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Abstract

This thesis consists of two essays. Each essay addresses a research
problem involving some aspects of uncertainty and financial economics.
Essay I deals with the general question of whether classical results in
risk aversion and portfolio choice based on expected utility hypothesis
are robust with respect to recent works in nonlinear utility theories
generalizing expected utility. We investigate the implications of an
axiomatic generalization called weighted utility theory along with the
weaker, but unaxiomatized linear Giteaux utility.

We establish the equivalence among three definitions of individual
global risk aversion, i.e., in terms of conditional certainty equivalent,
mean preserving spread, and conditional risky-asset demand, without any
differentiability assumptions about the preference functional. The only
requirement 1is that the preference ordering be complete, transitive,
consistent with first-degree stochastic dominance, and continuous in
distribution. The equivalence between the first two definitions is also
extended to a comparative context.

We also identify the necessary and sufficient condition for the
single risky asset to be a normal good to a weighted utility maximizer
with concave lottery-specific utility functions. Unlike 1its expected

utility counterpart, which depends only on the agent's initial wealth and
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preferépces, this condition also depends on the characteristics of the
risky asset.

The second essay examines the role of a sequential competitive bid-
ding process in the endogenous determination of interest rates and the
corresponding allocation of loans and savings in a widely observed class
of informal financial markets called the 'rotating credit association'.
Optimal bidding strategies are obtained for individual agents with concave
and time-additive utility functions.

After deriving some comparative statics and efficiency implications
of the individual optimal bidding strategy, we impose further restric-
tions, including risk neutrality, to obtain é tractable form of a Nash
equilibrium bidding strategy. This yilelds, for each agent, an ex post
borrowing, as well as lending, interest rate depending on the history of
the realized winning bids, including the one for the period in which he
won the auction. Weighted by the Nash equilibrium—-induced probability of
winning in each period, ex ante borrowing and lending interest rates

result.

iii



TABLE OF CONTENTS

ABSTRACT ii
ESSAY I

WEIGHTED UTILITY, RISK AVERSION AND PORTFOLIO CHOICE 1

0 INTRODUCTION 2

0.1 Expected Utility and Finance: History 2
0.2 Alternative Preference Theories 6
0.3 Organization of the Essay 10

1 PREFERENCE REPRESENTATION AND STOCHASTIC DOMINANCE 14

1.1 Linear G4teaux Utility, Linear Implicit Utility and Weighted
Utility 15

.2 Fréchet Differentiable Utility 18

.3 Representation 20

.4 Stochastic Dominance 27

P

2 INDIVIDUAL RISK AVERSION 33

2.1 Local Risk Aversion 34
2.2 Global Risk Aversion 40

3 PORTFOLIO CHOICE PROBLEM 58
4 COMPARATIVE RISK AVERSION 67

4.1 Definitions 67
4,2 Characterizations 72

5 DECREASING RISK AVERSION AND THE NORMALITY OF RISKY-ASSET DEMAND
WITH DETERMINISTIC WEALTH 87

5.1 Expected Utility 87
5.2 Non-Expected Utility 89

6 COMPARATIVE AND DECREASING RISK AVERSION INVOLVING STOCHASTIC
WEALTH 103

6.1 Expected Utility 105
6.2 Beyond Expected Utility 110

7 CONCLUSION 117
REFERENCES 124

iv



ESSAY II

COMPETITIVE BIDDING AND INTEREST RATE FORMATION IN AN INFORMAL FINANCIAL
MARKET 130 '

0 INTRODUCTION 131
1 THE GENERAL STRUCTURE AND ACTUAL CASES OF HUI 138

1.1 The General Structure of Hui 138
1.2 Actual Cases of Hui 141

2 THE ECONOMICS OF HUI WITH TWO OR THREE MEMBERS 157

Two-Member Hui without an Organizer 157
Two—Member Hui with an Organizer 161
Three-Member Hui without an Organizer 162

3 THE MODEL FOR AN N-MEMBER HUI WITH AN ORGANIZER 166

Notations 166
Assumptions A 166

4 OPTIMAL INDIVIDUAL BiDDING STRATEGIES 171

4.1 First-Price Competitive Bidding 172
4.2 Second-Price Competitive Bidding 175
4.3 Implications 177

5 A NASH PROCESS OF INTEREST RATE FORMATION 183

6 AN APPLICATION TO COLLUSION AMONG SEVERAL SELLERS UNDER REPEATED
AUCTIONS 192
6.1 The Structure of Rotating Credit Collusion 192
6.2 Assumptions 193
6.3 Nash Equilibrium Bidding Strategies 195

7 CONCLUSION 198
REFERENCES 202
APPENDIX 205

Proof of Lemma 3.1 205
Proof of Theorem 4.1 206
Proof of Corollary 4.5 208
Proof of Corollary 4.7 208
Proof of Theorem 5.1 209



Table

Table

Table

Table

Table

Table

0.1:

l.1:

1.2:

2.1:

3.1:

5.1:

LIST OF TABLES

Examples of Rotational Exchange 133
Cash Flow Patterns of Huil Participants 140
Actual Cases of Hui 143

Ex Post Interest Rates and Profits for A 2-member Hui - An
Example 160

Participant i's Indifferent Cash Flow Patterns in a
Discount-Bid Huil 168

Nash Bidding Strategies and Their Derivatives 188

vi



ACKNOWLEDGMENTS

I wish to thank my supervisory committee - Professors
Robert Jones, Neal Stoughton, and John Weymark - as well as
Professors A. Amershi, Mukesh Eswaran and Hugh Neary for their
helpful comments and suggestions., I am especially grateful to
my supervisor Dr. Robert Jones and Professor John Weymark for
their support and encouragement. I have also benefited from
valuable discussions with Dr. Chew Soo Hong. The secretarial
assistance of Miss Colleen Colclough is deeply appreciated.

vii



ESSAY I

WEIGHTED UTILITY, RISK AVERSION
AND

PORTFOLIO CHOICE



0

INTRODUCTION

0.1 Expected Utility and Finance: History

Given the nature of the topics it studies, finance as a discipline
needs tractable, and yet rich enough theories about preferences under un-
certainty. Due to its simplicity, expected value was once popular as a
criterion for decision making under uncertainty. Investors' risk aver-
sions, evident in the purchase of various types of insurance, the diversi-
fication of portfolios, etc., however cast doubts on its theoretical and
behavioral wvalidity. In response, two approaches, namely the mean-vari-
ance analysis and the expected utility theory, emerged as improved crite-
ria for decision making under uncertainty.

First investigated by Tetens (1789), mean-variance analysis had ;ts
impact on finance only after the works of Markowitz (1952a, 1959) and
Tobin (1958), and has since laid the foundation for modern portfolio
theory. Under certain assumptions, Sharpe (1964), Lintner (1965) and
Treynor (1961) derived the capital asset priﬁing model which establishes
the linear relationship between the expected rate of return on a risky
asset and its market risk. The simplicity and intuitiveness of mean-
variance analysis has led to its widespread acceptance in finance.

Parallel and complementary to mean-variance analysis is the develop-
ment of expected utility which was first axiomatized by Ramsey (1926),

revived by von Neumann and Morgenstern (1947), and refined by Marshak



(1950), Samuelson (1952), Herstein and Milnor (1953), Savage (1954),
Anscombe and Aumann (1963), Pratt, Raiffa and Schlaifer (1964), DeGroot
(1970), Fishburn (1970), Arrow (1971) and others. Derived from a set of
plausible axioms that lead to a simple, tractable representation form, ex-
pected utility has provided the foundation for the microeconomics of un-
certainty in the last three decades.

Despite its tractability, mean-variance analysis suffers from several
theoretical weaknesses. Specifically, Borch (1969) and Feldstein (1969)
showed that mean-variance analysis violates stochastic dominance (i.e., a
lottery may be preferred to another lottery that always delivers a better
outcome with a higher probability) in the sense that, given an indiffer-
ence curve, one can always construct in the better-than region a lottery
which is stochastically dominated by a lottery on the given indifference
curve. !

It is also well known that, under expected utility theory, mean-
variance analysis is valid only if one of the following two assumptions
holds: {1) agents have quadratic von Neumann-Morgenstern utility func-

tions; (2) the underlying random variable is normally distributed. Either

L Borch (1969) showed that, given two lotteries A and B indifferent in the
mean—-variance sense, we can always construct another pair of lotteries
A' and B' such that By = Myt °A.=. Ats Mg = Mgr, O = Ogv, but A' sto-
chastically dominates B'. Specifically, let By > Hgs Oy > Cg, and p =

- 2 - 2 - 2 = - - = Y—-AO.= .-
Cig= ) /TCuy =) 4 Cop=0) 71, A= (=) /(g4=0g), x = Wy-Agy= Ug-Aog,
y1= Ma+t O/ A, yy = pgtog/ A If A' is the lottery of getting x with 1-p
chance and getting ¥ with p chance and B' is the lottery of getting x
with 1-p chance and getting y, with p chance, then A' and B' are such

two lotteries.



requirement is not satisfactory. The normal distribution is at times
overly restrictive in modelling finance phenomena. The quadratic utility
" function, on the other hand, is unappealing because it requires a bounded
domain and implies increasing absolute risk aversiom.

In the area of finance, the following are lines of research that have
direct ties with expected utility theory. Pratt (1964) and.Arrow (1971)
started the literature now known as the theory of risk aversion. Pratt
characterized risk aversion by risk premium and, for an expected utility
decision maker with von Neumann-Morgenstern utility function u, identified
indexes —u"(x)/u'(x) and —xu"(x)/u'(x) as the measure of absolute and re-
lative local risk aversion, respectively (the former is now known as the
Arrow-Pratt index). He further charactérized comparative risk aversion
via risk -premium, probability premium, and the Arrow-Pratt index. He also
identified the class of utility functions which will exhibit decreasing,
constant, or increasing absolute/relative risk aversion, as well as the
operations that will preserve such properties.

Arrow independently established justifications for decreasing abso-
lute risk averison and increasing relative risk aversion. He also charac-
terized, in terms of decreasing absolute risk aversion, the normality of
risky—asset demand in a one-safe-asset—one-risky-asset world where initial
wealth 1s deterministic. In addition, the safe asset will be a luxury
good if the investor's relative risk aversion 1is increasing in his
wealth.

Cass and Stiglitz (1970; 1972) extended Arrow's investigation of
wealth effects into the world of many risky assets. They showed that, if

the agent's preference exhibits a 'separation property' so that the risky



assets as a whole can be viewed as a mutual fund, then Arrow's normality
result will continue to hold for these risky assets collectively. They
also identified the class of utility functions that have the separation
property to either be quadratic or display constant relative risk aver-
sion. Hart (1975) further proved that the separation property is both
necessary and sufficient for multiple risky assets to be normal.

Alternatively, by restricting utility functions to those representing
the same ordinal preferences, Kihlstrom and Mirman (1974) were able to ge-
neralize Arrow and Pratt's characterization of comparative risk aversion
to a world of many commodities and thereby investigate ifs implications
for agents' consumption and savings choice. Motivated by Kihlstrom and
Mirman's definition of risk aversion, Paroush (1975) further proposed a
natural generalization of Arrow-Pratt's risk premium to the world of mul-
tiple commodities.

In another direction, Levy and Kroll (1978), Ross (1981), and
Kihlstrom, Romer and Williams (1981) investigated the case where the in-
vestible initial wealth is random rather than deterministic. It was shown
that, unlike the case of deterministic initial wealth, a more risk averse
(in the sense of Arrow-Pratt) individual need not be willing to pay a
higher premium to insure against a given risk than his less risk averse
counterpart. Ross (1981) proposed a stronger condition under which Arrow-
Pratt's characterization of comparative risk aversion will carry through
even if the initial wealth is random.

While Arrow and Pratt focused their attention on the relation between
properties of the utility function and the behavioral implications of risk

aversion, Rothschild and Stiglitz (1970; 1971) characterized a decision



maker's risk aversion by his response to a particular type of increase in
risk, termed 'mean perserving spread'. They showed that the concavity of
utility functions and the preference for a distribution over its mean pre-
serving spreads are equivalent in their characterization of risk aversion.
Moreover, each of these is more general than the once popular variance
criterion in the sense that the former implies, but is not implied by, the
latter. Following Rothschild and Stiglitz' mean preserving spread con-
cept, Diamond and Stiglitz (1974) proposed a similar notion called 'mean
utility preserving spread' which is useful for characterizing comparative
risk aversion for preferences that are linear in probability distribution.

The above investigations along with others not mentioned here consti-
tute the literature on risk aversion which relies critically on the assum-—

ption that the agent in question maximizes his expected utility.

0.2 Alternative Preference Theories

While expected utility seems to have served finance well, its empiri-
cal validity has been questioned by decision scientists in light of cer-
tain widely reported violations of its imélications, including the Allais
paradox and the concurrence of risk-seeking and risk—averting behavior wi-
thin an interval of monetary outcomes. Given the prevalence and persist-—
ence of these phenomena, the quiet acceptance of expected utility in fi-
nance should not be interpreted as unreserved content. Rather, as will be
illustrated below, it is mainly due to its tractability and the lack of a
viable alternative preference theory. We will, in this section, touch

upon several alternative theories that have been reported in the litera-



ture and then, in the remainder of this essay, focus on two approaches
which hold promise to open some new paths for investigating financial eco-
nomics beyond expected utility.

Misperception-of-Probability Theories

This line of investigations, started by Edwards (1954), attempts to
account for the reported expected utility anomalies by replacing the pro-
bability weights P; in the expected utility expression for a finite lotte-

ry, i.e. Zpiu(xi), by a nonlinear function f(pi) (often interpreted as

some subjective probabilities) which may not add up to unity.
Subsequent adherents to this view include Handa (1977), who adopted
the form Zf(pi)xi, Karmarkar (1978), who normalized the weights using the

form Z[f(pi)/Zf(pi)]u(xi), and Kahneman and Tversky (1979), who edited

lotteries before deciding which of their two evaluation equations to be
applied.
There are at least three problems with any approach whose represen—

tation takes the form Zf(pi,xi). First of all, it can only apply to fi-

nite lotteries. To see this, suppose the probability distribution is con-
tinuous over [a,b]. It is not known how we can calculate Zf(pi,xi) or

f'f(pi,xi).2 Since finance is frequently concerned with problems involving

continuous distributions, this is a serious limitation that casts doubt on

their appeal to financial economists as a general decision rule.

2 This is because the limit of the value Zf(p; ,x;) or ff(pi,xi) of any se-

quence of finite lotteries converging to a continuous probability dis-
tribution does not exist.



