A DAIRY CATTLE BREEDING AND MANAGEMENT COMPUTER

SIMULATION PROGRAM FOR TEACHING AND RESEARCH

by

John Skinner

B.Sc., The University of British Columbia, 1978

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE
in
THE FACULTY OF GRADUATE STUDIES
(Department of Animal Science, Faculty of Agricultural Sciences)

We accept this thesis as conforming
to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA
April 1986

© John D. M. Skinner, 1986
In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Department of Animal Science

The University of British Columbia
2075 Westbrook Place
Vancouver, Canada
V6T 1W5

Date 28/04/86
ABSTRACT

The increased power and availability of computers has resulted in an increase in the value of simulation as a means of furthering our understanding of systems. Reducing the components and interactions of a system to mathematical models enables simulation to provide a clear basis of the system and this can be useful for teaching and research. Simulation is especially suited for studying genetic gain in dairy cattle because there are already reliable mathematical models available. Analyzing genetic gain in practice is difficult due to the numerous and diverse factors that affect it.

This project has provided a computer program that simulates the inheritance of the economically important traits in dairy cattle and includes interactions with the biological, management and economic factors which can affect genetic gain. It was designed primarily as a teaching tool for senior undergraduate students in animal genetics or dairy science, to heighten students interest and encourage them to think more deeply about the subject. Features were also included to make the simulation useful in research for stimulating and refining research objectives and for analyzing questions not easily tested in the field.

The program models the system at the cow level with critical management decisions made on a continuous basis and summaries and other management decisions on a calendar year basis. Mature equivalent milk production is given in Breed
ABSTRACT

Class Averages and the quota system of limiting milk production is used so that any small Canadian dairy population can be simulated. Parameters are provided and documented for simulating a Fraser Valley population.

Since a dairy population is an extremely complex system improvements and expansions to this simulation can be made. While some expansions and improvements are possible with existing information many would require more research to provide parameters and bases for models. Use and testing should reveal the changes that are the most beneficial and feasible.

The program has been written in a modularized form to more easily facilitate changes and additions. Full instructions, sample runs and documentation have been included to encourage knowledgeable use and expansion of the program.
TABLE OF CONTENTS

ABSTRACT ... ii
LIST OF TABLES .. viii
LIST OF FIGURES .. ix
ACKNOWLEDGEMENTS ... x
INTRODUCTION .. 1

Chapter 1.

1: OBJECTIVES ... 5
1.2: SYSTEM SIMULATED .. 5
1.2.1: General Description 5
1.2.2: Major Interactions 7
1.2.2.1: Maximizing Returns 9
1.2.2.1.1: Management Systems 9
1.2.2.1.2: Breeding Programs 10
1.2.2.1.2.1: Breeding Strategies 12
1.2.2.1.2.2: Actual Improvement 14
1.3: TEACHING ... 15
1.3.1: Teaching Genetics 16
1.3.1.1: Animal Genetics Course 17
1.3.1.1.1: Why Dairy Cattle? 18
1.3.1.1.2: Use of Simulation 19
1.3.1.1.3: Objectives of the Simulation 21
1.3.1.1.3.1: Intended course structure 23
1.4: RESEARCH .. 24
1.4.2.1: The Simulation .. 24

Chapter 2.

2: PHILOSOPHY AND DETAILS 26
2.1: The simulation ... 27
2.1.1: Framework .. 28
2.1.2: General description 28
2.2: Simulated events .. 31
2.2.1: Lactation ... 31
2.2.1.1: 305-day mature equivalent production 31
2.2.1.2: Adjustments ... 34
2.2.1.3: Actual production 35
2.2.2: Reproduction ... 37
2.2.2.1: Estrus detection 39
2.2.2.2: Conception .. 39
2.2.2.3: Birth of a calf .. 40
TABLE OF CONTENTS

2.2.3: Feed consumption 41
2.2.3.1: Replacement heifers 42
2.2.4: Health and death 42
2.2.5: Management ... 43
2.2.5.1: BCA's .. 44
2.2.5.2: EPA's .. 44
2.2.5.3: ETA's .. 45
2.2.5.4: Simulated sire proofs 46
2.2.5.5: Herd options 47
2.2.5.5.1: Management level 47
2.2.5.5.2: Minimum daily production 48
2.2.5.5.3: Ranking criteria 48
2.2.5.5.4: Culling for rank 48
2.2.5.5.5: Culling for fertility 49
2.2.5.5.6: Matings 49
2.2.6: Economic factors 50
2.2.6.1: Semen price 51

Chapter 3.

3: PARAMETERS USED 52
3.1: Lactation ... 52
3.1.1: Standardized 305 day production 52
3.1.2: Adjustments 53
3.1.3: Actual production 54
3.2: Reproduction .. 58
3.2.1: Visibility of estrus 58
3.2.1.2: Conception 59
3.2.2: Death and health 59
3.3: Economic ... 60
3.3.1: Fixed costs 61
3.3.2: Feed and maintenance costs 62
3.3.3: Milk price 62
3.3.4: Price for sold animals 63
3.4: Management .. 64
3.4.1: Lactation records 63
3.4.1.1: Projection of lactation records 63
3.4.1.2: Adjustment for BCA units 63
3.4.1.3: Repeatabilities 64
3.4.1.4: Heritabilities 64
3.4.2: Population decisions 64
3.4.2.1: Minimum days post parturition to breed 64
3.4.2.2: Minimum dry period 64
3.5: Setup .. 66
3.5.1: Decision options 67
3.5.1.1: Initial year 67
3.5.1.2: Operating mode 67
3.5.1.3: Management level 67
3.5.1.4: Selection criteria 68
3.5.1.5: Selection index 68
3.5.1.6: Minimum daily production 68
TABLE OF CONTENTS

3.5.1.7: Culling for fertility .. 68
3.5.1.8: Breeding scheme .. 69
3.5.2: Quota ... 69
3.6: A.I. unit ... 69
3.6.1: Bull fertility ... 69
3.6.2: Ages ... 70
3.6.3: Number of cows ... 70
3.6.3: Semen cost .. 70

Chapter 4.

4: POTENTIAL IMPROVEMENTS .. 71
4.1: 305-day production & type score 71
4.2: Adjustments .. 72
4.3: Lactation curve ... 73
4.4: Reproduction .. 74
4.5: Feeding ... 76
4.6: Economics .. 77
4.7: Management ... 77
4.8: Practical ... 78

SUMMARY ... 80

BIBLIOGRAPHY .. 82

APPENDIXES

A: FULL INSTRUCTIONS ... 88
A.1: Initialize and compile .. 89
A.2: Set up herds and A.I units 89
A.3: Simulate a year ... 90
A.4: Update AI and switch files 92
A.5: Compile data base .. 93
A.6: Analysis ... 94

B1: SAMPLE INTERACTIVE RUN ... 98
B1.1: SETUP ... 98
B1.2.1: SIM.YEAR - FULL OUTPUT MODE 99
B1.2.1: SIM.YEAR - SEMI AUTOMATED 104
B1.2.3: SIM.YEAR - AUTOMATED 106
B1.3: AIUPD ... 107
B1.4: AIVIEW ... 107
B1.5: CRDBASE .. 108
B1.6: STAT.ANAL .. 109
<table>
<thead>
<tr>
<th>B2: SAMPLE PRINTED OUTPUTS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B2.1: SIM.YEAR</td>
<td>112</td>
</tr>
<tr>
<td>B2.2: STAT ANAL</td>
<td>119</td>
</tr>
<tr>
<td>C: PROGRAM FLOW CHARTS</td>
<td>124</td>
</tr>
<tr>
<td>D: PROGRAM LISTINGS</td>
<td>131</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table I</td>
<td>Means and standard deviations for the four inherited traits</td>
<td>54</td>
</tr>
<tr>
<td>Table II</td>
<td>Correlations between the four inherited traits</td>
<td>55</td>
</tr>
<tr>
<td>Table III</td>
<td>Adjustment factors for the four inherited traits</td>
<td>56</td>
</tr>
<tr>
<td>Table IV</td>
<td>Lactation curve and other biological parameters</td>
<td>57</td>
</tr>
<tr>
<td>Table V</td>
<td>Economic parameters</td>
<td>60</td>
</tr>
<tr>
<td>Table VI</td>
<td>Management information parameters</td>
<td>63</td>
</tr>
<tr>
<td>Table VII</td>
<td>Simulation set up parameters</td>
<td>66</td>
</tr>
<tr>
<td>Table VIII</td>
<td>Calving intervals from a test run</td>
<td>75</td>
</tr>
<tr>
<td>Table IX</td>
<td>List of variables that are accumulated in the data base</td>
<td>96</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 1.1 Major components and interactions in a dairy cattle population. 7
Figure 2.1 Flow chart of events simulated for a cow 30
Figure A.1 Flow chart of the steps in running the simulation program 88
Figure C.1 Flow chart of the main simulation program 124
ACKNOWLEDGEMENTS

I am grateful to Dr. R.G. Peterson for providing the inspiration and guidance that made this project possible. I would like to thank the members of my committee Drs. J.A. Shelford, K.M. Cheng, L.J. Fisher, R. Blair and C.C. Short for their criticisms and suggestions. I would also like to thank friends and family who provided encouragement and assistance, especially my wife for her help in preparing the final draft and her tolerance throughout.
Simulation can be defined as applied systems analysis, with a system being defined in general terms as a set of objects together with the relationships between the objects and their attributes (Hall & Fagan, 1956). The aim of most scientific endeavor has been analytical, using deductive reasoning to understand complex situations by reducing them into smaller components (Joandet, 1975). With the concomitant radical increase in the volume of knowledge, intuitive thinking alone is often no longer able to take into account all of the relationships and interactions between the components. Systems analysis provides a structured approach to studying a system the results of which include: (1) revealing gaps and weaknesses in our knowledge of the system; (2) providing the basic structure of the system for teaching and application; (3) providing a clear perspective for planning further research; and (4) allowing preliminary testing of ideas and hypothesis.

The value of this approach has been greatly enhanced by the increasing availability and capabilities of computer facilities. Simulation using mathematical modelling techniques and computer programming provides a powerful tool for analyzing complex systems with the only limitation being the adequacy of the mathematical models in describing our knowledge.
Simulation has proven especially useful in Animal Science where experiments with large animals are expensive and can take many years. The growing availability of computers in Animal Science has resulted in a parallel increase in the use of computer simulation in teaching and research. Experiments for preliminary research and to aid in teaching can be performed on simulated populations cheaply and quickly. Most simulations to date, however, have had poor documentation or no documentation at all (Hocking, et al., 1983). This has undoubtedly resulted in much duplication of effort. It has been suggested (Hocking, 1983) that the documentation include: (1) a description of the program; (2) the objectives and procedures; (3) mathematical models used; (4) full instructions for use; and (5) examples of input and output. The list could be extended.

(1) Inclusion of a discussion of the models and the parameters used should reveal gaps and weaknesses in our knowledge of the system and hopefully stimulate research.

(2) Inclusion of flow charts and program documentation will greatly aid in modifying the program to keep pace with our advances in knowledge. These features would allow programs to be fully utilized in a knowledgeable way by more people.
The aim of the current project was threefold.

(1) Design and build a comprehensive dairy cattle computer simulation program suitable for teaching and research, with special emphasis on the interactions between breeding, management and economics in a dairy enterprise.

(2) Provide full documentation and explanation of the program so that it can be of maximum benefit as a teaching tool for dairy cattle breeding and management courses and as a tool for investigating the complex relationships between breeding programs, management systems and economic returns to a dairy enterprise.

(3) Identify areas where the simulation can be improved by adding to the program, by collecting more data for better parameter estimation and by further research suggesting better models.

Due to the nature of this project it cannot be written up in a traditional format for a Masters Thesis. It has been organized into four chapters and extensive appendices. Chapter one outlines the system to be simulated, the aspects of the system that are of most importance for teaching and research, and the practical requirements of the program operation. Chapter two covers the philosophy of the modelling process and the details of the models used. Chapter three provides parameters for the models to simulate a Fraser Valley herd and discusses their adequacy. The fourth is a concluding chapter that brings together potential improvements in the simulation that are suggested in Chapters two and three. The
appendices provide detailed instructions for using the program, annotated program input and output and the details of the program itself.
Chapter 1. **OBJECTIVES**

This chapter elaborates on the three main objectives of the simulation program.

(1) To make the program capable of simulating a population of Canadian dairy herds as comprehensively and realistically as is feasible.

(2) To tailor the program to be especially useful as a teaching aid for a senior undergraduate course in animal genetics.

(3) To maximize the programs usefulness to researchers in dairy breeding and management.

1.2: **System Simulated**

The system to be simulated is any Canadian dairy population. The size limits are given in sec. 2.1.1.1. Further limitations necessitated by conflicting goals and limitations of available models are discussed throughout chapter two. The major components and interactions within this system are discussed in this section.

1.2.1: **General Description**

A Canadian dairy cattle population is composed primarily of herds between 30 and 200 cows each. Each herd is managed by an independent dairyman who depends on the operation as his sole or partial source of income. The prices of goods and
services supplied by and required by a dairy operation are determined by free market forces with the exception of milk price. Milk in Canada is sold under control of a two price marketing structure where the Provincial Government sets the price for fluid milk and the Federal Government effectively sets the price for manufacturing milk by means of support programs. The unit price paid by both governments is dependent on whether the fat content of the milk is above or below 3.6 kg per hectolitre. The quantity of milk produced is regulated by allocating to dairy producers the rights to sell a specific amount of milk for fluid use and a separate quantity of milk for manufacturing purposes. In British Columbia approximately 35% of the total is allocated for manufacturing. Milk produced above the allotted amounts is subject to a penalty.

Many dairy operators also participate in a regional or national milk recording and breed improvement program. These programs collect cows production records and type classifications. Production records are projected to 305 days, adjusted for age and expressed in a standardized form which is known as the Breed Class Averages (BCA) in Canada. The BCA are then used to estimate producing abilities, breeding values of cows and to calculate sire proofs. Most animals are bred using artificial insemination (A.I.) with semen from bulls in the regional or national A.I. units. These AI sire proving programs which involve testing large numbers of daughters, account for most of the genetic gain in the population for milk production.
1.2.2: Major Interactions

Like any biologically based system a dairy cattle population involves multi-level and complex interactions. Fig. 1.1 attempts to summarize the major interactions at a macro level.

figure 1.1
The returns per year are determined by the operating costs, the income from milk and the income from animals sold. For this simulation it is assumed that, the driving force behind the dairy industry is the desire of milk producers to maximize their dollar return per year.

Operating costs can be subdivided into two major components: (1) fixed costs such as amortization of land, buildings, quota, animals and equipment; and (2) variable costs such as feed, labour, veterinary services, medication, semen and transportation of milk.

Income from animal sales in commercial herds is derived from animals sold for dairy purposes and the salvage value of culled animals. Cows culled for poor type, low milk yield or for fertility problems are usually sold for beef. Those removed for health reasons usually have some carcass value. Carcasses of cows which die may have a nominal value for dog food. Bull calves are sold at one week old to be raised for veal and can be a significant source of income if a reasonable price is received. Substantially more can be received for bull calves from top cows and bulls if they are deemed good enough to enter a young sire program in an A.I. unit. A substantial income can also be derived from selling animals for dairy purposes although this practice tends to decrease the productivity of the herd.

Both the quantity and quality of the milk produced can affect income. The quantity of milk produced is a product of the number of cows in the herd, the rolling herd average production and the calving interval. The limiting factor is
either the size of the facilities, which limits the number of cows, or a quota restriction, which limits the amount of milk which can be sold. The quality or constituents of the milk can influence the unit price received. Usually a higher price is paid for extra percentages of fat.

1.2.2.1: Maximizing Returns

The major improvements in the dollar return within a given market structure are to be made by optimizing production per cow and optimizing calving interval through good management systems and breeding programs.

1.2.2.1.1: Management Systems

Management systems involve the decisions made to improve the animal's environment to take fuller advantage of their biological potential. The major gains are to be made by optimization of the feeding regime, the intensity of management and the culling policy.

The most energy efficient feeding regime for a cow involves feeding to maximize production so that a smaller proportion of the energy is used for maintenance of the cow and more is used to produce milk. However, feeding to maximize the energy efficiency of the cow may result in the use of higher priced feeds and/or in increases in labour and/or overhead costs. Extensive research has been done to find optimum feeding regimes and methods for various environments and market structures.

While labour costs can be minimized, lowering the level
OBJECTIVES

of management usually results in a decline in milk production per cow, a decline in the rate of heat detection resulting in a longer calving interval and an increase in the frequency of health problems. All of these factors increase costs and must be weighed against the cost of increased management intensity.

Culling practices have a major effect on the calving interval. Long calving intervals reduce the efficiency of the cow and this must be considered relative to the cost of replacement, expected production ability and the value of offspring.

1.2.2.1.2: Breeding Programs

Breeding programs are designed to increase the average biological potential of the cows in the herd through selection. Much research effort has been directed towards explaining the differences between individuals and developing efficient breeding strategies.

Since genetics has not progressed to the point where the specific effects of most genes in large mammals is understood, descriptive statistics have been employed to describe the animal's biological potential and the environmental effects. The phenotype \(P \) is made up of the genetic potential, \(G \) and the environmental effects \(E \) such that \(P = G + E \). The genetic potential can be further subdivided based on how it is inherited. One portion behaves as though it is made up of genes which simply have a positive or negative (additive) effect on a particular trait, while the effects of the genes of the other portion seem to depend at least partially on what
OBJECTIVES

other genes are present either at the same locus (dominance or overdominance) or at other loci (epistasis). For production and type traits in dairy cattle most of the genes appear to have additive effects (Lasley, 1972) and the breeding schemes are designed to take advantage of this. The model of interest then becomes:

\[P = A + E \]

Where \(A \) is the additive effect and \(E \) is the environmental, dominance and epistatic genetic effects. This model becomes useful when it is applied to a population to describe the observed variability. The proportion of the variability that is due to additive genetic effects, the heritability, can then be calculated as a ratio of the variances, that due to additive genetic effects \(V_g \) divided by the total phenotypic variance \(V_p \).

\[h^2 = \frac{V_g}{V_p} \]

The heritability is thus a measure of the potential to change a trait through selection. It can be measured by the regression of parent's phenotype on their offsprings or by correlations among sibs. It also provides a means of estimating the breeding value of an individual from its phenotype; \(BV = h^2 \times (P - P) \). The estimate can be improved by including the phenotypes of close relatives. The estimated difference of an animal's offspring from the mean of the population is called the estimated transmitting ability (ETA) and is one half of the estimated breeding value (EBV).
1.2.2.1.2.1: Breeding Strategies

A breeding strategy seeks to maximize future income by maximizing genetic progress towards some defined goals. The expected progress per year \(G \) can be stated as a function of the heritability as (Lasley, 1972):

\[
G = \frac{h^2 \times SD_p \times i}{GI}
\]

where
- \(i \) is a measure of the selection intensity
- \(SD_p \) is the phenotypic standard deviation of the trait
- \(GI \) is the generation interval.

Thus the effectiveness of a breeding program depends on the traits selected for, the selection intensity and the generation interval. The goals of the program should depend on the measurable traits that have economic importance and genetic potential to change. If more than one trait is selected for they should be weighted in a selection index taking into consideration the economic value, the genetic variability and the phenotypic and genetic correlations.

Under the current price structure the trait of most importance is milk production. As mentioned in section 1.2.2.1: above increasing the production of milk per cow allows the quota to be filled with fewer cows, thus lowering proportionally the maintenance costs. Milk yield is also highly variable and moderately heritable (Lasley, 1972), thus there is considerable potential for improvement.

The price paid for the milk is affected by the percentage of fat (sec. 1.2.1.), so increased milk fat production also
results in higher returns which are partially offset by higher feed costs. Fat and protein are both moderately heritable (Wilcox et al., 1978) and have adequate variation for selection to be effective. Under the current market structure increases in the percentage of protein do not affect returns but do increase feed costs and thus in a selection index fat should be weighted positively and protein negatively. This is true despite the fact that fat and protein are positively correlated genetically and environmentally.

Type traits are also moderately heritable and increases in type score do increase the resale (Pearson and Miller, 1981) value of the breeding stock. Thus the importance of type score in a selection index is dependent on the proportion of a herd owners income that is derived from selling breeding stock.

Fertility and conception traits have low heritabilities and selection for these traits would give little improvement (Lasley, 1972).

The selection intensity on cows is low because most heifers are required to replace culled cows. With the extensive use of A.I., bulls are usually capable of inseminating 50,000 or more cows per year and the selection intensity on bulls can be very high (Lasley, 1972).

The generation interval for dairy cattle is a minimum of three years. For bulls the generation interval is a minimum of six years because the traits of interest are sex limited and in order to identify the superior animals progeny testing must be used. The additional three years are required until their
daughters have completed one lactation.

1.2.2.1.2.2: Actual Genetic Improvement

The genetic model has been validated by Freeman (1976) and others who have shown that estimated transmitting abilities are good predictors of daughter performance in small experimental populations. However, many factors contribute to reducing actual genetic progress from that predicted by the model (Van Vleck, 1977). The fact that many dairy operations do not participate in milk recording reduces the effective population size. The reluctance of many to use sires in an organized young sire program reduces the number of bulls that can be tested, effectively reducing the selection intensity. Inappropriate selection indexes, for example the over-weighting of type traits also reduces the selection intensity for traits which maximize dollar returns. Breeding programs which aim at maximizing future income often conflict with management strategies which try to maximize current income. For example methods for discounting future gains to arrive at an appropriate compromise between breeding and management strategies have been investigated (Pearson and Miller, 1981; Lin and Allaire, 1977; Gill and Allaire, 1976; Andrus and McGilliard, 1975).

Taking into account all the factors that can affect genetic gain and estimating actual gain is much more difficult than estimating potential gain. However, with the recent use of the best linear unbiased predictor (BLUP) method of estimating transmitting abilities proposed by Henderson (1966)
it is possible to compare the average genetic value of sires over the past few years and measure genetic trends. These estimates confirm that the progress being made is considerably less than what is possible (Van Vleck, 1977).

1.3: Teaching

Despite the fact that one of the primary uses of computer simulation has been as a teaching aid the benefits are not clearly defined in the literature. Perhaps this is because teaching methodology in general is difficult to define (Taylor and Kauffman, 1983). Since simulation is based on a system analysis (presumably of the system being taught) it ensures that the structure of the system is central to the course. Bruner (1960) has effectively argued the value of emphasizing the structure of the subject in education. It makes the subject more comprehensible and more easily remembered and provides a base to which new learning can be added or related to.

Simulation can provide an opportunity for "hands on" or a problem solving type of learning which in many subjects is otherwise not practical or feasible. In surveying the literature on learning methods, Singer & Pease (1976) concluded that where subsequent recall and application are important, these learning methods are generally superior to guided instruction after the basics of the subject have been mastered. "Hands on" or problem solving type of learning will also encourage the students to acquire an inquiring mind (Smythe & Lovatt, 1979), increase students motivation and
improve their attitude towards the course (Hocking et al., 1983).

The results of a survey of American and Canadian Agriculture Schools (Taylor and Kauffman, 1983) indicate there is potential for further growth in the use of simulation. The three most commonly mentioned weaknesses of the teaching programs were: (1) the need for more "hands-on" type courses; (2) the need for more exposure to computers; and (3) the need for more original thinking experiences. Well structured computer simulations can address all of these concerns provided they are: (1) user friendly; (2) based on the system or principles being taught; (3) interactive and problem solving in nature; and (4) not too simplistic and in some way challenge the user to think more deeply.

1.3.1: Teaching Genetics

Computer simulation has been used in teaching animal genetics at least since 1961 when Heidhues and Henderson (1961) reported using computer generated herd records in teaching selection principles. The usages expanded greatly in the 1970's and 80's with the increasing availability of computers. Many programs are currently being used throughout Europe to teach various aspects of animal genetics (Hocking et al., 1983). A beef genetic simulation program (Willham, 1970) used in teaching over 2000 students at Iowa State University since 1969, now used at many other colleges and universities and even used with experienced cattle breeders has met with favorable responses from instructors and students.
OBJECTIVES

(Brackelsberg, 1978). A dairy cattle computer breeding simulation program was designed for teaching purposes by McGilliard and Edlund (1979) and has been used at various institutions with a generally favorable response.

Computer simulation programs have been especially useful in teaching animal genetics.

(1) They can be used to carry out experiments that would be too time consuming and costly with real herds.

(2) Simulated data can be generated that behaves according to the principles being taught but without additional unwanted variability that is often present in real data, obscuring the principles being studied.

(3) The true genetic potential of simulated animals can be known, making results clearer and easier to analyze than actual data.

1.3.1.1: Animal Genetics Course

The senior undergraduate animal genetics course at U.B.C., taught by Dr. R.G. Peterson has used computer simulation as a teaching tool for four years. Prerequisites are introductory courses in quantitative genetics and statistics. The chief aim of the course is to give the students a thorough understanding of selection programs and potential genetic gain from various programs, with emphasis on the economics of the program and implications on the total herd management. Five general areas are covered.

(1) Selection index theory and calculation of selection indexes.
(2) Designing breeding programs within given genetic, economic and management constraints.

(3) Methods of estimating potential genetic gain as outlined by Van Vleck (1978), by partitioning into the four sources suggested by Robinson and Rendal (1950): cows to produce cows; cows to produce young sires; bulls to produce cows and bulls to produce young sires.

(4) Practical problems in estimating genetic gain and evaluating biological, economic and management factors which can affect it.

(5) Estimating the heritability of the index from the response to selection and measuring the genetic and phenotypic correlations between index and milk, fat, protein and type.

1.3.1.1.1: Why Dairy Cattle?

Dairy cattle were chosen as the system on which the course was to be based for numerous reasons.

(1) They are the most economically important farm animals in British Columbia and many students will have had or are likely to have first hand experience with them.

(2) They involve a complex system with some interesting features, notably that the traits of interest are sex limited and breeding is done almost exclusively with A.I..

(3) Extensive quantitative information is available from milk recording and breed improvement programs.

(4) Selection has been based on more than one specific trait.
(5) The market structure is quite static, decreasing the need for taking diverse potential genetic goals into account.
(6) The market structure is unique and poses interesting questions.
(7) Many of the principles apply to other species.

1.3.1.1.2: Use of Simulation

In order to achieve the objectives of the course and give a deeper understanding of the subjects covered, a dairy cattle breeding simulation program is used in the following way. The students are asked to design and run a selection experiment with a pair of simulated dairy herds. Students first develop a hypothesis dealing with selection goals, breeding strategies, management practices and farm income. Then calculate an appropriate selection index and run a simulation of his / her model along with fellow students for a simulated fifteen years. In parallel, duplicates of all student herds are run as "controls" to provide a bases for comparison. At the end of the simulation the student is expected to do a full analysis of genetic gain.

(1) Test his / her hypothesis using their own herds, the "controls" and herds of other classmates who had similar or contrasting hypothesis.
(2) Estimate sources of the response to selection.
(3) Estimate heritabilities and correlations.

The Dairy Cattle Breeding Simulation Program of McGilliard and Edlund (1979) and a modified version were used in a similar way for two years. It generated cow herds and an
OBJECTIVES

A.I. unit and for each simulated year it generated 305-day lactation records, dollar values for milk and final type scores and calculated estimated breeding values for each cow. Estimated transmitting abilities were calculated for A.I. bulls and calves were generated each year from specified matings.

The student response to the program was positive, however there were two general criticisms.

(1) Running the program required a fair amount of "busy work" which was of little educational benefit.

(2) Many aspects of the program were too simplistic for a senior undergraduate course.

From the instructor's point of view there were many shortcomings (Peterson, 1980).

(1) Selection indexes were not calculated.

(2) Each lactation was 305-days in length and was started and completed in the same year with the cow either completing a lactation or being open for a year. Thus neither reproduction nor economic parameters could be simulated adequately enough to evaluate the relationships between them and the response to selection.

(3) The control herds required an excessive amount of time to run.

(4) A considerable amount of computer programing was required to get final summaries in a form that allowed students access to data for analysis.
1.3.1.1.3: Objectives of the Simulation

The new dairy cattle breeding simulation program was written primarily to better meet the needs of this course.

(1) The program gives students an opportunity to customize their own selection index and breeding strategy. For example, bulls can be selected based on whether they are young or proven, on their pedigree or proof, on their semen price and on their conception rate.

(2) Management options can be selected (sec. 2.2.3.5.1.) for decisions which have an economic effect and alter potential genetic gain.

(3) The simulation can be as realistic as is feasible. Production is simulated on a continuous basis allowing economic returns and reproduction to be included in the simulation (sec. 2.2.2.1. and 2.2.4.). At the end of each year it gives a detailed description of the performance and production of each cow as well as herd summaries (appendix B). Hopefully being exposed to the details, variability and complexity of the system will give the students insights into the problems and conflicts that exist.

(4) Unnecessary work is minimized because it is "user friendly" and provides available automated decision options. The program is interactive and leads the user through with questions, prompts and menus (appendix A1). It also detects unreasonable decisions entered and asks for plausible ones. Tedious decision making that is not essential to the management or breeding program can be
avoided by using automated options based on predefined management practices. For example, instead of having to specify the bull to use on each cow, a number of bulls can be selected to be mated at random to the cows (sec. 2.2.3.5.5.). Hopefully the time spent learning course material will be maximized and student frustration minimized.

(5) Groups of herds to be used as "controls" can be run quickly and at minimum cost. These herds are set up with management and breeding programs in the first simulated year and after this can be run automatically (appendix A). No printed output is generated but their summaries are accumulated to be used for the final analysis.

(6) Output from the simulation provides a comprehensive database of genetic, production and economic summaries for all herds for all years and a statistical package to simplify the data manipulation (appendix B1). All herd summaries are stored and true breeding values are known so that the genetic gain and its interaction with economic and management factors can be measured precisely. The statistical routines of the program are designed to detect differences in the rate of change over time or mean differences between herds or groups of herds. Output is both statistical and graphical for any of over a hundred summary variables (table IX). Hopefully this will encourage creative analysis of breeding programs.

(7) Computing costs of a simulation involving less than 100 herds and 20 years should not be excessive. In fact an
effort was made to keep down the costs of running the program and as a result some aspects of the simulation are somewhat simplistic. However, the program is written in a modular form to facilitate easier future expansion (appendices C & D). Most different simulated events are performed in a separate subroutine making it easier to add new events to expand the use of the program to include such things as embryo transplants or feeding regimes.

1.3.1.1.3.1: Intended Course Structure

The program could be useful for various courses. It would be compatible with a one term senior animal genetics course.

(1) Two or more weeks would be required for instruction and discussion on selection methods, management systems and formulation of hypotheses and calculation of selection indexes.

(2) Five or more weeks for the students to run the simulation program.

(3) At least three weeks would be needed for the students to adequately analyze trends and differences between herds. This requires access to a data base with genetic, production and economic summaries for all herds and years, and a tailor made statistical package for analysis.

An objective type midterm examination should be held early in the course to ensure that students know how to calculate a selection index, understand the breeding and management options available and have a worth-while and
testable hypothesis. A major portion of the students grade for the course should be on the analysis and explanation of their results.

1.4: Research

Simulation has proved useful at all levels of animal research, at the metabolic pathway level to study energy efficiencies (Canolty and Koong, 1976), at the organ level to study rumen metabolism and digestive function (Baldwin et al., 1970), at the cow level to model animal growth (Brown et al., 1976), at the herd level to study reproduction and breeding management (Rounsaville, 1979; Bailie, 1982), at the population level to optimize sire sampling and progeny testing to maximize genetic gain (Hunt, 1974; Lane, 1973; Oltenacu, 1974). Many other studies are reported in the literature.

Koong & Baldwin (1978) in a summary of the literature have listed potential benefits of simulation in research. They include: (1) unification and summarization of data and concepts leading to increased understanding of a particular system; (2) increased effectiveness in utilization of existing information in the selection of experimental approaches; (3) reduction of conceptual difficulties encountered in analyses of systems too complex for intuitive resolution; and (4) formulation and testing of alternative hypotheses.

1.4.2: Simulation

This simulation has four features which should enhance its value for research.
OBJECTIVES

(1) The simulation covers a broad range with the events simulated at the cow level, the user inputs at the herd level and the effects measured at the herd and population level (sec. 2.1.1.). It integrates the disciplines of dairy cattle management, reproduction, economics and breeding. Hopefully the program will aid researchers in understanding some of the complex interactions in the system.

(2) The option to run automated groups of herds (appendix A & B1) makes it feasible for researchers to ask questions about interactions between various herd management decisions and effects on the herd and population.

(3) The modularized design should facilitate customizing of the program for specific research purposes (appendix C & D).

(4) The program allows preliminary experiments to be carried out and fully analyzed within a few hours and at little cost (appendix A).

Some potential questions that the program could be used to research include: (1) The effects of breeding and management decisions on the sire proving program and conversely the value of proven sires in economic terms to the herd owner; (2) The effects of quota restrictions on genetic gain; (3) The economic merit of a trait under the quota system; and (4) The optimum use of young and proven sires in economic terms for the herd owner and in terms of genetic gain for the population.
Chapter 2. PHILOSOPHY AND DETAILS

Simulation requires evaluating the objectives and the information available to decide on the best level at which to model the system, to define the framework of the simulation and then to analyze the actions and interactions of the components in order to reduce these relationships to mathematical equations.

Biological based systems differ from most other systems in that they have a much greater degree of variability inherent in them because of the multiple levels involved. A typical hierarchy of possible levels might be:

- Population
- Herd
- Animal
- Organ
- Tissue
- Cell
- Metabolic pathways

In general "as the level of description of a system is refined, precision is gained, but restraints due to lack of knowledge become more serious. As the level becomes higher, the relationships used between the variables become more empirical, and there is no biological explanation of the functions used to relate them" (Joandet 1975).

The relationships can have either a theoretical,
empirical or intuitive basis as defined by Riggs (1963). A theoretical equation is biologically based and can usually give good predictions over a wide range. An empirical equation is one which is derived from fitting experimental data to describe a relationship between two or more variables. It describes the relationship over the range of the experimental data but cannot safely be applied beyond that range and does not explain the reasons for the relationship. Often, however, biological parameters can be found to explain an empirical relationship allowing the model to have broader application. An equation based on intuition can be employed to complete a simulation if no known biological or empirical relationships exist. This may limit but does not invalidate the model, as well the approximations can be improved with time by testing simulation results (Joandet 1975).

2.1: The Simulation

This dairy cattle simulation had to model the system described in section 1.1 and to conform to the requirements for teaching (sec. 1.3.) and research (sec. 1.4.). It had to be able to model the inheritance of the economically important traits and to extend this to include as many as possible of the factors that directly or indirectly affect genetic gain.

For modelling this system from a refined level such as the cell, there are good theoretical models for some biological functions but other functions are not well understood and there are no reliable empirical models. As well the complexity and cost of the simulation would be
prohibitive given our current knowledge and computing facilities.

At the cow level there are extensive quantitative data which have given rise to good empirical models and some plausible biological explanations. These empirical models are reliable predictors over the measured ranges. Since the simulation was only intended to be used in those ranges the models do not impose serious restrictions.

2.1.1: Framework

In order to keep the cost of running the program reasonable certain restrictions on the simulation of a population were made.

(1) A maximum of 150 cows per herd.
(2) A maximum of 500 herds in a population.
(3) Only one A.I. unit with up to 500 bulls for a population.
(4) Only four genetically inherited traits, milk, fat and protein production, and overall type score.
(5) No provision is made for buying cows or quota.
(6) Prices of all services and commodities remain fixed for a given simulation.
(7) All herds are assumed to participate in a milk recording and breed improvement program.

Other restrictions due to limitations of specific models are discussed in section 2.2.

2.1.2: General Description

The program generates herds and an A.I. unit. Operation
of the herd is then simulated one calendar year at a time with various options for the degree of management interaction. Bulls used can be selected and mated individually or automatically based on their estimated transmitting ability for the four traits, fertility, semen price and whether they are young or proven sires. Each herd can have a different selection index by which sires are chosen and cows are ranked for breeding and culling, a different level of management intensity and a different criterion for culling cows. Each year cows can be removed from the herd for any of three reasons.

health reasons - involuntarily
fertility problems - manager sets criteria
poor production or type - manager sets criteria and/or specific animals

Until a cow is removed from the herd a continuous cycle of parturition, open period and conception is simulated along with alternating between lactation and dry period, as flow charted in figure 2.1. Each year production from completed and partial lactations, feed costs and estimates of producing and transmitting ability are summarized for each cow along with herd averages, income and expenditures.
figure 2.1

find cows status & location in cycle

- estrus
 - observed?
 - yes: breed
 - no: display
 - no: dry period

- lactation

- parturition

- dry period
 - yes: conception?
 - yes: cull
 - no: display
 - no: lactation

- year end?
 - yes: cull
 - no: display

- cull fertility?
 - yes: cull
 - no: display

- culled?
 - yes: adjust records
 - no: display

- dead?
 - yes: adjust records
 - no: display

store status & location in cycle

summary for year
The A.I. bulls are updated at the end of each year. The semen use, daughter records and good bull calves are inputted and semen prices, updated proofs and new young sires are outputted, ready for the next year.

Detailed records including the true breeding values of all animals in the herd and herd summaries are stored for analysis at the end of a simulation. Complete instructions for using the program and sample runs are given in appendices A & B.

2.2: Simulated Events

The core of the simulation is the model for 305 day lactation records and yearly type scores. This has been expanded to simulate actual production on a continuous basis which allows models for other biological functions, economic factors and management to fit in.

2.2.1.1: 305-Day Mature Equivalent Production

The simulation uses a linear model (McGilliard and Edlund, 1979) to generate phenotypic values for the four traits, as follows:

\[P = u + G + E_c + E_{ct} + E_h + E_{ht} \]
where:

\[P \] - phenotypic value for a trait for that lactation or year

\[u \] - the population mean for the trait

\[G \] - the true additive genotypic effect (or deviation)

\[E_c \] - permanent cow environmental effect

\[E_{ct} \] - temporary cow environmental effect

\[E_h \] - permanent herd environmental effect

\[E_{ht} \] - temporary herd environmental effect

In order to have the appropriate correlations between the traits, values for all four traits are generated together from the appropriate standard deviations and correlations. The environmental and genetic effects for production traits are generated in kilograms of mature equivalent milk production. With the exception of permanent herd effects they are generated from a "normal" distribution with a mean of zero. It is assumed that the variability is normally distributed since each effect is dependent on a large number of random factors.

Type scores are generated in type units and since cows in practice are only rescored if there is an improvement, if a phenotypic value for type score is generated that is lower than the previous score the type score is left unchanged.

The temporary herd effects are set at the beginning of
each herd-year, the permanent cow and genetic effects at birth and the temporary cow effects at the beginning of each lactation. The stochastic component of the permanent herd effects is not included since one objective of the simulation is to compare differences between herds. Provisions are made to allow the permanent herd effects to vary with the management intensity of the herd (sec. 2.2.3.5.1.) by means of four predefined management levels.

Intuitive biological explanations can account for some of the variability of each of the effects, but little progress has been made in linking the effects quantitatively to the observed variability.

- Temporary herd effects are the differences in herds from one year to the next due to short term differences in management such as a new milker.
- Permanent herd effects are differences between herds that remain throughout the simulation. They are due to differences in herd management.
- Temporary cow effects are differences between records of the same cow due to the differences in treatment or chance, such as sickness or accident.
- Permanent cow effects are differences between cows in a herd due to anything from dominant or epistatic genetic effects to fetal environment or sickness which occur at an early age and have a lifelong effect.

The genetic correlations between the different traits are due to pleiotrophic gene action where genes have an effect on more than one trait. Environmental correlations arise from
non genetic factors that affect more than one trait.

2.2.1.2: Adjustments

Two factors which are known to be correlated with production are the age of a cow and the degree to which she is inbred. A cow while still growing does not usually produce as much milk as she will once she reaches mature size. In order to estimate breeding values correction factors must be used to predict how much milk she will produce for a 305 day lactation as a mature animal (Lasley, 1972). In terms of the model used (sec. 2.2.1.1) the mean for the temporary cow environmental effects should be negative for young cows. The simulation adjusts the mature equivalent production to actual production by using the inverse of the correction. It allows for correction factors of the three production traits for 2, 3 and 4 year olds.

Inbred cows on average have lower potential production and genetic variability and a higher chance of death or fertility and health problems (McGilliard and Edlund, 1979; Dickerson, 1974). However, extensive checking for inbreeding would have substantially increased the computing costs of running the program, therefore it was treated quite superficially.

For this simulation in the automated mode sire daughter matings are avoided and for specified matings close inbreeding is discouraged. If sire daughter matings occurred the offspring are given reduced permanent cow environmental effects which in this model include dominant and over-dominant
gene effects (sec. 2.2.1.). Other detrimental effects could be included (sec. 4.2.) if the intent was to study inbreeding and its interaction with economic returns.

2.2.1.3: Actual Production

Since the simulation is on a continuous basis for production and herd status is outputted once a year, it is necessary to be able to estimate a cow's production between any two points in her lactation. In order to decide when to dry a cow off it is also necessary to estimate her daily production on any given day.

In biological terms a lactation yield is the sum of the daily production which in turn is determined by the phenotypic characteristics of the animal interacting with the daily environment. However, since the simulation is based on a calendar year and cow level it would have added little to its value to include daily fluctuations and indeed would have been difficult, given the little information available in the literature. Therefore an empirical relationship at the lactation level that best fits most lactations is suitable.

A rapid rise to a peak followed by a gradual decline is typical of a lactation curve and is best described as a gamma type curve. The function given by Wood (1967) to describe the curve appears to give the best fit of equations developed to date (Rowlands et al 1982). It relates average daily yield (Y) at week "n" to "a" a scale constant and "b" and "c" shape constants.
\[Y_n = an^{b-cn} \]

The peak yield occurs at \(b/c \) weeks and is equal to \(a(b/c)^{b-c} \).

The persistency of the lactation can be given by \(c^{-(b+1)} \) (Wood 1967), or more accurately by the second derivative of the original function and substituting "n" as 25 (Rowlands et al 1982).

In order to utilize this function in the simulation it is necessary to be able to estimate the constants for each lactation such that if an animal lactates for 305 days she produces a previously determined amount of milk and constituents.

Data provided by Keown (1984) which relates peak production to 305 day production showed close to a linear relationships within age groups, but cows tend to have higher peak yield and lower persistency as they go from the first to third lactations. Wood (1968 & 1970) observed significant differences in the shape of the lactation curves due to parity.

Therefore to solve for the lactation curve constants "a", "b", and "c" the simulation made the following assumptions:

(1) The 305 day production is linearly related to the peak production.

(2) That the slope and intercept of the regression in (1) varies only with parity and only until the third lactation.
(3) That the week of the peak in production varies only with parity and only to the third lactation. Thus the lactation curve constants for a given cow can be solved for using the week of peak production as a constant for a given age and the 305-day production generated as described in section 2.1. The production between any two points in the lactation can be calculated by integration of Woods equation and using techniques of Chi-Leung Lau (1980) and Pike & Hill (1966) for evaluating the incomplete gamma integral (appendix D).

2.2.2: Reproduction

Reproduction involves generating newly simulated animals and modelling the reproductive process. The simulation of the reproductive process was intended primarily to try to include the major factors and interactions affecting calving interval. It could be modeled much more thoroughly than was done here (sec. 4.4.) if interactions between reproduction and genetic gain was to be studied in detail. Rounsaville (1978) and more recently Morant (1985) and Dijkstra (1985) have simulated reproduction in more detail. Numerous other papers have appeared on relationships between, reproduction, milk yield and management (Seykora, 1983; Reimers et al., 1985; Hansen et al., 1983) making possible even more comprehensive models. This simulation modeled the following factors without variability.

The gestation length is assumed to be constant and is set for a given population. Although in practice there is
variability associated with gestation length it's effect on calving interval is small relative to the variability in estrus detection and conception rates (Fisher et al., 1978; Smith, 1982).

The length of the estrous cycle also has some variability but for this simulation it is assumed to be constant for a population and abnormal cycles are not modeled.

The number of days post partum to first breed a cow is normally a management option. However, matings at less than 50 days increase the chance of an abnormal cycle (Ax, 1982). In the simulation the effects of days postpartum bred on reproduction are not modeled so the minimum days postpartum that a cow can be bred is set as a global parameter (sec. 3.4.2.).

Similarly a short dry period can have an affect on production and reproduction (Goodwill et al., 1984; Dias et al., 1982; Schneider et al., 1981). This also is not modeled so a global restriction is placed on the number of days prior to freshening when a cow must be dried off.

The reproductive simulation models heat detection, conception and the birth of a calf. It begins at the first day a cow is eligible to be bred at which time the day of the estrous cycle that she is in is generated at random. When she reaches estrus the chance of her conceiving is a product of a probability of heat detection and a probability of conception (fig. 2.1). This model assumes that the two probabilities are independent (sec. 4.4).
2.2.2.1: Estrus Detection

The model used to determine the probability of heat detection for a cow was:

\[P = M [C_e + Y (E_m + G_m)] \]

where:

- \(C_e \) - cows factor (sec. 2.2.2.1.1)
- \(M \) - factor depending on the management efficiency (sec. 2.2.3.5.1.)
- \(Y \) - factor which relates potential milk yield to estrus detection rate
- \(E_m \) - permanent cow deviation for milk yield
- \(G_m \) - genetic deviation for milk yield

The largest improvements in reducing the calving interval can usually be made by improving estrus detection (Ax, 1982; Wilcox, 1978). The rate of estrus detection is largely due to the methods and efficiency of the management (Esslemont 1976 and Smith 1982). This simulation allowed for variation in heat detection rate with different management levels. It also allows the probability of estrus detection to vary linearly with potential milk production as Ax (1982) has reported that high producing cows have a higher proportion of silent heats, especially between 60 and 100 days.

2.2.2.2: Conception

The conception rate is determined by the fertility of the
cow, the semen of the bull and perhaps some interaction. Since the nature of any interaction has not been well studied the simulation determines the probability of conception (C) simply as a product of a fertility factor associated with the cow (F) and one associated with the bull (Bf).

\[C = F \times Bf \]

The model used for the cow's fertility factor is:

\[F = C_f + (R \times N) \]

where:

- R - factor to adjust for number of lactations
- N - number lactations for cow
- \(C_f \) - fertility factor generated at birth

(see. 2.2.2.1.1.)

The simulation allows the cows fertility to change with age as Whitmore (1974) has reported the cow fertility factor decreases for successive lactations.

The bulls fertility factor in the simulation is based only on a mean (u) and a random factor (e) from a gamma distribution.

\[Bf = u + e \]

Genetic contributions to fertility are presumed to be small and were not included in the model.

2.2.2.3: Birth of a Calf

The birth of a new calf is the biological event which makes genetic gain possible. It involves modelling of a
number of different factors that are critical to the simulation.

1. The sex of the animal is generated at random assuming an equal probability of male and female.

2. True breeding values are generated from the mean breeding values of their parents and a random factor to account for sampling.

3. If a female further factors are generated.
 (a) A permanent environmental factor is generated (see lactation model, sec. 2.2.1.1.).
 (b) Fertility and heat detection factors \(C \) are generated from a population mean \(u \) and a random factor \(e \) from a gamma distribution.
\[
C = u + e
\]
It is assumed that there is a permanent cow variability and that a gamma distribution approximates it.

2.2.3: Feed Consumption

The model for feed consumption does not take into account all the stochastic variability. It is rather a deterministic model, including only the variability that is due to changes in production or the reproductive status of the cow.

It assumes that yearly costs for a cow vary linearly with only five factors.

\[
FC = (\text{DAYS DRY} \times \text{MD}) + (\text{DAYS LACTATING} \times \text{ML}) + (\text{kg CAR.} \times \text{AC}) + (\text{kg FAT} \times \text{AF}) + (\text{kg PROT.} \times \text{AP})
\]
where:
PHILOSOPHY AND DETAILS

\[FC = \text{feed costs for a year} \]
\[MD = \text{daily cost of maintaining a dry cow} \]
\[ML = \text{daily cost of maintaining a lactating cow} \]
\[\text{CAR.} = \text{carrier (water + minerals + lactose)} \]
\[AC = \text{additional cost per kg of carrier (assumes milk is 5\% lactose and no cost associated with production of water and minerals (Hiller, 1979))} \]
\[AF = \text{additional cost per kg of fat} \]
\[AP = \text{additional cost per kg of protein} \]

Additional costs for a high producing cow over a low producing cow are primarily feed costs to supply the energy to produce the extra milk constituents and health costs. The model allows for any costs that vary linearly with the production of milk or milk constituents, days lactating or days dry to be included.

2.2.3.1: Replacement Heifers

The cost of raising replacement heifers was modeled as follows:

\[HC = CF + CY \]

where:

\[HC = \text{total costs in a calendar year} \]
\[CF = (\text{days year } < 1 \text{ year old}) \times (\text{daily cost for calves}) \]
\[CY = (\text{days year } > 1 \text{ year old}) \times (\text{daily cost for yearlings}) \]

2.2.4: Health and Death

In the simulation it is assumed that the probability of
having to cull a cow for health reasons (P_h) is correlated only with age, producing ability and type score.

$$P_h = A (N) + Y (Gm + Em) + T (Gt + Et)$$

where:

- A = factor relating health to age
- N = number of records
- Y = factor relating health to milk producing ability
- Gm = genetic deviation for milk
- Em = environmental permanent cow deviation
- T = factor relating health to type score
- Gt = genetic deviation for type
- Et = permanent cow environmental deviation for type

Deaths are also assumed to occur at random with the probability (P_d) varying only with age and producing ability.

$$P_d = A (N) + Y (Gm + Em)$$

where:

- A = factor relating probability of death to age
- N = number of records
- Y = factor relating death to milk producing ability
- Gm = genetic deviation for milk
- Em = environmental permanent cow deviation

2.2.5: Management

In order for the simulation to be realistic it must provide management options similar to those available to herd operators.
It must also provide the same sort of information that a herd operator uses to base his decisions on. As well as the past performance and current status of the herd this information includes the projection of unfinished lactations, adjustments of lactations for age, estimation of a cow's producing ability (EPA) and transmitting ability (ETA) and ETA's for A.I. sires.

2.2.5.1: BCA's

The breed class averages (BCA) being given, adjust lactations for age. They are calculated as a percentage of the population mean 305-day mature equivalent production (305-ME) plus a constant to scale the mean to a level comparable to actual populations.

\[
BCA = \left(\frac{M_C}{M_u} \ast 100. \right) + K
\]

where:

\(M_C \) Cows 305-ME

\(M_u \) Population average 305-ME

\(K \) Scaling constant for milk, fat, or protein

2.2.5.2: EPA's

Estimated producing ability (EPA) is an estimate of the cow's producing ability relative to herd-mates and was calculated using the method given by McGilliard (1979).

\[
EPA = \frac{nr}{1 + (n-1)r} \left[\text{Avg. - Herd Avg.} \right]
\]

Where \(n \) = number of records averaged
2.2.5.3: ETA's

The estimated transmitting ability (ETA) of the cows or half the estimated breeding value (EBV) could be calculated using BLUP techniques but at a considerable increase in the cost of running the simulation. Conversely they could be simulated by adding a random error to the true breeding value. However, traditional methods of estimating transmitting abilities are computationally easy and will allow students the opportunity to verify values by hand.

The simulation calculates ETA's of cows and young animals using the method outlined by (Burnside, 1978).

\[\text{ETA} = \frac{1}{2} [\text{EBV}] \]

\[\text{EBV} = \frac{W \cdot \text{Sire's ETA} + W \cdot \text{Dam's ETA} + \text{Cow's Ave.}}{N + A \cdot \text{Dev.}} \]

Where

\[W = \frac{(1 - k)N + A}{N + A} \]

\[A = \frac{(1 - r)}{r - (1 - p)h^2} \]

\[k = \frac{p}{r - (1 - p)h^2} \]

\[N = \text{number of records on the cow} \]

\[p = 1/2 \text{ if sire and dam information available} \]

\[= 3/4 \text{ if only sire or dam information known} \]

\[= 1 \text{ if neither sire nor dam known} \]

\[h^2 = \text{heritability of trait} \]

\[r = \text{ repeatability of trait} \]
2.2.5.4: Simulated Sire Proofs

Since genetic trends are expected in the simulated populations the sire evaluations require use of a "direct sire comparison" method of estimating transmitting ability. A BLUP analysis is expensive in terms of computer time, so the program uses a "direct sire comparison" based on the true breeding values and simulating the error of estimation. Daughter records are outputted in a format suitable for use by many BLUP programs if this method is desired.

In the simulation the error term to be added to the true breeding values depends on the environmental and genetic variances, the number of daughters and the number of herd-years with daughters.

$$\text{ETA} = b(Se + \frac{1}{2} BV)$$

where:

- BV = true breeding value
- Se = simulated error is a random number from a normal distribution with a mean of zero and a standard deviation of "D".
- b = factor which takes into account the heritability, the $1/4$ of the genetic variability from the sire and the number of daughters. It regresses the estimate accordingly.
\[
\begin{align*}
 b &= \frac{4 - h^2}{n + \frac{1}{h^2}} \\
 n &= \text{number of daughters} \\
 h^2 &= \text{heritability}
\end{align*}
\]

where:

\[D^2 = \frac{1}{4} V_g (1 - b) + \frac{1}{n} \left(\frac{1}{2} V_g + V_{Ep} + V_{Et} \right) + \frac{1}{k} (V_{Eh})\]

\[k = \text{number of herds with daughters} \]
\[V_g = \text{genetic variance} \]
\[V_{Ep} = \text{permanent cow environmental variance} \]
\[V_{Et} = \text{temporary cow environmental variance} \]
\[V_{Eh} = \text{temporary herd environmental variance} \]

The ETA's are calculated each year in which a sire has first lactation daughter records. A sire's new ETA is the weighted (by number of daughter records) average of the new and old estimates. As the number of daughters and herds get large the standard error approaches zero and the ETA approaches the true breeding value.

2.2.5.5: Herd Options

The herd options include general management decisions and detailed options for ranking culling and mating animals.

2.2.5.5.1: Management Level

Four levels of management are offered as user options.
These can be set (sec. 3.1.1., 3.2.1.1. and 3.3.1.) to affect any or all of the following herd parameters; the fixed costs, the rate of estrus detection and/or the permanent herd environmental effects.

More intensively managed operations generally have higher operating costs but also higher herd production and more consistent estrus detection.

2.2.5.5.2: Minimum Daily Production

Two levels of minimum daily production are to be set, one for cows that are to be kept in the herd and another for cows to be culled. A pregnant cow will be dryed off earlier than these levels if it is necessary to ensure she has the minimum dry period (sec. 2.2.2.1.2).

2.2.5.5.3: Ranking Criteria

The ranking of cows is used to determine their culling order for low production, to determine how long an open cow is kept and to select top cows for special matings if matings are automated. The rankings are based on a selection index for which the weighting of each trait is chosen. The animal's value for each trait can be based on the current lactation, the estimated producing ability or the estimated transmitting ability.

2.2.5.5.3.1: Culling for Rank to Meet Quota

Low ranked cows are culled each year until production is within a set yearly quota.

If the herd does not use automated decisions an
opportunity is given during the running of the program (appendix B1) to change these culling decisions. As well individual young animals can be selected for selling at the beginning of a simulated year.

2.2.5.5.4: Culling for Fertility

Herd policy with regards to how long to try and breed a cow must be set to one of three options.

1. Set a maximum number of days open and services for all animals.

2. Same as above but with a set number of extra days and services for a group of top ranked animals.

3. Same as (2) but with the extra days and services defined by a function of rank.

2.2.5.5.5: Matings

The options for mating schemes were set such that users could use realistic but general mating schemes or individual matings if desired and time permitted. The herd owner can use young sires, proven sires or both. Three options for selecting matings are offered for both young and proven sires.

1. Individual matings are selected where the user must input a list of bulls and specify which bull to use on each cow. This method can be used to breed the whole herd but would be tedious. It is primarily intended to be used to make matings for potential A.I. sires.
(2) A list of bulls to use are entered along with the proportion to use each. These are then mated randomly in the proportions specified to all cows not mated individually. Sire daughter matings are avoided.

