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A B S T R A C T 

The problem of designing a quantal response experiment when estima

tion of the median effective dose (ED50) is of main interest is examined. The 

asymptotic variances of the maximum likelihood estimators of the ED50 for 

various 3 and 5 point designs, using the logit model, are compared to the 

minimum possible which is achieved with an inadvisable 1 point design (Cher-

noff[5]). Alternate criteria for choosing a design that attempt to incorporate 

goodness-of-fit of the model are then examined. 

The modelling of quantal response experiments observed over time is 

also considered. A growth-curve approach to this problem was suggested 

by Carter and Hubert[3], and applied to a data set. The feasibility of this 

approach is discussed, and a simpler, more direct approach is proposed. The 

two models are applied to the presented data set, and the resulting fits are 

compared. The model proposed here appears to fit the data better. Inference 

about the ED50 using the two models is also compared. 
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I. Designs For Quanta! Response Experiments 

Based On Minimum Variance 

1. Description of Quanta! Response Models 

A typical quant al response problem consists of an observation y at a dose 

level x classified into two categories, response and non-response, with proba

bilities P(i) and 1 — P(x), respectively. Take n,- independent observations of 

this type at k dose levels observing the number of responses r,-, t = 1 , k . 

If we then assume P(i) = F(x \ 9) where F(x \ 9) is a distribution function, 

and 6 is a vector of parameters, the log likelihood function is given by 

L ® = ^{r.-logF(x.- | 9) + (n,- - r,-)log[l - F(Xi | 0)]} . 

The maximum likelihood estimator (MLE) 9 can then be found for 9. De

pending on the choice of F(x \ 9), the maximum likelihood equations, ob

tained by setting the derivative of L(9) with respect to 9 to 0 and solving for 

9, may not have an explicit solution. In this case the MLE must be found 

numerically using an iterative method such as Newton-Raphson. 

The most commonly used models, for quantal response problems, are the 

probit model (Finney[7]) and logit model (Berkson[l]). The probit model is 

obtained by assuming 

F{x | 9) = $(a + fix) 
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and the logit by assuming 

F(x\S) = 9{a + 0x). 

where 

and 

*(o = [i+e-'r1, 
with -co < t < +00 and —00 < a < +00, 0 < (3 < +00 the unknown 

parameters corresponding to 6_. 

Often the main interest in modelling quantal response curves is the es

timation of the particular dose level at which the probability of response is 

50%. Generally the dose level effecting 1?% of the test subjects is denoted 

by EDt?. Thus the 50% response dose is denoted by ED50. For "reasonable 

designs" (design points not too distant from the ED50) estimation of the 

ED50 using the probit and logit models produces similar results. Chapter 

I and Chapter II will deal with the logit model, but a similar development 

could be carried out for the probit model. 

For estimation of the ED50 using the logit model a simple reparameteri-

zation is convenient. Letting fx = — j| and a = j, yields \&(o:+/?x) = 1S r(^ i), 

and ft is the ED50. The information matrix for the MLE, 0 = (/t, &)T is 

T(o\ - UL ( E*=i Wit) E?=i Kzi1>{?i) \ n n 
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where z, = (x,- - fi)/o~, n = £ ) , = 1 n,-, A,- = n,/n, and tp(t) = e'/(l + e*)2, and 

thus the asymptotic variance of / t is given by 

V(A) = /1-1

1(^). 

A question which immediately comes to mind when considering such a quan-

tal response experiment is the optimal experimental design in terms of what 

dose levels to use, the number of dose levels to use, and how to allocate 

subjects to these dose levels. 

2. Optimal Design for Estimation of ED50 

In considering this problem it is useful to first look at a linear regression 

model with 

Y = p1x1 +...+pkxk + e, 

where e is a random variable, with mean 0 and variance v2, and for different 

observations F,- the corresponding e,'s are independent. One formulation of 

the optimal design problem is the following: for x — ( x l } x k ) in a specified 

set S, select n points of S, (xi, :.,xn)} so as to yield a minimum variance 

unbiased estimator of 
fc 

<f> = ^ a i p i = aTp, 
«=i 

where o i , a * are known constants. Elfving[6] gave the following graphical 

solution to this problem (see also Chernoff[5]): Let S* be the convex set 

generated by the points of S and S~, the reflection of S about the origin. 
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Then z, the point at which the ray from the origin through a intersects S*, 

represents the solution in the following way. If z is a convex combination 

of points xt- of S or —x,- of S~ with weights A,-, assign nA,- observations to 

experimental level x,-. The variance of the resulting estimate of <f> will then 

be 

If the nA,- are not integers, this is not an exact solution and slightly under

states the achievable variance. 

Chernoff[5] uses this method to solve a more general problem, which 

includes the optimal design problem of interest here. In the simple regression 

problem with k — 2, 

and the contribution to the inverse of the covariance matrix of j3 based on a 

single observation at (x i ,^) is given by 

J _ / X\ XiX2\ 
1/2 ^ X i Z 2 x\ ) ' 

With the identification 

xt = 
a 

x2 = -zip?{z), 
o 

where z = (x — fi>)/(r, 1(9) in (1.1) is of exactly this form and the design 

problem of minimizing the asymptotic variance of the MLE of $ — a\\i-ra^a 
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can be viewed as the regression problem with 

S = jx = (xXtX2) : -oo < z < +00 j . 

To estimate fi = ED50, let aT = (1}0). The solution shown in Figure 1 is 

to place all observations at the point 2 = 0, (i.e. x = /x); the corresponding 

asymptotic variance of ft would be 

4<72 

v ( A ) n 

For estimation of the ED50, exactly the same design is obtained for the 

probit function; see Chernoff[5]. 

Of course // is unknown, but the situation might arise where there is 

some idea of the value of fi. If this is the case, the above solution would 

suggest putting all the observations at this suspected value of fi. This design 

would not be used in practice, however, since even if the main interest is the 

estimation of the ED50, examination of the fit of the model would also be 

of importance and this design does not allow for any such test. However it 

does give an optimal design with which to compare more realistic designs. 