Another problem with any Edwardsian theory is its inherent tendency
to violate stochastic dominance. Kahneman and Tversky (1979) added the
detection-of-dominance operation to circumvent fhis difficulty but paid a
steep price in violating transitivity (Chew, 1980; Machina, 1982a).

The third problem with the misperception-of-probability approach lies

in its inability to display global risk aversion except when f(pi) = p.,

i
in which case the expected utility obtains. Global risk aversion, in the
sense of preference for a distribution over any of its mean-preserving-
spreads (i.e. distributions with equal mean but higher variability) is
under expected utility eqﬁivalent to pointwise local risk aversién (i.e.
aversion towards actuarially fair infinitesimal risks). Since global risk
aversion is regarded as an appealing property in finance, financial econo-
mists might be reluctant to replace expected utility by theories which are
inherently unable to display such a preference property.

General Preference Functionals

Motivated by the paradoxes in his name, Allais is probably the first
to consider a preference functional more general than that of expected
utility. He argued that a decision maker's preference is represented by a
function of the moments of the distribution of some 'cardinal psychologi-
cal value' functions. Suppose V is the Allais' preference functional.
Then |

vV = V(ml,mz,...),

where

m, = Jo() PG,

This model is indeed very general and contains both expected utility



and mean-variance analysis as special cases. When the preference depends

only on the first moment m expected utility obtains. 1In Allais' view,

expected utility's inability to describe Allais-type choice behavior is
because higher moments are unduly ignored. Another special case —-— mean-
variance analysis -- results when the cardinal psychological wvalue func-
tion s(x) 1is linear in the underlying monetary outcome x, and only the
first two moments matter.

It is interesting to note that, if s(x) is nonlinear, then V =

V(ml,mz) becomes the preference functional for a 'utility mean-variance'

analysis -— a case yet to be explored. One possible direction is in deve-
loping a 'utility-mean-variance' capital asset pricing model in light of
the success and tenacity of the present mean-variance-based capital asset
pricing model. Based on Borch (1969)'s illustration, however, it is clear
that utility-mean—-variance analysis, 1like mean-variance analysis, will
also violate stochastic dominance.

Two other alternative theories to expected utility also belong in the
category of general preference functionals - one is Machina's (1982a) 'ex-
pected utility analysis' without the independence axiom, the other is
weighted utility theory recently proposed in Chew and MacCrimmon (1979a &
b), Chew (1980; 1981; 1982; 1983), Fishburn (1983) and Nakamura (1984).
The rest of the essay will be devoted to detailed discussions on their as-—
sumptions, representation forms, as well as results potentially interest-

ing to finance.?

3 Other approaches not considered here include the information processing
models (e.g. Payne, 1973), Meginniss' (1977) 'entropy' preference, and
the theory of regret proposed by Bell (1982) and Loomes and Sugden
(1983).

- 9 -



0.3 Organization of the Essay

This essay focuses on comparisons of three preference theories, name-
ly expected utility, weighted utility and linear GAteaux utility, in terms
of their conditions, properties and implications of risk aversion. In
Section 1, we summarize their representatioﬁ functional forms. To avoid
mathematic technicalities, they are all stated as hypotheses. We regard
the consistency with first-degree stochastic dominance as a property that
any useful preference theory must possess. The condition for this proper-
ty under different theories are given.

In Section 2, we investigate the properties and implications of indi-
vidual risk aversion, including local risk aversion and global risk aver-
sion. The distinction is important because they do not coincide beyond
expected utility. Different notions of risk aversion are defined. Among
them are risk aversion in the sense of conditional and unconditional cer-
tainty equivalent, risk aversion In terms of mean preserving spread, and
pointwise local risk aversion. Risk aversion in terms of conditional cer-
tainty equivalent and risk aversion in terms of mean preserving spread are
shown to be equivalent regardless of the underlying preference theory.
This result only requires the preference to be complete, transitive, con-
sistent with first-degree stochastic dominance and continuous in distribu-
tion. On the contrary, some of the risk aversion definitions are only
equivalent under expected utility.

Section 3 introduces portfolio choice problem in a world with one
safe asset and one risky asset. It 1is showed that a risk averse agent

will never short sell the risky asset as long as its expected return is

- 10 -



strictly greater than the safe return. When they are equal, his best
strategy is to invest only in the safe asset. 1If he is a weighted utility
maximizer, then he will invest a positive amount in the single risky asset
if and only if its expected return 1is strictly greater than the safe
return.

We further show that, if an agent will invest in the risky asset only
if its expected return is strictly greater than the safe return, then he
must be globally risk averse in the sense of conditional certainty equiva-
lent. This amounts to the equivalence between global conditional-certain-
ty-equivalent risk aversion and global conditional portfolio risk aversion
for any preference ordering satisfying completeness, transitivity and
first—-degree stochastic dominance.

Section 4 characterizes comparative risk aversion across individuals.
Again, we prove that comparative risk aversion in terms of conditional
certainty equivalent is equivalent to comparative risk aversion in terms
of mean preserving spread without depending on specific utility functional
forms.

In Section 5, we .derive the necessary and sufficient condition for
the risky asset to be a normal good for a weighted utility maximizer.
This result utilizes the explicit functional form of weighted utility, and
is not obtainable under linear G&teaux utility.

In Section 6, stochastic wealth is introduced to the characterization
of decreasing and comparative risk aversion. It appears that weighted
utility and linear G4teaux utility provide more room in allowing addition-
al risks because their utility functions are lottery-specific. The expec-

ted utility results in this section are from Ross (1981). The results be-

- 11 -



yond expected utility were first proved by Machina (1982b) for Fréchet di-
fferentiable utility and later extended by Chew (1985) to linear G4teaux
utility. They are reproduced mainly to complete the spectrum of our com-
parisons.

In this essay, definitions, expressions, lemmas and corollaries are
numbered according to the section and the order in which they appear. For
the convenience -of comparisons across different preference theories, theo-
rems are in general labelled with U, EU, WU or LGU, followed by an Arabic
number. Obviously, EU, WU and LGU stand for expected utility, weighted
utility, linear G&4teaux utility, respectively. U is used when the result
does not depend on a specific preference functional form. The Arabic num-

ber indicates the nature of the result. A summary is given below:

Theorem No. Regarding
1 representation
2 first—-degree stochastic dominance (SD)
3 Arrow-Pratt index
4 pointwise local risk aversion (PLRA)
5 global risk aversion (GRA)
6 nonnegative or positive conditional risky-asset demand
7 comparative risk aversion with deterministic wealth (CRA)
8 decreasing risk aversion with deterministic wealth (DRA)
9 comparative risk aversion with stochastic wealth
10 decreasing risk aversion with stochastic initial wealth

but deterministic wealth increments

11 decreasing risk aversion with stochastic initial wealth
and wealth increments



When there are more than one theorem on the same subject, decimal frac-
tions are used in labelling them. These results are briefly summarized in
Section 7 which then concludes this essay by suggesting some potential
applications of non-expected utility theories in the area of financial

economics.



PREFERENCE REPRESENTATION AND STOCHASTIC DOMINANCE

To obtain a preference representation, one can identify a set of
normatively appealing axioms about preferences, then construct a prefer-
ence functional which satisfies these axioms. Alternatively, one can
start with a general preference ordering with very little a priori res-
trictions, and investigate systematically the implications of successively
imposed structures. While the historical development of expected utility
conformed to the first approach, the latter is useful in providing in-
sights into the meaning of some preference implications which are derived
from expected utility but may not be sensitive to the underlying theore-
tical structures.

Let D denote a space of probability measures on some outcome set
without pre-imposed restrictions. The weakest requirement for a prefer-
ence ordering is the customary completeness and transitivity. We suppose
that such a preference ordering is represented by a utility functional V:
D » R so that, for any F, G € D, F is weakly preferred to G if and only if
V(F) > Vv(G). This rules out any lexico-graphic type preferences.

A preference representation at this level of generality is of little
interest. To identify desirable structure to impose on V, define

F® = (1-o)F + ag, where a € [0,1]. (1.1)

a . ‘g . .
In other words, F 1is a probability mixture of F and G. As @ increases

. . a .
from 0 to .1, r* goes from F to G. The derivative %E F = G-F is called
the 'direction' of F%. The first structure one would consider to impose

- 14 -



on V is naturally some sort of smoothness of V(Fa) as F¥ shifts from F to
G.

Assumption 1.1: V(FY) is differentiable in a.

So far, we have considered probability measures defined on some
outcome space which is very general and may be non-numerical. If we are
simply interested in monetary outcomes, we may only consider probability
measures defined on some interval J of the real line R, allowing J = R as

a special case. We denote by D, the space of such distributionms.

J

1.1 Linear Giteaux Utility, Linear Implicit Utility and Weighted Utility

We may further require that %E V(F® take a specific form. Consider

the following:

Assumption 1.2: For every F € D., there exists a function §(e*;*): J x D, >

J? J
R such that, for every F% = (1-0)F+0G, « ¢ [0,11,
4 vrY = [olx;FHdle(x)-F(x)]. (1.2)

da
In functional analysis,-%a V(Fa) is called the 'GAteaux differential', and
tx;F% the 'Giteaux derivative' or the 'directional derivative', of V(F%
at F¥ in the direction of G-F (Luenberger, 1969). For a utility

functional V satisfying Assumption 1.2, the Giteaux differential is linear

in the direction G-F and may therefore be called a linear G4teaux

preference functional or linear Giteaux utility.

As it turns out, a subclass of linear Gdteaux preference functionals

V can be implicitly defined by the following:



Jox,V(F))dF(x) = 0, (1.3)
where ¢: J% » R is increasing in x and decreasing in V(F). This class of

functionals is called linear implicit utility in Chew (1984). One such

example is given by the following:

Hx,V(F)) = wx)[vx)-v(F)]; ' (1.4)
or equivalently,

#(x,m) = wix)[v(x)-vim)], (1.5)
where m is the certainty equivalent of distribution F. ¢(x,V(F)) is in a
sense a 'utility deviation' of an outcome x from the certainty equivalent
of F.

Let

- 0&(x,V(F))
¢2(X,V(F)) = W'

It can be verified that

ox,V(F)) = "
T8, G, VARG - e VE) s IT R (1.6)
or
o(x,V(F)) - oL
=Th, G, VFDAFGD - xsF): 7 XDy >R (1.7)

is the Gdteaux derivative of the linear implicit utility V (defined by
(1.3)) at F.

This example turns out to be weighted utility —-— a generalization of
expected utility. Specifically, weighted utility is a subclass of linear
implicit wutility with the preference functional V being explicitly given
by

_ Jw(x)v(x)dF(x)

V(F) = WU(F) = I AT CORE (1.8)

where w(x) is strictly positive and called a 'weight function', v(x) is



strictly increasing and called a 'value function'.
With the specific form of V(F), we can obtain its G4teaux differenti-
al as follows:

av(Fh _ dwu(rH
da da

= 1im-1§ [wo(r ™ & -wu(r® |
6+0

1 'fvwdFm.e _ -fvwdFa-J

= lim
80 ® Swdr * 0 fwdr®

= 1:. 1 JfywdF o efwdF % fowdr * fuar * 0

= Lim B - o+ 0 P J
60 JwdF JwdF

~ im L [wd[G-F] fudF % fywdF *0Swd [G-F] |
6+0 ° SwdF * fudF %+ 0 fud [ G-F] Sudr ©

Sowd [G-F] fuwdF % fowdF * fwd [G-F]
JwdF afwdF @

Sowd [G-F]1-WU(F %) Swd [G-F]
Swdr %

STv(x)w(x)-Wu(F Hwix) 1d[c(x)-F(x)]
Sa(x)dF X (%)
= SUx;FHd[6(x)-F(x)], (1.9)

where

ox:FY w(x) [v(x)-Wwu(FrH]
Sa(x)aF *(x)

(1.10)
Thus, we have verified first of all that the Giteaux differential of a
weighted utility functional is linear in the direction G-F. Secondly,
since

JT(x;F)dr(x) = 0,

we have shown that weighted utility is indeed a special case of linear

implicit utility.



1.2 Fréchet Differentiable Utility

Instead of Assumption 1.2, Machina (1982a) assumes that, in moving
from F to G, V is smooth in the sense of Fréchet differentiability, i.e.,
v(G) - V(F) = Lg(G-F) + olG-FlI, (1.11)

where Lo is some linear functional which depends on F. This is equivalent

to assuming that, corresponding to each lottery F, there exists a function
u(x;F) such that

Lp(6-F) = Ju(x;F)AI6-F] = [u(x;F)dG - Ju(x;F)dF. (1.12)

In other words, V(G)-V(F) can be approximated by the difference in the
'expected wutilities' of G and F wusing u(x;F) as a 'local utility
function'.

Given (1.11) and (1.12), it can be verified that

L VEY| Lo = JuGsPaleo-F&]. (1.13)

Thus Machina's Fréchet differentiable utility is also a subclass of linear
Gdteaux utility, It is less general than the latter in requiring the
existence of an Li-metric on Dy (induced by the L'-norm on the linear
space spanned by DJ) so that the little o term in (1.11) is well-defined.
Machina ensures this by restricting distributions under consideration to

those with supports in some compact interval, say [0,M]. We denote by

D[O M] the set of distributions so restricted.
b

The rest of this essay will develop some risk aversion implications
of mainly linear Gdteaux utility and weighted utility. Given the wide-
spread acceptance of expected utility in finance and economics, we will

present the results of expected utility as a benchmark for comparisons.

- 18 -



Before we formally introduce the representations of various prefer-
ence theories, a few clarifications on some assumptions implicitly made
and terms and notations not formally defined will avoid confusion. First

of all, while Fréchet differentiable utility is defined on D[O M]» expec-

ted utility and weighted utility in particular and linear G&teaux utility
in general can be extended to non-numerical outcome space. Since this
essay takes a finance perspective and focuses on monetary outcomes, we
will only present these utility theories with numerical outcomes. In
other words, the von Neumann-Morgenstern utility function of an expected
utility decision maker and both the value and the weight functions of a
weighted utility decision maker are assumed to be J > R mappings, where J
is a subset of R. We will denote by éx the step distribution function

with all mass centered at point x. In other words, éx stands for the lot-

tery of getting x for sure. Sometimes we need to specify the random vari-
able of a distribution. 1In such cases, F;lis used to denote the distribu-
tion of random variable x.

Secondl we use ">" to denote a preference ordering on D_. (or
Y 2, P g

J

D[O M]° depending on the circumstances). For F, G in DJ, "F > G" means F
b
is weakly preferred to G. When F > G and G > F, we say F and G are indif-

ferent, denoted by "F ~G". If F > G and not F ~ G, we say F is strictly

preferred to G, denoted by "F >- G".

