A COMPARISON OF THE ABILITY OF NOVICES AND EXPERIENCED THIRD

GENERATION LANGUAGE PROGRAMMERS TO LEARN FOURTH GENERATION LANGUAGES

by

CHARLES E. PULFER

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE 1IN BUSINESS ADMINISTRATION

in
THE FACULTY OF GRADUATE STUDIES

Commerce and Business Administration

We accept this thesis as conforming

to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

March 1987

® Charles E. Pulfer, 1987

32

In presenting this thesis in partial fulfilment of the requirements
for an advanced degree at the The University of British Columbia, I
agree that the Library shall make it freely available for reference
and study. I further agree that permission for extensive copying of
this thesis for scholarly purposes may be granted by the Head of my
Department or by his or her representatives. It is understood that
copying or publication of this thesis for financial gain shall not be

allowed without my written permission.

Commerce and Business Administration

The University of British Columbia
2075 Wesbrook Place

Vancouver, Canada

V6T 1W5

Date: March 1987

ABSTRACT

This thesis describes research which was carried out to
determine whether novices could program in fourth generation languages
as well as experienced third generation programmers.

It wés thought that experience With a third generation language
could be transferred to a fourth generation environment. This
hypothesis was tested using a completely randomized block design lab
experiment consisting of two factors and a block. The two factors
were experience with third generation languages, and complexity of the
v task.‘The block was the educational institution where the lab sessions
were conducted. Each of the factors and the block had two levels. The
specific hypotheses tested were:

1. Experienced third generation language programmers will record
higher mean scores on both simple and complex tests of fourth
generation languages.

2. The difference in test scores, between simple and complex fourth
generation language tasks, will be greater for novices-than for
experienced third generation language programmers.

3. Experience with other software tools, especially report writers,
query languages, and other fourth generation languages will
affect the subjects' performance on the fourth generation
language tests.

Using FOCUS as the fourth generation language, lab sessions
were run for fifty-seven subjects. The results indicate that
experience with third generation languages affects a subject's
performance on simple tests of fourth generation languages. The

results also indicate that the experience has no effect on

ii

complex tests of fourth generation languages. Because of a lack
of data, no meaningful conclusions could be reached for
hypothesis number three.

We feel experienced third generation language programmers
scored higher than novices on simple 4GL reporting tests because
experienced 3GL programmers had skills which were very similar to
the skills needed in a simple 4GL reporting application.

There are several possible ways of explaining why
experienced programmers could do no better than novices on
complex 4GL reporting tests. One possible explanation follows;
because complex 4GL reporting commands are so different from
third generation language commands, third generation language
programmers had no advantage over novices. A second explanation
might be that the complex test was too difficult, or too 1long.
As a result of this difficulty, no one was able to perform very
well,

We conclude that experienced programmers should be
preferred over novices when applications involve simple 4GL
commands. More research is necessary to determine if in fact
novices can perform as well as experienced third generation

language programmers on complex 4GL tasks.

iii

Table of Contents

ABSTRACT ..vvvvens RN & 1
LIST OF TABLES <veveeeann e ettt ettt vi
LIST OF FIGURES +vvveeeesensnnnnnnssnasnsnssasoeasensasnnannneesaasVil
ACKNOWLEDGEMENT +vvveeevnvnnnnnnnnneeeeeeannsnnannnsnsesanansasesess BX
L. INTRODUCTION tuvevveeennnnnnnnsnnnnnnnanonocasensosonnnnnnnanananl
2. REVIEW OF THE LITERATURE ON FOURTH GENERATION LANGUAGES3
2.1 DEFINITION OF FOURTH GENERATION LANGUAGES .eveeeeeveeeeeens.3

2.2 CLAIMS MADE ABOUT FOURTH GENERATION LANGUAGES .+....eeevss..ll

3. RESEARCH RELEVANT TO FOURTH GENERATION LANGUAGES ...eevev......l8
3.1 MEASURES OF EASE-OF~LEARNING ..veveeeeeencnccocaonencsasasald

3.2 RESEARCH ON FOURTH GENERATION LANGUAGES +evvvvveeenecassass23

3.3 QUERY LANGUAGE RESEARCH +uvveuerveonnnn. A -

3.4 THIRD GENERATION LANGUAGE RESEARCH .+......... R X

4. THEORY ..cceeecenorans teesesresresscseseresensans sesessacecsnse ess31
5. METHOD «ueeevvnuocneeeasoeaeenasnnnnssessosaseseasonansononsonasa3d
5.1 PARTICIPANTS PP ...39

5.2 DESIGN teeeeeuvnnnnnnnnneoeoeennnsnsnsnssnansasossaeeeasensadl
5.2.1 COMPLEXITY FACTOR vvvvvunenecececonnncnnns R 5 |

5.2.2 EXPERIENCE FACTOR +vvvvvvevnnnnnnnnnnsonannnneneneassdb

5.2.3 CLUSTER ANALYSTS ..vuvvnvnnnnonnnnenns Y’

5.2.4 STATEMENT OF THE MODEL EQUATION Y

5.2.5 OTHER VARIABLES USED IN THE ANALYSIS +uvveeeeceseasa57

5.3 MEASURE OF THE DEPENDENT VARIABLE «vvvroennvsesssnneseenns 61

5.4 PROCEDURE 4 eevveuennnnnnnnnnnnnnnnnnosnceoennennns RN 7.
5.4.1 PILOT TEST euuuureueoceeesennnnnnnnsnsnnsnsnsnsensessb2

5.4.2 THE ACTUAL EXPERIMENT . .uvuvuvnonneeenecoonnnnnennnes 64

5.5 ESTIMATION OF THE SAMPLE SIZE NEEDED ceserssnstenas 68

iv

5.6 STATISTICAL METHODS USED .(.cvvcecsesesonncanns ceeaeeaes68

5.6.1 HYPOTHESIS ONE ...ieeteecnesoeasscsasnsoaansannonnssesb8
5.6.2 HYPOTHESIS TWO .vvcevevecnssasocosssasunsssacssnssassll

5.6.3 HYPOTHESIS THREE ...iciersnrosnnecnssosncsonssssansasl2

5.7 VARIABLES USED IN THE ANALYSIS ...iiicieevevernnacsccnanessssld

6. RESULTS v teeeeeoeonoeessasnesnsssasosnsssnssessnnossosnessneeeell

6.1 HYPOTHESIS ONE .t.iveceeevsococosnanssnncasosaanccsncsnsnanenll

6.2 HYPOTHESIS TWO teveeeeeeacsonosannsanssensanssasnasossssessaBl

6.3 HYPOTHESIS THREE +euivivveceneencasasassesosssonssessassaassBl

6.4 SUMMARY OF THE PERFORMANCE OF THE SUBJECTS ..ccvceveces ...83

7. DISCUSSION OF THE RESULTS «.iceitiveiecereronccnvssceasononnas ceveeea87

BIBLIOGRAPHY & e e oo ouesossaneeonannosnesensssesssssssnssesanssassesssdl

APPENDICES ...ttt eereeneenenansososasneanscaaaassssnsnessacesanssacsasns 98
1. JUDGES' RATINGS OF THE SUBJECTS. ..vvuirerennrneeencanenrannnnas 98
2, SIMPLE TEST .. .iueeerevaeennsnanenascannannns Gesesseerereaceenan 103
3. COMPLEX TEST. .. ceteeeieeeenanencnoeeonasosoaasosssssssassnsasns 113
4, MARKING SCHEME FOR THE TESTS........ccoee... st ias e aee e 123
5. EXPERIMENTAL PROCEDURES.ctiveieisoenersanasosoascacarasnnas 135
6. REPORT GENERATION TRAINING MANUAL....e.ceveeeocnssosnscnnccaans 139
7. PRACTICE PROBLEMS......vtiveennnnnnnanncasas et esanencananaaas 169
8. QUESTIONNAIRE.t utiieriererinonsoenaanonasssosanaconsasonss 184
9. ESTIMATION OF THE SAMPLE SIZE NEEDED........ ceecacas cheesesenas 188

10. DATA COLLECTED.DURING THE EXPERIMENT........ teeeseaecaaenanas ..192

I.

II.

III.

Iv.

VI.

VII.

VII.

LIST OF TABLES

COMPARISON OF 4GL CATEGORIES

[JENKINS AND SCHUSSEL]..vevevevensn creeeaee R]

CATEGORIZATION OF FOCUS COMMANDS....eeevesssessss 44

JUDGES' RATINGS OF THE SUBJECTS' EXPERIENCE...... 47

OTHER SOFTWARE USED BY THE SUBJECTS.....e0e00.0.. 60
VARIABLES USED IN THE ANALYSIS.....eceveecscasaas Fb
ANOVA TABLE FOR MODEL l1.0..:cccevvunncecencencaaac 77

TABLE OF REGRESSION STATISTICS FOR

HYPOTHESIS THREE.cieiienencennnnnne creo e 82

MEANS, STANDARD ERRORS, AND NUMBER OF

OBSERVATIONS FOR EACH TREATMENT................."84

vi

LIST OF FIGURES

MARTIN'S MODEL OF A FOURTH GENERATION

ENVIRONMENT .o ot eesoaneasonsosscassonsansnssanssall
EXPERIMENT AL DESIGN...:vceveenvscosasvsssncnnevsscssedd

FREQUENCY CHART FOR THE MEANS OF THE JUDGES'

RATINGS . e veesneseesosessnsssasonenanesassessansanssasd

AGREEMENT OF THE TWO METHODS OF SUBJECT

SEPARATION . ¢ eeeeeeeeensasoseesossasesananoesnsnsanasdl
NUMBER OF SUBJECTS IN EACH TREATMENT......... N M
GRAPH OF NOVICE, INTERMEDIATE AND EXPERT CLUSTERS.. 5€
EXPERIMENTAL DESIGN WITHOUT BLOCKING....tee0eseseecs 70.

GRAPH OF SUBJECT SCORES VERSUS NUMBER OF REPORT

‘WRITER PROGRAMS WRITTEN..cvecsooeevooosoves ceesenases 73

GRAPH OF SUBJECT SCORES VS MEAN OF THE JUDGES'

RATINGS (SIMPLE TEST) eeeeereeesonssnosoneoeancanasel9

vii

10. GRAPH OF SUBJECT SCORES VS MEAN OF THE JUDGES'

RATINGS (COMPLEX TEST)..... ceeceeseeasreantrans c.... 80

11. GRAPH OF SUBJECT SCORES VERSUS EACH OF THE

FOUR TREATMENTS 4 e s eveennsneonceoanssssnssnsnsssasasess8D

viii

ACKNOWLEDGEMENT

This research was supported by an NSERC Postgraduate Scholarship

awarded to Charles Pulfer in 1985.

1. INTRODUCTION

This research was prompted by the growing acceptance of a new
type of software in the corporate information systems environment.
Though these "fourth generation languages" are growing in acceptance
(in 1985 a study found that fourteen percent of IBM installations in
the U.S. use fourth generation 1languages.)* , information systems
managers still know little about the realities of this type of
software. Information systems managers have trouble defining the term
"fourth generation language." Their inability to define the term is
caused by the fact that software vendors, marketing everything from
report writers to database management systems, label their products
fourth generation languages (4GL's). As well, these software vendors
claim that their products can not only be used by computer novices,
but also by experienced programmers. If information systems managers
are to make proper use of fourth generation languages, théy will need
a clearer indication of what they are, who can use fhem, and when
they should be used. The research was begun with these aims in mind.

The purpose of this experiment was to provide insight into the
ability of novices and experienced third generation language
programmers to learn a fourth generation language. The primary goal
was to determine whether knowledge of third generation languages
affected a person's ability to 1learn a fourth generation language. A
secondary goal was to determine whether novices had more difficulty
with complex fourth generation language commands than did experienced
third generation language programmers. It was hoped that answers to

these questions would help information systems managers decide

1 "4GLs enter dp mainstream despite some resistance", Computing
Canada: Software Report, (May 1985), p.6.

1

1. who should do the programming in a fourth generation environment,
and

2. whether novices should be allowed to produce more complicated
applications, or whether this task should stay within the
information systems department.

The rest of the thesis procéeds as fol;ows. Chapter 2 reviews
the literature on fourth generation 1languages, Chapter 3 reviews some
prior research relevant to fourth generation lanéuages, Chapter 4
reviews some relevant theory on 1learning, Chapter 5 describes the
method used for the experiment, Chapter 6 analyses the data obtained

from the experiment, and Chapter 7 discusses the results.

2. REVIEW OF THE LITERATURE ON FOURTH GENERATION LANGUAGES

2.1 DEFINITION OF FOURTH GENERATION LANGUAGES

As previously mentioned, one of the biggest problems involved with
doing research in this area is the lack of a precise definition of
these lénguages. Without a precise definition, information systems
managers are not equipped to handle the combination of marketing
literature, and "buzzwords" produced in the practitioner literature.
For this reason, the first step in this thesis was to uncover the
characteristics which define a fourth generation language.

Martin? defines a fourth éeneration language as a tool which
will.result in a productivity improvement of at least ten to one over
COBOL. Fourth generaﬁion languages also use an order of magnitude
fewer lines of code, when developing an applicatidn, than would be
needed with COBOL, PL/1 etc. Therefore fourth generatién languages
might be characterized as high productivity languages. The claimed
productivity improvement is a result of the languages using a
diversity of other mechanisms, besides sequential commands, such as
filling in forms or panels, screen interaction and built-in defaults.
‘Unfortunately little research has been done to substantiate the
productivity improvement claims put forward by vendors. Therefore, we
cannot be sure that fourth generation languages increase pro&uctivity.

In addition, we cannot be sure if a fourth generation language
can be used for all applications, or whether it is only suitable for
é certain core of applications. Third generation languages such as

COBOL and FORTRAN are domain independent. They are used across a

2James Martin, Application Development Without Programmers (Toronto:
Prentice Hall,1982), p.28.

variety of application areas and do not incorporate domain specific
knowledge. Some very high le&el languages (e.g. IFPS, GPSS) are domain
dependent. That is to say, they can only be applied to solve specific
problems. Fourth generation languages vary greatly in their power and
capabilities. While a third generation language could create all or
most applications, some fourth generation languages are designed only
for a specific class, or range of applications. Some are highly
restricted in their range, while others can handle a diversity of
applications well. In some cases, a specific fourth generation
language might have to be chosen for a specific application. On the
other hand, some 4GL's are Jjust aé flexible as COBOL and can be used
to produce complete applications in almost any area of business.

Fourth generation languages are also characterized as problem
oriented, * or nonprocedural. As Leavenworth and Sammet state :"It is
hard to convey an intuitive notion of languages which in some sense
are higher than FORTRAN, COBOL, PL/l etc. The most common term used
for this concept has been nonprocedural, and the most common phrase
has been 'what' rather than ‘'how'. That phrase refers to the facility
of a user to indicate the goals (what) he wishes to achieve rather
than the specific methods of solution (how) that must be used." * In
discussing the advantages of a nonprocedural language Leavenworth and
Sammet state: "The solution should be specified implicitly in terms of
structures or abstractions which are relevant to the problem rather
than those operations, data and control structures which are

convenient for some machine organization."[Ibid, p.2.]

3 Steven L. Mandell, Computers and Data Processing: Concepts and
Applications (New York: West Publishing,1985), pp.246-247.

4Burt M. Leavenworth and Jean E. Sammet, "An Overview of Nonprocedural
Languages", IBM Research Report RC4685 (1974), p.l.

Leavenworth and Sammet also identify some characteristics of these
nonprocedural or problem oriented languages

1) Associative referencing - the programmer does not have to specify
access paths, or conduct a search for a specific data structure. The
data is accessed on some intrinsic property of the data.

2) Aggregate operators — no need for looping.

3) Elimination of arbitrary sequencing - If a program satisfies the
"single assignment"” test (no variable 1is assigned values by more than
one statement) then the order of the statements is immaterial.

4) Pattern directed structures - search for a pattern without
specifying how to search.

The degree of nonproceduralness of a language is not absolute,
but, rather, is relative. A third generation lanquage with a statement
such as A=(B * C)+D can be consideréd nonprocedural when compared to
the equivalent operation in assembly language. Generally, we can state
that a fourth generation language is more nonprocedurai than a third
generation language. Some of the fourth generation commands can be
expressed in terms of a series of third generation commands. But, as
Elder states: "A fourth generation 1language that is entirely
nonprocedural will allow users to retrieve information without
detailed programming but will be 1limited to queries only. To develop
applications that involve any logical decisions and/or the processing
of data (e.g. sorting) a language must have procedural aspects.... The
difference between a procedural fourth 'generation language and third
generétion languages is the number of procedural instructions

necessary to write an application.”"$
$ Marvin Elder, "SALVO - A Fourth Generation Language for Personal
Computers"”, Proceedings of the National Computer Conference 1984

Most fourth generation languages contain procedural commands,
for example IF's and GOTO's, in order to handle more complex logic.
Schmidt attempts to build database querying capabilities into
PASCAL.¢ We can see that the PASCAL commands are substantially longer
than the equivalent commands in IBM's SQL, or a fourth generation
language. This gives an indication of the differences between a fourth
generation language and a third generation language. The savings
realized in lines of code by a 4GL are usually a result of more
powerful nonprocedural.commands incorporated into a 4GL. Savings are
also realized as a resulf of default options chosen by a 4GL. Most
4GLs can automatically select the format of a report, put page
numbers on it, select chart types for graphic display, put 1labels on
the axes or on column headings, and ask the user in a friendly manner
when it needs more information.

Jenkins 7 has classified current software generator products
into three classes: 1) application generators, 2) code generators, and
3) productivity enhancement tools. Application generators have an end
user orientation. Application generators will produce complete working
applications, such as payroll or accounts receivable, from
specifications given by the user. FOCUS and RAMIS II are examples.
Code generators produce a coded program, in third generation language,
from the given specifications. This coded program would then have to
be compiled and run. These code generators are oriented more towards

technical users who can "fine tune" the code. Productivity enhancement

S(cont d) (Montvale,N.J.: AFIPS,1984), p.564.

¢Joachim W. Schmidt, "Some High Level Constructs for Data of the Type
Relation", ACM Transactions on Data Bases, 2(1977), pp.247-261.
"Milton A. Jenkins, "Surveying the Software Generator Market",
Datamation, 31, No.17(1985), pp.247-261.

tools facilitate the development process but cannot produce whole

applications by themselves (examples of productivity enhancement tools

include query languages, test data generators, automatic
documentation, and report generators.) Both application generators and
code generators fall into the category of fourth generation languages,
but productivity enhancement tools are not considered 4GL's because
thej can produce only a portion of the total application.

Schussel outlined three types of fourth generation languages in
a slightly différent manner. 8

1) Interpretive programming languages are nonprocedural and easy
to learn. Examples include NOMAD2, RAMIS II, FOCUS and NATURAL. These
languages do not handle complex logic well.

2) Function generators interact with the developer in the form
of dialogues and screens. Examples are ADS/O, MANTIS and IDEAL. ASs an
example, an IDEAL application consists of two major classes of
components:

1. Fill-in-the-blank screens for description of the application: its
inputs and outputs, reports, and panels.

2. A high level procedural language incorporating relational
commands. With this system, the developer is insulated from the
operating system, teleprocessing monitor, and data base
manipulation.

3) Compiled system generators will generate COBOL or PL/1 code
from high level specifications. Examples include PacBase, GAMMA,

TELON, and UMBRELLA.

following article, Miriam Cu-Uy-Gam, "Do-it-yourself is on the way for
system development", Computing Canada: Software Report, (May 1985),

p.9.

Schussel's compiled system generator category 1is equivalent to
Jenkins' code generator category. Both function generators and
interpretive programming languages fall into Jenkins' application
generator category. Table 1 summarizes Jenkins' and Schussel's
categorizations.

Jenkins' term "application generators" is used in a business
environment as a synonym for a fourth generation language. Grochow
provides an introduction and bibliography on the topic of application
generators.®

Fourth generation languages use database management systems to
improve productivity. Fourth generation languages such as FOCUS, NOMAD
or MAPPER are built on top of, and integrated with, their own
database mahagement system. Other 4GL's can be joined to database
management systems already in place. One of the keys to efficient
application generation is the fact that the data structure for an
application already exists; it is represented in the database data
dictionary which the software can use. The creator of an application
is not required to design the data or its structuring.

The data dictionary is the foundation of many report generators,
query languages and application generators. In addition to describing
the data,'such dictionaries may contain report headings, alternate
names for data (aliases), report formats, screen layouts, and titles
for fields that can be placéd in column headings.

Fourth generation languages suitable for users, as well as

computer professionals, are emerging from three primary sources:

> Jerrold M. Grochow, "Application Generators: An Introduction”,
Proceedings of the National Computer Conference 1982 (Montvale,N.J.:
AFIPS,1982), pp.391-392.

TABLE |

-COMPARJSON OF 4GL CATEGORIESIJENKINS AND SCHUSSEL]

CATEGORY

——

PRODUCES
APPL I CA-
TION

a————

—t

APPLICATION
GENERATOR
{ JENKINS]

CODE
GENERATOR
[JENKINS]

PRODUCTIVITY

¥ ENHANCEMENT

TOOLS

[JENKINS]

INTERPRETIVE
PROGRAMMING
LANGUAGES
{SCHUSSEL]

FUNCT ION

4 GENERATORS

{SCHUSSEL

COMPILED
SYSTEM
GENERATORS
(SCHUSSEL]

PRODUCES
3GL
CODE

PRODUCES PART
OF AN APPLI-
CATION

EXAMPLE

N

YES

YES

NOC

YES

YES

YES

YES

NO

NO

YES

YES

NO

NO

YES

NO

NO

NO

YES

NO

NO

YES

NO

NO

NO

JFOCUS

GAMMA

€0oBOL

{REPORT

WRITER

Focus

IDEAL

GAMMA

10

1) data base management systems designed for mainframes that include a
4GL for report generation, for query, and for prototyping business
computer applications; 2) relational data base management programs
designed, initially, for personal computers with integrated
spreadsheets and other functions, including a 4GL for applications
development; and 3) 4GL's designed originally as application
development tools.

To be considered a 4GL, a language must firstly, be tied to, or
incorporate, a database management system, which includes backup,
recovery, and security features, as well as a data dictionary. It
must use a nonprocedural language which has the following features:
associative referencing, aggregate operators, elimination of arbitrary
sequencing, and pattern directed structures. It must have the ability
to handle some complex logic with procedural code and incorporate an
interactive query facility and report generator. It should incorporate
a screen formatter and cffer a productivity improvement over COBOL.
Usually this is achieved via a reduction in the number of lines of
code, and a reduction in the number of hours of programming éffort.
Lastly, it must make intelligent default assumptions concerning what
the user needs.

Some existing products have only some of the above
characteristics. They can be classified as productivity enhancement
tools, not 4GL's. Simple report writers, query languages, graphics
packages, databases and screen generators do not qualify. Rather, all
of these features must be combined in an integrated package to

produce a fourth generation language. Figure 1 illustrates a good 4GL

11

environment.?!?®

Given the above characteristics the term "fourth generation
language" still remains generic rather than specific. Products which
have all of the above characteristics do not necessarily have similar
design or similar syntax. This is the result of the multitude of
vendors in the 4GL field.

For the purpose of this thesis, third generation languages will
.be defined as languaées which firstly, obtain their data from files
rather than databases, and are "procedure-oriented”. In other words,
the programmer must specify "how" rather than what he wants to
accomplish. In addition they may involve data typing, and are domain
independent. Examples of 3GL's include PASCAL, BASIC, COBOL, FORTRAN,
and Pl/1,

It is obvious that 4GL's have different characteristics than
languages such as COBOL, and PL/l. As a result, learning a 4GL might
be easier, or more difficult than learning a third generation

language.

2.2 CLAIMS MADE ABOUT FOURTH GENERATION LANGUAGES

Authors writing on the subject of fourth generation languages have not
only failed to better define fourth generation languages, but have
also tended to make extravagant claims about the languages.

Generally, these claims have not been backed up by empirical
evidence. The following quotes are examples of some of the claims
made concerning the capabilities of fourth generation languages. Read

and Harmon state: "With 4GL's, programming productivity gains of

1oThis illustration is taken from James Martin, Fourth Generation
Languages (Lancaster: Savant Institute,1983), p.203.

12

FIGURE 1 - MARTIN'S MODEL OF A FOURTH GENERATION ENVIRONMENT

Data B3se —eagw = = == = = Data Dictionary'
Creation Data Modei
Data Analysis Tool

Data Entry Panel Generator w Query Language

Report Generator

Graphics Manipulator
Spreadsheet Manipulator
Arithmetic & Logic Functions
Screen gznerator

™ Procedural Language

Data Integrity Controls

Data Update Panel Generator

Communications. Intelligent Data Base
Mailbox facilities Automatically derived data.
Data-base triggers.
Integrity checks.

Audit controls.

Human Usage Aids
® On-line documentation creation.
® Menu generator.
e Heip aids.
e Computer-based teaching.

13

1,000% to 2,000% over 3GL's are routinely achieved by personnel with
no prior programming experience... About 75% of all programming can be
done by end users with only two days of training, specialist
programmers, however, will still handle complex applications." 11QOther
qguotes are similar, "System development with FOCUS takes about one
fourth of the time... Programmers multiplied their output by 5 to 10
times by using Ads/Online."!? James Martin, in his book Application

Development without Programmers discusses the 4GL NOMAD. He states:

"Beginners who have never programmed find it very easy to achieve
results of value by using the nonprocedural statements... It is easy
to understand and modify what another person has written in NOMAD...
Most end users employ only a small subset of the 1language. They can
be taught to achievevpowerful results in a few hours." 13

The literature also indicates that 4GL's offer a more responsive
tool for prototyping because of their interpretive nature and their
nonprocedural code. They produce shorter programs because they do not
include some of the control statements found in 3GL's, those dealing
with input/output format, loop control, handling error conditions, and
memory allocation.

Many successful implementations of systems, designed with fourth
generation languages, have been reported in the literature. The most
famous case occurred at the Santa Fe Railway Co., where a railway
reporting system was completely rebuilt by nonprogrammers in a few

weeks.[Ibid, p.175]

11Nigel S. Read and Douglas L. Harmon, "Readers' Forum: Language
Barrier to Productivity", Datamation, 29, No.2(1983), pp.209-210.
12David Kull, "Nonprocedural Languages: Bringing up the Fourth
Generation”, Computer Decisions, 15, No0.13(1983), pp.l56-162.
13Martin, Application Development Without Programmers, pp.206-208.