3. Alternate Multi-point Designs 

In view of the form of the optimal design it seems reasonable to add more 

dose levels while keeping a large number of observations in the vicinity of the 

suspected value of fi. Smith, Savin, and Robertson[13] looked at the maxi

mum likelihood estimates of the ED50, for the logit model, and their rate of 
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convergence to normality, for some 5 and 8 point designs. Their main con

clusion was: when inference about the ED50 is of main interest, symmetric 

(about n) designs are advisable and extreme response probabilities should 

be avoided. In view of this work, this section considers some symmetric 

(about /J.) multi-point designs and compares them to the optimal design for 

estimation of the ED50. Table I shows a number of such 3 point designs and 

the resulting asymptotic variances of fi for the logit model. P(x) = ^(^^) 

is assumed known at 3 points, and A is the fraction of observations at each 

of dose levels X\ and x3, where P(xx) = 1 — P(x3) is given at the top of the 

table. The remaining observations are assumed to be taken at x2 = where 

P(x2) = (̂0) = 0-5. * From Table I it can be seen that, depending upon the 

range of P(x) around P(/i) = 0.5 in which one is interested, relatively high 

efficiency can be acheived. These 3 point designs yield at least an heuristic 

check on the fit of the model in this range (could at least check assumed 

symmetry, for example). With an increased range of interest the fraction 

of observations one must put at ft to acheive the same efficiency increases: 

1) for fixed P(x), efficiency decreases as A increases; and 2) for fixed A, effi

ciency decreases as P(x) increases. Table II shows a similar relationship for 

5 point symmetric designs. Here X\ is the fraction of the n observations put 

at both xi and x5, with P ^ ) = 1 — P(x5). Similarily, A 3 is the fraction of 

* Depending on n, the total number of observations, these designs could 

lead to non-integer allocations. 
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the n observations put at both x2 and x 4 i with P(x2) = 1 — P(x4). P(zi) 

and P(x2) are given at the top of each table. The remaining observations 

are placed at x3 = fi where P ( i 3 ) = (̂0) = 0.5. 

From Table I and Table II it seems reasonable to assume that, if the 

main interest is estimation of the ED50, and goodness-of-fit of the model is 

only of interest in a moderate region of P(x) about P(/x) = 0.5 (say 0.2 < 

P(z) < 0.8), then given a good initial guess of fi and tr, a pyramid type 

design, symmetric about ft and within the region of interest, will yield high 

efficiency. This type of design also allows some assessment of goodness-of-fit 

of the model. 

Of course the guessed values of fi and a used to design the experiment 

could be quite poor. Of interest then is the robustness of this type of design 

to poor initial guesses of fi and a. To address this question assume that a is 

known but our value of fi is incorrect. Suppose the experiment is designed 

assuming P(zo) = 0-5, but P(xo) actually equals p*. This implies 

x0 - n 

or 

fi — x0 — a * (p*) = XQ - (7 log 
1-p* 

So for any dose level x the actual value of P(x) is 

X - XQ 

a 
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where 7 = log{p*/(l — p*)}, but the design assumes: 

P(x) = * ( ^ ) . 

From this the actual asymptotic variances of the designs in Table I and Table 

II can be calculated given any specific guessed values of fi. Table III gives 

the resulting efficiency (to the optimal) of the 3 point design from Table I, 

with P(xi) = 0.2, for incorrect values of fi. The experiment was designed 

assuming P(x0) = 0.5. The actual value of P(x0) is given at the top of each 

sub-table. Note that as A approaches 0 the V(/t) approaches +00 for any 

incorrect guess of fi. Table IV gives the same results for the 5 point design 

from Table II, with P(xi) = 0.2 and P(x2) = 0.4. These two designs could 

be thought of as competitors in the situation where goodness-of-fit is only 

of interest in the range 0.2 < P(x) < 0.8. The tabulations show that the 

pyramid designs have higher efficiency if the guessed value of fi is reasonably 

good, but the equal allocation designs are more robust to poor guesses of fi. 

The question of robustness can also be addressed without assuming a 

is known, but the evaluations become less decipherable. It should be noted 

that incorrect guesses of fi affect the symmetry of the design, while incor

rect guesses of a affect the distance from fi at which the design points are 

taken. So, though all-encompassing statements are difficult, some idea of the 

relative importance of the accuracy of guesses of fi and a can be obtained 

by comparing the effect of poor guesses of fi, outlined in Table III, and the 
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effect of decreasing P(xi) in Table I. 

4. An Example 

The Department of Fisheries and Oceans, Vancouver BC recently spon

sored a survey of sport fishing in British Columbia. * As part of the analysis 

of the data collected, the logit quantal response model was used to estimate 

the economic value of sport fishing in BC tidal waters. Along with some 

background information, four questions were asked of fishermen returning to 

docks in four major fishing areas on Vancouver Island: 

1) How many days do you plan to go fishing between now and the end 

of the next month? D days 

2) Suppose you were offered D (days) xy = Dy dollars to give up fishing 

in tidal waters until the end of next month. Would you accept the offer? 

No___ Yes___ 

3) How much did you spend on your fishing trip today? (Include costs 

such as, bait, gasoline, boat rentals. Do not include equipment costing more 

than $100) $ 

4) Now imagine that the cost of fishing in BC tidal waters increased. If 

the cost of your fishing trip had been z dollars higher today would you still 

have gone fishing? No Yes 

* Economic Valuation of the BC Tidal Sport Fishery. DPA Group Inc. 

Vancouver BC, February 1985. 
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In question 2 the amount offered, y, can be viewed as the dose level with 

the answer a binary response. Similarily in question 4, the increased fishing 

cost, zt can be viewed as a dose level with the answer a binary response. Of 

main interest in this study was the ED50 for each of the four geographical 

areas, since the ED50 represents an estimate of the net "average value" per 

angler day of the sport fishing experience. The Department of Fisheries and 

Oceans set 30 dose levels for each question ranging from $2 to $80 per day 

for question 2 and $1 to $50 for question 4, and specified a target of an equal 

number of observations at each dose level. As the survey continued it became 

apparent the dose levels chosen were a bit low in terms of symmetry about 

the ED50; hence, the range of dose levels was extended for the second half 

of the study. For question 2 the dose range was extended to include $2 to 

$200 and for question 4 to include $1 to $100 with equal allocation at each 

dose level from this point on. Thus overall there were approximately twice as 

many observations on the dose levels in the initial range as the added ones. 

Question 4 for the Sechelt area will be used for comparisons of this design to 

the designs of Section 2. The maximum likelihood estimates, (t and a, for ft 

and a , and the variance of ft obtained in this study, based on the n = 382 

observations are as follows: 

ft = 41.34, & = -13.05 

Y{ft) = 7.40. 
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Due to the nature of the question, the higher the dose the fewer the number 

of positive responses, and thus the negative value of a. 

If we assume the estimated values are in fact the exact values of // and a, 

then comparisons can be made. If the 5 point design of Table IV (P(xi) = 

0.2, P(i2) = 0.4) had been used with Ai = 0.05 and \ 2 = 0.2, the estimate 

of ft obtained would have had asymptotic variance less than above, as long 

as the initial guess fi0 of fi was in the range 31 < fi0 < 51.5, assuming a had 

been guessed correctly. If the correct value of p and a had been guessed the 

attainable V(/i) with this 5 point design would have been (see Table II): 

V(/i) = 4.22 • (13.05)2/382 = 1.88, 

and n = 98 would have been sufficient to attain the asymptotic variance of 

7.40 achieved in the study. Figure 2, a graph of V(/i) vs po, shows explicitly 

the relationship between fto and the achievable variance using this 5 point 

design and the variance obtained in the study (7.40). Table V gives /i, a, 

and V(£) obtained in the study, as well as the attainable asymptotic V(/z) 

using the above 5 point design with correct guesses of fi and a for question 

2 and 4 at each of the geographical regions considered. 