(3) Bulls are selected automatically. The user sets the minimum fertility, the maximum semen price and the method of selection. Selections can be made randomly or based on the top bulls as ranked by the herds selection index. Special matings to produce A.I. sire prospects can also be automated to breed a specified number of top ranked cows to a specified number of top ranked bulls.

2.2.6: Economic Factors

For this simulation all commodity prices are set at the beginning of a simulation and are constant throughout. (For a special use the prices could be changed between years but it would involve recompiling the program.)

(1) Fixed costs which were assumed to include all costs not otherwise accounted for, can be set to give realistic net earnings. Four management levels with four different fixed cost levels are included associated with different heat detection rates and production levels.

(2) Feed costs which include a cost per kg for carrier, fat, and protein and a price per day for lactating cows, dry cows, yearlings and calves.

(3) Other costs which include a base price for semen and the cost of transporting milk.
(4) Milk price which includes a base price for quota milk and excess milk, fat and protein differentials and the critical level of fat and protein for those differentials.

(5) Prices for culled cows based on the reason for removal, either production or type, fertility, health or death.

(6) Prices for other animals removed including new young sires, other bull calves, heifer calves, year old heifers and two year old heifers.

2.2.6.1: Semen Price

Semen price can effect management breeding decisions. The simulation assumed that the price depends primarily on supply and demand, the amount of semen a bull produces and how much is used and that the price increases exponentially as the available semen approaches zero. The model used is:

\[Ps = B + \left(\frac{U^2}{K} \right) \]

where:

- \(Ps \) - price of semen
- \(B \) - base price
- \(U \) - vials of semen used in a year
- \(K \) - constant dependent on the average semen production and the population size

In order to prevent large fluctuations in price, the price is averaged with the previous year.
Chapter 3. PARAMETERS USED AND EVALUATION OF THEIR ADEQUACY

In order to model a population the program must be initialized with parameters for the modeled events. The simulation program assumes that the instructor or researcher initializing the program to simulate a specific population has an understanding of dairy cattle breeding and management and understands the parameters required. Initialized values that are unrealistic may cause unrealistic results or the program to fail (in contrast with unrealistic decision options made while running the program, sec. 1.3.1.1.3.(4)).

Ideally all parameters should be taken from accurate data on the population to be simulated and should be supported in the literature by values within which the estimated values fall. However, where data are lacking, values from the literature must be used and in cases where literature values are variable or nonexistent intuition must be employed. This chapter provides initialization values for simulating a Fraser Valley dairy cattle population, explains how they were arrived at and discusses their adequacy.

3.1.1: Mature Equivalent 305 Day Production and Type

The population means and the genetic and environmental standard deviations (table I) and covariances (table II) for 305-day production of milk, fat and protein are taken from
British Columbia Dairy Herd Improvement (BCDHI) data compiled in 1980 on 27,000 first lactation records (Peterson, 1980). The population means and the heritabilities (table IV) calculated from the variances all are within the ranges found in the literature (Wilcox et al., 1978).

The BCDHI data did not include type scores so the mean and standard deviations for type score were taken from the program of McGilliard and Edlund (1979).

The values for the four sets of permanent herd environmental effects corresponding to the four management levels were set so that higher levels resulted in slightly higher production (table III). The management choices for this population are assumed to primarily affect the hours of daily labour for the purposes of heat detection (sec 3.5.2.2). Since the effect these changes have on milk production are not well defined a small additional cost was assumed to result in a slight increase in herd production (table III).

3.1.2: Adjustments

To calculate actual 305 day production from mature equivalent production for younger animals the inverse of age correction factors used by the BCDHI in calculating BCA's (table III) was used.

Estimates in the literature of the effects of inbreeding on production are quite variable (Dickerson, 1974). McGilliard and Edlund (1978) suggest a value slightly less than one standard deviation of the permanent cow effects (table III).
table I

<table>
<thead>
<tr>
<th>GENERAL DESCRIPTION</th>
<th>PROGRAM VARIABLE NAME</th>
<th>INITIALIZED VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population averages</td>
<td>AVG</td>
<td></td>
</tr>
<tr>
<td>305-day yield</td>
<td>milk</td>
<td>7200.0 kg</td>
</tr>
<tr>
<td></td>
<td>fat</td>
<td>260.0 kg</td>
</tr>
<tr>
<td></td>
<td>protein</td>
<td>230.0 kg</td>
</tr>
<tr>
<td>type score</td>
<td></td>
<td>80.0</td>
</tr>
</tbody>
</table>

Standard Deviations
- genetic
 - milk GSD 413.0
 - fat 18.2
 - protein 12.8
 - type 1.66

- permanent cow
 - milk PCESD 393.0
 - fat 12.6
 - protein 11.9
 - type 1.64

- temporary cow
 - milk TCESD 510.0
 - fat 18.6
 - protein 15.4
 - type 1.56

- temporary herd
 - milk THESD 255.0
 - fat 11.2
 - protein 7.7
 - type 1.13

3.1.3: Actual Production

The lactation curve parameters (table IV) have not been estimated in the Fraser Valley population. Although there are some estimates in the literature these parameters could be significantly variable between populations. However, for the current simulation the precise shape of the lactation curve is
not critical (sec. 4.3.).

The parameters to define the relationship between peak and 305 day yield are calculated from data by Koong (1984).

Table II

<table>
<thead>
<tr>
<th>GENERAL DESCRIPTION</th>
<th>VARIABLE NAME</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlations between traits</td>
<td>environmental</td>
<td>ESIGMA</td>
</tr>
<tr>
<td>milk - milk</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>milk - fat</td>
<td>0.83</td>
<td></td>
</tr>
<tr>
<td>fat - fat</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>milk - protein</td>
<td>0.96</td>
<td></td>
</tr>
<tr>
<td>fat - protein</td>
<td>0.78</td>
<td></td>
</tr>
<tr>
<td>protein - protein</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>milk - type</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>fat - type</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>protein - type</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>type - type</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Correlations between traits</td>
<td>genetic</td>
<td>GSIGMA</td>
</tr>
<tr>
<td>milk - milk</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>milk - fat</td>
<td>0.54</td>
<td></td>
</tr>
<tr>
<td>fat - fat</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>milk - protein</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>fat - protein</td>
<td>0.81</td>
<td></td>
</tr>
<tr>
<td>protein - protein</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>milk - type</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>fat - type</td>
<td>-0.15</td>
<td></td>
</tr>
<tr>
<td>protein - type</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>type - type</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>
PARAMETERS

<table>
<thead>
<tr>
<th>Program</th>
<th>Initialized Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HELVL</td>
<td>150.0</td>
</tr>
<tr>
<td></td>
<td>6.6</td>
</tr>
<tr>
<td></td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>50.0</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>-50.0</td>
</tr>
<tr>
<td></td>
<td>-2.2</td>
</tr>
<tr>
<td></td>
<td>-1.5</td>
</tr>
<tr>
<td></td>
<td>-0.2</td>
</tr>
<tr>
<td></td>
<td>-150.0</td>
</tr>
<tr>
<td></td>
<td>-6.6</td>
</tr>
<tr>
<td></td>
<td>-4.5</td>
</tr>
<tr>
<td></td>
<td>-0.6</td>
</tr>
</tbody>
</table>

Table III

<table>
<thead>
<tr>
<th>General Description</th>
<th>Program</th>
<th>Variable Name</th>
<th>Initialized Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permanent herd effects for management levels</td>
<td>HELVL</td>
<td>milk</td>
<td>150.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fat</td>
<td>6.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>protein</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>type</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>HELVL</td>
<td>milk</td>
<td>50.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fat</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>protein</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>type</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>HELVL</td>
<td>milk</td>
<td>-50.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fat</td>
<td>-2.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>protein</td>
<td>-1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>type</td>
<td>-0.2</td>
</tr>
<tr>
<td></td>
<td>HELVL</td>
<td>milk</td>
<td>-150.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fat</td>
<td>-6.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>protein</td>
<td>-4.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>type</td>
<td>-0.6</td>
</tr>
</tbody>
</table>

Age adjustments (fraction of mature equivalent) AGEAJM

<table>
<thead>
<tr>
<th>Age adjustment</th>
<th>Program</th>
<th>Variable Name</th>
<th>Initialized Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 2 years - milk</td>
<td>0.7195</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 2 years - fat</td>
<td>0.7154</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 2 years - protein</td>
<td>0.7195</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 - 3 years - milk</td>
<td>0.8368</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 - 3 years - fat</td>
<td>0.8380</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 - 3 years - protein</td>
<td>0.8368</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 - 4 years - milk</td>
<td>0.9197</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 - 4 years - fat</td>
<td>0.9243</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 - 4 years - protein</td>
<td>0.9197</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 4 years - milk</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 4 years - fat</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 4 years - protein</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Penalty for sire daughter matings PINB

<table>
<thead>
<tr>
<th>Program</th>
<th>Initialized Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>milk</td>
<td>103.0</td>
</tr>
<tr>
<td>fat</td>
<td>4.26</td>
</tr>
<tr>
<td>protein</td>
<td>3.2</td>
</tr>
<tr>
<td>type</td>
<td>0.41</td>
</tr>
</tbody>
</table>
Table IV

<table>
<thead>
<tr>
<th>GENERAL DESCRIPTION</th>
<th>PROGRAM VARIABLE NAME</th>
<th>INITIALIZED VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactation curve</td>
<td>BSLP</td>
<td>4.6395 E-3</td>
</tr>
<tr>
<td>peak - 305 day yield</td>
<td></td>
<td></td>
</tr>
<tr>
<td>slopes</td>
<td>lactation 1</td>
<td>4.8904 E-3</td>
</tr>
<tr>
<td></td>
<td>lactation 2</td>
<td>4.9499 E-3</td>
</tr>
<tr>
<td></td>
<td>lactation 3</td>
<td></td>
</tr>
<tr>
<td>intercepts</td>
<td>ACMT</td>
<td>-2.83</td>
</tr>
<tr>
<td></td>
<td>lactation 1</td>
<td>-2.28</td>
</tr>
<tr>
<td></td>
<td>lactation 2</td>
<td>-2.7</td>
</tr>
<tr>
<td>weeks to peak</td>
<td>WKPK</td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td>lactation 1</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td>lactation 2</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td>lactation 3</td>
<td></td>
</tr>
<tr>
<td>Other biological parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gestation length (days)</td>
<td>GEST</td>
<td>283.0</td>
</tr>
<tr>
<td>estrous cycle (days)</td>
<td>DCYC</td>
<td>21.0</td>
</tr>
<tr>
<td>estrus detection rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mean potential</td>
<td>HDCM</td>
<td>0.75</td>
</tr>
<tr>
<td>standard deviation</td>
<td>HDCSD</td>
<td>0.01</td>
</tr>
<tr>
<td>effect milk</td>
<td>HDMLK</td>
<td>-2.0 E-5</td>
</tr>
<tr>
<td>management efficiency</td>
<td>HRDET</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>level 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>level 2</td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td>level 3</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td>level 4</td>
<td>0.45</td>
</tr>
<tr>
<td>fertility cows</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mean</td>
<td>FERTM</td>
<td>0.75</td>
</tr>
<tr>
<td>standard deviation</td>
<td>FERSD</td>
<td>0.01</td>
</tr>
<tr>
<td>effect records</td>
<td>FEREC</td>
<td>-0.015</td>
</tr>
<tr>
<td>death rates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cows basic</td>
<td>DTRATE</td>
<td>9.0 E-3</td>
</tr>
<tr>
<td>effect milk</td>
<td>DTMLK</td>
<td>2.0 E-6</td>
</tr>
<tr>
<td>effect records</td>
<td>DTREC</td>
<td>1.2 E-2</td>
</tr>
<tr>
<td>yearlings</td>
<td>DTYLG</td>
<td>2.0 E-2</td>
</tr>
<tr>
<td>calves</td>
<td>DTCF</td>
<td>4.0 E-2</td>
</tr>
<tr>
<td>unborn calves</td>
<td>DTUB</td>
<td>1.0 E-2</td>
</tr>
<tr>
<td>health culling rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>basic</td>
<td>HTL</td>
<td>1.9 E-2</td>
</tr>
<tr>
<td>effect milk</td>
<td>HTMLK</td>
<td>2.0 E-6</td>
</tr>
<tr>
<td>effect records</td>
<td>HTREC</td>
<td>2.9 E-2</td>
</tr>
<tr>
<td>effect type</td>
<td>HTYP</td>
<td>-2.0 E-3</td>
</tr>
</tbody>
</table>
The number of weeks until peak production for the different parities are estimates based on information in the literature. Rowlands and Lucey (1983) reported for a population of British Friesians where mature cows averaged 6300 kg 305-day milk that the number of weeks until peak production averaged 9.8, 6.8 and 7.1 weeks for first, second and third or greater lactations respectively. Earlier data (Wood, 1970) had lower values but the number of weeks until peak production decreased from the second to third lactations. Wood (1980) also showed that higher producing animals generally have later peaks. Therefore since the average production in the Fraser Valley is 7200 kilograms, values slightly higher than those reported have been used (table IV).

3.2.1: Reproduction

The length of gestation and of the estrous cycle (table IV) are average values for Holsteins in the literature. These are adequate for the current simulation (sec. 2.2.1.2.).

3.2.1.1: Visibility of Estrus

The values for estrus detection are mostly based on papers by Esslemont (1976) and Williamson et al (1972). They suggest that estrus detection rates range from 35 percent to 75 percent with the average about 55 percent. The parameters given in table IV for the model (sec. 2.2.2.1.2.1.) result in estrus detection rates that span the suggested range. Due to lack of information available the values for the stochastic variability (HDCSD) and the relation to milk yield (HDMLK) are
based only on intuition.

3.2.1.2: Conception

The conception rate is the product of the cows fertility factor (table IV) and the bulls fertility factor (table VII). Smith (1982) suggest that conception rate for a herd can vary from 41 to 61 percent, while the mean conception rate is about 50 percent (Roundsaville, 1978). For this simulated population the conception rate was 52.5 percent for heifers and decreased 2 percent after each lactation.

3.2.2: Health and Death

Death rates (table VI) used Canadian record of performance (R.O.P.) data in 1975 summarized by Westell (1980) as no other data was found. He reported that the percent of cows being removed from the herd for death, sickness, bloat and poison were 0.98, 2.36, 3.71 for cows in their first, second and third or greater lactations respectively.

Removals for health reasons (table VI) for this simulated population were assumed to include those removed for udder breakdown, injury, mastitis, feet and legs, temperament, slow milking and other undefined reasons. In Westell's data the percent of removals for these reasons were 1.85, 4.77 and 7.90 for first, second and third or greater lactations. No other comparable data was found.
Economic Parameters

<table>
<thead>
<tr>
<th>General Description</th>
<th>Variable Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economic parameters</td>
<td>base semen price</td>
<td>MPSEM 15</td>
</tr>
<tr>
<td>fixed costs</td>
<td>level 1</td>
<td>CFIX 39935.</td>
</tr>
<tr>
<td></td>
<td>level 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>level 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>level 4</td>
<td></td>
</tr>
<tr>
<td>feed costs per:</td>
<td>kg carrier</td>
<td>FDCAR 2.80 E-2</td>
</tr>
<tr>
<td></td>
<td>kg fat</td>
<td>FDFAT 1.2906</td>
</tr>
<tr>
<td></td>
<td>kg protein</td>
<td>FDPRO 0.6730</td>
</tr>
<tr>
<td></td>
<td>day lactating</td>
<td>FDAY 1.2823</td>
</tr>
<tr>
<td></td>
<td>day dry</td>
<td>FDRY 1.6880</td>
</tr>
<tr>
<td></td>
<td>day - yearling</td>
<td>FDYLG 1.0434</td>
</tr>
<tr>
<td></td>
<td>day - calf</td>
<td>FDYCF 0.8211</td>
</tr>
<tr>
<td>cost transporting milk</td>
<td>CTRNP</td>
<td>1.34 / hl.</td>
</tr>
<tr>
<td>price quota milk</td>
<td>PQMLK</td>
<td>52.34</td>
</tr>
<tr>
<td>price excess milk</td>
<td>PEXMLK</td>
<td>38.18</td>
</tr>
<tr>
<td>fat differential</td>
<td>PFAT</td>
<td>4.80</td>
</tr>
<tr>
<td>critical fat/ hl.</td>
<td>CRFAT</td>
<td>3.60</td>
</tr>
<tr>
<td>protein differential</td>
<td>PPROT</td>
<td>0.0</td>
</tr>
<tr>
<td>critical protein / hl.</td>
<td>CRPROT</td>
<td>0.0</td>
</tr>
<tr>
<td>price for cow culled for:</td>
<td>PCOWP</td>
<td>520.</td>
</tr>
<tr>
<td>production</td>
<td>PCOWF</td>
<td>520.</td>
</tr>
<tr>
<td>fertility</td>
<td>PCOWH</td>
<td>300.</td>
</tr>
<tr>
<td>health</td>
<td>PCOWD</td>
<td>0.0</td>
</tr>
<tr>
<td>death</td>
<td></td>
<td></td>
</tr>
<tr>
<td>price for:</td>
<td>young sire</td>
<td>PYSP 1000.</td>
</tr>
<tr>
<td></td>
<td>bull calf</td>
<td>PCFB 50.</td>
</tr>
<tr>
<td></td>
<td>heifer calf</td>
<td>PCFH 100.</td>
</tr>
<tr>
<td></td>
<td>year old heifer</td>
<td>PCFO</td>
</tr>
<tr>
<td></td>
<td>two year old heifer</td>
<td>PYLG</td>
</tr>
</tbody>
</table>
3.3.1: Fixed Costs

Fixed costs (table V) were set to give realistic net incomes for herds and to give appropriate differences in labour costs. The differences in labour suggested by Rounsaville (1978) were used as a guideline. Level 4 assumes no time spent specifically for heat detection. The other levels 3 to 1 assume 1, 2 or 3 half hour or more periods in the day spent observing for estrus behavior. Presumably the periods are chosen from most to least convenient so costs per day of each period were assumed to be $5.00, $6.00 and $8.00. These costs were converted to a yearly basis. An additional $1000 associated with increasing production (sec. 3.3.1.) is added for each increase in level.

3.3.2: Feed and Maintenance Costs

Feed costs for maintenance and production (table V) are based on energy requirements and the price of feeds. The metabolizable energy (ME) required to produce milk constituents have been estimated (Hillers et al., 1979) to be 16.3, 8.5, 6.6 and 0.0 megacalories (Mcal) for fat, protein, lactose and minerals and water respectively. Carrier is assumed to be minerals, water and 5 percent lactose. The ME requirements for maintenance were taken from National Research Council tables (NRC, 1978). The ration was assumed to be 60% alfalfa hay and 40% concentrate, with the exception of dry cows being fed only alfalfa. Given the Mcal per kg (Shelford, 1982) and the current prices of alfalfa hay and dairy concentrate and assuming 10% feed wastage, a cost per
Mcal was calculated.

alfalfa hay 2.20 Mcal ME/kg $16.12/100 kg $0.07327/Mcal ME
dairy 2.95 Mcal ME/kg $20.75/100 kg $0.07037/Mcal ME
concentrate

ration x 1.1 (10% waste) $0.07931/Mcal ME

This was used in calculating the costs of the energy required for maintenance and production.

3.3.2.1: Yearlings and Calves

The model for the costs of rearing heifers (table V) is a simplistic one consisting only of an average daily cost for calves and yearlings. These values are calculated from ME requirements (NRC 1978) and the cost per Mcal of ME for the ration above.

3.3.3: Milk Price

The prices for quota milk, excess milk and fat differential (table V) are the prices in the Fraser Valley as of November 1985. No differential is paid for protein.

Transportation costs are the current costs of shipping milk in dollars per hectoliter

3.3.4: Price for Sold Animals

Prices for animals sold approximate current beef prices in the Fraser Valley.
3.4: Additional Management Information

table VI

<table>
<thead>
<tr>
<th>MANAGEMENT AID PARAMETERS</th>
<th>HERT</th>
<th>REP</th>
</tr>
</thead>
<tbody>
<tr>
<td>heritabilities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>milk</td>
<td>0.26</td>
<td>0.50</td>
</tr>
<tr>
<td>fat</td>
<td>0.34</td>
<td>0.51</td>
</tr>
<tr>
<td>protein</td>
<td>0.27</td>
<td>0.51</td>
</tr>
<tr>
<td>type</td>
<td>0.30</td>
<td>0.59</td>
</tr>
<tr>
<td>repeatabilities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>milk</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>fat</td>
<td>0.51</td>
<td></td>
</tr>
<tr>
<td>protein</td>
<td>0.51</td>
<td></td>
</tr>
<tr>
<td>type</td>
<td>0.59</td>
<td></td>
</tr>
</tbody>
</table>

minimum days:
- to first mating; BRDMIN 50.0
- dry; DRYMIN 50.0
- to project lactation; DPROJ 90.0
- breed heifers (+730); DFBRD -120.0

deviation of base BCA's IAJBCA
- milk 37
- fat 36
- protein 35
- type 0

3.4.1.1: Projection of Lactation Record

Lactations that are in progress more than 90 days (table VI) are projected to 305 days as is currently done for Fraser Valley herds which participate in the BCDHI program. In the simulation the actual 305 day production records generated previously (sec. 2.2.1.1) are printed out for herds with printed output.

3.4.1.2: Adjustment for BCA Units

The adjustment to give realistic BCA units (table VI) are taken from the BCDHI data (1980).
3.4.1.3: Repeatabilities

The repeatabilities (table VI) used are supported in the literature (Wilcox et al., 1978). They are used in calculating EPA's.

3.4.1.4: Heritabilities

The heritabilities are used in calculating ETA's and were taken from the BCDHI data (1980) and are in agreement with values in the literature (Wilcox et al., 1978).

3.4.2: Population Decisions

Some management parameters are held constant for the population because of limitations in the simulation models (sec. 4.4).

3.4.2.1: Minimum Days Post Partum to Breed

The first day post partum that an animal was eligible to breed (table VI) was based on recommendations in the literature. Traditionally this has been 60 days, however, current recommendations are between 45 and 55 days (Smith, 1982). Smith (1982) also reports that studies using progesterone analysis or television cameras have demonstrated that 85 to 90 percent of cows are cycling normally by 50 days post partum.

3.4.2.2: Minimum Dry Period

The minimum dry period (table VI) is set at a level that does not seriously affect production in the next lactation as this effect was not simulated. The optimum dry period depends
on the condition of the animal and can range from 23 to 76 days (Dias and Allaire, 1982). Recommendations for herd policy have been as low as 40 days (Ax, 1982), however, 50 days is more widely accepted.
3.5: Setup

The program to generate the herds and A.I. unit (SETUP Appendix D.1) requires that the initial herd decision options be specified.

<table>
<thead>
<tr>
<th>MANAGEMENT DECISION OPTIONS</th>
<th>VARIABLE NAME</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herd number (set to zero)</td>
<td>PARM HERD</td>
<td>0.0</td>
</tr>
<tr>
<td>code (set to zero)</td>
<td>PARM CODE</td>
<td>0.0</td>
</tr>
<tr>
<td>initial year</td>
<td>PARM INITIAL YEAR</td>
<td>-2.0</td>
</tr>
<tr>
<td>operating mode. seed</td>
<td>PARM OPERATING MODE</td>
<td>2.2</td>
</tr>
<tr>
<td>select criteria. management level</td>
<td>PARM SELECT</td>
<td>2.2</td>
</tr>
<tr>
<td>index weights</td>
<td></td>
<td></td>
</tr>
<tr>
<td>milk</td>
<td>PARM MILK</td>
<td>0.5</td>
</tr>
<tr>
<td>fat</td>
<td>PARM FAT</td>
<td>0.5</td>
</tr>
<tr>
<td>protein</td>
<td>PARM PROTEIN</td>
<td>0.0</td>
</tr>
<tr>
<td>type</td>
<td>PARM TYPE</td>
<td>0.0</td>
</tr>
<tr>
<td>cull fertility</td>
<td></td>
<td></td>
</tr>
<tr>
<td>days open</td>
<td>PARM DAYS OPEN</td>
<td>200.0</td>
</tr>
<tr>
<td>services</td>
<td>PARM SERVICES</td>
<td>5.0</td>
</tr>
<tr>
<td># cows to get extra</td>
<td>PARM EXTRA COWS</td>
<td>0.0</td>
</tr>
<tr>
<td>exponent rank</td>
<td>PARM RANK</td>
<td>0.0</td>
</tr>
<tr>
<td>extra days</td>
<td>PARM EXTR DAYS</td>
<td>0.0</td>
</tr>
<tr>
<td>extra services</td>
<td>PARM EXTR SERVICES</td>
<td>0.0</td>
</tr>
<tr>
<td>daily production to dry off</td>
<td>PARM DRY OFF</td>
<td>7.0</td>
</tr>
<tr>
<td>daily production to cull</td>
<td>PARM CULL</td>
<td>12.0</td>
</tr>
<tr>
<td># proven sires . method selection</td>
<td>PARM PROVEN</td>
<td>10.2</td>
</tr>
<tr>
<td>max semen price . min fertility</td>
<td>PARM SEMEN</td>
<td>100.2</td>
</tr>
<tr>
<td># young sires . method selection</td>
<td>PARM YOUNG</td>
<td>3.3</td>
</tr>
<tr>
<td>% young sires . # bulls-young bulls</td>
<td>PARM YOUNG BULLS</td>
<td>30.02</td>
</tr>
<tr>
<td># cows-bulls . method selection</td>
<td>PARM COWS-BULLS</td>
<td>10.2</td>
</tr>
<tr>
<td>Quota</td>
<td>PARM QUOTA</td>
<td>1500.</td>
</tr>
<tr>
<td>Excess</td>
<td>PARM EXCESS</td>
<td>500.</td>
</tr>
<tr>
<td>number herds (always set to 1)</td>
<td>PARM HERDS</td>
<td>1.0</td>
</tr>
</tbody>
</table>

AI program specific parameters

<table>
<thead>
<tr>
<th>BULL FERTILITY FACTOR</th>
<th>VARIABLE</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean</td>
<td>BFM</td>
<td>0.7</td>
</tr>
<tr>
<td>standard deviation</td>
<td>BFSD</td>
<td>0.1</td>
</tr>
<tr>
<td>years before used</td>
<td>UYR</td>
<td>1.0</td>
</tr>
<tr>
<td>age removed</td>
<td>DYR</td>
<td>15.0</td>
</tr>
<tr>
<td>cows in the population</td>
<td>TCOV</td>
<td>750.0</td>
</tr>
</tbody>
</table>
3.5.1: Decision Options

3.5.1.1: Initial Year

The number of years that are to be run before summaries are saved for analysis is specified by starting the simulation at a negative year. Summaries are not stored until year one.

3.5.1.2: Operating Mode

Two operating modes are provided.

(1) Full output mode allows more specific user options and prints a hard copy of the herds year end status.

(2) Automated mode gives no printed output.

The automated mode is primarily for running "control" herds or for using the program for research. However, when generating the initial population all herds should be set to automated mode and run for two years to allow bulls to get proofs.

The seed to initialize the random number generators can be: (1) user specified; or (2) automatically selected from the time of day clock. The user specified seed is used only to duplicate a run if problems arise.

3.5.1.3: Management Level

The management level can be set at levels 1 to 4 for excellent to poor management respectively. More intensively managed operations usually have higher operating costs (sec. 3.3.1.) but also higher production (sec. 3.1.1.) and more consistent estrus detection (sec. 3.2.2.1.). Generally the herds should be set up with a moderate level of management.
3.5.1.4: Selection Criteria

Selection and culling of animals may be based on one of three criteria: (1) the current lactation; (2) the EPA; or (3) the ETA.

3.5.1.5: Selection Index

The weightings on each trait for the selection index should be set to sum to 1. (During the running of the program values entered are automatically adjusted to sum to 1)

3.5.1.6: Minimum Daily Production

At a certain level of production it is no longer economical to continue milking a cow. This level of daily production is set independently for cows that are pregnant and cows that are to be culled.

3.5.1.7: Culling for Fertility

Three options are provided for determining the maximum days or services a cow is allowed to be open before she is culled.

(1) Set constants for all animals.
(2) Set two levels one for a specified number of top cows and another for the rest.
(3) Allow the maximums to be determined as a function of the cows rank.

Cows are not ranked when the herds are set up and so the days and services should be set to constants initially. They
should not be set too low in order for herd sizes to be maintained.

3.5.1.8: Breeding Scheme

The breeding scheme involves setting the number of proven bulls, their maximum semen price and minimum fertility, the number of young sires and the proportion to use them and the number of top cows to mate to a number of top bulls to produce potential young sires. Three methods are provided for selecting the animals in each group.

(1) Individual selection (not in automated herd).
(2) Selection by index rank.
(3) Randomly selection.

When the herds are set up all selections should be made randomly to ensure that all bulls get proofs.

3.5.2: Quota

The quota for all herds in the simulation must also be set when the herds are generated. It is assigned based on the approximate size and average production of the herds to be simulated. For testing only about 30 cow herds were desired.

3.6: A.I. Unit

To update AI bulls a few more parameters need to be defined (table VII).
3.6.1: Bull Fertility

The relative contribution of the bull and the cow to conception is unknown. The important criteria is the product of the two fertility factors, the conception rate (sec 3.2.1.2.).

3.6.2: Ages

The age at which a bull can first be used as a young sire is usually one year. He is then not used until he obtains a proof. In order to limit the size of an AI unit the bulls can be removed at a certain age.

3.6.3: Number of Cows

This is a rough estimate of the number of cows in the population which in this case is 24 herds times about 30 cows per herd. It is used to weight the bulls relative semen use for calculating the price (2.2.4.1.).

3.6.4: Semen Cost

The base semen price is the minimum cost in the Fraser Valley. The weighting factor depends on the approximate size of the population to be simulated.
Chapter 4. **POTENTIAL IMPROVEMENTS**

Any simulation of a biological system is never complete because the models used can always be refined to a more complex level. However refinements may not necessarily be better at the present time. Three considerations should be made.

1. Are the refinements beneficial to the goals of the simulation?
2. Are the available computing facilities capable of handling the increased complexity?
3. Is there sufficient information to model the system at a more refined level?

Testing and use of this simulation should reveal many desirable improvements. More research and recording of information in the field will make available more accurate parameters and give a basis for more detailed and reliable models.

This chapter discusses some potential improvements that have been suggested during the development write up and preliminary testing (table VIII and Appendix B1) of the program.

4.1: 305-Day Production and Type Score

The model used for generating 305-day lactation records and type scores (sec. 2.2.1.1.) is an empirical one, the basis
of which has been validated by Freeman (1976). In its current form most of the components of the model are stochastic parameters which model accurately but do not explain the variability.

The exception is the model proposed for the permanent herd effects, which allows the permanent herd effects to be related to up to four specific changes in management. This model is an intuitive one but it attempts to explain some of the variability between herds. It could for example be used to compare different types of housing, feeding practices or climatic conditions provided their effects on production and type scores have been measured. Further research is needed to identify in a quantitative fashion the effects of all management practices on economically important traits. This should also provide the basis for more complex and accurate models.

Further research is also needed to find quantitative relationships between other management or biological factors (sec. 2.2.2.) and all of the stochastic parameters in the model to allow a more comprehensive simulation. e.g. Health problems and the temporary cow environmental effects.

The model used for 305-day lactation record and type could be expanded to include other traits such as different type scores if it was desired and estimations of the variability and correlations were available.
4.2: Adjustments

Corrections for age could be more accurate if a linear function that best fits the observed values was used rather than the defined factor for each age (sec. 2.2.1.2).

The model for correcting production and type for inbreeding (sec. 2.2.1.2) could be extended to include known effects of inbreeding depression such as increased probabilities of health problems and death. It could also be extended to include all levels of inbreeding. However, extensive checking for inbreeding would result in the program requiring considerably more computer memory and a longer execution time.

4.3: Lactation Curve

The reasons for including the lactation curve in the simulation was to give an estimate of production for lactations that are not 305 days in length and for a portion of a lactation interrupted by a year end. For the current purposes of the simulation the parameters and model used are adequate, improvements would have a small effect on the results (sec. 2.2.1.3).

However, if the simulation was expanded to include season effects or to model management or feeding in more detail the lactation curve should be estimated more precisely.

(1) Parameters relating age and 305 day production to the week of peak production and actual peak production need to be estimated for the specific population being simulated.
(2) Wood (1977) has demonstrated that his equation can also be used to give the production between two points for fat and protein. This would require that the relationships in (1) above be estimated independently for fat and protein.

(3) Many other factors have been shown to affect the shape of the lactation curve such as pregnancy (Bar-Anan, 1981), length of dry period, sickness or injury and feeding. If these factors were to be taken into account they would explain part of the temporary cow variability (sec. 2.2.1.) and the appropriate reduction in the stochastic variability would have to be estimated or adjustments made to the lactation curve.

4.4: Reproduction

The reproductive process was included in the simulation primarily to model the calving interval and its interaction with management and with the level of production. The adequacy of the model (sec. 2.2.2.1.2) can be measured by comparing calving intervals with values reported in the literature. Smith (1982) provided data showing that improving heat detection rates from 35 to 75 percent shortens the calving interval by 19 days on average. These rates of heat detection are comparable to management levels 1 and 4 of the simulation with the parameters supplied (table IV). A preliminary test run of the simulation (table VIII) gave average differences in calving intervals between levels 1 and 4 of 26 days.
The first three culling policies in the test run (table VIII) are the same as those used by Rounsaville (1978) in a reproductive simulation in which he obtained comparable calving intervals. Culling policies 4 to 6 indicate that with intensive culling 365 day calving intervals should be possible. Further use and fine tuning of the fertility and estrus detection parameters used should reveal more fully the adequacy of the models used.

Table VIII

<table>
<thead>
<tr>
<th>TEST RUN MEANS¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calving interval</td>
</tr>
<tr>
<td>- all herds</td>
</tr>
<tr>
<td>- management level 1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>- culling policies 1</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

¹Results are from the test run (appendix B1) with 24 herds of 30 cows each, simulated for 7 years using parameters from Chapter three. (Conception rate averaged 0.505 and all four management levels were used.)

Improvements could be made with the current model if more estimates of stochastic parameters linking additional herd management costs to improvements in estrus detection and fertility were available.

A more detailed modelling of the reproductive process
could also improve the simulation.

1. Embryonic losses could be included.
2. Abnormal cycles together with their probability could be modeled.
3. The variability of fertility and estrus detection rate within lactations have significant effects and should be modeled if more detailed herd management is included in the simulation.
4. Breeding by embryo transplant is a possible addition to the reproductive simulation that would be useful for teaching and research.

4.5: Feeding

Feed consumption was included primarily as a basis for calculating a selection index and to give an estimate of costs. For these purposes the models used (sec. 2.2.2.2) are adequate, however, some simple improvements could be made.

1. A ration which has a roughage to concentrate ratio that varies with the level of production as higher producing cows are normally fed a higher proportion of more expensive concentrates in order to meet their energy requirements.
2. The energy required for growth of young cows in their dry period should be included.
3. The daily costs of young animals could be modeled more accurately as a function of age rather than the arbitrary distinction between 1 and 2 year olds.

Expansion of the simulation to allow it to be used in teaching
or research of nutrition or feeding management is possible.

(1) An additional subroutine could be added to the simulation to allow least cost ration formulation prior to simulating the year. This would be useful for studying the cost effectiveness of least cost ration formulation.

(2) A more comprehensive simulation could involve modelling the effects of the ration content and feeding practices on the lactation curve and milk yield if appropriate models are available.

(3) The variability in body weight could be modeled as it has a significant relationship with feed consumption (Wilcox et al., 1978). This would allow feed costs to be tied to body weight.

4.6: Health and Death

An omission that would be simple to add is to allow for interactions between management level and the rate of health problems and deaths.

A further expansion of the simulation would be to model the interactions between health problems and the shape of the lactation curve.

4.6: Economics

All prices except semen are modeled as fixed prices (sec. 2.2.4) which is adequate since other market factors affect these prices more than dairy operators decisions. The model for semen prices is only an intuitive one and probably should be improved. Logical expansions of the simulation would be to allow the buying and selling of cows for dairy purposes and
the buying and selling of quota. These factors would require a model for the interaction of prices with supply and demand and perhaps other factors.

4.7: Management

The major short coming of the program from a management point of view is the decision of when to cull a cow for fertility. Realistically it should be partially based on whether the herd is over or under quota. The current model (sec. 2.2.3.5.4) allows the decision to vary only with the rank of the cow in the herd. This causes severe problems when using low levels of heat detection and intensive culling for fertility (appendix B). It can result in the herd size becoming severely reduced and quota not being met. One solution is to place limits on the fertility culling specifications allowed. A much more satisfactory solution would be to postpone final culling decisions on open cows in the simulation until herd production is estimated (appendix C), which is when other voluntary culling decisions are made. This would allow the days open to be used in combination with the cows index score in making a culling decision.

For optimum management the days to first breeding and minimum days dry (sec. 2.2.3.5 & 3.4.2) should be set as a function of a cows production and perhaps other factors rather than as a fixed value for all animals. If these decisions were to be included as management options the effects of pregnancy and the length of the dry period on production and the lactation curve would have to be modeled.
Other management decision options that could be added have been covered previously.

(1) Breeding via embryo transplants (sec. 4.4).
(2) Least cost ration formulation (sec. 4.5).
(3) Buy and sell cows (4.7).
(4) Buy and sell quota (4.7).

4.8: Practical

Practical considerations that would make the program easier to use, more flexible or faster to run will become apparent as it is used. Two factors have already arisen.

(1) The calculation of lactation factors could more efficiently be done with breed class averages in integers rather than the current calculations in mature equivalents and real numbers.

(2) If the program could be adapted to run in a reasonable time on a microcomputer the cost of running the program would be greatly reduced. This would facilitate more extensive use of and allow for more expansion of the program.
SUMMARY

A computer program has been developed that is capable of simulating a population of herds of dairy cattle. It can simulate any small population of dairy cattle in Canada with respect to production and type score, reproduction, management decisions and overall economics with summaries at the cow and herd levels on a calendar year basis. It should be useful as a teaching tool for senior undergraduate students in dairy science or animal genetics and as an aid in researching the complex interactions between breeding programs, management systems, biological factors and economics. The program is "user friendly" and allows breeding and management decisions to be automated to reduce unnecessary tedious work. It also is written in a modular form to facilitate modification and expansion.

The primary model for the inheritance of the four traits, milk, fat and protein production and overall type score is an empirical one that has been validated in commercial and research herds over current biological ranges. Accepted theoretical models were used for other components of the system. Due to a lack of documented mathematical models for many of the interactions some models based partly on intuition had to be used to complete the system.

Parameters used are recorded data from the population being simulated or values from the literature where they are
available.

Improvements to the simulation can be made by accurate measurements in the field to give appropriate parameters and more detailed empirical models. Other improvements could be made by expanding the simulation to include other aspects of dairy herd management.
BIBLIOGRAPHY

Appendix A. **FULL INSTRUCTIONS**

This appendix gives complete instructions for running a simulation for teaching or research. The basic steps are outlined in figure 5.1 below.

Figure 5.1

```
INITIALIZE & COMPIL
PROGRAMS

SET UP HERDS & AI UNIT

SET MANAGEMENT DECISIONS & SIMULATE YEAR -1

SIMULATE ANOTHER YEAR

UPDATE AI RECORDS & SWITCH FILES

YEAR 0?

MORE YEARS?

SET BREEDING DECISIONS & SIMULATE YEAR 0

yes

no

yes

no

COMPILE DATA BASE

STATISTICAL AND GRAPHICAL ANALYSIS
```
All the programs in this package are designed to be run from a terminal by entering "RUN PROGRAM NAME". The user is prompted for all input decisions in one of three formats.

(1) A list of numbered options followed by "OPTION ?" where the user is to input the number of the option desired.

(2) A single value asked for by "?" where the user is to input one value.

(3) A number of values are asked for by "ENTER" where the user is to input more than one value in a line.

NOTE: The programs accept input in "semi-free format" so that each value entered MUST be followed by a comma.

For complete sample input and output see appendix B1.

1: INITIALIZE AND COMPILE ALL PROGRAMS

The simulation package includes six programs.

SETUP
SIM.YEAR
AI.UPD
AIVIEW
CR.DBASE
STAT.ANAL

(see Appendix C for flow charts and Appendix D for full listings)

1.1: Initialize all programs

Parameters that describe the population to be simulated (chapter 3) should be used to initialize all programs. The variable names (tables I - VII) can be found in the REAL or
INTEGER statements in the beginning of each program (Appendix D). The appropriate values should be entered between the slashes after the variable name.

1.2: Compile all programs

The programs should be compiled using the Fortran compiler with the highest optimization level.

2: SET UP HERDS AND AI UNIT

2.1: Create files

A.I.S - for updated AI bull records
A.I.P - for year old AI records
DREC - first lactation records
BUSE - bull use and conception records
YSIRE - potential young sires
SUMS - to store yearly summaries
CODES - to store herd codes
CHECK.RUN - to check if herds have been run

G*.SAV G*.IN G*.OUT - automated groups of herds status
* = 100, 200, 300, or 400

H*.SAV H*.IN H*.OUT - student herds * = 1 - 100
* .SAV - past year status
* .IN - current year status
* .OUT - end of year status

H*-* - Batch file for printing students full outputs

2.2: Run SETUP

This program prompts the user for the herd size, AI unit size, number of herds and the number of students (Appendix
B1). It generates all cows and AI bulls and fills the files A.I.S, G*.IN, H*.IN and CODES.

3: **SIMULATE A YEAR**

This only involves running the program SIM.YEAR (appendix B1)

The program reads the herd status from the herd .IN file and the AI bulls from A.I.S. It outputs first lactation records to DREC, bull use and conceptions to BUSE, selected bull calves to YSIRE, year end summaries to SUMS and herd status to the herd .OUT file. If desired it also prints a detailed year end summary for the herd and full year performance for all cows (appendix B2).

3.1: Initial years.

For two preparatory years "-1" and "0" (can set more, table VII) both student and group herds are run in a semi-automated (option 1 - NO printed copy) mode to allow basic breeding and management options to be set and to allow students to become familiar with the program.

(1) The user is prompted for a herd number and code which ensures against accidental running of the wrong herd. Student herds are numbered 1-100 and group herds 101, 201, 301 and 401. Codes can be found in the file CODES.

(2) The main option menu is displayed. For year "-1" only options 2-5 should be changed. When option 7 (CONTINUE) is entered the program executes with no further menus or prompts.
(3) Before running year "0" management and breeding policies should be decided upon and major decision options set. Student herds should set option 1 to "output printed copy".

3.2: Later years

Summaries of all herds for years 1 and on are saved for the final analysis.

(1) Control herds should be run in the fully automated mode. When prompted for herd and code, the herd and code are entered followed by a "T". All menus are then bypassed and no printed output is generated.

(2) Student herds should be run with the full output option (see appendix B1 for a sample run).

(a) The main menu is displayed to allow options to be changed or fine tuned.

(b) A sub-menu is displayed to allow culling or mating of specific animals.

(c) Cows to be culled for low index score are listed on the screen to allow changes to be made before the year ends.

(d) Herd summaries for the year are immediately listed on the screen for inspection.

(e) The details of the herds performance for the year and the herd summaries are outputted to the H*-* batch file for printing (appendix B2).

4: UPDATE AI AND SWITCH FILES

After all herds have completed a year the AI file must
be updated with the information on the bull use and his daughters first lactation records and the new young bulls. The updated AI bulls can then be looked at using the program AIVIEW. Herd files must also be switched before running the next year.

4.1: AI UPDATE

(1) Files DREC and BUSE must be sorted by bull number and the current AI file (A.I.S) must be copied to the old AI file (A.I.P). These operations can be simplified by using a batch file.

(2) Run the program AI.UPD. This program prompts the user for the number of new young sires to select and an index by which to choose them (appendix B1). The program automatically reads in the potential young sires from all herds (YSIRE), the new first lactation records (DREC), the number of vials of semen used and the number of conceptions for each bull (BUSE). It then calculates new estimates of transmitting ability and fertility and a new semen price for each bull and adds new young bulls. The updated AI bulls are then written to the A.I.S file for the next year.

4.2: AIVIEW

Students can look at the bulls available to prepare for the simulation of the next year by running the program AIVIEW. This program prompts the user for their own selection index (appendix B1). It then calculates the index
score for all sires and lists them on the screen in order of index score. It also includes their ETA's for the four traits and the number of daughters on which it is based, their sire and maternal grandsire, their estimated conception rate and their semen price.

4.3: SWITCH FILES

The herd files must be switched before simulating the next year. A "BATCH" file can be set up to copy **.IN files to temporary save files (**.SAV) and **.OUT files to **.IN files and then to empty **.OUT files. The files YSIRE, DREC and BUSE should also be emptied.

5: COMPILE DATA BASE

The program CR.DBASE copies the herd-year summaries inSUMS and the list of the information stored to new files which can be accessed quickly for analysis.

(1) Before compiling the program check that the program variable TSUM is dimensioned with the number of years and number of herds in the simulation run.

(2) Create files SUMMARIES and VARIABLES to receive the new information and run CR.DBASE.

6: ANALYSIS

Run the program STAT.ANAL. This interactive program does the final data summary and statistical analysis. It is designed to allow the user to group
herds as treatment groups and test for differences in the means or the changes over time (slopes) for the summary variables (table IX). It does an analysis of covariance with years as the covariate, tests for differences in means or slopes within groups (test if herds should be grouped together) and between groups and does a Student Knewman Keuls test (SNK) where significant differences in slopes or means are found.

The program also allows limited arithmetic operations to be performed on the summary variables (table IV) for more extensive analysis.

The program reads variable names and numbers from the file VARIABLES and data from SUMMARIES. Titles and specifications are entered interactively. The statistical analysis is written to a specified herds file and all data used is written to a file -DAT.

(2) Further analysis can be done using the data in -DAT with other statistical or graphics programs. These analysis can be done more economically by first down loading -DAT to a microcomputer.
Table IX

| 1. NO. CMPLT. LACT. BEF. CULL |
| 2. BC HERD AVG. MILK (KG) |
| 3. BC HERD AVG. FAT (KG) |
| 4. BC HERD AVG. PROTEIN (KG) |
| 5. BC AVG. BCA MILK |
| 6. BC AVG. BCA FAT |
| 7. BC AVG. BCA PROTEIN |
| 8. BC AVG. TYPE SCORE |
| 9. BC AVG. AGE |
| 10. BC AVG. DAYS MILKED |
| 11. BC AVG. % FAT |
| 12. BC AVG. % PROTEIN |
| 13. NO. CMPLT. LACT. AFTER CULL |
| 14. AC HERD AVG. MILK(KG) |
| 15. AC HERD AVG. FAT (KG) |
| 16. AC HERD AVG. PROTEIN (KG) |
| 17. AC AVG. BCA MILK |
| 18. AC AVG. BCA FAT |
| 19. AC AVG. BCA PROTEIN |
| 20. AC AVG. BCA TYPE SCORE |
| 21. AC AVG. AGE |
| 22. AC AVG. DAYS MILKED |
| 23. AC AVG. % FAT |
| 24. AC AVG. % PROTEIN |
| 25. CALVING INTERVAL |
| 26. CONCEPTION RATE |
| 27. TOTAL HECTOLITRES MILK |
| 28. FAT TEST |
| 29. PROTEIN TEST |
| 30. TOTAL QUOTA MILK (HL) |
| 31. PRICE QUOTA MILK ($/HL) |
| 32. PAID QUOTA MILK ($) |
| 33. TOTAL EXCESS MILK (HL) |
| 34. PRICE EXCESS MILK ($/HL)|
| 35. PAID EXCESS MILK ($) |
| 36. TOTAL SURPLUS MILK (HL) |
| 37. FIXED COSTS |
| 38. FEED COST FOR COWS |
| 39. FEED COST FOR YEARLINGS |
| 40. FEED COST FOR CALVES |

<p>| 55. NO. LIVE COWS |
| 56. LIVE COWS B.V MILK |
| 57. LIVE COWS B.V FAT |
| 58. LIVE COWS B.V PROTEIN|
| 59. LIVE COWS B.V TYPE |
| 60. NO. BRED HEIFERS |
| 61. BRED HEIF. B.V MILK |
| 62. BRED HEIF. B.V FAT |
| 63. BRED HEIF. B.V PROTEIN|
| 64. BRED HEIF. B.V TYPE |
| 65. NO. FERTILITY CULLS |
| 66. FERT. CULL B.V MILK |
| 67. FERT. CULL B.V FAT |
| 68. FERT. CULL B.V PROTEIN|
| 69. FERT. CULL B.V TYPE |
| 70. NO. CULLED BY LAST LACT. |
| 71. LACT. CULL B.V MILK |
| 72. LACT. CULL B.V FAT |
| 73. LACT. CULL B.V PROTEIN|
| 74. LACT. CULL B.V TYPE |
| 75. NO. CULLED BY EPA |
| 76. EMA CULL B.V MILK |
| 77. EMA CULL B.V FAT |
| 78. EMA CULL B.V PROTEIN |
| 79. EMA CULL B.V TYPE |
| 80. NO. CULLED BY ETA |
| 81. ETA CULL B.V MILK |
| 82. ETA CULL B.V FAT |
| 83. ETA CULL B.V PROTEIN |
| 84. ETA CULL B.V TYPE |
| 85. NO. CULLED FOR HEALTH|
| 86. HTH. CULL B.V MILK |
| 87. HTH. CULL B.V FAT |
| 88. HTH. CULL B.V PROTEIN|
| 89. HTH. CULL B.V TYPE |
| 90. NO. DEAD COWS |
| 91. DEAD COWS B.V MILK |
| 92. DEAD COWS B.V FAT |
| 93. DEAD COWS B.V PROTEIN|
| 94. DEAD COWS B.V TYPE |
| 95. DEAD YLGS. B.V TYPE |
| 96. NO. LIVE HEIFER CALVES|
| 97. LIVE CALVES B.V MILK |
| 98. LIVE CALVES B.V FAT |
| 99. LIVE CALVES B.V PROTEIN|
| 100. LIVE CALVES B.V TYPE |
| 101. NO. SOLD HEIFER CALVES|
| 102. SOLD H. CF. B.V MILK |
| 103. SOLD H. CF. B.V FAT |
| 104. SOLD H. CF. B.V PROTEIN|
| 105. SOLD H. CF. B.V TYPE |
| 106. NO. SOLD BULL CALVES |
| 107. SOLD B. CF. B.V MILK |
| 108. SOLD B. CF. B.V FAT |
| 109. SOLD B. CF. B.V PROTEIN|
| 110. SOLD B. CF. B.V TYPE |
| 111. NO. SOLD BRED HEIFERS |
| 112. BRED HEIF. B.V MILK |
| 113. BRED HEIF. B.V FAT |
| 114. BRED HEIF. B.V PROTEIN|
| 115. BRED HEIF. B.V TYPE |
| 116. NO. BRED HEIFER CALVES|
| 117. BRED HEIFER B.V MILK |
| 118. BRED HEIFER B.V FAT |
| 119. BRED HEIFER B.V PROTEIN|
| 120. BRED HEIFER B.V TYPE |
| 121. NO. FERTILITY CULLS |
| 122. FERT. CULL B.V MILK |
| 123. FERT. CULL B.V FAT |
| 124. FERT. CULL B.V PROTEIN|
| 125. FERT. CULL B.V TYPE |
| 126. NO. DEAD COWS |
| 127. DEAD COWS B.V MILK |
| 128. DEAD COWS B.V FAT |
| 129. DEAD COWS B.V PROTEIN|
| 130. DEAD COWS B.V TYPE |
| 131. NO. A.I. PROSPECTS |
| 132. PROSP. A.I. B.V MILK |
| 133. PROSP. A.I. B.V FAT |
| 134. PROSP. A.I. B.V PROTEIN|
| 135. PROSP. A.I. B.V TYPE |
| 136. PROVEN SIRES B.V MILK|
| 137. PROVEN SIRES B.V FAT |
| 138. PROVEN SIRES B.V PROTEIN|
| 139. PROVEN SIRES B.V TYPE |
| 140. NO. PROVEN SIRES NO. VIALS USED |
| 141. PROVEN SIRES NO. CONCEPTIONS|
| 142. PROVEN SIRES FERTILITY |
| 143. UNPROVEN SIRES B.V MILK|
| 144. UNPROVEN SIRES B.V FAT |
| 145. UNPROVEN SIRES B.V PROTEIN|
| 146. UNPROVEN SIRES B.V TYPE |
| 147. UNPROVEN SIRES NO. VIALS |
| 148. UNPROVEN SIRES NO. CONCEPT. |</p>
<table>
<thead>
<tr>
<th>41. SEMEN COSTS</th>
<th>42. COST SHIPPING MILK</th>
<th>43. TOTAL EXPENSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>44. SOLD - PRODUCTION ($)</td>
<td>45. SOLD - FERTILITY ($)</td>
<td>46. SOLD - HEALTH ($)</td>
</tr>
<tr>
<td>47. SOLD - DEAD COWS ($)</td>
<td>48. SOLD - YEARLINGS ($)</td>
<td>49. SOLD - HEIFER CALVES ($)</td>
</tr>
<tr>
<td>50. SOLD - BULL CALVES ($)</td>
<td>51. SOLD - A.I. STUD ($)</td>
<td>52. TOTAL INCOME</td>
</tr>
<tr>
<td>53. NET INCOME</td>
<td>95. NO. LIVE YEARLINGS</td>
<td>96. LIVE YLGS. B.V. MILK</td>
</tr>
<tr>
<td></td>
<td>97. LIVE YLGS. B.V. FAT</td>
<td>98. LIVE YLGS. B.V. PROTEIN</td>
</tr>
<tr>
<td></td>
<td>99. LIVE YLGS. B.V. TYPE</td>
<td>100. NO. SOLD YEARLINGS</td>
</tr>
<tr>
<td></td>
<td>101. SOLD YLGS. B.V. MILK</td>
<td>102. SOLD YLGS. B.V. FAT</td>
</tr>
<tr>
<td></td>
<td>103. SOLD YLGS. B.V. PROTEIN</td>
<td>104. SOLD YLGS. B.V. TYPE</td>
</tr>
<tr>
<td></td>
<td>105. NO. DEAD YEARLINGS</td>
<td>106. DEAD YLGS. B.V. MILK</td>
</tr>
<tr>
<td></td>
<td>107. DEAD YLGS. B.V. FAT</td>
<td>108. DEAD YLGS. B.V. PROTEIN</td>
</tr>
<tr>
<td>149. UNPROVEN SIRES FERTILITY</td>
<td>150. UNPROVEN SIRES SEMEN PRICE</td>
<td>151. YOUNG SIRES B.V. MILK</td>
</tr>
<tr>
<td>152. YOUNG SIRES B.V. FAT</td>
<td>153. YOUNG SIRES B.V. PROTEIN</td>
<td>154. YOUNG SIRES B.V. TYPE</td>
</tr>
<tr>
<td>155. YOUNG SIRES NO. VIALS</td>
<td>156. YOUNG SIRES NO. CONCEPTIONS</td>
<td>157. YOUNG SIRES FERTILITY</td>
</tr>
<tr>
<td>158. YOUNG SIRES SEMEN PRICE</td>
<td>159. SELECTION INDEX WT. MILK</td>
<td>160. SELECTION INDEX WT. FAT</td>
</tr>
<tr>
<td>161. SELECTION INDEX WT. PROTEIN</td>
<td>162. SELECTION INDEX WT. TYPE</td>
<td></td>
</tr>
</tbody>
</table>
Appendix B1 SAMPLE RUN

This appendix gives the input and output to the screen for sample interactive runs for all programs.