Thirdly we use the following labels to shorten our statements:

EU expected utility
WU weighted utility
LIU linear implicit utility



FDU Fréchet differentiable utility

LGU linear Gidteaux utility
At times, we will refer to a decision maker by his preference-representing
functions. For example, we might refer to an expected utility decision
maker with von Neumann-Morgenstern utility function u as 'EU decision
maker u', a weighted utility decision maker with value function v and
weight function w as 'WU decision maker (v,w)', an FDU decision maker with
local utility functions u(x;F) as 'FDU decision maker u(x;F)' and an LGU
decision maker whose preference functional V satisfies condition (1.2) as
'LGU decision maker C(x;F)'. Or, we may identify a decision maker by his
preference functional, i.e. EU for expected utility, WU for weighted
utility, and V for FDU and LGU.

Finally, the terms 'decreasing', 'increasing', 'concave', 'convex',

etc., are used in the weak sense. When the strict sense applies, it will

be obvious by context or so indicated.

1.3 Representation

Hypothesis EUl: There exists a continuous, increasing function u: J + R

such that, for any F, G € DJ,

EU(F) > EU(G) <=> F 2, G

where
EU(F) = [u(x)dF(x). (1.14)
It is known that the utility function u in Hypothesis EUl exists if

and only if the preference ordering > satisfies the following axioms:



\%
i

Axiom 1 (Completeness): For any F, G € DJ, either F > G or G 2

Axiom 2 (Transitivity): For any F, G, H € D if F > G and G > H, then F >

J,
H.

Axiom 3 (Solvability): For any F, G, H € D if F 2 G 2 H, then there

J’
exists a B € (0,1) such that BF+(1-8)H ~ G.

Axiom 4 (Monotonicity): For any F, G € D if F>Gand 1 >8> vy >0,

J’
then PF+(1-B8)G > yF+(1-v)G.

Axiom 5 (Substitution): For any ¥, G, H ¢ D_, and p € [0,1], if F ~ G,

12
then pF+(l-p)H ~ pG+(l-p)H.

Moreover, any u and u* satisfying the relationship

u* = a+ bu, b >0 (1.15)
are equivalent representations for a preference ordering.

The first four axioms of expected utility are innocuous and norma-
tively appealing. Axiom 4 is sometimes called 'mixture-monotonicity'
(Chew, 1983; 1984; Fishburn, 1983), and is equivalent to a property called
'betweenness' (Chew, 1983).

Definition 1.1: A preference ordering 2 on DJ is said to display the

betweenness property if, for any F, G € D satisfying F > G and F* = (1-

J

a)F+oG with a € (0,1), it is always true that F > F®

> G.

~

In words, betweenness means that any probability mixture of two lot-—
teries must be intermediate in preference between them. If F ~ G, then F
~F% ~G. Since F® = (l-a)F+oG for any a € (0,1) lies on the line segment
connecting F and G, the betweenness property implies that the agent's in-
difference curves in any simpléx of 3-outcome lotteries must be straight

lines.



The substitution axiom has been controversial and is the primary
cause for the preference functional EU to be iinear in distribution. Tt
implies that the agent's indifference curves in the above-mentioned sim-
plex must furthermore parallel each other. Many attempts to generalize
expected utility have aimed at relaxing this axiom. We mentioned earlier
that Machina assumes Fréchet differentiability to do away with the strong
substitution axiom. How weighted utility theory does it will be elabora-
ted shortly.

The function u in (1.14) is usually referred to as the (von Neumann-
Morgenstern) utility function. Relationship (1.15) is the affine trans-
formation that defines the uniqueness class of u.

Weighted utility theory is an axiomatic generalization of expected
utility advanced by Chew and MacCrimmon (1979a; 1979b), Chew (1980; 1981;
1982; 1983), Fishburn (1983) and Nakamura (1984). Like expected utility,
and distinct from other alternative approaches mentioned in Section 0, it
is derived from a set of assumptions about the underlying preferences. It
retains the completeness, transitivity, solvability and monotonicity"
axioms of expected utility theory, but weakens its (strong) substitution
axiom via the following:

Axiom 5' (Weak Substitution): For any F, G € D, such that F ~ G and any B

J

€ (0,1), there exists a y € (0,1) such that, for every H €D BF+(1-B)H

32
~ yG+(1-y)H,
Axiom 5' differs from Axiom 5 in allowing y # B. vy and B however
must still satisfy a relationship called 'ratio consistency':

Definition 1.2: For any F, G, H € D

g» and By, By, Yy Y, E (0,1) such that

F ~G and BiF+(1-ﬁi)H ~ YiG+(1_Yi)H for i = 1, 2, if
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v,/ (1-v,) Y,/ (1-v,)
1 1. - 2 2 , (1.16)
Bl/(l—Bl) 62/(1—B2)

then, we say the preferences exhibit the ratio consistency property.

A proof of the foilowing lemma appears in Chew (1983, Lemma 2).
Lemma 1.1: Axioms 1, 2, 4 and 5' imply ratio consistency.

In a simplex of lotteries involving three outcomes x, x, x € J, with
x < x < X as illustrated in Figure 1.1, suppose P is the probability mix-

ture of Gx and Q; such that 6x ~ P. Betweenness and ratio consistency to-

gether implies that the indifference curves must be straight lines which
'spoke out' from a point, say A, on the line connecting éx and P. (A must

be to the right of 6x or to the left of P, i.e. outside of the simplex, or

transitivity will be violated.)

Hypothesis WUl: There exist a strictly increasing function v: J » R and a

strictly positive function w: J * R such that, for any F, G €D

J!
WU(F) > wu(G) <=> F > G,
where .
' _ S~ (x)wx)dF(x)
Wu(F) = Ju(x)dF(x) (1.8)

The v in (1.8) is referred to as the value function and w the weight
function. Suppose another pair of value and weight functions (v¥*,w*) also
represent the same preference ordering. Then v, v*, w and w* must satisfy

the following uniqueness—class transformation relationships:

vk = g%%% (1.17)
w* = (sv+t)w (1.18)

where q, t, r and s are constants satisfying qt > rs and sv+t > 0.
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Figure 1l.1: 1Indifference curves in a simplex of lotteries involving three

outcomes x < x < x
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Note from (1.8) that WU(F) is not linear in F and can be rewritten

as:

WU(F) = fr(x)dF'(x), (1.19)

where

[ Xw(£)dr(e)

P (x)
[FSe(e)ar(e)

(1.20)

Clearly, when w is constant, WU will reduce to EU since F"(x) = F(x).

Because Machina's FDU analysis is not an axiomatic approach, there is
not a representation theorem. For ease of comparison, we restate the
approach Machina proposed as follows:

Hypothesis FDUl: There exists a Fréchet differentiable preference func-

. . 5
tional V: D[O,M] R such that

V(G) - V(F) = Su(x;F)d[G-F] + ollG-F1I. (1.21)
Machina called the Fréchet derivative u(x;F): [0,M] -+ R a local

utility function at distribution F.

To obtain testable implications, Machina further assumed the follow-

ing specific form:
V(E) = [R(£)AF(t) * 2 [ [s(t)dF(e)]? (1.22)

with local utility function

u(x;F) = R(x) * s(x) [s(t)dF(t). (1.23)
This 'quadratic in probability' functional is known to be incompatible
with the betweenness property. 1In a simplex of 3-outcome lotteries, this
means that the agent's indifference curves are in general not straight

lines.



Note that the outcome space in Hypothesis FDUl is D while that

[0,M]

in both Hypotheses EUl and WUl is D When restricted to D both EU

J° fo,m]°®
and WU are also Fréchet differentiable. Furthermore, the functional EU in
Hypothesis EUl has a constant (with respect to distributions) Fréchet
derivative u which does not depend on distribution F so that the term ollG-
Fl in expression (1.21) vanishes.

The requirement of a compact outcome space means that Machina's
approach might not be extendable to lotteries with non—-compact supports.
Since LGU contains FDU as a special case and can allow unbounded outcome

“ we shall adopt LGU as the most general preference functional to be

space,
discussed in this essay. Later in Section 6, we will need to impose more
structure on the linear G4dteaux derivative C of an LGU functional in order
for Machina's results to hold under LGU.

Hypothesis LGUl: There exists a preference functional V: D, > R such that

J

d

RY(FG) = SUx;FHdle(x)-F(x)], (1.2)

where F* = (1-0)F+aG and Cley*): J x D, > R.

We will call C(x;F) the lottery specific (w.r.t. F) utility function

(LOSUF) of V.

It should be pointed out that both FDU and LGU are so general that
one might find them lacking in structural constraints. For instance, it
is not known what transformation defines the uniqueness class for FDU or

LGU type preferences.

“ Once we introduce certainty equivalent risk aversion, the support J is
required to be bounded from below. See Section 2.
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We next examine the conditions needed for each preference functional
to display the normatively appealing property called 'stochastic

dominance'.

1.4 Stochastic Dominance

It is generally agreed that any preference ordering should be
consistent with stochastic dominance defined below:

Definition 1.3: For F, G € D, F is said to stochastically dominate G in

J,

the first degree, denoted by F >! G, if F(x) < G(x) for all x € J. If

moreover F(x) < G(x) for some x € J, then F is said to strictly stochas-

tically dominate G in the first degree, denoted by F >! G.

Graphically, stochastic dominance in the first degree means that F
and G do not cross and F always lies below (i.e. to the right of) G.

Definition 1.4: A preference ordering > is said to be consistent with

stochastic dominance (SD) if F > G whenever F >! G.

In other words, if F always delivers a better outcome with a higher
probability than G, then F ought to be preferred to G. It is easy to

check the following:

a a'

Lemma 1.2: If F >! G and F* = (1-0)F+0G, then F >! F* ! F® >! ¢ for any

a, ' € (0,1) such that a < a',

Therefore, regardless of the underlying preference theory, Axiom 4

. . . . a . . . .
(Monotonicity) implies that V(F ) must decrease in « if V is to be consis-

tent with SD.

Theorem U2 (SD): For F, G € D_, F© = (1-a)F+aG where a € (0,1), and any

J’

preference functional V: D_ *> R satisfying Assumption 1.1,

J
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F >! G implies V(F) > v(G)
~if and only if

F >! G implies :—& V(Fa) < 0.

When V is an EU functional,
a
) d

=94 o
1s —daEU(F )

= 1im-16 EvGE*S - EY ]
60

= lim = {fu(x)d[(1-a- OF+( 0+ 0)G) - Ju(x)d[(1-D)F+ag] }
6-0 ®

= lim & {Ju(x)dF% 8fu(x)d[G-F] - [u(x)dF%}
620 v

= fu(x)d[G-F]

= - fu'(x) [6(x)-F(x)]dx

= fu'(x) [F(x)-G(x)]dx.
Since F(x)-G(x) < 0 by the definition of »! and u'(x) > 0 by Hypothesis
EUl, it is always true that EU is consistent with SD.
Theorem EU2 (SD): Suppose u: J + R is continuous and increasing. Then,

for any F, G € D_, F > G implies EU(F) > EU(G).

3

"u' > 0" is commonly referred to as the necessary and sufficient
condition for EU to be consistent with 8D, Since under EU, u is by
construction an increasing function, Theroem EU2 stresses that the
preferences of an EU decision maker are consistent with SD.

When V is a WU functional, recall that the G&teaux differential of

wo(Fr % is
o4
EED = fe(xs FHal6G0-F )] (1.9)
= - [l6(x)-F(x)1dL(x;F%) (by integration by parts)
= - Jo (x;F He(x)-F(x) 1dx. (1.24)
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If F »! G, then G(x)-F(x) » 0 for all x € J by definition. The nece-

awo(F %

ssary and sufficient condition for i

< 0 is therefore {'(x;F) > 0

for all x € J at all F ¢ DJ.

Theorem WU2 (SD): Suppose w, v are continuous and bounded; v is strictly

increasing and w is strictly positive. Then, for any F, G € Dy,

F >! G implies WU(F) > wWu(G)
if and only if

0(x;F) = wix)[v(x)-WU(F)]/ SwdF (1.25)
is an increasing function of x for all F ¢ DJ;

or, equivalently,
Hx,s) = wix)[v(x)-v(s)] (1.26)
is an increasing function of x for all s e J.

Confirming Theorem U2, the condition for SD under WU is that the
Giteaux differential of WU(F) be decreasing in the direction G-F. Recall
that, under EU where u'(x) > 0 guarantees its consistency with SD, u(x)
also has the functional analytical interpretation of a G&teaux derivative,
but does not depend on the distribution F because the EU representation

EU(F) = Ju(x)dF(x)
is linear in distribution. This observation led Chew and MacCrimmon to
name C(x;F) a 'lottery specific utility function (LOSUF)'. We also apply
the use of this term to the G4teaux derivative of an LGU functional. As
such, Machina's 'local utility function' is also a LOSUF. We avoid using
the term 'local' here since its meaning is different from the 'local' in
'local risk aversion', to be discussed in the next section.

In Theorem WU2, the condition for SD is given in terms of both
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C(x;F): J X D, >R -and ®(x,s): J% > R. Since JwdF is constant given F,

conditions on C(x;F) and &(x,s) are equivalent. As ¢(x,s) is distribu-
tion-free, it may at times offer more intuitive interpretations.
The condition for SD in terms of ¢(x,s) can be written as:

.¢1(x,s) = w' (x) [v(x)-v(s)] + w(x)v'(x) >0, (1.27)

which in turn can be rewritten as:

' 1
¥(§§l > - GT%Téé%ET for all s § x. (1.28)

When [lnw(x)]' exists, (1.28) is equivalent to:

v'(x)

[lnw(x) ]’ < pey o oy g

for all s ; X. (1.29)

Let v = max{v(x)} and v = min{v(x)}. Condition (1.29) can then be

rewritten as

w'(x) v'(x) .

e evy uali [lnw(x)]' ¢ —== if w'(x) >0, (1.30)
wix v=v(x)

W) _ pwx) ]t > - ) if w'(x) <0 (1.31)
w(x) vix)- woix : :

In other words, SD requires the rate of change of lnw(x) be bounded from
above and from below by the RHS of (1.30) and (1.31), respectively —--—
i.e., when w(x) is increasing, lnw(x) cannot increase too fast; when w(x)
is decreasing, lnw(x) cannot decrease too rapidly either.

In the above, we considered multiple distributions. The SD condition
is to guarantee that F will be preferred to G as long as F >! G. 1If we
are concerned with only one particular distribution, what is the meaning
of C being increasing?

Note from expression (1.25) that C(x;F) has the interpretation of a

"weighted utility-deviation from WU(F)" with w(x)//wdF being the weight.