In this survey it is apparent that no accurate knowledge of fj, and a was 

available prior to designing the experiment. However the use of such a large 

number of dose levels does not seem to be warranted. In addition to the 

loss of efficiency which has been demonstrated, the use of a large number 
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of dose levels must have greatly complicated the study due to the need for 

randomization and balancing over both time and regions. It should also be 

noted that, in this study some of the dose levels used obviously implied a 

priori extreme probabilities of response. The extreme dose levels close to zero 

provided essentially no information about the ED50. It would seem that more 

realistic lower bounds could have been possible. As noted in the previous 

section, numerical work suggests that this could affect the asymptotics used 

in inference about the ED50. 

The initial design of equal allocation to 30 dose levels between $2 and $80 

(for question 2) seems to indicate a willingness to assume $2 to $80 encom

passes a reasonable range of P(z) about the ED50, but with no committment 

to any specific point within this range as an initial guess of fi. A 5 point 

design with equal allocation at dose levels equally spaced between $2 and $80 

would have competitive variance for any value of //, and represents relatively 

the same amount of prior knowledge while greatly simplifying the survey. 

To illustrate this Table VI compares the attainable variance of jj, using equal 

allocation to the 30 dose levels used initially in the study to the attainable 

variance of /t using equal allocation to the 5 points ($8, $24, $40, $56, $72) for 

various values of /i, and assuming a = —13.05, the value obtained for Sechelt 

question 4. It should also be noted that, when it became apparent in the 

study that the choice of dose levels was too low, and that more were to be 

12 



added, a sequential approach could have been used to choose the next set 

of dose levels. A reasonable approach would be to estimate fi and a using 

the information already obtained, and design the second half of the exper

iment assuming these are the true values of fi and a (see Wetherill[14], for 

example). 

13 



II. Alternate Criteria For Design Of Quanta! 

Response Experiments 

1. Introduction to the Problem 

When designing a quantal response experiment where estimation of fi, 

the ED50, is of main interest, minimizing the asymptotic variance of fi, the 

M L E of fi, with respect to dose allocation and number of doses, given a good 

initial guess 9Q = (yito,o"o) of £ = (A*)̂ )) leads to an inadvisable design as 

described in chapter I. One would like some alternate criterion which will 

assure some ability to test the goodness-of-fit of the presumed underlying 

model. Finney[7] proposed the criterion of minimizing the square of the 

half-length of a fiducial interval for fi, given a good initial guess fi0 of fi. 

Kalish and Rosenberger[8] consider 2 point designs symmetric about x = fi, 

and determine D-optimal, G-optimal, A-optimal, and E-optimal designs. A 

design which minimizes the determinant of J - 1 (9), where 1(9) is the total 

information matrix for 9, is called D-optimal, and a design which minimizes 

the maximum variance of a predicted response over a specific region of the 

explanatory variables is called G-optimal. A-optimality refers to minimizing 

the trace of J - 1 ( £ ) , and E-optimality to minimizing the maximum latent 

root. All of these criterion need a good initial guess of 9, since 1(9) depends 

on 9. 
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2. Alternate Criterion 1 

When modelling a quantal response experiment as described in chapter 

I, the probability of response p(x) at dose level x is assumed to be F(x \ 0) 

for a specified cumulative distribution function F. The maximum likelihood 
A 

estimate 0 of 0 can then be obtained, as well as an estimate of E, the co-
A A 

variance matrix for 0. Using 0, the MLE for p(x) = F(x \ 9) for a given x is 
A 

p(i) = F(x | 0). A possible criterion for designing such an experiment under 

the model assumption is to choose the design D to minimize the expected 
A 

overall distance between F(x \ 0) and F(x \ 0): 

The integral over dose gives an overall measure of the distance between the 

p(x) curve and the true p(x) curve; Kuo[9] uses (a weighted version of) this 

distance measure as the loss function in a Bayesian nonparametric approach 

to the same problem. The criterion then suggests minimizing the expected 

value of this distance over all possible designs D. 

must be evaluated. The asymptotic value can be obtained as a function of S, 

First 

C(D) = Eg 

the covariance matrix of 0. Assuming F(x | 0) can be expanded in a Taylor 

series about F(x \ 0) yields 

15 



which implies 

c{D) = \{f*~[&-®T{%in* i <D)]2<**}. 

In matrix notation this becomes 
•+00 

c(D) = v,{f ™(§jn* 1 a ) T ( i - 9 ) d - o T ( ^ ( * 1 *))<**} 

This implies 

/

~f-oo . •> \ X / \ 

since E(|) = 0. 

For a location-scale model, 9 = (/J,O") t, where F(x | 9) = H^^^) for 

some cumulative distribution function if with density h. In this situation 

and 

aa cr\ a / \ a J 

Substituting these into equation (2.1) yields 

1 f r+oo /«+oo 
C(Z>) = -I V(A) / fc2(0* + V(a) / * 2 fc3(*)rf< 

® I ^ —00 J—00 

+ 2Cov(/x,o-) y * fc2(*)*J. 

Further, if /i(-) is symmetric about 0 then 

/ + t h2{t)dt = 0, 
J—00 

16 



in which case (2.2) reduces to 

C(D) = ^V(fi) J + h?(t)dt + V(a) J + (2.3) 

Finally, for the logit model (H = h = rp) 

+00 1 

—00 " 

and 
' + 0 ° r 1 - 6 

/

-t-00 
e h2(t)dt = 

-00 

Thus for the logit model (2.3) reduces to 

C(^I{iv(/0 + (^)v(*)}, (2.4) 

where V(/i) = / ^ ( ^ J i a n d v ( * ) = ^aa (£) obtained from 1(9) in (1.1). The 

proposal is to minimize C(D) as approximated in (2.4) with respect to A,- = 

n,/n, Xi, and k, where t = 1, This was done numerically (using a 

successively refined grid search) for fixed values of k assuming good initial 

guesses fi0, of fx. For k = 2 the design obtained consisted of: xx and x2 

chosen such that P(ii) = 1 — P(i2) == 0-2 with Ai = A2 = | . Setting k = 3 

and A; = 5 did not change the design obtained. 

As described in Chapter I, Figure 1 provides the basis for determining the 

optimal design for the minimization of the asymptotic variance of any linear 

combination of p, and <J, V(a/i + 6a), where a and 6 are specified constants; 

these designs are 1 or 2 point designs depending on the particular linear 
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\ 

combination of interest. Here we wish to minimize aV(fi) + &V(<r) and the 

covariance term which plays an important role in the above problem does 

not enter. Nevertheless, the situation is similar and it is not surprising that 

a 2 point design is advised. 