14

Some writers go so far as to state that neither programming
experience, nor technical training are prerequisites for the use of
4GL programming techniques.!+4 On the other hand, some writers offer
caveats to the claims made by others. Dr Tom Purcell, director of IS
withrBofg Warner Chemical Corp., states, "As easy as MANTIS (4GL) is
to use , and as much as it increases programmer productivity, it's
still an order of magnitude too difficult for the average user. Until
they make it easier to use, they can't havé a programmerless DP
department.” % Wilco tries to dispel some of the myths of 4GL's. She
argues that 4GL's are not that easy to learn beéause of their fairly
rigid syntax rules. She also argues that a 4GL cannot be both
flexible and easy to use. The more functions that are built in to
make it easy the more the user is restricted to the software
designer's preconception about what the application system will look
like. She concludes that there 1is still a need for professional
programmers.?!®

Read and Harmon also try to dispel some of the myths of 4GL's:
"The glossy brochures and magazine ads touting 4GL's often claim
nonprogrammers can produce their own reports with little training. On
the whole this is true, but what is not explained is that such claims
apply to report generation for single applications using single
databases employing only a minor part of the full power of the 4GL.
With current 4GL's programming complexity rises exponentially with

product complexity, and to be functional at the upper levels requires

14 Nigel S. Read and Douglas L. Harmon, "Assuring MIS Success",
Datamation, 27, No.2(198l), p.l09.

!5Quoted in an article by Micheal Tyler, "Cincom Shifts Gears",
Datamation, 29, No.6(1983), p.65.

16Elaine Wilco, "System Development Without Programming”, Computer
Data, 9, No.2(1984), p.19.

15

a considerable amount of knowledge and experience."[Read and Harmon,
"Assuring MIS Success", pp 118-119]

The literature also indicates that fourth generation languages
have a number of weaknesses. For example, 4GL's are resource "hogs"
and can use up to 50% more CPU time than 3GL's. Good database design
is important in order to minimize the use of resources. The computer
using a 4GL must have virtual memory and high speed 1I/0
handling.[Ibid, p.l16] Fourth generation languages are not suitable
for number crunching operations [Ibid, p.116]. They are weak at
character manipulation [Ibid, p.l116]. They are not suited for an
environment with a high number of transactions per hour - over 30,000
[Cu-Uy-Gam, p.9]. Fourth generation languages also lack language
standards. Different vendors offer completely different 4GL's, and
even the same 4GL may not be compatible over all hardware. The ease
of documentation and maintenance is Qquestionable.!’ There may be a
need to fit the software to particular applications. No one type of

4GL is appropriate for all situations. Resistance of existing data

processing staff is a problem. [Martin, Application Development

Without Programmers, pp.45-47.] Finally, 4GL procedural code is harder

to read than COBOL code. When used, the procedural code of a 4GL
decreases the nonprocedural benefits of a 4GL dramatically. From his
experience, Johnson suggests a limit of 300 statements for 4GL
programs. '® There are exceptions, the EDP Analyzer reports that .with
the use of Burrough's LINC 4GL, larger programs benefitted more from

!7Paul C. Tinnirelo, "Software Maintenance with Fourth Generation
Languages", Proceedings of the National Computer Conference 1984
(Montvale,N.J.: AFIPS,1984), pp.251-257.

i1sJames R. Johnson, "A Prototypical Success Story", Datamation, 29,
No.11(1983), p.256.

16

the use of a 4GL than the shorter programs.!® Considering the
weaknesses it is obvious that an Information Systems manager must
study his environment carefully before adopting a fourth generation
language. This is not to say that a fourth generation language cannot
be extremely valuable when used correctly.

The above claims and counter-claims serve only to confuse
readers of the strengths and weaknesses of fourth generation
languages. From the reports it appears that end users could learn a
small portion of a 4GL 1in a few days and use this knowledge for
querying and report generation. But, in order to program large
production applications, more knowledge is necessary. It appears that
end users, using a 4GL, still cannot develop a large production
system. The EDP Analyzer Special Report on 4GL suggests that the
applications best suited to a 4GL are those subject to rapid changes,
or where the need for ad hoc reporting is high, as in personnel or
budgeting.[Ibid, p.lS]

Some research has investigated the improvements in programming
productivity brought about by using the 4GL FOCUS. Harel and McLean's
work lends support to some of the claims of increased productivity
although they studied only relatively small systems.2° Still one
question remained unanswered - Could povices learn 4GL's as well as
experienced programmers? Read and Harmon offer their opinion: "Since
programming techniques with a 4GL are so different from those of
earlier generation programming languages, everyone has to start from

19EDP Analyzer, Special Report: Fourth Generation Languages and
Prototyping (Vista,Ca.: Canning Pub.,1984), p.29

20FElie C. Harel and Ephrain R. McLean, "The Effects of- Using a
Nonprocedural Computer Language on Programmer Productivity", MIS
Quarterly, 9, No.2(1985), pp.109-119.

17

square one, which opens up a large new pool of programming talent ...
These programming techniques have to be learned from scratch, because
there is almost no similarity bétween programming in COBOL and
programming in a 4GL. In fact, for a variety of reasons, a knowledge
of COBOL may be a hindrance." [Read and Harmon, "Aséuring MIS

Success", p.120]. Schleuter in an extract from his book User Designed

Computing , quoted in Nicoll-Griffith, adds: It is a significant

fact that the more sophisticated and experienced a DP person is in
conventional methodologies, the less likely it is that such a person
will be comfortable or even effective when trained to do report
processing application design." 21

While consulting, Martin has encountered the same phenomena. He

states:
"New graduates often learn and become skilled with the new
techniques faster than many established programmers. This
phenomenon has been observed and measured with many
application generators and 4GL's. IBM uses ADF extensively
for 1its own internal development. It has measured the
performance of many ADF users and discovered that new
graduates do much better on average, than experienced
programmers. National CSS staff sometimes refer to the NOMAD
programs written by old COBOL programmers as "NOBOL"
programs. The COBOL programmers, thinking in COBOL-like
terms, fail to use the powerful but different constructs in
the NOMAD language".[Martin, Fourth Generation Languages,
p.64]

Intuitively, it is reasonable to assume that experience in one
programming language would help in learning another, especially when
learning and using the procedural aspects of a 4GL. But the above

anecdotal evidence points in the opposite direction.

21 Mike Nicoll-Griffith, rev of User-Designed Computing, by Louis
Schleuter Jr., MAPPER was the First User Command Language (Montreal:
Canadian Pacific Consulting,1983), p.4.

3. RESEARCH RELEVANT TO FOURTH GENERATION LANGUAGES

Because programming is a complex, but poorly defined task,
researchers have experienced many problems in conducting experiments
with programmers. Most of these problems have surfaced in experiments
conducted with third generation languages. The lessons learned from
these experiments are also relevant to researchers studying fourth
generation languages. J

Brooks and Shneiderman discuss the problems caused by the large
variation in programmer performance. 22, 23 Brooks states that because
the ratio of programmer performance can vary from four-to-one, to
twenty-five to one, it is difficult to assemble a group of
programmers with equivalent skills., This kind of confound could easily
invalidate the results of an experiment. Brooks proposes a large
sample as a partial solution. Both Shneiderman and Brooks suggest
using within subject tests for experiments where multiple levels are
involved.

It\is also important that the subjects of the experiment be
representative of the population to whom we wish to apply our
findings. Brooks suggests that subjects be relatively uniform with
regard to their characteristics and abilities at pre-experimentation,
in order to avoid introducing confounds. Shneiderman proposes that a
lot of data be collected on the subjects. Examining this data for
correlations with the dependent variable will help the researcher

determine if confounds exist. For example, for each subject, the job

2z2Ryven Brooks, "Studying Programming Behavior Experimentally: The
Problems of Proper Methodology"”, Communications of the ACM, 23(1980),
p.209. -

23Ben Shneiderman, "Improving the Human Factors Aspect of Database
Interactions", ACM Transactions on Database Systems, 3(1978),
pp.423-425. '

18

19

experience, number of courses taken, of programming courses taken, of
languages known, of years programming and of months with each language
should be collected. Reisner suggests that an aptitude measure be
develcoped to ensure that the groups are equal. She also 1lists
questions to consider when assessing query languages. Did the subjects
have the same kind of background as the people who are expected to
use the query language? Were they of the same educatiocnal level, the
same intelligence level? Was their 1level of motivation the same as
that of the intended users? If some subjects were called "programmers"
or "more advanced" how were these classes defined? 24 Prior to the
experiment, researchers should make every effort to ensure that
subjects are, in all respects, as equal in ability as possible.

Brooks also discusses the kind of programs that should be used
in an experiment testing comprehension. Programs which are too easy
would result in consistently high scores. Thus, poor variance in the
results would be produced, making it difficult to reach any
conclusions from the data. Secondly, programs should be representative
of real world applications. Brooks suggests 50 to 100 lines of code.
Longer programs would be more representative but they would be very

hard to administer in a lab experiment.

3.1 MEASURES OF EASE-OF-LEARNING

Shneiderman breaks programming into five .tasks: learning, composition,
comprehension, debugging, and modification. [Shneiderman, p. 419] As

we will see, indications of how well a person has learned programming

24phyllis Reisner, "Human Factors Studies of Database Query Languages:
A Survey and Assessment”, ACM Computing Surveys, 13, No.1(1981),
pp.27-28.

20

has often been measured by requiring the subject to perform any of
the other four tasks. For instance, if a novice has thoroughly
learned a 3GL such as COBOL, he will be able to write a COBOL
program, and understand and modify an existing program. This principle
is used extensively in testing university computer science students.

To measure ease-of-learning Brooks,?® Reisner,?¢ and
Shneiderman??’ suggest some alternatives: requiring a modification to
the program, location of a bug, response to a set of multiple choice
questions, a subjective estimation of the clarity of a program, or a
hand tracing of the execution sequence. The following questions could
be asked for hand tracing: the value of a variable. at a séecific
point in the program, the sequence of values assumed by a variable,
the number of times a particular statement is executed, the sequence
of statements executed, the output of a program, a brief description
of the function of the program, and the impact of an alteration. Some
of these tests are not wvalid for a 4GL because of its nonprocedural
nature. The execution of a 4GL is not always strictly sequential.

The literature indicates that researchers have had problems with
some of the measures of understanding. Subjective answers by
participants of experiments have not proven to be reliable. Open-ended
questions can be difficult to score. Weissman tried to develop good
measures of understanding while doing experiments on the affects of
certain variables (e.g. comments,structure) on the complexity of a

program. 28 He concluded that although hand simulation is not a valid

25Brooks, pp.211-213.

26 Phyllis Reisner, pp.l1l7-19.

27Ben Shneiderman, "Exploratory Experiments in Programmer Behavior",
International Journal of Computer and Information Sciences, 5,
No.2(1976), pp.125-126.

28Larry Weissman, "Psychological Complexity of Computer Programs: An

21

measure of understanding, it is an important factor which can
contribute to one's understanding of a program. Quiz scores tended to
go up after hand simulation. He also found that fill-in-the-blank
questions were inadequate and decided to use open-ended quiz questions
instead.

Shneiderman was not satisfied with existent measures, so he
developed a new measure of comprehension: memorization/recall. 27He
presented programmers with scrambled and unscrambled FORTRAN programs
and they were asked to memorize them in a given time. They were then
asked to reproduce the programs. He showed that more experienced
programmers could better reproduce the unscrambled programs because of
their chunking ability. The results for scrambled programs were not
significant. He hypothesized that memorization and comprehension were
correlated. Unfortunately, the results of other studies force us to
question the wvalidity of this measure. In Vessey's study, this meaéure
did not correlate well with other measures of programming skill, and
did not correctly predict programmer performance.?®

Composition skills can be measured by asking the subject to
write a program, or part of a program. The problem here is that
writing a complete program can be time-consuming, and writing a short
program can invalidate the external wvalidity of the research. In
fourth generation languages, programs are usually short, so a short

program would still be valid.

28 (cont d) Experimental Methodology", SIGPLAN Notices, 9, No.6(1974),
pp.30-34.

29Ben Shneiderman, "Measuring Computer program Quality and
Comprehension", International Journal of Man-Machine Studies, 9(1977),
pp.465-478.

3oIris Vessey, An Investigation of the Psychological Processes
Underlying the Debugging of Computer Programs, Unpublished Doctoral
Dissertation, University of Queensland, Australia (1984), pp.218-220.

22

When measuring ease-of-use of a dquery language, Rgisner
(Reisner's use of "ease-of-use" here 1is equivalent to my
'ease-of-learning'), suggests some tasks that can be usedias measures.
The tasks are query writing, query reading (translate meaning into
English), query interpretation (what will it do given the data),
question comprehension, memorization, and problem solving (given a
problem, what queries will solve it).[Reisner, ppl6-17] She also lists
_ some kind of tests used to measure ease-of-use: final exams of
learning, immediate comprehension (tests while teaéhing), reviews,
retention (how well can the language be used after a long period of
time), and relearning. To date, the bulk of the research done in
dquery languages, has used the task of query writing, and final exams,
ihmediate comprehension and retention tests as measures of
ease-of-use. Shneiderman argues against using time as a measure of
quality because those who finish first are not necessarily the
best.?! He supports setting a fixed time length for task performance
because it focuses attention on correctness and quality.

Before we can measure subject comprehension the subjects have to
be taught the language. To date, most researchers have used the
traditional classroom method. Reisner?*?2? justified the method and
stated that "classroom teaching is relatively quick to implement and
known to be effective, and because it provides opportunity for on the
spot feedback between the teacher and the student.' But she admitted

that computer instruction would have been more reproducible. If more

31Shneiderman, "Improving the Human Factors Aspect of Database
Interactions"”, p.426.

32Phyllis Reisner, "Human Factors Evaluation of Two Data Base Query
Languges - Square and Sequel”, Proceedings of the National Computer
Conference 1975(Montvale, N.J.: AFIPS,1975), p. 451.

23

than one class is taught, or if multiple instructors teach different
classes, the equivalence of teaching between classes is hard to
establish. A more equal method would be to teach, employing a
training manual. This method has. the added advantage of being most

representative of how workers learn on the job.

3.2 RESEARCH ON FOURTH GENERATION LANGUAGES

To date, research of fourth generation languages has concentrated on
the productivity advantages of 4GL's over third generation languages.
As yet, no research has examined the ability of experienced third
generation language programmers, and novices, to learn fourth
generation languages. The two studies summarized below are the only
pieces of research conducted in the area of fourth generation
languages up to this point.?2?3

Munnecke conducted a descriptive study of a fourth generation
language.?¢ He compared the fourth generation language ,MUMPS, used at
the Massachusetts General Hospital, with COBOL, on a strictly
linguistic basis. He believed that a computer language should support
users, linguistically, on their own terms, to adapt to their needs,
and to be as forgiving and friendly as possible. He compared the
access methods of COBOL/IMS with MUMPS. COBOL/IMS has 12 different
complicated access methods while MUMPS has only one simple access
method. Also, COBOL/IMS database pointers involve complicated physical

references while MUMPS navigates more logically. The amount of

33 There has been a 1lot written in the practitioner 1literature, but,
as I mentioned earlier, it cannot be considered "research".

3+Thomas Munnecke, "A Linguistic Comparison of MUMPS and COBOL",
Proceedings of the National Computer Conference 1980, (Montvale,N.J.:
AFIPS,1980), pp.723-729.

24

documentation that supports each system 1is also compared. Over 1700
pages must be read for COBOL/IMS. MUMPS documentation is much shorter.
Munnecke concludes that the 4GL 1is better suited to meeting the needs
of users, within the range of applications it can handle.

Recently, Harel and McLean studied the effects of using a
nonprocedural language on programmer productivity.[Harel and Mclean,
”pp;109—119]. A field experiment was conducted in order to compare
COBOL with the 4GL FOCUS, in terms of programmer productivity and
program efficiency. Beginners (people who had programmed less than 20
programs in that language) and experts (more than 20 programs) were
asked to program report generation applications (simple and complex).
In every case, the 4GL FOCUS was found to be faster but less
efficient in terms of machine resources used. Programmers, with little
experience, did significantly better with FOCUS than COBOL, while the
difference for experts, was not as great. This suggests FOCUS might
be a good end user language, but this conclusion is weakened by the
fact that the less experienced programmers were far from being
novices, and, in fact, all the programmers were professionals. Also
the "complex" applications were not really complex. But neither were
they overly simple. The complex task took approximately three days to
program in COBOL. In longer programs, COBOL might have had an
advantage over FOCUS.

The results of the study imply that FOCUS would be a good end
user language because novices can learn it quickly. On the other
hand, the experiment does not deal with the issue of whether novices
or experienced programmers learn 4GL's more easily. Programmers need

to be tested more directly to see if novices can learn and use a 4GL

25

as easily as an experienced 3GL programmer.

3.3 QUERY LANGUAGE RESEARCH

Some comparison of novice versus experienced programmer learning has
been conducted with query languages. Query languages are similar to
4GL's because they are nonprocedural, and because they are often
incorporated into 4GL's.

Reisner et al. compared two data base query languages, SQUARE
and SEQUEL, using both novices (no programming experience) and
programmers (had taken one programming course).?*3Their main finding
was that SEQUEL was easier to learn than SQUARE, but she also had
other interesting results. Programmers were able to learn the.new
nonprocedural languages somewhat faster than nonprogrammers (12 hours
versus 14 hours of class time). The difference in scores between
programmers and nonprogrammers on the quizzes were significant (p <
.01). Programmers scored higher than nonprogrammers. On the one hand,
since query languages are similar to 4GL's, we might expect the same
results for subjects learning a 4GL. On the other hand, the learning
time comparison must be viewed with skepticism. Reisner explains that
the pace of classes was determined by the slower learners. Therefore,
a few slow learners in one of the classes could seriously affect the
learning time of the whole class, throwing off the validity of any
comparisons between classes.

In testing the students, Reisner et al. used five review quizzes

during the classes, a final exam at the end, and a memory test one

35phyllis Reisner, Donald D. Chamberlain, and Raymond F. Boyce, "Human
Factors Evaluation of Two Database Query Languages -Square and
Sequel”, Proceedings of the National Computer Conference 1975
(Montvale,N.J.: AFIPS,1975), pp.447-452.

26

week later. With the exception of the memory test, students were
allowed to use reference materials.

Based on their results, Reisner et al. argue that query
languages can be leafned in layers.?$¢Given the basic subset of a
query language, an inexperienced programmer can learn to use the
language very quickly with few errors. Because this subset is so
simple, experienced programmers may not have an advantage in learning
when only the basics are considered. Their advantage may only become
apparent when the more complex procedural aspects are taught. The same
results might be expected in this research when scores on the simple
task are compared between novices and experienced programmers.

In a similar study, Welty and Stemple compared the nonprocedural
query language SEQUEL with the procedural query language TABLET.3’
They believed there was a point of complexity in languages beyond
which a procedural language is easier than the nonprocedural. They
defined a metric for procedurality and went on to show that TABLET
was a better language for complex queries. Again, programmers
outperformed nonprogrammers in learning the language (significant at
the .05 level). They also had a higher retention score one week
later. The scoring, teaching and subject classifications were
basically the same as Reisner's. Again, this seems to imply that
experienced programmers have an advantage in learning a 4GL,
especially the more procedural aspects used for complex applications.

But the study also reveals that, when the quiz scores for the

36phyllis Reisner, "Use of Psychological Experimentation as an Aid to
Development of a Query Language", IEEE Transactions on Software
Engineering, 3(1977), p.222.

37Charles Welty and David W. Stemple, "Human Factors Comparison of a
Procedural and a Non-Procedural Query Language", ACM Transactions on
Database Systems, 6(198l), pp.626-649."

27

experienced programmers are compared, SEQUEL scores are lower on
average than the SQUARE scores. This is not the case for
inexperienced (novice) programmers. Again, this may mean that
programmers do not have as large an advantage when learning a
nonprocedural language. Still, the results indicate that experienced

programmers can outperform novices when learning query languages.

3.4 THIRD GENERATION LANGUAGE RESEARCH

Chrysler, in his study of what affects the productivity of
programmers, found that experience does have significant impact. 3& He
measured the following variables: the number of months of programming
experience, the number of months of experience using COBOL, the number
of months experience using the specific COBOL compiler, the number of
months experience in programming business applications, and the number
of months experience programming for the current employer. Programmers
developed code in the COBOL language. All variables were found to be
significantly correlated to the productivity of programmers. Even the
number of months programming experience (not necessarily all in COBOL)
was significant. This indicates that experience with one third
generation language, improves performance in another 3GL.

In another COBOL study, Gordon et. al.showed that programmers
with at least three years experience in COBOL, outperformed students
who had just learned COBOL.3? The professionals finished their
programs with less errors and fewer runs. These studies indicate that

experience with one 3GL assists when using another 3GL, and the more

38Farl Chrysler, "Some Basic Determinants of Computer Programming
Productivity”, Communications of the ACM, 21(1978), pp.472-483.

39J.D. Gordon, A. Salvadori, and C.K. Capstick, "An Empirical Study of
COBOL Programmers", INFOR, 15(1977), pp.229-241.

28

experienced the programmer the better. But these results may not apply
in a 4GL environment.

Kennedy studied the learning curves of naive users of a new
system. He showed that the anxiety and fear of naive users can have
an effect on their ability to learn.*®

DuBoulay and O'Shea, report a study by Mayer comparing different
program structures.*! The GOTO, IF THEN and a nonprocedural construct
were compared for comprehension. The novices were not asked to write
programs but to interpret and answer questions about a sporting
competition, expressed in the various program-like forms. Results
indicated that the nonprocedural construct was the most
comprehensible. The harder the question was, the greater the
superiority of the nonprocedural representation. This study is weak,
in the sense that real programs and programmers are not involved.
Yet, it again indicates that nonprocedural structures are easier for
novices to comprehend, which has some implications for learning a 4GL.
This indicates that novices are at less of a disadvantage, as
compared to experienced programmers, when learning a nonprocedural
language, than when learning a procedural language.

Some research has been conducted on debugging programs. Youngs
used thirty novices and twelve professional programmers in his study
of debugging. ¢2 Novices were university students taking their first

programming course and professionals held or had held professional

407 ,C.S. Kennedy, "Some Behavioural Factors Affecting the Training of
Naive Users of an Interactive Computer System", International Journal
of Man-Machine Studies, 7(1975), pp.817-834.

1B, DuBoulay and T. O'Shea, "Teaching Novices Programming”, Human
Interactions with Computers, ed H.T. Smith and T.R.G. Green (New York:
Academic Press,1980), pp.l159-162.

42Edward A. Youngs, "Human Errors in Programming"”, International
Journal of Man-Machine Studies, 6(1974), pp.361-376.

29

programming jobs. Youngs compared the number of errors committed by
the two groups. Experienced programmers committed fewer errors and
corrected their programs more quickly. Youngs also discovered that
novices made many more syntax and semantic errors than the
professionals but the same number of logic errors. He pointed out
especially troublesome areas for novices, like looping and input
/output formatting. If these could be eliminated (as in 4GL's),
novices could compete more evenly with professional programmers. This
could explain why novices can learn 4GL's as well as experienced 3GL
programmers.

A debugging study conducted by Vessey concluded just the
opposite.[Vessey, pp.206-222] She showed that more experienced
programmers do not necessarily debug better than less experienced
programmers. Managers classified programmers as experts or novices on
the basis of the number of years experience they had accumulated.
Vessey concluded that this classificafion was not a good predictor of
debugging performance. Even though Vessey was dealing with debugging
and not programming, her study indicated that the number of years of
programming alone cannot predict how proficient a person will be at
programming.

In conclusion, it is obvious that there is a need for research
in the area of fourth generation languages. The question of whether
novices can prepare their own applications with fourth generation
languages, and whether or not 3GL programmers can transfer their
skills into a 4GL environment, have not beén addressed. The one thing
that we can conclude from the research done to date is that

experienced programmers have always outperformed novices in using

query languages and third generation languages.

30

4. THEORY
How well a person can learn a fourth generation lanquage, after
using a third generation language, 1is a question of transfer of
training. Most of the theory relevant to learning comes from
psychology. These theories have yet to be applied to programming
studies. The most important theories involve the concepts of positive
and negative transfers in learning. Garry and Kingsley explain the
theory as follows:
"When training in one situation or one form of activity
affects one's ability in another type of activity or one's
performance in different situations we have what is commonly
understood as transfer of training. An attempt to operate a
tractor or a truck based upon one's knowledge of operating
an automobile requires transfer of training in order to
succeed in the task. In countless ways we use the results of
past learning to meet the demands of new situations. In many
ways the results of past learning interfere with new
learning, for instance, the difficulty we experience in
correctly pronouncing a foreign language because of our
habitual manner of pronouncing sounds."+3
If prior experience facilitates learning in a new situation, we
say that positive transfer has occured. Osgood showed that the key
factor is the similarity of stimuli in different situations, when the
same behaviors are required. 44
When prior learning interferes with learning in a new Situation
we say that negative transfer has occurred. Typically negative
transfer occurs when persons are redquired to learn new responses to
stimuli to which other responses have, previously, been learned. An

example is, learning to drive a car with manual transmission after

having learned on a car with automatic transmission.

43Ralph Garry and Howard L. Kingsley, The Nature and Conditions of
Learning (Englewood Cliffs,N.J.: Prentice Hall,1970), p.512.

44C.E. Osgoocd, Method and Theory in Experimental Psychology (New York:
Oxford, 1953), p.495-548.

31

32

The question is - which one of these cases applies to an
experienced third generation language programmer attempting to learn a
fourth generation language? When fourth generation languages are
examined, we notice that fheir commands accomplish more than third
generation commands. In other words, one fourth generation language
command is equivalent to a number of third geperation language
commands. For example, the COUNT command in FOCUS is equivalent to a

third generation language DO loop:

I=0

WHILE NOT END-OF-FILE DO
READ RECORD
I=1+1

END WHILE

COUNT = 1

In some cases a 4GL command ié directly equivalent to a 3GL
command. For instance, the TYPE command in FOCUS has a similar
function to the WRITELN command in PASCAL. BecausSe programmers use the
same algorithm to solve the problem no matter what the language, 3GL
programmers should be able to translate some of their skills to a 4GL
environment. But, the different syntax, nonprocedurality, and
conciseness of fourth generation languages could make the transfer of
skills very difficult.