It is therefore not surprising that [C(x;F)dF(x) = 0. The derivative

' (x:F) = w' (x) [v(x)-WU(F) ]+w(x)v' (x)

JudF
- w'i(x) _ w(x) _,
W—IV(X) WU(F)] + Todr v (x) (1.32)
is accordingly a '"marginal weighted utility-deviation from WU(F)" -- the

increase in C(x;F) caused by an infinitesimal increase of x, and is the
combined effect of two forces represented by the two terms in (1.32).
Given a distribution F, suppose x increases marginally to x . WU(F) and
JwdF are comstant. w(x) and v(x) may be viewed as unchanged. v'(x) is
strictly positive. w'(x) may be positive or negative depending on whether
(v,w) is optimistic or pessimistic at x. According to (1.32), when x in-
creases, it causes two effects on (. First, it changes the weight w(x).
Second, it changes the contingent 'sure utility' v(x). 1In (1.32), the
.first term gives the change of ( resulting from the change in weight,
holding the contingent utility-deviation at its initial level. The second
term gives the positive effect on { caused by the increase in the contin-
gent utility, assuming its weight has not changed. There are four possi-

ble cases as listed below:

w'(x) w'(x)

case v{(x)-WU(F) [v(x)-WUu(F)] w(x) v'(x) ¢'(x;F)

JwdF JwdF wdF
(1) + + + + +
(2) + - - + ?
(3) - + - + ?
(4) - - + + .




Obviously, cases (1) and (4) pose no ambiguity. To also have C'(x;F)
> 0 in both case (2) and case (3) requires that the agent be not exces-—
sively pessimisﬁic when x 1s better than his certainty equivalent of the
distribution, and not 'overly-optimistic' either when x is below the cer-
tainty equivalent.

We will repeatedly see later that, as far as preference properties
are concerned, C{(x;F) is the WU equivalent of the von Neumann-Morgenstern
utility function u(x). If this is to make sense, u(x) must also be able
to give a utility-deviation interpretation. This is obviously true in
light of the affine EU uniqueness transformation although it is rarely so
interpreted in the literature,

For LGU, since the GAteaux derivative of v(F® at F is C(x;F), the
following is true:

Theorem LGU2 (SD): Let V: DJ + R be a linear Giteaux preference functional

with LOSUF L: R X D, > R. Then,

F >! ¢ implies V(F) > Vv(G)
if and only if

(x;F) is increasing in x for all F ¢ Dy.
Given the plausibility of SD, we will consider only the functions

that satisfy the required conditions.



2

INDIVIDUAL RISK AVERSION

In financial economics, we often assume that decision makers are risk
averse. The notion of risk aversion can however be defined differently
based on different concepts. For example, if an agent's certainty equiva-
lent for any lottery is always less than the expected value of that lotte-

ry, we may say that he 1is risk averse in the certainty equivalent sense.

Alternatively, if the insurance premium an agent is willing to pay to
trade away an arbitrary risk is always greater than the mean of that risk,

then we may say that he is risk averse in the sense of insurance premium.

We can even define risk aversion in terms of an agent's asset demand or
his subjective value of information, etc.

In another direction, it is often of interest to distinguish agents'
risk attitudes 'in the small' and 'in the large'. The oberservation that
people do hold insurance policies and lottery tickets simultaneously
clearly suggests that people have different attitudes towards risks of
different 'sizes'. Given a wealth position, an agent's risk aversion to-

wards infinitesimal risks is conventionally termed local risk aversion.

In contrast, his risk aversion towards risks in general is called global

risk aversion.

Under expected utility, however, these different risk aversion no-
tions are all equivalent to the concavity of the utility function. Since
some of these risk aversion notions are not equivalent under WU and LGU,

it 1is necessary that we make distinctions between them. We will begin
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with local risk aversion.

2.1 Local Risk Aversion

In the literature of risk aversion, local risk aversion refers to
risk aversion towards small risks. Suppose € is an arbitrary infinitesi-
mal, actuarially fair risk and the decision maker's wealth level is x. If
the decision maker always prefers his status quo to taking risk € (i.e. 6x

2 Fx+z)’ we would like to say that his preferences display local risk

aversion at x. While the risk being considered here has to be infinitesi-
mal, it need not be actuarially fair. Suppose E(E) # 0 and the agent can
pay a premium to insure against this risk. As long as the premium is
greater than E(E), it seems reasonable to say that this agent is averse
towards the small risk €.

To define local risk aversion formally, we first define the term
'insurance premium’.

Definition 2.1: If a decision maker is indifferent between Fx+g and
%

then T is called his (unconditional) insurance premium for

S+ B(D)-w

risk € at x.
We also define 'conditional insurance premium' which will be needed

for any nonlinear-in-distribution preference theories such as WU and LGU.

Definition 2.2: If a decision maker is indifferent between pr+E+(1—p)H

and PO L E(D)-

n+(1—p)H, then T is called his conditional insurance pre-
mium for risk € at x conditional on p and H.
First, note that the risk g in Definitions 2.1 and 2.2 is an arbitra-

ry risk which need not be actuarially fair or infinitesimal. Second, the
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x in Definitions 2.1 and 2.2 can be interpreted as the decision maker's
sure wealth position prior to taking the risk €. 1In general, 7 will

depend on x, €, and the individual's attitudes towards risk.

Definition 2.3: If a decision maker's insurance premium for any risk E,
n(x,€), is positive, then his preference is said to display (uncondi-

tional) insurance premium risk aversion (IPRA) at x.

Definition 2.4: If a decision maker's conditional insurance premium for

any risk E, n(x,z p,H), is positive for any p € (0,1] and H e DJ it is

conditional wupon, then his preference is said to display conditional

insurance premium risk aversion (CIPRA) at x.

Local risk aversion is a special case of unconditional IPRA because
it restricts the risks under consideration to the infinitesimal ones.

Definition 2.5: If a decision maker's insurance premium for any infinite-

simal risk E, n(x,g), is positive, then his preference is said to dis-

play local risk aversion (LRA) at x. If his preference displays LRA at

all x, we say that it displays pointwise LRA (PLRA).

Clearly, IPRA implies LRA. We could conceivably define a term called
'conditional PLRA'. This however will not be considered in this essay.

We said previously that = depends on x, € and the agent's risk atti-
tudes. Assume that the variance of € is o%. How can we express T in
terms of E, x and the agent's utility function? The now famous Arrow-
Pratt index provides a convenient way.

Definition 2.6: A function r: J + R is an Arrow-Pratt index of a prefer-

ence ordering if the (unconditional) insurance premium n(x,z) for an in-
finitesimal risk € with variance o2 + 0 can be written as

Wx,e) = "_; f(x+E(’E)) + o(o?). (2.1)
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Given Definition 2.5, Corollary 2.1 below is obvious.

Corollary 2.1: A decision maker with Arrow-Pratt index r(x) is LRA at x if

and only if r(x) > 0. He is PLRA if and only if r(x) > 0 at all x ¢ J.
The following theorems are well known:
Theorem EU3 (Arrow-Pratt Index): The Arrow-Pratt index of an EU decision
maker with a continuous, strictly increasing, twice—differentiable von

Neumann-Morgenstern utility function u(x) is given by

u”(x)

r(x)=—u—,(—x—)—.

(2.2)

Theorem EU4 (PLRA): The preference of an EU decision maker u will display
PLRA if and only if u is concave.

For a WU decision maker (v,w), let 7 be his insurance premium for an

infinitesimal, actuarially fair risk € with small variance o%. It can be

shown that, at wealth position x,

o v"(x) 2w' (x)

m= Wx,E) = - — iy + S ) + e (2.3)

Theorem WU3 (Arrow-Pratt Index): The Arrow-Pratt index of a WU decision
maker with properly structured value function v and weight function w is
given by

TOITEMIEs Pt

__vi(x) _ 2w'(x)
w(x) 1= v (%) w(x)

(2.4)
It is worth noting that, 1like its expected utility counterpart, the
WU Arrow-Pratt index r(x) in (2.4) is invariant under the uniqueness class
transformations (1.17) and (1.18).
Expression (2.4) suggests that a WU decision maker's aversion toward
small risks can be seen as coming from two sources represented by two

additive terms. The first term —v"/v' can be called the 'value-based risk

aversion index' which measures risk aversion attributable to the wvalue



function v. The second term -2w'/w can be interpreted as the 'perception-
based risk aversion index' or simply the 'optimism (pessimism) index' that
reflects certaln qualities of the decision maker's perception about the
prospects in question (Weber, 1982). To display PLRA, the sum of these
two components must be positive at all x. The concavity of v alone is
neither necessary nor sufficient for PLRA. When the weight function is
constant, EU results, and r(x) reduces to the traditional Arrow-Pratt
index.

By Cordllary 2.1, the preference of a WU decision maker (v,w) will

display LRA at x if and only if r(x) given by (2.4) is positive. Given

that
r(x) = - [Z,E’;; + 2:2}({’)‘)] (2.4)
= —{la[v'(x)w4x)] }', (2.5)

the following is obvious:
Theorem WU4 (PLRA): The preference of a WU decision maker (v,w) will dis-
play PLRA if and only if In[v'(x)w?(x)] is decreasing in x.

Under EU, the von Neumann-Morgenstern utility function can be reco-
vered from the Arrow-Pratt index r(x) uniquely (up to an affine transfor-
mation) via the following:

u(x) = Sexp[-/r(x)dx]dx. (2.6)
Therefore, two EU maximizers who share the same Arrow-Pratt index must
have the same utility function.

From (2.5) above, it is clear that, under WU, what we can recapture
from the Arrow-Pratt index is v'(x)w?(x). Therefore, it is possible that
two distinct pairs of value and weight functions share the same Arrow-

Pratt index and exhibit identical local risk propensities.
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The conditions in Theorems EU4 and WU4 for PLRA are both necessary
and sufficient. It will be interesting_ to know what more specific condi-
tions are sufficient for WU to display PLRA. Corollary 2.2 below identi-
fies two such conditions.

Corollary 2.2: The preference of a WU decision maker (v,w) will display

PLRA if condition (i) or (ii) below holds:
(i) w is constant and v is concave;
(ii) v 1s linear and w is decreasing.
Proof: Omitted.

In case (i) where w is constant, WU reduces to EU. Consequently, v
being concave is necessary and sufficient for PLRA by Theorem EU4. Under
condition (ii) where v is linear, the first term of r(x) in (2.4) vanishes
and a decreasing w will result in a positive Arrow-Pratt index.

To characterize LRA for an LGU decision maker V, we must first derive
his Arrow-Pratt index. Suppose € is an infinitesimal, actuarially fair
risk with small variance <. Then, by the definition of insurance
premium,

v( 6x-'n) = V(Fx+?:' ‘
Let F* = (1-0)F . ~+ a8 . We have
x+e X=7

1 avE®
V(éx—1? - V(Fx+z? B IO'—TEE__ da

o
1}

fcl)UC(S;Fa)d[éx_ - F,]lda (from (1.2))

T

f{f(l)C(S;Fa)da}d[ ¢ - F

feesse ™ yars,

— ~ t
T Fx+€ for some a' € (0,1).

Hence,



C(x—n;Fa') = jC(x+s;Fa')sz.

~ ' .
Noting that € is a small risk and that F¢ éx as o? » 0, we can take the

Taylor's expansion for both sides as follows:

Co-mEY) = Uk 8 = L8 - m T (x8) + 0(nD);

and
al
JC(x+s;F )dFy = jc(x+s,5x)dF~E»
2
Jlexs 8) + sC'(x38) + 25 €(x36) + o(s?)]dFy

Cxs8) + & T3 6) + o( o).

Therefore,
~ g2 (%36 , 52 )
™= Wx,€) = — [- zng_)] + o(c?) = —5 T(x) + o(o?), (2.7)
where
£ (%3 8,)
r(X) = = C—'(-;;éj o‘ (2.8)
When E(E) # 0, expression (2.7) becomes
(2.9)

: T (XHECE); 6., ., ~)
= Tx,E) = S; x+E(e) 1 + o(o%).

A C S IOTLINN

Hence,
Theorem LGU3 (Arrow—Pratt Index): The Arrow—Pratt index of an LGU decision

maker V with continuous, strictly increasing, twice-differentiable LOSUF

C(x;F) is given by expression (2.8) above.
The preference of an LGU decision maker V with LOSUF

Theorem LGU4 (PLRA):
C(x;F) will display PLRA 1if C(x;F) is concave in x for all F.
the conditions of u being concave in Theorem EU4 and

Note that,
In[v'w?4] being decreasing in Theorem WU4 are both necessary and sufficient



while the concavity of C(x;F) in Theorem LGU4 is only sufficient for PLRA.

2.2 Global Risk Aversion

In contrast to iocal risk aversion, global risk aversion (GRA) refers
to risk aversion in the large. If two distributions F and G share the
same mean and G has a higher variability, then we would expect a risk
averse agent to prefer F to G. Global risk aversion is such a concept.

Given the prevalence of various forms of lotteries throughout the
world, it is perhaps unreaiistic to require all agents not to have prefer-
ence for any actuarially unfair risks —-- an implication of global risk
aversion. It is, however, desirable for a utility theory, be it linear or
nonlinear in distribution, to be able to display some form of global risk
aversion when a specific application context calls for it.

After Rothschild and Stiglitz (1970), global risk aversion in finance
is better known via 'mean preserving spread'. Instead of jumping into the
definition of mean preserving spread, we start with a less general, but
simpler and more intuitive concept which we call 'simple mean preserving
spread'.

Definition 2.7: For F # G, G is said to single-cross F at x* from the left

if

G(x)~-F(x) » 0 for all x < x* (2.10)
and

G(x)-F(x) <€ 0 for all x » x*. (2.11)
When there is no ambiguity about the direction, we say that G and F

possess the single crossing property.
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Definition 2.8: G is a simple mean preserving spread (simple mps) of F if

(a) G single-crosses F from the left, and
(b) [[G(x)-F(x)]dx = O. (2.12)
In Definition 2.8, condition (b) implies that the mean of G and F is

identical; condition (a) implies that G has a greater variability than F.
For a mean-variance type agent, F clearly dominates G. The single cross-—
ing requirement 1s however not transitive. To see this, suppose F, G and
H are three distributions with the same mean. That H single-crosses G and
G single-crosses F from the left does not imply that H will single-cross
F. The mean preserving spread defined below via sécond—degree stochastic
dominance is less restrictive but transitive.

Definition 2.9: For F, G € D,, F is said to stochastically dominate G in

the second degree, denoted by F »< G, if

T(y) = J_7 [G(x)-F(x)]dx > 0 for all y ¢ J, (2.13)

and

(=) = [JIG(R-F] = [To[6(x)-F(x)]dx = 0. (2.14)

Alternatively, G is said to be a mean preserving spread (mps) of F.