Another way of obtaining a design using the C(D) criterion would be 

to choose the design to minimize the asymptotic variance of /t subject to 

noC(D) < Q, where Q is some specified constant. There does not appear to 

be any natural way of specifying this constant however, and this approach is 

not pursued further. 

3. Alternate Criterion 2 

Criterion 1 proposed in the previous section is based on minimizing a 

measure of the expected distance between the actual function, p(x), and the 

M L E , p(x), of p(x) assuming the model is correct. The design problem can 

be viewed in an alternate way. The experiment may be designed to ensure 

a powerful test against some specific deviation from the assumed model. 

Chapman and Nam[4] discuss this criterion for the case 

p(x) = a + fix. 

The discussion is based on the Pearson's chi-square test associated with the 

hypothesis of interest. A formulation of some asymptotic results used by 

Chapman and Nam[4], and general enough for this situation, follows. 

An experiment consists of k sequences of n,- trials (Ef=i n« = n)> where 
18 



each trial may result in an event E or its complement E. Let p,- = p,(0) 

be the probability of event E on the sequence, where 9 = (9i, ...,9m)T 

belongs to a set M in m-dimensional Euclidean space (assume m < k). Let 

Pi — Pt(0°)> where 9° is an interior point of M. Let u,- be the number of 

occurences of E on the t*fc sequence. With suitable conditions' on the set M 

and the functions p,(0), under the sequence ( n —• +00) of alternatives 

HA : Pi = P ° + Ci/y/n, 

the statistic 
fc r , ; M 2 

£ > . - P , - ( ! ) ( I - P , - ( ! ) ) ' 
A 

where 0 is an asymptotically efficient estimator, is asymptotically, for A,- = 

rii/n fixed and as n -> +00, distributed as X2fc_m](A); * n e noncentrality 

parameter A is given by (see Mitra[10]) 

where 

A = <5T [I-B(BTB)-1BT]6, 

CgVA7 -c f\/A7 . , , 

and 

BT = \A7 

(2.5) 

(2.6) 
lx2fc 

- mx2& 

(2.7) 

In the dose response problem E represents a response, and E represents 

no response. The experiment can be constructed to ensure a powerful test 
19 



of the hypothesis 

against 

H0 : P i = F(xi | 9°) 

HA:Pi = F(xi\60) + Ci/VZ 

The unknown vector of parameters 9 can be estimated using maximum like

lihood estimation. The choice of the c,'s depends upon the deviation from 

the model which is of most interest. 

For the logit model F(x \ 9) = * ( ^ ) and 

Y 2 = >p [tx, - n,fr(z,)]2 

where z,- = (z,-/2)/<7, = ^/(l + e') and ip(t) = e'/U+e') 2 as in chapter 

I. The general theory implies that, in the limit, X2 will have a chi-square 

distribution with k — 2 degrees of freedom under Ho, and a non-central 

chi-square distribution with k — 2 degrees of freedom and non-centrality 

parameter A under H&. From (2.6) and (2.7) 

k . k 
8TB = 

and 

BT B = 

(2.8) 

A C 
C D 

(2.9) 

where A = £*=1 Xrftf), C = £ * = 1 A,z?V(z t°), D = £ * = l * . • ( * ? ) W ) , 
and z® = (xi — /x0)/cr0. Thus in this case BTB = ^/(0°), where /(•) is given 
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in (1.1), and A can then be written in terms of (2.8) and (2.9) as follows: 

A = 8T8 - {6TB){BTB)~1(6TB)T. 

Choosing the design to minimize the asymptotic variance /* under the 

restriction A > Ao, where A 0 is some specified constant, might appear to 

be a desirable way to proceed. But the above development is for a particular 

sequence of alternatives. The noncentrality parameter, A , is a function of 

the particular value of the parameter 0° through = (x,- — HO)/(TQ, and we 

only have the noncentrality parameter for all p "close enough" to F(x,- | 0°). 

This is the usual type of situation: if we want to discuss power, we have to be 

willing (able) to specify the magnitude of the departures of interest. But the 

situation in our design problem is more complex; the objective is to ensure 

that designs prescribed will be reasonably sensitive for detecting departures 

from the assumed underlying model logit p(x) = (x — /i)/<r, where the values 

of the parameters are not specified. Also note that the c,'s which appear in 

the noncentrality parameter are deviations at particular x,'s, but these x,-'s 

are part of what is determined in the design problem. Given {xi}*= 1, 0_o, 

and {c,} f c

= 1 , one could determine how the observations should be allocated 

to maximize A, and also what allocations yield A > Ao, but this does not 

really address the design problem of interest. 
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III. Quantal Response Experiments Over Time 

I. Description of Problem 

In chapter I a typical quantal response problem and the standard type 

of analysis for such problems were described. In this chapter a generaliza

tion of this problem is examined, and a method of analysis is proposed. In 

the generalized problem subjects are assigned to one of k fixed dose levels. 

At each of m fixed time points the subjects are classified into one of two 

categories, has responded or has not responded, and the number of subjects 

that have responded is noted. This is done for each dose level separately. A 

number of replications of this basic experiment could be performed. 

Carter and Hubert [3] proposed the following growth-curve model ap

proach to such problems, 

notation 

di the ith dose level, i — 1 ,A ; ; *i = logioK); 
tj the jth time point, j — 1 , m ; 
nn the number of subjects at dose level d,- in replication /, 

1=1,..., L] 

riji the number of subjects at dose level di in replication / 
that respond prior to time tj. 

First a transformation of the raw data was carried out: 

Ziji = arcsin(r,y//n,7)2. 

Then the response variables Ziji were modelled using a polynomial of order 
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q — 1 in time and linear in log10(dose) as follows: 

i 
zm = JZiP'i + P»*xi + Psi)tJi"~1) + tiji 

8=1 

where X^/Li Psi = 0 for each s. The error vectors 

are assumed to be independent and normally distributed with mean 0 and 

completely arbitrary (unknown) covariance matrix E . With the obvious 

vector notation, this model can be expressed as: Z_it are independent random 

vectors with 

z,7~i\rm(/xt7,£) 

where 

« = 1 

Under the stated assumptions, this model can then be analyzed using the 

growth curve methodology of Potthoff and Roy[12]. This has the advantage 

that the maximum likelihood estimators of {3 — (Psi,Ps2 '• s = l,...,q), and 

P — {Psi : s = 1, •-,q'y I = 1, L) have closed form solutions, and under the 

model assumptions all the necessary distribution theory is available. This 

allows straightforward determination of confidence intervals for the ED50 at 

any fixed time point, as well as simultaneous confidence bands for the ED50 

as a function of time, without appealing to asymptotic results. Carter and 

Hubert[3] present the results of an application of this model to a data set 
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consisting of L = 2 replications of a basic experiment involving nf-j = 10 fish 

on each oik = 7 dose groups, all observed at the same m = 3 time points. A 

particular feature of the experiment is that the 10 fish on a particular dose 

group are all contained in a single tank to which a specified concentration of 

a toxic copper substance was administered; thus the experimental units are 

the tanks, while the sampling units are the fish. 