We gain some insight into which of the above two possibilities
is more likely to be true by examining two theories of learning

transfer. Garry et al. describe the two theories.[Garry and Kingsley,

33

pp.513-531] The theories have opposing views of the conditions which
make transfer of training possible.

The theory of transfer by similarity states that the more two
functions have in common, the more likely it is that fraining in the
first will tend to improve the second. The commonality of the two
situations is measured by the constituents, or components of the
situation. The mere presence of common components does not assure
positive transfer; under some conditions of training, they produce
negative transfer. The amount of transfer, due to identical features
of two functions, varies with the locus of identity or the phases of
the functions in which identity occurs. Identity, in the response
phase, is conducive to far more positive transfer than identity in
the stimulus factors. Thus, it is easier to learn to respond to a new
situation in an old way, than it is to develop a new method of
response to an old situatidn, for, in the latter case, the
interference from previously formed habits is greater. Since, in our
case, we have a new method of response (4GL) rather than a new
situation, transfer is more difficult.

An opposing view is developed in the theory of transfer through
relationships. This theory argues that positive transfer is due not
only to similarity of content, but also to the similarities in the
patterns of relationships. It is often claimed that competitive
athletics contribute greatly to the successful performance of an
American soldier in combat. According to the relationship theory,
transfer occurs because both activities involve coordinated teamwork
of individuals performing related operations, not because of the

similarity of the required abilities (speed, strength, agility). The

34

strategy involved in out thinking and out manoeuvering an opponent
would be more important than the specific tactics employed. If this
were the case in programming, 3GL programmers should be able to
transfer their training to 4GL's because both tasks involve
individuals solving business problems using data processing skills. In
this case, it is not the similarity of syntax which is an important
condition of transfer, but rather it is the overall data processing
strategies and knowledge that make transfer possible.

The majority of theories of programming developed so far support
transfer through relationship. Shneiderman's work on comprehension,
hypothesizes that experienced programmers can outperform novices
because they have better chunking ability than noviées.45 Experienced
programmers have a better understanding of the semantics and logic of
a program so they can view it at a higher 1level than novices (at the
problem level rather than at the syntax level). In other words, the
most important skills acquired by a programmer are the semantic and
logic skills, not familiarity with the syntax. It would be reasonable
to assume that once these skills are acquired, programmers could use
these skills in many language environments. Shneiderman explains his
model as follows. The programmer first conceives the problem in
general terms such as general programming strategies. He refers to
these general plans as "internal semantics". He suggests that this
internal representation progresses from a very general outline to a
more specific plan, to a specific generation of code focusing on
minute details. Shneiderman’'s "funneling" view of problem solving

(going from general to specific) was first introduced as a result of

¢5Ben Shneiderman, Software Psychology: Human Factors in Computer and
Information Systems (Toronto: Little, Brown and Co.,1984), pp.46-53.

35

Duncker's experiment based on asking subjects to solve complex
problems aloud.*¢ Once the programmer has worked out the internal
semantics the construction of a program is a relatively
straightforward task. The programmer draws on his knowledge of
semantic structures and syntax to write the code. The program may be
composed in any familiar programming language.

Other authors have developed theories along the same lines.
Chase and Simon conducted similar work with chess players. 4’ They
showed that experienced chess players could memorize chessboard
-positions more easily than less experienced players. Simon used the

"chunking" hypothesis to explain this phenomena. Higher level chess
players do not memorize the position of_each piece, but rather
memorize meaningful "chunks" of pieces.

Mayer hypothesizes that experienced programmers have an
advantage over novices because they have "anchoring ideas” in long
term memory, which they use when learning. He explains: "In the
course of meaningful learning the learner must come into contact with
the new material, then must search long term memory... for anchoring
ideas and then must transfer these ideas to short term memory so that
they can be combined with new incoming information."¢® Novices are at
a disadvantage because they have not encountered similar syntax, and
because they do not have built in algorithms. Some programmers can
immediately identify the purpose of loops, subprograms and other

structures because they have seen similar constructs before.

46 K, Duncker, "On Problem Solving", Psychological Monographs,
58(1945), p.270.

47 William G. Chase and Herbert A. Simon, "Perceptions in Chess",
Cognitive Psychology, 4, No.1(1973), pp.55-81.

48Richard E. Mayer, "The Psychology of How Novices Learn Computer
Programming", ACM Computing Surveys, 13, No.1(1981), p.l22.

36

The remaining question to be considered isﬁ Do the differences
between fourth generation languages and 'fhird generation languages
require thét the strategies and algorithms used to attack a
programming problem also be changed? Shneiderman would base hisAanswer
to this question on the semantic similarity of the two languages. He
states: "Learning a first language requires development of both
semantic concepts and specific syntactic knowledge, while learning a
second language ihvolves learning only a new syntax, assuming the same
semantic structures are retained." ¢? Though 4GL's are very different,
they are used to accomplish the same tasks as 3GL's and must
therefore be semantically similar. To use 4GL's in complex tasks,
programmers must use the same concepts used in 3GL's, specifically,
control breaks, file structures, ana field formats. An experienced 3GL
programmer will have a thorough knowledge of these concepts. This will
help him in any 4GL work.

To recap, Shneiderman's and Simon's work indicate that
experienced programmers make better programmers than novices because,
among other things, of their ability to chunk problems. They emphasize
that insight into the semantics and logic of a program is more
important than mere syntactic knowledge. Further to this point 4GL's
are semantically similar to 3GL's because they are used to accomplish
the same goals. Therefore, experienced programmers should be able to
transfer their skills to 4GL's. Research in query languages, which are
very similar to 4GL's, support this conclusion. Reisner's and Welty's
research in query languages has shown that experience in other

programming languages does improve performance with query languages.

+9Software Psychology: Human Factors in Computer and Information
Systems, p.48.

37

Accordingly, if experienced programmers and novices are tested on
their ability to learn 4GL's, experienced third generation language
programmers should record higher mean scores than novices on both
simple and complex tests of fourth generation languages. This is
empirically tested using the following one sided test:
Ho: Experienced 3GL programmers' scores on 4GL tests will be equal to
novices' scores on 4GL tests
Ha: Experienced 3GL programmers scores on 4GL tests will be greater
than novices' scores on 4GL tests

The practitioner literature indicates that novices can program
in fourth generation languages, but, once the application becomes
complex, experienced data processing people are needed. When novices
are faced with more complex applications, they lack what Mayer calls
"anchoring ideas". They lack the data processing concepts which would
help them understand these problems. In 4GL'sS, as problems become more
complex, the 4GL commands used become many times as hard,
semantically, than the more simple commands. Shneiderman has
hypothesized that knowing the semantics of a language allows
programmers to transfer their skills to other 1anguages. Since 3GL's
and 4GL's are semantically similar, experienced 3GL programmers should
be able to apply their experience to complex 4GL problems.
Accordingly, the difference in test scores, between simple and complex
4GL tasks, should be greater for novices thah for experienced 3GL
programmers. This is empirically tested as follows:
Ho: Difference in simple and complex test scores for experienced
programmers is equal to the difference in simple and complex test

scores for novices

Ha: Difference in simple and complex test scores for experienced
programmers is less than the difference in simple and complex test
scores for novices.

Finally, from previous work with programmers, Shneiderman and
Reisner have found that other variables such as work experience and
prior experience with other programming languages improve programming
performance. Accordingly, the third hypothesis to be tested is: the
number of query language programs written, number of report writer
programs written, and number of 4GL programs written, will be

positively correlated to 4GL test scores.

38

5. METHOD
To test the developed hypotheses,v a laboratory experiment was
conducted in which the performance of novices, and experienced third
generation language programmers, using a fourth generation language

was measured across two levels of task complexity.

5.1 PARTICIPANTS

Fifty-seven volunteers, from two different educational institutions,
participated in the study. Twenty-four students (mostly MBA students)
at the University of British Columbia (UBC) took part in the
experiment, as well as thirty—threé Computer Systems Diploma (two year
program) students from the British Columbia Institufe of Technology
(BCIT).

These two groups of students were used in order to improve the
external validity of the study, and to provide the necessary mix of
novice and experienced programmers. The MBA students were chosen for
two reasons. Firstly, these students had little programming
experience, and, therefore, provided a supply of novices for the
experiment. Secondly, as business students, they represented the
end-users of the future, people who have little knowledge of
computers, considerable knowledge within business areas, and may be
doing the programming in the future. The Computer Systems Diploma
students were also chosen for two main reasons. They provided a
supply of experienced student programmers for the experiment. The
second reason again relates to the issue of external validity. It was
felt that Computer Systems students were more representative of the

type of programmer who would use a fourth generation language.

39

40

Séecifically, Computer Systems students were preferred over university
computer science students because their education stressed business
programming, especially the use of COBOL, whereas university computer
science programs place more emphasis on scientific computing and
theory. Since the experiment specifically tested the use of a fourth
generation language, in a business reporting setting, business
oriented students were required rather than scientifically oriented
students. For this reason, university computer science students were
ruled out.

The difficulty in using two distinct groups of subjects was that
educational background could become confounded with experience. In
order to minimize the chances of other variables affecting the results
of the experiment, two sfeps were taken. The first step involved
using the educational institution as a blocking Variable in the
statistical analysis. This will be explained in more detail in the
Design section of this thesis. The second step involved collecting
information on other possible confounding variables (e.g. number of
query language programs written), and regressing them against scores
obtained on the fourth generation language tests. This analysis
revealed whether any other variables, besides experience with a third
generation language, could explain a person's ability to learn and use
a fourth generation language.

It was thought that the advantages of having two.repreSentative
groups outweighed the mentioned disadvantages. Using only Computer
Science or MBA students could have cast doubts on the external

validity of the experiment.

41

5.2 DESIGN

The experimental design used was a randomized block design (See Figure
2). Two factors were studied, experience with third genération
languages, and task complexity. Each factor had two levels. In

addition, educational institution was used as a blocking variable.

5.2.1 COMPLEXITY FACTOR

One of the two factors was task complexity. After learning some
FOCUS fourth generation language reporting commands, subjects were
asked to write a test inveolving either, a simple reporting task, or a
, complex reporting task. Two levels of task complexity were used in
order to test hypothesis number two, concerning the ability of novices
to program complex applications. The subjects were randomly assigned
to one of the two tasks. The first task tests the subjects' knowledge
of a set of approximately seventeen FOCUS commands. These commands
form the basic subset of FOCUS reporting commands. They are the
easiest to learn, and can be_used to generate reports involving
printing, summing, counting, and subtotalling. The second task tested
the subjects' ability to produce more complex reports involving
multiple files, temporary fields, complex summarization and more
detailed formatting. The commands needed to accomplish these tasks
increased the subjects' required command set by seven. Including the
simple commands, this increased the subjects' inventory of commands to
twenty-four. Thus,‘the task became more complex for two reasons.
Firstly, the user had to have a larger vocabulary of FOCUS commands,
and, secondly, the user had to be able to understand the workings of

the more complex commands.

FIGURE 2 - EXPERIMENTAL DESIGN

UBC
3GL PROGRAMMING EXPERIENCE

NOVICE EXPERIENCED
SIMPLE
TASK
COMPLEXITY
COMPLEX
BCIT
3GL PROGRAMMING EXPERIENCE
NOVICE _ EXPERIENCED
SIMPLE
TASK
COMPLEXITY

COMPLEX

42

43

The boundary between the two categories (simple and more
complex) is not extremely sharp. Other than the above reasoning, no
precise method of categorization is advanced. Notwithstanding, there
is no doubt that the complex test was more difficult because of the
additional commands needed. Indeed, the analysis of variance that was
performed later, indicated that subjects scored much lower on the
complex test. The difference in test scores between simple and complex
tests was significant (p value = .00ll).

Both the complex and simple commands were explained in the
Report Generation Manual. Although there were only seven complex
commands, they had to be read more carefully to be understood, and
the user needed practice before he or she was able to understand how
they worked. The simple commands were more intuitive. In addition,
using the more complex command took more time because the user had to
consider tﬁe many implications (results) of the command. As the
commands became more complex the user had to consider the effect of
using one command in combination with others. For example, the SUBHEAD
command could only be used after consideration of the effects of the
SUBTQTAL command .

The two groups of commands wused in the tests appear in Table II
below, along with the reasoning for placing them in the appropriate

category.

44

TABLE II - CATEGORIZATION OF FOCUS COMMANDS

COMMAND

TABLE FILE

PRINT, SUM, COUNT

HEADING, FOOTING

IF

BY, ACROSS, OVER

SUBTOTAL, SUB-TOTAL

AS

CATEGORY

simple

simple

simple

simple

simple

simple

simple

REASONING

Used to begin reporting sesssions.
User has only to type this as well
as the filename of the file he
wants to use.

These are the basic verbs. Meanings
are the same as their normal
English definition.

Prints headings. The user has only
to enclose his text in quotes.

Used for record selection. Easy to
understand because it has the same
meaning that "if" does, used in
everyday vocabulary.

Simple sort display commands.
Either sorts the fields
horizontally, vertically or prints
them over each other.

Simplest of totalling commands. Can
only add fields together at the
sort break.

Used to replace headings with
another name supplied by the user.
User has only to supply the new
name in quotes.

NOPRINT simple
UNDER-LINE, SKIP-LINE

PAGE-BREAK simple
JOIN ' complex
DEFINE, COMPUTE complex
RECAP,SUMMARIZE complex
SUBFOOT, SUBHEAD complex

When the user begins to

understanding of database theory is

45

To suppress printing of a field.
User specifies the field to be
suppressed.

User has only to specify the field
he wants this action to affect.

User requires understanding of
indexes, and field formats. Join
involves the use of at least two
files. User also needs to know how
to refer to the joined file, and
how the JOIN is related to DEFINE
and TABLE.

Used to create a new field from
those given. Involves other
concepts such as concatenation and
assigning new field wvalues
selectively.

Used to produce other than simple
subtotals at the control break.

User needs an understanding of both
COMPUTE and SUBTOTAL combined to

use these control break commands.

Used to print summary at control
break. Need an understanding of
where control breaks will occur.
Also need to know how to print
current database field values in
the text.

use the complex commands, an

an advantage. Commands like JOIN

46

and DEFINE require some understanding of database concepts. The simple
commands are more similar to the third generation language commands,

than the more complex commands.

5.2.2 EXPERIENCE FACTOR

The experince factor had two levels, novice, and experienced
3GL, and were classified by information provided in the questionnaire.
Three independent judges determined whether the subjects were novice
programmers or experienced 3GL programmers. One of the judges was an
MIS academic, and the‘other two were MIS professionals. The subjects
wefe classified on a seven point scale according to their prior
experience with third generation languages. Experience with other
software, 'such as query languages, or database management systems, was
not considered. Experience with other types of software was not
considered because the purpose of the classification was to test
hypothesis number one, concerning the influence that prior work with
third generation programming languages had on the ability to learn a
fourth generation language. Experience with these other factors are
considered under hypothesis number three: The instructions that were
distributed to the judges appear in Appendix 1. The judges ratings
appear in Table III. The reliability between judges as measured by
the correlations were: .65 for judges one and two, .78 for judges one
and three, and .68 for judges two and three. From the results, we can
see that judge number two used a slightly different rating scale than

judges one and three, but, overall, the ratings were similar. The

TABLE 111 -JUDGES' BATINGS OF IHE SUBJECTS' EXPERIENCE

- SUBJECTS JUDGE1 JUDGE2 JUDGE3 MEAN
1 1 3.0 2 2.00
2 2 4.5 4 3.50
3 1.0 1 1 1.00
4 4.5 5 5 4.83
5 1.0 1 1 1.00
6 4.5 5 4 4.50
7 4.5 7 5 5.50
8 5.0 3 5 4.33
g9 4.5 4 4 4. .17
10 4.5 3 3 3.5
11 3.5 1 2 2.17
12 4.5 4 4 4 17
13 3.5 1 2 2.17
14 4.5 3 4 3.83
15 4.5 3 6 4.50
16 4.5 3 4 3.83
17 4.5 5 4 4. 50
18 3.5 2 3 2.83
19 5.5 5 6 5.50
20 3.0 1 2 2.00
21 4.5 3 3 3.50
22 2.0 1 2 1.67
23 1.0 1 1 1.00
24 5.5 7 5 5.83
25 2.0 1 1 1.33
26 4.5 1 2 2.50
27 5.5 4 4 4.50
28 5.0 2 7 4.67
29 3.5 2 4 3.17
30 1.0 1 1 1.00
31 2.5 3 3 2.83
32 5.0 3 3 3.67
33 5.0 4 4 4.33
34 3.5 3 7 4.50
35 6.0 7 5 6.00
36 1.0 1 1 1.00
37 4.0 2 3 3.00
38 1.0 1 1 1.00
39 5.5 1 5 3.83
40 1.0 1 1 1.00
41 3.5 1 2 2.17
42 5.0 4 3 4.00
43 1.0 1 1 1.00
44 3.5 5 4 4. 17
45 6.0 7 5 6.00
486 5.0 2 3 3.33

47
48
49
50
51
52

53

54

55
56
57

WWwWwoaobo b wwhd -

QU OO0 OLOLoh oo

W NN DBNNDWA = A

W NN DDOHOWWN WN

W eaMNMBODWWMNN @

.00
.67
.50
17
.50
L7
7
.00
.50
.83
.00

48

49

mean score of the three judges , for each subject was calculated.
These mean scores were plotted on a frequency chart (See figure 3).
As can be seen, the double humped distribution, which would indicate
obvious novice and expert groups, did not occur.

Since the frequency chart showed no distinct novice and
experienced groups, other methods had to be used to form novice and
experienced groups. Two methods were used. The first method grouped
all subjects rated one, two, or three as novices, and those rated
five, six, or seven (though no subjects were rated 7) as experts, and
those rated four as intermediates. The intermediate group was not used
in hypothesis testing. The second method considered the top forty
percent of the subject ratings were experts and the bottom forty
percent were novices. The in-between twenty percent were considered
intermediates and were dismissed. Figure ¢ shows the amount of
agreement and disagreement that was found on subject ratings between
the two methods. As can be seen, the first method resulted in a
smaller expert class than the second method because few subjects were
rated as sixes or sevens. Figure 5 shows the breakdown of subjects in
each treatment. Method one, the number separation method, resulted in
a group of twenty-eight novices and a group of fifteen experts.
Methed two, the percentage separation method, resulted in a group of
twenty-three novices and a group of twenty-two experts. The groups for
method two are slightly unbalanced because the novice group included
all ratings up to, but not including, three, and the expert group
included all ratings of four and above. A twenty-third expert was not

chosen to preserve the 3 to 4 range as intermediates.

FREQUENCY

16

14

13

12

11

10

| bt o e o b p e e b o b o e e b ——

* K kK * % K ok K
EEE X * kK ok K
Aok ok ok ok * & K kK
* %k Kk * KKk
* kKK * ok K Kk
* K K Kk * %k kK
* Kk ok ok * K kK
* ok kK K EEEE T
PEET 30 * kK K K
* Kk Kk kKK KOk
* kK kK * K K KK
* koK kK * Ak K K
LR XS * ok k ok K
* ok ok ok ok A kK K
* ok ok ok K Kk ok
* kK Kk * ok kK
* Kk KK ¥ Kk K
* o kK K Kk K
Kok K * KKK K
* kK kK * Kk ok ok
1 2

FIGURE 3 - FREQUENCY CHART OF THE
RATINGS

ok ok ¥k
* Kok
kK ok k¥
* % Kk K
ok Xk
* %K KK
* K ok kK
LERE S 3
* ok kK
* kK kK
* %k *k %k k
* K Kk K
* % Kk K
* % Kk K
* K K ok K
* kK
EEE S
* ok ok K K
* kK K
* ok K K
* ok kK
* kK kK

MEANS OF THE JUDGES®

* kK %k Kk
* ok kK K
* Kk K K
* kK kK
* % %k %k k
EER TS
IEEE T
* Kk kK
PEE T
* % Kk kK
* Kk kK
* KOk Kk K

MEAN OF THE JUDGES®' RATINGS

0Ss

FIGURE 4 - COMPARISON OF SUBJECT SEPERATION METHODS

PERCENTAGE

SEPARATION

METHOD

NOVICE

INTERMED I ATE

" EXPERT

NUMBER RATING SEPERATION METHOD

NOVICE INTERMEDIATE EXPERT
23 0 0
5 7 0
0 7 15
28 14 15

51

23

12

22

57

FIGURE & - NUMBER OF SUBJECTS IN EACH TREATMENT

TASK

DIFFICULTY

SIMPLE

COMPLEX

PROGRAMMING EXPERIENCE

52

NOVICE EXPERIENCED
METHOD 1 16 METHOD 1 6
"METHOD 2 14 METHOD 2 10
METHOD 1 12 METHOD 1 9
METHOD 2 9 METHOD 2 12

53

Besides the slightly larger number of experts produced by method
two, the two methods of separation resulted in ratings which were
almost identical. Statistical tests, testing hypotheses number one and
two, were performed, using both separation methods. Identical results
were obtained. For this reason, the statistical analyses presented in
the rest of the thesis will only show results using the first method
of separation. This method is preferred because it uses the judges'
ratings directly. It does not force a certain percentage into the
expert group as the second vmethod does.

A third variable, a blocking wvariable, was used to eliminate the
differences which might occur between subjects. These differences were
due to the location of the testing, or the background of the
subjects. The blocking variable (educational institution) removed the
variability in the scores caused by location of the experiment. Thus,
it cannot be argued that the difference in test scores was due to
educational background or experimental setting. In ordér to use this
randomized complete block design, we had to prove that there were no
interactions between the factors and the block,.and that the blocking
variable did not explain a significant amount of variation of the
dependent variable. If this blocking variable did explain a
significant amount of variation, educational institution would have to
be considered a confound. When analysis of variance was performed,
educational institution was not found to be a significant factor.
Also, educatiocnal institution did not have any significant
interactions with the other factors. Therefore, educational

institution can be used as the blocking variable.

54

5.2.3 CLUSTER ANALYSIS

"Given a sample of N objects or individuals, each of which is
measured on each of p variables, cluster analysis is a classification
scheme for grouping the objects into classes."35° For our purposes,
cluster analysis was used to classify the subjects of the experiment
into three claéses, based upon measures of their programming
experience. The three measures used were: the number of third
generation programming languages known, the number of third generation
programs written, and the amount of programming work experience. The
three classes of subjects obtained were novice, intermediate, and
expert programmers. This classification was then used as a comparison
with the classifications arrived at from the judges' ratings. In other
words, cluster analysis was used as a non-subjective tool to 1lend
validity to the judges' ratings.

There are several different methods of cluster analysis.
Clusters can be obtained by hierarchical techniques in which a group
of subjects is split into smaller groups (or individual subjects are
joined into clusters) based on distance measures. The clusters can
also be obtained by density techniques which seek regions of high
density to form clusters. Clumping techniques, which allow overlap
between clusters, are also used, but are not appropriate here because
of the need for mutually exclusive groups. Based on his studies,
Everitt concludes that the best results seem to be obtained by
hierarchical techniques. [Everitt, p.45]

Several hierarchical techniques were used, but the best results

come with Ward's method. "Ward proposes that at any stage of an

se Brian Everitt, Cluster Analysis (London: Heinemann Educational
Books,1974), p.l. '

55

analysis the loss of information which results from the grouping of
individuals into clusters can be measured by the total sum of squared
deviations of every point from the mean of the cluster to which it
belongs. At each step in the analysis, union of every possible pair
of clusters is considered and the two clusters whose fusion results
in the minimum increase in the error sum of square are
combined."[Everitt, p.l5]

Outliers in the data have a negative effect on the cluster
analysis because they form their own cluster and impede decomposition
of other clusters. For this reason, subject number fifty-six, who had
much more experience than any other subject, was deleted.

Figure 6 shows the clusters produced by Ward's method. The ones
represent novices, twos intermediates, and threes experts. Comparison
of the clusters produced by Ward's method with those obtained from
the judges' scores, shows that forty-two of the fifty-seven subjects
are classified the same way by both methods (this is true for both
the classifications obtained from the Jjudges' scores). This represents
a seventy-four percent agreement. In addition, all of the experienced
cluster, and nineteen of the twenty subjects in the novice cluster,
produced by the cluster analysis are classified in the same way by
the judges. The only real disagreement occurs between the
novice-intermediate and intermediate-expert classifications, because
cluster analysis produces a larger intermediate group. Thus, the

cluster analysis seems to lend wvalidity to the judges' ratings.

NUMBER

FIGURE 6 - GRAPH OF NOVICE, INTERMEDIATE

OF AND EXPERT CLUSTERS
3GLs
7 2 2 3 3
6 2 222 24 2 3 3 3. 3
S 11 22 2 22 2 3 3 3
4 22 2
3 1 2 2
2 11 2 3
1 = Novice
2 = Intermediate
3 = Expert
1 11
O . .
10 20 30 40 50 6(5 70 80 390 100 ‘ 1;0 120

NUMBER OF 3GI. PROGRAMS WRITTEN

95

57

5.2.4 STATEMENT OF THE MODEL EQUATION

The hypotheses were tested empirically using the following

model:

SCORE, .
1

ik = de. + EXPERIENCEi + COMPLEXITYj + (EXPERIENCE*COMPLEXITY)ij

+ EDUCATIONAL INSTITUTION, + e,

k ljk............(l.O)

where .. is the overall mean

i is the level of the EXPERIENCE factor
j is the level of the COMPLEXITY factor
k is the level of the blocking factor
and ei.-is the ran@om error.

jk

5.2.5 OTHER VARIABLES USED IN THE ANALYSIS

Some of the subjects in the experiment had backgrounds which
included experience with other types of software besides third
generation languages. This experience could affect their performance
on the FOCUS tests. Since a fourth generation language, such as
FOCUS, is basically an integration of other types of software, such
as a query language, report writer, screen painter, database
management system, procedural language etc., individual experience
with these other types of software might have an affect on ho& well a
subject can learn FOCUS.