Program output - CAPITAL LETTERS
User input - BOLDFACE
Annotations - italics

I: PROGRAM "SETUP"

#RUN SETUP
#Execution begins
ENTER THE NUMBER OF STUDENTS AND THE NUMBER OF HERDS EACH
(MAXIMUM 100 STUDENT HERDS)
THE NUMBER OF CONTROL GROUPS (MAXIMUM 4),
THE NUMBER OF COWS PER HERD (MAXIMUM 150)
THE NUMBER OF YOUNG BULLS TO ADD EACH YEAR (AND AN INTEGER SEED
- OPTIONAL)
12,1,1,30,3,
ENTER THE NUMBER OF COWS OF EACH AGE 2-7
9,7,5,4,3,2,
12 STUDENTS 1 HERDS/STUDENT 30 COWS/HERD
1 REPLICATE GROUPS 3 BULLS 929 SEED
AGE DISTRIBUTION
2 3 4 5 6 7
9 7 5 4 3 2
ENTER "T" IF ERROR OR RETURN IF OK
RETURN
#Execution terminated

The herds and AI unit are now setup ready to run the simulation
2: PROGRAM "SIM.YEAR" FULL OUTPUT MODE

#RUN SIM.YEAR
#Execution begins

DAIRY CATTLE BREEDING SIMULATION

YOU WILL BE PROMPTED FOR DECISIONS

- ENTER ALL VALUES ON ONE LINE (EXCEPT WHEN ENTERING ANIMALS)
- WHEN ENTERING ANIMALS START A NEW LINE FOR EACH ANIMAL
- EACH VALUE ENTERED MUST BE FOLLOWED BY A COMMA !!

HERD NUMBER AND CODE?
11,500,

HERD 11 SIMULATION OF YEAR 9

MANAGEMENT DECISIONS SELECTED

1 OUTPUT PRINTED COPY OF HERDS? NO
2 MANAGEMENT LEVEL OF 1
3 RANKING AND CULLING BASED ON: ETA
4 WEIGHTINGS FOR THE SELECTION INDEX:
 MILK 0.50 FAT 0.50 PROTEIN 0.0 TYPE 0.0
5 NUMBER OF DAYS OPEN OR SERVICES:
 130. DAYS OR 4. SERVICES WITH EXTRA FOR THE TOP 12. COWS
 BASED ON AN EXPONENT 1.000 AN ADJUSTMENT FOR DAYS 10.00
 AND AN ADJUSTMENT FOR SERVICES 0.300
6 MINIMUM DAILY MILK PRODUCTION:
 AT 7.0 KG/DAY A COW IS DRIED OFF
 AT 12.0 KG/DAY A CULL COW IS SOLD
7 MATINGS-
 70% TO 5 PROVEN SIRES SELECTED BY RANK
 30% TO 3 YOUNG SIRES SELECTED RANDOMLY
 SPECIAL MATE 10 COWS SELECTED BY RANK
 MAXIMUM SEMEN PRICE $ 500/VIAL MINIMUM CONCEPTION 20%
8 CONTINUE

OPTION?

ENTERING 1-6 PRODUCES SUB-MENUS TO ALLOW OPTIONS TO BE CHANGED

1, option 1 sub-menu

THE OUTPUT TO BE
1 FULL PRINTED OUTPUT
2 ONLY SUMMARIES STORED

OPTION?

1, THE RANDOM NUMBER GENERATORS TO BE INITIALIZED WITH
 1 A NUMBER TO BE SPECIFIED
 2 A RANDOM NUMBER

OPTION?

1, 2, option 2 sub-menu

MANAGEMENT LEVEL?
1,
SAMPLE RUN

CULLING DECISIONS TO BE BASED ON
1 CURRENT LACTATION
2 ESTIMATED PRODUCING ABILITY
3 ESTIMATED TRANSMITTING ABILITY

OPTION ? 3,

3, option 3 sub-menu

ENTER THE SELECTION INDEX WEIGHTS FOR MILK, FAT, PROTEIN, AND TYPE
5, 5, 0, 0

4, option 4 sub-menu

ENTER THE MINIMUM NUMBER OF DAYS AND SERVICES AND THE NUMBER OF TOP COWS TO KEEP LONGER
130, 4, 12, 130 days, 4 services, 12 cows

PRESS RETURN FOR TWO LEVELS OR ENTER THE EXPONENT FOR AN EXPONENTIAL RELATIONSHIP
1, gives linear relationship

ADJUSTMENT FOR DAYS?
10, e.g. 10 extra for 11th ranked and 110 extra for top cow

ADJUSTMENT FOR SERVICES?
0.3, 1 extra service for top 8 cows, 2 for top 5 and 3 for top 2

5, option 5 sub-menu

DAILY MILK PRODUCTION AT WHICH TO DRY OFF A COW?
7,

DAILY MILK PRODUCTION AT WHICH TO SELL A COW SELECTED FOR CULLING?
12,

6, option 6 sub-menu

NUMBER OF PROVEN SIRES?
5,

ENTER THE METHOD OF SELECTION
1 INDIVIDUALLY
2 BY RANK
3 RANDOMLY

OPTION?
2,

MAXIMUM SEMEN PRICE?
500, dollars

MINIMUM CONCEPTION RATE?
20, percent

PERCENT OF MATINGS TO YOUNG SIRES?
30,

NUMBER OF YOUNG BULLS?
3,

ENTER THE METHOD OF SELECTION (for young bulls)
1 BY RANK
2 RANDOMLY

OPTION?
2,
NUMBER OF SPECIAL MATINGS ? for potential young sires

10.
ENTER THE METHOD OF SELECTION
1 INDIVIDUALLY
2 BY RANK
OPTION ?
2.
NUMBER OF TOP BULLS TO USE FOR SPECIAL MATINGS ?
2.
7, option 7 CONTINUE

PROGRAM CONTINUES

INTEGER SEED ? prompts for seed if selected in option 1
875,

special selections menu for full output herds

OTHER OPTIONS FOR SPECIFIC ANIMALS
1 MAKE SPECIFIC MATINGS
2 SELL WEEK OLD CALVES
3 SELL YEAR OLD CALVES
4 SELL YEARLINGS
5 CONTINUE
OPTION ? options 1-4 give sub-menus and prompts

1,
option 1

BULLS AVAILABLE bulls selected to be used
9039 9036 9002 9006 9023 9049 9049 9049
NUMBER OF INDIVIDUAL MATINGS ?
2.
ENTER 2 COWS EACH FOLLOWED BY A BULL
START A NEW LINE FOR EACH ANIMAL !
1, 9039,
2, 9006,
1, 9039 check if entries correct
2, 9006
PRESS RETURN IF OK. ENTER "T" TO RE-ENTER
RETURN

2,
option 2

BULLS AVAILABLE
9039 9036 9002 9006 9023 9049 9049 9049
NUMBER OF NEW CALVES TO BE CULLED ?
1,
ENTER 1 COWS
START A NEW LINE FOR EACH ANIMAL !
3,
3 PRESS RETURN IF OK. ENTER "T" TO RE-ENTER
RETURN
ENTER A CHEAP BULL TO USE ON THESE COWS
9049,
3, option 3
NUMBER OF OLD CALVES TO BE CULLED?
2
ENTER 2 YEAR OLD CALVES
START A NEW LINE FOR EACH ANIMAL!
101,
102,
101
102
PRESS RETURN IF OK. ENTER "T" TO RE-ENTER RETURN

4, option 4
NUMBER OF YEARLINGS TO BE CULLED?
1
ENTER 1 YEARLINGS
START A NEW LINE FOR EACH ANIMAL!
201,
201
PRESS RETURN IF OK. ENTER "T" TO RE-ENTER RETURN

5, CONTINUE

2.1.1. Culling cows

In full output mode the cows queued to be culled are listed and an opportunity to change them is given.

COWS TO BE CULLED

<table>
<thead>
<tr>
<th>LOC</th>
<th>COW</th>
<th>CULL DAY</th>
<th>INDEX SCORES</th>
<th>MAX</th>
<th>ACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1112</td>
<td>79</td>
<td>-19</td>
<td>-11</td>
<td>-4</td>
</tr>
<tr>
<td>2</td>
<td>1213</td>
<td>137</td>
<td>-19</td>
<td>-8</td>
<td>-3</td>
</tr>
<tr>
<td>3</td>
<td>1313</td>
<td>142</td>
<td>3</td>
<td>-3</td>
<td>-2</td>
</tr>
<tr>
<td>4</td>
<td>1513</td>
<td>161</td>
<td>-7</td>
<td>-7</td>
<td>-2</td>
</tr>
<tr>
<td>5</td>
<td>1608</td>
<td>59</td>
<td>-21</td>
<td>-9</td>
<td>-2</td>
</tr>
<tr>
<td>6</td>
<td>1412</td>
<td>0</td>
<td>-21</td>
<td>-8</td>
<td>-2</td>
</tr>
<tr>
<td>7</td>
<td>1206</td>
<td>0</td>
<td>-7</td>
<td>-3</td>
<td>-2</td>
</tr>
<tr>
<td>8</td>
<td>1510</td>
<td>0</td>
<td>-13</td>
<td>-9</td>
<td>-2</td>
</tr>
<tr>
<td>9</td>
<td>1312</td>
<td>190</td>
<td>-7</td>
<td>-6</td>
<td>-2</td>
</tr>
<tr>
<td>10</td>
<td>1615</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>1607</td>
<td>0</td>
<td>-20</td>
<td>-9</td>
<td>-1</td>
</tr>
<tr>
<td>12</td>
<td>1707</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>3</td>
</tr>
</tbody>
</table>

WHERE:
- LOC - cows location number in culled list
- COW - cows I.D. number
- CULL DAY - if positive it is the day of the year culled - if zero the cow is not to be culled - if negative it is the day in the next year that the cows production will have declined to the specified daily production to allow culling
- LACT - deviation from the population average for the index score calculated from the BCA's and type score in the last lactation
- EPA - the index score calculated from the cows EPA's
- ETA - the index score calculated from the cows ETA's
SAMPLE RUN

MAX PROD - years production for a cow if not culled for production
ACT PROD - years production if no changes are made in status
STATUS - status of a cow at year end
 KEEP cow kept in the herd
 FERT cow culled for fertility (can't keep)
 HLTH cow culled for health (can't keep)
 DEAD cow is dead
 BCA culled for low rank "LACT"
 EPA culled for low rank "EPA"
 ETA culled for low rank "ETA"

YOUR FLUID QUOTA IS 1500. HL PLUS EXCESS OF 500.
THIS YEARS PRODUCTION WILL BE 1967.8 HECTOLITRES

ENTER - 1 TO PRINT A LONGER LIST
- 2 TO CULL MORE COWS
- 3 TO RESTORE SELECTIVELY CULLED COWS
- 4 TO CONTINUE

OPTION?

1, option 1

HOW MANY MORE COWS DO YOU WANT PRINTED?

1, outputs list with 1 more cow
2, option 2

NUMBER OF COWS TO CHANGE?
2, COW LOCATION NUMBER?
13, COW LOCATION NUMBER?
6,
the two cows are culled if possible
cow 1412 at location 6 is now culled
cow 1613 at location 13 has too high daily production until the 4th day of the next year

COWS TO BE CULLED

<table>
<thead>
<tr>
<th>LOC</th>
<th>COW</th>
<th>DAY</th>
<th>LACT</th>
<th>EPA</th>
<th>ETA</th>
<th>PROD</th>
<th>ACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1112</td>
<td>79.</td>
<td>-19.</td>
<td>-11.</td>
<td>-4.</td>
<td>6179.</td>
<td>ETA</td>
</tr>
<tr>
<td>6</td>
<td>1412</td>
<td>171.</td>
<td>-21.</td>
<td>-8.</td>
<td>-2.</td>
<td>6162.</td>
<td>ETA</td>
</tr>
<tr>
<td>13</td>
<td>1613</td>
<td>-4.</td>
<td>0.</td>
<td>0.</td>
<td>-1.</td>
<td>4689.</td>
<td>KEEP</td>
</tr>
</tbody>
</table>

YOUR FLUID QUOTA IS 1500. HL PLUS EXCESS OF 500.
THIS YEARS PRODUCTION WILL BE 1940.9 HECTOLITRES

ENTER - 1 TO PRINT A LONGER LIST
- 2 TO CULL MORE COWS
- 3 TO RESTORE SELECTIVELY CULLED COWS
- 4 TO CONTINUE

OPTION?

3, option 3

NUMBER OF COWS TO CHANGE?
1, COW LOCATION NUMBER?
6,
cow number 1412 is now reinstated and the list is outputted again

4, option 4

the simulation now continues by outputting the end of year
herd summary on the screen and all herd information to
a file for printing (appendix B2)

2.2: SEMI-AUTOMATED MODE

R SIM.YEAR
#Execution begins
DAIRY CATTLE BREEDING SIMULATION

YOU WILL BE PROMPTED FOR DECISIONS

- ENTER ALL VALUES ON ONE LINE (EXCEPT WHEN ENTERING ANIMALS)
- WHEN ENTERING ANIMALS START A NEW LINE FOR EACH ANIMAL
- EACH VALUE ENTERED MUST BE FOLLOWED BY A COMMA!!

HERD NUMBER AND CODE ?
11,500,

HERD 11 SIMULATION OF YEAR 9

MANAGEMENT DECISIONS SELECTED

1 OUTPUT PRINTED COPY OF HERDS ? YES
2 MANAGEMENT LEVEL OF 1
 RANKING AND CULLING BASED ON: ETA
3 WEIGHTINGS FOR THE SELECTION INDEX :
 MILK 0.50 FAT 0.50 PROTEIN 0.0 TYPE 0.0
4 NUMBER OF DAYS OPEN OR SERVICES :
 130. DAYS OR 4. SERVICES WITH EXTRA FOR THE TOP 12. COWS
 BASED ON AN EXPONENT 1.000 AN ADJUSTMENT FOR DAYS 10.00
 AND AN ADJUSTMENT FOR SERVICES 0.300
5 MINIMUM DAILY MILK PRODUCTION:
 AT 7.0 KG/DAY A COW IS DRIED OFF
 AT 12.0 KG/DAY A CULL COW IS SOLD
6 MATINGS- 70% TO 5 PROVEN SIRES SELECTED BY RANK
 30% TO 3 YOUNG SIRES SELECTED RANDOMLY
 SPECIAL MATE 10 COWS SELECTED BY RANK
 MAXIMUM SEMEN PRICE $ 500/VIAL MINIMUM CONCEPTION 20%
7 CONTINUE

OPTION ?

SEMI-AUTOMATED MODE IS SET BY ENSURING OPTION 1 IS SET TO
"ONLY SUMMARIES STORED"

1, option 1 sub-menu

THE OUTPUT TO BE
1 FULL PRINTED OUTPUT
2 ONLY SUMMARIES STORED

OPTION ?

allows all other menus to be bypassed
THE RANDOM NUMBER GENERATORS TO BE INITIALIZED WITH
1 A NUMBER TO BE SPECIFIED
2 A RANDOM NUMBER
OPTION ?
2,

WHEN OPTION 7 IS ENTERED THE PROGRAM COMPLETES EXECUTION

OPTION ?
7, CONTINUE

HERD 11 YEAR 7 THE SEED WAS 182

<table>
<thead>
<tr>
<th>NO.</th>
<th>LAC</th>
<th>CF</th>
<th>INT</th>
<th>CONC</th>
<th>SV/CF</th>
<th>NLCW</th>
<th>NBHF</th>
<th>HL</th>
<th>MLK</th>
<th>NPRCUL</th>
<th>NFCUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>363.9</td>
<td>0.495</td>
<td>1.545</td>
<td>33</td>
<td>6</td>
<td>2108.15</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#Execution terminated

2.3: FULLY AUTOMATED MODE

#R SIM.YEAR
#Execution begins
DAIRY CATTLE BREEDING SIMULATION

YOU WILL BE PROMPTED FOR DECISIONS
- ENTER ALL VALUES ON ONE LINE (EXCEPT WHEN ENTERING ANIMALS)
- WHEN ENTERING ANIMALS START A NEW LINE FOR EACH ANIMAL
- EACH VALUE ENTERED MUST BE FOLLOWED BY A COMMA !!

HERD NUMBER AND CODE ?
ENTERING A "T" AFTER THE CODE ALLOWS ALL MENUS TO BE BYPASSED

11,500,T

HERD 11 YEAR 7 THE SEED WAS 182

<table>
<thead>
<tr>
<th>NO.</th>
<th>LAC</th>
<th>CF</th>
<th>INT</th>
<th>CONC</th>
<th>SV/CF</th>
<th>NLCW</th>
<th>NBHF</th>
<th>HL</th>
<th>MLK</th>
<th>NPRCUL</th>
<th>NFCUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>363.9</td>
<td>0.495</td>
<td>1.545</td>
<td>33</td>
<td>6</td>
<td>2108.15</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#Execution terminated

3: YEAR END UPDATE

#ED CHECK.RUN To check if all student herds have been run

:P /F

<table>
<thead>
<tr>
<th>year</th>
<th>herd</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>0.012</td>
<td>12</td>
</tr>
</tbody>
</table>

:STOP
SAMPLE RUN

```
RUN BATCH FILE TO SWITCH HERD AND AI FILES
AND TO SORT DREC and BUSE

#R BATCH SCARDS BUPD
#Execution begins
#The batch signon record is:
#$SIG KINN 'SORT FOR AIUPD' DELIVERY=FOR.
=Enter password for KINN.
=*BATCH* assigned job number 197718
=*BATCH* RM197718 released COMMENT="SORT FOR AIUPD" DELIVERY=FOR.
-KINN:RM197718 is executing.
#Execution terminated

#C CHECK.RUN(1,1)
>FILES READY TO RUN "AIUPD"

3.2: PROGRAM "AIUPD"

#RUN AIUPD
#Execution begins
ENTER THE CURRENT YEAR (NEXT)
8,
ENTER THE NUMBER OF BULLS TO ADD, THE MINIMUM INDEX,
THE MINIMUM ETA FOR TYPE AND THE DAMS MINIMUM ETA
FOR TYPE
3, three bulls and minimum index and type of "0"
ENTER SELECTION INDEX WEIGHTINGS FOR
MILK, FAT, PROTEIN AND TYPE
5,5,
#Execution terminated

3.2: PROGRAM "AIVIEW"

#RUN AIVIEW
#Execution begins
ENTER INDEX WEIGHTINGS FOR MILK, FAT, PROTEIN AND TYPE
THEY MUST NOT SUM TO "0"
5,5,
ENTER: "Y" FOR YOUNG SIRES
OR "P" FOR PROVEN SIRES
OR RETURN TO STOP
P
HOW MANY SIRES DO YOU WANT LISTED?
MAXIMUM 39
39,

<table>
<thead>
<tr>
<th>BULL</th>
<th>SIRE</th>
<th>MGS</th>
<th>MILK</th>
<th>FAT</th>
<th>PROT</th>
<th>TYPE</th>
<th>INDEX</th>
<th>CONCepTION</th>
<th>NO.</th>
<th>NO.</th>
<th>SEMEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>9039</td>
<td>9002</td>
<td>0</td>
<td>5.1</td>
<td>9.9</td>
<td>3.1</td>
<td>-0.6</td>
<td>7.5</td>
<td>0.56</td>
<td>20</td>
<td>13</td>
<td>23.51</td>
</tr>
<tr>
<td>9036</td>
<td>9002</td>
<td>0</td>
<td>5.7</td>
<td>6.3</td>
<td>1.7</td>
<td>-0.4</td>
<td>6.0</td>
<td>0.48</td>
<td>20</td>
<td>14</td>
<td>234.78</td>
</tr>
<tr>
<td>9002</td>
<td>0</td>
<td>0</td>
<td>3.9</td>
<td>7.0</td>
<td>3.9</td>
<td>-1.7</td>
<td>5.5</td>
<td>0.54</td>
<td>326</td>
<td>109</td>
<td>105.55</td>
</tr>
<tr>
<td>9032</td>
<td>9020</td>
<td>0</td>
<td>-3.5</td>
<td>-4.4</td>
<td>-2.1</td>
<td>0.1</td>
<td>-3.9</td>
<td>0.50</td>
<td>33</td>
<td>19</td>
<td>16.34</td>
</tr>
<tr>
<td>9020</td>
<td>0</td>
<td>0</td>
<td>-3.8</td>
<td>-4.8</td>
<td>-1.3</td>
<td>1.2</td>
<td>-4.3</td>
<td>0.53</td>
<td>115</td>
<td>41</td>
<td>15.69</td>
</tr>
</tbody>
</table>
```
SAMPLE RUN

ENTER: "Y" FOR YOUNG SIRES
OR "P" FOR PROVEN SIRES
OR RETURN TO STOP

<table>
<thead>
<tr>
<th>BULL</th>
<th>SIRE</th>
<th>MGS</th>
<th>MILK</th>
<th>FAT</th>
<th>PROT</th>
<th>TYPE</th>
<th>INDEX</th>
<th>TION</th>
<th>ETA</th>
<th>NO.</th>
<th>NO.</th>
<th>SEMEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>9040.</td>
<td>9006.</td>
<td>0.</td>
<td>5.1</td>
<td>5.2</td>
<td>2.4</td>
<td>0.3</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15.00</td>
</tr>
<tr>
<td>9041.</td>
<td>9002.</td>
<td>0.</td>
<td>2.4</td>
<td>4.2</td>
<td>2.1</td>
<td>0.1</td>
<td>3.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15.00</td>
</tr>
<tr>
<td>9042.</td>
<td>9019.</td>
<td>0.</td>
<td>2.0</td>
<td>4.4</td>
<td>2.6</td>
<td>0.3</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15.00</td>
</tr>
<tr>
<td>9051.</td>
<td>9006.</td>
<td>0.</td>
<td>4.7</td>
<td>5.0</td>
<td>2.2</td>
<td>0.2</td>
<td>4.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15.00</td>
</tr>
</tbody>
</table>

ENTER: "Y" FOR YOUNG SIRES
OR "P" FOR PROVEN SIRES
OR RETURN TO STOP

#Execution terminated

3.4: EMPTY FILES FOR NEXT RUN

#EMPTY YSIRE OK
File "YSIRE" has been emptied.

#EMPTY DREC OK
File "DREC" has been emptied.

#EMPTY BUSE OK

AFTER THE NUMBER OF DESIRED YEARS ARE SIMULATED

4: FINAL SIMULATION SUMMARIES

#RUN CRDBASE
#Execution begins
ENTER NUMBER OF: YEARS; HERDS/GROUP; GROUPS; AND 1 IF NO STUDENT HERDS
7, 12, 2,
#Execution terminated

THE SUMMARIES ARE NOW READY TO RUN THE STATISTICAL ANALYSIS PROGRAM
4.2: Treatments for this Simulation

This sample run had 12 single herds and a duplicate group of 12 herds. The simulation was run for 7 years with the following options selected:

OPTIONS

Management level 1	1, 3, 5, 7, 9, 11
Management level 2	101, 103, 105, 107, 109, 111
Management level 3	102, 104, 106, 108, 110, 112
Management level 4	2, 4, 6, 8, 10, 12

Cull fertility - 5 services or 305 days 1, 2, 101, 102
Cull fertility - 4 services or 305 days 3, 4, 103, 104
Cull fertility - 3 services or 305 days 5, 6, 105, 106
Cull fertility - 3 services or 120 days top 10 cows - 5 services or 150 days 7, 8, 107, 108
Cull fertility - 3 services or 140 days top 10 cows - 5 services or 200 days 9, 10, 109, 110
Cull fertility - 3 services or 130 days top 12 cows kept longer as a function of rank days = 130 + 10 x (12 - rank) services = 3 + 0.3 x (12 - rank)
Bred to top 5 bulls with semen price of less than 500. 1 - 12
Bred to top 10 bulls with semen price of less than 100. 101 - 112

6: PROGRAM "STAT.ANAL"

R STAT.ANAL
Execution begins
ENTER YOUR HERD NUMBER
11, Used only to direct output to student file
ENTER THE NUMBER OF GROUPS
4, Up to 10 groups of herds

ENTER THE FIRST YEAR AND LAST YEAR
1,7, consecutive years only

ENTER THE TITLE FOR THIS RUN (LABEL WILL BE TRUNCATED TO 75 CHARACTERS)

MANAGEMENT LEVELS
SAMPLE RUN

ENTER GROUP 1 LABEL
GROUP NO., HERDS AND TREATMENT
(LABEL WILL BE TRUNCATED TO 52 CHARACTERS)
LEVEL 1

ENTER THE NUMBER OF HERDS IN THIS GROUP
6, Up to 30 herds per group

ENTER THE 6 HERDS
1,3,5,7,9,11,

ENTER GROUP 2 LABEL
GROUP NO., HERDS AND TREATMENT
(LABEL WILL BE TRUNCATED TO 52 CHARACTERS)
LEVEL 2

ENTER THE NUMBER OF HERDS IN THIS GROUP
6,

ENTER THE 6 HERDS
101,103,105,107,109,111,

ENTER GROUP 3 LABEL
GROUP NO., HERDS AND TREATMENT
(LABEL WILL BE TRUNCATED TO 52 CHARACTERS)
LEVEL 3

ENTER THE NUMBER OF HERDS IN THIS GROUP
6,

ENTER THE 6 HERDS
102,104,106,108,110,112,

ENTER GROUP 4 LABEL
GROUP NO., HERDS AND TREATMENT
(LABEL WILL BE TRUNCATED TO 52 CHARACTERS)
LEVEL 4

ENTER THE NUMBER OF HERDS IN THIS GROUP
6,

ENTER THE 6 HERDS
2,4,6,8,10,12,

VARIABLE # 1
1 SIMPLE VARIABLE
2 COMBINE BREEDING VALUES
3 OTHER CALCULATIONS
1, A simple variable from table XI

ENTER A VARIABLE NUMBER
OR PRESS RETURN FOR NO MORE VARIABLES
25,

THE VARIABLE IS: CALVING INTERVAL variable 25
PRESS RETURN IF OK... OR ENTER "T" TO RETRY.
RETURN

PRESS RETURN FOR ANOTHER VARIABLE OR ENTER "T" TO STOP
<RETURN>
SAMPLE RUN

VARIABLE # 2
1 SIMPLE VARIABLE
2 COMBINE BREEDING VALUES
3 OTHER CALCULATIONS
2, Allows weighted averages of breeding values for a trait to be combined as a new variable

ENTER THE TRAIT OF INTEREST
1 MILK BCA
2 FAT BCA
3 PROTEIN BCA
4 TYPE SCORE
5 INDEX SCORE
5,
ENTER THE SELECTION INDEX WEIGHTS
OR PRESS RETURN TO USE VARIABLES 159 - 162
9.3, 6.2, -1.0,
ENTER THE NUMBER OF ANIMAL GROUPS TO COMBINE
1,
FOR THE ANIMAL GROUP NUMBER 1
ENTER THE VARIABLE FOR NUMBER OF ANIMALS OR CONCEPTIONS IN THE GROUP
55, Use only variable numbers ending in 0 or 5 between 55-130 or 140, 148 or 156.
THE VARIABLE IS: NO. LIVE COWS
PRESS RETURN IF OK... OR ENTER "T" TO RETRY.
RETURN

ENTER THE VARIABLE NAME
(LABEL WILL BE TRUNCATED TO 28 CHARACTERS)
BV LIVE COWS ECON. INDEX
PRESS RETURN FOR ANOTHER VARIABLE OR ENTER "T" TO STOP
RETURN

VARIABLE 3
1 SIMPLE VARIABLE
2 COMBINE BREEDING VALUES
3 OTHER CALCULATIONS
3, Allows other calculations to create new variables from those in table XI

ENTER A VARIABLE NUMBER
OR PRESS RETURN FOR NO MORE VARIABLES
54,
THE VARIABLE IS: NET INCOME
PRESS RETURN IF OK... OR ENTER "T" TO RETRY.
<RETURN>

WEIGHT FOR NET INCOME Multiply 54 by another variable or number
PRESS RETURN FOR NO WEIGHT OR ENTER A VARIABLE NUMBER
OR ENTER A WEIGHT FOLLOWED BY A "T"
RETURN

ENTER A VARIABLE NUMBER
OR PRESS RETURN FOR NO MORE VARIABLES
44, Variable to be added to 54
THE VARIABLE IS: SOLD - PRODUCTION ($)
PRESS RETURN IF OK... OR ENTER "T" TO RETRY.
RETURN

WEIGHT FOR SOLD - PRODUCTION ()
PRESS RETURN FOR NO WEIGHT OR ENTER A VARIABLE NUMBER
OR ENTER A WEIGHT FOLLOWED BY A "T"
-1,T Multiply by -1 gives subtraction

ENTER A VARIABLE NUMBER
OR PRESS RETURN FOR NO MORE VARIABLES
RETURN Numerator complete

ENTER "T" IF CALCULATIONS COMPLETE
OR PRESS RETURN IF DENOMINATOR REQUIRED
T No denominator

ENTER THE VARIABLE NAME
(LABEL WILL BE TRUNCATED TO 28 CHARACTERS)
NET INC. - INC. PROD. CULLS

PRESS RETURN FOR ANOTHER VARIABLE OR ENTER "T" TO STOP
T

#Execution terminated

Output is directed to files as follows:
(see appendix B)

H?-? Analysis of covariance, mean and slope tests both
within and between groups
(?'s are consecutive numbers one of which is entered
for the herd number.)

-DAT Data used for analysis
ANNOTATED SAMPLE HERD OUTPUT FROM A "SIM.YEAR" RUN WITH THE FULL HERD OUTPUT OPTION

COMPUTER OUTPUT IS ILLUSTRATED IN BOLD FACE CHARACTERS
ANNOTATIONS ARE LIGHTER ITALICS

HERD 11 YEAR 9 THE SEED WAS 875 to repeat a herd year

2 MANAGEMENT LEVEL OF 1
RANKING AND CULLING BASED ON: ETA
3 WEIGHTINGS FOR THE SELECTION INDEX:
Milk 0.50 Fat 0.50 Protein 0.0 Type 0.0
4 NUMBER OF DAYS OPEN OR SERVICES:
130. DAYS OR 4. SERVICES WITH EXTRA FOR THE TOP 12. COWS
BASED ON AN EXPONENT 1.000 AN ADJUSTMENT FOR DAYS 10.00
AND AN ADJUSTMENT FOR SERVICES 0.300
5 MINIMUM DAILY MILK PRODUCTION:
AT 7.0 KG/DAY A COW IS DRIED OFF
AT 12.0 KG/DAY A CULL COW IS SOLD
6 MATINGS-
70 TO 5 PROVEN SIRES SELECTED BY RANK
30 TO 3 YOUNG SIRES SELECTED RANDOMLY
SPECIAL MATE 10 COWS SELECTED BY RANK
MAXIMUM SEMEN PRICE 500/VIAL MINIMUM CONCEPTION 20

BULLS USED, THEIR PROPORTION OF USE AND THEIR INDEX
(*) PRELIMINARY PROOF ONLY (**) PEDIGREE ESTIMATE ONLY

<table>
<thead>
<tr>
<th>Bull Number</th>
<th>Relative Use</th>
<th>Reliability of Estimate</th>
<th>Index Scores</th>
</tr>
</thead>
<tbody>
<tr>
<td>9039 9036 9002 9006 9023 9049 9049 9049</td>
<td>15 15 15 15 15 10 10 10</td>
<td>* ** * * * *</td>
<td>7.5 6.0 5.5 4.1 4.1 4.9 4.9 4.9</td>
</tr>
<tr>
<td>COW SIRE DAM</td>
<td>AGE</td>
<td>STAT</td>
<td>DAY</td>
</tr>
<tr>
<td>--------------</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>455 9003</td>
<td>0</td>
<td>15</td>
<td>BRED</td>
</tr>
</tbody>
</table>

CURRENT PRODUCTION

- **FEED**
 - Feed status: Bred, Open, or culled
- **COST**
 - Costs associated with feed

MEAN BCA

- Milk, Fat, Protein
- SC, RC indices
- Milk Fat, Protein indices

ETA

- Milk, Fat, Protein indices
- Costs associated with feed

BCA values

- For this lactation
- If lactation continues to 305 days

Total days in production for this complete lactation

- Projected to 305 days

LACTATION #10

- 123/9 242 6784. 244.5 212.7
- Projected to 305 day
- 7500. 270.3 235.1 141 140 137
- Total production and BCA's if lactation continues to 305 days

LACTATION #9

- 143/8 98 1154. 41.5 37.4
- Complete record 318 days milked
- 7784. 279.7 252.0 144 142 143
- Total lactation yield milk, fat, protein

LACTATION #8

- 142/8 223 5881. 259.0 221.8
- Projected to 305 day
- 7930. 288.8 255.6 147 151 148

LACTATION #7

- 813 8 ETA 79
- 181. 81 6 124 118 10.9
- Complete record 288 days milked
- 5993. 193.8 191.5 118 109 118

LACTATION #6

- 156/8 79 895. 28.9 28.6
- Complete record 288 days milked
- 5993. 193.8 191.5 118 109 118

LACTATION #5

- 205/8 147 2035. 71.7 68.0
- Complete record 307 days milked
- 6559. 231.0 219.0 128 125 130

LACTATION #4

- 142/8 175 4085. 100.0 134.9
- Complete record 283 days milked
- 8835. 338.1 285.1 154 162 158

LACTATION #3

- 178/8 79 789. 27.9 27.6
- Complete record 276 days milked
- 6467. 228.9 221.8 127 124 131

LACTATION #2

- 257/8 200. 5172. 161.8 166.9
- Complete record 287 days milked
- 6635. 228.9 221.8 127 124 131

LACTATION #1

- 200/8 135 4572. 161.8 166.9
- Complete record 287 days milked
- 6335. 228.9 221.8 127 124 131

SAMPLE OUTPUT
<table>
<thead>
<tr>
<th>COW</th>
<th>SIRE</th>
<th>DAM</th>
<th>AGE</th>
<th>STAT</th>
<th>DAY</th>
<th>FRESH</th>
<th>DAYS</th>
<th>MILK</th>
<th>FAT</th>
<th>PROT</th>
<th>NO</th>
<th>SC</th>
<th>SC</th>
<th>MEAN</th>
<th>BCA</th>
<th>EPA</th>
<th>ETA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1313</td>
<td>9002</td>
<td>1012</td>
<td>6</td>
<td>ETA</td>
<td>142</td>
<td>386.82</td>
<td>4</td>
<td>130</td>
<td>128</td>
<td>129</td>
<td>-2.5</td>
<td>-4.1</td>
<td>-3.2</td>
<td>0.5</td>
<td>-3.3</td>
<td>-1.9</td>
<td>-2.7</td>
</tr>
<tr>
<td>1411</td>
<td>9018</td>
<td>1005</td>
<td>5</td>
<td>OPEN</td>
<td>320</td>
<td>1378.77</td>
<td>3</td>
<td>137</td>
<td>138</td>
<td>131</td>
<td>2.9</td>
<td>4.2</td>
<td>-1.4</td>
<td>-4.1</td>
<td>3.5</td>
<td>1.2</td>
<td>1.8</td>
</tr>
<tr>
<td>1412</td>
<td>9035</td>
<td>1007</td>
<td>5</td>
<td>BRED</td>
<td>310</td>
<td>176/8</td>
<td>9</td>
<td>168</td>
<td>7682.0</td>
<td>306.9</td>
<td>225.4</td>
<td>PROJECTED</td>
<td>TO 305</td>
<td>DAY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1414</td>
<td>9035</td>
<td>1010</td>
<td>5</td>
<td>DEAD</td>
<td>73</td>
<td>286.85</td>
<td>3</td>
<td>136</td>
<td>134</td>
<td>134</td>
<td>1.7</td>
<td>1.2</td>
<td>0.7</td>
<td>0.2</td>
<td>1.4</td>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>1416</td>
<td>9035</td>
<td>1104</td>
<td>5</td>
<td>BRED</td>
<td>360</td>
<td>246/8</td>
<td>7</td>
<td>183</td>
<td>1825.0</td>
<td>66.8</td>
<td>60.0</td>
<td>COMPLETE RECORD</td>
<td>192</td>
<td>DAYS</td>
<td>MILKED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1423</td>
<td>9037</td>
<td>1208</td>
<td>5</td>
<td>OPEN</td>
<td>298</td>
<td>1229.81</td>
<td>2</td>
<td>140</td>
<td>143</td>
<td>140</td>
<td>4.6</td>
<td>7.2</td>
<td>5.0</td>
<td>-1.3</td>
<td>5.9</td>
<td>0.3</td>
<td>1.2</td>
</tr>
<tr>
<td>1501</td>
<td>9006</td>
<td>455</td>
<td>4</td>
<td>BRED</td>
<td>339</td>
<td>229/8</td>
<td>170</td>
<td>2584.0</td>
<td>95.5</td>
<td>84.2</td>
<td>COMPLETE RECORD</td>
<td>306</td>
<td>DAYS</td>
<td>MILKED</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1510</td>
<td>9002</td>
<td>1007</td>
<td>4</td>
<td>BRED</td>
<td>209</td>
<td>227/8</td>
<td>9</td>
<td>138</td>
<td>4781.0</td>
<td>183.2</td>
<td>157.1</td>
<td>PROJECTED</td>
<td>TO 305</td>
<td>DAY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1511</td>
<td>9023</td>
<td>1205</td>
<td>4</td>
<td>BRED</td>
<td>283</td>
<td>1205.85</td>
<td>2</td>
<td>141</td>
<td>144</td>
<td>142</td>
<td>5.2</td>
<td>7.8</td>
<td>6.3</td>
<td>2.6</td>
<td>6.5</td>
<td>0.8</td>
<td>2.8</td>
</tr>
<tr>
<td>1513</td>
<td>9023</td>
<td>1205</td>
<td>4</td>
<td>ETA</td>
<td>161</td>
<td>246/8</td>
<td>161</td>
<td>3178.0</td>
<td>112.5</td>
<td>105.2</td>
<td>COMPLETE RECORD</td>
<td>280</td>
<td>DAYS</td>
<td>MILKED</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1514</td>
<td>9017</td>
<td>1207</td>
<td>4</td>
<td>BRED</td>
<td>302</td>
<td>206/8</td>
<td>157</td>
<td>2928.0</td>
<td>89.1</td>
<td>72.2</td>
<td>COMPLETE RECORD</td>
<td>316</td>
<td>DAYS</td>
<td>MILKED</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1516</td>
<td>9002</td>
<td>1213</td>
<td>4</td>
<td>BRED</td>
<td>89</td>
<td>224/8</td>
<td>121</td>
<td>4259.0</td>
<td>166.0</td>
<td>134.7</td>
<td>PROJECTED</td>
<td>TO 305</td>
<td>DAY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1518</td>
<td>9017</td>
<td>1215</td>
<td>4</td>
<td>BRED</td>
<td>109</td>
<td>24/8</td>
<td>9</td>
<td>298</td>
<td>7465.0</td>
<td>296.0</td>
<td>246.7</td>
<td>COMPLETE RECORD</td>
<td>285</td>
<td>DAYS</td>
<td>MILKED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1520</td>
<td>9006</td>
<td>1305</td>
<td>4</td>
<td>BRED</td>
<td>257</td>
<td>43/8</td>
<td>99</td>
<td>2998.0</td>
<td>862.6</td>
<td>232.2</td>
<td>COMPLETE RECORD</td>
<td>299</td>
<td>DAYS</td>
<td>MILKED</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1601</td>
<td>9017</td>
<td>804</td>
<td>3</td>
<td>OPEN</td>
<td>0</td>
<td>1047.82</td>
<td>1</td>
<td>124</td>
<td>125</td>
<td>125</td>
<td>-5.1</td>
<td>-4.3</td>
<td>-4.4</td>
<td>0.2</td>
<td>-4.7</td>
<td>-0.6</td>
<td>-0.5</td>
</tr>
<tr>
<td>1602</td>
<td>9041</td>
<td>905</td>
<td>3</td>
<td>BRED</td>
<td>327</td>
<td>237/8</td>
<td>9</td>
<td>28</td>
<td>872.0</td>
<td>25.8</td>
<td>21.6</td>
<td>PROJECTED</td>
<td>TO 305</td>
<td>DAY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1604</td>
<td>9002</td>
<td>1010</td>
<td>3</td>
<td>BRED</td>
<td>351</td>
<td>1093.82</td>
<td>1</td>
<td>138</td>
<td>138</td>
<td>139</td>
<td>2.3</td>
<td>3.2</td>
<td>3.6</td>
<td>0.3</td>
<td>2.8</td>
<td>0.6</td>
<td>1.6</td>
</tr>
</tbody>
</table>

CURRENT PRODUCTION

<table>
<thead>
<tr>
<th>FEED</th>
<th>TYP</th>
<th>NO</th>
<th>SC</th>
<th>SC</th>
<th>MEAN</th>
<th>BCA</th>
<th>EPA</th>
<th>ETA</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.29</td>
<td>6343</td>
<td>3.6</td>
<td>6343</td>
<td>3.6</td>
<td>5349</td>
<td>184.8</td>
<td>172</td>
<td>80</td>
</tr>
</tbody>
</table>

SAMPLE OUTPUT

<p>| 114 |</p>
<table>
<thead>
<tr>
<th>COW SIRE</th>
<th>DAM</th>
<th>AGE</th>
<th>STAT</th>
<th>DAY</th>
<th>FRESH</th>
<th>DAYS</th>
<th>MILK</th>
<th>FAT</th>
<th>PROT</th>
<th>COST</th>
<th>SC</th>
<th>RC</th>
<th>MF</th>
<th>PRO</th>
<th>MEAN BCA</th>
<th>EPA</th>
<th>ETA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1605 9023</td>
<td>1112</td>
<td>3</td>
<td>BREED 132</td>
<td>43/9 317</td>
<td>5394.</td>
<td>196.5</td>
<td>180.0</td>
<td>COMPLETE RECORD 317 DAYS MILKED</td>
<td>5394.</td>
<td>196.5</td>
<td>180.0</td>
<td>139</td>
<td>140</td>
<td>142</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1607 9041</td>
<td>1207</td>
<td>3</td>
<td>BREED 293</td>
<td>254/8 182</td>
<td>2744.</td>
<td>96.4</td>
<td>85.6</td>
<td>COMPLETE RECORD 283 DAYS MILKED</td>
<td>4877.</td>
<td>171.3</td>
<td>152.1</td>
<td>114</td>
<td>112</td>
<td>111</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1608 9019</td>
<td>1304</td>
<td>3</td>
<td>BREED 59</td>
<td>232/9 133</td>
<td>3258.</td>
<td>115.1</td>
<td>105.9</td>
<td>PROJECTED TO 305 DAY</td>
<td>5530.</td>
<td>195.3</td>
<td>179.8</td>
<td>129</td>
<td>126</td>
<td>128</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1610 9023</td>
<td>1311</td>
<td>3</td>
<td>BREED 274</td>
<td>215/8 59</td>
<td>926.</td>
<td>31.3</td>
<td>30.6</td>
<td>COMPLETE RECORD 209 DAYS MILKED</td>
<td>4806.</td>
<td>162.5</td>
<td>158.9</td>
<td>93</td>
<td>89</td>
<td>93</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1611 9002</td>
<td>1280</td>
<td>3</td>
<td>OPEN 2</td>
<td>118/2 126</td>
<td>125.6</td>
<td>9.5</td>
<td>0.3</td>
<td>0.3</td>
<td>0.2</td>
<td>0.3</td>
<td>0.2</td>
<td>0.3</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1613 9044</td>
<td>1403</td>
<td>3</td>
<td>BREED 212</td>
<td>136/9 229</td>
<td>4689.</td>
<td>174.5</td>
<td>147.6</td>
<td>PROJECTED TO 305 DAY</td>
<td>5532.</td>
<td>205.8</td>
<td>174.2</td>
<td>144</td>
<td>147</td>
<td>140</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1615 9006</td>
<td>1412</td>
<td>3</td>
<td>OPEN 230</td>
<td>104/9 261</td>
<td>5176.</td>
<td>187.8</td>
<td>160.0</td>
<td>PROJECTED TO 305 DAY</td>
<td>5623.</td>
<td>204.0</td>
<td>173.8</td>
<td>146</td>
<td>146</td>
<td>140</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1616 9023</td>
<td>1416</td>
<td>3</td>
<td>BREED 105</td>
<td>241/8 161</td>
<td>2567.</td>
<td>93.1</td>
<td>82.1</td>
<td>COMPLETE RECORD 285 DAYS MILKED</td>
<td>5512.</td>
<td>200.0</td>
<td>176.4</td>
<td>124</td>
<td>124</td>
<td>122</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1617 9044</td>
<td>1419</td>
<td>3</td>
<td>BREED 278</td>
<td>211/9 154</td>
<td>4680.</td>
<td>177.5</td>
<td>148.9</td>
<td>PROJECTED TO 305 DAY</td>
<td>5882.</td>
<td>263.6</td>
<td>221.2</td>
<td>152</td>
<td>157</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1618 9019</td>
<td>1420</td>
<td>3</td>
<td>BREED 184</td>
<td>171/9 194</td>
<td>3918.</td>
<td>133.5</td>
<td>116.0</td>
<td>PROJECTED TO 305 DAY</td>
<td>5111.</td>
<td>178.7</td>
<td>155.2</td>
<td>138</td>
<td>132</td>
<td>129</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1619 9006</td>
<td>506</td>
<td>3</td>
<td>OPEN 138</td>
<td>59/9 306</td>
<td>5392.</td>
<td>194.3</td>
<td>171.3</td>
<td>PROJECTED TO 306 DAYS</td>
<td>5392.</td>
<td>194.1</td>
<td>171.1</td>
<td>141</td>
<td>140</td>
<td>138</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1620 9002</td>
<td>905</td>
<td>2</td>
<td>FERT 96</td>
<td>707/9 58</td>
<td>1165.</td>
<td>44.1</td>
<td>37.7</td>
<td>0.3</td>
<td>0.3</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
<td>0.2</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1621 9002</td>
<td>9010</td>
<td>2</td>
<td>BREED 273</td>
<td>326/9 39</td>
<td>669.</td>
<td>25.1</td>
<td>21.4</td>
<td>0.3</td>
<td>0.3</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
<td>0.7</td>
<td>0.3</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1622 9002</td>
<td>1201</td>
<td>2</td>
<td>FERT 50</td>
<td>205/9 160</td>
<td>3587.</td>
<td>133.1</td>
<td>110.1</td>
<td>PROJECTED TO 305 DAY</td>
<td>5616.</td>
<td>220.5</td>
<td>172.4</td>
<td>145</td>
<td>148</td>
<td>138</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1623 9019</td>
<td>1206</td>
<td>2</td>
<td>OPEN 0</td>
<td>254/9 182</td>
<td>2744.</td>
<td>96.4</td>
<td>85.6</td>
<td>COMPLETE RECORD 283 DAYS MILKED</td>
<td>4877.</td>
<td>171.3</td>
<td>152.1</td>
<td>114</td>
<td>112</td>
<td>111</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1624 9002</td>
<td>1280</td>
<td>3</td>
<td>OPEN 2</td>
<td>364/9 1</td>
<td>3.</td>
<td>0.1</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1625 9028</td>
<td>1411</td>
<td>2</td>
<td>BREED 112</td>
<td>616.</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1626 9023</td>
<td>1414</td>
<td>2</td>
<td>BREED 110</td>
<td>616.</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1627 9018</td>
<td>1416</td>
<td>2</td>
<td>BREED 152</td>
<td>616.</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1628 9043</td>
<td>1421</td>
<td>2</td>
<td>BREED 236</td>
<td>616.</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1629 9002</td>
<td>1280</td>
<td>3</td>
<td>OPEN 2</td>
<td>323/9 42</td>
<td>839.</td>
<td>32.9</td>
<td>26.2</td>
<td>0.3</td>
<td>0.3</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
<td>0.8</td>
<td>0.5</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1630 9002</td>
<td>1280</td>
<td>3</td>
<td>OPEN 2</td>
<td>292/9 73</td>
<td>1814.</td>
<td>60.2</td>
<td>50.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1631 9006</td>
<td>1511</td>
<td>2</td>
<td>BREED 152</td>
<td>286/9 79</td>
<td>1487.</td>
<td>52.9</td>
<td>48.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CURRENT PRODUCTION

FEED TYPE

MEAN BCA

EPA

ETA

SAMPLE OUTPUT

<table>
<thead>
<tr>
<th>CURRENT PRODUCTION</th>
<th>FEED TYPE</th>
<th>MEAN BCA</th>
<th>EPA</th>
<th>ETA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1003.8 1 139 139</td>
<td>141</td>
<td>3</td>
<td>0.3</td>
<td>3.7</td>
</tr>
<tr>
<td>1047.8 1 118</td>
<td>116</td>
<td>115</td>
<td>-8.3</td>
<td>-9.3</td>
</tr>
<tr>
<td>1247.8 2 120</td>
<td>126</td>
<td>125</td>
<td>-3.8</td>
<td>-4.5</td>
</tr>
<tr>
<td>9006 1511 2 BREED 132</td>
<td>118</td>
<td>126</td>
<td>125</td>
<td>-3.8</td>
</tr>
</tbody>
</table>

PROJECTED TO 305 DAY
YEARLINGS

<table>
<thead>
<tr>
<th>I.D. numbers</th>
<th>ETA</th>
<th>FEED</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>HEIFER</th>
<th>SIRE</th>
<th>DAM</th>
<th>DATE</th>
<th>MILK</th>
<th>FAT</th>
<th>PROT</th>
<th>TYPE</th>
<th>INDEX</th>
<th>COSTS</th>
<th>STAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1801</td>
<td>9036</td>
<td>708</td>
<td>143</td>
<td>-1.1</td>
<td>0.5</td>
<td>1.0</td>
<td>0.0</td>
<td>-0.3</td>
<td>348.94</td>
<td></td>
</tr>
<tr>
<td>1802</td>
<td>9036</td>
<td>905</td>
<td>177</td>
<td>-2.6</td>
<td>-1.4</td>
<td>-0.2</td>
<td>0.0</td>
<td>-2.0</td>
<td>341.42</td>
<td></td>
</tr>
<tr>
<td>1803</td>
<td>9002</td>
<td>1209</td>
<td>14</td>
<td>0.5</td>
<td>1.0</td>
<td>0.8</td>
<td>0.3</td>
<td>0.8</td>
<td>377.59</td>
<td></td>
</tr>
<tr>
<td>1804</td>
<td>9036</td>
<td>1312</td>
<td>247</td>
<td>-2.8</td>
<td>-2.0</td>
<td>-0.8</td>
<td>0.0</td>
<td>-2.4</td>
<td>325.79</td>
<td></td>
</tr>
<tr>
<td>1805</td>
<td>9018</td>
<td>1313</td>
<td>204</td>
<td>-1.0</td>
<td>-1.3</td>
<td>-0.8</td>
<td>0.0</td>
<td>-1.2</td>
<td>335.39</td>
<td></td>
</tr>
<tr>
<td>1806</td>
<td>9036</td>
<td>1411</td>
<td>177</td>
<td>-1.6</td>
<td>-0.1</td>
<td>0.1</td>
<td>0.0</td>
<td>-0.9</td>
<td>341.42</td>
<td></td>
</tr>
<tr>
<td>1807</td>
<td>9048</td>
<td>1412</td>
<td>263</td>
<td>-0.7</td>
<td>-1.3</td>
<td>-0.4</td>
<td>0.0</td>
<td>-1.0</td>
<td>322.34</td>
<td></td>
</tr>
<tr>
<td>1808</td>
<td>9048</td>
<td>1414</td>
<td>246</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>0.0</td>
<td>0.1</td>
<td>326.01</td>
<td></td>
</tr>
<tr>
<td>1809</td>
<td>9023</td>
<td>4223</td>
<td>162</td>
<td>0.1</td>
<td>0.6</td>
<td>0.2</td>
<td>0.0</td>
<td>0.4</td>
<td>344.75</td>
<td></td>
</tr>
<tr>
<td>1810</td>
<td>9048</td>
<td>1501</td>
<td>229</td>
<td>0.4</td>
<td>1.4</td>
<td>1.2</td>
<td>0.0</td>
<td>0.9</td>
<td>329.88</td>
<td></td>
</tr>
<tr>
<td>1811</td>
<td>9002</td>
<td>1511</td>
<td>224</td>
<td>-0.3</td>
<td>-0.3</td>
<td>-0.3</td>
<td>0.0</td>
<td>-0.3</td>
<td>330.90</td>
<td></td>
</tr>
<tr>
<td>1812</td>
<td>9018</td>
<td>1513</td>
<td>246</td>
<td>-0.9</td>
<td>-1.4</td>
<td>-0.8</td>
<td>0.0</td>
<td>-1.1</td>
<td>326.11</td>
<td></td>
</tr>
<tr>
<td>1813</td>
<td>9023</td>
<td>1514</td>
<td>208</td>
<td>1.2</td>
<td>2.3</td>
<td>1.0</td>
<td>-0.2</td>
<td>1.8</td>
<td>334.98</td>
<td></td>
</tr>
<tr>
<td>1814</td>
<td>9023</td>
<td>1516</td>
<td>26</td>
<td>1.3</td>
<td>2.5</td>
<td>1.3</td>
<td>0.1</td>
<td>1.9</td>
<td>374.93</td>
<td></td>
</tr>
<tr>
<td>1815</td>
<td>9047</td>
<td>1518</td>
<td>35</td>
<td>1.1</td>
<td>1.9</td>
<td>1.6</td>
<td>0.4</td>
<td>1.5</td>
<td>372.84</td>
<td></td>
</tr>
<tr>
<td>1816</td>
<td>9048</td>
<td>1519</td>
<td>114</td>
<td>0.1</td>
<td>0.4</td>
<td>0.5</td>
<td>0.0</td>
<td>0.3</td>
<td>355.40</td>
<td></td>
</tr>
<tr>
<td>1817</td>
<td>9048</td>
<td>1520</td>
<td>203</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>158.72</td>
<td>DEAD</td>
</tr>
<tr>
<td>1818</td>
<td>9018</td>
<td>1522</td>
<td>57</td>
<td>-0.1</td>
<td>-0.1</td>
<td>-0.1</td>
<td>0.0</td>
<td>-0.1</td>
<td>368.01</td>
<td></td>
</tr>
<tr>
<td>1819</td>
<td>9049</td>
<td>1604</td>
<td>244</td>
<td>0.3</td>
<td>0.8</td>
<td>0.7</td>
<td>0.0</td>
<td>0.6</td>
<td>326.46</td>
<td></td>
</tr>
<tr>
<td>1820</td>
<td>9036</td>
<td>1510</td>
<td>241</td>
<td>-2.4</td>
<td>-1.2</td>
<td>-0.1</td>
<td>0.0</td>
<td>-1.6</td>
<td>327.22</td>
<td></td>
</tr>
</tbody>
</table>

CALVES

<table>
<thead>
<tr>
<th>I.D. numbers</th>
<th>ETA</th>
<th>FEED</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>CALF</th>
<th>SIRE</th>
<th>DAM</th>
<th>DATE</th>
<th>MILK</th>
<th>FAT</th>
<th>PROT</th>
<th>TYPE</th>
<th>INDEX</th>
<th>COSTS</th>
<th>SEX</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1901</td>
<td>9036</td>
<td>455</td>
<td>123</td>
<td>-1.2</td>
<td>0.3</td>
<td>1.2</td>
<td>0.0</td>
<td>-0.4</td>
<td>198.71</td>
<td>HEIF</td>
<td>sold as</td>
</tr>
<tr>
<td>1</td>
<td>9039</td>
<td>708</td>
<td>146</td>
<td>1.1</td>
<td>1.6</td>
<td>0.9</td>
<td>0.1</td>
<td>1.3</td>
<td>0.0</td>
<td>BULL</td>
<td>potential A.I. bull</td>
</tr>
<tr>
<td>2</td>
<td>9036</td>
<td>1302</td>
<td>225</td>
<td>-1.1</td>
<td>1.8</td>
<td>1.7</td>
<td>0.0</td>
<td>0.4</td>
<td>0.0</td>
<td>BULL</td>
<td>S AI</td>
</tr>
<tr>
<td>0</td>
<td>9006</td>
<td>1411</td>
<td>176</td>
<td>-0.3</td>
<td>1.6</td>
<td>0.8</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>BULL</td>
<td>SOLD</td>
</tr>
<tr>
<td>1904</td>
<td>9036</td>
<td>1412</td>
<td>256</td>
<td>-2.9</td>
<td>-2.3</td>
<td>-0.3</td>
<td>0.0</td>
<td>-2.6</td>
<td>89.50</td>
<td>HEIF</td>
<td></td>
</tr>
<tr>
<td>1905</td>
<td>9036</td>
<td>1416</td>
<td>269</td>
<td>-1.6</td>
<td>0.0</td>
<td>0.8</td>
<td>0.0</td>
<td>-0.8</td>
<td>78.83</td>
<td>HEIF</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>9039</td>
<td>1423</td>
<td>178</td>
<td>0.1</td>
<td>0.6</td>
<td>0.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>BULL</td>
<td>SOLD</td>
</tr>
<tr>
<td>1906</td>
<td>9036</td>
<td>1501</td>
<td>227</td>
<td>-1.8</td>
<td>1.3</td>
<td>0.0</td>
<td>0.7</td>
<td>113.31</td>
<td>HEIF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1907</td>
<td>9049</td>
<td>1510</td>
<td>152</td>
<td>-0.7</td>
<td>-1.1</td>
<td>-0.8</td>
<td>-0.2</td>
<td>-0.9</td>
<td>174.89</td>
<td>HEIF</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>9002</td>
<td>1511</td>
<td>208</td>
<td>-0.3</td>
<td>-0.3</td>
<td>-0.3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>BULL</td>
<td>SOLD</td>
</tr>
<tr>
<td>1908</td>
<td>9039</td>
<td>1514</td>
<td>244</td>
<td>1.2</td>
<td>2.3</td>
<td>1.0</td>
<td>-0.2</td>
<td>1.8</td>
<td>99.35</td>
<td>HEIF</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>9049</td>
<td>1516</td>
<td>24</td>
<td>1.3</td>
<td>2.5</td>
<td>1.3</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>BULL</td>
<td>SOLD</td>
</tr>
<tr>
<td>1909</td>
<td>9036</td>
<td>1518</td>
<td>43</td>
<td>-1.1</td>
<td>0.8</td>
<td>1.7</td>
<td>0.0</td>
<td>-0.2</td>
<td>284.08</td>
<td>HEIF</td>
<td></td>
</tr>
</tbody>
</table>
CALVES

<table>
<thead>
<tr>
<th>Calf</th>
<th>Sire</th>
<th>Dam</th>
<th>Date</th>
<th>ETA</th>
<th>Milk</th>
<th>Fat</th>
<th>Prot</th>
<th>Type</th>
<th>Index</th>
<th>Feed</th>
<th>Costs</th>
<th>Sex</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1910</td>
<td>9049</td>
<td>1520</td>
<td>178</td>
<td>-0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>153.55</td>
<td>HEIF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1910</td>
<td>9002</td>
<td>1601</td>
<td>4</td>
<td>-0.3</td>
<td>-0.3</td>
<td>-0.2</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>BULL</td>
<td>SOLD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1911</td>
<td>9050</td>
<td>1604</td>
<td>241</td>
<td>0.3</td>
<td>0.8</td>
<td>0.7</td>
<td>0.0</td>
<td>0.6</td>
<td>101.47</td>
<td>HEIF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1911</td>
<td>9006</td>
<td>1605</td>
<td>43</td>
<td>-1.1</td>
<td>0.3</td>
<td>0.7</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>BULL</td>
<td>SOLD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1912</td>
<td>9049</td>
<td>1607</td>
<td>232</td>
<td>-0.4</td>
<td>-0.5</td>
<td>-0.6</td>
<td>-0.3</td>
<td>-0.5</td>
<td>109.21</td>
<td>HEIF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1912</td>
<td>9006</td>
<td>1610</td>
<td>211</td>
<td>-1.1</td>
<td>0.5</td>
<td>0.7</td>
<td>0.0</td>
<td>-0.3</td>
<td>126.45</td>
<td>HEIF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1913</td>
<td>9049</td>
<td>1613</td>
<td>136</td>
<td>-0.4</td>
<td>-0.3</td>
<td>-0.0</td>
<td>0.0</td>
<td>-0.4</td>
<td>188.03</td>
<td>HEIF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1913</td>
<td>9039</td>
<td>1615</td>
<td>204</td>
<td>-0.7</td>
<td>-0.3</td>
<td>0.2</td>
<td>0.0</td>
<td>-0.5</td>
<td>214.31</td>
<td>HEIF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1913</td>
<td>9049</td>
<td>1616</td>
<td>53</td>
<td>0.6</td>
<td>1.0</td>
<td>0.5</td>
<td>-0.2</td>
<td>0.8</td>
<td>256.18</td>
<td>HEIF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1913</td>
<td>9002</td>
<td>1617</td>
<td>171</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>-0.2</td>
<td>0.0</td>
<td>0.0</td>
<td>BULL</td>
<td>SOLD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1913</td>
<td>9036</td>
<td>1618</td>
<td>59</td>
<td>-2.2</td>
<td>-1.2</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>BULL</td>
<td>SOLD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1913</td>
<td>9039</td>
<td>1601</td>
<td>337</td>
<td>-0.3</td>
<td>-0.3</td>
<td>-0.2</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>BULL</td>
<td>SOLD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1913</td>
<td>9006</td>
<td>1602</td>
<td>277</td>
<td>-1.2</td>
<td>0.6</td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>BULL</td>
<td>SOLD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1913</td>
<td>9049</td>
<td>1701</td>
<td>307</td>
<td>0.1</td>
<td>0.2</td>
<td>-0.0</td>
<td>-0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>BULL</td>
<td>SOLD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1913</td>
<td>9002</td>
<td>1702</td>
<td>278</td>
<td>0.1</td>
<td>1.1</td>
<td>0.8</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>BULL</td>
<td>SOLD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1913</td>
<td>9049</td>
<td>1703</td>
<td>326</td>
<td>-0.1</td>
<td>0.9</td>
<td>0.8</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>BULL</td>
<td>SOLD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1913</td>
<td>9023</td>
<td>1705</td>
<td>205</td>
<td>0.1</td>
<td>0.6</td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>BULL</td>
<td>SOLD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1913</td>
<td>9023</td>
<td>1707</td>
<td>364</td>
<td>-0.4</td>
<td>-0.5</td>
<td>-0.2</td>
<td>0.0</td>
<td>-0.4</td>
<td>0.82</td>
<td>HEIF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1914</td>
<td>9049</td>
<td>1711</td>
<td>323</td>
<td>0.1</td>
<td>0.3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.2</td>
<td>34.49</td>
<td>HEIF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1914</td>
<td>9039</td>
<td>1712</td>
<td>292</td>
<td>-0.4</td>
<td>-0.3</td>
<td>-0.1</td>
<td>0.0</td>
<td>-0.3</td>
<td>59.94</td>
<td>HEIF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1915</td>
<td>9002</td>
<td>1713</td>
<td>286</td>
<td>0.0</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>68.55</td>
<td>HEIF</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ROLLING HERD AVERAGES

Average production in 305 days or less (for cows dried off before 305 days) of all lactations completed or reaching 305-days in the current year before culling.