There appear to be some potential difficulties with the use of this model 

in the present context. The first potential difficulty involves the normality 

assumption. For fixed t and /, the possible values of Riji(j = l,...,m) are 

0, l , . . . , n ,7 , but these response variables are further restricted by the rela

tionship Rm < Ri2i < • • • < Rimi- Since arcsin(-)* is a monotonic function, 

the same restriction applies to the transformed response variables Zi3i(j = 

1, m). This immediately raises the issue of the adequacy of the multivari

ate normal approximation for the distribution of Z,it. While any parametric 

analysis will involve some distributional approximation, the use of the multi

variate normal seems particularly questionable in the application presented 

by Carter and Hubert[3] where n,j = 10 (and m = 3). Here a trivariate 

distribution restricted as described above and with each univariate marginal 

distribution supported on the set of points { arcsin(r/10)a : r = 0 , 1 , l o } 

is being approximated by a trivariate normal distribution; the adequacy of 

this approximation would appear doubtful to say the least. 
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The second potential difficulty involves the assumption concerning the 

covariance structure; the Z f l are assumed to be independent and normally 

distributed with unknown covariance matrix S,j = £, where S is of com

pletely general structure, and does not vary with dose or replication. It is 

unclear how such an assumption can be justified; the nature of the response 

variables provides some information concerning the approximate structure 

of E,7, and clearly suggests that E,/ should be allowed to vary from dose to 

dose within each replication. To see this, consider the data for an individ

ual subject. After the dose is administered to the subject at time tQ = 0, 

the subject remains in the no-response category until his (random) time of 

response T, when he becomes a member of the response category where he 

remains from time T onward. Each subject is observed at the same m time 

points t i , t m thereby identifying the interval in which he responded. Sup

pose the response times for the subjects on dose group i and replication / 

are assumed to be independent and identically distributed according to the 

response time distribution Fu: 

Fa(t) = -P{Ta<t)t 

where Tn represents the response time for any one of these subjects. Let 

Pij-l = P ( « y _ i < Tu < t3) = Fn{tj) - F f - , ( *y_i) 

for j = l,...,m + 1 with tm+i = +00, and note that Ylv=\Vwi — Fu{tj). 

If Uiji denotes the number of subjects at dose level i and replication / who re-
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spond between iy_i and tj, then the random vector Uit = (Um,t/,-irn+i,t)r 

is multinomially distributed with index n,/ and cell probabilities p,yj (j — 

1 , m + 1) for each t = 1 , k and I = 1 , L . The data under consider

ation, riji, is an observation of the cumulative count i?fJj = E£=i Uivi- It 

follows that 

Cov(Riji,Rtj>i) = nit(^2p.vt) (* ~ ]C p , v ' ) = f1 ~ ^('/') > 

for > j. As the first step of their approach, Carter and Hubert[3] perform 

what they refer to as a variance-stabilizing transformation: 

Ziji = arcsin(i2t-77/n,7)^. 

Under the above assumptions, the delta method yields the approximate co-

variance structure of Z_u as 

Cov(ZtJ7, Zijn) = 
(E£=i Piui) ( l - EJ '=i P.v/) 

*'\J (Ei = i P . v i ) ( l-Ei = i P . v i ) 

F t7(ty) 1-Ff7(*y0 

for j' > j. When j' = j this becomes 

V(Z l j 7 ) = Ann 

It can be seen that at a given dose and replication 

S,7 = (Cov(Ziji,Zij>i) :;' = l,....m;j' = l,...,m) 
\ / m x i 
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will have more weight on the diagonal with weight decreasing away from the 

diagonal. Also £,7 depends upon both = (p.u, ...,p,-,m+i,t) and n.j, so 

even in the case where the n,j are all equal, E.j will vary across doses and 

replications if, as is anticipated, the pit do. 

Carter and Hubert[3] emphasize that their approach is intended to dif

ferentiate between sampling units and experimental units. In the context of 

their application, they want to allow for the possibility that there may be 

a cause of mortality other than the toxic copper substance that affects all 
r 

of the fish in a tank simultaneously. In this case, there are two sources of 

variation in the mortality counts corresponding to the different time inter

vals; multinomial variation affecting each fish and tank variation affecting 

all of the fish in a tank. Their assumption of a common unknown covariance 

matrix S for the vectors Z_a of transformed cumulative counts appears to be 

an attempt to account for the unknown tank variation. 

While the above discussion does not differentiate between sampling and 

experimental units, this additional source of variation could easily and ex

plicitly be incorporated by a slight extension of the model. Possibly the 

simplest way to do so would be to assume that the vector of cell probabili

ties pit corresponding to the Ith dose group in replication / is itself randomly 

distributed across tanks. If this distribution is taken to be the Dirichlet 
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distribution denned by the density 
m + l w i r , - y i - l 

where w > 0, Tr.y/ > 0 and ]CyLV ~ 1> * n e n * n e unconditional distribu

tion of U^i, the vector of mortality counts, is the Dirichlet-multinomial; see 

Moismann[ll]. Unconditionally, we have 

E(£tf) = na**, 

and 

V(I^i) = n i 7 C« ^diagfo-,) - T T , 7 ^ 

where C,/ = (n,j + w)/(l + w). Thus the covariance matrix is a constant, 

C,i, times the corresponding multinomial covariance matrix based on ?rl7. It 

follows that except for multiplication by the variance inflation factor Cu, the 

covariance structure of Zit is of the same form as described above. 

There are alternate methods of incorporating this additional source of 

variation, but explicit assumptions leading to the result that the Z_it have 

common (completely arbitrary) unknown covariance matrix £ seem difficult 

to identify. It appears this assumption has been made as a matter of conve

nience so that the observed data exhibits the probabilistic structure required 

for the application of the Potthoff-Roy growth-curve methodology. 

An alternate, more direct approach, which would not require any as

sumptions which are clearly incorrect at the outset, would involve an anal

ysis based on the multinomial structure of the vector of mortality counts 
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together with a parametric specification of the underlying response time 

distribution Fu. Such analyses do not incorporate any tank variation which 

may be present; whether such a generalization is required can be subse

quently examined via the use of the Dirichlet-multinomial model in place 

of the multinomial model. Various aspects of statistical inference for the 

Dirichlet-multinomial model, which are relevant to such an undertaking, are 

considered in Brier[2] and Wilson[15]. An alternate analysis along these lines, 

of the data set presented by Carter and Hubert[3], will be pursued in the 

remainder of this chapter. 