In order to account for possible confounding effects, the
subjects' experience with various types of software were recorded, and
were related to their performance on the FOCUS tests via a regression

study. Before proceeding with the regression study two dquestions

58

needed immediate answers: How could software experience be
categorized, and which software products £fit into which categories?
The first attempt resulted in a categorization of software experience
into the following groups: nonprocedural languages, report writers,
dquery languages, and fourth generation languages. These categories
were not satisfactory because most of them were badly defined, and
because they overlapped. For example, a fourth generation language
could also be categorized as a query language or a nonprocedural
language. Even though terms like query language and report writer are
commonly used, there are no accepted definitions for any of these
categories.

Some weak definitions have been given in the literature for
these terms. For example, the National Bureau of Standards in the
U.S., has defined a query language as a "language used to specify how
database objects (items, entities, and relationships) are retrieveq,
manipulated (inserted, deleted, and modified) and how new objects are
created." 5! Sometimes the inserting, deleting, and modifying aspects
are not considered to be part of a query language, but, rather, make
up a data sublanguage. Reisner defines a query language in the
stricter sense, "A query language is a special purpose language for
constructing queries to retrieve information from a database of
information stored in a computer. It is usually intended to be uéed
by people who are not professional programmers. Query languages are
usually higher level languages with a fairly limited number of

functions." 52 The problem with this definition is that languages 1like

SlNational Bureau of Standards, An Architecture for Database
Management Standards, NSB Spec1al Publication 500-86 (Washington:
National Bureau of Standards, 1982) p.37.

52Reisner, "Human Factors Studies of Database Query Languages: A

59

SQL and QBE can no longer be considered query languages.

In order to make the categorization simpler, three mutually
exclusive categories were created. The first category was query
languages. Query languages were defined as languages used to retrieve .
and update informatipn in a database. In this sense, query languages
do not allow the user to select the location (column position) or
appearance (insert commas, dollar signs, etc.) of fields in the
report, rather the user must accept the default report. Query
languages also lack the logic of procedural languages.

The second category was report writers. Report writers were
defined as languages which had extensive formatting functions which
could be used to produce simple and complex reports from a database
or sequential file. This includes the ability to produce financial and
statistical reports. In this sense, report writers have some
programming logic, but lack good interactive query facilities.

The third category was fourth generation languages. As defined
earlier, fourth generation languages include a query language, a
report writer, a screen painter, a nonprocedural laﬁguage, a database
management system, and some procedural code for complex logic. For the
purpose of this research, if software fell somewhere in-between a
query language or report writer, and a fourth generation language, it
was classified as a fourth generation language. This should not weaken
the results because regression of test scores, with the first two
categories, will show how using a query language or report writer
affects using a fourth generation language. Regression of test scores

with the last category will indicate how using multiple parts of a

sz(cont d) Survey and Assessment" p.l4.

60

fourth generation language (or all the parts) will affect using the
reporting commands of a fourth generation language.

The effect of having prior experience with other software tools,
on the subject's ability to learn a 4GL, depends heavily on what
prior tasks the subject has performed with the software tools. As it
was not feasible to ask each subject what tasks he performed with the
software, we could not determine how well the subject knew the
particular tool. Therefore, the results of the regression are somewhat

weakened by the fact that we only use aggregate experience data.

Software used by subjects is classified below in Table IV.

TABLE IV - OTHER SOFTWARE USED BY THE SUBJECTS

Query Language Reporf Writer Fourth Generation
Langquage
SQL COBOL REPORT DBASE II and III
QUERY WRITER RBASE 5000
EDBS MARK IV KMAN
RPG III ORACLE
IFPS IMAGE
SAS, GPSS

6l

5.3 MEASURE OF THE DEPENDENT VARIABLE

The subjects' ability to learn fourth generation language reporting
commands was measured by their performance on either the simple or
complex reporting test. Both the simple and complex tests were made
up of three questions. Appendix 2 contains the simple test, Appendix
3 contains the complex test, and Appendix 4 contains the marking
scheme used to score the two tests. "

As can be seen, dquestion One on the simple and complex tests
are identical. This first question was intended to familiarize the
student with a FOCUS exercise. As a result, question One was a very
easy question, and, therefore, was only included in the overall score
for the simple test. The overall score for the complex test included .
only the scores on questions two and three.

Question two on the complex test was more difficult than
question two on the simple test, but both questions required the
subject to produce a similar report on registration information. The
two question Three's required the subject to produce similar reports,
one being more complex than the other. Question Two and Three were
really measuring the same thing within each test, and that was, the
ability of the subjects to learn the fourth generafion language
commands (either simple or complex). But, as can be seen from the
appendices, question three was much more comprehensive, and used many
more FOCUS commands than question two.

Because question Three is very comprehensive, it could be used
as a measure of the dependent variable, ability to learn a 4GL. The
overall test score could also be used as a measure of the dependent

variable. Questions one and two were not comprehensive enough to be

62

used as valid measures of 4GL learning ability. Regression analysis
indicated that the scores achieved on question three, and overall
score were highly correlated (R? = ,7335). Since the overall score
incorporates the scores achieved on dquestion three, only the overall
score will be used as a measure of the dependent variable.

The tests were marked by an independent FOCUS expert (an MIS
professional) who was not involved in the research. An independent
judge was used because someone involved in the research would have

been less objective in his scoring.
5.4 PROCEDURE

5.4.1 PILOT TEST

Prior to the actual experiment, a pilot test was conducted to
identify any weaknesses in the experimental materials, and to obtain
practice in administering the experimental sessions. Eleven MBA
students at UBC took part in the pre-testing, as part of a systems
analysis course they were taking. One other MBA student was asked to
take part because he had 1little knowledge of computers. The systems
analysis students had varied amounts of prior programming experience.
The students were randomly assigned to either the complex or simple
reporting tasks.

During the experiment, subjects were isolated in a quiet room.
For the majority of the time, the only other person in the room was
the lab assistant. An IBM AT was used to run the fourth generation
language. The pre-test sessions ran smoothly; all students finished

the experiment in less than the three hours scheduled. The cumulative

63

time taken to complete the session varied from eighty-nine to one
hundred and seventy-seven minutes. |

Subjects were given forty-five minutes to complete the test. The
subjects who wrote the simple test generally finished in less than
forty-five minutes (only one of the six subjects took the maximum
forty-five minutes). Scores on the simple test varied from fifty-seven
to ninety-four percent, with four of the six subjects scoring above
eighty percent. The sﬁbjects who wrote the complex test generally took
all forty-five minutes (four of the five subjects) to complete the
test. Scores on the compiex test varied from sixty-one to eighty-seven
percent, with four out of the five scoring seventy percent or higher.
In order to achieve a wider range of scores, for data analysis
purposes, it was decided to add two small sections to question one,
and question three was made slighly longer (on both simple and
complex tests). Forty-five minutes remained as the alloted time for
both tests. The thesis results, which will be presented later,
indicated that this forty-five minute time limit, along with the
increased difficulty resulted in a much more difficult complex test.

While doing the sample problems some subjects complained that
they were unable to understand the data structure used in the
problems. For example, some did not know if the RETURNS field in the
SALES file contained information about just one product, or was
aggregate data by store. In order to clarify these problems, examples
of data records were added to the file.

Subjects also experienced problems trying to decide what the
proper order of the DEFINE and JOIN commands were, when the two

commands were used in the same program. In order to help the subjects

64

understand the logic of these commands, problem number eight was later
redesigned to involve both the DEFINE and JOIN commands.

Other than these two minor problems, the subjects had no other
difficulties.

As a result of the subjects' comments, as well as comments made
by other reviewers, several changes were made to the Report Generation
Manual, after the pre-test sessions.

The following sections were deleted, because they were not
directly relevant to the test, and, were time—-consuming:

Direct Operations, Includes and Excludes Tests, Testing Accumulated
Values, Reports with no Verbs, Calculations.

In addition, the explanations for the PRINT, SUM and COUNT verbs
were expanded because the students were occasionally confused as to
which verb to use in a given situation. Examples were also added to
some sections of the manual in order to clarify the purpose of
certain commands.

Finally, the section describing the JOIN command was expanded
because of subject confusion. This confusion was both verbalized, and

obvious from the results of the pilot test.

5.4.2 THE ACTUAL EXPERIMENT

Each subject completed a three part session which lasted
approximately three hours. The first part of the session involved
learning a foufth generation language, the second involved practicing
fourth generation language commands in a sample problem session, and
the third tested the subject's knowledge of the fourth generation

lanquage which they had just 1learned. As mentioned earlier,the fourth

65

generation language used was FOCUS, the most popular fourth generation
language on the market today. FOCUS was used because it has all of

the characteristics of a fourth generation language which were
enumerated in an earlier chapter of this thesis. FOCUS, an application
generator, was used rather than a code generator, because application
generators are more widely used in industry, and are more oriented
towards end-users. The specific range of FOCUS reporting commands used
in the tests were enumerated in Table II of this thesis.

The lab assistant began the sessions by giving a brief
explanation of the purpose of the experiment (the lab procedures
followed during the experiment are shown in Appendix 5). He explained
that the main purpose of the experiment was to compare the ability of
novices and experienced third generation language programmers to learn
a fourth generation language. Next, the lab assistant discussed how
important fourth generation languages are becoming in bﬁsiness. This
was intended to reinforce the subjects' belief that they would learn
something useful. Following this, the 1lab assistant discussed the
importance of collecting the data for this thesis, and then, briefly,
covered the sequence of events for the session. At this point, the
lab assistant stressed that the session would take three hours, and
possibly more. This Qas mentioned, in order to avoid losing
disinterested students after the reading or practice stages of the
experiment. It was hoped that once a student began, he would commit
himself to finishing the session.

As mentioned before, the lab sessions were comprised of three

main parts.

66

Part 1

The approximate duration of Part 1 was one-half to one and one-half
hours. Subjects learned FOCUS commands used to generate reports, by
reading an instruction manual adapted, by the author, from the
PC/FOCUS Users Manual. This manual appears in Appendix 6. The subjects
were encouraged to take as much time as necessary to read the
manual,and to read it carefully, as it would save them time when they
proceeded to the practice and test portions of the experiment. The
lab experiments, in which the subjects were tested, were slightly
different at the two institutions (UBC and BCIT). At BCIT, large
numbers of people were run through the session at the same time. At
UBC, subjects were tested individually. As a result, less control
could be exercised over the subjects at BCIT, even though they were
asked not to talk to one another during the session. This was one of
the reasons for using educétional institution as a blocking variable
in the statistical analysis; the second reason being different

educational background.
Part 2

The approximate duration of Part 2 was one-half to one and one-half
hours. After reading the FOCUS manual, the subjects were given a set
of eight practice problems (see Appendix 7) in order to practice the
commands explained in the manual. The practice pfoblems were based on
a fictitious milk company's database, which were taken from the

PC/FOCUS Operations Manual. A brief description of the database, the

67

description of the fields making up the database, and an example of
database records were included with the practice problems. Subjects
were asked to Eudget as close to an hour as possible for the practice
problems. They were also provided with the solutions to the problems.
Subjects were instructed to consult the solutions only after
attempting the problem at least once, but were encouraged to refer to
the solution if they were spending an excessive amount of time on any
one problem,

Each of the sample problems forced the subject to use one or
more of the most important FOCUS commands. Solutions to the problems
were typed into the computer by the subject, who then executed them
using FOCUS. This was continued iteratively until the subject answered
correctly. The time taken to complete the problem session was

recorded.
Part 3

The approximate duration of Part 3 was one hour. After completing the
problem session, subjects were given a written test. The subjects were
randomly assigned to either the simple or complex test. The tests
involved creating course and subject reports from a university
registration database, which had been created by the author. A
forty-five minute time limit was imposed for the simple and complex
tests. Subjects were advised when two or three minutes remained in
the test.

Following the test, the subjects were required to fill out a

questionnaire asking for personal data such as: number of years work

68

experience, educational level, knowledge of other 4GL's, prior use of
réport writers, query languages, data base management progfams,
computer languages known, number of programs written, number of years
programming etc. The questionnaire is shown in Appendix 8. This data
was used by the .judges to rate the subjects as either novices or
experts, and to test hypothesis number three, concerning the effect of
other variables on the subject's ability to learn a fourth. generation

language.

5.5 ESTIMATION OF THE SAMPLE SIZE NEEDED

Before running the experiment itself, statistical analysis was
performed to estimate the size of the sample needed. Two methods of
estimating the sample size were used. The calculations are shown in
Appendix 9. The results indicated that a sample size of 48 subjects
would enable us to test the hypotheses with a sufficient level of

confidence.

5.6 STATISTICAL METHODS USED

5.6.1 HYPOTHESIS ONE

Analysis of variance was used to determine if 3GL experience
significantly affects the subjects' performance on tests of fourth
generation languageé. Specifically, one-sided t-tests were performed
to determine if experienced third generation language programmers
achieved higher mean scores than novices on simple and complex tests

of fourth generation languages. The tested hyptheses were:

69

Ho: Experienced programmers' scores on simple 4GL tests will be equal
to novices' scores on simple 4GL tests. (i.e. u,, = u,;,)
Ha: Experienced programmers' scores on simple 4GL tests will be

greater than novices' scores on simple 4GL tests. (i.e. u,, > u,,;)
and

Ho: Experienced programmers' scores on complex 4GL tests will be equal
to novices' scores on complex 4GL tests. (i.e. M,, = wu;,)
Ha: Experienced programmers' scores on complex tests will be greater

than novices' scores on complex 4GL tests. (i.e. u,, > u;,)

To test these hypotheses we used 6ne4sided t-tests (at the 5% and 10%
levels of significance). With reference to Figure 7, if we 1let L

equal the difference between experienced and novice scores (e.g. ud,; -
My,), then the critical value t* is calculated as follows: t* = (L-
0)/S(L) where L = Y,, - Y,,, and S?(L) = MSE (l/nij +1/n.'.'"). The t

1]
table value will have n - ab degrees of freedom where n is the

T
sample size, a and b are the number of levels of the first and second
fa;tor.

Once t* is calculated we would compare it with the t-value
obtained from a t-distribution table for a given level of
significance..If t* £t we will accept Ho, otherwise if t* > t we
will reject Ho and accept Ha.

Regression analysis was also used to support the analysis of

variance results, and to determine the numerical relationship between

the subjects' experience with 3GLs, and their ability to learn a 4GL.

70

FIGURE 7 - EXPERIMENTAL DESIGN WITHOUT BLOCKING

PROGRAMMING EXPERIENCE

NOVICE EXPERIENCED 3GL
PROGRAMMERS

SIMPLE

TASK /CZ,, /{'(ZR

DIFFICULTY

COMPLEX

’('{rz _ '/LéZZ

71

For this analysis, the dependent FOCUS test score (OV) was regressed
with the independent variable, judges' mean experience rating (SCa)
(measuring the subjects' experience with 3GLs). The model is as

follows:

Test Score = f, + f,Experience Rating + ¢{(1l.1)

1 1 1
We examined both the significance of the relationship (R2?), the
direction of $,, and the p-value for the Experience Rating wvariable.
Hypothesis number one predicts §, > 0. The above analysis was
repeated for both the simple and complex tests. The two tests could
not be combined in the same analysis because a certain score on the
complex test indicated a completely different performance than the
same score on the simple test. Scores on the simple test were

significantly higher.

5.6.2 HYPOTHESIS TWO

Bnalysis of variance was used to determine if the novices' mean
drop in scores between the simple and the complex test was greater
than the experienced 3GL programmers mean drop in scores. If the
(EXPERIENCE * COMPLEXITY) interaction term in our model is
significant, we can conclude that the difference in test score,
between the simple and complex test, has changed significantly either
for the novices or the experienced 3GL programmers. But, specifically,
we would like to test if novice scores have decreased by a larger
number. We can test this using a one-sided t-test.

Ho: (“'11 - u]_z) = (H21 - uzz)

72

Ha: (4., = u,,.) > (u,, - Kaa)

where t* (L-0)/ S(L) where L = (¥,, - Y,,) - (¥,, - Y,,) and s(L)

= MSE ZZ c.../

ij2 If Ho is accepted, we would conclude that there is

n, ..
1]
no evidence indicating that novice programmers' scores decrease more

than experienced 3GL programmer scores.,

5.6.3 HYPOTHESIS THREE

Simple and multiple regression analyseé were used to test
hypothesis three: that other variables are positively related to the
subjects' test scores. Scatter plots of the number of query language,
report writer, and 4GL programs written versus test scores were
examined before performing the regressions to ensure that enough data
was available to proceed with the regression. Figure 8 shows the
graph of subjects' scores versus the number of Report Writer programs
written. The scatter plots of subjects' scores versus the number of
query language programs written, and the number of fourth generation
language programs written are very similar. It is obvious that there
is a shortage of data for all the variables, but the data for the
query language programs written is most scarce. Only four subjects had
used query languages before and no one had written more than two
query language programs. The query language variable was not examined

because of the shortage of data. The following models were analyzed:

Test Score Bo + P,Report Writer + e...ieeeveseevocess(l.2)

Test Score Bo * B14GL + € tvrivervarsosesacsasosssnnaaealled)

Test Score 8o + p,Report Writer + $,4GL + e€.cvevesss..(l.4)

SCORE

100

80

60

10

20

eee ‘.o.‘ o0 @®o

-9 906 0

e G @ *°8 o0

FIGURE 8 - GRAPH OF SUBJECTS' SCORES VERSUS
THE NUMBER OF REPORT WRITER PROGRAMS WRITTEN

2 3 4 s 6 7
NUMBER OF REPORT WRITER PROGRAMS WRITTEN

€L

74

Report Writer, and 4GL, are dummy variables, with the following
meaning: if the variable=1 then the subject has used this tool
before, if the variable=0 then the subject has no experience with the
tool. The above regressions were repeated for both simple and complex
tests.

From the results, we looked for overall significance of the
relationship (R?, F-statistic), and a positive §, value. A positive §,
value indicated that, as hypothesized, a greater amount of experience

with the tool results in higher 4GL test scores.

5.7 VARIABLES USED IN THE ANALYSIS

In the course of the research, the variables shown in Table V were
used in the analysis of the hypotheses. The data collected from the

subjects appears in Appendix 10.

TABLE V - VARIABLES USED 1IN THE ANALYSIS

VARIABLE NAME TYPE OF VARIABLE

1. Educational Institution(EI) Dummy variable (UBC=1, BCIT=0)

2. Previous Related Full-Time
Work Experience (PWE) Dummy variable (YES=1, NO=0)

3. Years of Programming _
Experience at Work(YPEW) Continuous variable (=percent of
time * no of years)

4. MBA student (MBA) Dummy variable (YES=1, NO=0)

5. Computer Systems student (SS)
6. Other student (0S)

7. Simple/Complex Task
(COMPLEXITY)

8. Previous 3GL
Experience (E3GL)

9. Number of 3GLs Known (N3GL)

10. Number of 3GL
Programs Written (N3GLW)

11, Number of Report Writer
Programs Written (RWPW)

12. Number of Query Language
Programs Written (QLPW)

13. Number of 4GL
Programs Written (N4GLW)

14. Total time of the
Subject's Session (TTIME)

15. Reading time (RT)
16. Problem time (PT)
17. Test time (TT)

18. Overall_Score on
FOCUS Test (0V)

19, Score on Q1 (Q1)

Dummy varialble (YES=1, NO=0)

Dummy variable (YES=1, NO=0)

Dummy variable (Simple=1,
Complex=0)

Dummy variable (YES=1, NO=0)

Continuous variable
Continuous variable
Continuous variable
Continuous variable
Continuous variable

Continuous variable
Continuous variable
Continuous variable

Continuous variable

Continuous variable

Continuous variable

20. Score on Q2 (Q2)
21. Score on Q3 (Q3)
22. Novice/Experienced 3GL

Classification (EXP)

23. Mean experience score of
the three judges (SCA)

Continuous variable

Continuous variable

Dummy variable (Novice=0 Exp3GL=1)

Continuous variable
(Scale of 1 to 7)

76

6. RESULTS

6.1 HYPOTHESIS ONE

The analysis of variance was performed for model 1;0. The ANOVA table

is shown below in Table VI.

TABLE VI - ANOVA TABLE FOR MODEL 1.0

Source of SS - daff Ms . F-value é PR > F
variation |

CdMPLEXITY 4341.4 1 4341.4) 112.54 .0011
EXPERIENCE 29.8 ll 29.8 0.09 } .7709
(COMP*EXP) 673.8 1 673.8 1.95 .1712
EDUCATIONAL

INSTITUTION 319.3 1 319.8 0.92 .3430
ERROR 13159.6 | 38 346.3

The ANOVA table indicates that Educational Institution has no
effect on test scores. Subjects from both Educational Institutions did
equally well. The table does indicate that complexity is an important
factor, as was intended. Scores on the complex test are significantly
different from scores on the simple test (p = .0011). The COMP*EXP
interaction term indicates some weak interaction between complexity

and experience. This will be discussed later under hypothesis two.

77

78

The ANOVA table indicates that Experience is not an important
factor when the mean scores of simple and complex tests are combined.
But, we alsoc need to determine if 3GL experience has an effect on
test scores for the simple test only. This must also be repeated for
the complex test. We can test the hypothesis that experienced 3GL
programmers achieve higher mean scores than novices, using the t-test
described earlier, in the Method section. |

First for the simple test, using the one-sided t-test described
earlier, t*=1.45. The critical t-value at .05 level of significance 1is
t[.95,39]= 1.684. Since t* is not larger than t we cannot reject Ho
at the .05 level of significance. The critical t-value at the .10
level of significance is t[.90,39] = 1.303. Since t* = 1.45 is |
greater than 1.303 we can reject Ho, and conclude that 3GL experience
is an important factor for simple tests at the .10 level.

For the complex test, t*= -.52, This is not larger than the
critical t-value 1.684. Therefore we cannot reject Ho at the .05
level. The same conclusion is reached at the .10 level. This
indicates that 3GL experience is not an important factor for the
complex test.

The scatter plots of test scores versus the judges' mean
experience ratings, for simple and complex tests, are shown in Figures
9 and 10. The scatter plot for the simple test shows an upward trend,
whereas the scatter plot for the complex test is random. The results
of regresson 1.1l score versus 3GL experience for the simple test, are
as follows: R2=.1318, p-value of .028, and §, = 4.4. The results for
the complex test are R2=.0015, p-value=.42, and (,=0.46. These

regression results support the results obtained from the analysis of

SCORE

100

80

60

40

20

FIGURE 9 - GRAPH OF SUBJECT SCORES VERSUS

MEAN OF THE JUDGES' RATINGS
FOR THE SIMPLE TEST

2

MEAN OF

3 4
THE JUDGES' RATINGS

6L

SCORE

oo

80

40

20

FIGURE 10 - GRAPH OF SUBJECTS®' SCORES VERSUS
MEAN OF THE JUDGES® RATINGS
FOR THE COMPLEX TEST

z 3 Y
MEAN OF THE JUDGES® RATINGS

08

81

variance for hypothesis one. The regression for the simple test 1is
significant, again indicating fhat experience with 3GLs affects simple
4GL test performance. The positive f§, value indicates that greater
experience is correlated with higher simple test scores, as
hypothesized. The results of the complex test regression again
indicate that the experience-score relationship is not significant for

the complex test.

6.2 HYPOTHESIS TWO

We can directly test hypothesis number two to see if novices' scores
drop by more than experienced 3GL programmer scores. We will use a
.10 level of significance. In order to accept Ha, that novice scores
decrease more than experienced 3GL prégrammers' scores , t* will have
to be larger than t[.90, Ny - ab] which is 1.303. We determined that
t* = -1.43, which is not larger than 1.303. Therefore we cannot
reject Ho.

Therefore, the evidence indicates that we cannot conclude that

novices' scores drop by more than experienced programmers' scores.

6.3 HYPOTHESIS THREE

Table VII presents the results of the regression analysis. We shall
use the term Report Writ as a short form for the dummy variable
Report Writer. The table indicates that 4GL is the only significant
variable. The table shows the results of both the simple regressions
and the multiple regressions. The multiple regression results are

presented at the bottom of the table.

82

TABLE Vi} - TABLE OF REGRESSION STATISTICS FOR HYPOTHESIS 3

Simple/ jDependent jindependent § P-value R Value
Complex i Variable [Variable of
task . B
Simple Score Report Writ } .2065 .0259 6.16
Simple Score 4GL .0632 .0874 11.82
Complex Score’ Report Writ .3296 .0073 -3.21
Complex Score 4GL .3468 .0058 2.56
Simple Score Report Writ .1920 0.19
4GL .4484 0.92
Complex f§Score Report Writ § .3665 2.55
AGL .0068 22 .4

83

More data would be needed to be certain of the results on
report writer, and 4GL experience. The raw data collected shows that
only nineteen out of the (fifty-seven subjects had used report writers
(no one had written more than sixteen programs), and only twenty-four
out of fifty-seven had previously used a fourth generation language.
These are both small samples.

Results indicate that 4GL is a significant variable. The fact
that students, with previous 4GL experience do significantly better on
the FOCUS 4GL tests is not surprising. The evidence we have indicates
that we have to reject the hypothesis that experience with report

writers leads to higher 4GL test scores.

6.4 SUMMARY OF THE PERFORMANCE OF THE SUBJECTS

Figure 11 and Table VIII summarize the performance of each of the
four treatments, as well as the number of subjects in each treatment.
Table VIII and Figure 11 both indicate that novice scores are much
more variable than experienced programmer scores. The data strongly
suggests that some novices performed poorly on both tests, while
experienced programmers were more consistent.

All the scores recorded on the complex test were low indicating
that the test was very difficult, or, that too little time was
provided for the subjects to finish the test. This could explain why
-there was little difference in the scores achieved by novices and
éxperienced programmers on the complex test.

We also note in Figure 11 a break in scores between the lower
scorers and the higher scorers. This break indicates that some

subjects could learn 4GLs easily, while others had a lot of

TABLE VIIl - MEANS. STANDARD ERRORS., AND NUMBER OF

PROGRAMMING EXPERIENCE

NOVICE . EXPERIENCED 3GL

x
1}
»
©0
x
]
o2}
N
o

SIMPLE

& = 22.3 € = 8.7
TASK
N = 16.0 N = 6.0
DIFFICULTY

. X = 56.9 X = 52.6

COMPLEX
& = 19.6 € = 13.3

84

OVERALL SCORE

{00

80

60

40

20

FIGURE 11 - GRAPH OF SUBJECT SCCRES VERSUS
EACH OF THE FOUR TREATMENTS

[]
. H
[]
. o .
;]
[3 [4
; :
H 'Y
|]
* ®
L
.
®
°
o) ! 'T 1]
SIMPLE SIMPLE COMPLEX COMPLEX

NOVICE EXPERT NOVICE EXPERT

S8

86

difficulty. This facility with 4GLs is not solely dependent on

previous 3GL experience as can be seen from the graph.