When the means of F and G exist, condition (2.14) implies that they
are equal. Condition (2.13), in contrast, represents a requirement on
their 'squeezed' means —— if we arbitrarily pick a point y and concentrate
all the mass over [y,») onto y, then the squeezed mean of G must not be
greater than that of F. This can be seen by rewriting condition (2.13) as
(2.15) below:

T(y) = {J IxdP(x)+y[1-F(y)] }-{/ Txde(x)+y[1-G(y)]} > 0 for all y. (2.15)
Condition (2.13) will obtain if F and G have the single crossing pro-
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perty and satisfy the equal mean condition (2.14). Simple mps is there-
fore a special case of mps. In fact, Rothschild and Stiglitz (1970) show
that an mps of F can be viewed as a result of a sequence of simple mps' of
F.

Definition 2.10: A decision maker's preference is said to display mps risk

aversion (MRA) at F if he always prefers F to G whenever F >Z G. His

preference is said to display global MRA (GMRA) if it displays MRA at

all F.

a a'

Lemma 2.1: If F 3% G and F* = (1-a)F+aG, then F 32 F* 32 F% 32 ¢ for any
a, a' € (0,1) such that a € a'.
Hence, regardless of the underlying preference theory, Axiom 4 (Mono-
tonicity) implies that V(Fa) must decrease in « if V is to display GMRA.

Theorem U5.1 (GMRA): For F, G €D F = (1-a)F+oG where a ¢ (0,1), and
’ ’

J)

any preference functional V: D_ + R satisfying Assumption 1.1,

J
F »? G implies V(F) > V(G)
if and only if

F »2 G implies %E VWY <o.

Another way of characterizing risk aversion in the large is via cer-
tainty equivalent.

Definition 2.11: If a decision maker is indifferent between F and 6c, then

¢ is said to be his (unconditional) certainty equivalent (CE) of F.

Definition 2.12: If a decision maker is indifferent between two compound

lotteries pF+(l-p)H and p6c+(1—p)H, then ¢ is said to be his conditional

certainty equivalent (CCE) of F, conditional on probability p and dis-

tribution H.



to F, then his

Definition 2.13: If a decision maker always prefers éfxdF

preference is said to display (unconditional) certainty equivalent risk

aversion (CERA) at F. His preference 1is said to display global CERA

(GCERA) if it displays CERA at all F.

Definition 2.14: For any F, H € Dy and p € (0,1], if a decision maker

always prefers (l-p)é +pH to (1-p)F+pH, then his preference is said

JxdF

‘to display conditional certainty equivalent risk aversion (CCERA) at F.

His preference is said to display global CCERA (GCCERA) if it displays

CCERA at all F.

Definition 2.13 (2.14) dimplies that if a decision maker is GCERA
(GCCERA), then his CE (CCE) of any lottery is always smaller than the
expected value of that lottery. Under expected utility, the substitution
axiom requires that if G ~ F, then for any distribution H and probability

p, it must be true that pG+(l-p)H ~ pF+(l-p)H. Since 6c ~ F, the substi-

tution axiom implies that the CE and CCE of any distribution are identi-
cal. Therefore, CERA and CCERA are equivalent under expected utility.
Beyond expected utility, CCERA 1s weaker than the substitution axiom.

It simply requires that if p6c+(l—p)H ~ pF+(1-p)H, then c¢ < SfxdF for all p

and H. As such, an agent's CE and CCE of a distribution F need not be
equal.

A decision maker's CE can be interpreted as the amount he must be
paid to give up a lottery with positive expected value. The insurance
premium given in Definition 2.3 is a form of CE since, in an insurance
context, agents can be viewed as seeking to sell adverse risks —-- Given

that he has been endowed with a risk of negative expected value, how much
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would he be willing to pay for trading away this risk? Therefore, we can
also use insurance premia to characterize global risk aversion as below
(IPRA and CIPRA are defined in Definitions 2.3 and 2.4, respectively):

Definition 2.15: A decision maker's preference 1s said to display global

(unconditional) IPRA (GIPRA) if it displays IPRA at all wealth 1levels

X

Definition 2.16: A decision maker's preference is said to display global

conditional IPRA (GCIPRA) if it displays CIPRA at all wealth levels x.

As CERA and TIPRA are equivalent (so are CCERA and CIPRA), we will
draw only the one more relevant to the issue under discussion.

Now that we have introduced GCCERA, it is necessary to impose lower
boundedness on J. Consider the following property of >:

Definition 2.17: A preference ordering > is said to display continuity in

~distribution (CD) if whenever F >- G and the sequence {Gn} N

converges
n=0 8

to G in distribution, there exists an N > O such that for every n > N, F
>= G-

Suppose functional V represents preference ordering 2». When Gn’ n =

0, 1, ..., ha?e compactsupports, CD means that {V(Gn)}nzb will converge to

v(e) 1f {6_} 7,

converges to G. Graphically, CD means that the 'not-
worse—than set' is closed, or the 'better-than set' is open. Clearly, CD
implies Axiom 3 (Solvability).

In order for GCCERA and CD to be compatible, J must bounded from
below. To illustrate, consider Fq = (1-q)6x+9+q6x—[(1/q)—1]9’ where 0 >
0, q € (0,1]. SD and GCCERA imply 6x+9 >- 6X 2 Fq for q € (0,0.5], but Fq

converges in distribution to 6x+6 as q » 0, contradicting CD. 1In the re-



mainder of this essay, we will assume that J is bounded from below when-
ever GCCERA is involved.

So far, we have given four definitions of unconditional global risk
aversion, i.e. PLRA, GMRA, GCERA and GIPRA, and two of conditional onmes,
i.e. GCCERA and GCIPRA. The following is obvious in 1light of their
definitions:

Corollary 2.3: GCCERA -+ GCERA - PLRA.

We have also pointed out that GCERA and GIPRA are equivalent (so are
GCCERA and GCIPRA). Beyond this, how are they linked together?

It turns out that, GCCERA and GMRA are equivalent regardless of the
underlying preference theories. In what follows, we first prove this
equivalence for 'elementary lotteries' and then extend it to arbitrary
monetary lotteries.

N 1 -1 1
Definition 2.18: A lottery of the form Zi=1 =8 =285 4+ ... +'ﬁ6 is

N xi N xl

called an elementary lottery, denoted by x = (xl,xz,...,xN).

In other words, an elementary lottery is a lottery which gives N out-

comes X;, ..+, X with uniform probability 1/N. Note that x

N 12 **s Xy
need not be distinct. Thus, any lottery involving a finite number of
outcomes with rational probabiiities can be expressed as an elementary
lottery.

The following is due to Hardy, Littlewood and Poyla (1934):

Definition 2.19: For vectors X, y € JN, x is a majorization of y (or X

majorizes y), denoted by §’>m Yy, if

(a) glx > Tl for all 1 <n <N (2.16)

and



=

N
X =

(b) Lim1%1 =174 »

i (2.17)

where the elements of x and y have been arranged in ascending order.
When inequality (2.16) holds strictly for at least one n, x is said to

majorize y strictly.

In Definition 2.19, condition (b) implies that x and y share the same
mean. There is a sense in condition (a) that X is more 'centered' towards

the mean than y when x majorizes y. This sounds similar to the mean pre-

serving spreads given in Definition 2.9. As it turns out, majorization is
equivalent to the second-degree stochastic dominance for elementary
lotteries.

Lemma 2.2: For elementary lotteries, x > Yy if and only if x >? N
N _lé

Proof: Express X and y as F = Zi=1 Nox and G = Zigl'%éy , respectively.
i i
Since
= N 1 1 N
EdeF(x) =L w5 TN he1%i0
© _ N 1 _ 1 N
[ace0 = 50 §y; = § oy

condition (2.14) implies and is implied by equality (2.17).
(Sufficiency) We prove (2.16) by induction as follows. First, we show

that Xy > Yy+ Suppose the contrary that Xy < MR Without loss of gene-

rality, also assume X < Yy < X 410 where n = 1, ..., or N. Consider z
=¥y Then,
ffang(x) + z[1-F(z)] = %-Zi:lxl + Eﬁg z =-§ 3 + Zl=2x1 + gig z
<-% x1 + Eﬁilz + §%E z
< % y, + % z = % xdG(x) + 2[1-G(2)]-

This contradicts (2.15), a condition for F 2 G. Therefore, X 29,
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We next assume that, for some k < N,

k k
Zi=1xi > Zi=lyi' (2.18)
It remains to be shown that Z?:ixi > ZE:}yi. Suppose the contrary that
+1 k+1
Btlx, < BTy, (2.19)
Inequalities (2.18) and (2.19) together imply that X4 < Ye+1® Assume
without loss of generality that X4l < X < Vit < X1 Let z = Yied1 "
Z _1 n N-n
JZ xdF(x) + z[1-F(z)] =5 5%yt 2
_ 1 ktl 1 _n N-n
F =% PR ™ RO
1 k+l N-k-1
¥ Lim%1 N
1 k+l N-k-1
Sy iimls t oyl

Z %dG(x) + z[1-G(z)]-

-0

This again contradicts (2.15). Hence, ZE:ixi > i:}yi' By induction,
it follows that
n
Ei=1xi > Zi=ly for all 1 < n < N. (2.16)

(Necessity) For any z € J, suppose without loss of generality that X <
z < X 1 and Vi <z < Viet1® There are three cases to consider: (i) k =

n, (ii) k < n, (iii) k > n.

Case (i): k = n

ffang(x) + z[1-F(z)]

Case (ii): k < n

J? xdF(x) + z[1-F(2)]



1 n N-n

¥ Z=1Yi YR 2

1 .k 1 . n N-n
¥ %1% TR FmeVi TR 2
1

k N-k
T

I
X4G(x) + z[1-G(z)].
Case (iii): k¥ > n

n N-n

JZ xdF(x) + z[1-F(2)] L +

l X —_—

N “i=1"1 N

1 n k-n N-k
FhaYi vt 2t § 2
1 1k N~k
N

1

n
2i01Y1 YR MeanV1 TR 2

k N-k
—_Z

Li1Y1 PR

1]
— =1

fagdG(x) + z[1-G(z)].

Q.E.D.

We proved Lemma 2.2 by verifying that the conditions for majorization
are equivalent to the conditions for second-degree stochastic dominance.
It is easy to check that condition (2.14) 1is satisfied for elementary

lotteries x and y if and only 1if (2.17) holds. The equivalence between

(2.15) and (2.16) is not as direct. That (2.16) implies (2.15) is veri-
fied via straightforward algebra. That (2.16) 1is also necessary for
(2.15) is proved by inductiﬁn.

For elementary lotteries, condition (2.15) implies that the 'z-squee-
zed mean' of x (i.e., the probability measure on [z,xN] is squeezed to the
point z, where z < xN) must not be smaller than the likewise sﬁueezed mean
of y. In contrast, condition (2.16) says that the 'n-element partial

mean' of x (i.e., the mean of a reduced vector (xl,...,xn) with n < N)
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must not be less than that of y. Note that a 'squeezed lottery' is the

original lottery with the right tail beyond a fixed point being 'squeezed'
to that point while a 'partial lottery' is a truncated lottery of the ori-
ginal one with uniform (conditional) probability 1/n. The following ob-
servation should provide more intuition for the equivalence between (2.15)
and (2.16).

Corollary 2.4: For elementary lotteries X, y € JN, X >" y, implies

X >t X,l .. xk 5T XN_I ES
where
X = (Xl’XZ’XS"'"xn’xn+1’xn+2’""XN—I’XN)
L - -
Y (yl,x2+(x1 yl)’x3’""xn’xn+1’xn+2""’XN—I’XN)
DL x_+2. 0 (x,-y.),x X, 5%)  (2.20)
L V1Y 730 oV F T o= 11 0 e 0 -1 F N .
N-1 -1
L = (yl’y2’y3""’yn’yn+l’yn+1’""YN—l’xN+Z§=1(xi_yi))

(yl’y2’y3’.'.’yn’yn+l’yn+1’.."yN—l’yN) =Y.

Proof: Omitted since it is straightforward.

Corollary 2.4 means that, if X majorizes y, then y can be obtained
from x via a finite sequence of mps' or majorizations. From (2.16) and

(2.17), we know that X > ¥y and Xy < . . Starting from X, Xl is obtain-

ed by pushing x

1 leftwards to Y, and simultaneously pushing x, rightwards

2

by a distance of x . To obtain y? from

1791° Label this new position as z,
1

Yy, again push z, leftwards to Yy (by a distance of [x2+(x1—y1)]—y2) and

push X4 rightwards by the same distance to a position labeled Zge Conti-

- 49 -



nue this process until y results. Corollary 2.4 tells us that y will be

obtained after N-1 such operations. Since at the ith step (i =1, 2, ...

]

or N-1), we .push X, downward and X1 upward by the same distance, y} must

be an mps of 11_1. X, 5 y, implies that, after each iteration, say the ith

(the position where x. has been pushed to) must be to the

one
’ i+l

z,
i+l

right of v so that at the next iteration, the push of z. is

+1 i+l O Yisp

always a leftward one. Only N-1, rather than N, iterations are needed be-

cause z, must coincide with Yy if x and y are to have the same mean.

N
To show that GCCERA and GMRA are equivalent for elementary lotteries,

we need Lemma 2.3 below:

Lemma 2.3: Under completeness, transitivity and SD, GCCERA implies that,

for every a, € 6, p (g, 8 20, p € (0,1]), and H eD,

1 1 1 1
p{féa—s + 753+€} + (1-p)H 2 p{iéa—s—e + faa+e+6

F } + (1-p)H = G.

Proof: Let q = €/(&6)., Then,

1- 1
F X e, oot 50, + 30, + (-pH

q - 4 -
Y pH6 gt (-6 + 365, gl + (1-pH 2, .

Q.E.D.

Theorem U5.2 (GRA): For elementary lotteries and preference ordering 2

satisfying completeness, transitivity and SD, GCCERA <{=> GMRA.

Proof: (<=) This is straightforward.

- ¢N 1 2 N 1 =
= =3 =& »¢ TV =5 =y, 2.2 tell t
(=>) Suppose x ol N x, i=1 W'y, Y. Lemma ells us that x
> y, which by Corollary 2.4 implies that y can be obtained from x via



the sequence XP given by (2.20). Since z?_l and z? are the following

elementary lotteries:

n-1 _ . N 1 _ N=2 n-1 1 N 1
L g §0 a1 T W Bl w0yt Tient2 WoOx, !
Y4 i i
2 1 1
+ 2 {56 -1 + =5 }
N 27x +2111=1(X1 yi) 2%
n - N 1 _N-2 (n-1 1 N 1
L L. =W o w2yt Tiens Tl |
Yy i i
2 1 1
+2 {55 + 25 n 1,
25y 2 % i (Y
Lemma 2,3 implies that
X2 e 2 e 20 B

Q.E.D.
The next task is to extend Theorem U5.2 from elementary lotteries to
general monetatry lotteries. This can be done via CD.