Before Culling

<table>
<thead>
<tr>
<th>NO. REC.</th>
<th>MILK</th>
<th>FAT</th>
<th>PROTEIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>5955</td>
<td>215.0</td>
<td>192.7</td>
</tr>
</tbody>
</table>

Average age at parturition: 4.6 years, average days milked: 292.3 days, average percent milk fat: 3.61, average percent milk protein: 3.24.

After Culling

<table>
<thead>
<tr>
<th>NO. REC.</th>
<th>MILK</th>
<th>FAT</th>
<th>PROTEIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>5948</td>
<td>214.8</td>
<td>192.5</td>
</tr>
</tbody>
</table>

Average age at parturition: 4.6 years, average days milked: 289.2 days, average percent milk fat: 3.61, average percent milk protein: 3.24.

<table>
<thead>
<tr>
<th>BCA</th>
<th>TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>133</td>
<td>82.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BCA</th>
<th>TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>133</td>
<td>82.</td>
</tr>
</tbody>
</table>
CALVING INTERVAL 364.0
actually days open plus gestation
length for cows conceiving in the year

CONCEPTION RATE 0.545
all services to cows conceiving
or culled in the year

LIVE ANIMALS AT YEAR END
heifers
35 COWS 8 BRED HEIFERS 19 YEARLINGS 20 CALVES

ECONOMIC SUMMARY

<table>
<thead>
<tr>
<th>Category</th>
<th>Quantity</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXPENDITURES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIXED COSTS</td>
<td>39935.00</td>
<td>fixed plus additional management</td>
<td></td>
</tr>
<tr>
<td>FEED COSTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- COWS</td>
<td>31375.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- YEARLINGS</td>
<td>6669.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- CALVES</td>
<td>2646.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEMEN COSTS</td>
<td>9361.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MILK SHIPPING COST</td>
<td>2636.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL EXPENDITURES</td>
<td>92623.94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INCOME</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1500.00 HL QUOTA MILK</td>
<td>80073.88</td>
<td>at 53.38/HL</td>
<td></td>
</tr>
<tr>
<td>467.78 HL EXCESS MILK</td>
<td>18347.73</td>
<td>at 39.22/HL</td>
<td></td>
</tr>
<tr>
<td>0.0 HL SURPLUS MILK</td>
<td>0.00</td>
<td>at .000/HL</td>
<td></td>
</tr>
<tr>
<td>SOLD ANIMALS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 COWS (PRODUCTION)</td>
<td>2600.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 COWS (FERTILITY)</td>
<td>1566.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 COWS (HEALTH)</td>
<td>300.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 COWS DEAD</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 YEARLINGS</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 OLD CALVES</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 BULL CALVES</td>
<td>800.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 HEIFER CALVES</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 SELECTED YOUNG SIRES</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL INCOME</td>
<td>103681.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL PROFIT</td>
<td>11057.63</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Analysis of Covariance and Slope Test with Years (1-7) as the Covariate

Management Levels

Variable # 1: CALVING INTERVAL

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>SUM SQ</th>
<th>MEAN SQ</th>
<th>F-Value</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>41</td>
<td>1119.0</td>
<td>5.527</td>
<td>0.2889</td>
<td>0.915</td>
</tr>
<tr>
<td>SLOPES</td>
<td>5</td>
<td>27.637</td>
<td>5.527</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERROR 1</td>
<td>30</td>
<td>574.06</td>
<td>19.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEANS</td>
<td>5</td>
<td>517.19</td>
<td>103.4</td>
<td>6.017</td>
<td>0.406E-03</td>
</tr>
<tr>
<td>COMMON SLOPE</td>
<td>1</td>
<td>0.11841</td>
<td>0.1184</td>
<td>0.6888E-02</td>
<td>0.934</td>
</tr>
<tr>
<td>ERROR 2</td>
<td>35</td>
<td>601.69</td>
<td>17.19</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Student Newman Kuels Test - Herd Mean's

Alpha = 0.05 and 35 DF

There are 2 homogenous subsets

(1, 3, 5, 9, 11, 7,
Group 2

Analysis of Covariance (42 Observations)

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F-Value</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>41</td>
<td>3536.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLOPES</td>
<td>5</td>
<td>127.70</td>
<td>25.54</td>
<td>1.323</td>
<td>0.281</td>
</tr>
<tr>
<td>ERROR 1</td>
<td>30</td>
<td>578.97</td>
<td>19.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEANS</td>
<td>5</td>
<td>2824.3</td>
<td>564.9</td>
<td>27.98</td>
<td>0.264E-10</td>
</tr>
<tr>
<td>COMMON SLOPE</td>
<td>1</td>
<td>5.0088</td>
<td>5.009</td>
<td>0.248</td>
<td>0.622</td>
</tr>
<tr>
<td>ERROR 2</td>
<td>35</td>
<td>706.67</td>
<td>20.19</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Student Newman-Kuels Test - Herd Means

Alpha = 0.05 and 35 DF

There are 4 Homogenous Subsets

101, 103,
105,
109, 111,
107,

Group 3

Analysis of Covariance (42 Observations)

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F-Value</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>41</td>
<td>4838.0</td>
<td></td>
<td>0.5676</td>
<td>0.724</td>
</tr>
<tr>
<td>SLOPES</td>
<td>5</td>
<td>70.204</td>
<td>14.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERROR 1</td>
<td>30</td>
<td>742.16</td>
<td>24.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEANS</td>
<td>5</td>
<td>3973.2</td>
<td>794.6</td>
<td>34.24</td>
<td>0.156E-11</td>
</tr>
<tr>
<td>COMMON SLOPE</td>
<td>1</td>
<td>52.391</td>
<td>52.39</td>
<td>2.257</td>
<td>0.142</td>
</tr>
<tr>
<td>ERROR 2</td>
<td>35</td>
<td>812.36</td>
<td>23.21</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
STUDENT NEWMAN KUELS TEST - HERD MEAN 'S

ALPHA=0.05 AND 35 DF

THERE ARE 3 HOMOGENOUS SUBSETS

(102,
(106, 104,
(110, 112, 108,

<table>
<thead>
<tr>
<th>HERD</th>
<th>MEAN</th>
<th>S.E.</th>
<th>SLOPE</th>
<th>S.E.</th>
<th>INTERCEPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMON</td>
<td>379.749</td>
<td>1.729</td>
<td>0.558</td>
<td>0.372</td>
<td>377.515</td>
</tr>
<tr>
<td>102</td>
<td>394.637</td>
<td>1.821</td>
<td>0.661</td>
<td>0.940</td>
<td>391.993</td>
</tr>
<tr>
<td>104</td>
<td>383.377</td>
<td>1.821</td>
<td>0.261</td>
<td>0.940</td>
<td>382.331</td>
</tr>
<tr>
<td>106</td>
<td>388.329</td>
<td>1.821</td>
<td>1.277</td>
<td>0.940</td>
<td>383.222</td>
</tr>
<tr>
<td>108</td>
<td>367.928</td>
<td>1.821</td>
<td>1.413</td>
<td>0.940</td>
<td>362.276</td>
</tr>
<tr>
<td>110</td>
<td>373.234</td>
<td>1.821</td>
<td>-0.457</td>
<td>0.940</td>
<td>375.062</td>
</tr>
<tr>
<td>112</td>
<td>370.992</td>
<td>1.821</td>
<td>0.195</td>
<td>0.940</td>
<td>370.210</td>
</tr>
</tbody>
</table>

GROUP 4
ANALYSIS OF COVARIANCE (42 OBSERVATIONS)

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>DF</th>
<th>SUM SQ</th>
<th>MEAN SQ</th>
<th>F-VALUE</th>
<th>PROB</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>41</td>
<td>17545.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLOPES</td>
<td>5</td>
<td>421.60</td>
<td>84.32</td>
<td>1.478</td>
<td>0.226</td>
</tr>
<tr>
<td>ERROR</td>
<td>30</td>
<td>1710.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEANS</td>
<td>5</td>
<td>14811.</td>
<td>2962.</td>
<td>48.62</td>
<td>0.110E-13</td>
</tr>
<tr>
<td>COMMON SLOPE</td>
<td>1</td>
<td>601.22</td>
<td>601.2</td>
<td>9.867</td>
<td>0.341E-02</td>
</tr>
<tr>
<td>ERROR</td>
<td>35</td>
<td>2132.5</td>
<td>60.93</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STUDENT NEWMAN KUELS TEST - HERD MEAN 'S

ALPHA=0.05 AND 35 DF

THERE ARE 3 HOMOGENOUS SUBSETS

(4, 2, 6,
(12, 10,
(8,

<table>
<thead>
<tr>
<th>HERD</th>
<th>MEAN</th>
<th>S.E.</th>
<th>SLOPE</th>
<th>S.E.</th>
<th>INTERCEPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMON</td>
<td>391.936</td>
<td>3.254</td>
<td>1.892</td>
<td>0.602</td>
<td>384.368</td>
</tr>
<tr>
<td>2</td>
<td>409.667</td>
<td>2.950</td>
<td>2.165</td>
<td>1.427</td>
<td>401.008</td>
</tr>
<tr>
<td>4</td>
<td>414.743</td>
<td>2.950</td>
<td>0.630</td>
<td>1.427</td>
<td>412.224</td>
</tr>
<tr>
<td>6</td>
<td>405.264</td>
<td>2.950</td>
<td>3.999</td>
<td>1.427</td>
<td>389.269</td>
</tr>
<tr>
<td>8</td>
<td>365.114</td>
<td>2.950</td>
<td>0.080</td>
<td>1.427</td>
<td>364.794</td>
</tr>
<tr>
<td>10</td>
<td>375.516</td>
<td>2.950</td>
<td>0.590</td>
<td>1.427</td>
<td>373.154</td>
</tr>
<tr>
<td>12</td>
<td>381.312</td>
<td>2.950</td>
<td>3.886</td>
<td>1.427</td>
<td>365.769</td>
</tr>
</tbody>
</table>
FINAL - OVERALL

test if significant differences between groups

ANALYSIS OF COVARIANCE (168 OBSERVATIONS)

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>DF</th>
<th>SUM SQ</th>
<th>MEAN SQ</th>
<th>F-VALUE</th>
<th>PROB</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>167</td>
<td>44032.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLOPES</td>
<td>3</td>
<td>435.78</td>
<td>145.3</td>
<td>0.8811</td>
<td>0.452</td>
</tr>
<tr>
<td>ERROR 1</td>
<td>160</td>
<td>26379.</td>
<td>164.9</td>
<td>0.8811</td>
<td>0.452</td>
</tr>
<tr>
<td>MEANS</td>
<td>3</td>
<td>16994.</td>
<td>5665.</td>
<td>34.43</td>
<td>0.580E-16</td>
</tr>
<tr>
<td>COMMON SLOPE</td>
<td>1</td>
<td>222.95</td>
<td>222.9</td>
<td>34.43</td>
<td>0.580E-16</td>
</tr>
<tr>
<td>ERROR 2</td>
<td>163</td>
<td>26815.</td>
<td>164.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STUDENT NEWMAN KUELS TEST - GROUP MEAN 'S

ALPHA=0.05 AND 163 DF

THERE ARE 4 HOMOGENOUS SUBSETS

(4,
(3,
(2,
(1,

GROUP MEAN S.E. SLOPE S.E. INTERCEPT
COMMON 376.986 1.261 0.576 0.495 374.682
1 365.244 1.979 0.027 0.991 365.137
2 371.018 1.979 -0.173 0.991 371.708
3 379.749 1.979 0.558 0.991 377.515
4 391.936 1.979 1.892 0.991 384.368

VARIABLE # 2 NET INCOME

 SAME ANALYSIS AS VARIABLE #1

ANALYSIS COMPLETE
Figure C.1

MAIN PROGRAM

read AI file → find herd → read last parameters used → output main menu → change parameters?

no

initialize random number generators → CALL MNDG: generate temporary herd effects → select

proven bulls individually?

no

select proven bulls by rank?

no

select bulls random from AI check eligible

yes

more herds?

no

STOP

yes

input new parameters

yes

SUMROUTINE MNDG

generates sets of four multivariate normal deviates with given covariances → RETURN

input bulls → select young bulls individually?

no

rank young bulls by pedigree index & select top

no

select young bulls at random → automated?

no

output menu

individual animal selections?

no

print hardcopy management decisions

no

CALL GENREC ← initialize subroutines
SUBROUTINE GENREC

read cows from file
zero arrays
find a cow record

cow pregnant?
\(\text{no} \) CALL BREED
\(\text{yes} \)
cull?
\(\text{no} \)
due to freshen this year?
\(\text{yes} \) CALL LACT
if cow's first record
CALL BLUP
eligible to breed before year end?
\(\text{yes} \) CALL BREED
\(\text{no} \)
cull?
\(\text{no} \)
freshen again before year end?
\(\text{yes} \) CALL LACT
CALL PROD for new lactation
CALL PROD for old lactation
dead or culled for health?
\(\text{no} \)
CALL ADJPROD
\(\text{yes} \) CALL KILCF

more cows?
\(\text{no} \) calculate herd averages for EPA's
CALL COWETA
calculate index scores
CALL CULSEL
CALL SUMCOW
write cow records to file
CALL SUMHRD
CALL PBLUP
RETURN

SUBROUTINE LACT

initialize
ENTRY
generate temporary cow effects
sum all effects for new 305 day record
if type not > last don't change
RETURN
SUBROUTINE BREED

initialize

ENTRY MATE

automated decisions?

no

yes

cull calf

cheap bull?

no

yes

find

selected

bull

yes

save bull calf

specified?

no

yes

select top bull

automated?

no

yes

RETURN

ENTRY SUMATE

sum bull use

and conception

within classes

calculate averages

conception rate and

calving interval

write bull use

summary to file

RETURN

ESTROUS LOOP

random number

greater than

probability of

 estrus detection?

no

yes

random number

greater than

probability of

conception?

no

yes

random number

greater than

probability of

estrus detection?

no

yes

add a

cycle

add a

service

RETURN

RETURN

generate true

breeding value

store info.

for unborn calf

RETURN

if starting cycle

generate date of

first estrus

calculate probabilities

estrus detection and

conception

year end?

yes

RETURN

no

yes

cull?

no

yes

add a

service

RETURN

yes

save bull calf

specified?

no

yes

select bull at

random with

specified probabilities

inbreeding?

no

yes

ENTRY SUMATE

sum bull use

and conception

within classes

calculate averages

conception rate and

calving interval

write bull use

summary to file

RETURN

if starting cycle

generate date of

first estrus

calculate probabilities

estrus detection and

conception

year end?

yes

RETURN

no

yes

cull?

no

yes

add a

service

RETURN

yes

save bull calf

specified?

no

yes

select bull at

random with

specified probabilities

inbreeding?

no

yes

ENTRY MATE

automated decisions?

no

yes

cull calf

cheap bull?

no

yes

specified mating?

no

yes

save

bull calf

specified?

no

yes

select

top bull

automated?
SUBROUTINE PROD

ENTRY PROD
adjust mature equivalent for age
Iterative loop solve for Wood's lactation parameters estimate "b"
solve for "a" and "c" estimated production 305 days AREAG estimate equals actual 305-day production? yes no refine estimate "b"
ENTRY AJPROD solve "a" and "c" find date to dry off DRYOFF estimate production in current year AREAG RETURN

FUNCTION DRYOFF
ENTRY RHPROD lactation > 305 days? yes no calculate "a" and "c" estimate production complete lactation AREAG adjust new 305-day record for age RETURN

FUNCTION AREAG
calculate parameters compute area from gamma intervals GAMMDS RETURN

FUNCTION GAMMDS
check parameters iterative loop (re)estimate gamma interval error tolerable RETURN
SUBROUTINE ETA

initialize
RETURN
ENTRY COWETA
adjust cows deviations for herd and population mean
calculate EPA's
ENTRY CLFETA
ENTRY YNGETA
find dam if alive
update dams ETA
update sire's ETA
calculate animal's ETA
RETURN

SUBROUTINE SUMCOW

add the animal's true BV to the total for the appropriate animal class
find lactation dates
calculate BCA's
CALL WRTLIN
RETURN

SUBROUTINE SUMHRD

calculate milk price and income
CALL YNGOUT
CALL SUMATE
calculate income from culled animals
calculate average BV's for each class of animal
calculate rolling herd averages
write herd and summaries to files
automated herd?
yes
no
write production and economic summaries to printer and screen
RETURN

SUBROUTINE WRTLIN

write to printer cows performance and record in appropriate format
SUBROUTINE SELEC

ENTRY CULSEL

sort herd (lowest-highest)
using defined index
start at top
of list
next cow

low ranked
previous year ?

production new
lactation drops
before year end ?

yes
cull
after old
lactation
CALL AJPROD

eliminate new
lactation
adjust herd
production

switch ?

yes
herd production
> quota+excess ?

no
set "switch" off
store rank cows

automated
herd ?

yes
CALL RHPROD

RETURN

no

production new
lactation drops
before year end ?

yes
cull after
new lactation
CALL AJPROD

no
mark as
low rank

subroutine blup

initialize
RETURN

ENTRY BLUP
add first lactation
record to sire's
herd-year-season
RETURN
ENTRY PBBLUP
write herd-year
-season records for
sires to file
RETURN

SUBROUTINE KILCF

find calves due
to be born but
conceived after
cull date
remove
RETURN

print screen
list bottom
ranked cows

option ?

print screen
list bottom
ranked cows

longer
list

restore culled
cow
SUBROUTINE YOUNG

read last years heifer calves from file

loop for calves
 next calf
 move to yearling array
 calculate feed costs
 CALL YNGETA
 add BV's to total
 store status
 yes
 more old calves?
 no
 CALL CALVES
 yes
 write yearlings and calves to file
 automated herd?
 yes
 no
 write status yearlings & calves to printer
 RETURN

SUBROUTINE FILES

finds herds and assigns herd files to appropriate devices
RETURN

SUBROUTINE CALVES

read unborn calves from file
new calves from MATE
 sort calves to be removed
 loop for calves
 next calf
 dead or cow culled?
 yes
 save status
 yes
 generate sex
 no
 male?
 yes
 generate permanent cow effects
 CALL CLFETA
 dead?
 yes
 save status & BV's
 calculate feed costs
 yes
 more young calves?
 yes
 RETURN
 no
 RETURN
 no
 born in current year?
 yes
 generate permanent cow effects
 CALL CLFETA
 dead?
 yes
 save status & BV's
 calculate feed costs
 yes
 more young calves?
 yes
 RETURN
 no
 RETURN
 no
 no
C

C **
C
C
C
DIMENSION AI(30,500), HRDCOW(40,150), HRDYLG(18,75),
 CALF(18,75), UCALF(8,150),
 RNE(4), RNG(4), EWK(4), GWK(4), IDIST(6),
 IAGE(150), BAGE(500)

C Parameters needed to generate genetic and environmental
 effects for production traits
C
REAL*4 ESIGMA(10)/1., .83, 1., .96, .78, 1., .2, .2, 1.1,
 GSIGMA(10)/1., .54, 1., .7, .81, 1., 0., -.15, 0., 1.1,
 GSD(4)/413., 18.2, 12.8, 1.66/, PCESD(4)/393., 12.6,
 3 11.9, 1.64/

C Other biological parameters
C
REAL *4 BFSD/0.02/, BFM/0.7/, HDCSD/0.01/, HDCM/0.75/,
 FERSD/0.01/, FERTM/0.75/,
 2 DATR/365./, UYR/1.0/

C Management decision options
C
REAL *4 PARM(25)/0.0, 0.0, -2., .2, 3.2, 0.5, 0.5, 0.0, 0.0,
 1 305., 5., 0.0, 0.0, 0.0, 0.0, 7., 12., 10.2, 100.2, 3.3,
 2 30.02, 10.2, 1500., 500., 1.1/

C LOGICAL*1 TRUE /T/, FALSE /F/, CONT /F/, FINISH

C READ PARAMETERS
C
10 WRITE (6,280)
 READ (5,290,ERR=10) NSH, NGSH, NGGH, NCHD, NBULLS, ISEED
 IF (NBULLS .LE. 0) GO TO 10
 IF (NSH .LE. 0) GO TO 10
 IF (NCHD .LE. 0) GO TO 10
 I = IRAND(0)
 IF (ISEED .LE. 0) ISEED = IRAND(1000)
 GO TO 30
20 WRITE (6,340) NCHD
30 WRITE (6,330) NSH, NGSH, NCHD, NGGH, NBULLS, ISEED, IDIST

20 WRITE (6,340) NSH, NGSH, NCHD, NGGH, NBULLS, ISEED, IDIST
READ (5,330) CONT
IF (CONT) GO TO 10

* set cow ages for selected distribution

IT = 0
DO 60 I = 1, 6
 K = 7 - I
 N = IDIST(K)
 IDIST(K) = 0.
 IF (N .LE. 0) GO TO 60
 DO 50 J = 1, N
 IT = IT + 1
 IAGE(IT) = I * 100
 50 CONTINUE
60 CONTINUE

IF (NCHD .GT. 150) GO TO 10
NTSH = NSH * NGSH
IF (NTSH .GT. 100) GO TO 10

* INITIALIZE RANDOM NUMBER GENERATORS

SEED = ISEED
I = IRAND(-ISEED)
F = RAND(SEED)
FN = RANDN(SEED)
CALL MNDG(I SEED, ESIGMA, RNE, EWK)
CALL MNDG(I SEED, GSIGMA, RNG, GWK)

* Set numbers and ages of bulls

NOAI = 2 * NBULLS
NUAI = 3 * NOAI
NEAI = NUAI + NBULLS
NPAI = NEAI + UYR * NBULLS
NTAI = NPAI + NBULLS
IOA = -1 * NTAI / NBULLS
NWY = 0
DO 67 I = 1, NTAI
 IF (NWY .LT. NBULLS) GO TO 66
 NWY = 0
 IOA = IOA + 1
66 NWY = NWY + 1
 BAGE(I) = IOA + FRAND(0.0)
67 CONTINUE

CALL ISORT (BAGE, 1, 500, 1, NTAI, 1, 3, 0)

* Generate A.I. Sires

DO 100 I = 1, NTAI
 CALL MNDG1 (ISEED, GSIGMA, RNG, GWK)
 DO 70 J = 1, 4
 AI(J+1,I) = 0.0
 AI(J+10,I) = 0.0
 AI(J+18,I) = 0.0
 AI(J+18,1) = 0.0
 AI(J+22,I) = 0.0
 AI(J+26,I) = 0.0
 AI(J+26,1) = RNG(J) * GSD(J)
70 CONTINUE

AI(1,I) = 9000 + I
80 FERTB = BFM + 1 - EXP (BFSD * FRANDN(0.0))
IF (FERTB .GT. 1.) GO TO 80
AI(6,I) = FERTB
AI(7,I) = 15.
AI(8,I) = BAGE(I)
AI(9,I) = 0.
AI(10,I) = 0.0
AI(11,I) = 10.
AI(12,I) = 10. * FERTB * (FERTM + FRANDN(0.0) * FERSD / 10.)
100 CONTINUE
CALL FTNCMD('ASSIGN 4=KINN:AI,U;')
NB = 0
WRITE (4) NB, NB, NUAI, NEAI, NPAI, NTAI
CALL WRTMAT(AI, 30, NTAI, 4)
105 CALL FTNCMD('ASSIGN 9=KINN:CODES;')
C
C * Generate cow and unborn calf
C
NCG = NCHD / 2
NCOW = 2 * NCG
VMC = SQRT (0.5)
DO 270 L = 1, NTSH, NGSH
INC = 0
DO 220 I = 1, NCG

N = I + INC
ASSIGN 148 TO ISWIT
110 M = IAGE(N) / 100
IDIST(M) = IDIST(M) + 1
IBL = IRAND (NOAI)
HRDCOW(1,N) = IAGE(N) + IDIST(M)
HRDCOW(2,N) = 9000 + IBL
HRDCOW(3,N) = 0.0
HRDCOW(4,N) = IRAND(365)
HRDCOW(5,N) = 1.
HRDCOW(6,N) = 0.0
HRDCOW(7,N) = 1.0
HRDCOW(8,N) = 0.0
HRDCOW(9,N) = HRDCOW(4,N) + DAYR
HRDCOW(10,N) = 1.0
120 HRDCOW(39,N) = HDCM + 1 - EXP (HDCSD * FRANDN(0.0))
IF (HRDCOW(39,N) .GT. 1.) GO TO 120
130 HRDCOW(40,N) = FERTM + 1 - EXP (FERSD * FRANDN(0.0))
IF (HRDCOW(40,N) .GT. 1.) GO TO 130
CALL MNDG1(ISEED, GSIGMA, RNG, GWK)
CALL MNDG1 (I SEED, ESIGMA, RNE, EWK)
DO 140 J = 1, 4
HRDCOW(J + 10,N) = RNE(J) * PCESD(J)
HRDCOW(J + 14,N) = RNG(J) * GSD(J) * VMC + 0.25 * AI(J+14,IBL)
1
HRDCOW(J + 18,N) = 0.0
HRDCOW(J + 22,N) = 0.0
HRDCOW(J + 26,N) = 0.0
HRDCOW(J + 30,N) = 0.0
HRDCOW(J + 34,N) = 0.0
140 CONTINUE
IST = 2
BYA = FRAND(0.0)
IF (BYA .LT. 0.3) IST = 1
UCALF(1,N) = IST
IBL = IRAND (NBULLS) + 5 * NBULLS
UCALF(2,N) = 9000 + IBL
UCALF(3,N) = HRDCOW(1,N)
UCALF(4,N) = HRDCOW(9,N)
CALL MNDG1(ISEED, GSIGMA, RNG, GWK)
DO 145 J = 1, 4
 UCALF(J+4,N) = RNG(J) * GSD(J) * VMC + 0.5 * (HRCOW(J+14,N) + AI(J+14,IBL))
145 CONTINUE
GO TO ISWIT, (150, 148)
148 ASSIGN 150 TO ISWIT
 INC = INC + 1
 N = N + 1
IF (N .GT. NCOW) GO TO 150
 GO TO 110
C *
C *
C *
150 GENERATE YEARLING
C *
 HRDYLG(1,I) = 700 + I
 IBL = IRAND (NOAI) + NOAI
 HRDYLG(2,I) = 9000 + IBL
 HRDYLG(3,I) = 0.0
 HRDYLG(4,I) = FRAND(0.0) * 365.
160 HRDYLG(5,I) = HDCM + 1 - EXP (HDCSD * FRANDN(0.0))
 IF (HRDYLG(5,I) .GT. 1.) GO TO 160
170 HRDYLG(6,I) = FERTM + 1 - EXP (FERSD * FRANDN(0.0))
 IF (HRDYLG(6,I) .GT. 1.) GO TO 170
 CALL MNDD1(ISEED, GSIGMA, RNG, GWK)
 CALL MNDD1(ISEED, ESIGMA, RNE, EWK)
 DO 180 J = 1, 4
 HRDYLG(J + 6,1) = RNE(J)
 HRDYLG(J + 10,1) = RNG(J)
 AI(J+14,IBL)
 HRDYLG(J + 14,1) = 0.0
180 CONTINUE
C *
C *
C *
180 GENERATE CALF
C *
 CALF(1,I) = 800 + I
 IBL = IRAND (NBULLS) + 4 * NBULLS
 CALF(2,I) = 9000 + IBL
 CALF(3,I) = 0.0
 CALF(4,I) = FRAND(0.0) * 365.
190 CALF(5,I) = HDCM + 1 - EXP (HDCSD * FRANDN(0.0))
 IF (CALF(5,I) .GT. 1.) GO TO 190
200 CALF(6,I) = FERTM + 1 - EXP (FERSD * FRANDN(0.0))
 CALL MNDD1(ISEED, GSIGMA, RNG, GWK)
 CALL MNDD1(ISEED, ESIGMA, RNE, EWK)
 DO 210 J = 1, 4
 CALF(J + 6,I) = RNE(J) * PCESD(J)
 CALF(J + 10,I) = RNG(J) * GSD(J) * VMC + 0.25 * AI(J+14,IBL)
 HRDYLG(J + 14,1) = 0.0
210 CONTINUE
220 CONTINUE
IF (NGSH .LT. 1) GO TO 240
C *
C *
C *
WRITE THE STUDENTS HERDS UNFORMATTED IN THE APPROPRIATE FILES
C *
230 CONTINUE
WRITE (12) PARM
WRITE (12) NCOW
CALL WRTMAT(HRDCOW, 40, NCOW, 12)
WRITE (12) NCG
CALL WRTMAT(HRDYG, 18, NCG, 12)
WRITE (12) NCG, NCOW
CALL WRTMAT(CALF, 18, NCG, 12)
CALL WRTMAT(UCALF, 8, NCOW, 12)
CONTINUE

C * WRITE THE CONTROL HERDS UNFORMATTED IN THE APPROPRIATE GROUP FILE C *
DO 260 I = 1, NGGH
 IHRD = I * 100 + L
 CALL FILED(IHRD)
 PARM(1) = IHRD
 PARM(2) = 500
 WRITE (9,310) IHRD, PARM(2)
 PARM(25) = NSH
 WRITE (12) PARM
 WRITE (12) NCOW
 CALL WRTMAT(HRDCOW, 40, NCOW, 12)
 WRITE (12) NCG
 CALL WRTMAT(HRDYG, 18, NCG, 12)
 WRITE (12) NCG, NCOW
 CALL WRTMAT(CALF, 18, NCG, 12)
 CALL WRTMAT(UCALF, 8, NCOW, 12)
CONTINUE

CONTINUE

FORMAT (' ENTER THE NUMBER OF STUDENTS AND THE NUMBER', 1 ' OF HERDS EACH', /,
 ' OF STUDENT HERDS', ' THE NUMBER OF CONTROL GROUPS (MAXIMUM 4)', ', /,
 ' THE NUMBER OF COWS PER HERD (MAXIMUM 150)', ' THE NUMBER OF COWS OF EACH AGE 2-7',
 ' STUDENTS', ' HERDS/STUDENT', ' COWS/HERD',
 ' BULLS', ' SEED', ' AGE DISTRIBUTION', ' ENTER "T" IF ERROR OR RETURN IF OK')
SUBROUTINE WRTMAT(RMAT, ICOL, IROW, INP)
C **
C * This subroutine writes and reads two dimensional matrixes. *
C **
DIMENSION RMAT(ICOL,IROW)
WRITE (INP) RMAT
RETURN
ENTRY REAMAT (RMAT, ICOL, IROW, INP)
READ (INP) RMAT
RETURN
END

FUNCTION RANDT(ISEED)

THIS FUNCTION GENERATES UNIFORM (0,1) RANDOM NUMBERS

DOUBLE PRECISION Z, DN1MOD, DN1
DATA DN1MOD /2147483647.D0/, DN1 /Z3920000000000000/
Z = ISEED
Z = DMOD(16807.D0*Z,DN1MOD)
RANDT = Z * DN1
ISEED = Z
RETURN
END

FUNCTION RN(IX)

This function generates pairs of normal (0,1) random deviates,
using a modification of the box-mueller method.

DATA I /1/
IF (I .NE. 1) GO TO 30
I = 2
10 U = 2. * RANDT(IX) - 1.
V = 2. * RANDT(IX) - 1.
W = U*U + V*V
IF (W - 1.) 20, 20, 10
20 W = SQRT(-2.*ALOG(W)/W)
RN = U * W
RETURN
I = 1
RETURN
END

SUBROUTINE DCSIG(SIGMA, UL, A, B)

This subroutine decomposes the symmetric matrix of variances-
covariances into its factor (square root). DCSIG is called by
MNDG for generating multivariate normal deviates.

DIMENSION SIGMA(1), UL(1)
DATA ZERO, ONE, FOUR, SIXTN, SIXTH /0.0, 1., 4., 16., .0625/
A = ONE
B = ZERO
R1N = ONE / (4*SIXTN)
IP = 1
DO 90 I = 1, 4
IQ = IP
IR = 1
DO 80 J = 1, I
X = SIGMA(IP)
 IF (J .EQ. 1) GO TO 20
 DO 10 L = IQ, IP1
 X = X - UL(L) * UL(IR)
 IR = IR + 1
 10 CONTINUE
20 IF (I .NE. J) GO TO 60
 A = A * X
 IF (SIGMA(IP) + X*R1N .LE. SIGMA(IP)) GO TO 100
30 A = A * SIXTH
 B = B + FOUR
 GO TO 30
40 IF (ABS(A) .GE. SIXTH) GO TO 50
 A = A * SIXTN
 B = B - FOUR
 GO TO 40
50 UL(IP) = ONE / SQRT(X)
 GO TO 70
60 UL(IP) = X * UL(IR)
70 IP1 = IP
 IP = IP + 1
 IR = IR + 1
80 CONTINUE
90 CONTINUE
GO TO 120
100 WRITE (6,110)
 110 FORMAT (' 1 * , 'TROUBLE')
120 RETURN
END

SUBROUTINE MNDG(I SEED, SIGMA, RVEC, WKVEC)

This subroutine generates sets of four multivariate normal
deviates, distributed with zero mean and covariances matrix
SIGMA. To produce genetically correlated normal deviates,
GSIGMA is entered for SIGMA, for environmentally correlated
normal deviates, ESIGMA is entered.

DIMENSION SIGMA(1), RVEC(4), WKVEC(4)
CALL DCSIG(SIGMA, SIGMA, A, B)
 L = 0
 DO 10 I = 1, 4
 L = L + 1
 10 SIGMA(L) = 1.0 / SIGMA(L)
 GO TO 20
ENTRY MNDG1(ISEED,SIGMA,RVEC,WKVEC)
20 DO 30 I = 1, 4
 30 WKVEC(1) = RN(ISEED)
 L = I
 DO 50 II = 1, I
 RVEC(II) = 0.0
 50 RVEC(II) = RVEC(II) + DBLE(WKVEC(I)) * DBLE(SIGMA(L))
40 L = L + 1
50 CONTINUE
 RETURN
 END

SUBROUTINE FILE(IHRD)

This subroutine finds the file for student herds

GO TO (10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130,
140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260,
270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390,
3400, 410, 420, 430, 440, 450, 460, 470, 480), IHRD
GO TO 1060
10 CALL FTNCMD('ASSIGN 12=KINN:H1IN;')
 RETURN
20 CALL FTNCMD('ASSIGN 12=KINN:H2IN;')
 RETURN
30 CALL FTNCMD('ASSIGN 12=KINN:H3IN;')
 RETURN
40 CALL FTNCMD('ASSIGN 12=KINN:H4IN;')
 RETURN
50 CALL FTNCMD('ASSIGN 12=KINN:H5IN;')
 RETURN
60 CALL FTNCMD('ASSIGN 12=KINN:H6IN;')
 RETURN
70 CALL FTNCMD('ASSIGN 12=KINN:H7IN;')
 RETURN
80 CALL FTNCMD('ASSIGN 12=KINN:H8IN;')
 RETURN
90 CALL FTNCMD('ASSIGN 12=KINN:H9IN;')
 RETURN
100 CALL FTNCMD('ASSIGN 12=KINN:H10IN;')
 RETURN
110 CALL FTNCMD('ASSIGN 12=KINN:H11IN;')
 RETURN
120 CALL FTNCMD('ASSIGN 12=KINN:H12IN;')
 RETURN
130 CALL FTNCMD('ASSIGN 12=KINN:H13IN;')
 RETURN
140 CALL FTNCMD('ASSIGN 12=KINN:H14IN;')
 RETURN
150 CALL FTNCMD('ASSIGN 12=KINN:H15IN;')
 RETURN
160 CALL FTNCMD('ASSIGN 12=KINN:H16IN;')
 RETURN
170 CALL FTNCMD('ASSIGN 12=KINN:H17IN;')
 RETURN
180 CALL FTNCMD('ASSIGN 12=KINN:H18IN;')
 RETURN
190 CALL FTNCMD('ASSIGN 12=KINN:H19IN;')
 RETURN
200 CALL FTNCMD('ASSIGN 12=KINN:H20IN;')
 RETURN
210 CALL FTNCMD('ASSIGN 12=KINN:H21IN;')
 RETURN
220 CALL FTNCMD('ASSIGN 12=KINN:H22IN;')
 RETURN
230 CALL FTNCMD('ASSIGN 12=KINN:H23IN;')
 RETURN
240 CALL FTNCMD('ASSIGN 12=KINN:H24IN;')
RETURN
250 CALL FTNCMD('ASSIGN 12=KINN:H25IN;')
RETURN
260 CALL FTNCMD('ASSIGN 12=KINN:H26IN;')
RETURN
270 CALL FTNCMD('ASSIGN 12=KINN:H27IN;')
RETURN
280 CALL FTNCMD('ASSIGN 12=KINN:H28IN;')
RETURN
290 CALL FTNCMD('ASSIGN 12=KINN:H29IN;')
RETURN
300 CALL FTNCMD('ASSIGN 12=KINN:H30IN;')
RETURN
310 CALL FTNCMD('ASSIGN 12=KINN:H31IN;')
RETURN
320 CALL FTNCMD('ASSIGN 12=KINN:H32IN;')
RETURN
330 CALL FTNCMD('ASSIGN 12=KINN:H33IN;')
RETURN
340 CALL FTNCMD('ASSIGN 12=KINN:H34IN;')
RETURN
350 CALL FTNCMD('ASSIGN 12=KINN:H35IN;')
RETURN
360 CALL FTNCMD('ASSIGN 12=KINN:H36IN;')
RETURN
370 CALL FTNCMD('ASSIGN 12=KINN:H37IN;')
RETURN
380 CALL FTNCMD('ASSIGN 12=KINN:H38IN;')
RETURN
390 CALL FTNCMD('ASSIGN 12=KINN:H39IN;')
RETURN
400 CALL FTNCMD('ASSIGN 12=KINN:H40IN;')
RETURN
410 CALL FTNCMD('ASSIGN 12=KINN:H41IN;')
RETURN
420 CALL FTNCMD('ASSIGN 12=KINN:H42IN;')
RETURN
430 CALL FTNCMD('ASSIGN 12=KINN:H43IN;')
RETURN
440 CALL FTNCMD('ASSIGN 12=KINN:H44IN;')
RETURN
450 CALL FTNCMD('ASSIGN 12=KINN:H45IN;')
RETURN
460 CALL FTNCMD('ASSIGN 12=KINN:H46IN;')
RETURN
470 CALL FTNCMD('ASSIGN 12=KINN:H47IN;')
RETURN
480 CALL FTNCMD('ASSIGN 12=KINN:H48IN;')
RETURN
490 CALL FTNCMD('ASSIGN 12=KINN:H49IN;')
RETURN
500 CALL FTNCMD('ASSIGN 12=KINN:H50IN;')
RETURN
510 CALL FTNCMD('ASSIGN 12=KINN:H51IN;')
RETURN
520 CALL FTNCMD('ASSIGN 12=KINN:H52IN;')
RETURN
530 CALL FTNCMD('ASSIGN 12=KINN:H53IN;')
RETURN
540 CALL FTNCMD('ASSIGN 12=KINN:H54IN;')
RETURN
550 CALL FTNCMD('ASSIGN 12=KINN:H55IN;')
560 CALL FTNCMD('ASSIGN 12=KINN:H56IN;')
570 CALL FTNCMD('ASSIGN 12=KINN:H57IN;')
580 CALL FTNCMD('ASSIGN 12=KINN:H58IN;')
590 CALL FTNCMD('ASSIGN 12=KINN:H59IN;')
600 CALL FTNCMD('ASSIGN 12=KINN:H60IN;')
610 CALL FTNCMD('ASSIGN 12=KINN:H61IN;')
620 CALL FTNCMD('ASSIGN 12=KINN:H62IN;')
630 CALL FTNCMD('ASSIGN 12=KINN:H63IN;')
640 CALL FTNCMD('ASSIGN 12=KINN:H64IN;')
650 CALL FTNCMD('ASSIGN 12=KINN:H65IN;')
660 CALL FTNCMD('ASSIGN 12=KINN:H66IN;')
670 CALL FTNCMD('ASSIGN 12=KINN:H67IN;')
680 CALL FTNCMD('ASSIGN 12=KINN:H68IN;')
690 CALL FTNCMD('ASSIGN 12=KINN:H69IN;')
700 CALL FTNCMD('ASSIGN 12=KINN:H70IN;')
710 CALL FTNCMD('ASSIGN 12=KINN:H71IN;')
720 CALL FTNCMD('ASSIGN 12=KINN:H72IN;')
730 CALL FTNCMD('ASSIGN 12=KINN:H73IN;')
740 CALL FTNCMD('ASSIGN 12=KINN:H74IN;')
750 CALL FTNCMD('ASSIGN 12=KINN:H75IN;')
760 CALL FTNCMD('ASSIGN 12=KINN:H76IN;')
770 CALL FTNCMD('ASSIGN 12=KINN:H77IN;')
780 CALL FTNCMD('ASSIGN 12=KINN:H78IN;')
790 CALL FTNCMD('ASSIGN 12=KINN:H79IN;')
800 CALL FTNCMD('ASSIGN 12=KINN:H80IN;')
810 CALL FTNCMD('ASSIGN 12=KINN:H81IN;')
820 CALL FTNCMD('ASSIGN 12=KINN:H82IN;')
830 CALL FTNCMD('ASSIGN 12=KINN:H83IN;')
840 CALL FTNCMD('ASSIGN 12=KINN:H84IN;')
850 CALL FTNCMD('ASSIGN 12=KINN:H85IN;')
CALL FTNCMD('ASSIGN 12=KINN:H86IN;')
RETURN
CALL FTNCMD('ASSIGN 12=KINN:H87IN;')
RETURN
CALL FTNCMD('ASSIGN 12=KINN:H88IN;')
RETURN
CALL FTNCMD('ASSIGN 12=KINN:H89IN;')
RETURN
CALL FTNCMD('ASSIGN 12=KINN:H90IN;')
RETURN
CALL FTNCMD('ASSIGN 12=KINN:H91IN;')
RETURN
CALL FTNCMD('ASSIGN 12=KINN:H92IN;')
RETURN
CALL FTNCMD('ASSIGN 12=KINN:H93IN;')
RETURN
CALL FTNCMD('ASSIGN 12=KINN:H94IN;')
RETURN
CALL FTNCMD('ASSIGN 12=KINN:H95IN;')
RETURN
CALL FTNCMD('ASSIGN 12=KINN:H96IN;')
RETURN
CALL FTNCMD('ASSIGN 12=KINN:H97IN;')
RETURN
CALL FTNCMD('ASSIGN 12=KINN:H98IN;')
RETURN
CALL FTNCMD('ASSIGN 12=KINN:H99IN;')
RETURN
CALL FTNCMD('ASSIGN 12=KINN:H100IN;')
RETURN
ENTRY FILED(IHRD)
C FINDS THE FILE FOR EACH GROUP OF CONTROL HERDS
C
I = IHRD / 100
GO TO (1020, 1030, 1040, 1050), I
GO TO 1060
CALL FTNCMD('ASSIGN 12=KINN:G100IN(LAST+1);')
RETURN
CALL FTNCMD('ASSIGN 12=KINN:G200IN(LAST+1);')
RETURN
CALL FTNCMD('ASSIGN 12=KINN:G300IN(LAST+1);')
RETURN
CALL FTNCMD('ASSIGN 12=KINN:G400IN(LAST+1);')
RETURN
WRITE (6,1070)
FORMAT ('ERROR EXTRA HERDS')
STOP
END
DAIRY CATTLE BREEDING SIMULATION

DIMENSION AI(30,500), PARM(25), SINDEX(4), OPNMAX(6),
1 BULREC(13,20), IBULLS(20), IPROP(20), LSLAI(500),
2 RNE(4), HENV(4), ISPMAT(10), ASCOR(2,500),
3 ISPBUL(10), MOW(100), MBUL(100), MNCULL(50),
4 MCFCUL(50), MYLCUL(50), LB(2,100), ISTAT(20),
5 RNG(4), DUM(3), DUMY(4), IOP(20)

COMMON ISEED, EWK(4), GWK(4)

LOGICAL AUT(3)/F, T, T/, FALSE /F/, TRUE /T/, AUTOFUL /F/,
1 AUTO, CONT, FIN

INTEGER IAJBCA(4)/37, 36, 35, 0/, MPSEM/15/,
1 MAUT(2)/'YES', 'NO '/, OPT(9)/'CUR.', 'LAC', 'T.',
1 'EPA', ' ', 'ETA', '/
2 BLK '/', AST1 '/', ' ', AST2 '/ ** '/, NHM /0/,
3 MNCUL /0/, NOCCUL /0/, NYLCUL /0/

Parameters to generate 305-day lactation records

REAL AVG(4)/7200., 260., 230., 80./, GSD(4)/413., 18.2,
1 12.8, 1.66/, PCESD(4)/393., 12.6, 11.9, 1.64/, TCESD(4)
2 /510., 18.6, 15.4, 1.56/, THESD(4)/255., 11.2, 7.7, 1.13/,
3 ESIGMA(10)/1., 0.83, 1., 0.96, 0.78, 1., 0.2, 0.2, 0.2, 1.1,
4 GSEGMA(10)/1., 0.54, 1., 0.7, 0.81, 1., 0., 0., -0.15, 0.0,
5 1./, HELVL(4,4)/150., 6.6, 4.5, 0.6, 50., 2.2, 1.5, 0.2,
6 -50., -2.2, -1.5, -2., -150., -6.6, -4.5, -0.6/,
7 AGEAJM(3,4)/.7195, .7154, .7195, .8368, .8380, .8368,
8 .9197, .9243, .9197, 1., 1., 1./, PINB(4)/103.,
5 4.26, 3.2, 0.41/

Lactation curve parameters and other biological parameters

REAL ACMT(3)/-2.83, -2.28, -2.7/, BSLP(3)/4.6395E-3,
1 4.8904E-3, 4.9499E-3/, WPKK(3)/10., 7.5, 7.5/, GEST/283.,
2 DCYC/21., HDCSD /0.01/, HDCM /0.75/, HDMLK/-2.E-5/,
3 HRDET(4)/1.0, 0.85, 0.65, 0.45/, FERTM /0.75/,
4 FERSD /0.01/, FEREC/-0.2/, DTRATE /0.009/, DTMLK/2.E-6/,
5 DTREC /1.2E-2/, DTYLG /0.02/, DTCF /0.04/, DTUB /0.01/,
6 HTL /0.019/, HTL /2.E-6/, HTREC /0.029/, HTYP /2.E-3/

Economic parameters

REAL CFIX(4)/3935., 36015., 32825., 30000./, CTRNP /1.34/,
1 FDCAR /2.801E-2/, FDFAT /1.2906/, FDFAT /.6730/,
2 FDAY/1.2823/, FDRY /1.6880/, FDFYLG /1.043/, FDFAT /.8211/,
3 CRFAT /3.6/, CPRF /0.0/, PQMLK/52.34/,
4 PEXMLK /38.18/, PFAT /4.80/, PPRO /0.0/,
5 PCOWP /520., PCOWF /520., PCOWH /300., PCOWD /0.0/, PYLG
6 /500., PCFO /300., PCFH /100., PCFB /50., PYS /1000./