There seems to

be another factor missing here, which would explain why some subjects

learn 4GLs more easily than others.

7. DISCUSSION OF THE RESULTS

Though not all the hypotheses were accepted when tested, some
very interestiné results were obtained from the analysis.

Before discussing the results, some weaknesses of the
methodology, which could have affected the results, should be
discussed. Because the subjects were only given approximatelf an hour
to read the FOCUS commands, and one hour to run through the problem
session, some question remains as to the validity of the measure of
the dependent variable, ability to learn a fourth generation language.
On the one hand, in a work setting, employees are given a number of
days to familiarize themselves with the FOCUS commands. On the other
hand, the two to three hour learning session given the students,
allowed them to learn almost all of the FOCUS reporting commands.
Because the syntax is so English-like, it takes little time to learn
FOCUS.

Because the tasks assigned to students were relatively short,
some critics might question the external validity of the results. The
problems assigned to the subjects were typical of problems faced by
business professionals. But these problems are more simplistic than
those handled by information system professionals. A more realistic
problem for an information system professional would involve building,
maintaining, and reporting from a database. Getting the subjects to
commit more time to compléte a more complex task would have been a
problem. The three hour session was already long.

In this study, only reporting tasks were examined, yet the
novices showed that they handled more complex tasks no more poorly

than the experienced programmers.

87

88

The final weakness in our methology is that no real ‘"expert"
programmers were used in the experiment. Rather, experienced student
programmers were used. If professional programmers had been used they
might have done better than the novices. Still, a few of the subjects
had worked as programmers, and the rest of the experienced subjects
were only one year away £from being in the job market where they would
be considered professional programmers.

Notwithstanding the above problems, the results are intriguing.
The problems are a realistic representation of what some marketing, or
finance professionals will be faced with in the near future.

The results of hypotheses two and three will be discussed first
as they are not as important as the results of hypothesis one.

The results of hypothesis number two were not what we expected.
We expected novices' scores to decrease by more than experienced
programmers' scores, when progressing from the simple to the complex
test. The results can be partially explained by the higher score
recorded by experienced programmers on the simple test. When we were
setting up the tests, we expected experienced programmers to perform
much better than novices on the complex test. As a result, the second
hypothesis would have measured a much bigger drop for novices. But,
because experienced programmers scored higher than novices on the
simple test, but no better. on the complex test, the results of
hypothesis number two became less meaningful than originally expected.

Because of the lack of data, few meaningful results were
obtained for hypothesis number three. Only the fact that knowing one

4GL helps, when learning another, can be safely concluded.

89

Concerning hypothesis number one, the results of the simple test
indicate that experienced programmers outperform novices. The simple
commands such as PRINT, BY, and ON involving control breaks, are
better handled by the experienced programmers. These commands are
familiar to experienced third generation language programmers,
therefore, they can transfer previous skills to a fourth generation
application involving simple reporting commands. As a result, their
scores are higher than novices' who have never been exposed to these
commands .’

Results of the complex test do not support the hypothesis that
experienced prbgrammers can outperform novices on complex 4GL tests.
Some people may argue that these reéults are due to an excessively
hard test combined with too short a testing time (45 minutes). Their
argument would be that the ‘test was too hard for all the subjects,
and therefore the results are meaningless.'Thirty percent of the
subjects who wrote the complex test scored below fifty percent. Also,
16 out of the 29 subjects who wrote the complex test did not finish
writing the test before the 45 minute time limit had expired. This
data could indicate that many of the subjects found the test too long
or too hard.

Based on the fact that the experienced programmers' scores on
the complex test were less variable than the novices' scores, we
might conclude that if a bigger sample was taken the experienced
programmers would have outperformed the novices. I believe the results
may be partly due to the difference between the simple and complex
4GL commands. The more complex 4GL reporting commands such as JOIN,

SUBHEAD, and DEFINE used in the complex test are semantically very

90

different from anything encountered in a third generation language.
Therefore, the experienced third generation language programmer cannot
transfer any previous skills into this complex 4GL environment. These
very complex commands were the ones which caused the most_ problems
for experienced 3GL programmers. As a result, the experienced 3GL
programmer has little or no advantage over a novice in a complex 4GL
reporting application. The fact that experienced programmers' scores
were less variable than novices' scores can be explained by the fact
that a few simpler commands were used in the complex test. As we have
already concluded, experienced programmers have an advantage over
novices in simple 4GL reporting applications. Possibiy, experienced
programmers score no better than novices because they have no more
experience with the different 4GL semantics than novices do.

The results of this research indicate that experienced third
generation language programmers would be preferred over novices when
an application involves simple 4GL commands. For complex applications,
novices performed as well as experienced third generation language
programmers, but the fesults were not conclusive. Several pogsible
explanations were advanced to try to explain the results. More testing
is needed to determine if any of the explanations is correct. Further
testing should also be conducted by other researchers with other
fourth generation languages, and with other tasks to see if the same

results are obtained.

BIBLIOGRAPHY

Abbott, Jack L. "A Comparison of Five Database Management Programs"
Byte, 8, No.5(1983), pp.220-228.

Brooks, Ruven. "Studying Programmer Behavior Experimentally: The
Problems of Proper Methodology" Communications of the ACM,
23(1980), pp.207-213.

Brooks, Ruven. "Using a Behavioral Theory of Program Comprehension in
' Software Engineering" IEEE Third International Conference on
Software Engineering 1978. Long Beach,CA.: IEEE,1978,
pPp.196-201.

Cardenas, Alfonso F., and William P. Grafton. "Generators: Challenges
and Requirements for New Applications" Proceedings of the
National Computer Conference 1982. Montvale,N.J.: AFIPS,1982,
pp.343-349.

Chamberlain, D.D., Astrahan, M.M., et al. "SEQUEL 2: A Unified
Approach to Data Definition, Manipulation and Control" IBM
Journal of Research and Development, 20(1976), pp.560-574.

Chapin, Ned. "Software Maintenance with Fourth Generation Languages"
ACM Sigsoft Software Engineering Notes, 9, No.1(1984), pp.4l1-42,

Chase, William G., and Herbert A. Simon. "Perceptions in Chess"”
Cognitive Psychology, 4(1973), pp.55-8l.

Chrysler, E. "Some Basic Determinants of Computer Programmming
Productivity" Communications of the ACM, 21(1978), pp.472-483.

Chrysler, E. "The Impact of Program and Programmer Characteristics on
Program Size" Proceedings of the National Computer Conference
1978. Montvale,N.J.: AFIPS,1978, pp.581-587.

Cobb, Richard H. "In Praise of 4GLs" Datamation, 31, No.14(1985),
pp.90-96.

Coble, D.F. "Fourth Generation Languages Will Impact Productivity -
If..."Data Management, 20, No.7(1982), pp.29-32.

Codd, E.F. "Relational Databases: A Practical Foundation for
Productivity" Communications of the ACM, 25(1982), pp.1l09-117.

Cu-Uy-Gam, Miriam. "Do-it-yourself is on the way for system
development” Computing Canada;Software Report, (May 1985),p.9.

Data Decisions. "System Software Survey: User's Favourite Disks"
Datamation, 30, No.20(1984), pp.85-138.

Digital Consulting Associates. The 1984 National Data Base
and Fourth Generation Language Symposium. Wakefield,MA.: Digital
Consulting Associates, 1984.

9l

92

DuBoulay, B., and T. 0'Shea. "Teaching Novices Programming"
Human Interations With Computers, ed H.T. Smith and T.R.G.
Green. New York: Academic Press,1980, pp.147-200.

Duncker, K. "On Problem Solving"” Psychological Monographs, 58,
No.5(1945), pp.l-112.

Dzida, W., Herda, S. et al. "User Perceived Quality of Interactive
Systems" IEEE Transactions on Software Engineering, 4(1978),
pp.270-276.

EDP Analyzer. Special Report: Fourth Generation Languages
and Prototyping. Vista,CA.: Canning publications,1984.

Eisenbach, S., and -C. Sadler. "Declarative Languages: An Overview"
Byte, 10, No.8(1985), pp.181-197.

Elder, Marvin. "SALVO - A Fourth Generation Language for Personal
Computers” Proceedings of the National Computer Conference 1984.
Montvale,N.J.: AFIPS,1984, pp.563-566.

Everitt, Brian. Cluster Analysis. London: Heinemann Educational
Books,1974.

"Fourth Generation Languages enter the dp mainstream despite
some resistance” Computing Canada: Software Report, (May 1985),
p.6.

Garry, Ralph, and Howard L. Kingsley. The Nature and Conditions
of Learning. Englewood Cliffs,N.J.: Prentice-Hall,1970.

Goodman, Aaron M. "Application Generators at IBM" Proceedings
of the National Computer Conference 1982. Montvale,N.J.:
AFIPS,1982, pp.361-362.

Gordon, J.D., Salvadori, A., and C.K. Capstick. "An Empirical
Study of COBOL Programmers" INFOR, 15(1977), pp.229-241.

Gould, John D. "Some Psychological Evidence on How People Debug
Computer Programs” International Journal of Man-Machine Studies,
7(1975), pp.151-182.

Green, T.R.G., Sime, M.E., and M.J. Fitter. "The Art of Notation"
Human Interactions with Computers, ed H.T. Smith and T.R.G.
Green. New York: Academic Press,1980, pp.221-251.

Grochow, Jerrold M. "Application Generators: An Introduction”
Proceedings of the National Computer Conference 1982.
Montvale,N.J.: AFIPS,1982, pp.391-392.

Harel, Elie C., and Ephrain R. McLean. "The Effects of Using
a Nonprocedural Computer Language on Programmer Productivity™
MIS Quarterly, 9, No.2(1985), pp.l109-120.

Holtz, D.H. "A Nonprocedural Language for On-Line Applications"

93

Datamation, 25, No.4(1979), pp.l67-176.

Horowitz, Elie, Kemper, Alfons, and Balaji Narasimhan. "A
Survey of Application Generators" IEEE Software, 2, No.1(1985),
pp.40-54.

Jenkins, Milton A. "Surveying the Software Generator Market"
Datamation, 31, No.17(1985), pp.247-261.

Johnson, James R. "A Prototypical Success Story" Datamation,
29, No.11(1983), pp.251-256.

Johnson, Jan. "MAPPER Goes Micro" Datamation, 29, No.11(1983),
pPp.62-66. '

Kelley, J.F. "An Iterative Design Methodology for User-Friendly
Natural Language Office Information Applications" ACM
Transactions on QOffice Information Systems, 2(1984), pp.26-40.

Kennedy, T.C.S. "Some Behavioural Factors Affecting the Training
of Naive Users of an Interactive Computer System™ International
Journal of Man-Machine Studies, 7(1975), pp.8l17-834.

Kowalski, R. "Logic Programming" Byte, 10, No.8(1985), pp.161-177.

Kull, David. "Non Procedural Languages: Bringing up the Fourth
Generation" Computer Decisions, 15, No0.13(1983), pp.l54-162.

Landaver, T.K., Galotti, K.M., and §S. Hartwell. "Natural Command
Names and Initial Learning: A Study of Text-Editing Terms"
Communications of the ACM, 26(1983), pp.495-503.

Laughery Jr., K. Ronald, and Kenneth R. Laughery Sr. "Human
Factors in Software Engineering: A Review of the Literature" The
Journal of Systems and Software, 5(1985), pp.3-1l4.

Leavenworth, Burt M., and Jean E. Sammet. "An Overview of
Nonprocedural Languages" IBM Research Report, RC4685.
Gaithersburg,MA.: 1IBM,1974.

Lukac, Eugene G. "The Impact of a 4GL on Hardware Resources"
Datamation, 30, No.16(1984), pp.105-114.

Mandell, Steven L. Computers and Data Processing: Concepts
and Applications. New York: West Publishing Company,1985.

Martin, James. Application Development Without Programmers.
Toronto: Prentice-Hall,1982.

Martin, James. Fourth Generation Languages. Lancaster:
Savant Institute,1983.

Mayer, Richard E. "The Psychology of How Novices Learn Computer
Programming"” ACM Computing Surveys, 13(198l1), pp.121-141.

94

McDonald, Nancy H., and John P. McNally. "Query Languages Feature
Analysis by Usability" Computer Languages, 7(1982), pp.1l03-124.

McKeithen, Katherine B. et al. "Knowledge Organization and Skill
Differences in Computer Programmers" Cognitive Psychology,
13(1981), pp.307-325.

Miara, Richard J., Musselman, Joyce A., et al. "Program
Indentation and Comprehensibility" Communications of the ACM,
26(1983), pp.861-867.

Miller, Boulton B. "Fourth generation languages and personal
computers”" Proceedings of the National Computer Conference 1984.
Montvale,N.J.: AFIPS,1984, pp.555-559.

Miller, Lance A., and Curtis A. Becker. "Programming in Natural
Language" IBM Research Report, RC5137. Yorktown Heights:
IBM,1974.

Miller, Lance A., and John C. Thomas Jr. "Behavioral Issues in
the Use of Interactive Systems" International Journal of
Man-Machine Studies, 9(1977), pp.509-536.

Moran, Thomas P. "An Applied Psychology of the User"
ACM Computing Surveys, 13(1981), pp.l-11.

Munnecke, Thomas. "A Linguistic Comparison of MUMPS and COBOL"
Proceedings of the National Computer Conference 1980.
Montvale,N.J.: AFIPS,1980, pp.723-729.

National Bureau of Standards. An Architecture for Database
Management Standards, NBS Special Publication 500-86.
Washington: National Bureau of Standards,1982.

Neter, John, Wasserman, William, and Micheal H. Kutner.
Applied Linear Statistical Models. Homewood, 1Ill.: Richard D.
Irwin Inc.,1985.

Nicol-Griffith, Mike. MAPPER was the First User Command
Language. Montreal: Canadian Pacific Consulting Services,1983.

Nicol-Griffith, Mike. User-Driven Computing at Canadian
Pacific Consulting Services Ltd. - A Case Study. Montreal:
Canadian Pacific Consulting Services,1985.

Osgood, C.E. Method and Theory in Experimental
Psychology. New York: Oxford,1953.

Paxton, A.L., and E.J. Turner. "Human Factors and Novice Computer
Users" International Journal of Man-Machine Studies, 20(1984),
pp.137-156.

Petrick, S.R. "On Natural Language Based Computer Systems"”
IBM Journal of Research and Development, 20(1976), pp.314-325.

95

Prywes, N.S., Shastry, S. and A. Pnueli. "Use of a Nonprocedural
Specification Language and Associated Program Generator in
Software Development” ACM Transactions on Programming Languages
and Systems, 1(1979), pp.196-217.

Read, Nigel S., and Douglas L. Harmon. "Assuring MIS Success"
Datamation, 27, No0.29(1981), pp.109-120.

Read, Nigel S., and Douglas L. Harmon. "Readers' Forum: Language
Barrier to Productivity" Datamation, 29, No0.2(1983), pp.209-212.

Reisner, Phyllis, Chamberlain, Donald D., and Raymond F. Boyce.
"Human Factors Evaluation of Two Data Base Query Languages:
Square and Sequel” Proceedings of the National Computer
Conference 1975. Montvale,N.J.: AFIPS,1975, pp.447-452.

Reisner, Phyllis. "Human Factors Studies of Database Query
Languages: A Survey and Assessment"” ACM Computing Surveys,
13(1981), ppl3-31.

Reisner, Phyllis. "Use of Psychological Experimentation as an
Aid to Development of a Query Language" IEEE Transactions on
Software Engineering, 3(1977), pp.218-229.

Sammet, Jean E. Programming Languages: History and
Fundamentals. Englewood Cliffs,N.J.: Prentice-Hall,1969.

SAS Institute Inc. SAS User's Guide: Statistics, Version 5
Edition.Cary, NC: SAS Institute Inc.,1985.

Schmidt, Joachim W. "Some High Level Constructs for Data of the
Type Relation" ACM Transactions on Data Bases, 2(1977),
pp.247-261.

Sheil, B.A. "The Psychological Study of Programming” ACM
Computing Surveys, 13(1981), pp.l01-120.

Shneiderman, Ben. Software Psychology: Human Factors in
Computer and Information Systems. Toronto: Little, Brown and
Co.,1980.

Shneiderman, Ben. "Measuring Computer Program Quality and
Comprehension" International Journal of Man-Machine Studies,
9(1977), pp.465-478.

Shneiderman, Ben. "Exploratory Experiments in Programmer
Behavior" International Journal of Computer and Information
Sciences, 5, No0.2(1976), pp.l123-143.

Shneiderman, Ben. "Improving the Human Factors Aspect of
Database Interactions"” ACM Transactions on Database Systems,
3(1978), pp.417-439.

Sojka, Deborah. "Soft Selling Software" Datamation,
29, No.6(1983), pp.68-73.

96

Tharp, Alan L., and Woodrow E. Robbins. "Using Computers in
Natural Language Mode for Elementary Education" International
Journal of Man-Machine Studies, 7(1975), pp.703-725.

Thomas, John C. "Psychological Issues in Database Management"
Third International Conference on Very Large Data Bases, Tokyo,
Japan, 1977. New York: IEEE,1977, pp.l169-185.

Thomas, John C., and John D. Gould. "A Psychological Study of -
QBE" Proceedings of the National Computer Conference 1975.
Montvale,N.J.: AFIPS,1975, pp.439-445.

Tinnirello, Paul C. "Software Maintenance with Fourth Generation
Languages" Proceedings of the National Computer Conference 1984.
Montvale,N.J.: AFIPS,1984, pp.251-257.

Treu, Siegfried. "Interactive Command Language Design Based on
Required Mental Work" International Journal of Man-Machine
Studies, 7(1975), pp.l135-149,.

Truitt, Thomas D., and Stuart B. Mindlin. An Introduction
to Nonprocedural Languages: Using NPL. New York:
McGraw-Hill,1983.

Tyler, Micheal. "Cincom Shifts Gears" Datamation,
29, No.6(1983), pp.58-65.

Vessey, Iris. An Investigation of the Psychological Processes
Underlying the Debugging of Computer Programs. Unpublished
Doctoral Dissertation, University of Queensland, Australia,
1984.

Waldrop, James H. "Application Generators: A Case Study"
Proceedings of the National Computer Conference 1982.
Montvale,N.J.: AFIPS,1982, pp.365-368.

Wang, M.D. "The Role of Syntactic Complexity as a Determiner of
Comprehensibility" Journal of Verbal Learning and Verbal
Behavior, 9(1970), pp.398-404.

Weinberg, Gerald M., and Edward L. Schulman. "Goals and
Performance in Computer Programming"” Human Factors, 16(1974),
pp.70-77.

Weissman, Larry. "Psychological Complexity of Computer Programs:
An Experimental Methodology™” SIGPLAN Notices, 9, No.6(1974),
pp.25-36.

Welty, Charles, and David W. Stemple. "Human Factors Comparison
of a Procedural and a Non-Procedural Query Language" ACM
Transactions on Database Systems, 6(198l), pp.626-649.

Wilco, Elaine. "Systems Development Without Programming"
Computer Data, 9, No.2(1984), p.l1l9.

Youngs, Edward A. "Human Errors

in Programming" International

Journal of Man-Machine Studies, 6(1974), pp.361-376.

97

APPENDIX ONE

JUDGES' RATINGS OF THE SUBJECTS

98

99

RATING THE SUBJECTS

Please rate the subjects of the fourth generation language
experiment on their experience with third generation langquages.
Use the information about the subjects given in the attached
tables to rate the subjects.

The information supplied in the tables is structured ‘as follows:

Column The subject number. ,
Column Educational degrees the subject has completed, or now
has in progress.'

Column 3 The number of years the subject has been doing

full-time work involving some degree of programming.

4 The percentage of time spent programming (vs. doing

other tasks) at work.

Column 5 The number of third generation languages the subject
6

N —

Column

has used.
The total number of third generation language programs
the subject has written.
Column 7 The third generation language known best.
Column 8 The number of years experience the subject has with
this language.
Column 9 The number of programs the subject has written in this
language.
Column 10 to 12 Same as columns 7 to 9, but for the second best
language known.
Column 13 to 15 Same as columns 7 to 9, but for the third best
language known.

Column

Rate the subjects experience with third generation languages
using the following scale. Place your ratings on the attached
RATING SHEET.

NOVICE EXPERT

1 2 3 4 5 6 7

'Note - Computer Systems is a two year diploma program offered at
BCIT. '

BATING SHEET

SUBJECT NUMBER |

|

RATING

28

H
{

]

29

30

31

i
SUBJECT NUMBER| RATING |
1
t ; -
2 .
AR VE 1 e e T e 3
g ——————— 4 L
] 5 i
! 6 :
i 7 ' .
i 8 -
: 9 ! :
f 10 i a
T 11 @ -
12 ! .
13 i
13 s
3 15 !
16 A
- 17
18 5
19 .
20
21 .
3 53 i :
g 73 f i
! 53 - i
g 25 P
L 26 g
L 27 i

32

33

34

35

36

37

38

39

40

41

42

43

[¥]

i B !

JURRD N RN QU S

-

SUBJECT| DEGREES COMPLETED |# OF YRS{ZTIME| { OF 3GLs| TOTAL # [LANGUAGES BEST KNOWN e
NUMBER | / IN PROGRESS |PROGRAMG| PROG.| KNOWN | PROGRAMS LANG1 [YRS |#/PROGRAMS|LANG2 {YRS |#fPROGRAMS| LANG3|YRS|#PR
AT WORK | WORK WRITTEN WRITTEN WRITTEN : WRT
1 COMP. SYS - - 6 25 PASCAI} 2 | 6 BASIC | 2 5 ASSEM| 2 | 5
2 B.A., COMP. SYS - - 7 64 BASIC [3 | 30 ASSEM | 3 11 C 1 |10
3 B.MATH, M.SC.B.A.| - - 1 6 FORTRA| 1/2 6 - - - - - |-
4 B.Sc, COMP. SYS - - 6 54 PASCAL} 4 | 30 FORTRA 3 8 COBOL| 1 | 6
5 B.Sc, MBA - - 1 3 FORTRA| 1 3 - - - - -] -
6 B.COMM, M.Sc.B.A.| - - 2 55 FORTRA| 1.5 40 COBOL | 1 15 - -1 -
7 COMP. SYS - - 6 78 BASIC | 6 30 PASCAL 1 20 ASSEM| 1 | 12
8 COMP. SYS .25 80 6 30 COBOL | 1 15 PASCA} 1.9 5 ASSEM| 1.9 5
9 COMP. SYS - - 5 41 PASCAL} 4 | 25 BASIC }2 | 6 COBOL| 1 | 5
10 B.B.A., COMP. SYS| - - 4 35 BASIC | 1/2§ 20 ASSEM | 1/4 6 COBOL| 1/2 6
11 B.COMM, MBA - - 2 9 COBOL | 1/4} 5 APL |1/4 4 - - -
12 COMP SYS - - 5 39 PASCAL{3 | 20 ASSEM | 3 10 COBOL| 2 | 5
13 B.Sc., MBA - - 2 5 APL 1/4f 3 COBOL | 1/4 2 - - |-
14 COMP. SYS - - 6 30 PL/1 |1 8 BASIC |1 5 COBOL| 1 |5
15 B. ENG (MECH) 5 3 33 FORTRAJ 1 20 BASIC |1 10 PASCAL 1/7 3
16 B.S.F., COMP. SYS| - - 6 35 BASIC |1 10 PASCAL] 1 6 COBOL| 1 | 6
17 COMP. SYS - - 6 47 BASIC {6 30 COBOL | 1 5 ASSEM| 1 | 4
18 B.ENG, MBA - - 4 20 BASIC |1 10 FORTRA] 1 5 COBOL| 1/2 3
19 COMP. SYS 5 25 6 51 PASCAL| 2 30 FORTRA[2 | 8 ASSEM| 1 |5
20 B.Sc. - - 3 10 BASIC {1/4] 6 PASCAL|1/4 3 COBOL| 1/4 1
21 B.ENG, COMP. SYS | - - 5 28 BASIC |1 10 FORTRA}1 | 10 ASSEM| 1 |6
22 B.COMM, MBA - - 2 13 BASIC |1/2} 12 FORTRA|1/9 1 - - |-
23 B.Sc., MBA - - - - - - - - - - - - |-
24 B.Sc., COMP. SYS | - - 5 74 FORTRA|2 | 30 PASCAL} 2 30 COBOL| 1 |7
25 B.ENG, MBA - - 1 7 FORTRA| 2 7 - - - - - |-
26 COMP. SYS - - 5 10 ASSEM |1/2} 4 COBOL }1/74 3 PL/1 | 1/2}2
27 COMP. SYS - - 7 39 PASCAL} 4 12 COBOL |2 | 6 ASSEM| 2 |6
28 B.C.Sc., MBA 100 § 5 23 PASCAL! 1 10 C 1 6 COBOL | 1/2} 3
29 B.COMM, MBA - - 3 23 FORTRA[5 | 20 APL J2 | 2 COBOL {1 |1
30 B.A. (LINGUISTICS)| - - - - - - - - - - - - |-
31 B.ENG., MBA - - 2 33 BASIC |2 | 30 FORTRA{1/2} 3 - - 1-
32 COMP. SYS - - 6 27 BASIC |2 {5 ASSEM |2 8 COBOL | 1.5} 5
33 COMP. SYS - - 5 38 COBOL {2 10 ASSEM {2 10 C 1 |10
34 B.Sc., M.A. 5 3 32 FORTRA{10 | 20 APL |2 10 BASIC |1 {2

101

DEGREES COMPLETED

SUBJECT # OF YRS|ZTIME (ff OF 3GLs| TOTAL {# LANGUAGES BEST KNOWN . ~
NUMBER / IN PROGRESS [PROGRAMG| PROG. | KNOWN PROGRAMS LANG1 |YRS |#fPROGRAMS | LANG2 [YRS [//PROGRAMS]| LANG3 KRS PR
AT WORK | WORK WRITTEN WRITTEN WRITTEN WRT
35 COMP. SYS - - 5 87 ASSEM| 4 | 50 COBOL | 3 20 FORTRA|-1/2] 10
36 B.A., MBA - - - - - - - - - - - - 1-
37 COMP. SYS - - 7 21 ASSEM| 2 {6 PASCAL| 1 3 C 1 {3
38 B.Sc, MBA - - - - - - |- - - - - - -
39 COMP. SYS 1/2 60 4 13 COBOL |2 | 6 ASSEM | 2 4 PL/1 |2 |2
40 B.H.N., MBA - - - - - - - - - - - - -
41 B.Sc.,M.Sc, MBA - - 2 5 APL 2 |4 COBOL | 2 1 - - |-
42 COMP. SYS - - 5 37 ASSEM | 1.5 13 COBOL | 1 12 PASCAL{1/2} 6
43 B.A. (ENGLISH) - - - - - - |- - - - - - |-
A B.ENG, M.A,PhD - - 5 46 BASIC | 1/4§ 20 PASCAL| 1 10 C 1/4] 10
45 COMP. SYS - - 6 143 BASIC |7 |50 PASCAL| 6 30 COBOL |4 |50
46 COMP. SYS - - 5 23 PASCAL} 1/2] 8 ASSEM | 1/2] 6- COBOL |1/2}5
47 B.H.E., MBA - - - - - - - - - - - - |-
48 B.A.(ECON), MBA - - 2 7 BASIC |4 |5 APL | |1 2 - - |-
49 COMP. SYS - - 5 15 COBOL |2 |6 ASSEM | 1 4 PASCAL|1/2]2
51 COMP. SYS - - 5 11 ASSEM | 1/2}4 COBOL | 1/2] 4 BASIC |1 {1
53 COMP. SYS - - 5 27 ASSEM {2 {10 COBOL | 1.5/ 10 BASIC {2 |3
55 COMP. SYS - - 5 24 BASIC |1 }10 ASSEM | 1 6 COBOL |1/2}4
56 COMP. SYS - - 7 320 BASIC {7]300 ASSEM | 2 5 COBOL |1 {5
57 COMP. SYS - - 6 40 BASIC {3 }20 PASCAL| 1/2{ 8 ASSEM f1 5
58 COMP. SYS - - 4 19 BASIC |2 |6 COBOL |1 | 6 ASSEM |1 |5
59 THEOLOGY, COMP. SYS| - - 7 69 BASIC |1.5}40 ASSEM | 1 12 PASCAL{1 |7
60 B.A., COMP. SYS - - 6 29 ASSEM |2 10 FORTRA| 1 6 BASIC |2 |5

01

103

APPENDIX TWO

SIMPLE TEST

104

REPORT PREPARATION TEST

The database you will be using for the test problems is a
university registration database. This database maintains
information on which courses each student is taking, who teaches
the courses, the student registration for each course and
" section, and personal data on thée students. The database is
composed of three physical files: 1) STUDSEG file (contains
information on students) 2) PROFSEG file (contains information on
the professors) and 3) REGISTER file (contains information on the
courses and sections). Figure 1 illustrates the database, and

figures 2 and 3 give the fields in each of the files.