Theorem U5.3 (GRA): Under completeness, transitivity, SD and CD, GCCERA

<=> GMRA.
Proof: Omitted since it is a special case of Theorem U7.2.

Theorems U5.1 - U5.3 are results on GRA. Because they only require
preferences to be complete, transitive, consistent with SD (and in addi-
tion be continuous in distribution for Theorem U5.3), and do not depend on
specific preference functional forms, we regard them as 'theory-free', and
accordingly label them with letter U.

In the literature of risk aversion, it is well known that, under EU,
GMRA <=> GCCERA <=> GCERA <=> concavity of u. Machina (1982a) proves
that, for the more general Fréchet differentiable utility, GMRA <=> GCCERA

<=> the concavity of local utility functions u(x;F). Theorem U5.3 tells
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us that the equivalence between GMRA and GCCERA is actually more fundamen-

tal than believed and does not even depend on Fréchet differentiability.

It is true for EU, WU, LIU, FDU, as well as LGU.

When more structures are imposed on the preference functional, stron-
ger implications of global risk aversion are obtainable. The following
theorem on EU is well known.

Theorem EU5 (GRA): For an EU decision maker with a continuous, increasing
von Neumann—-Morgenstern utility function u(x), the following properties
are equivalent:

(a) GCCERA;

(b) (Concavity) u(x) is concave;
(c) GCERA;

(d) PLRA.

Given Theorem EU5, we may say that an EU decision maker is GRA if he
has a concave utility function, and is consequently GCCERA, GMRA, GCERA
and PLRA. Once we depart from EU, we must be specific about the sense of
global risk aversion being referred to. For iﬁstance, under WU which
weakens the (strong) substitution axiom to the weak substitution axiom, a
conditional risk aversion definition will imply, but will not be equiva-
lent to, its unconditional counterpart.

Theorem WU5 (GRA): For a WU decision maker (v,w) with LOSUF C(x;F), the
following are equivalent:

(a) GCCERA;
(b) (Concavity) C(x3;F) is concave in x for all F;
Proof: (a) » (b): Suppose there exists H such that {(x;H) is strictly con-

vex in x. Then, for any x < Xy < X, there exists q such that -
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C(x, s H)=C(x 3H)

< wmpmeTem <9 | (2.22)
X.,—X
q < 21tcn. (2.23)
*37%1
Inequality (2.22) implies that
(%, 3H) < qC(x4;H)+(1-q) T(x, 3H). (2.24)
Define F = qb6 +(1-q)8 . (2.24) becomes
X3 %
Jt(x;m)as. < Jo(x;H)AF,
)
or
Je(x;H)A[F-5_ ] > O. (2.25)
*2

Let G = (1-p)F+pH and G' = (1—p)6x +pH. Since by expression (1.9),
2

d_  (E(xeHYd e
" WU(G)|p=l = Jo(x;H)d[H F]
and
d L = . -—
& WuCe )'p=1 = Jo(x;H)d[B-8_ ],

2

inequality (2.25) implies

d
fC(x;H)d[F—&x ] = )

2
Since WU(G')|p=1 = WU(H) = WU(G)'p=1, we have

[WO(G")-WU(E) ]| ) > O-

WU((l—p)<5x +pH) < WU((l-p)F+pH) (2.26)
2

for some p sufficiently close to 1. Since X, > qx3+(1—q)x1 = [xdF(x)
from (2.23), stochastic dominance implies that

WU((l—p)6x2+pH) 2 WU((l—p)éfde+pH). (2.27)

(2.26) and (2.27) together imply WU((l-p)F+pH) > WU((l-p)& +pH), con-

JxdF

tradicting GCCERA.



(b) » (a): Let F, G € D, be such that F > G and define F® = (1-a)F+aG,

a € (0,1). Extend expression (1.24) as follows:

awu(r %)

T = ~ [T (s FH[6(x)-F(x)]dx (1.24)

-Je (xs M f_T[6(e)-F(t)]de

- JT (%3 FHAT(x) (from (2.13))

JT(x)d g (x;F%)

JT(x) " (x;F %ydx. (2.28)

Given T(x) » 0 for all x, C{(x;F) being concave in x for all F im-

awu(F %

plies that r

< 0. By Theorem U5.1, this yields GMRA. Since GMRA

<{=> GCCERA according to Theorem U5.3, we have GCCERA.
Q.E.D.
Theorems WU5, U5.3 and Corollary 2.3 together give the following
relations for WU: C"(x;F) < 0 at all F <=> GMRA <=> GCCERA => GCERA =>
PLRA. The following example is provided to demonstrate that, under WU,
PLRA does not imply GCCERA in general.
Example 2.1: (PLRA does not imply GCCERA under WU.)

PLRA requires

- - vi(x) L 2w (%)
r(x) = [V'(X) w(x)

for all x. Pick v(x) = a+bx, b > 0, x € [0,»). We have v"'(x) = 0.

_2w'(x)
w(x)

] >0 (2.29)

Consequently, r(x) = > 0 for all x, which implies w'(x) < 0 for

all x. (Obvidusly, we are not interested in the case with w'(x) = 0.)

Given v"(x) = 0 for all x, the GCCERA condition reduces to

e = ALV F W [VEONUE)) (2.30)

In (2.30), the first term in the numerator of the RHS is always nega-
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tive. For a strictly convex, decreasing w, we can always construct a
distribution F with WU(F) sufficiently small so that the second term
w'(x) [v(x)-WU(F)] is sufficiently positive, leading to C"(x;F) > O.
Similarly, for a strictly concave, decreasing w, we can always construct
a distribution F with WU(F) sufficiently large so that "(x;F) > O.
Hence, PLRA does not imply CCERA in general. H

Two questions are of interest here: (1) Under what conditions will

PLRA imply GCCERA? (2) When will PLRA imply GCERA?
The condition for PLRA is

v"(x) 2w'(x)

r(x) = - gy * ey 2O (2.29)

at all x. The condition for GCCERA is

" (x3F) = w"(x)[v(x)—WU(F)};i;'(x)v'(x)+w(x)v"(x) <0 (2.31)

for all F, which implies, after omitting the argument x:

w V=V [T
- w vV

| > max | %—.—VT s T ST b (2.32)

which can be restated as conditions (2.33) and (2.34) below, noting w, v'

> 0:
LV" W' W“ V—Y v
- V"+TJ> — ot if w' >0, (2.33)
. " [] " —..
S A I A if w" < 0. (2.34)

The LHS of (2.33) and (2.34) is the WU Arrow-Pratt index. PLRA and GCCERA
will be equivalent if condition (2.29) and condition (2.33) or (2.34) co-
incide. Clearly, a linear weight function will do.

Corollary 2.5: For a WU decision maker (v,w) with linear weight function

w, the following are equivalent:

(a) GCCERA;



(b) T(x;F) is concave in x for all F;
(c) GCERA;
(d) PLRA.

Proof: Omitted.

According to this corollary, a decision maker's preference can dis-
play GMRA, GCCERA, GCERA and PLRA simultaneously, and yet does not subs-
cribe to EU. This suggests a potential choice of preference model to
those who recognize the restrictiveness of EU but are appalled at the
complexity of an 'all-out' WU.

We now turn to the second question: When will PLRA and GCERA be equi-
valent? According to Corollary 2.5, they are equivalent when w is linear.
This is only sufficient however. There are other conditions under which
PLRA will imply GCERA (buf not necessarily GCCERA). For instance, consi-

der a concave v. A sufficient condition for PLRA is w decreasing. Recall

that
_ N x)w(x)dF(x) _ W
WU(F) = e LIC Jv(x)dF"(x), (1.19)
where
¥ w(e)dr(t)
FU(x) = —2 : (1.20)
[ (e)ar(e)

If w is decreasing, F will stochastically dominate F¥ in the first degree.

Lemma 2.4: Suppose the weight function w is decreasing. Then, for any

distribution F, F »! F".

Proof: Omitted.
Since (v,w) with v concave will display GCERA when w is constant (a
case of EU), (v,w) will be even more inclined to display GCERA when w is

strictly decreasing. In such a case, a linear v will suffice for GCERA.
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Given the discussion above, Corollary 2.6 is stated without proof.

Corollary 2.6: If w is decreasing and v is concave and at least one of the

conditions holds strictly, then PLRA is equivalent to GCERA.
The result of Theorem WU5 can be extended to the more general LGU:

Theorem LGU5 (GRA): For an LGU functional V: D_ »> R with LOSUF C: J x D_ ~»

J

J
R, the following are equivalent:
(a) GCCERA;
(b) (Concavity) L(x3;F) is concave in x for all F.

Proof: Omitted since it is similar to the proof of Theorem WU5.

Comparing Theorems EU5, WU5 and LGU5, we observe the following simi-
larities and distinctions. First, the von Neumann-Morgenstern utility
function u(x) in condition (b) of Theorem EU5 is replaced by the LOSUF
C(x;F) 1in both Theorem WU5 and Theorem LGUS5, confirming that the LOSUF
L(x;F) 1is the non-EU equivalent of the von Neumann-Morgenstern utility
function. Second, the GCCERA condition appears in all theorems because it
is the strongest form of global risk aversion in the sense that it implies
both GCERA and PLRA. Third, unlike Theorem EU5, the GCERA and PLRA condi-
tions are absent in Theorems WU5 and LGU5 because they are implied by, but
not equivalent to, the GCCERA and concavity conditions.

In the next section, we will utilize an agent's demand for risky
asset to introduce another definition of global risk aversion, called

'portfolio risk aversion'.



3

PORTFOLIO CHOICE PROBLEM

From a finance viewpoint, our ultimate interest in risk aversion lies
in its implications for asset demand. We shall present the result in this
direction under expected utility and see how other preference functional
approaches depart from it. We restrict our investigation to a one-safe-
asset-one-risky—-asset world.

Definition 3.l: An investment enviromment which provides only one safe

asset with (gross) rate of return r, and one risky asset with (gross)

rate of return z is called a simple portfolio set-up.

We will hereafter refer to an asset by 1ts rate of return. The nota-
tions to be used in this section are summarized below:

r: gross rate of return on the safe asset;

z: gross rate of return on the risky asset;

y : positive initial wealth;

x: dollar amount invested in the risky asset;
Yoo dollar amount invested in the safe asset;
proportion of Y, invested in the risky asset;

proportion of Yo invested in the safe asset;

v
DoR S < I <

final wealth.

Definition 3.2: Problem (3.1) below is an investor's (unconditional)

simple portfolio choice (SPC) problem:

~, (3.1)

To find x* such that, for every x # x¥*, F;; 2, Fy

where



y, £+ x(z-1) (3.2)

<
n

Y
I

y,r+ x*(z-1) (3.3)

Definition 3.3: Problem (3.4) below 1is an investor's conditional simple

portfolio choice (CSPC) problem:

To find x* such that, for every x # x*,
PFo+(1-p)H 2, pFo+(1-p)H, (3.4)

where ; and y* are given by (3.2) and (3.3), respectively, p € (0,1],

and H is a distribution independent of F.
Without a priori restrictions on the preference ordering, it is not
guaranteed that the optimal x* will be unique. It seems desirable to im-
pose the following regularity:

Definition 3.4: In a simple portfolio set—up with safe asset r and risky

asset ;, an investor with initial wealth yo'is said to be an (uncondi-

tional) diversifier if his preferences over the set of distributions

{Fyor+x(2;r)} are strictly quasi-concave in x.

Definition 3.5: In a simple portfolio set-up with safe asset r and risky

asset ;, an investor with initial wealth Yo is said to be a conditional

diversifier, conditional on p and H, if his preferences over the set of

distributions {pF +(1—p)H} are strictly quasi-concave in x.

yor+x(z-r)

Again, let us use a simplex of 3-outcome lotteries to 1llustrate the
interpretation of an investor being a diversifier. Recall that, in such a
simplex, the indifference curves are parallel stralight lines for EU-type
preferences, are nonparallel straight lines fanning out from an exterior

point for WU-type preferences, and are arbitrary nonintersecting smooth

- 59 -



curves for LGU~type preferences. Assume F; = (1—p)65+p6; and 6yog, 6yor,

6y 5 are the three vertices of a simplex, where z < r < z and pZ+(1—p)§ >
o

r. When x = 0, F; =8 _. As x increases, F; will move along a path and

Yot

V(F;) will vary. At x = Yoo the path reaches (1—p)6y°§+p6y02. In gene-

ral, this path will cross numerous indifference curves. If V is strictly

quasi-concave in x, V(F;O will either be monotone from x = 0 to x = Y, OF

increase in x up to the optimal x* and then decrease. This will be
ensured if all better-than sets in the simplex are convex. Clearly, a
GMRA EU or WU investor is generically an unconditional, as well as condi-
tional, diversifer.

Corollary 3.1: A strictly GMRA WU investor is always a conditional diver-

sifier.
Proof: The CSPC problem for a WU investor (v,w) with LOSUF [ is

Max WU(pF
X

yor+x<;Lr>+<1"P>H>- | (3.5)

The first and second derivatives of WU above w.r.t. X are given in (3.6)
and (3.7) below, respectively:
[8'(y;6)(z-r)dF(2), (3.6)
Je"(y36)(z-r) XF(2), (3.7)
where G = pF§+(1—p)H and ; = yor+x(2;r). With C(y;G) strictly concave

in y for all G €D (3.7) is always negative, i.e. WU is strictly

J°
quasi-concave in x.
Q.E.D.
On the contrary, an LGU functional V(F) does not generally possess

such a property. TFor example, Dekel (1984) showed that, under FDU, the
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concavity of local utility functions u(x;F) and the quasi-concavity of the
preference functional V(F) are jointly sufficient for the demand prefer-
ences over assets to be quasi-concave. For LGU, the requirement of an in-
vestor being a diversifer means that some degree of arbitrariness in the
indifference curves is removed so as to rule out cases where simple port-
folio choice decisions might yield undesirable multiple solutions.