Management parameters

REAL HERT(4)/.26, .34, .27, .3/, REP(4)/.50, .51, .51,
1 .59, DPROJ/90., DRYMIN/50., DAYR/365.,
2 BRDMIN /50., DBR /-120./
C * COMPLEX*16 NAUT(3) /'INDIVIDUALLY ', 'BY RANK ',
1 'RANDOMLY '/
C
C*** Find herd and read previous management decisions and AI ***
C
WRITE (6,1190)
READ (5,1210) IHRD, CODE, AUTFUL
CALL FILES(IHRD)
READ (4) NDAI, NOAI, NEAI, NPAI, NTAI
IBN = NDAI + 9000
BBNO = IBN
NYAI = NEAI - NUAI
NHRL = 0
CALL REAMAT(AI, 30, NTAI, 4)
C *
C * Last parameters used *
C
10 READ (2) PARM
IF (CODE .NE. PARM(2)) GO TO 1180
IYR = PARM(3) + 1
IYR = PARM(4)
ISDA = (PARM(4) - IAUT) * 10. + 0.5
IOPT = PARM(5)
LEV = (PARM(5) - IOPT) * 10. + 0.5
SINDEX(1) = PARM(6)
SINDEX(2) = PARM(7)
SINDEX(3) = PARM(8)
SINDEX(4) = PARM(9)
OPNMAX(1) = PARM(10)
OPNMAX(2) = PARM(11)
OPNMAX(3) = PARM(12)
OPNMAX(4) = PARM(13)
OPNMAX(5) = PARM(14)
OPNMAX(6) = PARM(15)
DRYPRD = PARM(16)
PRDCUL = PARM(17)
NOBL = PARM(18)
IBLA = (PARM(18) - NOBL) * 10. + 0.5
MSEMP = PARM(19)
SEMP = MSEMP
CON = PARM(19) - SEMP
MCON = CON * 100. + 0.5
NYBL = PARM(20)
IYBA = PARM(20) - NYBL) * 10. + 0.5
MPYS = PARM(21)
MPOB = 100 - MPYS
NTBS = (PARM(21) - MPYS) + 100. + 0.5
NSPM = PARM(22)
ISPA = (PARM(22) + NSPM) * 10. + 0.5
QUOTA = PARM(23)
EXCES = PARM(24)
NHRD = PARM(25)
NBULS = NOBL + NYBL
12 IF (NOBL .LE. NOAI) GO TO 15
NEXA = NOBL - NOAI
NOBL = NOAI
NYBL = NYBL + NEXA
15 IF (NYAI .GT. 0) GO TO 18
NOBL = NOBL + NYBL
NYBL = 0
IF (NYBL .LE. 0) MPYS = 0
IF (NOBL .LE. 0) MPOB = 0
IF (AUTFUL) GO TO 490
WRITE (6,1220) IHRD, IYR, MAUT(IAUT)
NOP = (IOPT - 1) * 3 + 1
LOP = NOP + 2
WRITE (6,1230) LEV, (OPT(L),L=NOP,LOP), SINDEX, OPNMAX, DRYPRD,
PRDCUL, MPOB, NOBL, NAUT(IBLA), MPYS, NYBL, NAUT(IYBA),
NSPM, NAUT(ISPA)
IF (IBLA .GT. 1) WRITE (6, 1235) MSEMP, MCON
WRITE (6,1240)
WRITE (6,1250) MIN, MAX
READ (5,1280)
MAX = 20
MIN = 0
READ (5,1690,ERR=50) NOBL
IF (NOBL .GT. MAX .OR. NOBL .LT. MIN) GO TO 50
IBLA = 1
IYBA = 3
IF (NOBL .EQ. 0) GO TO 150
GO TO 80
WRITE (6,1250) MIN, MAX
WRITE (6,1290) NAUT
WRITE (6,1200)
MIN = 10
MAX = 90
READ (5,1410,ERR=110) CON
MCON = CON + .5
CON = CON / 100.
IF (MCON .GT. MAX .OR. MCON .LT. MIN) GO TO 110
GO TO 140
WRITE (6,1250) MIN, MAX
WRITE (6,1310)
MIN = 0
MAX = 100 - NOBL
READ (5,1410,ERR=130) PYS
MPYS = PYS + .5
IF (MPYS .GT. MAX .OR. MPYS .LT. MIN) GO TO 130
IF (MPYS .EQ. 0) GO TO 180
GO TO 170
150 MPYS = 100
PYS = 100.
GO TO 170
160 WRITE (6,1250) MIN, MAX
170 WRITE (6,1340)
 MIN = 1
 MAX = 20 - NOBL
READ (5,1690,ERR=160) NYBL
 IF (NYBL .GT. MAX .OR. NYBL .LT. MIN) GO TO 160
 GO TO 205
200 WRITE (6,1250) MIN, MAX
205 GO TO (210, 212, 190), IBLA
210 WRITE (6,1290) NAUT
 WRITE (6,1200)
 MAX = 3
 READ (5,1690,ERR=200) IYBA
 IF (IYBA .GT. MAX .OR. IYBA .LT. MIN) GO TO 200
 GO TO 190
212 WRITE (6, 1300) NAUT(2), NAUT(3)
 WRITE (6,1200)
 READ (5,1690,ERR=200) IYBA
 IYBA = IYBA + 1
 MIN = 2
 IF (IYBA .GT. MAX .OR. IYBA .LT. MIN) GO TO 200
 GO TO 190
180 NYBL = 0
190 MIN = 1
 MAX = 20
NBULS = NOBL + NYBL
 IF (NBULS .GT. MAX .OR. NBULS .LT. MIN) GO TO 50
 GO TO 230
220 WRITE (6,1250) MIN, MAX
230 WRITE (6,1350)
 MAX = 10
 MIN = 0
READ (5,1690,ERR=220) NSPM
 IF (NSPM .GT. MAX .OR. NSPM .LT. MIN) GO TO 220
 IF (NSPM .EQ. 0) GO TO 255
 GO TO 250
240 WRITE (6,1250) MIN, MAX
250 WRITE (6,1300) NAUT(1), NAUT(2)
 WRITE (6,1200)
 MIN = 1
 MAX = 2
READ (5,1690,ERR=240) ISPA
 IF (ISPA .GT. MAX .OR. ISPA .LT. MIN) GO TO 240
255 PARM(18) = NOBL + IBLA / 10.
 PARM(19) = MSEP + CON
 PARM(20) = NYBL + IYBA / 10.
 PARM(21) = MPYS
 PARM(22) = NSPM + ISPA / 10.
 MPOB = 100 - MPYS
 IF (.NOT. AUT(ISPA)) GO TO 12
 GO TO 270
260 WRITE (6,1250) MIN, MAX
270 WRITE (6,1360)
READ (5, 1210, ERR=50) NTBS
MIN = 1
MAX = NBULS
IF (NTBS .GT. MAX .OR. NTBS .LT. MIN) GO TO 260
PARM(21) = PARM(21) + NTBS / 100.
GO TO 12

C *** Input new days open and number of services

280 WRITE (6, 1250) MIN, MAX, IER
290 WRITE (6, 1370)
READ (5, 1410, ERR=290) OPNMAX
OMIN = BRDMIN + DCYC
MIN = OMIN
MAX = 1000
IER = OPNMAX(1)
IF (OPNMAX(1) .LT. OMIN .OR. OPNMAX(1) .GT. 1000.) GO TO 280
MAX = 100
MIN = 1
IER = OPNMAX(2)
IF (OPNMAX(2) .GT. 100. .OR. OPNMAX(2) .LT. 1.) GO TO 280
IF (OPNMAX(3) .LE. 0.) GO TO 350
300 WRITE (6, 1380)
READ (5, 1410, ERR=300) OPNMAX(4)
GO TO 320
310 WRITE (6, 1250) MIN, MAX
320 WRITE (6, 1390)
MAX = 1000
MIN = 0
READ (5, 1410, ERR=310) OPNMAX(5)
IF (OPNMAX(5) .LT. 0.) GO TO 310
GO TO 340
330 WRITE (6, 1250) MIN, MAX
340 WRITE (6, 1400)
READ (5, 1410, ERR=340) OPNMAX(6)
IF (OPNMAX(6) .LE. 0.) GO TO 330
DO 360 J = 1, 6
350 WRITE (6, 1250) MIN, MAX
360 PARM(J + 9) = OPNMAX(J)
GO TO 20

C *** Input new minimum daily production

370 WRITE (6, 1270)
380 WRITE (6, 1420)
READ (5, 1410, ERR=370) DRYPRD
WRITE (6, 1430)
READ (5, 1410, ERR=370) PRDCUL
IF (DRYPRD .LE. 0. .OR. PRDCUL .LE. 0.) GO TO 370
PARM(16) = DRYPRD
PARM(17) = PRDCUL
GO TO 20

C *** Input new selection index

390 WRITE (6, 1260)
400 WRITE (6, 1440)
READ (5, 1410, ERR=390) SINDEX
SX = ABS(SINDEX(1) + SINDEX(2) + SINDEX(3) + SINDEX(4))
IF (SX .EQ. 0.0) GO TO 390
DO 410 J = 1, 4
410 PARM(J + 5) = SINDEX(J) / SX
GO TO 20

C *** New management level and basis for selection
C *
420 WRITE (6,1250) MIN, MAX
430 WRITE (6,1450)
 READ (5,1690,ERR=430) LEV
 MAX = 4
 MIN = 1
 IF (LEV .LT. 1 .OR. LEV .GT. 4) GO TO 420
 GO TO 450
440 WRITE (6,1250) MIN, MAX
450 WRITE (6,1460)
 WRITE (6,1200)
 READ (5,1690,ERR=450) IOPT
 MAX = 3
 IF (IOPT .GT. 3 .OR. IOPT .LT. 1) GO TO 440
 PARM(5) = IOPT + LEV / 10.
 GO TO 20
C *** Automated decisions and summary output only?
C *
460 WRITE (6,1480)
470 WRITE (6,1200)
 READ (5,1210,ERR=460) IAUT
 IF (IAUT .GT. 2 .OR. IAUT .LT. 1) GO TO 460
480 WRITE (6,1490)
 READ (5,1210,ERR=480) NHRD
 IF (NHRD .LT. 1) GO TO 480
 PARM(25) = NHRD
 GO TO 20
C *** INITIALIZE RANDOM NUMBER GENERATORS
C *
490 IF (.NOT. AUT(IAUT)) GO TO 1180
500 IF (NHRL .GT. 0) GO TO 530
 IF (.NOT. AUT(ISDA)) GO TO 510
 INIT = IRAND(0)
 INIT = IRAND(1000)
 GO TO 520
510 WRITE (6,1500)
 READ (5,1210) INIT
 IF (INIT .LE. 0) GO TO 510
520 I = IRAND(-INIT)
 ISEED = INIT
 SINIT = ISEED
 UNIF = RAND(SINIT)
 SNORM = RANDN(SINIT)
 CALL MNDG(ISEED, GSIGMA, RNG, GWK)
 CALL MNDG(ISEED, ESIGMA, RNE, EWK)
C *** Set temporary herd effects
C *
530 CALL MNDG1(ISEED, ESIGMA, RNE, EWK)
 HENV(1) = THESD(1) * RNE(1)
 HENV(2) = THESD(2) * RNE(2)
HENV(3) = THESD(3) * RNE(3)
HENV(4) = THESD(4) * RNE(4)

* Check if any of own bulls selected for A.I. *

NYSR = 0
HRD = IHRD
NFYS = NPAI + 1
IF (NFYS .GT. NTAI) GO TO 545
DO 540 I = NFYS, NTAI
 IF (AI(5,I) .EQ. HRD) NYSR = NYSR + 1
540 CONTINUE
545 IFIN = 1
550 IF (IYBA .EQ. 1) GO TO 560
IF (NOBL .EQ. 0) GO TO 720
IF (IBLA .GT. 1) GO TO 620
NB = NOBL
GO TO 580
560 NB = NBULS
GO TO 580

*** SELECT BULLS INDIVIDUALLY ***

565 WRITE (6,1515)
GO TO 580
570 WRITE (6,1510) IBULLS(J)
GO TO 586
580 WRITE (6,1520) NB
J = 0
585 J = J + 1
586 READ (5,1690,ERR=570) IBULLS(J), IPROP(J), NCS
588 LCBUL = IBULLS(J) - IBN
 IF (LCBUL .LT. 1 .OR. LCBUL .GT. NEAI) GO TO 570
 DO 590 K = 1, 7
 BULREC(K,J) = AI(K,LCBUL)
 DO 600 K = 9, 12
 BULREC(K,J) = AI(K+6,LCBUL)
 BULREC(13,J) = AI(27,LCBUL) * SINDEX(1) + AI(28,LCBUL) * SINDEX(2) + AI(29,LCBUL) * SINDEX(3) + AI(30,LCBUL) * SINDEX(4)
 605 IF (J .EQ. NB) GO TO 610
 IF (NCS .LE. 1) GO TO 585
 NCS = NCS - 1
 J = J + 1
 IBULLS(J) = IBULLS(J-1) + 1
 IPROP(J) = IPROP(J-1)
GO TO 588

All ok ?

610 CALL PRINTL (IBULLS, NB, 6, 0)
CALL PRINTL (IPROP, NB, 6, 0)
WRITE (6,1530)
READ (5,1540,ERR=580) CONT
 IF (CONT) GO TO 580
 IF (J .LT. 2) GO TO 616
 DO 615 I = 2, J
 IPROP(I) = IPROP(I) + IPROP(I - 1)
580 CONTINUE
615 IF (NBULS .GT. NB) GO TO 720
 IF (IPROP(NB) .LE. 0) GO TO 565
GO TO 860
C * Find proven bulls that meet minimum criteria

C 620 NSTB = 0
 DO 630 I = 1, NOAI
 IF (AI(7,I) .GT. SEMP) GO TO 630
 IF (AI(11,I) .LE. 0.0) GO TO 630
 FERT = AI(12,I) / AI(11,I)
 IF (FERT .LT. CON) GO TO 630
 NSTB = NSTB + 1
 LSLAI(NSTB) = I
 CONTINUE
 NFT = 1
 NLT = NOBL
 IF (IBLA .GT. 2) GO TO 740
 IF (NSTB .GE. NOBL) GO TO 640
 NYBL = NYBL + NOBL - NSTB
 NOBL = NSTB
 NLT = NOBL
 IF (NOBL .LE. 0) GO TO 720
 C *** SELECT BULLS BY INDEX RANK
 C 640 DO 650 I = NFT, NSTB
 LAI = LSLAI(I)
 ASCOR(2,I) = AI(27,LAI) * SINDEX(1) + AI(28,LAI)
 1 * SINDEX(2) + AI(29,LAI) * SINDEX(3) + AI(30,LAI)
 2 * SINDEX(4)
 ASCOR(1,I) = LAI
 CONTINUE
 CALL ISORT (ASCOR, 2, 500, NFT, NSTB, 2, 3, -1)
 DO 655 I = NFT, NLT
 LSLAI(I) = ASCOR(1,I)
 BULREC(1,I) = LSLAI(I)
 BULREC(13,I) = ASCOR(2,I)
 CONTINUE
 IF (NBULS .LE. NLT) GO TO 760
 C *** SELECT BULLS AT RANDOM
 C 680 IF (NYBL .LE. 0) GO TO 760
 720 NSTB = NOBL
 NFAI = NUAI + 1
 DO 730 I = NFAI, NEAI
 NSTB = NSTB + 1
 LSLAI(NSTB) = I
 CONTINUE
 NFT = NOBL + 1
 NLT = NBULS
 IFIN = 2
 IF (NSTB .GE. NLT) GO TO 735
 NFBS = NSTB + 1
 NYAI = NSTB - NOBL
 DO 732 I = NFBS, NLT
 NSTB = NSTB + 1
 LOC = 1RAND (NYAI) + NOBL
 LSLAI(NSTB) = LSLAI(LOC)
 CONTINUE
 732 CONTINUE
 735 IF (IYBA .EQ. 2) GO TO 640
 C *** SELECT BULLS AT RANDOM
 C 740 NOS = NFT - 1
NRNG = NSTB - NOS
745 DO 750 I = NFT, NLT
 K = IRAND (NRNG) + NOS
 LAI = LSLAI(K)
 BULREC(1,1) = LAI
 BULREC(13,I) = AI(27,LAI) * SINDEX(1) + AI(28,LAI)
 1 *SINDEX(2) + AI(29,LAI) * SINDEX(3) + AI(30,LAI)
 2 *SINDEX(4)
750 CONTINUE
755 CONTINUE
 DO 755 I = NFT, NLT
 LSLAI(I) = BULREC(1,1)
755 CONTINUE
 IF (NLT .LT. NBULS) GO TO 720

 C *
 C * Fill in bulls information and proportions to use
 C *
760 IF (NOBL .LE. 0) GO TO 790
 IF (IBLA .LE. 1) GO TO 780
 IPOB = MPOB / NOBL + 1
 KPOB = 0
 DO 770 I = 1, NOBL
 KPOB = KPOB + IPOB
 LOC = LSLAI(I)
 IPROP(I) = KPOB
 DO 763 J = 1, 7
 BULREC(J,I) = AI(J,LOC)
473 CONTINUE
 BULREC(8,I) = AI(13,LOC)
 DO 765 J = 9, 12
 BULREC(J,I) = AI(J+6,LOC)
 765 CONTINUE
 IBULLS(I) = BULREC(1,1)
770 CONTINUE
780 IF (NYBL .LE. 0) GO TO 860
 NM = NOBL + 1
 KPOB = IPROP(NOBL)
 IPOB = (MPYS * KPOB / MPOB) / NYBL
 GO TO 800
790 IPOB = MPYS / NYBL + 1
 KPOB = 0
 NM = 1
800 DO 830 I = NM, NBULS
 KPOB = KPOB + IPOB
 IPROP(I) = KPOB
 LOC = LSLAI(I)
 DO 810 J = 1, 7
 BULREC(J,I) = AI(J,LOC)
810 CONTINUE
 BULREC(8,I) = AI(13,LOC)
 DO 820 J = 9, 12
 BULREC(J,I) = AI(J+6,LOC)
820 CONTINUE
 IBULLS(I) = BULREC(1,1)
830 CONTINUE
860 IF (AUT(IAUT)) GO TO 1060
 IF (AUT(ISPA) .OR. NSPM .LE. 0) GO TO 920

 C*** Select individual matings for bull calves
 C
870 WRITE (6,1570)
 CALL PRINTL(IBULLS, NBULS, 6, 10)
WRITE (6, 1550) NSPM
CALL REARY2(NSPM, ISPMAT, ISPBUL, LBUF, CONT)
DO 910 J = 1, NSPM

DO 900 K = 1, NBULS
 IF (ISPBL(J) .EQ. IBULLS(K)) GO TO 910
CONTINUE
 WRITE (6, 1580) ISPBL(J), ISPMAT(J)
 READ (5, 1590) ISPBL(J)
 GO TO 890
910 ISPBL(J) = K
 IF (CONT) GO TO 870
 WRITE (6, 1530)
 READ (5, 1540, ERR=870) CONT
 IF (CONT) GO TO 870
920 WRITE (6, 1600)

C*** OTHER OPTIONAL SPECIFIED MATINGS AND CULLS ***
C
READ (5, 1210, ERR=920) ICOPT
GO TO (940, 990, 1040, 1050, 1070), ICOPT
940 IF (.NOT. AUT(IBLA)) GO TO 950
 WRITE (6, 1570)
 CALL PRINTL(IBULLS, NBULS, 6, 10)
950 WRITE (6, 1610)
 READ (5, 1210, ERR=950) NHM
 IF (NHM .LE. 0) GO TO 920
 IF (NHM .GT. 100) GO TO 950
 WRITE (6, 1560) NHM
 WRITE (6, 1550)
 CALL REARY2(NHM, MCOW, MBUL, LBUF, CONT)
 IF (CONT) GO TO 950
 DO 980 J = 1, NHM
960 DO 970 K = 1, NBULS
 IF (MBUL(J) .EQ. IBULLS(K)) GO TO 980
CONTINUE
 WRITE (6, 1570)
 CALL PRINTL(IBULLS, NBULS, 6, 10)
 WRITE (6, 1580) MBUL(J), MCOW(J)
 READ (5, 1590) MBUL(J)
 GO TO 960
980 MBUL(J) = K
 WRITE (6, 1530)
 READ (5, 1540, ERR=950) CONT
 IF (CONT) GO TO 950
 GO TO 920
990 IF (.NOT. AUT(IBLA)) GO TO 1000
 WRITE (6, 1570)
 CALL PRINTL(IBULLS, NBULS, 6, 10)
1000 WRITE (6, 1620)
 READ (5, 1210, ERR=1000) NCFCL
 IF (NCFCL .LE. 0) GO TO 1000
 WRITE (6, 1630) NCFCL
 WRITE (6, 1550)
 CALL REARY(NCFCL, MNCCUL, CONT)
 IF (CONT) GO TO 1000
 WRITE (6, 1530)
 READ (5, 1540, ERR=1000) CONT
 IF (CONT) GO TO 1000
1010 WRITE (6, 1640)
 READ (5, 1210, ERR=1010) ICHPB
 DO 1020 J = 1, NBULS
IF (IBULLS(J) .EQ. ICHPB) GO TO 1030

1020 CONTINUE
WRITE (6,1580) ICHPB
GO TO 1010

1030 ICHPB = J
GO TO 920

1040 WRITE (6,1650)
READ (5,1210,ERR=1040) NOCCUL
IF (NOCCUL .LE. 0) GO TO 1040
WRITE (6,1660) NOCCUL
WRITE (6,1550)
CALL REARRY(NOCCUL, MCFCUL, CONT)
IF (CONT) GO TO 1040
WRITE (6,1530)
READ (5,1540,ERR=1040) CONT
IF (CONT) GO TO 1040
GO TO 920

1050 WRITE (6,1670)
READ (5,1210,ERR=1050) NYLCUL
IF (NYLCUL .LE. 0) GO TO 1050
WRITE (6,1680) NYLCUL
WRITE (6,1550)
CALL REARRY(NYLCUL, MYLCUL, CONT)
IF (CONT) GO TO 1050
WRITE (6,1530)
READ (5,1540,ERR=1050) CONT
IF (CONT) GO TO 1050
GO TO 920

1060 WRITE (6,1700) IHRD, IYR, INIT

C INITIALIZE SUBROUTINES

1070 CALL BREED(BULREC, IBULLS, IPROP, ISPMA, ISPBL, MCOW, MBUL,
1 MNCCUL, NBULS, NSPM, ISPA, NTBS, NHM, NCFCUL, ICHPB,
2 AUT(AAUT), GSD, GSIGMA, BRDMIN, HRDET(LEV), DTCY, GEST,
3 DAYR)
CALL INLAC (HELVL(1,LEV), HENV, ESIGMA, TCESD, AVG)
CALL INPROD(DRYPRD, DRYMIN, DAYR, DPROJ, AGEAJM, FDCAR, FDFAT,
1 FDPRO, FDAY, ACMT, BSLP, WKPK, DUM, DUM, DUMY, 3, 4)
CALL INETA(AI, SINDEX, AVG, IAJBCA, HERT, REP, DAYR, NOAI, BBNO,
1 DPROJ, DUMT, DUMY, DUMY, DUMY, DUMT, DUMT, DUMT, 4)
CALL SELEC(IOPT, AUT(AAUT), QUOTA, EXCES, DPROJ, DAYR, FDYR,
1 PRDCUL
1 YOUNG(SINDEX, MCFCUL, NOCCUL, IYR, IHRD, DTYLG, DTCF,
1 FDYLG, FDCF, AUT(AAUT))
CALL CALVES(ESIGMA, PCESD, PINB, SINDEX, FDCF, FERSD, FERTM,
1 HDCSD, HDCM, DTCF, DTUB, IHRD, DAYR, IYR, AUT(AAUT))
CALL SUMOUT(QUOTA, PQMLK, EXCES, PXMLK, PFA, CRFAT, PPROT,
1 CRPROT, PCOWP, PCOWF, PCOWH, PCOWD, PYLG, PCFO, PCFH, PCFB,
2 PYSP, CFIX(LEV), CTRNP, NYSR, AVG, IAJBCA, AUT(AAUT), AUTFUL)
IF (AUT(AAUT)) GO TO 1170

C Output hard copy of all management decisions for the current year *

C WRITE (10,1700) IHRD, IYR, INIT
WRITE (10,1230) LEV, (OPT(L),L=NOP,LOP), SINDEX, OPMAX, DRYPRD,
1 PRDCUL, MPB, NBIL, AUT(AILA), MPY, NYSR, INIT(AAUT)

1100 J = 1, NBULS
IOP(J) = IPROP(J) - IP
6 IP = IPROP(J)
K = BULREC(8,J) / 20. + 1.99
IF (K - 2) 1080, 1090, 1100
1080 ISTAT(J) = AST2
GO TO 1110
1090 ISTAT(J) = AST1
GO TO 1110
1100 ISTAT(J) = BLK
1110 CONTINUE
WRITE (10,1710)
CALL PRINTL(IBULLS, NBULS, 10, 10)
CALL PRINTL(IOP, NBULS, 10, 10)
CALL PRINTL(ISTAT, NBULS, 10, 10)
WRITE (10,1720) (BULREC(13,J),J=1,NBULS)
LINE = 33
1120 IF (NSPM .LE. 0 .OR. AUT(ISPA)) GO TO 1130
WRITE (10,1730)
CALL PRINTL(ISPMAT, NSPM, 10, 10)
CALL PRINTL(ISPBUL, NSPM, 10, 10)
LINE = LINE + 3
1130 IF (NHM .LE. 0) GO TO 1140
WRITE (10,1740)
CALL PRINTL(MCOW, NHM, 10, 10)
CALL PRINTL(MBUL, NHM, 10, 10)
LINE = LINE + 3
1140 IF (NCFCUL .LE. 0) GO TO 1150
WRITE (10,1750) ICHPB
CALL PRINTL(MNCCUL, NCFCUL, 10, 10)
LINE = LINE + 2
1150 IF (NOCCUL .LE. 0) GO TO 1160
WRITE (10,1760)
CALL PRINTL(MCFCUL, NOCCUL, 10, 10)
CALL PRINTL(MYLCUL, NYLCUL, 10, 10)
LINE = LINE + 2
1160 IF (NYLCUL .LE. 0) GO TO 1170
WRITE (10,1770)
CALL PRINTL(MYLCUL, NYLCUL, 10, 10)
LINE = LINE + 2
1170 WRITE (12) PARM
C *
C Simulate herd year and check if more herds
C *
CALL GENREC(OPNMAX, MYLCUL, SINDEX, DRYPRD, IHRD, IYR, NYLCUL,
1 IOPT, AUT(IAUT), DPROD, DAYR, DTRATE, DTMLK, DTREC, IAJBCA,
2 AVG, HRDET(LEV), HDMLK, FEREC, DCYC, DPROJ, BRDMIN, DFBRD,
3 FDRY, GEST, HTL, HTMLK, HTREC, HTYP, LINE)
NHRL = NHRL + 1
IHRD = IHRD + 1
WRITE (7'IHRD, 1690) IYR, IHRD
IF (NHRD-NHRL .GT. 0) GO TO 10
GO TO 1790
1180 WRITE (6,1780)
1190 FORMAT (20X, 'DAIRY CATTLE BREEDING SIMULATION', //, 20X, 32('-'),
1 ///, 3X, 'YOU WILL BE PROMPTED FOR DECISIONS', //, 3X,
2 '- ENTER ALL VALUES ON ONE LINE (EXCEPT WHEN ENTERING',
3 'ANIMALS')', //, 3X, '- WHEN ENTERING ANIMALS START A NEW ',
4 'LINE FOR EACH ANIMAL', //, 3X, '- EACH VALUE ENTERED MUST',
5 'BE FOLLOWED BY A COMMA !!', ///, 'HERD NUMBER AND CODE ?'
6)
1200 FORMAT ('OPTION ?')
1210 FORMAT (I12, F12.0, L1)
1220 FORMAT (/, ' HERD', I4, ' SIMULATION OF YEAR', I4, //, 6X,
1 'MANAGEMENT DECISIONS SELECTED',//,
2 ' 1 OUTPUT PRINTED COPY OF HERDS ?', A3)
3 1230 FORMAT (' 2 MANAGEMENT LEVEL OF', 13, '/', 9X, 1
4 ' RANKING AND CULLING BASED ON:', 3A4, '/
5 ' 3 WEIGHTINGS FOR THE SELECTION INDEX:', 9X,
6 ' MILK', F7.2, ' FAT', F7.2, ' PROTEIN', F7.2,
7 ' 4 TYPE', F7.2, '/
8 ' 4 NUMBER OF DAYS OPEN OR SERVICES:', 9X, F4.0,
9 ' DAYS OR', F4.0, ' SERVICES WITH EXTRA', ' FOR THE TOP',
10 ' F4', ' COWS', '/ 9X', ' BASED ON AN', ' EXPONENT', F7.3,
11 ' AN ADJUSTMENT FOR DAYS', F7.2, '/ 9X,
12 ' AND AN ADJUSTMENT FOR SERVICES', F7.3, '/
13 ' 5 MINIMUM DAILY MILK PRODUCTION:', 9X, 'AT', F5.1,
14 ' KG/DAY A COW IS DRIED OFF', ' 9X', 'AT', F5.1,
15 ' KG/DAY A CULL COW IS SOLD', ' 6 MATINGS-', I5,
16 ' % TO', I4, ' PROVEN SIRES SELECTED', ' 2A8, 9X, I3,
17 ' % TO', I4, ' YOUNG SIRES SELECTED', ' 2A8, 9X,
18 ' SPECIAL MATE', I4, ' COWS SELECTED', ' 2A8)
19 ' 6 MAXIMUM SEMEN PRICE $ 4X,
20 ' 1 'MINIMUM CONCEPTION', I4, ' %')
21 1235 FORMAT (9X, 'MAXIMUM SEEMEN PRICE $', 15, ' /VIAL', 4X,
22 ' 1 MINIMUM CONCEPTION', I4, ' %')
23 1240 FORMAT (' 7 CONTINUE')
24 1250 FORMAT (' ERROR - MINIMUM VALUE IS', I4, 'MAXIMUM IS', I5,
25 ' 1 VALUE', I4, '?')
26 1260 FORMAT (' ERROR WEIGHTS SUM TO "0"')
27 1270 FORMAT (' ERROR PRODUCTION MUST BE GREATER THAN "0"')
28 1280 FORMAT (' NUMBER OF PROVEN SIRES ?')
29 1290 FORMAT (' ENTER THE METHOD OF SELECTION', ' 2A8, 9X,
30 ' 1 2 ', ' 2A8')
31 1300 FORMAT (' ENTER THE METHOD OF SELECTION', ' 2A8, 9X,
32 ' 1 2 ')
33 1310 FORMAT ('PERCENT OF MATINGS TO YOUNG SIRES ?')
34 1320 FORMAT ('MAXIMUM SEEMEN PRICE ?')
35 1330 FORMAT ('MINIMUM CONCEPTION RATE ?')
36 1340 FORMAT ('NUMBER OF YOUNG BULLS ?')
37 1350 FORMAT ('NUMBER OF SPECIAL MATINGS ?')
38 1360 FORMAT ('NUMBER OF TOP BULLS TO USE FOR SPECIAL MATINGS ?')
39 1370 FORMAT ('ENTER THE MINIMUM NUMBER OF DAYS AND SERVICES', ' 1,
40 ' AND THE NUMBER OF TOP COWS TO KEEP LONGER')
41 1380 FORMAT ('PRESS RETURN FOR TWO LEVELS OR', ' 9X,
42 ' ENTER THE EXPONENT FOR AN EXPONENTIAL RELATIONSHIP')
43 1390 FORMAT ('ADJUSTMENT FOR DAYS ?')
44 1400 FORMAT ('ADJUSTMENT FOR SERVICES ?')
45 1410 FORMAT (6F10.2)
46 1420 FORMAT ('DAILY MILK PRODUCTION AT WHICH TO DRY OFF A COW ?')
47 1430 FORMAT ('DAILY MILK PRODUCTION AT WHICH TO SELL A COW',
48 ' SELECTED FOR CULLING ?')
49 1440 FORMAT (' ENTER THE SELECTION INDEX WIEGHTS FOR', ' 9X,
50 ' 1 MILK, FAT, PROTEIN, AND TYPE')
51 1450 FORMAT ('MANAGEMENT LEVEL ?')
52 1460 FORMAT ('CULLING DECISIONS TO BE BASED ON', ' 1,
53 ' 1 CURRENT LACTATION', ' 9X,
54 ' 2 ESTIMATED PRODUCING ABILITY', ' 9X,
55 ' 3 ESTIMATED TRANSMITTING ABILITY')
56 1470 FORMAT (' THE RANDOM NUMBER GENERATORS TO BE INITIALIZED WITH',
57 ' 1, A NUMBER TO BE SPECIFIED', ' 2 A RANDOM',
58 ' 2 NUMBER')
59 1480 FORMAT (' THE OUTPUT TO BE', ' 9X, 1 FULL PRINTED OUTPUT', ' 9X,
60 ' 2 ONLY SUMMARIES STORED')
61 1490 FORMAT ('NUMBER IF HERDS IN THIS GROUP ?')
62 1500 FORMAT ('INTEGER SEED ?')
63 1510 FORMAT ('BULL', I5, ' DOES NOT EXIST')
64 1515 FORMAT ('AT LEAST ONE BULL MUST BE BRED TO A PROPORTION > 0')
SUBROUTINE GENREC(OPNMAX, MYLCUL, SINDEX, DRYPRD, IHRD, IYR,
1 NYLCUL, ISEL, AUTO, DPROD, DAYR, DTRATE, DTMLK, DTREC,
2 IAJBCA, AVG, HRDET, HDMLK, FERECC, DPROJ, BRDMIN,
3 DFBRD, DRYFD, GEST, HTL, HTMLK, HTREC, HTYP, LINE)

C

C ** This subroutine generates cows records for all cows and yearlings. **
C
SUBROUTINE GENREC(OPNMAX, MYLCUL, SINDEX, DRYPRD, IHRD, IYR,
1 NYLCUL, ISEL, AUTO, DPROD, DAYR, DTRATE, DTMLK, DTREC,
2 IAJBCA, AVG, HRDET, HDMLK, FERECC, DPROJ, BRDMIN,
3 DFBRD, DRYFD, GEST, HTL, HTMLK, HTREC, HTYP, LINE)

C
PROGRAM LISTINGS

9 OLDPK(250), RPRD(3), DPER(2)
C
LOGICAL*1 OLCOW, CULL /F/, FALSE /F/, TRUE /T/, FINISH, AUTO
10 CALL INBLUP(AJBCA, AVG)
 CALL INKIL(GEST)
 DO 20 I = 1, 3
 TAPRD(I) = 0.0
 PBCA(I) = 0.0
 20 TRPRD(I) = 0.0
 TAPRD(4) = 0.0
 PBCA(4) = 0.0
 TDP = 0.0
 NCLAC = 0
 NPCUL = 0
 NFCUL = 0
 NHCUL = 0
 NDCL = 0
 NHCUL = 0
 NYC = 1
 NRLAC = 0
 TAGE = 0.0
 FINISH = FALSE
 OLCOW = TRUE
 NOPNEX = OPNMAX(3) + 1.
C
NHYS = IYR * 500 + IHRD
READ (2) NOC
IF (NOC .EQ. 0) GO TO 440
C *
C * Read in old cows
C *
30 DO 430 I = 1, NC
 NCOW = NCOW + 1
 IF (OLCOW) GO TO 70
 CALL REAMAT(HRDCOW, 40, NOC, 2)
 NCOW = 0
 NC = NOC
 40 CONTINUE
 HRDCOW(5, NCOW) = 150.
 BRLAST = 1.0
 HRDCOW(39, NCOW) = HRDYLG(5, I)
 HRDCOW(40, NCOW) = HRDYLG(6, I)
 NREC = 0
 ISTAT = 1
 DUEEDAT = HRDYLG(4, I) - BRDMIN + DFBRD
 FUTDATE = -1.
 DUERB = 0.
 50 CONTINUE
 IF (NYLCUL .LE. 0) GO TO 80
 IOW = HRDCOW(1, NCOW)
 IF (ICOW .LT. MYLCUL(NYC)) GO TO 80
 HRDCOW(5, NCOW) = 150.
 BRLAST = 1.0
 HRDCOW(39, NCOW) = HRDYLG(5, I)
 HRDCOW(40, NCOW) = HRDYLG(6, I)
 NREC = 0
 ISTAT = 1
 DUEEDAT = HRDYLG(4, I) - BRDMIN + DFBRD
 FUTDATE = -1.
 DUERB = 0.
 60 IF (NYLCUL .LE. 0) GO TO 80
 IOW = HRDCOW(1, NCOW)
 IF (ICOW .LT. MYLCUL(NYC)) GO TO 80
NYC = NYC + 1
IF (NYC .GT. NYLCUL) NYLCUL = 0
IF (ICOW .NE. MYLCUL(NYC - 1)) GO TO 60
NYCUL = NYCUL + 1
ISTAT = 7
GO TO 80

C * Find a cows old record and set status

70 NREC = HRDCOW(6,NCOW)
ISTAT = HRDCOW(7,NCOW)
DUEDAT = HRDCOW(8,NCOW) - DAYR
FUTDAT = HRDCOW(9,NCOW)
BRLAST = HRDCOW(10,NCOW)
DUERB = 10. * (HRDCOW(6,NCOW) - NREC) + HRDCOW(7,NCOW) - ISTAT
80 RANK = HRDCOW(5,NCOW)
IRANK = RANK
COWS(NCOW) = HRDCOW(1,NCOW)
I AGE = IYR + 10 - IFIX(HRDCOW(1,NCOW)/100.)
AGE(NCOW) = FLOAT(IAGE) - HRDCOW(4,NCOW) / DAYR + 1.
IF (HRDCOW(1,NCOW) .GT. 10000. .OR. HRDCOW(1,NCOW) .LT. 1.)
GO TO 410
OSTART(NCOW) = 0.0
DSTART(NCOW) = 0.0
OSTOP(NCOW) = 0.0
DSTOP(NCOW) = 0.0
OFIN(NCOW) = 0.0
DFIN(NCOW) = 0.0
DO 90 J = 1, 3
OYRLAC(J,NCOW) = 0.0
DYRLAC(J,NCOW) = 0.0
OAPRD(J,NCOW) = 0.0
DAPRD(J,NCOW) = 0.0
90 CONTINUE
OYRLAC(4,NCOW) = 0.0
DYRLAC(4,NCOW) = 0.0
DEVMLK = (HRDCOW(11,NCOW) + HRDCOW(15,NCOW)) / AVG(1)
DFER(1) = HRDCOW(39,NCOW) + HDMLK * DEVMLK
DFER(2) = HRDCOW(40,NCOW) + FEREC * NREC
DOPMAX = OPNMAX(1)
ISEMAX = OPNMAX(2)
IF (NOPNEX .LE. 1) GO TO 100
EXOP = NOPNEX - RANK
IF (EXOP .LE. 0.0) GO TO 100
OX = EXOP ** OPNMAXU)
DOPMAX = DOPMAX + OX * OPNMAX(5)
ISEMAX = ISEMAX + (OX * OPNMAX(6) + 0.5)
100 IF (ISTAT .GT. 2) GO TO 200

C * Pregnant ?

IF (FUTDAT .GE. 0.0) GO TO 110
CALL MATE(HRDCOW(15,NCOW), HRDCOW(1,NCOW), IRANK,
1 DFER, DUEDAT, FUTDAT, BRLAST, ISEMAX, DOPMAX,
2 CULL)
IF (CULL) GO TO 220
GO TO 120
110 FUTDAT = FUTDAT - DAYR

C * New lactation ?

120 IF (FUTDAT .GT. DAYR .OR. FUTDAT .LT. 0.0) GO TO 170
CALL LACT(OLDLAC(1,NCOW), HRDCOW(19,NCOW), HRDCOW(11,NCOW),
1 HRDCOW(15,NCOW), ODLRB(NCOW), DUERB, OLDAT(NCOW), DUEDAT,
2 FUDAT)
IF (ISTAT .LT. 2) CALL BLUP(HRDCOW(2,NCOW), IHRD, IYR,
1 HRDCOW(19,NCOW))
130 FBR = DUEDAT + BRDMIN
C * Breed again ?
C *
IF (FBR .GT. DAYR) GO TO 140
CALL MATE(HRDCOW(15,NCOW), HRDCOW(1,NCOW), RANK,
1 DFER, DUEDAT, FUTDAT, BRLAST, ISEMAX, DOPMAX,
2 CULL)
IF (CULL) GO TO 210
C *
Another lactation ?
C *
IF (FUTDAT .GT. DAYR .OR. FUTDAT .LT. 0.0) GO TO 140
CALL LACT(OLDLAC(1,NCOW), HRDCOW(19,NCOW), HRDCOW(11,NCOW),
1 HRDCOW(15,NCOW), ODLRB(NCOW), DUERB, OLDAT(NCOW), DUEDAT,
2 FUTDAT)
C * ACTUAL PRODUCTION
C GO TO 150
140 IF (ISTAT .LT. 2) GO TO 160
OSTART(NCOW) = ABS(OLDAT(NCOW))
150 CALL PROD(AGE(NCOW), ODLRB(NCOW), OLDPK(NCOW), OLDAT(NCOW),
1 DUEDAT, OSTART(NCOW), OSTOP(NCOW), OFIN(NCOW),
2 OLDLAC(1,NCOW), OYRLAC(1,NCOW), OAPRD(1,NCOW), DRYPRD, 3,
3 4)
160 CALL PROD(AGE(NCOW), DUERB, DUEPK(NCOW), DUEDAT, FUTDAT,
1 DSTART(NCOW), DSTOP(NCOW), DFIN(NCOW), HRDCOW(19,NCOW),
2 DYRLAC(1,NCOW), DAPRD(1,NCOW), DRYPRD, 3, 4)
ISTAT = 2
GO TO 260
C * Cows with no new lactation
C 170 IF (ISTAT .LT. 2) GO TO 180
DSTART(NCOW) = ABS(DUEDAT)
CALL PROD(AGE(NCOW), DUERB, DUEPK(NCOW), DUEDAT, FUTDAT,
1 DSTART(NCOW), DSTOP(NCOW), DFIN(NCOW), HRDCOW(19,NCOW),
2 DYRLAC(1,NCOW), DAPRD(1,NCOW), DRYPRD, 3, 4)
180 OLDLAC(1,NCOW) = 0.0
OLDLAC(2,NCOW) = 0.0
OLDLAC(3,NCOW) = 0.0
OLDLAC(4,NCOW) = 0.0
OLDAT(NCOW) = 0.0
GO TO 260
190 DFIN(NCOW) = HRDCOW(4,NCOW)
GO TO 180
C * Dry off fertility culls from last year
C 200 IF (ISTAT .GT. 3) GO TO 190
ISTAT = 4
NFCL = NFCL + 1
OLDAT(NCOW) = 0.0
DSTART(NCOW) = ABS(DUEDAT)
CALL PROD(AGE(NCOW), DUERB, DUEPK(NCOW), DUEDAT, FUTDAT,
1 DSTART(NCOW), DSTOP(NCOW), DFIN(NCOW), HRDCOW(19,NCOW),
2
290 OSTOP(NCOW) = OSTOP(NCOW) - (OFIN(NCOW) - DEDAT)
300 CALL AJPROD(OSTART(NCOW), OSTOP(NCOW), OLDRB(NCOW), OLDPK(NCOW),
1 OLDAT(NCOW), OAPRD(1,NCOW), OYRLAC(1,NCOW), DRYPRD, 0., 3,
2 4)
310 DSTOP(NCOW) = 0.0
320 DFIN(NCOW) = DSTOP(NCOW) - (DFIN(NCOW) - DEDAT)
330 CALL AJPROD(DSTART(NCOW), DSTOP(NCOW), DUERB, DUEPK(NCOW),
1 DUEDAT, DAPRD(1,NCOW), DYRLAC(1,NCOW), DRYPRD, 0., 3, 4)
340 DFIN(NCOW) = DEDAT
350 IF (FUTDAT .GT. 0.) CALL KILCF(HRDCOW(1,NCOW), OLDAT(NCOW),
1 DUEDAT, FUTDAT, DEDAT)
C
C *** SUMS FOR ROLLING HERD AVERAGES ***
C
350 IF (OFIN(NCOW) .LE. 0.0) GO TO 370
360 IF (OSTOP(NCOW) .LT. DPROJ) GO TO 370
370 IF (OSTART(NCOW) .GE. 305.) GO TO 370
380 NRLAC = NRLAC + 1
390 NREC = NREC + 1
400 CALL RHPROD(AGE(NCOW), OLDRB(NCOW), OLDPK(NCOW), OLDAT(NCOW),
1 OSTOP(NCOW), STOP, RPRD, OLDLAC(1,NCOW), 3, 4)
410 TDP = TDP + STOP
420 TAGE = TAGE + AGE(NCOW) + OLDAT(NCOW) / DAYR - 1.
430 DO 360 J = 1, 3
440 PBCA(J) = OLDLAC(J,NCOW) + PBCA(J)
450 TRPRD(J) = RPRD(J) + TRPRD(J)
460 PBCA(4) = OLDLAC(4,NCOW) + PBCA(4)
470 DO 380 J = 1, 3
480 PBCA(J) = HRDCOW(J + 18,NCOW) + PBCA(J)
490 TRPRD(J) = RPRD(J) + TRPRD(J)
500 PBCA(4) = HRDCOW(22,NCOW) + PBCA(4)
510 DO 400 J = 1, 4
520 TAPRD(J) = TAPRD(J) + OYRLAC(J,NCOW) + DYRLAC(J,NCOW)
530 CREC = AINT(DUERB)
540 HRDCOW(5,NCOW) = RANK
550 HRDCOW(6,NCOW) = NREC + CREC / 10.
560 HRDCOW(7,NCOW) = ISTAT + DUERB - CREC
570 HRDCOW(8,NCOW) = DUEDAT
580 HRDCOW(9,NCOW) = FUTDAT
590 HRDCOW(10,NCOW) = BRLAST
600 GO TO 430
610 WRITE (6,420)
620 FORMAT (' PROBLEMS COW LOST')
630 NCOW = NCOW - 1
640 CONTINUE
650 IF (FINISH) GO TO 450
C

C Read in last years yearlings

C
```fortran
READ (2) NYLG
CALL REAMAT(HRDYLG, 18, NYLG, 2)
```

440

```fortran
NC = NYLG
FINISH = TRUE
OLCOW = FALSE
GO TO 30
```

C

C END COW LOOP

C

C Herd averages

C
```fortran
450 NR = NRLAC
IF (NRLAC .LE. 0) NR = 1
TR = NR + 0.00001
DO 460 J = 1, 4
   HPA(J) = PBCA(J) / NR
   HTA(J) = AVG(J) + ((TR - 1.)/(NR + 1)) * (HPA(J) - AVG(J))
   PACBCA(J) = PBCA(J)
460 CONTINUE
TACPRD(1) = TRPRD(1)
TACPRD(2) = TRPRD(2)
TACPRD(3) = TRPRD(3)
ACAGE = TAGE
ACTDP = TDP
NACLAC = NRLAC
CALL ALETA(COWS, HPA, HTA, 0)
```

C

C Update cows EPA's and ETA's and index scores

C
```fortran
DO 480 I = 1, NCOW
   CALL COWETA(ETA, ETA(I), EPA(I), CURBCA(I), HRDCOW(35,1),
               1 HRDCOW(19,1), OLDLAC(I), HRDCOW(23,1), HRDCOW(27,1),
               2 HRDCOW(31,1), HRDCOW(2,1), HRDCOW(3,1), HRDCOW(6,1),
               3 OSTART(I), OSTOP(I), DSTART(I), DSTOP(I), OFIN(I), DFIN(I),
               4 1, 4)
   IF (HRDCOW(6,1) .LE. 0.0) GO TO 470
   SCORE(1,I) = CURBCA(1,I) * SINDEX(1) + CURBCA(2,I) * SINDEX(2) +
               1 CURBCA(3,I) * SINDEX(3) + CURBCA(4,I) * SINDEX(4)
   SCORE(2,I) = EPA(1,I) * SINDEX(1) + EPA(2,I) * SINDEX(2) + EPA(
               1 3,I) * SINDEX(3) + EPA(4,I) * SINDEX(4)
   SCORE(3,I) = ETA(1,I) * SINDEX(1) + ETA(2,I) * SINDEX(2) + ETA(
               1 3,I) * SINDEX(3) + ETA(4,I) * SINDEX(4)
470 CONTINUE
480 CONTINUE
```

C

C
```fortran
CALL CULSEL(HRDCOW, AGE, OLDAT, OLDDB, SCORE, OFIN, DFIN, OSTART, 
            1 DSTART, OSTOP, DSTART, OYRLAC, DYLAC, OAPRD, DAPRD, OLDLAC, 
            2 OLDPK, DUEPK, TAPRD, TAPRD, PACBCA, ACAGE, ACTDP, NACLAC, 
            3 DRYPRD, NPCUL, NCOW)
```
C * Output cows records
C *
CALL SUMCOW(HRDCOW, OYRLAC, DYRLAC, OAPRD, DAPRD, OLRLAC, EPA,
1 ETA, SCORE, AVG, IAJBCA, OSTART, DSTART, OSTOP, DSTOP, OFIN,
2 DFIN, OLDAT, AGE, NCOW, IYR, DPROJ, DRYFD, DAYR, GEST, LINE,
3 AUTO)
WRITE (12) NCOW
IF (NCOW .LE. 0) GO TO 500
CALL WRTMAT(HRDCOW, 40, NCOW, 12)
500 CALL SUMHRD(TRPRD, PBCA, TAGE, TDP, NRLAC, TACPRD, PACBCA, ACAGE,
1 ACTDP, NAACLAC, TAAPRD, SINDEX, NYCUL, NCOW, IHRD, IYR)
CALL PBLUP
RETURN
END

SUBROUTINE BREED(BULREC, IBULLS, IPROP, ISPMAT, ISPBUL, COWMAT,
1 MATBUL, CULCAF, NBULS, NSPM, ISPA, NSV, NHM, NCFCUL,
2 CHEAPB, AUTO, GSD, GSIGMA, BRDMIN, HRDET, FCYCL,
3 GEST, DAYR)
C ***
C * This subroutine finds a bull to mate the cow. If *
C * the cow is to be special mated, BULL is given the appropriate *
C * value in MATBUL. If the resultant calf is to be culled BULL is *
C * assigned the specified bull in IBULLS. Otherwise the BULL is *
C * selected at random from IBULLS with the chance of each being *
C * selected equal to the proportion indicated in IPROP. If *
C * possible sire daughter matings are avoided. If the cow *
C * conceives before the end of the year and before OPNMAX a new *
C * Futtat and young calf are generated.
C ***
C IMPLICIT INTEGER(C)
COMMON I SEED, EWK(4), GWK(4) /YNG/ YGCALF(8,200), NYCLF
DIMENSION BULREC(13,20), ISPMATOO), ISPBUL(lO), IBULLS(20),
1 I PROP (20), COWMATO00), MATBUL (100), CULCAF (20),
2 BV(4), ETA (4), GSIGMAU), GSD(4), SAC(2), FERC(2),
3 NBSV(20), NBSSV(20), RNG(4), IBUSE(5)
REAL *4 BVPS(4), PPS(4), BVUS(4), PUS(4), BVYS(4), PYS(4)
C LOGICAL*1 TRUE /T/, FALSE /F/, CULL, INB, SPBR, AUTO
C ENTRY REBRD
DO 10 I = 1, NBULS
 NBSV(I) = 0
10 DO 15 I = 1, 4
 BVPS(I) = 0.
 PPS(I) = 0.
 BVUS(I) = 0.
 PUS(I) = 0.
 BVYS(I) = 0.
 PYS(I) = 0.
15 CONTINUE
ICPS = 0
ICUS = 0
NYCLF = 0
NSV = 0
VMC = SQRT(0.5)
TCINT = 0.0
NCHB = NCFCU
NHMB = NHM
NSPMB = 1
RETURN
ENTRY MATE(BV,SAC,IRANK,FERC,DUEDAT,FUTDAT,BRLAST,ISEMAX,OPNMAX,
 CULL)
 COW = SAC(1)
 ISIRE = SAC(2)
 CULL = FALSE
 CHECK = -2
 INB = FALSE
 IF (AUTO) GO TO 80
20 IF (NCHB .LE. 0) GO TO 30
 C
 MATINGS TO A CHEAP BULL
 IF (COW .LT. CULCAF(NCHB)) GO TO 30
 NCHB = NCHB - 1
 IF (COW .NE. CULCAF(NCHB)) GO TO 20
 LCBUL = CHEAPB
 BULL = IBULLS(LCBUL)
 CLFKEP = 3
 GO TO 220
30 IF (NHMB .LE. 0) GO TO 50
 C
 HAND MATINGS
 IF (COW .LT. COWMAT(NHMB)) GO TO 50
 IF (COW .EQ. COWMAT(NHMB)) GO TO 40
 NHMB = NHMB - 1
 GO TO 30
40 CLFKEP = 2
 LCBUL = MATBUL(NHMB)
 BULL = IBULLS(LCBUL)
 NHMB = NHMB - 1
 IF (IBULLS(LCBUL) .EQ. ISIRE) INB = TRUE
 GO TO 220
50 IF (ISPA .GT. 1) GO TO 80
 C
 SPECIAL MATINGS
60 IF (NSPMB .GT. NSPM) GO TO 110
 IF (COW .LT. ISPMAT(NSPMB)) GO TO 110
 IF (COW .EQ. ISPMAT(NSPMB)) GO TO 70
 NSPMB = NSPMB + 1
 GO TO 60
70 LCBUL = ISPBUL(NSPMB)
 CLFKEP = 1
 BULL = IBULLS(LCBUL)
 IF (IBULLS(LCBUL) .EQ. ISIRE) INB = TRUE
 NSPMB = NSPMB + 1
 GO TO 220
80 IF (IRANK .GT. NSPM) GO TO 110
 C
 SPECIAL MATINGS BY RANK
90 LCBUL = IRAND(NBS)
 BULL = IBULLS(LCBUL)
 IF (IBULLS(LCBUL) .NE. ISIRE) GO TO 220
 DO 100 J = 1, NBS
 IF (IBULLS(J) .NE. ISIRE) GO TO 90
100 CONTINUE
INB = TRUE
GO TO 220

C
C RANDOM MATINGS
C
110 J = (NBULS/2) + 1
CLFKEP = 2
120 NRAN = I RAND(I PROP(NBULS))
IF (NRAN .LE. I PROP(J)) GO TO 130
K = J + 1
IF (NRAN - I PROP(K)) 170, 170, 150
130 CONTINUE
DO 140 K = 1, J
IF (NRAN .LE. I PROP(K)) GO TO 170
140 CONTINUE
150 J = J + 2
DO 160 K = J, NBULS
IF (NRAN .LE. I PROP(K)) GO TO 170
160 CONTINUE
170 BULL = IBULLS(K)
LCBUL = K
IF (IBULLS(LCBUL) .NE. ISIRE) GO TO 220

C*** Selects up to three bulls at random ***
C
CHECK = CHECK + 1
IF (CHECK) 180, 110, 210

C CHECK IF INBREEDING AVOIDABLE
C
180 IPL = 0
DO 190 I = 1, NBULS
IPS = I PROP(I) - IPL
IF (IBULLS(I) .NE. ISIRE .AND. IPS .GT. 0) GO TO 110
IPL = I PROP(I)
190 CONTINUE
200 INB = TRUE
GO TO 220

C ASSIGN TO THE FIRST BULL THAT IS NOT RELATED
C
210 BULL = IBULLS(I)
LCBUL = I
220 CONTINUE

C BREEDING
C
IF (BRLAST .LT. 0.0) GO TO 230
NSVC = 0
DAYCYC = FRAND(0.) * FCYCL
OPNDAY = BRDMIN + DAYCYC
GO TO 240
230 DLB = AINT(BRLAST)
OPNDAY = DLB + FCYCL - DUEDAT
NSVC = (DLB - BRLAST) * 100. + 0.5
BRLAST = 1.0
IF (OPNDAY .GT. OPNMAX) GO TO 270
240 FERB = BULREC(6,LCBUL)
ISTP = (OPNMAX - OPNDAY) / FCYCL + 1.
OPNDAT = DUEDAT + OPNDAY
IF (OPNDAT .GT. DAYR) RETURN
MYRST = (DAYR - OPNDAT) / FCYCL + 1.
IF (MYRST .LT. ISTP) ISTP = MYRST
HDET = HRDET * FERC(1)
FERT = FERB * FERC(2)

C*** Loop for estrous cycle, stops if: conception; culled; **
C*** or end of year; **

DO 250 I = 1, ISTP
 DPROB = FRAND(0.)
 IF (DPROB .GE. HDET) GO TO 250
 OPROB = FRAND(0.)
 NSVC = NSVC + 1
 NBSV(LCBUL) = NBSV(LCBUL) + 1
 IF (OPROB .LT. FERT) GO TO 280
 IF (NSVC .GE. ISEMAX) GO TO 270
250 OPNDAY = OPNDAY + FCYCL
 IF (OPNDAY .GT. OPNMAX) GO TO 270
260 BRLAST = AINT(DUEDAT + OPNDAY - FCYCL - DAYR - 0.5) - FLOAT(NSVC) / 100.
 RETURN
270 CULL = TRUE
 BRLAST = DUEDAT + OPNDAY - FCYCL
 RETURN