Hierarchical Database for University Registration

REGISTER FILE.
. Faculty ‘
STUDSEG FILE PROFSEG FILE
l Student l l Course ’ . Professor
I Section '

FIGURE 1

105

106

Description of Fields in the REGISTER File

FACULTY NAME —‘This is the name of the faculty (Arts,
Commerce etc.) in which the course is taught. This is an
indexed field. ALIAS=FACNAME

COURSE_NUM - This is the course number (field of length 3 e.g
536). This is an indexed field. ALIAS=CONUM

COURSE_NAME - The name of the course, e.g. Accouting.
ALIAS=CONAME.

CO_FEE - The dollar amount charged to the student for taking
the course. ALIAS=COCHARG

SEC_NO - The section number of the course. Each course can
have several sections (e.g 001, 002 etc.) itIAs=SECNUM
PROF_TEACH —_This is a numeric field of length 6 representing
the identification number of the professor teaching the
course, ALIAS=TEACH.

MAX ENROLL - This is the maximum number of students which can
be enrolled in the course section. ALIAS=MAX,.

PERSON_ID - This is a numeric field of length 6 representing
the identification number of the students enrolled in the

course section., ALIAS=PERID.

Fé}dre 2

107

Description of the Fields in the PROFSEG File

PROF_ID - This is a numeric field of length 6 representing
the identification number of the professor. This is an
indexed field. ALIAS=PROID.

PROF_NAME - The name of the professor. ALIAS=PROF.
OFFICE_NUM - The professor's office number. ALIAS=OFFNUM.
PR _FACULTY - The name of the faculty to which the professor

belongs. ALIAS=PRFAC.

Description of the Fields in the STUDSEG File

STUDENT_ID - A numeric field of length 6 representing the
identification number of the student. This is an indexed
field. ALIAS=STUDID

STUDENT_NAME - The student's name. ALIAS=STUDNAME.

FACULTY - The name of the faculty to which the student
belongs. ALIAS=FAC.

STREET_ADD - The student's home street address. ALIAS=STADDR
CITY - The student's home city. ALIAS=CT.

PROVINCE - The student's home province. ALIAS=PROV.

TEL_NUM - The student's home telephone number. ALIAS=TELNO.

Fﬂs e 3

Shown below are examples of data records in each of the three

files,

STUDSEG FILE

108

STUCENT-IN | sTunenNT. NAME | FACULTY |STRECT_ARD | ¢ TY lPROVING TEL-NO
Oltoi01 JOE coOPER| COMMERCEl 43 wAY ST |PRINcETUN] B.C 604 -41343
692219 MILT JONES ARTS 2z2 TRET sT.| goLbeM| B.C 637-43%

ete {

PROFSEG FILE

’ g
PROF. IO | PROF. NAME | of FICE.NUM | PR- FTACULTY
000173 | DR. DOLLAR| 21393 COMMERCE
T :
Ete E ’

REGISTER FILE
FACULTY| COuRSE| courst | co sEc | PRoOF | MAX PERSON
NAME NOM NAME |FEE NO TEACH | eNROLL D

COMMEECE 410 jACcounTing| 299 | OO0 | 000173 150 ol ot ol

' I " w { ooz 0001 TR {00 § 693218

| ARTS 207 ENGLISH| 99 | oo | 000372 HO 824449

i " n Y 1" T 1 i 6733‘”)
ete.

109

QUESTION 1

PART A

Show the structure of the report (column headings) produced by
the following programs. Write the column headings exactly as
FOCUS would produce them. If your second answer is the same as
your first, just write "Same as above" in the space provided for
the second problem.

TABLE FILE REGISTER

PRINT CO _FEE AND MAX

BY FACNAME BY CONUM BY SECNUM
END

TABLE FILE REGISTER
BY SECNUM

BY CONUM

BY FACNAME

PRINT CO_FEE MAX
END

110

PART B

Write a program which will display the course number, and section
number and the number of students registered in the section, for

every course and section in the database. Structure the report as
follows.

PERSON_TID
COURSE _NUM SEC .ND _CouNT

-

A -

.

PART C

Write a program which will produce

the same fields as above but
in the following matrix format.

SEC-NO

COoyRSE_NUM Q01 Qo2 003
o7 25 40 5~
7250 . . .
233 . . .

NUMBER oF STUDENTS
REGISTERED N THE SECTION.

111

QUESTION 2

Write a program which will print the course name, and below it
the course number and section number, for all the courses and
sections in the database. Sequence the courses according to the
faculty to which they belong. Show only one faculty per page. At
the bottom of the report print "COURSE AND SECTION LIST AS OF
JANUARY 31, 1986". Structure the report exactly as follows.

FACULTY_ NAME

ARTS COURSE_NAME POLITICAL SCIENCE
COURSE_NUM 199
SEC_NO 001
COURSE_NAME POLITICAL SCIENCE
COURSE_NUM 199

SEC_NO 002

112

QUESTION . 3

Write a program to produce a report which shows, for each section
of the course names ENGLISH and FINANCE, 1) the ID number of the
professor teaching, and 2) the maximum enrollment allowed in the
course. Sequence the report by the faculty to which the course
belongs, and by the course name and the section number, but do
not print the section number. Also, show a subtotal for maximum
enrollment each time the course name or faculty name changes.
Produce the report and column headings exactly as follows:

FAC {NAME COYRSE - NAME PEOFeTEACH MAXIHUM ENROLLHENT
4 [’ r]
% TOTAL COURSEANAME XXXXKX XXX
¥ TOTAL COURSE-NAME xXXX X KX

4 TOTRL FACULTY_NAME X XXXY XXR

113

APPENDIX THREE

COMPLEX TEST

REPORT PREPARATION TEST

The database you will be using for the test problems 1is a
university registration database. This database maintains
information on which courses each student is taking, who teaches
the courses, the student registration for each course and
section, and personal data on the students. The database is
composed of three physical files: 1) STUDSEG file (contains
information on students) 2) PROFSEG file (contains information on
the professors) and 3) REGISTER file (contains information on the
courses and sections). Figure 1 illustrates the database, and

figures 2 and 3 give the fields in each of the files.

Hierarchical Database for University Registration

I Faculty |

STUDSEG FILE PROFSEG FILE

| Student l ' Course l | Professor l
i Section l

FIGURE 1

115

116

Description of Fields in the REGISTER File

FACULTY NAME - This is the name of the faculty (Arts,
Cbmmerce etc.) in which the course is taught. This is an
indexed field. ALIAS=FACNAME

COURSE_NUM - This is the course number (field of length 3 e.g
536). This is an indexed field. ALIAS=CONUM

COURSE_NAME - The name of the course, e.g. Accouting.
ALIAS=CONAME.

CO_FEE - The dollar amount charged to the student for taking
the course. ALIAS=COCHARG

SEC_NO - The section number of the course. Each course can
have several sections (e.g 001, 002 etc.) ALIAS=SECNUM
PROF_TEACH - This is a numeric. field of length 6 representing
the identification number of the professor teaching the |
course., ALIAS=TEACH.

MAX ENROLL - This is the maximum number of students which can
be enrolled in the course section. ALIAS=MAX.

PERSON_ID - This is a numeric field of length 6 representing
the identification number of the students enrolled in the

course section. ALIAS=PERID.

Fn‘sure 2

Description of the Fields in the PROFSEG File

PROF_ID - This is a numeric field of length 6 representing
the identification number of the professor. This is an
indexed field. ALIAS=PROID.

PROF_NAME - The name of the professor. ALIAS=PROF.
OFFICE_NUM - The professor's office number. ALIASQOFFNUM.
PR_FACULTY - The name of the faculty to which the professor

belongs. ALIAS=PRFAC.

Description of the Fields in the STUDSEG File

STUDENT _ID - A numeric field of length 6 representing the
identification number of the student. This is an indexed
field. ALIAS=STUDID

STUDENT_NAME - The student's name. ALIAS=STUDNAME.
FACULTY - The name of the faculty to which the student

belongs. ALIAS=FAC.

STREET_ADD - The student's home street address. ALIAS=STADDR

CITY - The student's home city. ALIAS=CT.
PROVINCE - The student's home province. ALIAS=PROV.

TEL_NUM - The student's home telephone number. ALIAS=TELNO.

Fburz 2

117

118

Shown below are examples of data records in each of the three

files.

STUDSEG FILE

STUBENT. IO | sTUnENT. NAME | FACULTY ISTREET_ARO | ¢ (TY PROVINCE! TEL-NO
0lo101 JOE cooPER| COMMERCE] Y3 wAY ST | PRINCETIN| B.C 604 -4343
693219 MILT JONES ARTS 22 TRET ST.| GoLDEN 687-439¢4

ete
PROFSEG FILE
PROF. ID PROF_ NAME | oFFICE-NUM | PR- FACULTY
000173 DP. DOLLAR 21393 COMMERCE
ete ' ! ;

REGISTER FILE

FACULTY| COuRSEl cauese |co SEC PROF | MAX PERSON
-NAME NoM | NAME IFEE | NO | TEACH | enRoLL 1»)

COHMERLE 410 JACCOUNTING] 2a9 | 00} | 000173 INYo) olol o]

1 N " " 002 0001 T3 100 69 32!8

ARTS 207 | enGLiSH| 99 | oo} | 000372 4o 834449
l H b " " T i 67334 .
ete.

{

119

QUESTION 1
PART A

Show the structure of the report (column headings) produced by
the following programs. Write the column headings exactly as

- FOCUS would produce them. If your second answer is the same as
your first, just write "Same as above" in the space provided for
the second problem. .

TABLE FILE REGISTER

PRINT CO_FEE AND MAX

BY FACNAME BY CONUM BY SECNUM
END

TABLE FILE REGISTER
BY SECNUM

BY CONUM

BY FACNAME |
PRINT CO_FEE MAX
END

120
PART B

Write a program which will display the course number, and section
number and the number of students registered in the section, for

every course and section in the database. Structure the report as
follows.

PERSON.TD
COURSE _NUM SEC _ND CouNT

1 4
L]

PART C

Write a program which will produce the same

fields as above but
in the following matrix format.

SEC-NO
COyRSE-NUM 001 Q02 o003
o7 25 40 s
250 . . .
333 . . .

\MUMBER OF STUDENTS
REGISTERED It~ THE SEcCTIonN.

121
QUESTION 2

NOTE - For some of the following programs you may need to use the
JOIN and DEFINE commands before issuing the TABLE command. Please

show the commands exactly as you would have to type them on the
computer. :

Write a program which will print the course name, and below it
the course number and section number together, in a field called
NUMBER, for all the courses and sections in the database. Order
the courses according to the faculty in which they belong. '
Structure the report exactly as follows:

FACULTY_NAME

ARTS COURSE_NAME POLITICAL SCIENCE
NUMBER 199.001
COURSE_NAME POLITICAL SCIENCE
NUMBER 199.002

etc.

122
QUESTION 3

Produce a course report for the Faculty of Arts. For each course,
print the name of the course, the name of the professor teaching
the section, the maximum enrollment allowed in the section, and
the size of the classroom needed. Size of the classroom is
defined as 'BIG' if the maximum enrollment is greater than 120,
and 'SMALL' otherwise. Summarize each course by indicating the ’
total maximum enrollment allowed (the sum of the maximums of the
sections). Sequence the report by course number and section
number, but do not print the course number with the rest of the
fields. Instead, print the course number above the other course
information as shown below. Your report should appear as follows

(print column headings and summary lines exactly as they are
shown below):

SECNO _COURSE_NAME ~ PRCFESSOR. MAXINMUM ENRNLLMENT SIZE

COURSE NUMIBER RXX

00| POLY S MR SMmiTH 60 SMALL

. . . s

¥ TOTAL COURSE_NUM XXX . XXX

1123

APPENDIX FOUR

MARKING SCHEME FOR THE TESTS

MARKING SCHEME

General Guidelines

Unless otherwise noted the command lines betweén the first

124

command, TABLE FILE, and the last command, END, can be placed

in any order.

Do not subtract marks for mistakes which are obviously only
spelling mistakes, but make sure they are only spelling

mistakes not a reference to another data field or command.
Any fieldname can be replaced by its alias.
If commands are added which are not needed and

i) which would cause the program to fail, subtract a

'noticeable' amount of marks.

ii) which would unecessarily add to the program, but would

not cause it to fail, subtract a 'minimal' amount of marks.

Commands which use the right keywords, but which are out of
order, such as SUBTOTAL ON fieldname, or PRINT PERSON_ID

COUNT, are wrong and should not receive any marks.

AND's are optional between fieldnames, and IS is equivalent

to EQ.

125

QUESTION 1
PART A - 5 MARKS

The subject receives 1/2 mark for each column heading which is
correctly placed, and has the correct heading. If either, the
column is out of place, or the heading is incorrect, no marks are

awarded.

SOLUTION
FACNAME CONUM SECNUM COFEE MAX

SECNUM CONUM FACNAME COFEE MAX

PART B -12 MARKS

SOLUTION | MARK
TABLE FILE REGISTER 1
COUNT PERSON_ID 4
BY COURSE_NUM BY SEC_NO 6
END 1

- If the verb is not COUNT for the field PERSON_ID, don't award
any marks for that line.

- If the BY fields are reversed, i.e. BY SEC_NO BY COURSE_NUM,
award only 3 of 6 marks.

- For each BY, or fieldname, which is missing,.subtract 2 marks,
up to a total of 6.

- If PRINT COURSE_NUM SEC_NO is used instead of BY COURSE _NUM BY

SEC_NO, award only 2 of 6 marks.

PART C - 13 MARKS

SOLUTION

TABLE FILE REGISTER
COUNT PERSON_ID

BY COURSE_NUM
ACROSS SEC_NO

END

- Lines 1 and 5 must be exactly as shown to receive
- If the field is not PERSON_ID, or the verb is not
award any marks for line 2.

- If the field is not COURSE_NUM, or the command is
award any marks for line 3.

- If the ACROSS command is used, but with the wrong
2 of the 4 marks.

- If '"BY SEC_NO' is used instead of 'ACROSS SEC_NO'

of the 4 marks.

r

126

MARKS

marks.

COUNT, don't
not BY don't
field, award

award only 1

127

QUESTION 2 - 25 MARKS

SOLUTION . MARKS

TABLE FILE REGISTER : 1

PRINT COURSE_NAME OVER COURSE_NUM OVER SEC_NO : 10
BY FACNAME ‘ 3
ON FACNAME PAGE-BREAK 5
FOOTING : 4
"COURSE AND SECTION LIST AS OF JANUARY 31, 1986" 1
END 1

- Lines 1t and 7 must be exactly as shown to receive marks.

- If the OVER commands are left out of line 2, award only 3 of 10
marks.

- If the OVER fields are reversed i.e. 'OVER SEC_NO OVER
COURSE_NUM' award 6 of 10 marks.

- If BY or ACROSS commands are used in place of OVER commands in
line 2 , award only 3 of 10 marks.

- If a verb other than PRINT is used in the second line, subtract
4 marks. Also, subtract 2 marks for each fieldname which is
missing.

- Line 3 must be exactly as shown to receive marks (but
PAGE-BREAK could be added to line 3 instead of line 4).

- Award the 5 marks for line 4 if PAGE-BREAK is added to line 3
in place of line 4.

- Line 4 must appear exactly as shown to receive the marks. If

the PAGE-BREAK is elsewhere than with the ON or BY command it is

128

incorrect.

FOOTING can be on the same line as the quote.

If SUBFOOT is used in place of FOOTING award 2 of 4 marks.

.If quotes are missing for line 6, do not award the mark.

FOOTING CENTER is OK for line 5.

129

QUESTION 3 - 38 MARKS

SOLUTION MARKS

TABLE FILE REGISTER ’ 1

PRINT TEACH MAX_ENROLL AS 'MAXIMUM ENROLLMENT' 6
BY FACNAME BY CONAME BY SEC_NO 9
ON SEC_NO NOPRINT 5
ON CONAME SUB-TOTAL 10
IF CONAME EQ ENGLISH OR FINANCE 6
END _ 1

- Lines 1 and 7 must be exactly as shown.

- If line 2 is missing the AS command for the column title, award
only 3 of the 6 marks.

- If TEACH is not in the PRINT line, but rather is in a BY field,
this is acceptable (but it must be the last BY field).

- If the PRINT verb is replaced by SUM or COUNT, award only 3 of
6 marks.

- If one of the BY fields in line 3 is placed in a PRINT instead
of a BY, subtract 3 marks for each mistake.

- If BY fields are out of order, award only 3 of 9 marks.

- Award 5 ma;ks for line 4 as is, or if NOPRINT follows BY SEC_NO
e.g. BY SEC_NO NOPRINT.

- Award 10 marks for line 5 as is, or if SUB-TOTAL follows the BY
CONAME command e.g. BY CONAME SUB-TOTAL BY SEC_NO....

- If the ON field for line 5 is incorrect use your judgement as

to how close the results would be to the one desired, don't award

130

more than 5 of the 10 marks.
- If SUBTOTAL is used in place of SUB-TOTAL don't award more than
5 of the 10 marks.
- If the ON field is wrong in line 5, and SUBTOTAL is used in
place of SUB-TOTAL, don't award more than 3 of the 10 marks.
- If AND is used instead of OR in line 6 award 2 of the 6 marks.
- If line 6 is split into two lines as follows:

IF CONAME EQ ENGLISH

IF CONAME EQ FINAMCE
award 2 of the 6 marks.
- Naming the field to be subtotaled is acceptable, i.e. SUB-TOTAL
MAX_ENROLL.
-~ If the following 2 lines replace line 5 subtract 1 mark

ON CONAME SUBTOTAL

ON FACNAME SUBTOTAL

131

COMPLEX TEST

QUESTION 2 - 26 MARKS

SOLUTION MARKS
DEFINE FILE REGISTER | 3
NUMBER = CONUM || '.' || SECNUM; 10
END 1
TABLE FILE REGISTER 1
PRINT CONAME OVER NUMBER 7

BY FACULTY - 3

END 1

- The DEFINE commands must come before the TABLE commands. If
they follow, award a maximum of 7 6f the 14 marks (cut the marks
in half).

- Lines 1,3,4,7 must be exactly as shown to receive the marks.

- If line 2 is placed inside the TABLE command rather than in a
DEFINE, divide the marks for that line in half.

- If '|' is used instead of '||' in line 2, subtract 4 marks.

If the '.' and one of the '||' are misssing, subtract 4 marks.

If both of the above are wrong, award 4 of 10 marks.

- If the CONUM or SECNUM fields are replaced by other fields in
line 2, award one mark each for '.', '||', '||', NUMBER and one
of the correct fields.

- If a name other than NUMBER is used in the DEFINE, and the same
name is also used in the TABLE, subtract 4 marks.

- If line 5 is correct, but NUMBER is not defined, award only 5

132

of the 7 marks.

- If the OVER command is missing in line 5, award only 3 of the 7
marks.

- Award 2 of the 7 marks if PRINT CONAME is correct, but the rest
of the line is incorrect.

- Award 4 marks for PRINT CONAME OVER, if the OVER field is
wrong.

- If the semi-colon is missing in the DEFINE, subtract 1 mark.

133

QUESTION 3 -~ 64 MARKS

SOLUTION : MARKS
JOIN TEACH IN REGISTER TO PROID IN PROFSEG AS NEW 10
DEFINE FILE REGISTER 3
SIZE = IF MAX_ENROLL GT 100 THEN 'BIG' ELSE 'SMALL'; 10
END 1
TABLE FILE REGISTER 1

PRINT CONAME PROF AS 'PROFESSOR' MAX AS 'MAXIMUM ENROLLMENT' SIZE

S
BY CONUM BY SECNUM 6
ON CONUM NOPRINT 5
ON CONUM SUBTOTAL 6
SUBHEAD "COURSE NUMBER <CONUM>" 8
IF FACULTY EQ ARTS 4

END 1

- Lines 2,4,5,12 must be exactly as shown in order to receive the
marks.

- If the files are reversed in the JOIN command, award 7 of the

10 marks, i.e. JOIN PROID IN PROFSEG TO TEACH IN REGISTER ...

- The name NEW in line 1 can be replaced by any other name.

- The name of the DEFINE field does not have to be SIZE, just as
long as the field is later printed AS 'SIZE'.

- If quotes are missing in line 3, award 8 of the 10 marks.

- If the DEFINE block comes before the JOIN, award a maximum of 7

of the 14 marks.

134

- If line 3 is placed inside a TABLE block rather than in the
DEFINE block, award a maximum of 4 of the 10 marks.

~ If the DEFINE block follows the TABLE block, award a maximum of
5 of the 14 marks.

- If a COMPUTE, or IF statement is used in place of the DEFINE
block, award a maximum of 4 marks.

- If the JOIN is not the first command, award only 5 of the 10
marks.

- CONAME, SECNUM, and PROF can be either BY fields, or fields in

the PRINT command. But, they must be in the proper order

- Subtract 2 marks for each AS command which is executed
incorrectly or is missing.

- Subtract 2 marks for each PRINT or BY field which is missing,
up to a maximum of 12 marks. If the BY CONUM field is missing
subtract 4 rather than 2 marks.

- Award a maximum of 6 marks for lines 8 and 9 together if BY
CONUM is missing.

- NOPRINT must be assoéiated with the CONUM field in order to
receive the 5 marks.

- SUB-TOTAL can be used in place of SUBTOTAL.

- SUBTOTAL MAX ENROLL is acceptable.

- If SUMMARIZE is used in place of SUBTOTAL, award only 4 of 6
marks.

- If the SUBTOTAL field is not CONUM don't award any marks.

- In line 10, award 3 marks for.SUBHEAD, 3 for <CONUM>, and 2 for

the text "COURSE NUMBER".

135

APPENDIX FIVE

EXPERIMENTAL PROCEDURES

136

EXPERIMENTAL PROCEDURES

1) Brief Introduction of the experiment

- Brief explanation of the purpose of the experiment (comparing
the ability of novice and experienced programmers to learn a 4GL)
- Stress how important 4GL's could be to the subjects in the
future.

-~ Stress that the session is also important because it supplies
the experimenter with data for his thesis.

- Subjects should sit at least one seat apart if possible.
2) Explain the sequence of events for the session

- The session will take 3 hours, maybe more . Stress to the

subjects that they have to run through all the experiment
(reading, sample problems, test, questionnaire), otherwise the
data will not be of value to the study. At this point they should
decide whether they want to commit to the three hours involved.
~-Stress that there should be no talking at any time during the
experiment., If the subjects have problems they should consult one
of the lab assistants.

- Tell the subjects that the first step involves reading the
manual, which will introduce them to some basic FOCUS reporting
commands. Inform fhem that they can keep the manual for the
problem session, and for the test which follow.

- Tell the subjects they should read the manual carefully because
it will make the sample problems and test much easier.

- Stress to them that there is no time limit on either the

137

reading,‘or sample problem sessions.