We define the x* that solves an investor's SPC problem (3.1) or CSPC
problem (3.4) as his demands for risky asset z:

Definition 3.6: Suppose x* solves the SPC problem (3.1) uniquely for an

investor with initial wealth Yor Then, x* is called his (unconditional)

money risky-asset demand at Y, and B* = x*/yo is called his (uncondi-

tional) proportional risky-asset demand at Yy

Definition 3.7: Suppose x* solves the CSPC problem (3.4) uniquely for an

investor with initial wealth Yo Then, x* is called his conditional

money risky-asset demand at Yo and B* = x*/yo is called his conditional

proportional risky-asset demand at Yo

When it is unambiguous, we may omit 'money' and 'proportional' in the
above terms. Note that we do not rule out shortsales in both the SPC and
the CSPC problems. This however will not be an issue here because it is
assumed throughout this essay that E(;) > r, which implies that x* is
always nonnegative.

Theorem U6 (Nonnegative Conditional Risky-Asset Demand): Suppose x* solves
the CSPC problem (3.4) for any investor whose preferences are complete,
transitive and exhibit SD and GCCERA. Then,

(1) x* (B*) > 0 if E(2) > r; moreover, x* (B*) = 0 if E(2) = 3

(2) x* > 0 only if E(z) > r.



Proof: (1) Suppose E(23 >r but x* < 0. Then,
E(;*) = y0r+x*[E(25—r] < y,r
SD implies that, for any p € [0,1) and H ¢ DJ,

1-p) &, ~, +pH 1-p)&  +pH.
(1-p) g g%y tP < (1-p) yorp

GCCERA implies

1- e +pH > (1-p)Fr, +pH.
(1-p) 6E(y*) P ~( P) y* P
Hence, by transitivity,

(1-p) 6yor+pH 2 (l—p)F}';'*+pH.

This contradicts the optimality of x*.

When E(Z) = r, E(y) = y0r+x[E(2')—r] =y r for all x. GCCERA im-

plies

(1-p) 8 (5y*tpH = (l—p)5y0r+pH 2 (1-p)F5+pH,

implying x* = 0.
(2) Suppose x* > 0 but E(E} < r. (We need not consider E(E} = ¢ in light

of (1) above.) Then, E(§*) = yor+x*[E(;)—r] < Y I GCCERA, SD and

transitivity imply that

(1—P)6yor+PH 2 (1-p) 5E(;;*)+pﬂ > (l—P)F;*'FpH,

contradicting optimality of x* > O.
Q.E.D.
The results of Theorem U6 can be outlined as below:
a. E(§3 >r >  x* > 03

b. E(2)

1]
L}
¥

x* = 03

c.e. x* >0 > E(z) > r.



Note that x* > 0 is sufficient but not necessary for E(E} > r since x* > 0
implies E(;) > r, which in turn implies x* > 0. The equivalence however
can be established under EU and WU.

For an EU maximizer, the CSPC problem becomes:

Maximize EU[pF§+(1—p)H] - pfu(y)dF;(y)+(1—p)fu(s)dH(s) (3.8)
X
s.t. ; =y, r + x(z-r).

The CSPC problem for a WU maximizer with value function v and weight

function w is:

Maximize WU[pF§+(1*p)H] (3.5)
%
where ; =y r + x(E;r).

The optimization conditions for (3.8) and (3.5) lead to the following
two theorems:

Theorem EU6 (Positive Conditional Risky-Asset Demand): Suppose x* solves
the CSPC problem (3.8) for an EU investor with an increasing, strictly
concave utility function u(y). Then

x* (B*) > 0 if and only if E(;) >r.

Proof: Omitted since it is a special case of Theorem WU6. Also, see Arrow
(1971).

Theorem WU6 (Positive Conditional Risky—-Asset Demand): Suppose x* solves
the CSPC problem (3.5) for a WU investor (v,w) with increasing, strictly
concave LOSUF C(y;F). Then,

x* (B*) > 0 if and only if E(z) > r.
Proof: In light of Theorem U6, we need to prove only the sufficiency. De-

fine G = pF§+(1—p)H. The FOC and SOC for x* to solve (3.5) are given by



by (3.9) and (3.10) below, respectively:

FOC: JE' (y*3;6)(z-1)dF(z) = 0; (3.9)
SoC: [T (y*;G)(z-r) 2dF(z) < O. \ (3.10)
where &(y36) = w(y)[v(y)-WU(G)]/ fudG

and y* =y r + x*(z-1).

Suppose E(E} > r but x* = 0. (Theorem U6 rules out the possibility of x*
< 0.) Then,

[T (y*;6)(z-1)dF(2) = L'(y r;G)[E(2)-r] > O,

contradicting FOC (3.9) and implying x* > O.
Q.E.D.

Theorem WU6 tells us that, like his expected utility counterpart (cf.
Theorem EU6), a GCCERA WU maximizer will invest in the risky asset if and
only if the expected return on the risky asset is greater than the sure
return on the riskfree asset. Obviously, positive conditional risky-asset
demand will imply positive unconditional risky—-asset demand. As a matter
of fact, the latter requires only GCERA (instead of GCCERA).

The results in Theorems U6, EU6 and WU6 are based on the assumption
of GCCERA. 1If an agent is risk seeking, then it is quite natural for him
to have positive risky-asset demand when E(;) > r. This suggests yet ano-
ther characterization of risk aversion:

Definition 3.8: In a simple portfolio set-up with safe asset r and risky

asset E; the preference of an investor with initial wealth v, is said to

display (unconditional) portfolio risk aversion (PRA) at Yo if his
risky-asset demand at Yo is positive only if E(z) > r. His preference

is said to display global PRA (GPRA) if it displays PRA at all Yo




Definition 3.9: In a simple portfolio set—up with safe asset r and risky

asset ;, the preference of an investor with initial wealth Yo 1s said to

display conditional portfolio risk aversion (CPRA) at v, if his condi-

tional risky-asset demand at Y, is positive only if E(zZ) > r. His pre-

ference is said to display global CPRA (GCPRA) if it displays CPRA at

all Yoo

GCPRA is stronger than GPRA as GCPRA implies GPRA but the converse is
not true. GCPRA is therefore more restrictive than GPRA in the following

sense: If for any Yo an investor is CPRA when p = 1, but not so when p =

0.5, then he is by'definition GPRA but not GCPRA. Nafurally we expect to
find more people displaying GPRA than those displaying GCPRA.

According to Definition 3.9 (3.8), not all investors with positive
conditional (unconditional) risky-asset demand are conditional (uncondi-
tional) porfolio risk averse, but, if a GCPRA or GPRA agent invests a
positive amount in the risky asset, it must be true that E(;) >r. 1In
light of Theorem U6, it is clear that any GCCERA investor must also be
GCPRA no matter whether his preference functional is EU, WU, FDU or LGU.

Corollary 3.2: Under completeness, transitivity and SD, GCCERA implies

GCPRA for a conditional diversifer.

Does GCPRA imply GCCERA in general or under particular preference
theories? As it turns out, GCPRA implies GCCERA for any preference or-
dering satisfying completeness, transitivity, stochastic dominance, and
the conditional diversifier assumption. To show this, we need the
following lemma:

Lemma 3.l1: Suppose x* solves uniquely the CSPC problem (3.4) for a condi-



tional diversifer whose preferences are complete, transitive, consistent

with SD and exhibit GCPRA. Then, x* = 0 if E(z) = r.
Proof: Suppose x* < 0. (The difinition of GCPRA rules out x* > 0.) Then,

2r—E; contradicting the defi-

-x* (> 0) is optimal for risky asset z
nition of GCPRA.
Q.E.D.

Theorem U5.4 (GRA): Under completeness, transitivity and SD, GCCERA is

equivalent to GCPRA for a conditional diversifer.

Proof: Given Corollary 2.2, it suffices to prove GCPRA » GCCERA. Suppose
there exist p € (0,1}, F, H € DJ such that pF§+(l—p)H >- péE(§3+(1—p)H,
where ; is the r.v. associated with F. For a given Yoo construct r =
E(?)/yo and z = %(;Lyor)+r. Note that E(E} = r. Let x* be the condi-
tional risky-asset demand in the CSPC problem with the parameters y , r,

o

z given above. Then pF +(1-p)H 2 pF§+(1—p)H >- péy r+(1—p)H.

*( e
yor+x (z-r) o

Lemma 3.1 implies x* = 0, giving rise to a contradiction.

Q.E.D.



4

COMPARATIVE RISK AVERSION

In the proceeding sections, we characterized risk aversion in a num-

ber of ways. The quéstion to explore next is: What is the meaning of one

decision maker being more risk averse than another? What are its behavio-—

ral implications?
4.1 Definitions

Since (a) CCE and CE, (b) mps, (c) risky—-asset demands, and (d) the
concavity of appropriate utility functions have been used to characterize
GRA, it is natural to think of them as bromising candidates for characte-
rizing comparative risk aversion (CRA). We will coésider them one by one.
(a) Certainty Equivalent

Both CCE and CE are concept of a single value, therefore can be easi-
ly extended to a comparative risk aversion context. If agent A is more
risk averse than agent B in the sense of CCE (CE), we will expect agent A
to accept a lower CCE (CE) for any distribution than agent B. Formally,

we say that agent A 1s more GCCERA (GCERA) than agent B if agent A's CCE

(CE) of any distribution is smaller than agent B's.
(b) Preference Compensated Spread

Mean preserving spreads do not work quite well in characterizing
comparative risk aversion. Recognizing this, Diamond and Stiglitz (1974)

proposed a 'mean utility preserving spread' notion (they called it a 'mean
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ufility preserving increase in risk'). Since, as the name says, this no-
tion preserves 'mean utility', it can only be used to characterize compa-
rative risk aversion for EU-type preferences. For more general prefer-
ences, more restrictive definitions are needed. The following definition
is similar to that in Machina (1982a):

Definition 4.1: Distribution G is said to be a simple compensated spread

of distribution F to a decislon maker if
(i) G single-crosses F from the left, and
(ii) F ~G.
Compared with Diamond and Stiglitz' mean utility preserving spread

(cf. Definition 4.5 below), condition (i) in Definition 4.1 is more res-—
trictive as it only allows distributions which cross once. Condition
(ii), however, is more general 1in not restricting preferences to only
expected utility ones. Dépending on the preferences subscribed to by the
decision maker, there are at léast three different cases of simple compen-
sated spread, i.e., EU compensated spread, WU compensated spread, and LGU
compensated spread.

Definition 4.2: Distribution G is said to be a simple mean utility preser-

ving spread (simple mups) of distribution F to an expected utility deci-

sion maker with von Neumann-Morgenstern utility function u if
(i) G single-crosses F from the left, and
(ii) EU(F) = EU(G).

Definition 4.3: For a WU maximizer with value function v and weight func-

tion w, G is said to be a simple weighted utility preserving spread

(simple wups) of F if

(a) G single-crosses F from the left; and
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(b) WU(G)\= WU(F).

Definition 4.4: Distribution G is said to be a simple LGU preserving

spread of distribution F to an LGU decision maker V if
(1) G single-crosses F from the left, and
(i1) V(F) = v(G).

Since EU is linear in distribution, the squeezed mean interpretation
for second-degree stochastic dominance can‘be generalized to méan utility
via Definition 4.5 below. This will significantly increase the set of
permissible distributions.

Definition 4.5: Distribution G is a mean utility preserving spread (mups)

of distribution F to an EU decision maker u if

] Tu(x)dP(x)+u(y) [1-F(3)] > [ Tu(x)d6(x)+u(y)[1-G(x)] for all y, (4.1)

and

J_2 u(x)dr(x) = [_D u(x)de(x). (4.2)

Condition (4.2) says that distributions F and G yield equal expected
utility. Condition (4.1) requires that the 'squeezed' expected utility of
F over (-=,y] be not less than that of G for all y.

To consider a sequence of mups of F, Diamond and Stiglitz parameter-
ized the distribution with a risk factor «. Definition 4.5 can then be
restated as Definition 4.5', where a subscript indicates the variable with
respect to which a partial derivative is taken.

Definition 4.5' (Diamond and Stiglitz): Given a distribution F(x,a) and a

utility function u(x), an increase in o represents a mean utility pre-

serving increase in risk if

T(y) = [ u'(0)F (x,0dx = [ F (x,0)du(x) >0 for all y, ~ (4.3)
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and

T(w) = [_° u' (X)F (x,0)dx = I F_(x, )du(x) = 0. (4.4)

To gain some insight into Definition 4.5', define % = F(x,a) = (1-
a)F+aG, where a € [0,1] and G is a mups of F as defined by Definition 4.5.
F® is a mixture of F and G with component of G increasing as o goes from O
to 1. In other words, {Fa:as[O,l]} represents a sequence of mups of F,
going from F towards G. Since the same expected utility is preserved from

F to G and Fa(x,a) = %E [(1-a)F+aG] = G-F, conditions (4.3) and (4.4) are

equivalent to conditions (4.1) and (4.2), respectively, noting F(=)-G(x) =
F(-2)-G(-=) = 0.

Suppose that agent A is more risk averse than agent B in the sense of
‘compensated spread, and that G is a compensated spread of F to A. It is
expected that G will be preferred to F from B's viewpoint because a less
risk averse agent should in general demand less compensation for a given
increase in risk. Formally, we say that agent A is more MRA than agent B
if agent A always prefers F to any of agent B's preference compensated
spreads of F.
(c) Risky-Asset Demand

In a simple portfolio set—up, we defined an agent to be CPRA (PRA) if
his conditional (unconditional) risky-asset demand is strictly positive
only if the expected rate of return on the risky asset is strictly greater
than the risk-free rate of return. Suppose both agents A and B are CPRA
with respect to z and r. If they have identical initial wealth, then it
seems reasonable to expect the more risk averse agent to demand less of

the risky asset. Formally, we say that agent A is more GCPRA (GPRA) than




agent B if for any r and z such that E(E} > r agent A's demand for z is
always less than agent B's.
(d) Concavity of relevant utility functions

Suppose more structures are imposed on a preference functional V so
that a GCCREA agent must have a concave utility function (cf. Theorem
LGU5). Agent A being more risk averse than agent B suggests that agent
A's utility function, if identifiable, is 'more concave' than agent B's.

Definition 4.6: An increasing, continuous function f is said to be at

least as concave as (more concave than) another increasing, continuous

function g if there exists an increasing concave (strictly concave)

function h such that f(x) = h(g(x)).
Lemma 4.1 (Pratt): Suppose f and g are two concave, increasing functions.

Then,

-£U/£' > O) —g"/g' (4.5)
if and only if f 1s at least as concave as (more concave than) g.
In words, Definition 4.6 means that if f is more concave than g, then

f can be obtained by 'concavifying' g via an increasing concave function
h. For EU maximizers u, and Ups U, being more concave than u

A B

4.1, implies that —ug uA > —ug ué. Since —u"/u' is the Arrow~Pratt index,

by Lemma

this means that the more risk averse an EU individual is, the greater his
Arrow-Pratt index will be.