2. Proposed Model 

To motivate a more direct method for analyzing this type of problem, 

consider the data corresponding to a single dose level within a particular 

replication: n subjects are treated at dose level d and the cumulative number 

of responses ry are observed at times tj, j = l,. . . ,m. Assume the subjects 

respond independently with 

P(T <t) = F{t) 

where T is the time to response. If Uj equals the number of responses 

between ty_i and tj (uy = ry — ry_x) then 

f { U i — u i , u m + i — um+i) — nl n 

where tQ = 0, tm+1 = +oo, and Ylj=i uj = n 
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Randomization of subjects to dose levels reduces the general problem 

to k independent experiments of this type within each of L independent 

replications. The dose and replication effects could then be incorporated 

by allowing F(t) to be different for different dose levels and replications. 

This is usually done by keeping the form of F(t) fixed, and allowing the 

parameters in F(t) to depend upon dose and replication. In general let F(t) 

be of the form Fft,^), where 0t is a vector of parameters for each /. Then 

the dependence on dose could be incorporated as follows: 

To motivate the choice of and 0_i(d) some preliminary data anal

ysis was performed on the experimental data presented by Carter and Hu

bert^]. Initially an exponential F(t) = 1 — exp(—Xt) was fit at each dose 

level within each replication, and a reasonable fit was attained (X2 = 25.02, 

A 

G2 = 22.81, df = 28). The relationship between the A's and the dose levels 
A A 

was then examined within each replication. The plots of A vs dose, A vs 
A A 

log(dose), log(A) vs dose, and log(A) vs log(dose) all appeared reasonably 

linear, with those involving log(dose) appearing most nearly so. 

This preliminary analysis suggested the exponential distribution might 

provide an adequate model for the time to response. A generalization is 
provided by the Weibull distribution, which has been widely used in time-
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to-response problems. Thus the simple model proposed is 

F(t) = l-exp(-A< 7) 

where X > 0 and 7 > 0, with the dependence on dose and replications 

incorporated as 

F(t I d,l) = 1 -exp(-A,(d)^'(d)), 

where Xi(d) = exp[au + /?jlog(d)] and 71(d) = 7J, with —00 < aj < +00, 

Pi > 0, and 7/ > 0. Viewed as a function of x = loge(«i) for fixed t and /, this 

F(t I x, /) has the form of a cumulative distribution function as is usually 

desired for a dose response problem. This model has a 3L component vector 

of parameters 9 = (9_i : I = 1, ...,L)T where 9^ = (a/,A>7f)r> a n Q l except 

for an additive constant which does not depend upon 9_, the log-likelihood 

function is 

L(9) = £u,-y<log[F(*y I XiA) - F(*y_! | 

where u,yj is the observed number of responses between iy_! and tj at dose 

level i on replication /, and t = 1 , k , j = 1 , m + 1, / = 1 , L , 

3. Estimation and Confidence Intervals for the ED50 

A 

The maximum likelihood estimator 9 for 0_ can be obtained using an iter-

ative method such as the Newton-Raphson method. Provided ni = 2_/,-=1 n,-/ 

is reasonably large for each /, / _ 1 ( £ ) , the inverse of the (total) information 
A matrix for 9, will be a good estimate of the covariance matrix for 9. Although 
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1(9) depends upon £ which is unknown, 1(9) can be used as an estimate of 

1(9). The observed information matrix 

can also be used to estimate / (£) , and is more convenient to use since it 

is evaluated in the course of the Newton-Raphson iteration for £. Then the 

asymptotic normality of maximum likelihood estimators can be used to carry 

out inference for any of the parameters of interest. 

Of particular interest in the present context is inference for the ED50 

at a given time point within a particular replication if replication effects are 

present. Corresponding to the usual situation for quantal response problems, 

for fixed t within replication /, the log ED50 is the point x0i(t) which satisfies 

F(t\xol(t),l)=1-. 

Under the presumed model, this becomes 

*oz(0 = ^(loglog(2) - 7, log(<) - ai], 

and the maximum likelihood estimator of x0i(t) is 

x0i(t) = i[loglog(2) - 7/ log(<) -
Pi 

Confidence intervals for XQI (the dependence on t is suppressed from here 

on) can be obtained using one of the following two methods. Method 1 

assumes that 

x0i ~ N(x0i, V(£oi)) 
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where the variance of z0J is approximated using the delta method. This 

yields 

v(*o,) = *£/-W0/ 

where is the vector of derivatives of z0z with respect to 9. Then IQ1(9) 

and xj)j(l) are used in place of I~l{9) and x^t(£), and confidence intervals for 

x0i at a given time within a particular replication can be obtained. Method 

2 (Fieller intervals) assumes that 

[a, - XoiPi] ~ N(0, V(aj - XQIPI)), 

where aj = [loglog(2) - 7/log(*) - &{]. Forming a probability statement 

about a/ — x0{Pi and solving the resulting quadratic in x0j yields a confidence 

interval for XQI. These confidence intervals for x0/(£), the log ED50, obtained 

by either method can then be transformed to obtain confidence intervals for 

the ED50 at a given t for a particular /. 

4. Goodness-Of-Fit and Model Simplification 

The observed data has a multinomial likelihood. Thus, under the model 

assumptions, expected cell counts estimated via maximum likelihood lead 

directly to goodness-of-fit tests. Letting u,-yi = nn[F(tj \ Xi,§i) — F(tj-\ \ 

Xi, 9j)], providing n is large, we have 

x 2 = Y2 
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and 

G 2 = 2 ^ ; u 0 7 l o g ( ^ ) - X i ( f c m _ 3 ) , 

where i = l,...,fc, j = 1,...,m + 1, / = 1, ...,£>. Under the model assump

tions the limiting chi-square distributions for both X 2 and G2 will be good 

approximations provided not too many of the expected cell counts are small. 

The G2 statistic also gives a method for testing whether eliminating pa

rameters, or representing a group of parameters by a single one, significantly 

affects the fit of the model. An example would be to compare the model 

with parameters 6_x = (aj,/?j,7/;/ = 1,...,L)T to the reduced model with 

parameters 6_2 = (a/,/?/,7;/ = l , . . . , i ) T , thus 7J = 7 for (I — In 

general, if Model 2 is a reduced version of Model 1, then 

a " - " 2 " "1 ~ X[dfModel2-dfModell]* 

In this example: 

dfModel2 - dfModell = [Lkm - 2L - 1] - \Lkm - 3L] = L - 1. 

This yields a method for determining the most parsimonious model. 

5. Application To An Example 

In the previously described example presented in Carter and Hubert[3], 

each of fc = 7 different concentrations of a toxic copper substance was ad

ministered to a single tank of n,j = 10 fish. The cumulative mortality counts 

for each tank were recorded on each of m = 3 days (f0 = 0, t\ = 2, £ 2 = 3, 
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<3 = 4) and the experiment had L — 2 replications. Carter and Hubert fit 

their model with q = 2 (linear in inverse time). The resulting model, 

Ziji = 1-193 - 1.286IT1 + 0.782x,- - 0.935X.J71 + plt + fatj1 

with pn — —P12 = 0.0302 and fai = — P22 = —0.0853, has 6 parameters, 

2 of which model replication effects. Table VII gives the cumulative counts 

reported in the experiment, and the resulting estimates using the above 

model (shown in parentheses). 