C GENERATE CALF
C
280 CINT = OPNDAY + GEST
 FUTDAT = DUEDAT + CINT
 IF (FUTDAT .LT. 0.) GO TO 270
 NSVK = NSV + NSVC
 TCINT = TCINT + CINT
 NYCLF = NYCLF + 1
 YGCALF(2,NYCLF) = BULL
 YGCALF(3,NYCLF) = COW
 YGCALF(4,NYCLF) = FUTDAT
 YGCALF(1,NYCLF) = CLFKEP + ISEIRE / 10000
 CALL MNDG1(ISEED, GSIGMA, RNG, GWK)
 DO 300 J = 1, 4
 300 YGCALF(J + 4,NYCLF) = 0.5 * (BV(J) + BULREC(J + 8,LCBUL)) + VMC * RING(J) * GSD(J)
 IF (.NOT. INB) GO TO 320
 YGCALF(2,NYCLF) = BULL + 0.1
320 RETURN

ENTRY SUMATE(BCON,SVCF,HCINT,SEMCE, BVPS, PPS, BVUS, PUS, BVYS, PYS, IHRD, IYR)
NSV = 0
NCON = 0
SEMCE = 0.0
DO 330 I = 1, NBULS
 NBC = NBSV(I)
 NSV = NSV + NBC
 NCON = NCON + NBC
 IBUSE(1) = IHRD
 IBUSE(2) = IYR
 IBUSE(3) = IBSU(I)
 IBUSE(4) = NBSV(I)
 IBUSE(5) = NBC
 SEMCE = SEMCE + IBUSE(4) * BULREC(7,I)
 WRITE (14) IBUSE
 IF (BULREC(I,8) .LT. 20.) GO TO 323
 DO 321 J = 1, 4
 BVPS(J) = BVPS(J) + BULREC(J + 8, I) * NBC
SUBROUTINE INLAC(PHENV, HENV, ESIGMA, TCESD, AVG)
C ***
C * This subroutine generates a new lactation for DUELAC and *
C * moves the calving date up. *
C ***
COMMON ISEED, EWK(4), GWK(4)
DIMENSION DPROD(4), OLDLAC(4), DUELAC(4), PECOW(4), BV(4),
1 TCESD(4), AVG(4), RNE(4), ESIGMA(4), HENV(4), PHENV(4)
ENTRY RELAC
CINT = 0.0
NBORN = 0
RETURN
ENTRY LACT(OLDLAC,DUELAC,PECOW,BV,OLDRB,DUERB,OLDAT,DUEDAT,FUTDAT)
DO 10 I = 1, 4
 OLDLAC(I) = DUELAC(I)
10 CONTINUE
CALL MNDG1(ISEED, ESIGMA, RNE, EWK)
DO 20 I = 1, 3
 DPROD(I) = RNE(I) * TCESD(I) + HENV(I) + PHENV(I) + PECOW(I) +
1 BV(I)
20 DUELAC(I) = AVG(I) + DPROD(I)
DPRODU) = RNE (4) * TCESDU) + HENVU) + PHENVU) + PECOWU) +
1 BVU)
DUELACU) = AVG (4) + DPRODU)
IF (DUELACU) .LT. OLDLACU)) DUELACU) = OLDLAC (4)
DPRODU) = DUELACU) - AVGU)
OLDRB = DUERB
IF (DUERB .LT. 3.) DUERB = DUERB + 1.
OLDAT = DUEDAT
DUEDAT = FUTDAT
FUTDAT = -1.0
IF (OLDLAC(1) .LE. 0.0) RETURN
CINT = CINT + DUEDAT - OLDAT
NBORN = NBORN + 1
RETURN
ENTRY SUMLAC(CINT,NBORN)
RETURN
END

SUBROUTINE INPROD(DPMIN, DRYMIN, DAYR, DPROJ, AJUSM, FDCAR, FDFAT,
1 FPRO, FDAY, ATCP, BSLP, WEKPK, TLPROD, TPROD, PPROD,
2 M, N)
Q **
Q * This subroutine adjusts the M. E. 305 lactation for age and *
Q * then calculates the portion that is produced in the current year*
Q **
REAL*4 AJUSM(3,4), TLPROD(M), PPROD(N), TPROD(M), ATCP(3),
1 BSLP(3), WEKPK(3)
DPROJ = 90.
RETURN
ENTRY PROD(AGE,RB,PEAK,FRSH,FUTDAT,DSTART,DSTOP,DFIN,TLPROD,PPROD,
1 TPROD,DPMIN,M,N)
C*** Age adjustment

I PAGE = AGE + FRSH / DAYR - 2.
10 DO 20 I = 1, 3
20 TPROD(I) = TLPROD(I)
 IF (I PAGE .GT. 3) I PAGE = 4
30 DO 40 I = 1, 3
40 CONTINUE
IREC = RB
PEAK = TPROD(I) * BSLP(IREC) + ATCP(IREC)
WKPK = WEKPK(IREC)
C
C*** Find values for Wood's equation by estimating B and
C*** solving for A and C until within a unit of M. E. milk. ***
C
STPMAX = 100000.
IF (DSTART .GT. 0.) GO TO 80
PB = 0.
PPRD = 305. * PEAK
WDB = .999
DO 60 I = 1, 20
 WDA = PEAK * EXP(WDB) / WKPK ** WDB
 WDC = WDB / WKPK
 TAR = AREAG (WDA, WDB, WDC, 0.0, 305.0)
 DIFP = TPROD(1) - TAR
 IF (ABS(DIFP) .LE. 1.) GO TO 70
 DPP = PPRD - TAR
 DPB = PB - WDB
 DPUB = ABS(DPP/DPB)
 TPB = WDB
 WDB = WDB - DIFP / DPUB
 IF (ABS(WDB - TPB) .GT. ABS(WDB - PB)) GO TO 60
 PB = TPB
60 CONTINUE
WRITE (6,240)
70 RB = IREC + WDB
GO TO 90
ENTRY AJPROD(DSTART,DSTOP,RB,PEAK,FRSH,TPROD,PPROD,DPMIN,STPMAX,M, N)
80 IREC = RB
WDB = RB - IREC
WDA = PEAK * EXP(WDB) / WKPK ** WDB
WDC = WDB / WKPK
IF (STPMAX .LE. 0.) GO TO 110
C
C*** Calculate production for the current portion of the lactation**
C
90 DSTOP = DRYOFF(DPMIN,WKPK,PEAK,WDA,WDB) * 7.
DSTOP = AMAX1(DSTOP,DPROJ)
IF (STPMAX .GE. 100000.) GO TO 100
IF (DSTOP .GE. STPMAX) RETURN
IF (DSTOP .LE. DSTART) GO TO 190
GO TO 110
100 DFIN = DAYR
 IF (FUTDAT .GE. 0.) DFIN = AMIN1(DFIN,FUTDAT - DRYMIN)
 DSTOP = AMIN1(DSTOP,DFIN - FRSH)
110 DFIN = DSTOP + FRSH
 IF (DFIN .LE. 0.0) GO TO 200
170 PPROD(1) = AREAG (WDA, WDB, WDC, DSTART, DSTOP)
 FLAC = PPROD(1) / TPROD(1)
 PPROD(2) = FLAC * TPROD(2)
 PPROD(3) = FLAC * TPROD(3)
 DPRD = DSTOP - DSTART
 PPROD(4) = DPRD * FDAY + PPROD(2) * FDFAT + PPROD(3) * FDPRO + (1PPROD(1) - PPROD(2) - PPROD(3)) * FDCAR
 IF (DSTOP .LT. 305. .AND. DFIN .LE. 0.0) RETURN
 ART = (PEAK - ATCP(IREC)) / BSLP(IREC) + AREAG (WDA,WDB,WDC, 1
 305.0, DSTOP)
 FLAC = ART / TPROD(1)
 TPROD(1) = ART
 TPROD(2) = FLAC * TPROD(2)
 TPROD(3) = FLAC * TPROD(3)
RETURN
190 DFIN = 1.0
DSTOP = DFIN - FRSH
200 DO 210 I = 1, 4
PPROD(I) = 0.0
210 CONTINUE
RETURN
C
C*** Production for 305 day or less for rolling herd averages
C
ENTRY RHPROD(AGE, RB, PEAK, FRSH, DSTOP, STOP, TPROD, TLPROD, M, N)
STOP = DSTOP
I PAGE = AGE + FRSH / DAYR - 2.
IF (IPAGE .GT. 3) IPAGE = 4
TPROD(1) = TLPROD(1) * AJUSM(1, IPAGE)
TPROD(2) = TLPROD(2) * AJUSM(2, IPAGE)
TPROD(3) = TLPROD(3) * AJUSM(3, IPAGE)
IF (STOP .GE. 305.) GO TO 230
IREC = RB
WDB = RB - IREC
PEAK = TPROD(1) * BSLP(IREC) + ATCP(IREC)
WDA = PEAK * EXP(WDB) / WKPK ** WDB
WDC = WDB / WKPK
RPROD = AREAG (WDA, WDB, WDC, 0.0, DSTOP)
220 FLAC = RPROD / TPROD(1)
TPROD(1) = RPROD
TPROD(2) = FLAC * TPROD(2)
TPROD(3) = FLAC * TPROD(3)
TLPROD(I) = TPROD(1) / AJUSM(1, IPAGE)
TLPROD(2) = TPROD(2) / AJUSM(2, IPAGE)
TLPROD(3) = TPROD(3) / AJUSM(3, IPAGE)
RETURN
230 STOP = 305.
240 FORMAT (' PROBLEMS WITH LACTATION CURVE')
RETURN
END

FUNCTION AREAG (A, B, C, TF, TL)
C
C*** This function calculates the area under Wood's lactation curve from TF to TL using the GAMMDS function
C
C
AREAG = 0.0
IF (TF .GE. TL) RETURN
B1 = B + 1.
C1 = C / 7.
A1 = (A / 7.0**B1) * 7.0 / C1**B1
T1 = TF * C1
T2 = TL * C1
AREAG = A1 * (GAMMDS(T2, B1, IC) - GAMMDS(T1, B1, IC))
RETURN
END

FUNCTION GAMMDS (Y, P, IFAULT)
C
CHI-LEUNG LAU 1980 APPLIED STATISTICS VOL. 29, NO. 1
C
INCOMPLETE GAMMA INTERVAL
DATA E /1.0E-3/
C
IFault = 1
GAMMDS = 0.0
IF (Y .LE. 0.0 .OR. P .LE. 0.0) RETURN
IFault = 2
C
F = EXP(P * ALOG(Y) - ALGAMA(P+1.0) - Y)
IF (F .EQ. 0.0) RETURN
IFault = 0
C
C = 1.0
GAMMDS = 1.0
A = P
1 A = A + 1.0
C = C * Y / A
GAMMDS = GAMMDS + C
IF (C / GAMMDS .GT. E) GO TO 1
GAMMDS = GAMMDS * F
RETURN
END

FUNCTION DRYOFF(PCUL, WKPK, PEAK, A, B)
IF (PCUL .GE. PEAK) GO TO 30
XK = WKPK / B * ABS(ALOG(PCUL) - ALOG(A))
T = AMAX1(XK, WKPK)
IF (PCUL .GT. A) XK = -XK
DO 10 I = 1, 20
 DRYOFF = WKPK * ALOG(T) + XK
 DIF = ABS(T - DRYOFF)
 IF (DIF .LT. 0.1) RETURN
 T = DRYOFF
10 CONTINUE
WRITE (6,20)
20 FORMAT (' PROBLEMS WITH DAY DRY')
30 DRYOFF = WKPK
RETURN
END

SUBROUTINE INETA(AI, SINDEX, AVG, IAJBCA, HER, REP, DAYR, NOAI,
 BBNO, DPROJ, DETA, ETA, EPA, SCUR, SUMDEV, SAJDEV,
1 SETDEV, OLDLAC, DUELAC, N)
C **
C * This subroutine calculates the eta's for cows, using their
C * records, their dams eat'a and their sires eat's.
C **

DIMENSION REP(4), HER(4), FA(4,3), FK(4,3), SETA(4), DETA(N),
1 ETA(N), SDEV(4), AVG(4), FDEN(3), ADEV(4), EPA(N),
2 PDEV(4), SCUR(N), IAJBCA(4), SAJDEV(N), SETDEV(N),
PROGRAM LISTINGS

3 AETA(4,250), AI(27,500), COWS(250), OLDLAC(N),
4 DUELAC(N), HPA(4), HTA(4), SINDEX(4), SUMDEV(N)

DO 20 J = 1, 4
 P = 1.
 R = 1. - REP(J)
 DO 10 K = 1, 3
 FDEN(K) = REP(J) - (1 - P) * HER(J)
 PA(J,K) = R / FDEN(K)
 FK(J,K) = P * HER(J) / FDEN(K)
 10 P = P - 0.25
20 CONTINUE
ENTRY ALETA(COWS,HPA,HTA,NT)
RETURN
ENTRY COWETA(AETA,ETA,EPA,SCUR,DETA,DUELAC,OLDLAC,SUMDEV,SAJDEV,
1 SETDEV,SIRE,DAM,REC,OSTART,OSTOP,DSTART,DSTOP,OFIN,DFIN,
2 NCOW,N)
 IF (OFIN .LE. 0.0) GO TO 40
 IF (OSTOP .LT. DPROJ) GO TO 40
 IF (OSTART .GE. 305.) GO TO 40
 DO 30 J = 1, 4
 TCUR = OLDLAC(J)
 SUMDEV(J) = SUMDEV(J) + TCUR - AVG(J)
 SAJDEV(J) = SAJDEV(J) + TCUR - HPA(J)
 30 SETDEV(J) = SETDEV(J) + TCUR - HTA(J)
40 IF (DFIN .LE. 0.0) GO TO 80
 IF (DSTOP .LT. DPROJ) GO TO 80
 IF (DFIN .EQ. DAYR .AND. DSTOP .LT. 305.) GO TO 60
 IF (DSTART .GE. 305.) GO TO 60
 DO 50 J = 1, 4
 TCUR = DUELAC(J)
 SCUR(J) = (TCUR - HPA(J)) / AVG(J) * 100.
 SUMDEV(J) = SUMDEV(J) + TCUR - AVG(J)
 SAJDEV(J) = SAJDEV(J) + TCUR - HPA(J)
 50 SETDEV(J) = SETDEV(J) + TCUR - HTA(J)
GO TO 120
60 DO 70 J = 1, 4
70 SCUR(J) = (DUELAC(J) - HPA(J)) / AVG(J) * 100.
80 IF (OFIN .LE. 0.0) GO TO 100
 DO 90 J = 1, 4
90 SCUR(J) = (OLDLAC(J) - HPA(J)) / AVG(J) * 100.
GO TO 120
100 DO 110 J = 1, 4
 EPA(J) = 0.0
110 SCUR(J) = 0.0
120 IF (REC .LE. 0.0) GO TO 150
 DO 130 J = 1, 4
 EPA(J) = (SUMDEV(J) / REC - HPA(J) + AVG(J)) * 100. / AVG(J)
 130 ADEV(J) = SETDEV(J) / REC / AVG(J) * 100.
INF = 1
GO TO 170
ENTRY CLFETA(SIRE,DAM,ETA,DETA,N)
DO 140 J = 1, 4
140 ETA(J) = 0.0
ENTRY YNGETA(SIRE,DAM,ETA,DETA,N)
INF = 0
DO 160 J = 1, 4
160 ADEV(J) = 0.0
170 IF (DAM .EQ. 0.) GO TO 250
C
C*** Find the dam

SUBROUTINE SELEC(ISEL, AUTO, QTA, XCES, DPROJ, DAYR, FDNY, PRDCUL)
C ***
C * This subroutine selects the cows to be culled for low production or type score *
C ***
C ***
C DIMENSION OLDAT(250), SCORE(3, 250), OFIN(250), DFIN(250),
1 OSTART(250), DSTART(250), OSTOP(250), DSTOP(250),
2 OYRLAC(4, 250), DYRLAC(4, 250), AGE(250), CULIST(23, 250),
3 FCUL(9, 250), HRDCOW(40, 250), CID(9), TPROD(4),
4 OAPRD(3, 250), DAPRD(3, 250), TRPRD(3), PBCA(4),
5 OLDRB(250), OLDLAC(4, 250), DUEPK(250), OLDPK(250),
6 RPWRD(3), DCUL(250), CNXT(250)
LOGICAL*1 FALSE /F/, TRUE /T/, AUTO, SPSL
REAL*4 CID /'HEIF', 'KEEP', 'KEEP', 'FERT', 'BCA', 'EPA',

C
MIN = 1
MAX = NCOL
NT = NT + 1
 IF (NT .GT. MAX) NT = MIN
 IF (DAM - COWS(NT)) 200, 220, 180
180 NT = NT + 1
 IF (DAM - COWS(NT)) 240, 220, 190
190 IF (MIN .GE. MAX) GO TO 240
 MIN = NT + 1
 GO TO 210
200 IF (MIN .GE. MAX) GO TO 240
 MAX = NT - 1
210 NT = MIN + (MAX - MIN) / 2
 IF (DAM - COWS(NT)) 200, 220, 190
220 DO 230 J = 1, 4
230 DETA(J) = ETA(J, NT)
240 IF (DETA(J)) .EQ. 0.0) GO TO 270
 INF = INF + 1
 GO TO 270
250 DO 260 J = 1, 4
260 DETA(J) = 0.0
270 IF (SIRE .LE. BBNO OR SIRE .GT. BBNO + NOAI) GO TO 290
 LOCS = SIRE - BBNO
 IF (AI(9, LOCS) .LT. 50.) GO TO 290
 DO 280 J = 1, 4
280 SETA(J) = AI(M + 12, LOCS)
 INF = INF + 1
 GO TO 320
290 DO 300 J = 1, 4
300 SETA(J) = 0.0
310 IF (INF .EQ. 0) GO TO 320
320 DO 330 J = 1, 4
 BKR = FK(J, INF) * REC
 DEN = FA(J, INF) * REC
 FNUM = DEN - BKR
 ETA(J) = 0.5 * (FNUM* (SETA(J) + DETA(J)) + BKR*ADEV(J)) / DEN
330 CONTINUE
 RETURN
340 DO 350 J = 1, 4
350 ETA(J) = 0.0
360 CONTINUE
 RETURN
END
'ETA', 'HLTH', 'DEAD'/

RETURN
ENTRY CULSEL(HRDCOW, AGE, OLDAT, OLDRB, SCORE, OFIN, DFIN, OSTART, DSTART, 1
OSTOP, DSTOP, OYRLAC, DYRLAC, OAPRD, DAPRD, OLDLAC, OLDPK, DUEPK,
2 TPROD, TRPRD, PBCA, TAGE, TDPL, NRLAC, DAYDRY, NVC, NCOW)

PRODM = TPROD(1) / 103.2
QUOTA = QTA + XCES
SPSEL = FALSE
NVC = 0
NOC = NCOW
NMC = 0
NMC = 0
CSEL = ISEL + 4

DO 20 I = 1, NOC
 IF (HRDCOW(6, I) .LE. 0.) GO TO 20
 NMC = NMC + 1
 CULIST(1, NMC) = I
 CULIST(2, NMC) = HRDCOW(1, I)
 CULIST(3, NMC) = SCORE(ISEL, I)
 CULIST(4, NMC) = HRDCOW(7, I)
 CULIST(5, NMC) = DSTART(I)
 CULIST(6, NMC) = OFIN(I)
 CULIST(7, NMC) = DFIN(I)
 CULIST(8, NMC) = OSTOP(I)
 CULIST(9, NMC) = DSTOP(I)
 DO 10 J = 1, 3
 CULIST(J + 9, NMC) = OYRLAC(J, I)
 CULIST(J + 13, NMC) = DYRLAC(J, I)
 CULIST(J + 17, NMC) = OAPRD(J, I)
 10 CULIST(J + 20, NMC) = DAPRDCJ

DO 60 J = 1, 10
 CULIST(J + 9, NMC) = OYRLAC(J, I)
 CULIST(J + 13, NMC) = DYRLAC(J, I)
 CULIST(J + 17, NMC) = OAPRD(J, I)
 DO 10 CULIST(J + 20, NMC) = DAPRDCJ
 10 CULIST(J + 20, NMC) = DAPRDCJ

DO 10 CULIST(J + 20, NMC) = DAPRDCJ

ISORTCCULIST, 23, NMC, 1

CALL ISORTCCULIST, 23, NMC, 1

IC = 0
IR = NMC + 1
MCP = 0.8 * NMC + 1

IF (IC .EQ. MCP) GO TO 190

IA = CULIST(1, IC)
NCUL = 10. * CNXT(IC) + .5
CNXT(IA) = 0.8
IF (DSTOP(IA) .GT. DPROJ .AND. NCUL .LT. 5) GO TO 70
IF (OSTOP(IA) .LE. DSTART(IA) .OR. OFIN(IA) .LE. 0.)
1 GO TO 45

STOP = OSTOP(IA)
CALL AJPROD(OSTART(IA), STOP, OLDRB(IA), OLDPK(IA), OLDAT(IA),
1 OAPRD(1, IA), OYRLAC(1, IA), PRDCUL, OSTOP(IA), 3, 4)
IF (STOP .GE. OSTOP(IA) .AND. HRDCOW(7, IA) .GE. 4.) GO TO 140
IF (STOP .GE. OSTOP(IA)) GO TO 50
OSTOP(IA) = STOP
OFIN(IA) = OSTOP(IA) + OLDAT(IA)
GO TO 50
45 IF (NCUL .LT. 5) GO TO 70
50 HRDCOW(7, IA) = CSEL + HRDCOW(7, IA) - AINT(HRDCOW(7, IA))

DO 60 J = 1, 4
 TPROD(J) = TPROD(J) - CULIST(J + 9, IC) - DYRLAC(J, IA) + OYRLAC(1, IA)
60 DYRLAC(1, IA) = 0.0
IF (OFIN(IA) .LT. 0.0) OFIN(IA) = 0.0
DFIN(IA) = OFIN(IA)
DSTART(IA) = 0
DSTOP(IA) = 0
GO TO 120

70 B = HRDCOW(7,IA) - AINT(HRDCOW(7,IA))
 REC = 10. * (HRDCOW(6,IA) - AINT(HRDCOW(6,IA)))
 DUERB = REC + B
 STOP = DSTOP(IA)
 IF (DSTOP(IA) .LE. DSTART(IA) .OR. DFIN(IA) .LE. 0.)
 1 GO TO 140
80 CALL AJPROD(DSTART(IA), STOP, DUERB, DUEPK(IA), HRDCOW(8,IA),
 1 DAPRD(1,IA), DYRLAC(1,IA), PRDCUL, DSTOP(IA), 3, 4)
 IF (DSTOP(IA) .LE. STOP) GO TO 150
 HRDCOW(7,IA) = CSEL + B
90 DFIN(IA) = STOP + HRDCOW(8,IA)
100 DSTOP(IA) = STOP
 DO 110 J = 1, 4
 110 TPROD(J) = TPROD(J) - CULIST(J + 13,IC) + DYRLAC(J,IA)
120 PRODM = TPROD(1) / 103.2
 CALL KILCF(HRDCOW(1,IA), OLDAT(IA), HRDCOW(8,IA), HRDCOW(9,IA),
 1 DFIN(IA))
130 NVC = NVC + 1
140 DCUL(IC) = DFIN(IA)
 IF (DCUL(IC) .EQ. 0.) DCUL(IC) = 1.
 GO TO 170
150 IF (HRDCOW(7,IA) .GE. 4.) GO TO 140
 IF (DFIN(IA) .EQ. DAYR) GO TO 160
 HRDCOW(7,IA) = CSEL + B
 GO TO 130
160 NNC = NNC + 1
 DCUL(IC) = -1 * (STOP + HRDCOW(8,IA) - DAYR)
170 IF (SPSEL) GO TO 280
 IF (PRODM .GT. QUOTA) GO TO 30
 IC = IC + 1
 IF (IC .GE. MCP .OR. NNC .GE. NVC) GO TO 190
 MCP = MIN0(MCP,IC + NVC - NNC)
 DO 180 J = IC, MCP
 IA = CULIST(1,J)
 HRDCOW(5,IA) = AINT(HRDCOW(5,IA)) + .2
180 CONTINUE
 IC = MCP + 1
190 JMC = NMC + 1
 IR = 0
 DO 200 J = 1, NMC
 L = JMC - J
 IA = CULIST(1,L)
 IF (HRDCOW(7,IA) .LT. 4.) IR = IR + 1
 HRDCOW(5,IA) = IR + CNXT(IA)
200 CONTINUE
210 IF (AUTO) GO TO 370
 NCWL = IC
 NS = 1
 DO 230 I = NS, NCWL
 JF = CULIST(1,I)
 FCUL(1,I) = I
 FCUL(2,I) = HRDCOW(1,JF)
 FCUL(3,I) = DCUL(I)
 FCUL(4,I) = SCORE(1,JF)
 FCUL(5,I) = SCORE(2,JF)
 FCUL(6,I) = SCORE(3,JF)
 FCUL(7,I) = CULIST(10,I) + CULIST(14,I)
 FCUL(8,I) = OYRLAC(1,JF) + DYRLAC(1,JF)
ISET = HRDCOW(7,JF)
FCUL(9,I) = CID(ISET)

230 CONTINUE

240 WRITE (6,510)
NOUT = NCWL - NS + 1
CALL WRcUL(FCUL, 9, NOUT)
SPSEL = TRUE
WRITE (6,530) QTA, XCES, PRODM
WRITE (6,660) NMC
NCWL = NOUT
WRITE (6,590)
READ (5,550) IOPT
GO TO (250, 270, 320, 370), IOPT
WRITE (6,580)

250 WRITE (6,590)
READ (5,550) NEX
NW = NCWL + NEX
IF (NW .LE. NEX) GO TO 260
WRITE (6,660) NMC
NW = NMC
NCWL = NW
GO TO 220

270 WRITE (6,560)
READ (5,550) NCH
IF (NCH .LE. 0) GO TO 220
NCH = NCH - 1
GO TO 300

290 WRITE (6,580)
300 WRITE (6,570)

310 READ (5,550) IC
IF (IC .GT. NMC .OR. IC .LT. 1) GO TO 290
IF (CULIST(4,IC) .GT. 3.) GO TO 280
GO TO 40

320 WRITE (6,560)
READ (5,550) NRC
IF (NRC .LE. 0) GO TO 220
NRC = NRC - 1
GO TO 350

340 WRITE (6,580)
350 WRITE (6,570)
READ (5,550) NIC
IF (IC .GT. NMC .OR. IC .LT. 1) GO TO 340
IA = CULIST(1,NIC)
IF (AINT(HRDCOW(7,IA)) .NE. CSEL) GO TO 330
DO 360 J = 1, 3
TPROD(J) = TPROD(J) - DYRLAC(J,IA) - OYRLAC(J,IA) + CULIST(J + 9,NIC)
+ CULIST(J + 13,NIC)
+ CULIST(J + 17,NIC)
OAIPD(J,IA) = CULIST(J + 20,NIC)
360 DAPRD(J,IA) = CULIST(J + 20,NIC)
TPROD(4) = TPROD(4) - DYRLAC(4,IA) - OYRLAC(4,IA) + CULIST(13,NIC)
+ CULIST(17,NIC)
+ CULIST(5,NIC)
+ CULIST(6,NIC)
+ CULIST(7,NIC)
+ CULIST(8,NIC)
+ CULIST(9,NIC)
DCUL(NIC) = 0.
PRODM = TPROD(1) / 103.2
GO TO 330

C
C*** Adjust rolling herd averages ***
C
370 IF (NVC .LE. 0) RETURN
IC = 0
DO 490 I = 1, NVC
380 IC = IC + 1
IF (IC .GT. NMC) GO TO 500
IA = CULIST(1,IC)
IF (AINT(HRDCOW(7,IA)) .NE. CSEL) GO TO 380
IF (OSTOP(IA) .EQ. CULIST(8,IC) .OR. OSTOPL(IA) .GT. 305.)
1 GO TO 440
CALL RHPROD(AGE(IA), OLDRB(IA), OLDPK(IA), OLDA(IA),
1 CULIST(8,IC), STOP, RPRD, OLMLC(1,IA), 3, 4)
DO 390 J = 1, 3
PBCA(J) = PBCA(J) - OLMLC(J,IA)
TRPRD(J) = TRPRD(J) - RPRD(J)
390 CONTINUE
CALL RHPROD(AGE(IA), OLDRB(IA), OLDPK(IA), OLDA(IA),
1 STOP, RPRD, OLMLC(1,IA), 3, 4)
DO 400 J = 1, 3
PBCA(J) = PBCA(J) + OLMLC(J,IA)
TRPRD(J) = TRPRD(J) + RPRD(J)
400 CONTINUE
TDP = TDP - STOP - STOPN
410 IF (CULIST(9,IC) .LT. 305. .AND. CULIST(7,IC) .EQ. DAYR)
1 GO TO 490
IF (HRDCOW(19,IA) .LE. 0.) GO TO 490
420 REC = 10. * (HRDCOW(6,IA) - AINT(HRDCOW(6,IA)))
DUERB = REC + HRDCOW(7,IA) - AINT(HRDCOW(7,IA))
CALL RHPROD(AGE(IA), DUERB, DUEP(IA), HRDCOW(8,IA),
1 CULIST(9,IC), STOP, RPRD, HRDCOW(19,IA), 3, 4)
DO 430 J = 1, 3
PBCA(J) = PBCA(J) - HRDCOW(J + 18,IA)
TRPRD(J) = TRPRD(J) - RPRD(J)
430 CONTINUE
PBCA(4) = PBCA(4) - HRDCOW(22,IA)
TDP = TDP - STOP
TAGE = TAGE - AGE(IA) - HRDCOW(8,IA) / DAYR + 1.
NRLC = NRLC - 1
HRDCOW(6,IA) = HRDCOW(6,IA) - 1.
GO TO 490
440 IF (DSTOP(IA) .LE. 0.) GO TO 410
IF (DSTOP(IA) .GT. 305.) GO TO 490
REC = 10. * (HRDCOW(6,IA) - AINT(HRDCOW(6,IA)))
DUERB = REC + HRDCOW(7,IA) - AINT(HRDCOW(7,IA))
CALL RHPROD(AGE(IA), DUERB, DUEP(IA), HRDCOW(8,IA),
1 CULIST(9,IC), STOP, RPRD, HRDCOW(19,IA), 3, 4)
DO 450 J = 1, 3
PBCA(J) = PBCA(J) - HRDCOW(J + 18,IA)
TRPRD(J) = TRPRD(J) - RPRD(J)
450 CONTINUE
CALL RHPROD(AGE(IA), DUERB, DUEP(IA), HRDCOW(8,IA),
1 STOP, RPRD, HRDCOW(19,IA), 3, 4)
DO 460 J = 1, 3
PBCA(J) = PBCA(J) + HRDCOW(J + 18,IA)
TRPRD(J) = TRPRD(J) + RPRD(J)
CONTINUE
TDP = TDP - STOPO + STOPN
GO TO 490
CALL RHPRD(AGE(IA), DUEERB, DUEPK(IA), HRDCOW(8,IA), DSTOPIA,
1 STOPN, RPRD, HRDCOW(19,IA), 3, 4)
DO 480 J = 1, 3
PBCA(J) = PBCA(J) + HRDCOW(J + 18,IA)
TRPRD(J) = TRPRD(J) + RPRD(J)
CONTINUE
PBCA(4) = PBCA(4) + HRDCOW(22,IA)
TDP = TDP + STOPN
TAGE = TAGE + AGE(IA) + HRDCOW(8,IA) / DAYR - 1.
HRDCOW(6,IA) = HRDCOW(6,IA) + 1.
RNAC = RNAC + 1
CONTINUE
RETURN
WRITE (6,610)
510 FORMAT (25X, 'COWS TO BE CULLED', //, 17X, 'CULL', 6X,
1 'INDEX SCORES', 7X, 'MAX', 4X, 'ACT', //, 4X, 'LOC', 4X,
2 'COW', 4X, 'DAY', 3X, 'LACT', 4X, 'EPA', 4X, 'ETA', 3X,
3 'PROD PROD STATUS')
520 FORMAT (BF7.0, 2X, A4)
530 FORMAT (5X, 'YOUR FLUID QUOTA IS', F7.0, ' HL PLUS EXCESS OF',
1 F7.0, //, 6X, 'THIS YEARS PRODUCTION WILL BE', F8.1,
2 'HECTOLITRES')
540 FORMAT (' ENTER - 1 TO PRINT A LONGER LIST', //, 14X,
1 ' TO CULL MORE COWS', //, 14X,
2 ' TO RESTORE SELECTIVELY CULLED COWS', //, 14X,
3 ' TO CONTINUE', //, 14X, 'OPTION ?')
550 FORMAT (6I10)
560 FORMAT ('NUMBER OF COWS TO CHANGE ?')
570 FORMAT ('COW LOCATION NUMBER ?')
580 FORMAT ('INVALID ENTRY')
590 FORMAT ('HOW MANY MORE COWS DO YOU WANT PRINTED ?')
600 FORMAT ('THERE ARE ONLY', 14, 'COWS ELIGABLE TO CULL')
610 FORMAT ('TROUBLE WITH PRODUCTION CULLS')
RETURN
END

SUBROUTINE INBLUP(KBCA, AVG)
C **
C * This subroutine stores first lactation records for sires
C * and outputs them at the end of the run
C **
DIMENSION IBLUP(8,20), REC(4), KBCA(4), AVG(4)
NFL = 0
NS = 0
RETURN
ENTRY BLUP(SIRE, IHRD, IYR, REC)
NHYS = IHRD * 100 + IYR
ISIRE = SIRE
NFL = NFL + 1
IF (NS .EQ. 0) GO TO 20
DO 10 J = 1, NS
IF (IBLUP(J) .EQ. ISIRE) GO TO 40
10 CONTINUE
NS = NS + 1
IBLUP(J,NS) = IHRD
IBLUP(2,NS) = NHYS
IBLUP(3,NS) = SIRE
IBLUP(4,NS) = 1
DO 30 K = 1, 3
 IBLUP(K + 4,NS) = REC(K) / AVG(K) * 100. + KBCA(K)
30
GO TO 60
40 DO 50 K = 1, 3
 IBLUP(K + 4,J) = REC(K) / AVG(K) * 100. + KBCA(K) + IBLUP(K + 4,J)
50
IBLUP(8,J) = REC(4) + IBLUP(8,J)
IBLUP(4,J) = IBLUP(4,J) + 1
60 RETURN
ENTRY PBLUP
DO 70 I = 1, NS
70 CALL PRTUNF(IBLUP(1,I), 8, 13)
RETURN
END

SUBROUTINE YOUNG(SINDEX, ISELYL, NSYL, IYR, IHRD, DAYR, DTYLG, DTCF, FDYLG, FDCF, AUTO)
COMMON ISEED, EWK(4), GWK(4) /YNG/ YGCALF(8,200), NYCLF
DIMENSION YRLG(18,100), YCALF(8,200), OUTYG(12,200), UCALF(8,150),
1 DOCF(2,200), DYCF(2,200), CALF(18,150), YSP(18,10),
2 RNE(4), ESIGMA(4), PCESD(4), SINDEX(4), ACBV(4),
3 BVLYL(4), BVSYL(4), BVDYL(4), ISELYL(50), DUMY(4)
REAL*4 SOLD /'SOLD'/, DEAD /'DEAD'/, BLANK /'
LOGICAL*1 AUTO, FALSE /F/, TRUE /T/, FINISH
RETURN
C UPDATE YEARLINGS AND CALCULATE FEED COSTS
ENTRY YNGOUT(NYLG,NYLS,NYLD,BVLYL,BVSYL,BVDYL,TYFDC)
FINISH = FALSE
NYLG = 0
NS = NSYL
NYLS = 0
NYLD = 0
NTCF = 0
TYFDC = 0.0
DO 10 I = 1, 4
 BVLYL(I) = 0.0
 BVSYL(I) = 0.0
 BVDYL(I) = 0.0
10 CONTINUE
READ (2) NYYLG, NOCF
IF (NYYLG .LE. 0) GO TO 140
CALL REAMAT(YRLG, 18, NYYLG, 2)
DO 120 I = 1, NYYLG
 BTH = YRLG(4,I)
20 IF (NSYL .LT. 1) GO TO 30
 IYL = YRLG(1,1)
 IF (IYL .GE. ISELYL(NYLS)) GO TO 60
30 DYL = DAYR - BTH
 DTPROB = DTCF * BTH / DAYR + DTYLG * DYL / DAYR
 DTRAN = FRAND(0.)
 IF (DTRAN .LT. DTPROB) GO TO 90
 NYLG = NYLG + 1
 DO 40 J = 1, 4
 YRLG(J,NYL) = YRLG(J,1)
 YRLG(J + 6,NYL) = YRLG(J + 6,1)
 YRLG(J + 10,NYL) = YRLG(J + 10,1)
 YRLG(J + 14,NYL) = YRLG(J + 14,1)
 40 BVLYL(J) = BVLYL(J) + YRLG(J + 9,1)
 YRLG(5,NYL) = YRLG(5,1)
 YRLG(6,NYL) = YRLG(6,1)
 YYFDC = FDCF * BTH + FDYLG * DYL
 TYFDC = TYFDC + YYFDC
 OUTYG(10,1) = YYFDC
 CALL YNGETA(YRLG(2,NYL), YRLG(3,NYL), OUTYG(5,1),
 yrlg(15,NYL), 4)
 IF (AUTO) GO TO 120
 OUTYG(9,1) = 0.0
 DO 50 J = 1, 4
 OUTYG(9,I) = OUTYG(9,I) + OUTYG(J + 4,1) * SINDEX(J)
50 OUTYG(J,I) = YRLG(J,I)
 OUTYG(11,1) = BLANK
 OUTYG(12,1) = BLANK
 GO TO 120
60 NS = NS - 1
 IF (NS .LE. 0) NSYL = 0
 IF (ISELYL(NSYL - NS) .LT. IYL) GO TO 60
 IF (ISELYL(NSYL - NS) .NE. IYL) GO TO 30
 NYLS = NYLS + 1
 DO 70 J = 1, 4
 BVSYL(J) = BVSYL(J) + YRLG(J + 9,1)
70 CONTINUE
 YYFDC = FDCF * BTH
 TYFDC = TYFDC + YYFDC
 IF (AUTO) GO TO 120
 DO 80 J = 1, 4
 OUTYG(J + 4,1) = 0.0
80 OUTYG(J,I) = YRLG(J,I)
 OUTYG(9,I) = 0.0
 OUTYG(10,1) = YYFDC
 OUTYG(11,1) = SOLD
 OUTYG(12,1) = BLANK
 GO TO 120
90 DEDAT = FRAND(0.) * DAYR
 IF (DEDAT .LT. BTH) BTH = DEDAT
 NYLD = NYLD + 1
 DO 100 J = 1, 4
 BVDYL(J) = BVDYL(J) + YRLG(J + 9,1)
100 CONTINUE
 YYFDC = BTH * FDCF + (DEDAT - BTH) * FDYLG
 TYFDC = TYFDC + YYFDC
 IF (AUTO) GO TO 120
 DO 110 J = 1, 4
 OUTYG(J + 4,1) = 0.0
110 OUTYG(J,I) = YRLG(J,I)
 OUTYG(9,I) = 0.0
 OUTYG(10,1) = YYFDC
PROGRAM LISTINGS

OUTYG(11,1) = DEAD
OUTYG(12,1) = BLANK

120 CONTINUE
WRITE (12) NYLG
IF (NYLG .LE. 0) GO TO 130
CALL WRTMAT(YRLG, 18, NYLG, 12)
130 IF (AUTO) GO TO 140
CALL TITLYG
CALL WRTYG(OUTYG, 12, NYLYLG)

C
C CALVES
C
140 IF (NOCF .LE. 0) GO TO 150
CALL REAMAT(YCALF, 8, NOCF, 2)
CALL CALFUP(YCALF, OUTYG, CALF, YSP, NOCF, NTCF, NLCF, 1
NUCF, NYS)
150 IF (NYCLF .LE. 0) GO TO 160
N = 1
CALL CALFUP(YGCALF, OUTYG, CALF, UCALF, YSP, NYCLF, NTCF, NLCF, 1
NUCF, NYS)
160 WRITE (12) NLCF, NUCF
IF (NLCF .LE. 0) GO TO 170
CALL WRTMAT(CALF, 18, NLCF, 12)
170 IF (NUCF .LE. 0) GO TO 180
CALL WRTMAT(UCALF, 8, NUCF, 12)
180 IF (NYSP .LE. 0) GO TO 200
DO 190 I = 1, NYSP
190 WRITE (11) (YSP(J,I),J=1,18)
200 IF (AUTO) RETURN
IF (NTCF .LE. 0) RETURN
CALL TITLYG
CALL WRTYG(OUTYG, 12, NTCF)
RETURN

END

C
C SUBROUTINE CALVES(ESIGMA, PCESD, PINB, SINDEX, FDCF, FERSD, FERM,
1 HDSD, HDM, DTCF, DTUB, IHRD, DAYR, IYR, AUTO)
Q **
C * *
C * This subroutine moves new-born calves to calves array *
C * *
Q **
COMMON ISEED, EWK(4), GWK(4) /KIL/ DOCF(2,200), DYCF(2,200), NOD,
1 NYD /CFBV/ BVLCF(4), BYYSP(4), BVSHCF(4), BVSBCF(4),
2 BDCCP(4), NLCF, NYSB, NSHCF, NSBCF, NDCF, TCFDC
DIMENSION YCABF(8,200), OUTYG(12,200), UCALF(8,150), CALF(18,150),
1 YSP(18,10), SINDEXU), PCESD(4), ESIGMAU), RNE(4),
2 PINB(4), ACBV(4), DUMY(4)
REAL*4 HEIF /'HEIF'/, BULL /'BULL'/, SOLD /'SOLD'/, SAI /'S AI'/,
1 DEAD /'DEAD'/, BLANK /'
LOGICAL*1 AUTO, FALSE /F/, TRUE /T/, FINISH, SECRD/T/
RETURN
ENTRY CALFUP(YCALF,OUTYG,CALF,UCALF,YSP,NCF,NTCF,NLCF,NUCF,NYS)
N = 1
SECRD = .NOT. SECRD
IF (SECRD) GO TO 60
NTCF = 0
NSBCF = 0
NSHCF = 0
NLCF = 0
NYSP = 0
NDCF = 0
NUCF = 0
TCFDC = 0.0
NYR = (IYR + 10) * 100
IF (NOD .LT. 1) GO TO 10
CALL ISORT(DOCF, 2, NOD, 1, NOD, 1, 3, 0)
GO TO 20
10 DOCF(1,1) = 9000.
20 IF (NYD .LT. 1) GO TO 30
CALL ISORT(DYCF, 2, NYD, 1, NYD, 1, 3, 0)
GO TO 40
30 DYCF(1,1) = 9000.
40 DO 50 I = 1, 4
BVLCF(I) = 0.0
ACBV(I) = 0.0
BVYSP(I) = 0.0
BVSHCF(I) = 0.0
BVDCF(I) = 0.0
BVDCF(I) = 0.0
50 CONTINUE
60 DO 300 I = 1, NCF
BTH = YCALF(4,I)
IF (SECRD) GO TO 80
BTH = BTH - DAYR
70 IF (YCALF(3,I) .GE. DOCF(1,N)) GO TO 260
GO TO 90
80 IF (YCALF(3,I) .GE. DYCF(1,N)) GO TO 270
IF (BTH .GT. DAYR) GO TO 280
90 NTCF = NTCF + 1
SIRE = YCALF(2,I)
DAM = YCALF(3,I)
OUTYG(2,NTCF) = SIRE
OUTYG(3,NTCF) = DAM
OUTYG(4,NTCF) = BTH
100 DTRAN = FRAND(0.)
IF (DTRAN .LT. DTUB) GO TO 220
ISTAT = YCALF(1,I)
DO 110 J = 1, 4
110 ACBV(J) = ACBV(J) + YCALF(J + 4,I)
DTPROB = DTCF * BTH / DAYR
IF (DTRAN .LT. DTPROB) GO TO 210
SEX = FRAND(0.)
IF (SEX .LE. 0.5) GO TO 140
IF (ISTAT .GT. 2) GO TO 160
120 NLCF = NLCF + 1
CALL MNDG1(ISEED, ESIGMA, RNE, EWK)
DO 130 J = 1, 4
BU = YCALF(J + 4,I)
BVLCF(J) = BVLCF(J) + BU
CALF(J + 6,NLCF) = RNE(J) * PCESD(J)
130 CALF(J + 10,NLCF) = BU
INB = 10. * (BU - AINT(BU))
IF (INB .NE. 1) GO TO 137
DO 135 J = 1, 4
CALF(J+6, NLCF) = CALF(J+6, NLCF) - PINB(J)
135 CONTINUE
137 CALL CLFETA(SIRE, DAM, OUTYG(5,NTCF), CALF(15,NLCF), 4)
CALF(1,NLCF) = NYR + NLCF
CALF(2,NLCF) = YCALF(2,I)
CALF(3,NLCF) = YCALF(3,I)
CALF(4,NLCF) = BTH
CALF(5,NLCF) = HDM + 1 -(HDSD * FRANDN(0.0))
CALF(6,NLCF) = FERM + 1 -(FERSD * FRANDN(0.0))
YCFDC = (DAYR - BTH) * FDCF
TCFDC = TCFDC + YCFDC
IF (AUTO) GO TO 300
OUTYG(1,NTCF) = NYR + NLCF
OUTYG(9,NTCF) = OUTYG(5,NTCF) * SINDEX(1) + OUTYG(6,NTCF) * SINDEX(2) + OUTYG(7,NTCF) * SINDEX(3) + OUTYG(8,NTCF) * SINDEX(4)
OUTYG(10,NTCF) = YCFDC
OUTYG(11,NTCF) = HEIF
OUTYG(12,NTCF) = BLANK
GO TO 300
140 OUTYG(11,NTCF) = BULL
IF (I STAT .GT. 1) GO TO 180
NYSP = NYSP + 1
DO 150 J = 1, 4
BV = YCALF(J + 4,1)
BVYSP(J) = BVYSP(J) + BV
150 YSP(J + 6,NYSP) = BV
YSP(1,NYSP) = IYR
YSP(2,NYSP) = YCALF(2,I)
YSP(3,NYSP) = YCALF(3,I)
YSP(4,NYSP) = BTH
YSP(5,NYSP) = IHRD
YSP(6,NYSP) = (YCALF(1,I) - ISTAT) * 10000.
CALL CLFETA(SIRE, DAM, YSP(11,NYSP), YSP(15,NYSP), 4)
IF (AUTO) GO TO 300
OUTYG(1,NTCF) = NYSP
OUTYG(5,NTCF) = YSP(11,NYSP)
OUTYG(6,NTCF) = YSP(12,NYSP)
OUTYG(7,NTCF) = YSP(13,NYSP)
OUTYG(8,NTCF) = YSP(14,NYSP)
OUTYG(9,NTCF) = OUTYG(5,NTCF) * SINDEX(1) + OUTYG(6,NTCF) * SINDEX(2) + OUTYG(7,NTCF) * SINDEX(3) + OUTYG(8,NTCF) * SINDEX(4)
OUTYG(10,NTCF) = 0.0
OUTYG(12,NTCF) = SAI
GO TO 300
160 OUTYG(11,NTCF) = HEIF
NSHCF = NSHCF + 1
DO 170 J = 1, 4
BVSHCF(J) = BVSHCF(J) + YCALF(J + 4,I)
170 CONTINUE
GO TO 200
180 NSBCF = NSBCF + 1
DO 190 J = 1, 4
BVBCF(J) = BVBCF(J) + YCALF(J + 4,I)
190 CONTINUE
200 IF (AUTO) GO TO 300
CALL CLFETA(SIRE, DAM, OUTYG(5,NTCF), DUMY, 4)
OUTYG(1,NTCF) = 0.0
OUTYG(9,NTCF) = 0.0
OUTYG(10,NTCF) = 0.0
OUTYG(12,NTCF) = SOLD
GO TO 300
210 DEDAT = FRAND(0.) * (DAYR - BTH) + BTH
GO TO 230
220 DEDAT = 0.0
230 NDCF = NDCF + 1
DO 240 J = 1, 4
BVDCF(J) = BVDCF(J) + YCALF(J + 4, I)

CONTINUE
YCFDC = (DEDAT - BTH) * FDCF
IF (YCFDC .LT. 0.0) YCFDC = 0.0
TCFDC = TCFDC + YCFDC
IF (AUTO) GO TO 300
OUTYG(10, NTCF) = YCFDC
OUTYG(1, NTCF) = 0.0
OUTYG(4, NTCF) = BTH
DO 250 J = 1, 4
OUTYG(J + 4, NTCF) = 0.0
OUTYG(9, NTCF) = 0.0
OUTYG(11, NTCF) = BLANK
OUTYG(12, NTCF) = DEAD
GO TO 300

N = N + 1
IF (N .GT. NOD) DOCF(1, N) = 9000.
IF (YCALF(3, I) .GT. DOCF(1, N - 1)) GO TO 70
IF (DOCF(2, N - 1) .EQ. BTH) GO TO 300
IF (DOCF(1, N) .NE. YCALF(3, I) .OR. DOCF(2, N) .NE. BTH)
GO TO 70
N = N - 1
GO TO 300

N = N + 1
IF (N .GT. NYD) DYCF(1, N) = 9000.
IF (YCALF(3, I) .GT. DYCF(1, N - 1)) GO TO 80
IF (DYCF(2, N - 1) .EQ. BTH) GO TO 300
IF (DYCF(1, N) .NE. YCALF(3, I) .OR. DYCF(2, N) .NE. BTH)
GO TO 80
N = N - 1
GO TO 300

NUCF = NUCF + 1
DO 290 J = 1, 8
290 UCALF(J, NUCF) = YCALF(J, I)

CONTINUE
NLC = NLCF
NYS = NYSP
RETURN

END

SUBROUTINE INKIL(GEST)

C **
C * This subroutine remove calves conceived by cows which *
C * die or are sold before parturition *
C **

COMMON /KIL/ DOCF(2,200), DYCF(2,200), NOD, NYD
NOD = 0
NYD = 0
RETURN
ENTRY KILCF(COW, OLDAT, DUEDAT, FUTDAT, FIN)
IF (FIN .LT. OLDAT) GO TO 10
IF (OLDAT .LT. 0.0) GO TO 10
NOD = NOD + 1
DOCF(1, NOD) = COW
DOCF(2, NOD) = OLDAT
10 IF (FIN .GT. DUEDAT) GO TO 30
IF (DUEDAT .GE. GEST) GO TO 20
NOD = NOD + 1
DOCF(1, NOD) = COW
DOCF(2, NOD) = DUEDAT
GO TO 30
20 NYD = NYD + 1
 DYCFC(1,NYD) = COW
 DYCFC(2,NYD) = DUEDAT
30 IF (FUTDAT .LT. 0.0) GO TO 40
 NYD = NYD + 1
 DYCFC(1,NYD) = COW
 DYCFC(2,NYD) = FUTDAT
40 RETURN
ENTRY REVCF(COW,OLDAT,DUEDAT,FUTDAT,FIN)
IF (FIN .LT. OLDAT) GO TO 50
IF (FIN .GT. DUEDAT) GO TO 90
IF (DUEDAT .GT. GEST) GO TO 100
50 N = NOD
60 IF (COW .EQ. DOCF(1,N)) GO TO 70
 N = N - 1
 GO TO 60
70 DOCF(1,N) = 0.0
 IF (N .EQ. 1) GO TO 80
 IF (COW .EQ. DOCF(1,N - 1)) DOCF(1,N - 1) = 0.0
80 IF (DUEDAT .GT. GEST) GO TO 100
90 IF (FUTDAT .LT. 0.0) RETURN
100 N = NYD
110 IF (COW .EQ. DYCFC(1,N)) GO TO 120
 N = N - 1
 GO TO 110
120 DYCFC(1,N) = 0.0
 IF (N .EQ. 1) RETURN
 IF (COW .EQ. DYCFC(1,N - 1)) DYCFC(1,N - 1) = 0.0
 RETURN
END

SUBROUTINE SUMCOW(HRDCOW, OYRLAC, DYRLAC, OAPRD, DAPRD, OLDLAC,
 EPA, ETA, SCORE, AVG, IAJBCA, OSTART, DSTART, OSTOP,
 DSTOP, AGE, SCORE, MBCA, IBCA, NBCA, AVG, IAJBCAU), OSTART(250), DSTART(250), OFIN(250), DFIN(250), OLDAT(250), OLDLAC(4,250)
REAL*4 POPEN /'OPEN'/, PBRED /'BRED'/, PFERT /
'C /'BCA '/, PEPA /'EPA '/, PETA /'ETA ',/,
PPRED */'HLTH'/, PDEAD /'DEAD'/
LOGICAL*1 AUTO
NC = 0
NSH = 0
NLCW = 0
NFCUL = 0
NLCUL = 0
NPCUL = 0
NTCUL = 0
NHCU = 0
NDCW = 0
NBHF = 0
NOCW = NCOW
NCOW = 0

DO 10 J = 1, 4
 TCBV(J) = 0.
 THBV(J) = 0.
 FCBV(J) = 0.
 CLCBV(J) = 0.
 EPCBV(J) = 0.
 ETCBV(J) = 0.
 HCBV(J) = 0.
 DCBV(J) = 0.
10 CONTINUE

IF (.NOT. AUTO) CALL FTITLE

DO 360 I = 1, NOCW
 ISTAT = HRDCOW(7,I)
 GO TO (40, 20, 20, 80, 100, 120, 140, 160, 180), ISTAT
 WRITE (6,370) HRDCOW(I,I)
 GO TO 360
20 NLCW = NLCW + 1
 DO 30 J = 1, 4
 TCBV(J) = TCBV(J) + HRDCOW(J + 14,1)
 GO TO 60
30 THBV(4) = THBV(4) + HRDCOW(j + 14,1)
 GO TO 50
40 NBHF = NBHF + 1
 DO 50 J = 1, 4
 THBV(4) = THBV(4) + HRDCOW(J + 14,1)
50 CONTINUE