~ When ﬁhe subject is finished reading, he should get up quietly,
and inform the lab assistant that he has finished. They should
not disturb the other subjects. - Explain that the next step
after reading, is a practice session on the computer. Eight
practice problems have to be completed. Solutions are provided,
but the subjects should try to solve the problem at least once
before looking at the solutions. Try to budget about an hour, or
8 minutes per problem for the sample problems. When the subjects
are finished they should inform the lab assistant, who will give
them the test. Subjects will be allowed 45 minutes for the test.
After completing'the test the subjects will be asked to fill out
a gquestionnaire on their computer background. This will give the
experimenter information concerning their level of programming

experience.
3) What the lab assistant should do during the experiment

- Hand out the FOCUS manuals to subjects.

- Record the reading starting time for each subject.

- Lab assistant will record the time the subject finished reading
the manual.

- Give the subject the set of sample problems, when he has
finished reading the manual.

- Record the time the subject starts the sample problems.

- Record the time when the subject has finished the sample
problems.

- Give the subject the appropriate test (either complex or

simple), and

Record the
Advise the

Record the

138

tell him he has 45 minutes.
time the subject starts the test.
subject when he has only two minutes left.

Subject's finish time.

Make sure the subject's name is on the test.

Give the subject the questionnaire, and collect it when he has

finished. Check to make sure the subject has filled out all the

the questionnaire.

139

APPENDIX SIX

REPORT GENERATION TRAINING MANUAL

140

FOURTH GENERATION LANGUAGES

REPORT GENERATION TRAINING MANUAL

(Adapted from PC/FOCUS User’s Manual)

C. Pulfer

141
Report Generation

Before beginning the report generation course it is
important that you understand some simple database concepts.
Three important terms which you should know are: files, records,
and fields . We can think of the computer as being egquivalent to
a filing cabinet. Within the filing cabinet we might have an
employee file, containing information on all of the company's
employees. Similarly we can have an equivalent employee file on
the computer, in a database. A database might contain many of
these types of files. For example, the computer might have a file
on employees and also a file on shareholders, within the
database. In our filing cabinet file on employees we have
information on many employees. The information concerning only
one employee is called a record. Therefore we have as many
records as we have employees. We would have a record for employee
John Smith, one for Doug Johnson, one for Don Wilson etc. The
record contains information on just one employee. Each piece of
information on the employee is called a field. For example we
might have a salary field listing the salary of the employee, and
an experience field llstlng how many years of experience the
employee has.

TABLE OF CONTENTS

INtroduCtion .eceeeeceecerenssssen
Report Writing ...ceeeeeerecenscs

Verbs

pRINT R R A S S A N R I S Y
SUM ® 6 0 000 0000000000008 000

COUNT cenen

Producing a Matrix Report .

Displaying Data Fields Over Each O

AS ® 6 0 0 @ 0 008 0600 0 800085

Grouping Numerical Data .

Record SelectionN ceeeeess

Control Conditions
SUB-TOTAL cecoeescn
SUBTOTAL .. cceceeee
SKIP-LINE ..cc0eeee
SUMMARIZE ..t eeecee
RECOMPUTE ...ceeeee
NOPRINT .cceeecenoese
COMPUTE - RECAP ...
HEADING and FOOTING
UNDER-LINE cee

SUBHEAD ...ccceccecccsasn
SUBFOOT > & & & & & 5 & ¢ 0 & " s >0
DEFINE command ..ceceeesecosssnce

Concatenating Character Strings

Reports from Several Files ...ceveeeecnns

Page

N —

_-—, e s N

142

143

Introduction

This Report Preparation Manual will introduce you to a computer package
called FOCUS. FOCUS is a database management system which allows users to
store, maintain, and report on data which is of interest to them. FOCUS is a
"fourth generation", or high productivity language which has gained wide
acceptance in the business community., What you learn today should be useful to
you in the future,

Typically, businesses will want to store data on their personnel, the firm’s
financial position etc. Decision-makers, within the business, will want to see
regular reports on how things are progressing in recruiting, sales etc, The report
preparation commands within FOCUS can be used to prepare these reports. The
rest of the manual will introduce you to these FOCUS commands,

Most of the FOCUS commands are relatively English-like and easy to
understand, though some are more difficult than others, Read the manual and learn
the commands carefully, There is no time limit for reading the manual. Take as
much time as you feel is necessary, Once you are finished, you will be tested
on the commands you have learned. Notify the lab assistant once you are
finished,

144

REPORT WRITING

FOCUS can be used to enter data, maintain data and
report on data., Issuing the command TABLE FILE filename,
where filename is the name of the file containing the
information which will appear in the report, allows us to
enter the reporting mode. The TABLE FILE command must be the
first command in the report program. For example, if we have
a file containing employee names and salaries, called SALARY,
which we want to use in our report, we would issue the
command TABLE FILE SALARY,

TABLE FILE SALARY

Other report commands would then be issued, followed
finally, by the word END, on a line by itself.

TABLE FILE SALARY

END

a) Request Statements

"Request statements" are the commands which are used to
produce the reports a user desires. A report request
statement follows the rules of an imperative English
sentence. The sentence begins with a verb of action which is
followed by verb objects, then a series of phrases.

The examples which follow all use a sample file called
PRODUCT which contains the following fields:

PRODUCT-TYPE Identity of product

AREA Geographical area
CUSTOMER Name of Customer

MONTH Month from 1 to 12

UNITS Number of units shipped
AMOUNT Dollar value of shipment

A field can also be refered to by its ALIAS. The ALIAS
is a shorter version of the fieldname, making it easier for

Report Writing Manual Page 3

the user to type in his request statements. If the
PRODUCT-TYPE field has as its ALIAS, PROD, the user could
issue either of the following equivalent commands:

i) PRINT PRODUCT-TYPE
ii) PRINT PROD

The order of presentation of the command elements within
a report is arbitrary. The following are all equivalent
commands:

i) SUM UNITS
BY MONTH
ii) SUM UNITS BY MONTH

iii) BY MONTH SUM UNITS

145

146

Report Writing Manual Page 4

1. VERBS

A verb is a word of action. The action is performed on the
fields which are named as the objects of the verb. The list
of verbs are:

Verb Meaning
PRINT List the fields desired, with a different
record on each line
COUNT Count the number of occurences of a field,
and display the results.
- SUM Add the numeric fields of the records

together, and display the results.

The syntax (structure of the command) for a simple verb
phrase is:

VERB fieldname [AND] fieldname [AND] fieldname etc
(the AND between fieldnames is optional)

Examples SUM AMOUNT
PRINT PRODUCT-TYPE AND AREA
COUNT PRODUCT-TYPE

a) PRINT

The PRINT command causes the information in the fields
desired to be listed. The order in which fieldnames are
provided in the verb phrase is the order in which the
columns of the report are printed.

*NOTE - The PRINT verb cannot be used in the same program as
the SUM or COUNT verb. This is because PRINT; and SUM or
COUNT, display different amounts of incompatible information.
PRINT does not involve any summarization of information
contained in the database, as COUNT and SUM do. PRINT simply
lists the information which exists in the database.

Example TABLE FILE PRODUCT
PRINT PRODUCT-TYPE UNITS
END

147

Report Writing Manual Page 5

This produces the following report containing the fields
PRODUCT-TYPE and UNITS extracted from each record in the
file PRODUCT.

PRODUCT-TYPE UNITS
AXLES 150
BEARING 324

b) SUM

When the total of the values of the data field (for all

records in the file) is required then the verb SUM is used.
If the PRODUCT-TYPE and unNI7Ts fields look like this

PRODUCT-TYPE UN/ITS
AXLE 150
BEARING 324
SCREW 300
BOLT 90

SUM UNITS would result in only one piece of information
being displayed, i.e. the total of the UNITS field.

We can also produce SUMS for portions of the file by
using the BY command. For instance, SUM UNITS BY MONTH means
that all of the values of the field UNITS are to be added
together for each MONTH. In this example there will only be
12 lines on the printed report, one for each month.

The report éppears as:

MONTH UNITS

W -
o
S~
o
N
w

Report Writing Manual Page 6

Example 2
TABLE FILE PRODUCT
SUM UNITS AND AMOUNT
BY AREA

END

These commands produce the following report

AREA UNITS AMOUNT
EAST 10000 26000
NORTH 8000 19000
Note - The SUM command cannot be used to show column-totals,

for PRINTed fields, at the bottom of a report, As we will
see, COLUMN-TOTAL or SUBTOTAL can be used for this purpose.

Sorting With the BY Command

A phrase in the request statement beginning with the word BY
means to sequence the lines of the report by the field whose
name follows (see above example). Multiple BY commands can
be used. The first BY field specified would be the major
sort field, the second BY sorts within each occurence of the
first By field etc. For example the following report has

three By fields:

TABLE FILE PRODUCT

SUM UNITS

BY AREA BY MONTH BY PRODUCT-TYPE
IF MONTH IS 1 OR 2 OR 3

END
The report appears as:
AREA MONTH PRODUCT-TYPE UNITS
EAST 1 BOLTS 200
FLANGES 125
2 BOLTS 600
FLANGES 800
3 BOLTS 625
FLANGES 515
NORTH 1 BOLTS 125
FLANGES 315

.

etc.

148

149
Report Writing Manual Page 7

The default sequence of ascending (LOW TO HIGH) sort, is
used to present the report, (alphabetically A-Z and
numerically 1,2,3...). This can be changed to a descending
sequence, Z-A and highest numbers first, by the command BY
HIGHEST fieldname.

¢) COUNT

A count of the number of occurences of some data field.

(i.e. in how many records does the field occur, in the
database)

Example
COUNT CUSTOMER
BY AREA

This produces:

AREA CUSTOMER
COUNT
EAST 248

NORTH 172

3

150

Report Writing Manual Page 8
SUM and COUNT.can be combined in one command.

SUM AMOUNT AND COUNT CUSTOMER
BY AREA

This repoft would produce the same report as the example
above, except that another column AMOUNT would be added.

Producing a Matrix Report

Producing a matrix display is accomplished by combining
the BY command with an ACROSS command. In this case the
columns are spread ACROSS some variable of interest in
addition to the sort fields controlling the rows of the
report. Note the use of the phrase ACROSS MONTH in the
following example, and the command 'COLUMN-TOTAL' which
produces column totals.

TABLE FILE PRODUCT
COUNT PRODUCT-TYPE AND COLUMN-TOTAL BY REGION
ACROSS MONTH

END
MONTII
REGION 1 2 3 4 5 6 7 8 9
EAST 200 10 15 16 19 .))
NORTH 14 70 21 26 28
SOUTH 18 10 14 19 19 . i]
WEST 15 8 7 4 9)
TOTAL 68 48 57 65 75

The values in the matrix represent the number of products
available in the region by month.

The number of columns displayed on the report is equal
to the number of verb object fields times the number of
values retrieved for the ACROSS field. For- instance if the
phrase ACROSS MONTH is used and there are two verb objects
(PRINT AMOUNT and UNITS), then there will be 24 output
columns, composed of 12 pairs.

The report title appears as

MONTH
1 2 3
AMOUNT UNITS AMOUNT UNITS AMOUNT UNITS

151

Report Writing Manual Page 10
2. Displaying Data Fields Over Each Other

Normally one column is occupied by one data field and
its title heads the column. This can be reversed by
specifying that the data fields are to appear one over the
other., Instead of connecting the verb object fields with the
word AND, the word OVER is used. For example:

SUM AMOUNT OVER UNITS
BY AREA

This would produce:

AREA
EAST AMOUNT 4050
UNITS 487
NORTH AMOUNT 2686
UNITS 456
3. AS

The default column-title (which is the filedname) can
be replaced by a more meaningful title by the use of the
phrase "AS column-title",.

Example

PRINT PCT.AMOUNT AS 'PERCENTAGE OF AMOUNT'

would produce the column title PERCENTAGE OF AMOUNT instead
of PCT AMOUNT

4., Grouping Numerical Data

Care must be taken when sorting by numeric fields.
FEach different value (perhaps only different in the last
decimal place) would result in a separate line or column. A
facililty is provided to sort data in ranges of values. A
convenient way to view numerical data is to group the values
into ranges and display the results in these ranges.The
command IN-GROUPS-OF can be used to group numerical values
in desired groups.

Produces

TABLE FILE PRODUCT
COUNT PRODUCT-TYPE
BY UNITS IN-GROUPS-OF 500

Report Writing Manual Page 11

END
UNITS PRODUCT-TYPE
COUNT
0 40
500 85
1000 72
1500 58
2000 14
2500 8

152

153

Report Writing Manual Page 12

5. Record Selection
In general any command accesses all records in the
file., If we only want to access certain fields, we can use

the IF command. Any number of IF phrases can be used, and
they may refer to any data field in the file., The syntax is

IF fieldname RELATION literal [OR literal OR literal]
where RELATION are operators as shown below, and
where LITERAL is either a numeric constant (e.g. 34) or a
character constant (e.g. 'STEEL')
e.g. IF AREA IS EAST
Here 'IS' is the RELATION and 'EAST' is the LITERAL

Only those records which contain the value EAST in the field
AREA are accessed, the others are ignored.

RELATION MEANING

Note - Relations separated by commas are equivalent

IS,EQ Equality between field value and literal

IS-NOT, NE Inequality between field value and literal

IS-FROM, GE Field value equal to or greater than literal

TO, LE Field value equal to or less than literal

EXCEEDS, GT Field value greater than literal

IS-LESS-THAN,

LT Field value less than literal

FROM TO Field value in range

NOT-FROM TO Field value not in range

CONTAINS Characters in field value contains chracter
in literal

OMITS Characters in a field value do not contain

characters in literal. Opposite of CONTAINS

Examples
IF AREA IS EAST OR WEST

Here, only those records which contain the value EAST, or
WEST in the field AREA are accessed, the others are ignored.

Character fields such as EAST do not have to be enclosed in
single quotes unless the field contains two or more words
separated by blanks such as 'NEW YORK'.

154

Report Writing Manual Page 13

IF AMOUNT IS-FROM 100

The field AMOUNT must be equal to or greater than the value
100

IF PRODUCT-TYPE CONTAINS STEEL
The field PRODUCT-TYPE must contain the characters "STEEL"
anywhere within it e.g. COLDSTEEL.

IF AMOUNT EXCEEDS 40
_ IF UNITS FROM 100 TO 140
The field UNITS must have a value between 100 and 140
inclusive.

IF UNITS NOT-FROM (4 TO 6) OR (9 TO 11)
The field value must be equal to a number outside the ranges
given.

NOTE - Two IF conditions cannot be placed on the same line.
For instance IF AMOUNT EXCEEDS 40 AND UNITS EQ 100 is
incorrect., The two conditions should be placed on separate
lines as follows: IF AMOUNT EXCEEDS 40

IF UNITSEQ 100 :

Report Writing Manual Page 14

6. Control Conditions

ON

Figwe
NAlE]

Within FOCUS, a variety of actions are provided which
pertain to what happens on the printed report when a sort
control field (BY) changes value. For instance, a sub-total
may be displayed. The syntax for specifying the control
conditions uses a phrase beginning with the word 'ON', This
is followed by the name of the field. When this field
changes value on the printed report, then just before the
next value is printed, the action mentioned is taken.

/gUB—TOTAL

SUBTOTAL
PAGE-BREAK
SKIP-LINE
FOLD-LINE
SUMMARIZE

RECOMPUTE
NOPRINT

UNDER-LINE

SUBFOOT
SUBHEAD

COMPUTE}
RECAP
\

a) SUB-TOTAL

printed.

accumulate and display all sub-totals
accumulate and display single subtotal
force a page break

insert a blank line

fold a long line

summarize calculations at all sort
breaks. .

summarize only at named sort breaks
suppress printing of this column

draw underline across page

insert free text after values

insert free text before values
compute recaps of content line

Under each column of numeric data, a subtotal is

Each sub-total line displays the running

accumulations of the sort field up to its last break in

value,

AUTOMATICALLY.

A COMPLETE GRAND TOTAL FOR EACH COLUMN IS PRODUCED

All of the sub-totals are displayed up to and including

the point of sort break requested so that only the

inner-most point of sub-totalling should be requested. For

instance,

BY AREA

BY PRODUCT-TYPE

BY MONTH

if the 'BY' fields are

ON PRODUCT-TYPE SUB-TOTAL

155

Report Writing Manual Page 15

Then when the AREA changes SUBTOTALS FOR BOTH
PRODUCT_TYPE AND THE INNER SORT FIELD AREA ARE DISPLAYED.For
example

TABLE FILE PRODUCT

PRINT UNITS AND AMOUNT

BY AREA BY PRODUCT-TYPE BY MONTH FROM 1 TO 3
ON PRODUCT-TYPE SUB-TOTAL

END

AREA PRODUCT-TYPE MONTH UNITS AMOUNT
EAST BEARINGS 1 100 50.45
2 140 61.75

3 210 76.49
*TOTAL PRODUCT-TYPE BEARiNGS 450 188.69
FLANGES 1 125 64.40

2 115 91.38

3 143 63.51
*TOTAL PRODUCT-TYPE FLANGES 383 219.29
- *TOTAL AREA EAST 833 407.98

WEST AXLES 1 100 130.50

.

etc.
b) SUBTOTAL

When the word SUBTOTAL without a hyphen is used then
only the subtotal of the sort break field, mentioned in the
'ON' phrase, is displayed. The inner 'BY' fields ARE NOT
DISPLAYED . For instance:

BY AREA

BY PRODUCT-TYPE

BY MONTH

ON PRODUCT-TYPE SUBTOTAL

This will display a subtotal when the PRODUCT-TYPE
field changes value, but WILL NOT display a subtotal for the
outer field AREA when it changes value. For example

156

Report Writing Manual Page 16

TABLE FILE PRODUCT
PRINT UNITS AND AMOUNT

BY AREA BY PRODUCT-TYPE BY MONTH FROM 1 TO 3

ON PRODUCT-TYPE SUBTOTAL

END
AREA PRODUCT-TYPE ~ MONTH UNITS
EAST BEARINGS 1 100
2 140
3 210
*TOTAL PRODUCT-TYPE BEARINGS 450
FLANGES 1 125
2 115
3 143
*TOTAL PRODUCT-TYPE FLANGES 383
WEST AXLES ‘ 1 100

etc.

SUBTOTAL for Specific Fields

AMOUNT

50.45
61.75
76.49
188.69
64.40
91.38
63.51
219.29

130.50

A list of specific fields to subtotal can be supplied
after the word SUB-TOTAL, or SUBTOTAL, is typed. This list
overrides the default which includes all numerical verb

object fields,
For example

TABLE FILE PRODUCT

SUM UNITS AND AMOUNTS

BY PRODUCT-TYPE BY MONTH

ON PRODUCT-TYPE SUBTOTAL UNITS
END

Here only the UNITS field will be subtotaled (normally UNITS

and AMOUNT would be subtotaled).

ON by field

The syntax is
{EUBTOTAL

SUB—TOTAI}fieldname AND fieldname ...

157

Report Writing Manual Page 17
Combined PAGE-BREAK and SUB-TOTAL

The general use of a page break is to provide a
separate report for each major sort control value. If a
sub-total is also requested then each of the separate
reports may or may not have the running subtotals
accumulated at the same time the page break is forced.

The rule which is followed is:

- If the page break is requested first, then each such break
will be given only the sub-totals which pertain to it, and
will not accumulate running totals into future pages.

- If the sub-total is requested first, followed by the page

break, thenm it is assumed that the standard way of producing
sub-totals is desired and that the subtotals will accumulate
into subsequent subtotals on other pages.

c) SKIP-LINE

The SKIP-LINE command can be used when referring to
sort control (BY) fields or to verb objects.

The following example produces a blank line each time the
area changes.,

BY PRODUCT-TYPE BY AREA
ON AREA SKIP-LINE

The next example creates a doubled spaced report: a line is
skipped after each PRODUCT-TYPE

PRINT PRODUCT-TYPE
ON PRODUCT-TYPE SKIP-LINE

d) SUMMARIZE

Summarization is similar to a sub-total. The difference
depends upon whether any columns in the output report are
themselves the result of a calculation or a calculated
field. If they are, then the indicated calculation is
performed instead of a sub-total on the summary line of the
report.

158

159

Report Writing Manual Page 18

Example
TABLE FILE PRODUCT
SUM AMOUNT AND UNITS
COMPUTE
PER UNIT = AMOUNT/UNITS;
BY PRODUCT-TYPE BY AREA
ON PRODUCT-TYPE SUMMARIZE
END
PRODUCT-TYPE AREA AMOUNT UNITS PER UNIT
AXLES EAST 1,342.50 1500 .89
NORTH 2,761.41 2000 1.38
SOUTH 3,849.52 3700 1.04
WEST 2,147.36 1800 1.17
*TOTAL AXLES 10,100.79 9000 1.12

The COMPUTE verb is used to produce the new field PER UNIT.
Compute can be used to produce new fields resulting from the
normal math operators: / (divide), * (multiply), -
(subtract), + (add). Note that the PER UNIT field is
displayed automatically, no PRINT command is needed. The
COMPUTE verb acts like a PRINT verb in this case. The

COMPUTE verb can never be the first command of a program.

Notice that in the column titled PER UNITS the value printed
is 1.12. This is 10,100.79 / 9000, and is the result of the
same calculation as the other numbers in the column. Had a
sub-total been requested, the sum of the numbers in the PER
UNIT column would have appeared. This would have been 4.50
and would have been meaningless in this situation,

e) RECOMPUTE

Exactly like summarize except only the values for the
specific 'BY' field requested are displayed, not the higher
level 'BY' fields. The difference between SUMMARIZE and
RECOMPUTE is equivalent to the difference between SUB-TOTAL
and SUBTOTAL.

f) NOPRINT

This is used when we do not want one of the sort
control fields to be printed in the final report. The report
will still be sequenced by this field, but both the column

Report Writing Manual Page 19

‘title and the data for that column are removed from the
final printed report.

e.g. BY AREA
BY MONTH
ON AREA NOPRINT

The AREA field will not be printed in the report.

g) COMPUTE - RECAP LINES

The facility to produce calculations in addition to or
instead of sub-totals at desired breaks in the sort control
fields is provided as a recap line. A recap line is a line
which is calculated, based on the data in the content lines,
every time a control field changes value. In a way a
sub-total is a recap line, but because it is so common it
can be directly requested. Instead of just totalling the
fields, as is done for subtotals, RECAP can be used to
display averages or ratios at the sort break.

A recap is performed whenever the control field changes
value.

RECAP
COMPUTE and RECAP are equivalent when used with 'ON'

ON fieldname {COMPUT?ﬁ

This is followed by the calculations to be performed.

e.g TABLE FILE PRODUCT
SUM AMOUNT AND UNITS AND COUNT
BY AREA BY MONTH FROM 1 TO 3
ON AREA RECAP
UNITPRICE = AMOUNT/UNITS;
AVE SHIPMENT = UNITS/COUNT;
END

160

Report Writing Manual Page 20

AREA MONTH AMOUNT UNITS COUNT
EAST 1 4528 200 8
2 1200 110 13
3 6240 460 14
*EAST UNITPRICE 15.55
AVE SHIPMENT 30.80
" NORTH 1 1400 200 7
etc.

h) HEADING and FOOTING

A report heading can be supplied by giving the command
HEADING followed by the title enclosed in double quotes. For
example :

HEADING
"PRODUCT REPORT"
"AS OF DEC 31, 1986"

would produce

PRODUCT REPORT
AS OF DEC 31, 1986

at the top of the report.

To center the heading use the command HEADING CENTER
followed by text in quotes.

To produce text at the end of the report, we would use
the same syntax as for HEADING, but we would use the command
FOOTING.

i) UNDER-LINE

This command is used to draw an underline after the
named field changes., The line is drawn after any other
option such as RECAP or SUB-TOTAL.

j) SUBHEAD

This command is used to insert text before a control
break caused by a BY command. When data is to be embedded in

161

162

Report Writing Manual Page 21

text the fieldnames are enclosed in brackets i.e. "text
<fieldname)> text". The data values are those which would
appear on the first line of the control break had this data

been placed on the control break line rather than in the
SUBHEAD.

€e.g. TABLE FILE PRODUCT
SUM UNITS AND AMOUNT
BY AREA BY PRODUCT-TYPE
ON AREA NOPRINT AND SUBHEAD
" SUMMARY FOR <AREA>"

END
PRODUCT-TYPE UNITS AMOUNT
SUMMARY FOR EAST
AXLES 650 141
BEARINGS . 720 182
SUMMARY FOR WEST
AXLES 534 162.45
etc,

Two special field prefixes are applicable to SUBHEADS

<ST.fieldname The subtotal value of the field at
that point in the report.

<CT.fieldname The running column total of the field
at that point in the report.
k) SUBFOOT

This command is equivalent to SUBHEAD, but the text
appears after, rather than before, the control break.

163

Report Writing Manual Page 22

7. DEFINE ‘command

The DEFINE command is used to create temporary data
fields. Temporary data fields can be defined as mathematical
or logical combinations of real or other temporary data
fields. These temporary fields can be used in report request
statements.

Some of the uses of temporary data fields are (don't
worry if you don't understand these right away):

- Compute new numerical values which are not in a data
record

-~ Compute conditional numerical values based on IF-THEN-ELSE
conditional logic

- Compute new strings of alphanumeric characters from other
strings.

DEFINE syntax
DEFINE FILE filename

where filename is the name of the file you are using to
produce a new field.

name = expression; name can be up to 12
characters long
name = expression;
END
expression - is the calculation, or conditional calculation

to be performed. It must be terminated by a semi-colon.

In the following example the file PRODUCT contains the
fields AMOUNT and UNITS and will contain the new field
PRICE. The field PRICE could then be used in a report
program begun with TABLE FILE PRODUCT. But, DEFINE must
take place before using the new field in a TABLE command.

e.g. DEFINE FILE PRODUCT
PRICE = AMOUNT/UNITS; (NOTE THE USE OF THE
END SEMICOLON)

The arithmetic operations available are

Report Writing Manual Page 23

+ plus

- minus

* multiply
/ divide

* exponentiation
The logical operators are

EQ equal

NE not equal ,

LE less than or equal

LT less than

GE greater than or equal
GT greater than

AND 1logical connective AND
OR logical connective OR

These operands are used most frequently in conditional
calculations of the IF-THEN-ELSE type.

e.g. DEFINE FILE PRODUCT
NEW-VAL = IF AMOUNT LT 100 THEN AMOUNT*1.5
ELSE AMOUNT*2.0;
END

This sets NEW-VAL to either AMOUNT*1.5 or AMOUNT*2 depending
on the value of AMOUNT

TFACTOR = IF AMOUNT GT 100 OR PRICE LT FACTOR
THEN AMOUNT ELSE AMOUNT * FACTOR;

SIZE = IF UNITS GT 100 THEN 'LARGE' ELSE 'SMALL';

Here a character string (either LARGE or SMALL) is assigned
to the field SIZE.