The proposed model was fit to this data with 5X = (ax, /?i, 71, c*2,P2,72) 

and seemed to give a very good fit (X 2 = 14.49, G2 = 18.01, df = 36). 

Nested models, with parameters combined as in the previous example, were 

tested to see if the combining of the parameters significantly affected the 

fit, using G2. It seemed reasonable to reduce the model first to £ 2 = 

(ari,/?!, 0:2,#2.7) by combining 71 and 72 into one parameter. If this re

duction did not significantly affect the fit, it would indicate that the rela

tionship between time and the probability of response is the same on the 2 

replications. Further reducing the model to £ 3 = (or 1,a 2,^, 7) would simi-

larily examine the relationship between dose and the probability of response 

over the 2 replications. Finally reducing the model to 9^ = (a,/?,7) would 

indicate whether there are any replication effects. The parameters being es

timated, the X2 and G2 values for each model, and the difference of the G2,s 

between nested models, for all of the models described above, are summa-
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rized in Table VIII. Table VIII also examines the model reductions obtained 

when the 7 parameter is fixed at 7 = 1, both at the 92 = (cn,/?i,c*2>#2>7) 

stage and at the 94 = (a,/3,7) stage, to reduce the model from Weibull to 

exponential. The most parsimonious model was found to be the 3 param

eter model with 9^ = (a,/3,7), which suggests no replication effect. Table 

VIII also shows the significance of the 7 parameter, and thus the Weibull 

generalization.* 

The fitted cumulative mortality counts under Model 4 are given by 

Rijl = " i l 1 - exp(-A(ii)<i) 

with A(z,) = exp(d + f3xi), n« = 10, a = -2.398, 0 = 0-889, and 7 = 1.630. 
A A 

The estimated covariance matrix for 9 = (a, {3,7) is 

(0.1103 -0.0082 -0.0764 \ 
-0.0082 0.0188 0.0053 . 
-0.0764 0.0053 0.0620 / 

Table IX gives the observed cumulative counts and the cumulative counts 

estimated using Model 4 (shown in parentheses) which agree closely with 

the observed counts. Figure 3 shows the fitted dose response curves under 

Model 4 at various fixed time points, and illustrates the general shape of 

the fitted model. Figures 4, 5, and 6 show the fitted dose response curves 

* It should be noted that, due to the small observed cell counts, the 

p-values should not be considered as exact probabilities; nevertheless, the 

summary provided in Table VIII is very clear. 
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at t = 2.0, 3.0, and 4.0 for both Carter and Hubert's model and Model 4, 

and illustrate the difference in shape of the two models. Comparing the fits 

as summarized in Tables 7 and 9 is difficult, but neither model seems to 

clearly fit the data better. One method for comparing the fit of the 2 models 

is to look at X2 and G2 calculated from the expected cell probabilities for 

each model. Though X2 and G2 for Carter and Hubert's model cannot be 

compared to a chi-squared distribution, they can be used as a crude measure 

of the extent of departure from the observed data. For Carter and Hubert's 

model X2 = 17.21 and G2 = 18.99, while for Model 4 the analogous values 

are X2 = 14.76 and G2 = 18.42. Not only does Model 4 yield smaller X2 

and G2 values, but the model has only 3 parameters as compared to Carter 

and Hubert's 6 parameters; overall Model 4 seems to fit the data somewhat 

better than Carter and Hubert's model. 

The ultimate objective of these analyses is inference for the ED50. Table 

X gives point estimates and 95% confidence intervals for the ED50 at some 

specific time points under Carter and Hubert's fitted model, and our fitted 

Model 4; the intervals are obtained using Fieller's method. Figure 7 shows 

pointwise confidence bands for the log ED50 over time for Model 4 using 

the two methods mentioned; the delta method and Fieller's method. Figure 

8 shows confidence bands for the ED50 over time for both models, using 

Fieller's method. It can be seen that the confidence intervals obtained using 
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Model 4 are substantially wider than those obtained by Carter and Hubert. 

Model 4 seems a reasonable model and fits the data very well. There is no 

reason to believe that the confidence intervals obtained are grossly incorrect 

in their coverage probabilities, yet if these coverage probabilities are accurate 

then Carter and Hubert's model is badly overestimating the accuracy of its 

estimate of the ED50 at a fixed time point. 

In general it would not seem advisable to use the model proposed by 

Carter and Hubert[3] in the example they presented. There are some major 

doubts as to the adequacy of the trivariate normal approximation being used 

in this situation. Also the confidence intervals obtained using their model 

in this example appear to be misleading. The approach illustrated in this 

chapter is a simpler and more direct approach to a problem of this type. 
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T a b l e I 

S p t D e s i g n s - S y m m e t r i c A b o u t E D 5 0 

P(x) = 0.05 Efficiency 
0.0 
0.1 
0.2 
0.3 
0.4 
0.5 

4.000 
4.773 
5.917 
7.781 
11.362 
21.044 

1.00 
0.84 
0.68 
0.51 
0.35 
0.19 

P(x) = 0.1 
Efficiency 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 

4.000 
4.587 
5.376 
6.493 
8.196 
11.109 

1.00 
0.87 
0.74 
0.62 
0.48 
0.36 

P{x) = 0.2 
Efficiency 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 

4.000 
4.310 
4.673 
5.102 
5.617 
6.249 

1.00 
0.93 
0.86 
0.78 
0.71 
0.64 

P(x) = 0.3 
{n/a2)V(ii) Efficiency 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 

4.000 
4.132 
4.273 
4.424 
4.587 
4.761 

1.00 
0.97 
0.93 
0.90 
0.87 
0.84 
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Table II 
5pt Designs- Symmetric About ED50 

J°(z,) = 0.1 P(x2) =0.2 
Ai A, (n/<r*)V(fl Efficiency 
0.05 
0.10 
0.15 
0.20 

0.20 
0.20 
0.20 
0.20 

5.05 
5.49 
6.02 
6.67 

0.79 
0.73 
0.66 
0.60 

P(xl) = 0.l P(x2) = 0.3 
Ai A2 (n/«r«)V(/k) Efficiency 
0.05 
0.10 
0.15 
0.20 

0.20 
0.20 
0.20 
0.20 

4.59 
4.95 
5.38 
5.88 

0.87 
0.81 
0.74 
0.68 

P(zi) = 0.2 P(x7) =0.3 
Ai A, in/**)V[fi) Efficiency 
0.05 
0.10 
0.15 
0.20 

0.20 
0.20 
0.20 
0.20 

4.44 
4.63 
4.83 
5.05 

0.90 
0.86 
0.83 
0.79 

P(xi) = 0.2 P(x2) =0.4 
Ai A* Efficiency 
0.05 
0.10 
0.15 
0.20 

0.20 
0.20 
0.20 
0.20 

4.22 
4.39 
4.57 
4.76 

0.95 
0.91 
0.88 
0.84 
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Table III 
8pt Design P(x) = 0.2 