DISPO = POPEN
IF (HRDCOW(9,I) .GT. 0.0) GO TO 70
 LDATE = HRDCOW(10,I) - 0.5
 IF (LDATE .GE. 0) GO TO 200
 DISPO = PBRED
 LDATE = LDATE + DAYR + 1
 GO TO 200
70 DISPO = PBRED
 LDATE = HRDCOW(9,I) - GEST + 0.5
 GO TO 200
80 DO 90 J = 1, 4
90 FCBV(J) = FCBV(J) + HRDCOW(J + 14,1)
 DISPO = PFERT
 NFCUL = NFCUL + 1
 LDATE = DFIN(I) + 0.5
 GO TO 220
100 DO 110 J = 1, 4
110 CLCBV(J) = CLCBV(J) + HRDCOW(J + 14,1)
 DISPO = PLACT
 NLCUL = NLCUL + 1
 LDATE = DFIN(I) + 0.5
 GO TO 220
120 DO 130 J = 1, 4
130 EPCBV(J) = EPCBV(J) + HRDCOW(J + 14,1)
 DISPO = PEPA
 NPCUL = NPCUL + 1
 LDATE = DFIN(I) + 0.5
 GO TO 220
140 DO 150 J = 1, 4
150 ETCBV(J) = ETCBV(J) + HRDCOW(J + 14, I)
DISPO = PETA
NTCUL = NTCUL + 1
LDATE = DFIN(I) + 0.5
GO TO 220
160 DO 170 J = 1, 4
170 HCBV(J) = HCBV(J) + HRDCOW(J + 14, I)
DISPO = PPROB
NHCUL = NHCUL + 1
LDATE = DFIN(I) + 0.5
GO TO 220
180 DO 190 J = 1, 4
190 DCBV(J) = DCBV(J) + HRDCOW(J + 14, I)
DISPO = PDEAD
NDCW = NDCW + 1
LDATE = DFIN(I) + 0.5
GO TO 220
200 NCOW = NCOW + 1
DO 210 J = 1, 10
 HRDCOW(J, NCOW) = HRDCOW(J, I)
 HRDCOW(J + 10, NCOW) = HRDCOW(J + 10, I)
 HRDCOW(J + 20, NCOW) = HRDCOW(J + 20, I)
210 HRDCOW(J + 30, NCOW) = HRDCOW(J + 30, I)
220 DAYO = DAYR
 IF (ISTAT .GT. 3) DAYO = DFIN(I)
 FDCST = OYRLAC(4, I) + DYRLAC(4, I) + (DAYO - DSTOP(I) + DSTART(I) - 1) / DRYFD
 IF (AUTO) GO TO 360
 REC = HRDCOW(6, I)
 IF (DFIN(I) .EQ. DAYR .AND. DSTOP(I) .LT. 305.) GO TO 230
 IF (DSTOP(I) .LT. DPROJ) GO TO 230
 LACO = REC - 1
 LACD = REC
 GO TO 240
230 LACO = REC
 LACD = REC + 1
240 IF (REC .LT. 1.0) GO TO 320
 DO 250 J = 1, 3
 MBCA(J) = (HRDCOW(J + 22, I)/REC/AVG(J)) * 100. + IAJBCA(J) + 0.5
 IBCA(J) = (OLDLAC(J, I)/AVG(J)) * 100. + IAJBCA(J) + 0.5
 250 NBCA(J) = (HRDCOW(J + 18, I)/AVG(J)) * 100. + IAJBCA(J) + 0.5
260 IF (OFIN(I) .LE. 0.0) GO TO 290
 LSTR = OLDAT(I) + 0.5
 LYR = IYR
270 IF (LYR .GE. 0) GO TO 280
 LSTR = LSTR + DAYR - 1.
 LYR = LYR - 1
 GO TO 270
280 LDAY = OSTOP(I) - OSTART(I) + 0.5
290 NSTR = HRDCOW(8, I) + 0.5
 NYR = IYR
300 IF (NSTR .GE. 0) GO TO 310
 NSTR = NSTR + DAYR - 1.
 NYR = NYR - 1
 GO TO 300
310 NDAY = DSTOP(I) - DSTART(I) + 0.5
 GO TO 350
320 DO 330 J = 1, 3
330 MBCA(J) = 0.0
 IF (DFIN(I) .LE. 0.0) GO TO 350
DO 340 J = 1, 3
 NBCA(J) = (HRDCOW(J + 18,1)/AVG(J)) * 100. + IAJBCA(J) + 0.5
340 CONTINUE
GO TO 290
350 CALL WRITLIN(HRDCOW(1,I), AGE(I), DISPO, LDATE, LSTR, Lyr, LDAY,
 1 OYRLAC(1,1), FDCST, REC, MBCA, EPA(1,1), SCORE(2,1),
 2 ETA(1,1), SCORE(3,1), IBCA, OAPRD(1,I), NSTR, Nyr, NDAY,
 3 DYRLAC(1,I), NBCA, DAPRD(1,I), OSTOP(I), DSTOP(I), OPIN(I),
 4 DFIM(1), DSTART(1), LACO, LACD, HRDCOW(22,1),
 5 DAYR, DPPOJ, LINE, 3, 4)
IF (LINE .LT. 58) GO TO 360
CALL TITLE
LINE = 7
360 CONTINUE
370 FORMAT ('PROBLEMS WITH COW{C', F5.0, ' STATUS')
RETURN
END

SUBROUTINE SUMOUT(QUOTA, PQMLK, EXCES, PEXMLK, PFAT, CRFAT, PPROT,
 1 CRPROT, PCOWP, PCOWF, PCOWH, PCOWD, PYLG, PCFO, PCFH,
 2 PCFB, PYSR, CFIX, CTRNP, NYSR, AVG, IAJBCA, AUTO,
 3 AUTFUL)
C **
C * This subroutine accumulates years summaries for the herd *
C **
COMMON /CFBV/ BVLCF(4), BVYSP(4), BVSBCF(4), BVDCF(4),
 1 NLCF, NYSP, NSBCF, NSDCF, TCFDC /COWBV/ TCBV(4),
 2 TCBV(4), PCBV(4), CLCBV(4), EPCBV(4), ETCBV(4), HCBV(4),
 3 DCBV(4), NBHF, NLCW, NPCUL, NTCUL, NHCU, NDCW
DIMENSION TRPRD(3), RPRD(3), ARPRD(3), PBCA(4), BCA(4), ABCA(4),
 1 TACPRD(3), ACRPRD(3), ACBCA(4), IAJBCA(4), TAPRD(4),
 2 AVG(4), SINDEX(4), BVLYL(4), BVSYLU(4), BVDYLU(4)
REAL*4 BVPS(4), PPS(4), BVUS(4), PUS(4), BVYS(4), PYS(4)
LOGICAL*1 AUTO, AUTFUL
RETURN
ENTRY SUMHRD(TRPRD, PBCA, TAGE, TDP, NRLAC, TACPRD, ACBCA, ACAGE, ACDP,
 1 NAACLAC, TAPRD, SINDEX, Nycul, NCOW, IHRD, IYR)
 HMLK = TAPRD(1) / 103.2
 IF (HMLK .LE. 0.) RETURN
 FATT = TAPRD(2) / HMLK
 PROTT = TAPRD(3) / HMLK
 PEFAT = (FATT - CRFAT) * PFAT
 PEPROT = (PROTT - CRPROT) * PPROT
 PRICEQ = PQMLK + PEFAT + PEPROT
 PRICEX = PEXMLK + PEFAT + PEPROT
 TEXM = 0.0
 TSM = 0.0
 EXINC = 0.0
 TQM = HMLK
 IF (TQM .LE. QUOTA) GO TO 20
 TQM = QUOTA
 TEXM = HMLK - QUOTA
 IF (TEXM .LE. EXCES) GO TO 10
 TSM = TEXM - EXCES
 TEXM = EXCES
10 EXINC = PRICEQ * TEXM
20 QINC = PRICEQ * TQM
 NPRCUL = NLCUL + NPCUL + NTCUL
CSHIP = CTRNP * HMLK
SYCUL = NYCUL * PYLG
SPCUL = NPRCUL * PCOWP
SFCUL = NPRCUL * PCOWF
SHCUL = NHCUL * PCOWH
SDCUL = NDCW * PCOWD
CALL YNGOUT(NYLG, NOCFS, NYLD, BVLYL, BVSYL, BVDYL, TYFDC)
SOCF = NOCFS * PCFO
SBCF = (NSBCF + NYSP) * PCFB
SHCF = NSHCF * PCFH
SYSR = NYSR * PYSR
CALL SUMATE(CONC, SVCF, CINT, SEMC, BVPS, PPS, BVUS, PUS, BVYS,
PYS, IHRO, IYR)
TLCF = NLCF + 1.E-6
TYSP = NYSR + 1.E-6
TSHCF = NSHCF + 1.E-6
TSBCF = NSBCF + 1.E-6
TDCF = NDCF + 1.E-6
TYL = NYLG + 1.E-6
TSYL = NOCFS + 1.E-6
TDYL = NYLD + 1.E-6
TBHF = NBHF + 1.E-6
TLCW = NLCW + 1.E-6
TFCUL = NTFUL + 1.E-6
TTCUL = NTCUL + 1.E-6
THCUL = NHCUL + 1.E-6
TDCF = NDCF + 1.E-6
DO 23 I = 1, 4

BVLCF(I) = BVLCF(I) / TLCF
BVYSP(I) = BVYSP(I) / TYSP
BVSHCF(I) = BVSHCF(I) / TSHCF
BVSBFC(I) = BVSBFC(I) / TSBCF
BVDFC(I) = BVDFC(I) / TDCF
BVLYL(I) = BVLYL(I) / TYL
BVSYL(I) = BVSYL(I) / TSYL
BVLYL(I) = BVLYL(I) / TSYL
THBV(I) = THBV(I) / TBHF
TCBV(I) = TCBV(I) / TLCW
PCBV(I) = PCBV(I) / TFCUL
CLCBV(I) = CLCBV(I) / TLCW
EPCBV(I) = EPCBV(I) / TPCUL
ETCBV(I) = ETCBV(I) / TTCUL
HCBV(I) = HCBV(I) / THCUL
DCBV(I) = DBCV(I) / TDCW
23 CONTINUE
DO 26 I = 1, 3

BVLCF(I) = BVLCF(I) / AVG(I) * 100. + IAJBCA(I)
BVYSP(I) = BVYSP(I) / AVG(I) * 100. + IAJBCA(I)
BVSHCF(I) = BVSHCF(I) / AVG(I) * 100. + IAJBCA(I)
BVSBFC(I) = BVSBFC(I) / AVG(I) * 100. + IAJBCA(I)
BVDFC(I) = BVDFC(I) / AVG(I) * 100. + IAJBCA(I)
BVLYL(I) = BVLYL(I) / AVG(I) * 100. + IAJBCA(I)
BVSYL(I) = BVSYL(I) / AVG(I) * 100. + IAJBCA(I)
BVLYL(I) = BVLYL(I) / AVG(I) * 100. + IAJBCA(I)
THBV(I) = THBV(I) / AVG(I) * 100. + IAJBCA(I)
TCBV(I) = TCBV(I) / AVG(I) * 100. + IAJBCA(I)
PCBV(I) = PCBV(I) / AVG(I) * 100. + IAJBCA(I)
CLCBV(I) = CLCBV(I) / AVG(I) * 100. + IAJBCA(I)
EPCBV(I) = EPCBV(I) / AVG(I) * 100. + IAJBCA(I)
ETCBV(I) = ETCBV(I) / AVG(I) * 100. + IAJBCA(I)
HCBV(I) = HCBV(I) / AVG(I) * 100. + IAJBCA(I)
DCBV(I) = DCBV(I) / AVG(I) * 100. + IAJBCA(I)
BVPS(I) = BVPS(I) / AVG(I) * 100. + IAJBCA(I)
BVUS(I) = BVUS(I) / AVG(I) * 100. + IAJBCA(I)
BVYS(I) = BVYS(I) / AVG(I) * 100. + IAJBCA(I)

26 CONTINUE
TEXP = CFIX + TAPRD(4) + TYFDC + TCFDC + SEMC + CSHIP
TINC = QINC + EXINC + SPCUL + SFCUL + SHCUL + SDCUL + SYCUL +
1SOCF + SBCF + SHCF + SYSR
PROFIT = TINC - TEXP
IF (NRLAC .LT. 1 .OR. NACLAC .LT. 1) GO TO 40
DO 30 J = 1, 3
 BCA(J) = PBCA(J) / NRLAC / AVG(J) * 100. + IAJBCA(J)
 ABCA(J) = ACBCA(J) / NACLAC / AVG(J) * 100. + IAJBCA(J)
 RPRD(J) = TRPRD(J) / NACLAC
30 ACRPRD(J) = TACPRD(J) / NACLAC
BCA(4) = PBCA(4) / NRLAC
ABCA(4) = ACBCA(4) / NACLAC
PAFAT = 100. * ACRPRD(2) / ACRPRD(1)
PAPROT = 100. * ACRPRD(3) / ACRPRD(1)
ACVAGE = ACAGE / NACLAC
ACADP = ACDP / NACLAC
PFAT = 100. * RPRD(2) / RPRD(1)
PPROT = 100. * RPRD(3) / RPRD(1)
AAGE = TAGE / NRLAC
ADP = TDP / NRLAC
GO TO 60
40 NRLAC = 0
NACLAC = 0
AAGE = 0.
ACVAGE = 0.
PFAT = 0.
PPROT = 0.
PAPROT = 0.
ACADP = 0.
AAGE = 0.
DO 50 J = 1, 3
 RPRD(J) = 0.
 ACRPRD(J) = 0.
 BCA(J) = 0.
 ABCA(J) = 0.
50 CONTINUE
BCA(4) = 0.
ABCA(4) = 0.
60 IF (AUTFUL) GO TO 80
IF (AUTO) GO TO 80
WRITE (10,170) NRLAC, RPRD, NACLAC, ACRPRD, AAGE, ADP, PFAT,
PPROT, ACVAGE, ACADP, PAFAT, PAPROT, BCA, ABCA
WRITE (10,180) CINT, CONC, NLCW, NBHF, NYLG, NLCF
WRITE (10,190) HLMLK, FATT, PROTT, CFIX, TQM, PRICEQ, QINC, TEXP,
PRICEX, EXINC, TAPRD(4), TSM
WRITE (10,200) TYFDC, TCFDC, NPRCUL, SPCUL, SEMC, NFCUL, SFCUL,
1CSHIP, NHCUL, SHCUL, NDCW, SDCUL, TEXP, NYCUL, SYCUL, NOCFCS,
2SOCF, NSBCF, SBCF, NSHCF, SHCF, NSRS, SYSR, TINC, PROFIT
70 WRITE (6,100)
WRITE (6,90) NRLAC, RPRD, AAGE, ADP, PFAT, PPROT, BCA
WRITE (6,110)
WRITE (6,90) NACLAC, ACRPRD, ACVAGE, ACADP, PAFAT, PAPROT, ABCA
WRITE (6,120) CINT, CONC
WRITE (6,130) NLCW, NBHF, NYLG, NLCF
WRITE (6,140) CFIX, TAPRD(4), TYFDC, TCFDC, SEMC, CSHIP, TEXP
WRITE (6,150) HLMLK, FATT, PROTT, TQM, PRICEQ, QINC, TEMX, PRICEX, EXINC, TSM
WRITE (6,160) NPRCUL, SPCUL, NFCUL, NSCUL, MCHUL, SDCUL, TCMY, INCF, RONUC, BJYQ, GINM, TCM, PRICEX, EXINC, TSM
80 NHYL = (IHRD - 1) * 100 + IYR
WRITE (6,99) NACLAC, CINT, CONC, SVCF, NLCW, NBHF, HLMLK, NPRCUL, NFCUL
99 FORMAT(' NO. LAC CF INT CONC SV/CF NLCW NBHF HLMLK NPRCUL NFCUL', /, 18, F8.1, 2F8.3, 18, F8.0, 218)
WRITE (15*NHYL) IHRD, IYR, NRLAC, RPRD, BCA, AAGE, ADP, PFAT, PPROT, NACLAC, ACRPRD, ABCA, ACVAGE, ACADP, PAFAT, PAPROT, CINT, CONC, HLMLK, FATT, PROTT, TQM, PRICEQ, QINC, TEXM, PRICEX, EXINC, TSM, CFIX, TAPRD(4), TYFDC, TCFDC, SEMC, CSHIP, TEXP, SPCUL, SFCUL, SHCUL, SDCUL, SYCUL, SOCF, SHCF, SBCF, SYSR, TINC, PROFIT, NLCW, TCBV, NBHF, TBCV, NFCUL, EFCV, NLUCV, CLCV, NPCUL, EPFCV, NTCL, ETCBV, NHCV, HCVB, DCHW, DCBV, NYLG, BVLYL, NOCFS, BVSYL, NYLD, BVYL, NLCF, BVLCF, NSHCF, BVSHCF, NSBCF, BVSBCF, NDCP, BUCF, NYSF, BVYSF, BVPS, PPVS, PVUS, * PUS, BVY, PYS, SYNDEX
100 FORMAT (6X, 'BEFORE CULLING')
110 FORMAT (6X, 'AFTER CULLING')
120 FORMAT (' ', 22X, 'CALVING INTERVAL', F6.1, //, 8X, 'CONCEPTION RATE ', F6.3)
130 FORMAT (' ', 12X, 'LIVE ANIMALS AT YEAR END', //, 3X, I4, ' COWS', //, 6X, 'BRED HEIFERS', I6, ' YEARLINGS', I6, ' CALVES')
180 FORMAT (6X, 'CALVING INTERVAL', F7.1, 20X, 'CONCEPTION RATE', F7.3, //, 42X, 'LIVE ANIMALS AT ', 'YEAR END', //, 20X, I4,
' COWS', 110, ' BRED HEIFERS', 110, ' YEARLINGS', 110, ' CALVES')

RETURN
END

SUBROUTINE WRTLIN(PED, AGE, DISPO, LDAT, LSTR, LYR, LDAY, OLAC, 1 FDCST, REC, MBCA, EPA, SEPA, ETA, SETA, IBCA, OAPRD, 2 NSTR, Nyr, NDAY, DLAC, NBCA, DAPRD, OSTOP, DSTOP, OFIN, 3 DFIN, OSTART, DSTART, LACO, LACD, TYPE, DAYR, DPROJ, 4 LINE, M, N)

C **
C * This subroutine writes a cows record to the printer *
C **

DIMENSION IPED(3), PED(M), STAT(2), OLAC(M), MBCA(3), EPA(N), 1 ETA(N), IBCA(3), OAPRD(M), NBCA(3), DAPRD(M), DLAC(M), 2 PRJ305(5)

INTEGER*4 PRJ305 /'PROJ', 'ECTE', 'D TO', ' 305', ' DAY'/

IPED(1) = PED(1)
IPED(2) = PED(2)
IPED(3) = PED(3)
IAGE = AGE
ITYPE = TYPE
IREC = REC
IST = OSTOP + 0.5
IDST = DSTOP + 0.5
WRITE (10,50) IPED, IAGE, EPA, SEPA, ETA, SETA, IBCA, OAPRD, 1 NSTR, Nyr, NDAY, DLAC, NBCA, DAPRD, OSTOP, DSTOP, OFIN, 2 DFIN, OSTART, DSTART, LACO, LACD, TYPE, DAYR, DPROJ, 3 LINE, M, N)

C **
C * This subroutine writes a cows record to the printer *
C **

RETURN

20 WRITE (10,70) LACD, NSTR, Nyr, NDAY, DLAC, PRJ305, DAPRD, NBCA
LINE = LINE + 1
RETURN
30 WRITE (10,80) LACD, NSTR, NYR, NDAY, DLAC, IDST, DAPRD, NBCA
LINE = LINE + 1
RETURN
40 IF (DFIN .LE. 0.0 .OR. DSTOP .LE. 0.) RETURN
WRITE (10,70) LACD, NSTR, NYR, NDAY, DLAC
LINE = LINE + 1
RETURN
50 FORMAT (1X, I4, 215, I3, 1X, A4, I4, 29X, F6.0, 2I3, 1X, 3I4, 1X,
5F5.1, 1X, 5F5.1)
60 FORMAT (10X, 'LACTATION #', I3, I7, '/', I2, I4, F7.0, 2F6.1,
' COMPLETE RECORD', I4, 'DAYS MILKED', F7.0, 2F6.1, 3X,
2 314)
70 FORMAT (10X, 'LACTATION #', I3, I7, '/', I2, I4, F7.0, 2F6.1, 6X,
1 5A4, 9X, F7.0, 2F6.1, 3X, 314)
80 FORMAT (10X, 'LACTATION #', I3, I7, '/', I2, I4, F7.0, 2F6.1, 9X,
1 'RECORD TO', I4, 'DAYS', 8X, F7.0, 2F6.0, 3X, 314)
END

SUBROUTINE WRTYG(OUT, ICOL, IROW)
C ***
C * This subroutine writes a yearling or calf record to the printer *
C ***
DIMENSION OUT(ICOL,IROW)
WRITE (10,10) OUT
10 FORMAT (2X, 4F7.0, 5F6.1, F8.2, 3X, A4, 3X, A4)
RETURN
ENTRY WRCUL(OUT,ICOL,IROW)
WRITE (6,20) OUT
20 FORMAT (1X, 8F7.0, 2X, A4)
RETURN
END

SUBROUTINE PRINTL(INTARY, NO, IOTU, IFMT)
C **
C * This subroutine writes bull use information to the printer *
C **
DIMENSION INTARY(NO)
IF (IFMT .GT. 10) GO TO 10
WRITE (IOTU,20) INTARY
RETURN
10 WRITE (IOTU,30) INTARY
RETURN
ENTRY PRTUNF(INTARY, NO, IOP)
WRITE (IOP) INTARY
20 FORMAT (3X, 2016)
30 FORMAT (3X, 20(2X,A4))
RETURN
END
SUBROUTINE WRTMAT(WRMATR, ICOL, IROW, INP)
C**
C* This subroutine writes two dimensional matrices. *
C**
DIMENSION WRMATR(ICOL, IROW)
WRITE (INP) WRMATR
RETURN
END

SUBROUTINE REAMAT(REMATR, ICOL, IROW, INP)
C**
C* This subroutine reads two dimensional matrices. *
C**
DIMENSION REMATR(ICOL, IROW)
READ (INP) REMATR
10 RETURN
END

SUBROUTINE REARRAY(NUM, LIST, CONT)
C**
C* This subroutine reads and sorts an array. *
C**
DIMENSION LIST(NUM)
LOGICAL*1 CONT, ERCHK /T/, FL /F/
CONT = FL
READ (5,10,ERR=30) LIST
10 FORMAT (110)
CALL ISORT(LIST, 1, NUM, 1, NUM, 1, 1, 0)
WRITE (6,20) LIST
20 FORMAT (110)
GO TO 40
30 CONT = ERCHK
40 RETURN
END

SUBROUTINE REARY2(NUM, LIST1, LIST2, LIST, CONT)
C**
C* This subroutine reads two arrays, sorts the first and *
C* puts the second in the same order. *
C**
DIMENSION LIST1(NUM), LIST2(NUM), LIST(2,NUM), LBUL(20)
LOGICAL*1 CONT, ERCHK /T/, FL /F/
CONT = FL
READ (5,10,ERR=60) LIST
10 FORMAT (2I10)
CALL ISORT(LIST, 2, NUM, 1, NUM, 1, 1, 0)
DO 20 I = 1, NUM
 LIST1(I) = LIST(1,I)
 LIST2(I) = LIST(2,I)
20 CONTINUE
GO TO 40
ENTRY WRA(NUM, LIST1, LIST2, LIST)
DO 30 I = 1, NUM
LIST(1,1) = LIST1(I)
30 LIST(2,I) = LIST2(I)
GO TO 40
ENTRY REANSR(NUM, LIST1, LIST2, LIST, CONT)
CONT = FL
READ (5,10, ERR=60) LIST
40 WRITE (6,50) LIST
50 FORMAT (2I10)
GO TO 70
60 CONT = ERCHK
70 RETURN
END

FUNCTION RANDT(ISEED)

THIS FUNCTION GENERATES UNIFORM (0,1) RANDOM NUMBERS

DOUBLE PRECISION Z, DN1MOD, DN1
DATA DN1MOD /2147483647.D0/, DN1 /Z3920000000000000/
Z = ISEED
Z = DMOD(16807.D0*Z, DN1MOD)
RANDT = Z * DN1
ISEED = Z
RETURN
END

FUNCTION RN(IX)

THIS FUNCTION GENERATES PAIRS OF NORMAL (0,1) RANDOM DEVIATES,
USING A MODIFICATION OF THE BOX-MUELLER METHOD.

DATA I /1/
IF (I .NE. 1) GO TO 30
I = 2
10 U = 2. * RANDT(IX) - 1.
V = 2. * RANDT(IX) - 1.
W = U * U + V * V
IF (W - 1.) 20, 20, 10
20 W = SQRT(-2.*ALOG(W)/W)
RN = U * W
RETURN
30 I = 1
RETURN
END

SUBROUTINE DCSIG(SIGMA, UL, A, B)

THIS SUBROUTINE DECOMPOSES THE SYMETRIC MATRIX OF VARIANCES-
COVARIANCES INTO ITS FACTOR (SQUARE ROOT). DCSIG IS CALLED BY
MNDG FOR GENERATING MULTIVARIATE NORMAL DEVIATES.
DIMENSION SIGMA(1), UL(1)
DATA ZERO, ONE, FOUR, SIXTN, SIXTH /0.0, 1., 4., 16., .0625/
A = ONE
B = ZERO
R1N = ONE / (4*SIXTN)
IP = 1
DO 90 I = 1, 4
 IQ = IP
 IR = 1
 DO 80 J = 1, I
 X = SIGMA(IP)
 IF (J .EQ. 1) GO TO 20
 DO 10 L = IQ, IP1
 X = X - UL(L) * UL(IR)
 IR = IR + 1
 10 CONTINUE
 IF (I .NE. J) GO TO 60
 A = A * X
 IF (SIGMA(IP) + X*R1N .LE. SIGMA(IP)) GO TO 100
 30 IF (ABS(A) .LE. ONE) GO TO 40
 A = A * SIXTH
 B = B + FOUR
 GO TO 30
 40 IF (ABS(A) .GE. SIXTH) GO TO 50
 A = A * SIXTN
 B = B - FOUR
 GO TO 40
 50 UL(IP) = ONE / SQRT(X)
 GO TO 70
 60 UL(IP) = X * UL(IR)
 70 IP1 = IP
 IF (IP1 .EQ. IP + I) GO TO 90
 IR = IR + 1
 80 CONTINUE
 90 CONTINUE
 GO TO 120
 100 WRITE (6,110)
 110 FORMAT (' TROUBLE')
 120 RETURN
END

SUBROUTINE MNDG(ISEED, SIGMA, RVEC, WKVEC)

C
C THIS SUBROUTINE GENERATES SETS OF FOUR MULTIVARIATE NORMAL
C DEVIATES, DISTRIBUTED WITH ZERO MEAN AND COVARIANCES MATRIX
C SIGMA. TO PRODUCE GENETICALLY CORRELATED NORMAL DEVIATES,
C GSIGMA IS ENTERED FOR SIGMA, FOR ENVIRONMENTALLY CORRELATED
C NORMAL DEVIATES, ESIGMA IS ENTERED.
C
DIMENSION SIGMA(1), RVEC(4), WKVEC(4)
CALL DCSIG(SIGMA, SIGMA, A, B)
L = 0
DO 10 I = 1, 4
 L = L + I
10 SIGMA(L) = 1.0 / SIGMA(L)
GO TO 20
ENTRY MNDG1(ISEED, SIGMA, RVEC, WKVEC)
20 DO 30 I = 1, 4
DIMENSION SIGMA(1), UL(1)
DATA ZERO, ONE, FOUR, SIXTN, SIXTH /0.0, 1.0, 4.0, 16.0, 0.0625/
A = ONE
B = ZERO
R1N = ONE / (4*SIXTN)
IP = 1
DO 90 I = 1, 4
 IQ = IP
 IR = 1
 DO 80 J = 1, I
 X = SIGMA(IP)
 IF (J .EQ. 1) GO TO 20
 DO 10 L = IQ, IP1
 X = X - UL(L) * UL(IR)
 IR = IR + 1
 10 CONTINUE
 20 IF (I .NE. J) GO TO 60
 A = A * X
 IF (SIGMA(IP) + X*R1N .LE. SIGMA(IP)) GO TO 100
 30 IF (ABS(A) .LE. ONE) GO TO 40
 A = A * SIXTH
 B = B + FOUR
 GO TO 30
 40 IF (ABS(A) .GE. SIXTH) GO TO 50
 A = A * SIXTN
 B = B - FOUR
 GO TO 40
 50 UL(IP) = ONE / SQRT(X)
 GO TO 70
 60 UL(IP) = X * UL(IR)
 70 IP1 = IP
 IP = IP + 1
 IR = IR + 1
 80 CONTINUE
 90 CONTINUE
GO TO 120
100 WRITE (6,110)
110 FORMAT (' TROUBLE')
120 RETURN
END

SUBROUTINE MNDG(ISEED, SIGMA, RVEC, WKVEC)

C
C
C THIS SUBROUTINE GENERATES SETS OF FOUR MULTIVARIATE NORMAL
C DEVIATES, DISTRIBUTED WITH ZERO MEAN AND COVARIANCES MATRIX
C SIGMA. TO PRODUCE GENETICALLY CORRELATED NORMAL DEVIATES,
C GSIGMA IS ENTERED FOR SIGMA, FOR ENVIRONMENTALLY CORRELATED
C NORMAL DEVIATES, ESIGMA IS ENTERED.
C
DIMENSION SIGMA(1), RVEC(4), WKVEC(4)
CALL DCSIG(SIGMA, SIGMA, A, B)
L = 0
DO 10 I = 1, 4
 L = L + 1
10 SIGMA(L) = 1.0 / SIGMA(L)
GO TO 20
ENTRY MNDG1(ISEED, SIGMA, RVEC, WKVEC)
20 DO 30 I = 1, 4
30 WKVEC(I) = RN(SEED)
 L = 1
 DO 50 II = 1, 4
 RVEC(II) = 0.0
 DO 40 I = 1, II
 RVEC(II) = RVEC(II) + DBLE(WKVEC(I)) * DBLE(SIGMA(L))
40 L = L + 1
50 CONTINUE
RETURN
END

SUBROUTINE TITLE

C ***
C * This subroutine titles the printer output *
C ***
WRITE (10,10)
ENTRY FTITLE
WRITE (10,20)
10 FORMAT (')
20 FORMAT (', 32X, 'CURRENT PRODUCTION', 22X, 'MEAN BCA ', 10X,
 1 'EPA', 22X, 'ETA', ', 28X, 28('-'), ' FEED TYP NO ', 10(2
 2 '-', 5X, 17('-'), 8X, 17('-'), ', /
 3 ' COW SIRE DAM AGE STAT DAY FRESH DAYS MILK FAT',
 4 ' PROT COST SC RC MLK FAT PRO MILK FAT PROT TYPE ',
 5 '$IND MILK FAT PROT TYPE $IND', '/)
RETURN
ENTRY TITLYG
WRITE (10,30)
30 FORMAT (', 35X, 'YEARLINGS', ', 45X, 'ETA', ', 14X, 'FEED', ', 3X,
 1 'HEIFER SIRE DAM DATE MILK FAT',
 2 ' PROT TYPE $INDEX COSTS STATUS')
RETURN
ENTRY TITLCF
WRITE (10,40)
40 FORMAT (', 37X, 'CALVES', ', 45X, 'ETA', ', 14X, 'FEED', ', 5X,
 1 'CALF SIRE DAM DATE MILK FAT',
 2 ' PROT TYPE $INDEX COSTS SEX STATUS')
RETURN
END

SUBROUTINE FILES(IHRD)

C **
C * This subroutine finds the herd files *
C **
CALL PTNCMD('ASSIGN 4=KINN:AI.U;')
CALL PTNCMD('ASSIGN 7=KINN:CHECK.RUN;')
CALL PTNCMD('ASSIGN 13=KINN:DREC(LAST+1);')
CALL PTNCMD('ASSIGN 11=KINN:YSIRE(LAST+1);')
CALL PTNCMD('ASSIGN 14=KINN:BUSE(LAST+1);')
CALL PTNCMD('ASSIGN 15=KINN:SUMS;')
IF (IHRD.GT.100) GO TO 1010
GO TO (10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130,
 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260,
 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390,
GO TO 1060
10 CALL FTNCMD('ASSIGN 2=KINN:H1IN;')
 CALL FTNCMD('ASSIGN 12=KINN:H1OUT;')
 CALL FTNCMD('ASSIGN 10=H1-2(LAST+1);')
 RETURN
20 CALL FTNCMD('ASSIGN 2=KINN:H2IN;')
 CALL FTNCMD('ASSIGN 12=KINN:H2OUT;')
 CALL FTNCMD('ASSIGN 10=H1-2(LAST+1);')
 RETURN
30 CALL FTNCMD('ASSIGN 2=KINN:H3IN;')
 CALL FTNCMD('ASSIGN 12=KINN:H3OUT;')
 CALL FTNCMD('ASSIGN 10=H3-4(LAST+1);')
 RETURN
40 CALL FTNCMD('ASSIGN 2=KINN:H4IN;')
 CALL FTNCMD('ASSIGN 12=KINN:H4OUT;')
 CALL FTNCMD('ASSIGN 10=H3-4(LAST+1);')
 RETURN
50 CALL FTNCMD('ASSIGN 2=KINN:H5IN;')
 CALL FTNCMD('ASSIGN 12=KINN:H5OUT;')
 CALL FTNCMD('ASSIGN 10=H5-6(LAST+1);')
 RETURN
60 CALL FTNCMD('ASSIGN 2=KINN:H6IN;')
 CALL FTNCMD('ASSIGN 12=KINN:H6OUT;')
 CALL FTNCMD('ASSIGN 10=H5-6(LAST+1);')
 RETURN
70 CALL FTNCMD('ASSIGN 2=KINN:H7IN;')
 CALL FTNCMD('ASSIGN 12=KINN:H7OUT;')
 CALL FTNCMD('ASSIGN 10=H7-8(LAST+1);')
 RETURN
80 CALL FTNCMD('ASSIGN 2=KINN:H8IN;')
 CALL FTNCMD('ASSIGN 12=KINN:H8OUT;')
 CALL FTNCMD('ASSIGN 10=H7-8(LAST+1);')
 RETURN
90 CALL FTNCMD('ASSIGN 2=KINN:H9IN;')
 CALL FTNCMD('ASSIGN 12=KINN:H9OUT;')
 CALL FTNCMD('ASSIGN 10=H9-10(LAST+1);')
 RETURN
100 CALL FTNCMD('ASSIGN 2=KINN:H10IN;')
 CALL FTNCMD('ASSIGN 12=KINN:H10OUT;')
 CALL FTNCMD('ASSIGN 10=H9-10(LAST+1);')
 RETURN
110 CALL FTNCMD('ASSIGN 2=KINN:H11IN;')
 CALL FTNCMD('ASSIGN 12=KINN:H11OUT;')
 CALL FTNCMD('ASSIGN 10=H11-12(LAST+1);')
 RETURN
120 CALL FTNCMD('ASSIGN 2=KINN:H12IN;')
 CALL FTNCMD('ASSIGN 12=KINN:H12OUT;')
 CALL FTNCMD('ASSIGN 10=H11-12(LAST+1);')
 RETURN
130 CALL FTNCMD('ASSIGN 2=KINN:H13IN;')
 CALL FTNCMD('ASSIGN 12=KINN:H13OUT;')
 CALL FTNCMD('ASSIGN 10=H13-14(LAST+1);')
 RETURN
140 CALL FTNCMD('ASSIGN 2=KINN:H14IN;')
 CALL FTNCMD('ASSIGN 12=KINN:H14OUT;')
 CALL FTNCMD('ASSIGN 10=H13-14(LAST+1);')
 RETURN
150 CALL FTNCMD('ASSIGN 2=KINN:H15IN;')
CALL FTNCMD('ASSIGN 12=KINN:H15OUT;')
CALL FTNCMD('ASSIGN 10=H15-16(LAST+1);')
RETURN
160 CALL FTNCMD('ASSIGN 2=KINN:H16IN;')
CALL FTNCMD('ASSIGN 12=KINN:H16OUT;')
CALL FTNCMD('ASSIGN 10=H15-16(LAST+1);')
RETURN
170 CALL FTNCMD('ASSIGN 2=KINN:H17IN;')
CALL FTNCMD('ASSIGN 12=KINN:H17OUT;')
CALL FTNCMD('ASSIGN 10=H17-18(LAST+1);')
RETURN
180 CALL FTNCMD('ASSIGN 2=KINN:H18IN;')
CALL FTNCMD('ASSIGN 12=KINN:H18OUT;')
CALL FTNCMD('ASSIGN 10=H17-18(LAST+1);')
RETURN
190 CALL FTNCMD('ASSIGN 2=KINN:H19IN;')
CALL FTNCMD('ASSIGN 12=KINN:H19OUT;')
CALL FTNCMD('ASSIGN 10=H19-20(LAST+1);')
RETURN
200 CALL FTNCMD('ASSIGN 2=KINN:H20IN;')
CALL FTNCMD('ASSIGN 12=KINN:H20OUT;')
CALL FTNCMD('ASSIGN 10=H19-20(LAST+1);')
RETURN
210 CALL FTNCMD('ASSIGN 2=KINN:H21IN;')
CALL FTNCMD('ASSIGN 12=KINN:H21OUT;')
CALL FTNCMD('ASSIGN 10=H21-22(LAST+1);')
RETURN
220 CALL FTNCMD('ASSIGN 2=KINN:H22IN;')
CALL FTNCMD('ASSIGN 12=KINN:H22OUT;')
CALL FTNCMD('ASSIGN 10=H21-22(LAST+1);')
RETURN
230 CALL FTNCMD('ASSIGN 2=KINN:H23IN;')
CALL FTNCMD('ASSIGN 12=KINN:H23OUT;')
CALL FTNCMD('ASSIGN 10=H23-24(LAST+1);')
RETURN
240 CALL FTNCMD('ASSIGN 2=KINN:H24IN;')
CALL FTNCMD('ASSIGN 12=KINN:H24OUT;')
CALL FTNCMD('ASSIGN 10=H23-24(LAST+1);')
RETURN
250 CALL FTNCMD('ASSIGN 2=KINN:H25IN;')
CALL FTNCMD('ASSIGN 12=KINN:H25OUT;')
CALL FTNCMD('ASSIGN 10=H25-26(LAST+1);')
RETURN
260 CALL FTNCMD('ASSIGN 2=KINN:H26IN;')
CALL FTNCMD('ASSIGN 12=KINN:H26OUT;')
CALL FTNCMD('ASSIGN 10=H25-26(LAST+1);')
RETURN
270 CALL FTNCMD('ASSIGN 2=KINN:H27IN;')
CALL FTNCMD('ASSIGN 12=KINN:H27OUT;')
CALL FTNCMD('ASSIGN 10=H27-28(LAST+1);')
RETURN
280 CALL FTNCMD('ASSIGN 2=KINN:H28IN;')
CALL FTNCMD('ASSIGN 12=KINN:H28OUT;')
CALL FTNCMD('ASSIGN 10=H27-28(LAST+1);')
RETURN
290 CALL FTNCMD('ASSIGN 2=KINN:H29IN;')
CALL FTNCMD('ASSIGN 12=KINN:H29OUT;')
CALL FTNCMD('ASSIGN 10=H29-30(LAST+1);')
RETURN
300 CALL FTNCMD('ASSIGN 2=KINN:H30IN;')
CALL FTNCMD('ASSIGN 12=KINN:H30OUT;')
CALL FTNCMD('ASSIGN 10=H29-30(LAST+1);')
RETURN
310 CALL FTNCMD('ASSIGN 2=KINN:H31IN;')
CALL FTNCMD('ASSIGN 12=KINN:H31OUT;')
CALL FTNCMD('ASSIGN 10=H31-32(LAST+1);')
RETURN
320 CALL FTNCMD('ASSIGN 2=KINN:H32IN;')
CALL FTNCMD('ASSIGN 12=KINN:H32OUT;')
CALL FTNCMD('ASSIGN 10=H31-32(LAST+1);')
RETURN
330 CALL FTNCMD('ASSIGN 2=KINN:H33IN;')
CALL FTNCMD('ASSIGN 12=KINN:H33OUT;')
CALL FTNCMD('ASSIGN 10=H33-34(LAST+1);')
RETURN
340 CALL FTNCMD('ASSIGN 2=KINN:H34IN;')
CALL FTNCMD('ASSIGN 12=KINN:H34OUT;')
CALL FTNCMD('ASSIGN 10=H33-34(LAST+1);')
RETURN
350 CALL FTNCMD('ASSIGN 2=KINN:H35IN;')
CALL FTNCMD('ASSIGN 12=KINN:H35OUT;')
CALL FTNCMD('ASSIGN 10=H35-36(LAST+1);')
RETURN
360 CALL FTNCMD('ASSIGN 2=KINN:H36IN;')
CALL FTNCMD('ASSIGN 12=KINN:H36OUT;')
CALL FTNCMD('ASSIGN 10=H35-36(LAST+1);')
RETURN
370 CALL FTNCMD('ASSIGN 2=KINN:H37IN;')
CALL FTNCMD('ASSIGN 12=KINN:H37OUT;')
CALL FTNCMD('ASSIGN 10=H37-38(LAST+1);')
RETURN
380 CALL FTNCMD('ASSIGN 2=KINN:H38IN;')
CALL FTNCMD('ASSIGN 12=KINN:H38OUT;')
CALL FTNCMD('ASSIGN 10=H37-38(LAST+1);')
RETURN
390 CALL FTNCMD('ASSIGN 2=KINN:H39IN;')
CALL FTNCMD('ASSIGN 12=KINN:H39OUT;')
CALL FTNCMD('ASSIGN 10=H39-40(LAST+1);')
RETURN
400 CALL FTNCMD('ASSIGN 2=KINN:H40IN;')
CALL FTNCMD('ASSIGN 12=KINN:H40OUT;')
CALL FTNCMD('ASSIGN 10=H39-40(LAST+1);')
RETURN
410 CALL FTNCMD('ASSIGN 2=KINN:H41IN;')
CALL FTNCMD('ASSIGN 12=KINN:H41OUT;')
CALL FTNCMD('ASSIGN 10=H41-42(LAST+1);')
RETURN
420 CALL FTNCMD('ASSIGN 2=KINN:H42IN;')
CALL FTNCMD('ASSIGN 12=KINN:H42OUT;')
CALL FTNCMD('ASSIGN 10=H41-42(LAST+1);')
RETURN
430 CALL FTNCMD('ASSIGN 2=KINN:H43IN;')
CALL FTNCMD('ASSIGN 12=KINN:H43OUT;')
CALL FTNCMD('ASSIGN 10=H43-44(LAST+1);')
RETURN
440 CALL FTNCMD('ASSIGN 2=KINN:H44IN;')
CALL FTNCMD('ASSIGN 12=KINN:H44OUT;')
CALL FTNCMD('ASSIGN 10=H43-44(LAST+1);')
RETURN
450 CALL FTNCMD('ASSIGN 2=KINN:H45IN;')
CALL FTNCMD('ASSIGN 12=KINN:H45OUT;')
CALL FTNCMD('ASSIGN 10=H45-46(LAST+1);')
RETURN
460 CALL FTNCMD('ASSIGN 2=KINST:H46IN;')
CALL FTNCMD('ASSIGN 12=KINST:H46OUT;')
CALL FTNCMD('ASSIGN 10=H45-46(LAST+1);')
RETURN
470 CALL FTNCMD('ASSIGN 2=KINST:H47IN;')
CALL FTNCMD('ASSIGN 12=KINST:H47OUT;')
CALL FTNCMD('ASSIGN 10=H47-48(LAST+1);')
RETURN
480 CALL FTNCMD('ASSIGN 2=KINST:H48IN;')
CALL FTNCMD('ASSIGN 12=KINST:H48OUT;')
CALL FTNCMD('ASSIGN 10=H47-48(LAST+1);')
RETURN
490 CALL FTNCMD('ASSIGN 2=KINST:H49IN;')
CALL FTNCMD('ASSIGN 12=KINST:H49OUT;')
CALL FTNCMD('ASSIGN 10=H49-50(LAST+1);')
RETURN
500 CALL FTNCMD('ASSIGN 2=KINST:H50IN;')
CALL FTNCMD('ASSIGN 12=KINST:H50OUT;')
CALL FTNCMD('ASSIGN 10=H49-50(LAST+1);')
RETURN
510 CALL FTNCMD('ASSIGN 2=KINST:H51IN;')
CALL FTNCMD('ASSIGN 12=KINST:H51OUT;')
CALL FTNCMD('ASSIGN 10=H51-52(LAST+1);')
RETURN
520 CALL FTNCMD('ASSIGN 2=KINST:H52IN;')
CALL FTNCMD('ASSIGN 12=KINST:H52OUT;')
CALL FTNCMD('ASSIGN 10=H51-52(LAST+1);')
RETURN
530 CALL FTNCMD('ASSIGN 2=KINST:H53IN;')
CALL FTNCMD('ASSIGN 12=KINST:H53OUT;')
CALL FTNCMD('ASSIGN 10=H53-54(LAST+1);')
RETURN
540 CALL FTNCMD('ASSIGN 2=KINST:H54IN;')
CALL FTNCMD('ASSIGN 12=KINST:H54OUT;')
CALL FTNCMD('ASSIGN 10=H53-54(LAST+1);')
RETURN
550 CALL FTNCMD('ASSIGN 2=KINST:H55IN;')
CALL FTNCMD('ASSIGN 12=KINST:H55OUT;')
CALL FTNCMD('ASSIGN 10=H55-56(LAST+1);')
RETURN
560 CALL FTNCMD('ASSIGN 2=KINST:H56IN;')
CALL FTNCMD('ASSIGN 12=KINST:H56OUT;')
CALL FTNCMD('ASSIGN 10=H55-56(LAST+1);')
RETURN
570 CALL FTNCMD('ASSIGN 2=KINST:H57IN;')
CALL FTNCMD('ASSIGN 12=KINST:H57OUT;')
CALL FTNCMD('ASSIGN 10=H57-58(LAST+1);')
RETURN
580 CALL FTNCMD('ASSIGN 2=KINST:H58IN;')
CALL FTNCMD('ASSIGN 12=KINST:H58OUT;')
CALL FTNCMD('ASSIGN 10=H57-58(LAST+1);')
RETURN
590 CALL FTNCMD('ASSIGN 2=KINST:H59IN;')
CALL FTNCMD('ASSIGN 12=KINST:H59OUT;')
CALL FTNCMD('ASSIGN 10=H59-60(LAST+1);')
RETURN
600 CALL FTNCMD('ASSIGN 2=KINST:H60IN;')
CALL FTNCMD('ASSIGN 12=KINST:H60OUT;')
CALL FTNCMD('ASSIGN 10=H59-60(LAST+1);')
RETURN
610 CALL FTNCMD('ASSIGN 2=KINST:H61IN;')
CALL FTNCMD('ASSIGN 12=KINST:H61OUT;')
CALL FTNCMD('ASSIGN 10=H61-62(LAST+1);')
RETURN
620 CALL FTNCMD('ASSIGN 10=H61-62(LAST+1);')
CALL FTNCMD('ASSIGN 12=KINN:H62OUT;')
CALL FTNCMD('ASSIGN 10=H61-62(LAST+1);')
RETURN
630 CALL FTNCMD('ASSIGN 10=H63-64(LAST+1);')
CALL FTNCMD('ASSIGN 12=KINN:H63OUT;')
CALL FTNCMD('ASSIGN 10=H63-64(LAST+1);')
RETURN
640 CALL FTNCMD('ASSIGN 10=H65-66(LAST+1);')
CALL FTNCMD('ASSIGN 12=KINN:H65OUT;')
CALL FTNCMD('ASSIGN 10=H65-66(LAST+1);')
RETURN
650 CALL FTNCMD('ASSIGN 10=H67-68(LAST+1);')
CALL FTNCMD('ASSIGN 12=KINN:H67OUT;')
CALL FTNCMD('ASSIGN 10=H67-68(LAST+1);')
RETURN
660 CALL FTNCMD('ASSIGN 10=H69-70(LAST+1);')
CALL FTNCMD('ASSIGN 12=KINN:H69OUT;')
CALL FTNCMD('ASSIGN 10=H69-70(LAST+1);')
RETURN
670 CALL FTNCMD('ASSIGN 10=H71-72(LAST+1);')
CALL FTNCMD('ASSIGN 12=KINN:H71OUT;')
CALL FTNCMD('ASSIGN 10=H71-72(LAST+1);')
RETURN
680 CALL FTNCMD('ASSIGN 10=H73-74(LAST+1);')
CALL FTNCMD('ASSIGN 12=KINN:H73OUT;')
CALL FTNCMD('ASSIGN 10=H73-74(LAST+1);')
RETURN
690 CALL FTNCMD('ASSIGN 10=H75-76(LAST+1);')
CALL FTNCMD('ASSIGN 12=KINN:H75OUT;')
CALL FTNCMD('ASSIGN 10=H75-76(LAST+1);')
RETURN
700 CALL FTNCMD('ASSIGN 10=H77-78(LAST+1);')
CALL FTNCMD('ASSIGN 12=KINN:H77OUT;')
CALL FTNCMD('ASSIGN 10=H77-78(LAST+1);')
RETURN
710 CALL FTNCMD('ASSIGN 10=H79-80(LAST+1);')
CALL FTNCMD('ASSIGN 12=KINN:H79OUT;')
CALL FTNCMD('ASSIGN 10=H79-80(LAST+1);')
RETURN
720 CALL FTNCMD('ASSIGN 10=H81-82(LAST+1);')
CALL FTNCMD('ASSIGN 12=KINN:H81OUT;')
CALL FTNCMD('ASSIGN 10=H81-82(LAST+1);')
RETURN
730 CALL FTNCMD('ASSIGN 10=H83-84(LAST+1);')
CALL FTNCMD('ASSIGN 12=KINN:H83OUT;')
CALL FTNCMD('ASSIGN 10=H83-84(LAST+1);')
RETURN
740 CALL FTNCMD('ASSIGN 10=H85-86(LAST+1);')
CALL FTNCMD('ASSIGN 12=KINN:H85OUT;')
CALL FTNCMD('ASSIGN 10=H85-86(LAST+1);')
RETURN
750 CALL FTNCMD('ASSIGN 10=H87-88(LAST+1);')
CALL FTNCMD('ASSIGN 12=KINN:H87OUT;')
CALL FTNCMD('ASSIGN 10=H87-88(LAST+1);')
RETURN
760 CALL FTNCMD('ASSIGN 10=H89-90(LAST+1);')
CALL FTNCMD('ASSIGN 12=KINN:H89OUT;')
CALL FTNCMD('ASSIGN 10=H89-90(LAST+1);')
RETURN
770 CALL FTNCMD('ASSIGN 2=KINN:H77IN;')
CALL FTNCMD('ASSIGN 12=KINN:H77OUT;')
CALL FTNCMD('ASSIGN 10=H77-78(LAST+1);')
RETURN
780 CALL FTNCMD('ASSIGN 2=KINN:H78IN;')
CALL FTNCMD('ASSIGN 12=KINN:H78OUT;')
CALL FTNCMD('ASSIGN 10=H77-78(LAST+1);')
RETURN
790 CALL FTNCMD('ASSIGN 2=KINN:H79IN;')
CALL FTNCMD('ASSIGN 12=KINN:H79OUT;')
CALL FTNCMD('ASSIGN 10=H79-80(LAST+1);')
RETURN
800 CALL FTNCMD('ASSIGN 2=KINN:H80IN;')
CALL FTNCMD('ASSIGN 12=KINN:H80OUT;')
CALL FTNCMD('ASSIGN 10=H79-80(LAST+1);')
RETURN
810 CALL FTNCMD('ASSIGN 2=KINN:H81IN;')
CALL FTNCMD('ASSIGN 12=KINN:H81OUT;')
CALL FTNCMD('ASSIGN 10=H81-82(LAST+1);')
RETURN
820 CALL FTNCMD('ASSIGN 2=KINN:H82IN;')
CALL FTNCMD('ASSIGN 12=KINN:H82OUT;')
CALL FTNCMD('ASSIGN 10=H81-82(LAST+1);')
RETURN
830 CALL FTNCMD('ASSIGN 2=KINN:H83IN;')
CALL FTNCMD('ASSIGN 12=KINN:H83OUT;')
CALL FTNCMD('ASSIGN 10=H83-84(LAST+1);')
RETURN
840 CALL FTNCMD('ASSIGN 2=KINN:H84IN;')
CALL FTNCMD('ASSIGN 12=KINN:H84OUT;')
CALL FTNCMD('ASSIGN 10=H83-84(LAST+1);')
RETURN
850 CALL FTNCMD('ASSIGN 2=KINN:H85IN;')
CALL FTNCMD('ASSIGN 12=KINN:H85OUT;')
CALL FTNCMD('ASSIGN 10=H85-86(LAST+1);')
RETURN
860 CALL FTNCMD('ASSIGN 2=KINN:H86IN;')
CALL FTNCMD('ASSIGN 12=KINN:H86OUT;')
CALL FTNCMD('ASSIGN 10=H85-86(LAST+1);')
RETURN
870 CALL FTNCMD('ASSIGN 2=KINN:H87IN;')
CALL FTNCMD('ASSIGN 12=KINN:H87OUT;')
CALL FTNCMD('ASSIGN 10=H87-88(LAST+1);')
RETURN
880 CALL FTNCMD('ASSIGN 2=KINN:H88IN;')
CALL FTNCMD('ASSIGN 12=KINN:H88OUT;')
CALL FTNCMD('ASSIGN 10=H87-88(LAST+1);')
RETURN
890 CALL FTNCMD('ASSIGN 2=KINN:H89IN;')
CALL FTNCMD('ASSIGN 12=KINN:H89OUT;')
CALL FTNCMD('ASSIGN 10=H89-90(LAST+1);')
RETURN
900 CALL FTNCMD('ASSIGN 2=KINN:H90IN;')
CALL FTNCMD('ASSIGN 12=KINN:H90OUT;')
CALL FTNCMD('ASSIGN 10=H89-90(LAST+1);')
RETURN
910 CALL FTNCMD('ASSIGN 2=KINN:H91IN;')
CALL FTNCMD('ASSIGN 12=KINN:H91OUT;')
CALL FTNCMD('ASSIGN 10=H91-92(LAST+1);')
RETURN
920 CALL FTNCMD('ASSIGN 2=KINN:H92IN;')
CALL FTNCMD('ASSIGN 12=KINN:H92OUT;')
CALL FTNCMD('ASSIGN 10=H91-92(LAST+1);')
RETURN
930 CALL FTNCMD('ASSIGN 2=KINN:H93IN;')
CALL FTNCMD('ASSIGN 12=KINN:H93OUT;')
CALL FTNCMD('ASSIGN 10=H93-94(LAST+1);')
RETURN
940 CALL FTNCMD('ASSIGN 2=KINN:H94IN;')
CALL FTNCMD('ASSIGN 12=KINN:H94OUT;')
CALL FTNCMD('ASSIGN 10=H93-94(LAST+1);')
RETURN
950 CALL FTNCMD('ASSIGN 2=KINN:H95IN;')
CALL FTNCMD('ASSIGN 12=KINN:H95OUT;')
CALL FTNCMD('ASSIGN 10=H95-96(LAST+1);')
RETURN
960 CALL FTNCMD('ASSIGN 2=KINN:H96IN;')
CALL FTNCMD('ASSIGN 12=KINN:H96OUT;')
CALL FTNCMD('ASSIGN 10=H95-96(LAST+1);')
RETURN
970 CALL FTNCMD('ASSIGN 2=KINN:H97IN;')
CALL FTNCMD('ASSIGN 12=KINN:H97OUT;')
CALL FTNCMD('ASSIGN 10=H97-98(LAST+1);')
RETURN
980 CALL FTNCMD('ASSIGN 2=KINN:H98IN;')
CALL FTNCMD('ASSIGN 12=KINN:H98OUT;')
CALL FTNCMD('ASSIGN 10=H97-98(LAST+1);')
RETURN
990 CALL FTNCMD('ASSIGN 2=KINN:H99IN;')
CALL FTNCMD('ASSIGN 12=KINN:H99OUT;')
CALL FTNCMD('ASSIGN 10=H99-100(LAST+1);')
RETURN
1000 CALL FTNCMD('ASSIGN 2=KINN:H100IN;')
CALL FTNCMD('ASSIGN 12=KINN:H100OUT;')
CALL FTNCMD('ASSIGN 10=H99-100(LAST+1);')
RETURN
1010 I = IHRD / 100
GO TO (1020, 1030, 1040, 1050), I
GO TO 1060
1020 CALL FTNCMD('ASSIGN 2=KINN:G100IN;')
CALL FTNCMD('ASSIGN 12=KINN:G100OUT;')
CALL FTNCMD('ASSIGN 10=-CHK(LAST+1);')
RETURN
1030 CALL FTNCMD('ASSIGN 2=KINN:G200IN;')
CALL FTNCMD('ASSIGN 12=KINN:G200OUT;')
CALL FTNCMD('ASSIGN 10=-CHK(LAST+1);')
RETURN
1040 CALL FTNCMD('ASSIGN 2=KINN:G300IN;')
CALL FTNCMD('ASSIGN 12=KINN:G300OUT;')
CALL FTNCMD('ASSIGN 10=-CHK(LAST+1);')
RETURN
1050 CALL FTNCMD('ASSIGN 2=KINN:G400IN;')
CALL FTNCMD('ASSIGN 12=KINN:G400OUT;')
CALL FTNCMD('ASSIGN 10=-CHK(LAST+1);')
RETURN
1060 WRITE (6,1070) IHRD
1070 FORMAT (ASSIGN 'HERD', I4, ' NOT FOUND')
STOP
END
A. I. UPDATE PROGRAM

Reads files -DREC and -BUSE (DREC and BUSE sorted by bull number) and updates ETA's, daughter averages, use, conceptions and semen prices.

Reads file YSIRE and adds the top young bulls to the A.I. file.

