207
2014
199
197
199
199
202
197
201

199
199
196
198
200
200
201
198
200
203
204
204
201
202
203
206
208
210
212
PAR]
206
198
187
195
212
213
215
179

197
209
207
209
218
221
220
222
223
210
209
209
202
217
211
200
208
219
220
201
218
216
212
214
220
2t8
201
200

198

189

196

t96

197
200

198

193

194

197

199
202
204
203
204
2403
205
200
201
201
205
204
207
208
206
204
205

197

196
201
208
212
209

184

Appendix 5.

195
210
211
217
224
223
226
229
221
210
211
207
199
201
201
213
216
221
227
210
221
218
215
219
220
200
196
197
199
196
194
194
198
197
195
196
195
198
200
203
201
200
202
20t
200
202
203
201
20%
206
206
203
200
203
201
204
210
2]
213
193
151

185
219
228
227
2230
225
222
219
226
228
223
212
210
220
225
226
226
228
225
222
218
220
210
201
196
195
197
195
197
195
193
200
199
203
201
196
195
198
198
199
198
202
201
198
200
200
201
202
203
199
197
191
194
198
204
209
212
218
198
157

168
225
233
227
229
235
237
236
228
218
216
225
224
219
21%
220
223
230
220
215
209
203
201
199
198
197
195
195
194
194
199
200
201
202
201
196
194
195
195
196
199
200
199
200
200
20%
202
201
193
188
188
191
194
199
208
216
219
201
165

159
215
229
236
236
227
234
232
224
212
218
227
216
206
203
212
216
207
204
202
202
199
199
197
197
200
197
198
196
199
201
201
202
200
199
198
19%
195
196
197
2014
200
199
199
20t
201
194
181
182
191
195
tag
194
207
217
215
211
153

198
229
236
237
234
227
226
214
215
218
219
213
205
207
202
201
196
198
196
197
197
198
199
200
201
199
200
200
202
203
202
201t
198
196
200
198
194
197
200
201
202
202
204
200
197
185
185
192
198
184
195
205
21
217
218
145

Green Filter Pixel Values for the Field.
(One number represents 4*4 m in area)
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- LNMF

UNCF
LNTC
LNOC
LNK

UNCA
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.LNCEC
.LNP

.LNN
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.1018
-.8062
-.8213
-.3t63
-.5468
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.T7014
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.46 16
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16 .
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VAR

.MC

.CF

PH

.IC

.ac

.NA

K

.CA

.G

CEC

kARR
0203
7365
.6733
.2870
L4914
.5333
.4590
.5269
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17

1ABLE
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- 0336
~. 7102
~.583%
~-. 1775
-.4618
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~.3350
~.4920
- 5402
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-.4637
. 0509
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-.2073
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B4/B5

-.6352

.3730
-.6794
-.6753
-.2570
-.5065
-.5169
-.5487
- 3184
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RED

-.0189
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-.1164
-.0973
-.0313
-. 0189
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. 0508
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-.0439
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-.6305
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-.3430
-.3595
~.2215
- 4201

51
R4/B5

- 2262
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Correlation matrix for ratioced and log transformed variables
on 108 soil samples.(R@ 0.05=0.1891
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