TYPE = IF PRODUCT EQ '"AUTO' THEN 1 ELSE 0;

1. NOTE ALPHANUMERIC LITERALS MUST BE ENCLOSED IN SINGLE
QUOTES '

2. EACH EXPRESSION MUST END IN A SEMI-COLON

a) Concatenating Character Strings

Concatenation is used to join fields. Two or more
character strings of alphanumeric fields and/or constants
can be combined into a single field. In this way, the values
of different fields can be joined in a new field.

164

Report Writing Manual Page 24

e.g. DEFINE FILE PRODUCT
FULLNAME = PLANT | AREA | '3'
END

if PLANT = GEOR in a 6 character field
AREA = EAST in a 6 character field

then FULLNAME = GEOR, EASTy 3
2 spaces
Note the vertical bar is used for concatenation.

If we want to get rid of trailing blanks we could use the
double vertical bars ||

Using the same fields as above
FULLNAME = PLANT || AREA || '3';

would result in FULLNAME = GEOREASTS3

165

166

8. Reports from Several Files

Data from two or more FOCUS may be joined together by their
common values and the result stored in a temporary file. Reports
spanning the entire collection of data can then be requested from
this 'results' file. In this way we can prepare reports which
display information from many files. For example, if we have a
SALES file, containing information on product sales, and a COST
file, containing information on product costs, we could produce a
report on both product sales and costs, instead of one containing
only sales or cost information. The joining process is controlled
by the FOCUS command JOIN.

The syntax is

JOIN field?! in filel to field2 in fileé»AS joiname
where

'fieldt' is any field in the file named 'file1l’

'field2' is any field in the file named 'file2' (this field must
be indexed)

'fieldl' AND 'field2' MUST CONTAIN THE SAME 'TYPE' OF DATA. For
example, the two fields could contain names, some of which might
be the same. IF THE TWO FIELDS CONTAIN THE SAME VALUE (eg. SMITH)
THEN THE TWO FILES WOULD BE JOINED FOR THAT RECORD. IF THE FIELD
VALUES ARE NOT THE SAME THEN THE TWO FILES ARE NOT JOINED FOR
THAT RECORD. The JOIN command should be issued before entering a
report request that accesses data from the joined files.

TABLE and DEFINE commands using the JOINed fields can only
be issued after the JOIN command. Fields DEFINEd before a JOIN
command are automatically deactivated by issuing the JOIN
command. TABLE and DEFINE commands can be applied as if 'filel’
were a new file made up of both the original files.

Shown below are two files, the PRODUCT file, and the
SALESCOM file, which will be used in the next example.

PRODUCT FILE

AREA UNITS ~ AMOUNT
EAST 1642 7466
WEST 2354 2635

NORTH 5636 1234

167
SALESCOM FILE

TERRITORY SALESREP POINT

EAST BROWNE 862
EAST MEHTA 1984
EAST RUBIN 1482
EAST VRONSKY 1640
NORTH SMITH 876

JOIN AREA IN PRODUCT TO TERRITORY IN SALESCOM AS NEW

The above command has the effect of joining the PRODUCT file
to the SALESCOM file, which contains information on sales
commissions by sales territory. Diagramatically, the JOIN command
looks like this:

_TOINED RECORDS
FORM A NEW FILE

PRooUCT /

FiLe

The records joined are the ones sharing common values in the AREA
and TERRITORY fields. For example, all the records containing the
value 'EAST' in the PRODUCT file are joined to all the records
containing 'EAST' in the TERRITORY file, producing one large
file. The same is true for records sharing the value '"NORTH'. As
can be seen, not all the records are joined. Notice the WEST area
in the PRODUCT file has no match in the SALESCOM file and is
therefore not joined.

AREA UNITS AMOUNT SALESREP POINTS

EAST 1642 7466 BROWNE 862
EAST 1642 7466 MEHTA 1984
EAST 1642 7466 RUBIN 1482
EAST 1642 7466 VRONSKY 1640

NORTH 5636 1234 SMITH 876

168

After a join, the joined file can be used for reporting

JOIN AREA IN PRODUCT TO TERRITORY IN SALESCOM AS NEW
TABLE FILE PRODUCT <-- (note the use of "file1")

PRINT SALESREP POINTS
BY AREA BY UNITS
END

AREA UNITS SALESREP

EAST 1642 BROWNE
MEHTA
RUBIN
VRONSKY

NORTH 5636 SMITH

POINTS

862

1984
1482
1640

876

A dynamic JOIN is very useful because it does not affect
the master description. New files can be created by
joining other files, and these other files are not

affected.

169

APPENDIX SEVEN

PRACTICE PROBLEMS

170

PRACTICE PROBLEMS

In order to practice the commands you have just learned, you
will be asked to write up several small programs. You should then
enter these programs into the computer using the TED editor in
FOCUS. Run the programs in FOCUS until they work correctly.
Solutions are provided following the questions, but please
attempt the problem at least once before turning to the solution.

All the guestions will be based on a database from a
fictitious milk company. The company and the files which make up
its database are described below, and on the following page. Let
the session leader know when you have successfully finished all
the programs.

SAMPLE APPLICATION

Application Description

Our sample application concerns the Milkmore Farms Company.
This company manufactures a variety of milk and cheese products
and sells them to the public through seven outlet stores. All
stores are open seven days a wveek.

The company wishes to record information about products
manufactured and sold. To do this, two files are needed:

1. A Product file to contain descriptive information about each
product manufactured by the company. This file is called
XPROD.

2. A Sales File to contain sales data about products sold by
each outlet store each day. This file is called SALES.

The company routinely adds, updates, and deletes information
in these files so that up-to-date product description and sales
reports can be produced.

MILKMORE FARMS COMPANY XPROD FILE

171

Any report reguest using-this file will begin with TABLE FILE
XPROD. The following are the fields which make up the file:

1.

certain product.
field. A field can also be referred to by its alias.

E.g. B10,

C17.

PROD_CODE - A unique alphanumeric code which identifies a
This field is an indexed

ALIAS=PCODE.

2. PROD_NAME - The name of the product sold, e.g. whole milk,
sour. cream., ALIAS=ITEM.

3. PACKAGE - Describes the amount of product each package
contains, e.g. 16 ounces, 1 dozen. ALIAS=SIZE.)

4, UNIT_COST - The cost of one package of a product, e.g.$.65,
$1.15. ALIAS=COST.

The following are some of the data records in the file:

PROD.CODE PROD-NAME | PACKAGE UNJT.COST

80 WHOLE MILK | 16 OUNCES 65
£/ MEDIVM EGGS | | DOZEN .$9

MILKMORE FARMS COMPANY SALES FILE

Any report request using this file will begin with TABLE FILE
SALES. The fields which make up the file are as follows:

1.

is located,

2.
3.
4
5
6
ALIAS=
7.
8.
ALIAS=
9

SOLD.

SHIP.

inventory. ALIAS=INV,
10. RETURNS - The number of units of a product returned by the

customer,

ALIAS=RTN.

14B,

77F. ALIAS=SNO.

STORE_CODE - A code which uniquely describes a store which
sells Milkmore products, e.g.
CITY - City in which the store is located. ALIAS=CTY.
AREA - A letter which describes the area in which the store
e.g. S, U. ALIAS=LOC.
. DATE - The date on which the products were sold. ALIAS=DTE.
. PROD_CODE - Same as in XPROD file above.
indexed field.
. UNIT_SOLD - The number of units of a certain product sold.

This field is an

RETAIL_PRICE - The price the product retails for. ALIAS=RP.
DELIVER_AMT - The number of units of a product delivered.

. OPENING_AMT - The number of units of a product in opening

11. DAMAGED - The number of units of a product which are damaged.

ALIAS=

BAD.

The following are some of the data records in the file:

SToREY

cope | <17y | AREA| DATE | PROD.CODE { YMIT son RETAIL PRICE | DELWER_AMT | o0PENING.AMT
148 \stanrord| S |12/12 | . BiO 60 §.95 80 65
19 ransoro| 5 l12/12 | BIZ 4o $1 29 20 50
Kilvewmx| U |iof18 | RI0 13 $.99 20 1S
Ky [vewRe|l U |i0/19 B2 29 j;.qﬁ 30 z0

172

EXAMPLE OF A FOCUS SESSICON

If we want to create a p'rogfam to display a store’s identification code,
and the number of units of each product sold at the store, and want to call it
SHOWSALES, the FOCUS session would appear as follows:

>>TED SHOWSALESFEX

This command puts us into the TED editor where we can enter our program, The

FEX extension indicates that the program is a FOCUS execution procedure. It must
be added to all program names,

Once in TED the following screen appears., To create or edit our program we
enter EDIT at the command line (bottom of the screen)

SIZE=0 LINE=0

* " TOPOFFILE" - "
" ENDOF FILE * * *

===>EDIT:

Now we want to create space between the TOP OF FILE and END OF FILE in
order to be able to enter our program, To do this we issue the command ADD -3
at the command line. We now enter the program in the space just provided using
the arrow keys, and the double arrow key as the return key.

SIZE=3 LINE=1

=====* " * TOP OF FILE * * *
== = =TABLE FILE SALES

=x===PRINT PROD_CODE AND UNITS

=W e =

D
ex==a’ * ° END OF FILE * * *

VAR BRI R S e GRS R

173

Once we are finished entering the program we return to the command line using
the return key, There we type the command FILE, to save the program we have
just entered. This command also transfers us out of the TED editor back into
normal FOCUS mode. To run the program, we can now type EX and the name of
the program,

>SEX SHOWSALES FEX

usuaily be prompted by a single caret ">" If you do not wish to continue
execution of the incorrect program, the word QUIT can be typed as a response
and the report request is cancelled, If there is more than one error, you may
have to type QUIT to two ">" prompts in order to get back to normal FOCUS
mode ">>" Once back in FOCUS you can edit your program with the TED editor
(TED SHOWSUM FEX). :

If the program works, FOCUS will tell us the length of the report and ask us to
hit the return key to see the report. Hitting the return key shows us the first
page of the report, If the report occupies more than one page we would keep
hitting the return key to see the rest of the report. At the end of the report, an
END-OF-REPORT message will appear at the bottom of the screen., Hitting the
return key two or three more times will get us back to the FOCUS prompt °*>>°,

174

PRACTICE PROGRAMS FOR THE REPORT GENERATION SESSION

Produce a report which shows the total units sold and total returns for each
store_code, The first part of the output should appear as follows;

_STORE_CODE UNIT, SOLD RETURNS
148 47 38

Produce report which will sum the units sold for each date within each city,
and prints these sums in alphabetical order by city. The first part of the
report should appear as follows:

CITY DATE UNIT._SoLD
NEW YoRK 10/11 l62

Produce a report which will sum the units sold for each city and prints these
horizontally across the top of the page, The column headings should appear
as:

CITY
NEW YORK NEWARK STAMEORD UNIONDALE

Produce the foliowing matrix-type report which details units sold, and returns
for each city by retail price. (Note- there may not be units sold, in each
city, at every retail price., In this case a dot will occur in place of a
number)

aTY
New YORK. NEWARK
RETAIL - PRICE UNIT.S6LD RETURNS UNIT-SOLR RETURNS

.85 | 30 2 . .

5.

175

Produce & report which shows the quantities of & specific product (b10) sold,

and on hand (opening amt) in a specific city (Newark), The first part of the
report should appear as:

LITY PROD_CODE (UNIT.SOLD OPENING .. AMT

NEWARK BiO 30 e

Produce a report which shows the units sold for each product code by city,
For each city, show the units sold by date, Show subtotals for both the

city, and each date within the city. Also show a grand total for units sold,
The report should have the following structure:

|

ciTY DATE PROD _ CODE. UNIT_SOLD '

|

NEW YoRK - 1o/i7 Bio 30 |

. v i

. . '

* TOTAL DATE I0/i7 162 | |
% TOTAL C/TY NEW YoRK . 162

Produce a report which shows the ratio of returns to units sold for each
product code. The first part of the report shouid appear as follows:

PRoD_COD RATIO
Bio A7

Produce a report which prints the product name, unit cost, retail price, and

ratio of cost to retail price for each product. The first part of the report
should appear as follows:

=NAME UNIT_COST RETAN.-PRICE RATIO

WHOLE MILK $.65 $.95 : , 68

SOLUTION TO PROBLEM 1

TABLE FILE SALES

SUM UNIT_SOLD RETURNS
BY STORE CODE

END

PAGE 1

STORE_CODE UNIT_SOLD

14B 376
142 162
77F 65

RETURNS
40

15

1

2

176

SOLUTION TO PROBLEM 2

TABLE FILE SALES
SUM UNIT_SOLD
BY CITY BY DATE

END

PAGE

CITY

NEW YORK
NEWARK

STAMFORD
UNIONDALE

1

DATE

10/17
10/18
10/19
12/12
10/18

UNIT_SOLD

177

178

SOLUTION TO PROBLEM 3

TABLE FILE SALES
SUM UNITS ACROSS CITY
END

PAGE 1

CITY
NEW YORK NEWARK STAMFORD UNIONDALE

' ' 179
SOLUTION TO PROBLEM 4 .

TABLE FILE SALES
SUM UNIT_SOLD RETURNS
ACROSS CITY '
BY RETAIL_PRICE

END
PAGE 1.1
CITY
NEW YORK NEWARK STAMFORD T
RETAIL_PRICE UNIT_SOLD RETURNS UNIT_SOLD RETURNS UNIT_SOLD RETURNS -
$.85 30 2
$.89 30 4
$.95 . . S . 60 10
$.99 . . 13 1 80 9
$1.09 35 4 . . 70 8
$1.29 . o . . 40 3
$1.49 . . 29 1 . .
$1.89 20 2 29 2
$1.99 15 0 25 3
$2.09 32 3
$2.19 . . . : 27 0
5

$2.39 45

180
SOLUTION TO PROBLEM 5

TABLE FILE SALES

PRINT CITY PROD_CODE UNIT_SOLD OPENING_AMT
IF PROD_CODE EQ B1O

IF CITY EQ NEWARK

END

PAGE 1

CITY PROD_CODE UNIT_SOLD OPENING_AMT
NEWARK. B10 13 15

SOLUTION TO PROBLEM 6

TABLE FILE SALES
PRINT PROD_CODE UNIT_SOLD
BY CITY BY DATE

ON DATE SUB-TOTAL

END -

PAGE

CITY

NEW YORK

DATE

10/17

*TOTAL
*TOTAL

DATE
CITY

1017
NEW YORK

NEWARK 10/18

*TOTAL DATE 1018
10/18

*TOTAL
*TOTAL

DATE
CITY

1019
NEWARK

STAMFORD 12/12

*TOTAL DATE
*TOTAL CITY

1212
STAMFORD

UNIONDALE 10/18

*TOTAL DATE 1018
*TOTAL CITY UNIONDALE

TOTAL

PROD_CODE

B10O

Bi0
B12
C13
C7
Diz
E2

-~ E3

B20
C7

UNIT_SOLD

30
20
15
12
20
30
35

13
29
29
42
60
40
25
45
27
80
70
376
376

25
40

65
65

616

182

)

SOLUTION TO PROBLEM 7

DEFINE FILE SALES
RATIO=RETURNS/UNIT_SOLD;
END

TABLE FILE SALES

PRINT PROD_CODE RATIO

END

PAGE 1

PROD_CODE RATIO
B10 17
B12 07
Ci3 12
C7 11
D12 00
E2 11
B3 11
B10 o7
R17 10
B20 00
Ci7 00
D12 15
El 13
E3 11
B20 04
Cc7 00
B12 03

183

Soiution to Problem 8

JOIN PROD_CODE IN XPROD TO PROD_CODE IN SALES AS NEW
DEFINE FILE XPROD

RATIO = UNIT_COST / RETAIL_PRICE;

END

TABLE FILE XPROD

PRINT PROD_NAME UNIT_COST RETAIL_PRICE RATIO

END

184

APPENDIX EIGHT

QUESTIONNAIRE

185

FOURTH GENERATION LANGUAGE EXPERIMENT

Please fill out all sections of the questionnaire as accurately as possible. The
information you provide will be used to determine factors which could explain
your success in the experiment, If you feel their are other factors which could
be important in explaining your success with a fourth generation language, and are
not mentioned below, please include them at the end of the guestionnaire. All
information will be held strictly confidential, If you have any questions do not
hesitate to ask the lab assistant. Thank you for your cooperation,

1. Name

Please complete question 2 if you are now a student,
In addition, please compiete question 3 if you have worked full time, or
now work full time, .

2. Which school do you attend? (please check one)

...................

Other (please specify)

3. a) Which company did/do you- work for?

b) What was your job title?

c)in your work, did/do you make use of computers? YES ___. NO

d) If yes, what type of work do/did you do with the computer? (check any
of the following which apply)

Querying databases
Data entry..........
. Programming........ceeee.
Software user......uw..
Computer operator..............
"Other, please specify

e) If your job involves/involved programming, for how many years
have/had you been programming at work? (indicate number of years)

........... year(s)

f) If your job involves/involved programming, approximately what percentage
of your time at work is/was spent using computers for this purpose?
(indicate percentage)

................ percent

186

What is your program of study at school? (check one of the following)

4,
Commerce.........uveueee
MB A eeerenrnenenes
Computer Science...........
Other (please specify)

5. If you have previous degrees/diplomas, please specify the title of the
degree '

6. Have you ever done any computer programming? YES NO
if yes, list the programming languages you know, the number of years
experience you have had with each, and the approximate number of
programs you have written in each(eg. COBOL, FORTRAN, APL, PASCAL)
Language Years Experience Approx, no, of

programs written

i)

i)

iii)

iv)

V)

vi)

vii)

viii)

iX)

7. Have you ever used any report writers, spreadsheets, query languages,

database management systems, or fourth generation languages? (eg. Sequel, .
EDBS, Dbasell, Lotus 1-2-3, IMS, FOCUS, RAMIS, TOTAL, DB2, IDEAL,-ADF,
ADABAS)

...............

187

If yes, please list them below,

Software Years Experience Approx, n f

(o}
programs written

How would you characterize your use of microcomputers over the past few
years ? (please circle the number which best describes your use)

1 2 3 4 5 6 7
Never use Use every day

List below any other factors in your background which you think might
have had an effect on your performance in the experiment,

it, thank you for your participation, Please do not discuss this study with

’

other participants as you may unduly influence their performance and learning
process, '

188

APPENDIX NINE

ESTIMATION OF SAMPLE SIZE NEEDED

189

APPENDIX 9 - ESTIMATION OF THE SAMPLE SIZE NEEDED

The two methods of estimating the sample size needed are, the power
approéch and the estimation approach. The power approach uses an estimate
of the standard deviation (¢), the level ét which Type I (a) and Type II
(B) errors are to be controlled, and an estimate of the magnitude of the
minimum range (A) of the factor level means (u) which 1is important to
detect with high probability. The estimation approach specifies the major
comparisons of interest, and from these, determines the expected widths of
the confidence intervals for various sample sizes, given an advance planning
value for the standard deviation. The approach is iterative, starting with
an initial guess for the needed sample sizes. If the confidence intefvals,
based on the initial.sample sizes are satisfactory, the iteration process

is terminated.

The power method was used first to determine a range of likely sample
sizes. A sample size was then used in the estimation approach to ensure
that the confidence intervals were satisfactory. The calculations are shown

‘below.

POWER APPROACH

An estimate of the standard deviation of the subject population is
needed for determining the sample size.in this approach. The mean and
standard deviation ffom the pilot study were 75.4 and 13 respectively. This
standard deviation will be used as our estimate. We would 1like our
hypotheses tests to detect differences in mean scores between subjects of

about 10 marks (A=10). Any difference smaller than 10 could be due to

190

chance. Because 0=13, and we need an even A/¢ ratio to use the statistical
tables, we will increase A slightly to 13. The number of levels of the
first factor (complexity) is a=2, and the number of levels of the second
factor (experience) is b=2. We will control the Type I and Type II errors

at a=.05 1 - $=.90

The power method says that if we let the number of factor levels (r)
equal the number of factor 1levels of the first factor (a) then the
resulting sample size equals the number of levels of the second factor (b)
multiplied by the sample size for each treatment (n). From the power tables

[From Table A-10 in Neter and Wasserman, Applied Linear Statistical Models]

this resulted in an n of 11.5. By increasing the difference to A=16.25, the
sample size becomes 7.5. On the other hand, with 1 - §=.95 a sample size of

9 is needed.

From the above calculations, it appears we need a sample size of
approximately 8 to 12 for each treatment. Since there are four treatments,

this results in a total sample size of 32 to 48.

ESTIMATION APPROACH*-

We can now use our estimates from the power approach to check the
confidence intervals obtained for hypotheses testing.

HYPOTHESIS ONE

,

Empirically, the first hypothesis, that experienced programmers will
obtain higher mean scores than novices on simple and complex tests,

involves a contrast of factor level means.

191

We must determine if the confidence interval for a given sample size
is sufficientiy small for our analysis. The confidence interval for contrast
of factor level means is L +/-t [1 -a; (n - 1) x (a Xx b)] s(L) where L
is the difference between factor 1level means. L is the estimator of L. L is
the difference in factor level sample means. s (L) is the standard

deviation of L and can be computed as the square root of 2o/n.

Therefore the confidence interval, if n=12, will be L +/- 2.47. This
is a sufficiently small interv al for estimating the difference in scores
between experienced programmers and novices, . as we were willing to accept a
A=13.

HYPOTHESIS TWO

The second hypothesis, that the difference in scores between complex
and simple tests will be greater for novices than experienced programmers,
involves a contrast of treatment means. If n=12, the confidence interval
for a contrast of treatment means with interaction is L +/- t[1l-a;
(n-1)abls(L), where L = [(¥,, -Y,,) - (¥, - ¥,,)] and s(L) = MSE/nIZc *
= 4.33, s(L) = 2.08. With n=12(and a = .05, L +- 3.49. -

Therefore the confidence interval is +/- 3.49 and is sufficient.
Therefore n=12 is a sufficient sample size, which makes our total targef

sample N=48.

192

APPENDIX TEN

DATA COLLECTED DURING THE EXPERIMENT

oss

WRNOUEHE WK =

SN

OONOVHEWN -

Q00000000 -4QO0 4«04«20 040~00=+=24=2«00uw0=2=«0=20«00-2+0«+0=-40000=-2-0=+00

EI PWE YPEW MBA €SS 0S EJGL NIGL N3GLW RWPW QLPW NJAGLW TTIME SIMP RT PT

[¢]

.00
.00
.00
.00
.00
.00
.00
20
.00
.00
.00
.00
.00
.00
15
.00
.00
.00
.13
.00
00
.00
.00
.25
00
.00
[o/¢]
00
Q0
.00
.00
.00
.00
.40
00
00
.00
.00
.30
.00
.00
.00
.00
.00
.00
.00
Q0
00
(e0]
.00
.00
.00
.00
.00
.00
.00

o(DO()O(DO(DQF)Q(D0(30(30()0()0f39()O(DO<39:*9()0()0()Q‘DO(DO(D9<DO<>O(DO?DO(30<DO(DO

QO0O0OO00000O0000OODOOO00 0000 +00000~000-0000+00Q00~-000000-~-000000C

[o]

O0000000QV4=20Q000Q=«=20=0-00004Q=-=200=202+=000~-0000-«0-0000~=0=0

- 2t 2t 2 bt QO 200200 w00 a0 atus0000="cwQuwOOQuwdalawOuwldadunacwO0=a0=-

o]

CO00O000O0O00QO0«=-00000000«000-+000000000~-00O0O0-000000CO0O0OO0000

N = S SN, YV ST, SRR ; JYUNY o SNSRI, YNNI OGO UGG DU SO

P UL NPBRUANOUNONOURNOLEONOUVNWIOINOWUNU ~ONOWALONOIWOINUUNDBUDOOIN =GO =3O

25
64

-

[NoNoNoNoNa) AC)aC)— “ WO =+NO0O0O0O+00000WLWONOOONOUNO=-0C0LO000000BOOONMVAEOOOO

]

CONO-00000000QO00000000000=-00000Q0000~00QCO0O00QC000-00-00000Q0Q

N
CO=+MN«000WRO 2000 NOQCOONOFRON-0000ONO0 00 +0000WONOWOWWNOOOUO -0

204
138
235
133
176
151
131
134
143
146
156
138
150
150
190
155

152 °

188
136
155
157
169
154
159
183
158
163
130
158
182
130
166
169
200
173
199
174
188
180
198
162

‘185

152
125
184
175
145
180
17%
169
145
154
149
174
179
194
199

* 220202000000 4«0+=+02+=20us0a02400w0uwu=2=202420004+0+04++44000-+0000

43
30
80
25
40
46
22
33
26
31
52
31
45
31
70
32
25
53
23
37
32
6€
39
22
57
40
28
40
43
52
7%
22
33
60
33
S0
52
45
38
60
53

115
78
110
69
91
60
64
63
75
89
59
65
60
82
80
79
82
90
78
75
89
73
70
96
81
82
96
60
70
85
80
105
104
95
97
104
94
103
97
93
64
101
62
S0
95
80
45
48
70
20
75
65
75
90
90
105
t05

Q1
43

100
=10
63
83

100
97
20

100

100
95
93
57

100
97
87
97

100

100
92
SO
S0
80

100

- 67

100
93
100
3

100
87
70
83
63

100

100
97
83

100

100

100

100
30

100
93
23
83
87
90

100

100

100

100
90

Q2

81
62
73
100
52
92
88
100
100
96
100
27
60
88
100
38
77
58
100
100
38
92
100
42
16
68
58
80

27
100
38
60
77

80
28

76
52
88
73
100
58
96
77

85
58
100
8t
96
88
100
92

82 40

©
o

.

[
@
000 =««Q0-00:- Q=0 ~-

~
~
O 00 OO0 = =~

]
Lo
-0 00000 -

-CLT