Data:
- $H4H = \frac{(4\text{-heritability})}{\text{heritability}}$
- $G4 = \frac{1}{4}$ * genetic variance
- $VECG2 = \text{environmental variance between cow} + \frac{1}{2} \text{genetic variance}$
- $VEH = \text{environmental variance between herds}$
- SPM and $SPSD = \text{mean and standard deviation of relative semen production}$
- BFM and $BFSD = \text{mean and standard deviation of fertility}$
- $TCOW = \text{number of cows in the population}$
- $BASP = \text{base semen price}$
- $DYR = \text{Age at which a bull is removed from A.I.}$
 - (Note: If more than 33 bulls are added each year, decrease DYR or increase the dimension of AI)

Real *4 AL(30,500), PETA(4), YBUL(18),
* PTS(15,500), SINDEX(4),
1 $H4H(4)/14.38, 10.76, 13.81, 12.33/, G4(4)/42642., 82.81,
2 40.96, 0.6889/, VECG2(4)/499833., 670.34, 460.69, 6.5010/,
3 $VEH(4)/58081., 125.44, 59.29, 1.2769/, AVG(3)/7200., 280.,
4 230., $BFM/.7/, BPSD/.02/, $SPM/.5/, SPSD/.3/, TCOW/750.,
5 BASP/15./, DYR/15./, UYR/1./
INTEGER *4 IDREC(8), IUSE(5), ITB(4)
LOGICAL *1 FALSE/F/, TRUE/T/, YYB/T/, BSWT/T/, USWT/T/, YNG/F/

Assign input-output units to files and initialize FRAND

CALL FTNCMD('ASSIGN 1=DREC;')
CALL FTNCMD('ASSIGN 2=BUSE;')
CALL FTNCMD('ASSIGN 3=YSIRE;')
CALL FTNCMD('ASSIGN 4=AI.T;')
CALL FTNCMD('ASSIGN 13=AIOLD(LAST+1);')
CALL FTNCMD('ASSIGN 14=AI.U;')
IR = IRAND(0)
F = IRAND(1000)
F = RANDF(F)

Zero Totals

TVIAL = 0.
TCOW = 0.
ND = 0
NHYS = 0

Read the current A. I. file and the first record from files DREC, BUSE and YSIRE.

READ (4) NDAI, NAI, NUAI, NEAI, NPAI, NTAI
CALL REAMAT(AI, 30, NTAI, 4)
IF (NAI.LT.20) TCOW = TCOW * 3.
NND = 0
PROGRAM LISTINGS

NSR = 9000 + NDAI
C*** Check for bulls to be removed ***
DO 95 I = 1, NAI
 IF (YR-AI(8,I) LT DYR) GO TO 77
 CALL WRTMAT (AI(1,I), 30, 1, 13)
 NND = NND + 1
 NSR = NSR + 1
95 CONTINUE
 IF (NEAI LE NAI) GO TO 251
 I = NAI + 1
77 IN = I
 JFAI = NSR + 1
20 READ (1, END=30) IDREC
 IBSR = IDREC(3)
 IF (IBSR LT JFAI) GO TO 20
 GO TO 40
30 IBSR = 0
 BSWT = FALSE
 NCDAI = 0
40 READ (2, END=50) IUSE
 IUSR = IUSE(3)
 IF (IUSR LT JFAI) GO TO 40
 GO TO 60
50 USWT = FALSE
60 READ (3, END=70) YBUL
 GO TO 75
70 YYB = FALSE
75 WRITE (6, 450)
 READ (5,430,ERR=75) IYR
 YR = IYR
C*** ***
C*** Major Loop - Updates Sire Proofs ***
C***
 NRAI = 0
DO 250 I = IN, NEAI
 NSR = NSR + 1
C*** ***
C*** Add first lactation record from last herd and read another***
C***
 IF (.NOT. BSWT) GO TO 160
 IBSR = IDREC(3)
 IF (NSR NE IBSR) GO TO 78
 GO TO 80
78 IF (NSR GT IBSR) GO TO 397
 GO TO 140
80 NHYS = NHYS + 1
 ND = ND + IDREC(4)
 DO 90 J = 1, 4
 ITB(J) = ITB(J) + IDREC(J+4)
90 CONTINUE
 READ (1, END=100) IDREC
 IF (NSR EQ IDREC(3)) GO TO 80
 GO TO 110
100 BSWT = FALSE
 NCDAI = NRAI + 1
C*** ***
C*** Adjust the bull's record for daughters, herds, ETA's ***
C*** and daughter's average. ***
C***
110 TND = ND
 TNHY = NHYS
PROGRAM LISTINGS

```
TD = TND + AI(13,I)
DO 130 J = 1, 4
  BD = TND / (TND + H4H(J))
  SD = SQRT((1-BD) * G4(J) + VECG2(J) / TND + VEH(J) / TNHY)
  SETA = (AI(J+14,I) * .5 + FRANDN(0.) * SD) * BD
IF (J .EQ. 4) GO TO 115
  SETA = SETA / AVG(J) * 100.
115  AI(J+22,I) = (ITB(J) + AI(J+22,I) * AI(13,I)) / TD
  AI(J+26,I) = (SETA * TND + AI(J+26,I) * AI(13,I)) / TD
130  CONTINUE
AI(13,I) = TD
AI(14,I) = AI(14,I) + TNHY
***
C***  Zero Totals
C***
140  DO 155 J = 1, 4
155  ITB(J) = 0.
   ND = 0
   NHYS = 0
160  IF (.NOT. USWT) GO TO 200
C***
C***  Add use by last herd and read another
C***
   IUSR = IUSE(3)
   IF (NSR .NE. IUSR) GO TO 165
   GO TO 170
165  IF (NSR .GT. IUSR) GO TO 398
   GO TO 200
170  TVIAL = TVIAL + IUSE(4)
   TCON = TCON + IUSE(5)
   READ (2, END=180) I USE
   IF (NSR .EQ. IUSE(3)) GO TO 170
   GO TO 190
180  USWT = FALSE
C***
C***  Adjust bulls record for vials used and conceptions
C***  and calculate a new semen price
C***
C***
190  AI(11,I) = AI(11,I) + TVIAL
  AI(12,I) = AI(12,I) + TCON
  IF (AI(10,I) .LE. 0.) AI(10,I) = FRANDN(0.) * SPSD + SPM
  PRICE = BASP + TVIAL**2. / TCOW
  IF (AI(7,I) .GT. PRICE) PRICE = .5 * (PRICE + AI(7,I))
  AI(7,I) = PRICE
  TVIAL = 0.
  TCON = 0.
  GO TO 210
200  AI(7,I) = .5 * (BASP + AI(7,I))
C***
C***  move up location of eligible bulls to replace dead
C***
C***
210  NRAI = NRAI + 1
   DO 220 J = 1, 30
   AI(J,NRAI) = AI(J,I)
220  CONTINUE
250  CONTINUE
   IF (BSWT) NCDAI = NEAI
C***
C***  Check if young bulls old enough to use and move up rest bulls
C***
```
251 NFY = NEAI + 1
 NNAI = 0
 IF (NFY .GT. NTAI) GO TO 254
 DO 256 I = NFY, NTAI
 NRAI = NRAI + 1
 DO 253 J = 1, 30
 AI(J,NRAI) = AI(J,I)
 253 CONTINUE
 IF (YNG) GO TO 256
 AGE = YR - AI(8,NRAI)
 IF (AGE .LT. UYR) GO TO 252
 NNAI = NNAI + 1
 GO TO 256
252 YNG = TRUE
256 CONTINUE
C*** Young bull selection ***
C*** ***
254 NYSS = 0
 NFYAI = NRAI + 1
 IF (.NOT. YYB) GO TO 350
 WRITE (6,400)
 READ (5,430) NYSS, TIND, TTYP, TDTYP
 IF (NYSS .LE. 0) GO TO 350
 255 WRITE (6,410)
 READ(5,440) SINDEX
 ST = ABS(SINDEX(1) + SINDEX(2) + SINDEX(3) + SINDEX(4))
 IF (ST .LE. 0.) GO TO 255
 DO 258 J = 1, 4
 SINDEX(J) = SINDEX(J) / ST
 258 CONTINUE
 NPYS = 0
 GO TO 270
260 READ (3, END=290) YBUL
270 IF (YBUL(14) .LT. TTYP .OR. YBUL(18) .LT. TDTYP) GO TO 260
 BIND = YBUL(11) * SINDEX(1) + YBUL(12) * SINDEX(2) + YBUL(13) + 1
 * SINDEX(3) + YBUL(14) * SINDEX(4)
 IF (BIND .LT. TIND) GO TO 260
 NPYS = NPYS + 1
 IF (NPYS .GT. 500) GO TO 390
 DO 280 J = 1, 14
 PYS(J,NPYS) = YBUL(J)
 280 CONTINUE
 PYS(15,NPYS) = BIND
 GO TO 260
290 CALL ISORT (PYS,15,NPYS,1,NPYS,15,3,-1)
 N = 0
 ID = NTAI + MDAI + 9000
 IF (NPYS .LT. NYSS) GO TO 395
 DO 320 J = 1, NYSS
 N = N + 1
 NRAI = NRAI + 1
 AI(1,NRAI) = ID + N
 AI(2,NRAI) = PYS(2,J)
 AI(3,NRAI) = PYS(3,J)
 AI(4,NRAI) = PYS(6,J)
 AI(5,NRAI) = PYS(5,J)
 AI(6,NRAI) = BPM + 1 - EXP (BFSD * FRANDN(0.))
 AI(7,NRAI) = BASP
 AI(8,NRAI) = PYS(1,J) + PYS(4,J) / 365.
 AI(9,NRAI) = 0.0
 AI(10,NRAI) = FRANDN(0.) * SPSD + SPM
DO 300 K = 1, 4
 AI(K+10,NRAI) = 0.
 AI(K+14,NRAI) = PYS(K+6,J)
 AI(K+18,NRAI) = 0.
 AI(K+22,NRAI) = 0.
 AI(K+26,NRAI) = PYS(K+10,J)
300 CONTINUE
320 CONTINUE
 CALL ISORT(AI,30,500,NFYAI,NRAI,8,3,0)
 DO 325 J = NFYAI, NRAI
5 AI(1,J) = J + 9000
325 CONTINUE
350 NPAI = NTAI - NND
 NTAI = NTAI + NYSS - NND
 NDAI = NDAI + NND
 NAI = MAX0 (NAI-NND, NCDAI)
 NUAI = NEAI - NND
 NEAI = NUAI + NNAI
380 WRITE(14) NDAI, NAI, NUAI, NEAI, NPAI, NTAI
 CALL WRTMAT(AI, 30, NTAI, 14)
 STOP
390 WRITE (6,420)
395 WRITE(6,425) NPYS
 STOP
397 WRITE (6, 460)
398 WRITE (6, 470)
400 FORMAT ('ENTER THE NUMBER OF BULLS TO ADD, THE MINIMUM INDEX,', /,
 1 ' THE MINIMUM ETA FOR TYPE AND THE DAMS MINIMUM ETA', /,
 2 ' FOR TYPE')
410 FORMAT ('ENTER SELECTION INDEX WEIGHTINGS FOR', /,
 1 ' MILK, FAT, PROTEIN AND TYPE')
420 FORMAT ('TOO MANY YOUNG BULLS -', /,
 1 ' INCREASE THE MINIMUMS OR THE DIMENSIONS OF PYS')
425 FORMAT ('ONLY ', I4, ' YOUNG BULLS ELIGABLE -', /,
 1 ' DECREASE MINIMUMS OR NUMBER OF BULLS SELECTED')
430 FORMAT (110, 4F10.2)
440 FORMAT (5F10.3)
450 FORMAT ('ENTER THE CURRENT YEAR (NEXT)')
460 FORMAT ('ERROR : DREC NOT SORTED PROPERLY')
470 FORMAT ('ERROR : BUSE NOT SORTED PROPERLY')
 STOP
 END

SUBROUTINE WRTMAT(WRMATR, ICOL, IROW, INP)
C **
C * This subroutine writes two dimensional matrixes. *
C **
DIMENSION WRMATR(ICOL,IROW)
WRITE (INP) WRMATR
RETURN
END
SUBROUTINE REAMAT(REMATR, ICOL, IROW, INP)
C**
C * This subroutine reads two dimensional matrixes. *
C**
DIMENSION REMATR(ICOL,IROW)
READ (INP) REMATR
10 RETURN
END
The user enters their index weightings and the number of top proven bulls they want to see. The program ranks all A.I. bulls with daughter records by index score and lists the following information for the specified number of top bulls:

- SIRE, MATERNAL GRAND SIRE, ETA'S FOR MILK, FAT, PROTEIN, TYPE, AND INDEX, CONCEPTION RATE, NUMBER DAUGHTER RECORDS, NUMBER OF HERDS AND SEMEN PRICE.

The program also can list all young sires eligible for use.

REAL *4 AI(30,500), OUT(12, 400), YUNG(8,100), SINDEX(4)
LOGICAL *1 PVN/'P'/, YNG/'Y'/, CHR

CALL FTMCMD('ASSIGN 4=KINN:AI.U;')
WRITE (6,110)
READ (5,150) SINDEX
SDT = ABS(SINDEX(1) + SINDEX(2) + SINDEX(3) + SINDEX(4))
IF (SDT .EQ. 0.) GO TO 10
DO 20 I = 1, 4
 SINDEX(I) = SINDEX(I) / SDT
 CONTINUE
READ (4) NDAI, NAI, NUAI, NEAI, NTAI
CALL REAMAT(AI, 30, NEAI, 4)
NBP = 0
NYB = 0
DO 40 I = 1, NEAI
 Bulls with daughter records
 ND = AI(13,I)
 IF (ND .LE. 0) GO TO 30
 NBP = NBP + 1
 OUT(1,NBP) = AI(1,I)
 OUT(2,NBP) = AI(2,I)
 OUT(3,NBP) = AI(4,I)
 OUT(4,NBP) = AI(27,I)
 OUT(5,NBP) = AI(28,I)
 OUT(6,NBP) = AI(29,I)
 OUT(7,NBP) = AI(30,I)
 OUT(8,NBP) = OUT(4,NBP) * SINDEX(1) + OUT(5,NBP) * SINDEX(2) +
 OUT(6,NBP) * SINDEX(3) + OUT(7,NBP) * SINDEX(4)
 OUT(9,NBP) = AI(12,I) / (AI(11,I) + 1.E-6)
 OUT(10,NBP) = ND
 OUT(11,NBP) = AI(14,I)
 OUT(12,NBP) = AI(7,I)
 GO TO 40
C* Young bulls
30 NYB = NYB + 1
 YUNG(1, NYB) = AI(1,I)
 YUNG(2, NYB) = AI(2,I)
 YUNG(3, NYB) = AI(4,I)
 YUNG(4, NYB) = AI(27,I)
 YUNG(5, NYB) = AI(28,I)
 YUNG(6, NYB) = AI(29,I)
 YUNG(7, NYB) = AI(30,I)
 YUNG(8, NYB) = YUNG(4, NYB) * SINDEX(1) + YUNG(5, NYB) * SINDEX(2) +
 YUNG(6, NYB) * SINDEX(3) + YUNG(7, NYB) * SINDEX(4)
40 CONTINUE
 IF (NBP .LE. 0) GO TO 50
 CALL ISORT (OUT, 12, NBP, 1, NBP, 8, 3, -1)
 C* List bulls on the screen *
50 WRITE (6,120)
 READ (5,160) CHR
 CALL FINDST(PVN, 1, CHR, 1, 1, NX, 1, &60, &60)
 GO TO 70
60 CALL FINDST(YNG, 1, CHR, 1, 1, NX, 1, &90, &90)
 GO TO 80
70 WRITE (6,130) NBP
 IF (NBP .LE. 0) GO TO 50
 READ(5,170) NOPB
 IF (NOPB .GT. NBP) NOPB = NBP
 WRITE (6,140)
 CALL PNTMAT(OUT, 12, NOPB)
 GO TO 50
80 WRITE (6,140)
 IF (NYB .LE. 0) GO TO 50
 CALL PNTMAT(YNG, 8, NYB)
 GO TO 50
90 STOP

110 FORMAT ('ENTER INDEX WEIGHTINGS FOR MILK, FAT, PROTEIN AND TYPE',
 /, ' THEY MUST NOT SUM TO "0"')
120 FORMAT ('ENTER: "Y" FOR YOUNG SIRES', /, ' OR "P" FOR',
 /, ' PROVEN SIRES', /, ' OR RETURN TO STOP')
130 FORMAT ('HOW MANY SIRES DO YOU WANT LISTED ?', /,
 ' MAXIMUM', 14)
140 FORMAT (33X, 'ETA', 15X, 'CONCEPTION NO. NO. SEMEN', /,
 ' DAU. HERDS PRICE')
150 FORMAT (4F12.3)
160 FORMAT (A1)
170 FORMAT (110)
END

SUBROUTINE PNTMAT(DMAT, NCOL, NROW)
REAL DMAT(NCOL, NROW)
IF (NCOL .LT. 12) GO TO 10
WRITE (6,20) DMAT
RETURN
10 WRITE (6,30) DMAT
RETURN
20 FORMAT (F6.0, 1X, 2F6.0, 1X, 4F6.1, 1X, F6.1,
 F6.2, F7.0, F6.0, F8.2)
30 FORMAT (F6.0, 1X, 2F6.0, 1X, 4F6.1, 1X, F6.1, 22X, '15.00')
END

SUBROUTINE REAMAT(REMATR, ICOL, IROW, INP)
C **
C * This subroutine reads two dimensional matrixes. *
C **
DIMENSION REMATR(ICOL,IROW)
READ (INP) REMATR
10 RETURN
END
CRDBASE

This program reads in the herd summaries from the file **SUMS** (after it has been sorted by herd and year) and the variable names from **VARNAMES** formatted 4X,3(7X,7A4). It stores the summaries as a three dimensional matrix in the file **SUMMARIES** and the names unformatted in **VARIABLES** ready for analysis.

```plaintext
INTEGER *4 NVAR/162/, VARN(7,162), HDNO(20)
REAL *4 TSUM(7,24,162)
1 SLCB(4), SBHB(4), SFCB(4), SBCB(4), SPCB(4), STCB(4),
2 SHCB(4), SDCH(4), SHFB(4), SDCB(4), SDYB(4), SDLF(4),
3 SHFB(4), SBFB(4), SDFB(4), SYSB(4), SPBB(4), SPBI(4),
4 SUBB(4), SUBI(4), SYBB(4), SYBI(4), SIND(4)

ASSIGN 2=SUMS;')
ASSIGN 3=VARNAMES;')
ASSIGN 7=VARIABLES;')
ASSIGN 8=SUMMARY;')
SET UVCHECK=OFF;')

CALL FTNCMD ('ASSIGN 2=SUMS;')
CALL FTNCMD ('ASSIGN 3=VARNAMES;')
CALL FTNCMD ('ASSIGN 7=VARIABLES;')
CALL FTNCMD ('ASSIGN 8=SUMMARY;')
WRITE (6, 100)
READ (5, 110) NY, NH, NG, IFR
ING = 0
IG = 0
NR = 0
LH = 0
IF (IFR .GT. 10 DO 30 I = 1, LH
   HDNO(LH) = IH
   IHL = (IH - 1) * 100
30  IH = I + IG
   IH = I + IG
   LCH = IH + 1
   IF (LCH .NE. IH .OR. LY .NE. J) GO TO 85
READ (2,END=60) LCH, LY, N1, SP, SB, R1, R2, R3, R4, N2, SP2,
1   SB2, R5, R6, R7, R8, R9, R10, R11, P1, P2, P3, P4, P5, P6,
2   P7, P8, P9, P10, C1, C2, C3, C4, C5, C6, C7, T1, T2,
3   T3, T4, T5, T6, T7, T8, T9, T10, T11, N3, SLCB, N4,
4   SBHB, N5, SPCB, N6, SBCB, N7, STCB, N8, SDCB, N9, SHCB,
5   N10, SDCB, N11, SYB, N12, SYB, N13, SDYB, N14, SDLF,
6   N15, SHFB, N16, SBFB, N17, SDFB, N18, SYBB, SPBB, SPBI,
7   SUBB, SUBI, SYBB, SYBI, SIND
   IF (LCH .NE. IH .OR. LY .NE. J) GO TO 85
TSUM(J,LH,1) = N1
TSUM(J,LH,2) = SP(1)
TSUM(J,LH,3) = SP(2)
TSUM(J,LH,4) = SP(3)
TSUM(J,LH,5) = SB(1)
TSUM(J,LH,6) = SB(2)
TSUM(J,LH,7) = SB(3)
TSUM(J,LH,8) = SB(4)
TSUM(J,LH,9) = R1
TSUM(J,LH,10) = R2
```
TSUM(J,LH,11) = R3
TSUM(J,LH,12) = R4
TSUM(J,LH,13) = N2
TSUM(J,LH,14) = SP2(1)
TSUM(J,LH,15) = SP2(2)
TSUM(J,LH,16) = SP2(3)
TSUM(J,LH,17) = SB2(1)
TSUM(J,LH,18) = SB2(2)
TSUM(J,LH,19) = SB2(3)
TSUM(J,LH,20) = SB2(4)
TSUM(J,LH,21) = R5
TSUM(J,LH,22) = R6
TSUM(J,LH,23) = R7
TSUM(J,LH,24) = R8
TSUM(J,LH,25) = R9
TSUM(J,LH,26) = R10
TSUM(J,LH,27) = P1
TSUM(J,LH,28) = P2
TSUM(J,LH,29) = P3
TSUM(J,LH,30) = P4
TSUM(J,LH,31) = P5
TSUM(J,LH,32) = P6
TSUM(J,LH,33) = P7
TSUM(J,LH,34) = P8
TSUM(J,LH,35) = P9
TSUM(J,LH,36) = P10
TSUM(J,LH,37) = C1
TSUM(J,LH,38) = C2
TSUM(J,LH,39) = C3
TSUM(J,LH,40) = C4
TSUM(J,LH,41) = C5
TSUM(J,LH,42) = C6
TSUM(J,LH,43) = C7
TSUM(J,LH,44) = T1
TSUM(J,LH,45) = T2
TSUM(J,LH,46) = T3
TSUM(J,LH,47) = T4
TSUM(J,LH,48) = T5
TSUM(J,LH,49) = T6
TSUM(J,LH,50) = T7
TSUM(J,LH,51) = T8
TSUM(J,LH,52) = T9
TSUM(J,LH,53) = T10
TSUM(J,LH,54) = T11
TSUM(J,LH,55) = N3
TSUM(J,LH,56) = SLCB(1)
TSUM(J,LH,57) = SLCB(2)
TSUM(J,LH,58) = SLCB(3)
TSUM(J,LH,59) = SLCB(4)
TSUM(J,LH,60) = N4
TSUM(J,LH,61) = SBHB(1)
TSUM(J,LH,62) = SBHB(2)
TSUM(J,LH,63) = SBHB(3)
TSUM(J,LH,64) = SBHB(4)
TSUM(J,LH,65) = N5
TSUM(J,LH,66) = SPCB(1)
TSUM(J,LH,67) = SPCB(2)
TSUM(J,LH,68) = SPCB(3)
TSUM(J,LH,69) = SPCB(4)
TSUM(J,LH,70) = N6
TSUM(J,LH,71) = SBCB(1)
TSUM(J,LH,72) = SBCB(2)
TSUM(J, LH, 73) = SBCB(3)
TSUM(J, LH, 74) = SBCB(4)
TSUM(J, LH, 75) = N7
TSUM(J, LH, 76) = SPCB(1)
TSUM(J, LH, 77) = SPCB(2)
TSUM(J, LH, 78) = SPCB(3)
TSUM(J, LH, 79) = SPCB(4)
TSUM(J, LH, 80) = N8
TSUM(J, LH, 81) = STCB(1)
TSUM(J, LH, 82) = STCB(2)
TSUM(J, LH, 83) = STCB(3)
TSUM(J, LH, 84) = STCB(4)
TSUM(J, LH, 85) = N9
TSUM(J, LH, 86) = SHCB(1)
TSUM(J, LH, 87) = SHCB(2)
TSUM(J, LH, 88) = SHCB(3)
TSUM(J, LH, 89) = SHCB(4)
TSUM(J, LH, 90) = N10
TSUM(J, LH, 91) = SDCB(1)
TSUM(J, LH, 92) = SDCB(2)
TSUM(J, LH, 93) = SDCB(3)
TSUM(J, LH, 94) = SDCB(4)
TSUM(J, LH, 95) = N11
TSUM(J, LH, 96) = SLYB(1)
TSUM(J, LH, 97) = SLYB(2)
TSUM(J, LH, 98) = SLYB(3)
TSUM(J, LH, 99) = SLYB(4)
TSUM(J, LH, 100) = N12
TSUM(J, LH, 101) = SSYB(1)
TSUM(J, LH, 102) = SSYB(2)
TSUM(J, LH, 103) = SSYB(3)
TSUM(J, LH, 104) = SSYB(4)
TSUM(J, LH, 105) = N13
TSUM(J, LH, 106) = SDBB(1)
TSUM(J, LH, 107) = SDBB(2)
TSUM(J, LH, 108) = SDBB(3)
TSUM(J, LH, 109) = SDBB(4)
TSUM(J, LH, 110) = N14
TSUM(J, LH, 111) = SLFB(1)
TSUM(J, LH, 112) = SLFB(2)
TSUM(J, LH, 113) = SLFB(3)
TSUM(J, LH, 114) = SLFB(4)
TSUM(J, LH, 115) = N15
TSUM(J, LH, 116) = SHFB(1)
TSUM(J, LH, 117) = SHFB(2)
TSUM(J, LH, 118) = SHFB(3)
TSUM(J, LH, 119) = SHFB(4)
TSUM(J, LH, 120) = N16
TSUM(J, LH, 121) = SFBF(1)
TSUM(J, LH, 122) = SFBF(2)
TSUM(J, LH, 123) = SFBF(3)
TSUM(J, LH, 124) = SFBF(4)
TSUM(J, LH, 125) = N17
TSUM(J, LH, 126) = SDFB(1)
TSUM(J, LH, 127) = SDFB(2)
TSUM(J, LH, 128) = SDFB(3)
TSUM(J, LH, 129) = SDFB(4)
TSUM(J, LH, 130) = N18
TSUM(J, LH, 131) = SYSB(1)
TSUM(J, LH, 132) = SYSB(2)
TSUM(J, LH, 133) = SYSB(3)
TSUM(J, LH, 134) = SYSB(4)
TSUM(J,LH,135) = SPBB(1)
TSUM(J,LH,136) = SPBB(2)
TSUM(J,LH,137) = SPBB(3)
TSUM(J,LH,138) = SPBB(4)
TSUM(J,LH,139) = SPBI(1)
TSUM(J,LH,140) = SPBI(2)
TSUM(J,LH,141) = SPBI(3)
TSUM(J,LH,142) = SPBI(4)
TSUM(J,LH,143) = SUBB(1)
TSUM(J,LH,144) = SUBB(2)
TSUM(J,LH,145) = SUBB(3)
TSUM(J,LH,146) = SUBB(4)
TSUM(J,LH,147) = SUBI(1)
TSUM(J,LH,148) = SUBI(2)
TSUM(J,LH,149) = SUBI(3)
TSUM(J,LH,150) = SUBI(4)
TSUM(J,LH,151) = SYBB(1)
TSUM(J,LH,152) = SYBB(2)
TSUM(J,LH,153) = SYBB(3)
TSUM(J,LH,154) = SYBB(4)
TSUM(J,LH,155) = SYBI(1)
TSUM(J,LH,156) = SYBI(2)
TSUM(J,LH,157) = SYBI(3)
TSUM(J,LH,158) = SYBI(4)
TSUM(J,LH,159) = SIND(1)
TSUM(J,LH,160) = SIND(2)
TSUM(J,LH,161) = SIND(3)
TSUM(J,LH,162) = SIND(4)

20 CONTINUE
30 CONTINUE
 IF (NR .GE. NG) GO TO 35
 NR = NR + 1
 IG = IG + 100
 GO TO 10
35 IMS = LH * NY
 DO 40 I = 1, NVAR
 CALL WRTMAT (TSUM(1,1,I), IMS, I, 8)
40 CONTINUE
45 DO 50 I = 1, 54
 READ (3, 120) (VARN(J,I), J=1,7), (VARN(J,I+54), J=1,7),
 1 (VARN(J,I+108), J=1,7)
50 CONTINUE
 CALL INMAT (VARN, 7, 162, 7)
 CALL INMAT (HDNO, LH, 1, 7)
 STOP
60 WRITE(6,130) IH, J
 STOP
85 WRITE (6, 90) IH, J, LH, LY
90 FORMAT (/,' ERROR NOT PROPERLY SORTED OR MISSING HERD YEAR',
1 /, ' LOOKING FOR HERD', I4, ' YEAR', I4,
2 ' FOUND HERD', I4, ' YEAR', I4)
100 FORMAT ('ENTER NUMBER OF: YEARS; HERDS; GROUPS; AND 1 IF NO ',
1 'STUDENT HERDS')
110 FORMAT (6110)
120 FORMAT (4X,3(7X,7A4))
130 FORMAT ('CAN NOT FIND HERD', I4, ' YEAR', I3)
 STOP
END
SUBROUTINE WRTMAT(WRMAT, ISIZ, LBL, INP)
C **
C * This subroutine writes two dimensional matrixes. *
C **
DIMENSION WRMATR(ISIZ)
WRITE (INPLBL) WRMATR
RETURN
END
SUBROUTINE INMAT(IMAT,ICOL,IROW,INP)
INTEGER *4 IMAT(ICOL,IROW)
WRITE(INP) IMAT
RETURN
END
This interactive program does the final statistical analysis and graphing. It reads variable names and numbers from VARIABLES and data from SUMMARIES. Titles and specifications are entered interactively. It does an analysis of covariance with years as the covariate, tests for common slopes within groups and between groups and does a Student Kneuman Keuls test (SNK) where significant differences in slopes or means are found. A graph for each group plots all points and the common regression and and a final graph has all group regression lines and the overall common regression. The statistical analysis is written to the file -STAT and the data to -DAT and the graphs to -PLOT. -PLOT should be copied to the priter if the program was run with the appendix "*PRPLOT", otherwise it should be copied to the plotter.

CURRENT MAXIMUMS: 50 years; 100 herds/group; 10 groups; SNK's test is not done if more than 20 herds/group (to modify look at FINDRG)

INTEGER*4 TNO, HDF, BGDF, TDF, TRDF, GRDF, BDF, MDF, CRDF, GDF,
1 GMDF, IHGN(100,10), IHHN(100), IGN(10), YLABEL(20),
2 FSTYR/1/, LSTYR/14/, GLABEL(13,10), NH(100), VARB(7),
3 VARNAM(7,162), HNO(20)

EQUIVALENCE (YLABEL(14),VARB(1))

REAL*4 COV(50), YIELD(50), HMN(100), HB(100), HA(100), GB(10),
1 GBSE(10), GMN(10), GMNSE(10), GA(10), MSSQ, MMS, MFT, MP,
2 GB(10), GMND(10), HBD(100), HBSE(100), EPX(2), TEPY(2),
3 TSUM(20,40), TEX(20,40), HMND(100)

LOGICAL*1 FALSE/F/, TRUE/T/, FTGP/T/, CONT/F/ , SNG, FTVB/T/,
1 PLTP(10)

DATA MAXGP /10/, MAXYR /7/, MIN /1/, MAXSNK /20/, NTH /9/,
1 NTY /7/, NTY/162/, DSX/10./, DSY/8./

CALL PTNCMD('ASSIGN 1=STUD.SIM;')
CALL PTNCMD('ASSIGN 2=VARIABLES;')
CALL PTNCMD('ASSIGN 3=SUMMARY;')
CALL PTNCMD('ASSIGN 7=-STAT;')
CALL PTNCMD('ASSIGN 8=-DAT;')
CALL PTNCMD('ASSIGN 9=-PLOT;')
CALL DIMVAR (TSUM, TEX, VARNAM, HNO, NTY, NTH)
GO TO 20

10 WRITE (6,320) MIN, MAXYR
20 WRITE (6,220)
READ (5,230) NG
IF (NG .LT. 2) GO TO 160
WRITE (6,240)
READ (5,230) IFY, LY
IF (IFY .LT. MIN .OR. LY .GT. MAXYR) GO TO 10
IAY = IFY - 1
NY = LY - IAY
XMIN = IAY
IDF = NY
IPR = DSX / 2.
ICT = 0
22 XMAX = IPR
IF (IDF .LE. IPR) GO TO 25
ICT = ICT + 1
IPR = DSX * ICT
GO TO 22
25 WRITE (7,170) IFY, LY
WRITE (6,180)
READ (5,190) (YLABEL(L),L=1,20)
WRITE (7,200) (YLABEL(L),L=1,19)
CALL ALSIZE(DSX, DSY)
C *
C * For years find minimum and maximum and calculate mean and
C * variance
C *
X = 0
SX = 0
DO 30 I = IAY, NY
 X = X + I
 SX = SX + I ** 2
 COV(I) = I
30 CONTINUE
CALL SMAT(COV, NY)
XD = SX - X ** 2 / NY
TMNX = X / NY
EPX(1) = COV(1)
EPX(2) = COV(NY)
C *
C * BEGIN LOOP FOR EACH VARIABLE
C *
NVAR = 0
GO TO 40
35 WRITE (6,202) IHNN(IH)
40 NVAR = NVAR + 1
GXD = 0.
GXYD = 0.
GYD = 0.
GCMN = 0.
TY = 0.
TSY = 0.
TSY = 0.
TX = 0.
TNO = 0
TEPY(1) = 1.E10
TEPY(2) = -1.E10
GRSSQ = 0.
WRITE (6,205) NVAR
CALL INIVAR (IAY, NY, VARB, SNG)
IF (SNG) GO TO 45
WRITE (6,210)
READ (5,190) VARB
45 WRITE (7,215) NVAR, VARB
DO 100 I = 1, NG
 HY = 0.
 HSY = 0.
HXY = 0.
HSX = 0.
HX = 0.
HYD = 0.
HXYD = 0.
HXD = 0.
HRSSQ = 0.
IF (.NOT. FTVB) GO TO 50
WRITE (6,250) I
READ (5,190) (GLABEL(L,I),L=1,13)
WRITE (6,260)
PLTP(I) = FALSE
READ (5,280) NH(I), PLTP(l)
WRITE (6,265) NH(I)
CALL IARAY(IHGN(1,1), HNO, NH(I), NTH)
FTGP = FALSE
50 IF (.NOT. PLTP(I)) GO TO 65
DO 60 J = 1, 13
YLABEL(J) = GLABEL(J,I)
60 CONTINUE
CALL ALSCALL (XMIN, XMAX, 0.0, 0.0)
CALL ALAXIS('YEAR', 4, YLABEL, 80)
C *
C * calculate herd sum sq., mean, slope and intercept and add
C * to herd totals
C *
65 JH = NH(I)
DO 90 IH = 1, JH
CALL HRDVAR(YIELD, IHGN(IH,I))
CALL DMAT (YIELD, NVAR)
IHNH(IH) = HN0(IHGN(IH,I))
JHSY = IH + 240
Y = 0.
SY = 0.
XY = 0.
C *
C * Plot points
IF (.NOT. PLTP(I)) GO TO 70
CALL ALGRAP(COV, YIELD, -NY, -JHSY)
70 DO 80 K = 1, NY
Y = Y + YIELD(K)
SY = SY + YIELD(K) ** 2
XY = XY + YIELD(K) * COV(K)
80 CONTINUE
TNO = TNO + NY
HY = HY + Y
HSY = HSY + SY
HXY = HXY + XY
HSX = HSX + SX
HX = HX + X
YD = SY - Y ** 2 / NY
IF (YD .EQ. 0.) GO TO 35
XYD = XY - X * Y / NY
HBD(IH) = XD
HMND(IH) = NY
HMN(IH) = Y / NY
HB(IH) = XYP / XD
HA(IH) = HMN(IH) - HB(IH) * TMNX
HXYD = HXYD + XD
HXYD = HXYD + XD
HXYD = HXYD + XD
HRSSQ = HRSSQ + YD - HB(IH) * XYD
90 CONTINUE
C * Calculate group sums squares, mean, slope and intercept and add to group and overall totals.
C *
NTG = NY * JH
QXD = HSX - HX ** 2 / NTG
QXYD = HXY - HX * HY / NTG
QYD = HSY - HY ** 2 / NTG
GXD = GXD + QXD
GXYD = GXYD + QXYD
GYD = GYD + QYD
GB(I) = QXYD / QXD
GBD(I) = QXD
GMN(I) = HY / NTG
GCMN = GCMN + GMN(I)
GMND(I) = JH * NY
GA(I) = GCMN(I) - GB(I) * TMNX
TY = TY + HY
TSY = TSY + HSY
TXY = TXY + HXY
TSX = TSX + HSX
TX = TX + HX
CRSSQ = QYD - GB(I) * QXYD
GRSSQ = GRSSQ + CRSSQ
CALL SLINE(EPX, TEPY, GB(I), GA(I), -45, PLTP(I))
CALL ALDONE
CRDF = NTG - 2
GMSSQ = HYD - GB(I) * HXYD
GMDF = NTG - JH - 1
CRMS = CRSSQ / CRDF
GMED = SQR(T(CRMS / CRDF))
GMMS = GMSSQ / GMDF
GBED = SQR(T(GMMS / HDX))
HDF = NY * JH - 2 * JH
GDF = JH - 1
IGN(I) = I
IF (JH .LT. 2) GO TO 100
WRITE (7, 217) I
CALL ANCOUT (NTG, QYD, GDF, HDF, HRSSQ, GMDF, GMSSQ, CRSSQ,
1 GCMN(I), GMED, GB(I), GBED, GA(I), HB, HBD, HMN, HMND,
2 HA, IHNN, JH, I)
100 CONTINUE
C *
C * Calculate total sums of squares, mean, slope, intercept and all mean squares, F-values and probabilities
C *
TXD = TSX - TX ** 2 / TNO
TXYD = TXY - TX * TY / TNO
TYD = TSY - TY ** 2 / TNO
TMN = TY / TNO
TB = TXYD / TXD
TSSQ = TYD - TB * TXYD
TDF = TNO - 2
TMS = TSSQ / TDF
GCB = GXYD / GXD
GCMN = GCMN / NG
GCA = GCMN - GCB * TMNX
CMNSE = SQR(T(TMS / TDF))
TRSSQ = GYD - GCB * GXYD
TRDF = TNO - NG - 1
TRMS = TRSSQ / TRDF
CBSE = SQR(T(TRMS / GXD))
GRDF = TNO - 2 * NG
BDF = NG - 1
MDF = NG - 1
WRITE (7, 219)
CALL ANCOUT (TNO, TYD, MDF, GRDF, GRSSQ, TRDF, TRSSQ, TSSQ,
1 GCMN, CMNSE, GCB, CBSE, GCA, GB, GBD, GMN, GMND, GA, IGN,
2 NG, 2)
C *
C * Set axis scale for well placed graph
C *
PWy = 10.
112 PWY = PWY / 10.
PWR = (TEPY(2) - TEPY(1)) / PWY
IF (PWR .LE. 0.) GO TO 112
114 IF (PWR .LT. DSY) GO TO 116
PWY = PWY * 10.
PWR = (TEPY(2) - TEPY(1)) / PWY
GO TO 114
116 SPW = PWY / 10.
IMIN = TEPY(1) / SPW - 1.
IMAX = TEPY(2) / SPW + 1.
IND = DSY
110 IREM = MOD (IMAX-IMIN, IND)
IF (IREM .LE. 1) GO TO 120
ITR = (IND - IREM) / 2
IF (ITR .LT. 1) ITR = 1
IMAX = IMAX + ITR
IMIN = IMIN - ITR
GO TO 110
120 IF (IREM .EQ. 1) IMIN = IMIN + 1
YMIN = IMIN * SPW
YMAX = IMAX * SPW
CALL ALSCAL(XMIN, XMAX, YMIN, YMAX)
CALL ALAXIS('YEAR', 4, VARB, 28)
C *
C * Plot common and group regressions
C *
CALL SLINE(EPX, TEPY, GCB, GCA, -45, TRUE)
DO 130 I = 1, NG
CALL SLINE(EPX, TEPY, GB(I), GA(I), I, TRUE)
130 CONTINUE
140 CALL ALDONE
IF (NVAR .GE. 10) GO TO 150
FTVB = FALSE
WRITE (6,350)
READ (5,360) CONT
IF (.NOT. CONT) GO TO 40
150 CALL OMAT(NH, NG)
WRITE (7,370)
STOP
160 WRITE (6,330)
STOP
170 FORMAT (';', ///, 2X, 'ANALYSIS OF COVARIANCE AND SLOPE TEST ',
1 'WITH YEARS ('', I3, ''-''', I3, ') AS THE COVARIATE', '/,, +',
2 '1', '75(_'))
180 FORMAT ('ENTER THE TITLE FOR THIS RUN', '/', '(LABEL WILL BE ',
1 'TRUNCATED TO 75 CHARACTERS)')
190 FORMAT (20A4)
200 FORMAT ('ERROR: ALL VALUES FOR HERD', I4, ' WERE EQUIVALENT')
205 FORMAT (20A4)
210 FORMAT ('ENTER THE VARIABLE NAME', '/', '(LABEL WILL BE ',
1 'TRUNCATED TO 75 CHARACTERS)')
SUBROUTINE DIMVAR (VAR,TWT,VARNAM,HNO,NVX,NTY,NTH)

*** This subroutine returns an array of the desired yield variable for the given herd over the specified years. It can be simple variables or the weighted average of a number of variables. ***

REAL*4 HERD(50), SWT(50), SN(100), VAR(NTY,NTH), TWT(NTY,NTH)
INTEGER*4 LV(100), LW(100), VARNAM(7,NVX), CVAR(7),
1 HNO(NTH)
LOGICAL *1 TRUE/T/, FALSE/F/, SMP, CHNG
READ (2) VARNAM
READ (2) HNO
KTV = 1
RETURN

ENTRY INIVAR (IAY, NY, CVAR, SMP)
IF (TRUE) GO TO 3
10 WRITE (6,130)
READ (5,140) KTV
GO TO (3, 11, 20), KTV
2 WRITE (6, '155)
3 WRITE (6,150)
READ (5,140,ERR=2) LVS
WRITE (6,160) (VARNAM(J,LVS), J=1,7)
READ (5,145) CHNG
IF (CHNG) GO TO 3
DO 5 I = 1, 7
 CVAR(I) = VARNAM(I,LVS)
5 CONTINUE
SMP = TRUE
READ (3,LVS) VAR
RETURN
11 READ (5, 140) KV
 IF (KV .GT. 20) GO TO 50
 DO 14 I = 1, KV
12 WRITE (6,170) I
 READ (5,140) LV(I), SN(I)
 WRITE (6,180) (VARNAM(J,LV(I)), J=1,7)
 READ (5,140) ICK
 IF (ICK .NE. 0) GO TO 12
14 CONTINUE
SMP = FALSE
RETURN
20 READ (5, 140) KV
 IF (KV .GT. 20) GO TO 50
 DO 40 I = 1, KV
30 WRITE (6,170) I
 READ (5,140) LV(I), LW(I), SN(I)
 WRITE (6,180) (VARNAM(J,LV(I)), J=1,7), (VARNAM(J,LW(I)),J=1,7)
 READ (5,140) ICK
 IF (ICK .NE. 0) GO TO 30
40 CONTINUE
WRITE (6,180)
RETURN
50 WRITE (6,190)
GO TO 10
C *
C *
ENTRY HRDVAR(HERD,NH)
 IF (KTV .GT. 1) GO TO 80
C * Simple variable
60 DO 70 I = 1, NY
 HERD(I) = VAR(I+IAY,NH)
70 CONTINUE
RETURN
C * Calculate weighted average
80 DO 90 I = 1, NY
 HERD(I) = 0.0
 SWT(I) = 0.0
90 CONTINUE
 DO 120 K = 1, NV
 READ (3,LV(K)) VAR
 READ (3,LW(K)) TWT
 DO 100 I = 1, NY
 WT = TWT(I+IAY,NH) * SN(K)
 HERD(I) = HERD(I) + VAR(I+IAY,NH) * WT
 SWT(I) = SWT(I) + WT
100 CONTINUE
 DO 110 I = 1, NY
 HERD(I) = HERD(I) / SWT(I)
110 CONTINUE
120 CONTINUE
130 FORMAT ('HOW MANY SUMMARY VARIABLES ARE TO BE AVERAGED ?', /,
 'PRESS RETURN FOR ONLY ONE.')
140 FORMAT (2110, F10.2)
145 FORMAT (L1)
PROGRAM LISTINGS

150 FORMAT ('ENTER THE VARIABLE LOCATION NUMBER.')
155 FORMAT ('ERROR: DID YOU FORGET A COMMA ?')
160 FORMAT (/ , 'THE VARIABLE IS ', 4X, 7A4, /, 'PRESS RETURN IF OK',
1 '... OR ENTER "T" TO RETRY.')
170 FORMAT ('ENTER THE VARIABLE', 14, ' LOCATION NUMBER,', /,
1 ' THE WEIGHT VARIABLE LOCATION NUMBER,', /,
2 ' AND A REAL NUMBER WEIGHTING FACTOR (OPTIONAL).')
180 FORMAT ('THE VARIABLE IS ', 7A4, /, 'THE WEIGHT VARIABLE IS ',
1 7A4, //, 'PRESS RETURN IF OK...OR ENTER 1 TO RETRY.')
190 FORMAT ('ERROR THE MAXIMUM IS 20', //)
RETURN
END

SUBROUTINE ANCOUT (TOB, TSSQ, MDF, E1DF, E1SSQ, E2DF,
1 E2SSQ, E3SSQ, CMN, CMNSE, CB, CBSE, CA, B, BED,
2 AM, AMED, A, ILBL, NO, IT)
REAL *4 B(100), BEDOOO), AM(100), AMED(100), A(100),
1 AMSE(IOO), BSE(IOO)
REAL *8 TAN(2)/' HERD ', 'GROUP '/
INTEGER *4 TOB, E1DF, MDF, E2DF, E3DF, TDF, CRDF/1/,
1 ILBLO00)
C *
TDF = TOB - 1
TMS = TSSQ / TDF
BSSQ = E2SSQ - E1SSQ
BMS = BSSQ / MDF
E1MS = E1SSQ / E1DF
BFV = BMS / E1MS
BPB = FPROB (BFV, MDF, E1DF)
AMSSQ = E3SSQ - E2SSQ
AMMS = AMSSQ / MDF
E2MS = E2SSQ / E2DF
AMFV = AMMS / E2MS
AMPB = FPROB (AMFV, MDF, E2DF)
CRSSQ = TSSQ - E3SSQ
CRFV = CRSSQ / E2MS
CRPB = FPROB (CRFV, CRDF, E2DF)
C *
C * Output ANCOVA table and table of means, slopes and intercepts *
C *
WRITE (7,300) TOB, TDF, TSSQ, MDF, BSSQ, BMS, BFV, BPB, E1DF,
1 E1SSQ, E1MS, MDF, AMSSQ, AMMS, AMFV, AMPB, CRDF, CRSSQ,
2 CRFV, CRSSQ, E2MS, E2DF, E2SSQ, E2MS
CALL SNK(B, BSE, BED, E1MS, E1DF, ILBL, NO, IT, 2, BPB)
CALL SNK(AM, AMSE, AMED, E2MS, E2DF, ILBL, NO, IT, 1, AMPB)
WRITE (7,310) TAN(IT), CMN, CMNSE, CB, CBSE, CA, (ILBL(I), AM(I),
1 AMSE(I), B(I), BSE(I), A(I), I=1,NO)
RETURN
300 FORMAT (15X, 'ANALYSIS OF COVARIANCE (', 14, ' OBSERVATIONS)' ,
1 , //, 7X, 'SOURCE', 5X, 'DF', 6X, 'SUM SQ', 5X, 'MEAN SQ',
2 5X, 'F-VALUE', 7X, 'PROB', //, 9X, 'TOTAL', 16,
* 2X, G13.5, 3 G13.5, , /, 7X, 'SLOPES', 16, 2X, G13.5,
3 G12.4, G12.4, G11.3, //, 7X, 'ERROR 1', 16, 2X, G13.5,
5 , 2X, 'COMMON SLOPE', 16, 2X, G13.5, G12.4, G12.4, G12.4, G11.3,
SUBROUTINE SNK(AMN, SE, SED, SEMS, NDF, LBL, NS, JS, MS, PR)
C
C * This subroutine completes the calculation of the standard
C * errors, can output the values and standard errors and does
C * a students kneuman kuels test if significant differences and
C * more than two values.
C *
C ***
C*
REAL*4 SE(NS), SED(NS), AMN(NS), AMNLB(2,100), RNG(100)
INTEGER*4 LBL(NS), LSET(100), NLBL(100)
REAL*8 QUAT(3) /* MEAN */ GROUP ' ' COMMON ' ', SLOPE /
LOGICAL*1 SIG
DO 10 I = 1, NS
 SE(I) = SQRT(SEMS/SED(I))
10 CONTINUE
20 IF (PR .GT. .05 .OR. NS .LT. 3) RETURN
IF (NS .GT. 20) GO TO 130
WRITE (7,170) QUAT(JS), PARM(MS)
CALL FINDRG(RNG, NS - 1, NDF)
DO 30 I = 1, NS
 AMNLB(1,I) = AMN(I)
 AMNLB(2,I) = I
30 CONTINUE
CALL ISORT(AMNLB, 2, 100, 1, NS, 1, 3, 0)
LSET(NS) = NS
NI = NS - 1
NSET = 0
LLS = 0
DO 90 I = 1, NI
 IC = MAX0 (1+1, LLS)
 IRV = IC + NS
 DO 50 J = IC, NS
 JC = IRV - J
 CALL SIGCHK(RNG(JC - I), AMNLB(1,I), AMNLB(1,JC), SEMS,
 SED(INT(AMNLB(2,I))), SED(INT(AMNLB(2,JC))), SIG)
 IF (.NOT. SIG) GO TO 60
50 CONTINUE
 LSET(I) = I
 LIS = I
 GO TO 70
60 LSET(I) = JC
LIS = JC
70 IF (LIS .GT. LLS) NSET = NSET + 1
 LLS = LIS
90 CONTINUE
 IF (LSET(NI) .LT. NS) NSET = NSET + 1
100 WRITE (7,160) NSET
LID = 1
DO 120 I = 1, NS
 IF (LSET(I) .LT. LID) GO TO 120
 IL = LSET(I)
 N = 0
 DO 115 J = LID, IL
 N = N + 1
 NLBL(N) = LBL(INT(AMNLB(2,J)))
 115 CONTINUE
 LID = IL + 1
 CALL PRTLN (NLBL, N)
120 CONTINUE
 RETURN
130 WRITE (6,200)
140 FORMAT (/, 6X, A8, 20112)
150 FORMAT (5X, A8, 1X, 20F12.3)
160 FORMAT (6X, ' S.E. ', 20F12.3)
170 FORMAT (/, ' STUDENT NEWMAN KUELS TEST - ', 2A8, '''S', /)
180 FORMAT (/, 3X, 'THERE ARE', 15, ' HOMOGENOUS SUBSETS', /)
200 FORMAT ('MORE THAN 20 SO NO MULTIPLE RANGE TEST')
 RETURN
END

SUBROUTINE PRTLN (LARR, ND)
DIMENSION LARR(ND)
WRITE (7, 10) LARR
 RETURN
10 FORMAT (3X, '(', 16(14,','))
END

SUBROUTINE FINDRG(RNG, N, NDF)
C *
C *for N<20
C *
REAL*4 RNG(N), STUD(35)
INTEGER *4 MDF(6)/20,24,30,40,60,120/
WRITE (7,40) NDF
IF (NDF .GT. 20 .AND. NDF .LE. 120) GO TO 10
READ (1 ' NDF) RNG
WRITE (7,50) RNG
 RETURN
10 LN = 1
20 LN = LN + 1
 IF (MDF(LN) .LT. NDF) GO TO 20
 IHDF = MDF(LN)
 ILDF = MDF(LN - 1)
 DIF = IHDF - ILDF
 DIL = NDF - ILDF
 DFR = DIL / DIF
 READ (1'IHDF) RNG
 READ (1'ILDF) STUD
 DO 30 I = 1, N
 RNG(I) = RNG(I) - DFR * (RNG(I) - STUD(I))
 30 CONTINUE
 WRITE (7,50) RNG
40 FORMAT (3X, 'RANGES FOR ALPHA=0.05 AND', 14, ' DF')
50 FORMAT (1X, 8F10.4)
 RETURN
SUBROUTINE SIGCHK(Q, VL1, VL2, SMS, D1, D2, SIG)
LOGICAL*1 TRUE /T/, FALSE /F/, SIG
SIG = FALSE
TS = SQRT(SMS)
DS = SQRT((D1 + D2)/(2*D1*D2))
CRIT = Q * TS * DS
DIF = VL2 - VL1
IF (DIF .GT. CRIT) SIG = TRUE
IF (DIF .LT. 0.) WRITE (6, 10)
RETURN
10 FORMAT ('PROBLEMS WITH STUDENT KNEWMAN KEULS TEST')
END

SUBROUTINE IARAY (IAR, HNO, IS, MAX)
INTEGER *4 IAR(IS), HNO(MAX)
10 READ (5, 50) IAR
DO 20 I = 1, IS
 DO 15 J = 1, MAX
 IF (IAR(I) .EQ. HNO(J)) GO TO 17
 CONTINUE
 GO TO 30
17 IAR(I) = J
20 CONTINUE
RETURN
30 WRITE (6, 60) I, IAR(I)
GO TO 10
50 FORMAT (1018)
60 FORMAT (/,'THE', I4, 'TH HERD', I4, ' DOES NOT EXIST',/,
1 'RE-ENTER THE LINE')
END

SUBROUTINE SLINE(X, TY, B, A, N, LIN)
LOGICAL *1 LIN
C ***
C * This subroutine plots and labels a regression line and returns *
C * extreme Y's for final graph scale. *
C ***
DIMENSION X(2), Y(2), TY(2)
LOGICAL *1 LIN
C
C** STATEMENT FUNCTION
C
C YV(XV) = A + XV * B
C
C Y(1) = YV(X(1))
Y(2) = YV(X(2))
TY(1) = AMIN1(TY(1), Y(1), Y(2))
TY(2) = AMAX1(TY(2), Y(2), Y(1))
IF (.NOT. LIN) RETURN
NSG = N + 240
CALL ALGRAF(X(1), Y(1), -1, -NSG)
CALL ALGRAF(X(2), Y(2), -1, -NSG)
RETURN
CX = (X(2) - X(1)) / 50.
CX = X(2)
GY = TV(GX)
CALL ALGRAF(GX, GY, -1, -NSG)
IF (NSG .EQ. 195) RETURN
GX = GX - 2. * CX
GY = TV(GX)
CALL ALGRAF(GX, GY, -1, -215)
GX = GX - CX
GY = TV(GX)
CALL ALGRAF(GX, GY, -1, -199)
RETURN
END

SUBROUTINE SMAT(COV, NY)
REAL*4 OUT(1000,10), COV(NY), YLD(50)
INTEGER*4 NVC /0/, IC /1/, NHG(10)
NAY = NY - 1
RETURN
ENTRY DMAT (YLD, NVR)
IF (NVC .NE. NVR) IC = 1
NVC = NVR
LC = IC + NAY
N = 0
DO 10 I = IC, LC
 N = N + 1
 OUT(I,NVC) = YLD(N)
10 CONTINUE
IC = LC + 1
RETURN
ENTRY OMAT(NHG,NG)
IY = 0
DO 40 I = 1, NG
 NH = NHG(I)
 DO 30 J = 1, NH
 DO 20 K = 1, NY
 IY = IY + 1
 WRITE (8,50) I, COV(K), (OUT(IY,IV),IV=1,NVC)
20 CONTINUE
30 CONTINUE
40 CONTINUE
50 FORMAT (14, 20F12.4)
RETURN
END