Incorrect Value Of ED50 

P(*o) = 0.3 
A Efficiency 
0.1 
0.2 
0.3 
0.4 

14.37 
8.79 
7.15 
6.55 

0.28 
0.46 
0.56 
0.61 

P(x0) = 0A 
A Efficiency 
0.1 
0.2 
0.3 
0.4 

6.56 
5.57 
5.53 
5.79 

0.61 
0.72 
0.72 
0.69 

P{x0) = 0.42 
A Efficiency 
0.1 
0.2 
0.3 
0.4 

5.74 
5.24 
5.37 
5.72 

0.70 
0.76 
0.75 
0.70 

-

P{x0) = 0.44 
A (n/V')V(/i) Efficiency 
0.1 
0.2 
0.3 
0.4 

5.11 
4.99 
5.25 
5.68 

0.78 
0.80 
0.76 
0.70 

P(x0) = 0.46 
A Efficiency 
0.1 
0.2 
0.3 
0.4 

4.66 
4.81 
5.17 
5.64 

0.86 
0.83 
0.77 
0.71 
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Table IV 
5pt Designs P(xl) = 0.2 P{x2) = 0.4 

Incorrect Value Of ED50 

P{x0 
= 0.3 

A, A, (n/<r»)V(ji) Efficiency 
0.05 0.20 18.73 0.21 
0.10 0.20 12.25 0.33 
0.15 0.20 9.61 0.41 
0.20 0.20 8.23 0.49 

P(*o) = 0.4 
Ai A2 [nfo>)Vifi) Efficiency 
0.05 0.20 7.36 0.54 
0.10 0.20 6.09 0.66 
0.15 0.20 5.65 0.71 
0.20 0.20 5.50 0.73 

P(*o) = 0.42 
A, A2 

Efficiency 
0.05 0.20 6.19 0.65 
0.10 0.20 5.46 0.73 
0.15 0.20 5.25 0.76 
0.20 0.20 5.22 0.77 

P(x0) = 0.44 
A, Aa (n/or»)V(/i) Efficiency 
0.05 0.20 5.32 0.75 
0.10 0.20 4.98 0.80 
0.15 0.20 4.95 0.81 
0.20 0.20 5.02 0.80 

P(*o) = 0.46 
A, A2 Efficiency 
0.05 0.20 4.70 0.85 
0.10 0.20 4.65 0.86 
0.15 0.20 4.73 0.85 
0.20 0.20 4.87 0.82 
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Table V 
Regional Comparison Of Study Design To Spt Design 

Question Region & V(/i)-study V(/i)-5pt 
2 Victoria 60.50 -30.72 45.43 5.00 

P Alberni 138.14 -59.06 49.56 8.38 
Campbell R 79.72 -68.89 94.87 37.72 

Sechelt 60.94 -26.85 13.47 8.62 
4 Victoria 21.11 -8.19 0.59 0.34 

P Alberni 73.18 -24.07 8.18 1.25 
Campbell R 35.60 -13.63 3.24 1.21 

Sechelt 41.34 -13.05 7.40 1.88 

Table VI 
Comparison Of Spt Equal Allocation Design to 

Study Design For Various Values Of (t 

It V(ji) - 5pt V(/i)-study design 
10 8.02 8.12 
20 4.92 4.85 
30 4.01 3.86 
40 3.80 3.68 
50 4.01 4.05 
60 4.92 5.32 
70 8.02 9.23 
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Table VII 
Observed And Expected Cumulative 

Mortality Counts; Carter and Hubert 

Block Time Concentration (ng/l) 
# (days) 0.10 0.20 0.30 0.50 1.00 2.00 2.50 
1 2 0(0.49) 1(0.98) 1(1.33) 2(1.84) 3(2.62) 3(3.49) 4(3.79) 

3 1(0.85) 1(1.79) 2(2.47) 3(3.42) 5(4.81) 6(6.21) 7(6.65) 
4 1(1.06) 1(2.28) 3(3.13) 4(4.30) 8(5.94) 7(7.48) 9(7.93) 

2 2 0(0.60) 1(1.13) 1(1.50) 2(2.03) 3(2.84) 4(3.73) 4(4.03) 
3 1(0.83) 1(1.77) 2(2.44) 3(3.39) 5(4.77) 6(6.18) 7(6.61) 
4 1(0.96) 1(2.13) 2(2.97) 4(4.13) 7(5.77) 8(7.33) 8(7.79) 

Table VIII 
Testing Nested Models 

Model # Parameters X a G 1 <V P AG 3 df P 

1 («i,0i»7i.«2.A.7a) 14.49 18.01 36 large — - — 

2 14.77 18.33 37 large 0.32 1 >0.1 
2* («!,£!, ora,/?2,l) 27.25 26.72 38 large 8.39 1 <0.01 
3 (ai,02,/?,7) 14.75 18.37 38 large 0.04 1 >0.1 
4 («,y?,7) 14.76 18.42 39 large 0.05 1 >0.1 
4* («,/M) 27.29 26.81 40 large 8.39 1 <0.01 

Table IX 
Observed And Expected Cumulative 

Mortality Counts; Model 4 
Block Time Concentration^//) 
# (days) 0.10 0.20 0.30 0.50 1.00 2.00 2.50 
1 2 0(0.36) 1(0.65) 1(0.92) 2(1.41) 3(2.45) 3(4.06) 4(4.70) 

3 1(0.68) 1(1.22) 2(1.70) 3(2.55) 5(4.20) 6(6.35) 7(7.08) 
4 1(1.06) 1(1.88) 3(2.58) 4(3.75) 8(5.81) 7(8.01) 9(8.60) 

2 2 0(0.36) 1(0.65) 1(0.92) 2(1.41) 3(2.45) 4(4.06) 4(4.70) 
3 1(0.68) 1(1.22) 2(1.70) 3(2.55) 5(4.20) 6(6.35) 7(7.08) 
4 1(1.06) 1(1.88) 2(2.58) 4(3.75) 7(5.81) 8(8.01) 8(8.60) 

Table X 
Point Estimates And Confidence Intervals For ED50 

Time x0 (Model 4) 95% CI x0(G &z H) 95% CI 
2.00 2.76 (1.82,4.88) 5.60 (3.99,8.76) 
2.50 1.83 (1.32,2.77) 1.83 (1.61,2.11) 
3.00 1.31 (0.98,1.81) 1.02 (0.93,1.38) 
3.50 0.99 (0.73,1.32) 0.84 (0.68,1.07) 
4.00 0.77 (0.54,1.04) 0.70 (0.56,0.91) 
6.00 0.37 (0.20,0.57) 0.49 (0.37,0.66) 
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Figure 1 
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Figure 4 
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