Beyond EU, the 'concavity index' will naturally be =-Z"(x;F)/C'(x;F)
since the LOSUF C(x;F) serves as thg von Neumann-Morgenstern utility-like

function.



4.2 Characterizations

Now that we have clarified the meaning of one agent being more
GCCERA, more GMRA, or more GCPRA than another agent, the remaining task in
this section is to establish the relations, if any, among them. As it
turns out, agent A is more GCCERA than agent B if and only if A is also
more GMRA than B regardless of the preference theory they subscribe to.
We shall first show that this 1is true for elementary monetary lotteries
and then extend it to general monetary lotteries.

Definition 4.7: G is a simple elementary compensated spread of F to a

decision maker if there exist a, ¢, p, 9,, 6, (g, 6,, 6, >0, p € (0,1])
2

1’ 1> "2

and an elementary lottery H such that he is indifferent between

- 1 1 1
F = (l—p)H + p{i-éa_e 768"'5} (4-6)
and
— 1 1
G = (1-pH + ptféa—e—e +'76a+€+92}' (4.7)
1

In Definition 4.7, the word 'simple' is used to indicate that G
crosses F only once (although the crossing might be an interval). F and
G are elementary lotteries because they involve a finite number of out-

comes. In Definition 4.7, if 6, = ©

1 G will be an mps of F. For

2
strictly risk averse decision makers, an mps of a distribution F is less
desirable than F. In order to make a spread as attractive, the right-tail
shift 92 must be greater than the left-tail shift el. For a strictly risk
seeking individual, the opposite is true (i.e. 91 > 92).

Definition 4.8: For elementary lotteries X, ¥ € JN, y is an elementary

compensated spread of x if there exists a nonnegative compensating
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vector 1 = (nl,nz,...,nN__l) such that

— ol o S | N-1 _
X ~Y Yo~ ees ~ Y 2 Y,
where
X = (Xl’XZ"“’XN)
Xl = (Yl,xz+n1,x3,-°-,XN)
n—-1 _
L = (yl’""yn—l’xn+nn—1’xn+1’”"XN)
n -
X, - (yl’”"yn—l’yn’xn+1+nn’xn+2’“'XN) (4'8)
N"]. - + - =
X - (yl)"',yn""’yN_lxxN nN_l) - (yly"',yn""’yN_layN) = Z'
n-1 n
Note that y and y are respectively Gn—l and Gn given below:
-1 N 1 21 1
6, = X2 +50 =8} + 258 + =5 }
n~-1 N i=1 N N-2 yi i=n+2 N-2 X, N*'2 xn+'r’|n_1 2 X1
N-2;n-1 1 N 1
¢ =-—Z{r =6 +5._ ., —b_}+ {5+5 }.
n N i=1 N-2 Yy i=n+2 N-2 X, 27°x +1+nn

Gn is a simple elementary compensated spread of Gn—l if Gn Gn—l' Defi-

nition 4.8 therefore tells us that, if y is an elementary compensated
spread of x, then y can be obtained from x via a sequence of simple ele-
mentary compensated spreads in the following manner: Starting with x, it

must be true that X > Y- First push x, leftwards to Y1 and push x

1 2

rightwards to, say, z, such that the decision maker's preference is pre-

served. Let us denote the distance of the leftward push at step i by }\i

and the distance of the simultaneous rightward push by R Clearly, )\1=

xl—y1> 0, and n > XY, if the decision maker is GMRA. Next, push z

2

leftwards to Yo and Xq rightwards to Zg-. This time, )\2 = 2,7y,



(x2+n1)—y2 = rh+(x2—y2). In general, Xi =MV, Ny 2 Ai > 0 if the

decision maker is GMRA, and

n—-1 _

L (yl"°"yn—l’xn+nn—1’xn+1’xn+2’""XN)

n

A AT TTS ANETE S N e S P SUPSTRTIE S

(FyseeesYn 1oV noEna s Xptg s oo oo %Xy)
N-1
for n = 2, 3, ..., N-1. Since y must be y, we have xN+nN_1 = Yo OF
-1 = In Xy > O
In light of the definition of GMRA, the following corollaries are

obvious:

Corollary 4.1l: For a risk neutral (in the sense of mps) decision maker, if

y, is an elementary compensated spread of x via the compensating vector

0 then

n o= 5,5 (x-y,)  for all 1 <k < N-L.

Corollary 4.2: Suppose y is an elementary compensated spread of x for a

GMRA decision maker whose preference is complete, transitive and

consistent with SD. Then, the compensating vector 7y satisfies the

following:
u > Ziil(xi—yi) for all 1 < k < N-1.

Proof: We prove by induction. Suppose ™ < X17Y . Then SD and GMRA imply
that
xl = (yl,x2+ni,x3,...,xN) < (yl,x2+(x1—y1),x3,...,xN)
~< (Y1+(X1—y1),X2,X3,...,XN) = (XI’XZ’X3’°"’XN) z x,

contradicting x ~'z}. Therefore, it must be true that ™ > XY
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Next, suppose, for some k < N, My > Zizl(xi_yi) but el <

+1
2?=1(Xi yi). Then,

51
e R T P X

~ sV Vi e X K30 00Xy

=< (yl""’yk’yk+1+nk+1’xk+2’xk+3’""XN) (by GMRA and SD)

k+1
=< (yl yr e ’yk’yk+1+zi=1(xi—yi) sxk+2 ’xk+3 s ’XN) (by SD)

TG Y P Rpe Vi1 ) Kpep o K3 o e 0¥y (By SD)

_ _ ok
= Op Yo Fen M o X K e Ry) T L

giving rise to a contradiction. Thus, w1 > Zi:i(xi—yi). By induc-

tion, we have proved that

u" > Zizl(xi_yi) for all 1 <k < N.

Q.E.D.

Lemma 4.2: Let ZA and‘ZB be the respective preference orderings of agents

A and B which satisfy completeness, transitivity and SD. If A is more
GCCERA than B, then, for any elementary lotteries F and G such that G is

a simple elementary compensated spread of F for A, G ZB F.

Proof: Since, for A, G is a simple elementary compensated spread of F, by
definition, there must exist constants a, e, 61, 92, p (e, 91, 92 >0, p

€ (0,1]) and an elementary lottery H such that F ~A G and

- 1 1
e = amn ol o+ d o,
1 1
¢ =-pH+Pl; 6 g *3 6a+e+62}°
1

Let 495> 99 € [0,1] be such that



ql 1_q1

1 -
Py U+ plg g T b T 7hee) 27
q q,%q q
1 1 72 2 -
A (1-p) + ptf—éa—s—el + [l - 2 ]6a + 5_6a+s+92} = Q
~A G.
That B is less GCCERA than A implies G ZB Q ZB PfZB F.

Q.E.D.

Given F defined by (4.6), Lemma 4.2 implies that, for an identical

downward shift 91, B will require a lower compensation 62 than A will.

Theorem U7.1 (CRA): For elementary lotteries and a pair of preference

orderings ZA and ZB satisfying completeness, transitivity and SD, the

following conditions are equivalent:

(a) For any elementary lottery F, CCEA(F) < CCEB(F), where CCEA(F) and
CCEB(F) refer to the CCEs of F (conditional upon any p ¢ [0,1] and

an elementary lottery H) for A and B, respectively.

(b) If y =G = & N1 is an elementary compensated spread of x = F =
i=1 N vy P

N 1
zi=1'ﬁ6xi to A, then x is at least as preferable as y to B.
Proof: (a) » (b): Since y is an elementary compensated spread of x to A, y

can be obtained from x via a sequence of simple elementary compensated

spreads z? given by (4.8). According to Lemma 4.2,

X = XO ZB X} ZB e ZB XP ZB ces ZB Y, ER'E

(b) » (a): This is straightforward recognizing that, for any elementary
lotteries F and H, pF+(l-p)H is an elementary compensated spread of

pd +(1-p)H.
CCE(F) Q.E.D.



Given Lemma 4.2, Theorem U7.1 is obvious. Note that, in condition
(b), lottery G need not be a simple compensated spread of F.

We are now ready to further extend Theorem U7.1 to general monetary
lotteries.

Theorem U7.2 (CRA): The following are equivalent for a pair of preference

orderings ZA and ZB which are complete, transitive, continuous in dis-

tribution and consistent with SD:
(a) (GCCERA) For any distribution F, CCEA(F) < CCEB(F), where CCEA(F)

and CCEB(F) refer to the CCEs of F for A and B, respectively.

(b) (GMRA) If G is a simple compensated spread of an arbitrary distribu-
tion F to A, then G is at least as preferable as F to B.

Proof: (a) -+ (b): Suppose G is a simple compensated spread of F to A.

Consider {i/2": 1 =1, ..., 2"-1}. Let p° = F(0) and q° = G(0). Define

inf {x|FGO=1/2"} 0 < 1/27 < p°

x? = sup{xlF(x)=p°} po <172 < po+(1/2n)
sup{x‘F(x)=i/2n} p°+(1/2n) < i/2™ < 1,
. { 0 if p° is not in I_ = {1/2“]1=1,...,2“—1}
X, =
0 inf{x‘F(x)=po} otherwise
and
1nf{y|c(y)=1/2“} 0<1/2" < ¢°
y? = sup{ylG(y)=q°} po < 1/2" < qo+(1/2n)
sup ly|6(»)=1/2"}  q%+(1/2™) < 1/2" < 1,
. 0 if q° 1s not in I_ = {1/2"]1=1,...,27-1}
Yo = o)
inf{y'F(y)=q } otherwise.



S +§z{12—n5 0
y0 n yi n

n
Construct F =2 "8 n +22112 s n and G =2 o
n x0+en i= Xi+€ n

such that G ~A Gn ~\ Fn ~z F. Clearly, Fn and Gn converge in distribu-

tion to F and G, respectively. Furthermore, for n sufficiently large,

Gn single crosses Fn from the left. By Theorem U7.1, G_ >

n ~B Fn'

To prove G ZB F, suppose the conﬁrary that F >—B G. Since 1imn+an

= F and limn Gn = G, by CD, there exists a K > 0 such that Fk >—B G for

>

all k > K. Again, by CD, there exists an M > 0 such that Fk >—B Gm for

all m > M. Pick N = max{K,M}. Then, Fn >-B Gn for all n > N, giving

rise to a contradiction.

(b) » (a): pF+(1-p)H is a simple compensated spread of p

+(1-p)H
CCEA(F)

to A. Condition (b) implies that

pF+(l-p)H >

28 péCCE(F)+(1—p)H.

Since

pF+(1-p)H pd

CCE*(F)+(1_p)H’

"B
by transitivity,

pd +(1-p)4 >

g PO

+(1-p)H.

CCE*(F) CCE(F)

SD implies CCEB(F) > CCEA(F).

Q.E.D.

We have proved that agent A is more GCCERA than agent B if and only
if A is also more GMRA than B regardless of the forms of their preference
functionals as long as they are complete, transitive, continuous in dis-
tribution, and consistent with stochastic dominance.

We next consider comparative GCPRA. It appears that an investor who



is more GCCERA than another investor will also be more GCPRA no matter
what utility theory their preferences subscribe to.

Theorem U7.3 (CRA): Suppose the preferences of agents A and B are com-

plete, transitive, continuous in distribution and consistent with SD.
Then, A is more GCPRA than B if A is more GCCERA than B.

Proof: In a simple portfolio set—up with E(E} > r, suppose X, and Xp =

xA+Ax are the respective risky-asset demands of A and B who have identi-

cal initial wealth Yoe The optimality of Xp implies that

+(1-p)H ZB pPF r)+(1--p)H.

PF N- N_
¥y rH(x,+ax) (z-1) Y rHx, (2

It follows that there exists 9 > 0 such that

+(1-p)H

pF ~ ~ pF ~ +(1-p)H.
yor+(xA+Ax)(z T) B yor+xA(z r)+9

Suppose Ax < 0. Then pF +(1-p)H will be a compensated

yor+xA(z—r)+9

spread of pF +(1-p)H to B. Since A 1s more GCCERA than

Yo r+(xA+Ax)(;—r)

B, Theorem U7.2, SD and transitivity imply that

+(1-p)H 2

A PF

6+(1_P)H'

pF il —
yor+(xA+Ax)(z r) yor+xA(z )+

>- +(1-p)H.

pF ~_
A yor+xA(z r)

This contradicts the optimality of x, to A. Hence, & >0 and x, > Xx,.

A B A
Q.E.D.
Theorems EU7, WU7 and LGU7 below tell us that A being more GCPRA than
B also implies A being more GCCERA than B under EU, WU and LGU.
Theorem EU7 (CRA): The following are equivalent for a pair of continuous,
increasing von Neumann-Morgenstern utility functions u, and up!
(a) (GCCERA) For any distribution F, CCEA(F) < CCEB(F), where CCEA(F)



(b)

(c)
(d)

(e)

Proof:

and CCEB(F) refer to the CCEs of F for Uy and Ups respectively.

(GCPRA) In a simple portfolio set—-up with safe asset r and risky
asset Z, where E(;) > r, suppose u and u* have identical initial

wealth and X, and Xp are their respective conditional money risky-

asset demands. Then XA < xB.

(Concavity).uA is at least as concave as Uge

(GCERA) For any distribution F, CEA(F) < CEB(F), where CEA(F) and

CEB(F) refer to the CEs of F for u, and Ups respectively.

A
(GPRA) In a simple portfolio set-up with safe asset r and risky

asset z, where E(z) > r, suppose u, and ug have identical initial

wealth and X, and Xy are their respective unconditional money risky-

asset demands. Then XA < xB.

Omitted since this is well-known.

The following lemma is needed to prove Theorem WU7.

Lemma
(1)

(i1)

then

Proof: Given f(x) at least as concave in x as g(x), for any X5 X

such

Appl

4.3: If
G single-crosses F at x* from the left; and
f(x) and g(x) are two increasing functions, and f(x) is at least as

concave in x as g(x),

£'(x*)

JIG-F1£'(x)dx » TRy

JIG-Flg' (x)dx.

2 e R

that Xy < Xy, we have

£1(x)  g'(xy)
Tz 25 -

ying straight algebra yields the following:



2 (6-F1£ (x)dx

£ [ [6-7) )

= 10 {Se-F] g,éxl) dx + f"’ [G-F] ﬁ EX,Z) dx}

> £'(x%) {[[c-F] 8 Exl) dx + f* [G-F] 7—g (%) ax

g‘%:?)r 72 16-F1g' (x)dx.

Q.E.D.

It should be pointed out that the G and F in Lemma 4.3 need not be

distribution functions. Nor do f and g have to be related to G and F in
any particular way.

Theorem WU7 (CRA): Under WU, the following are equivalent for two pairs of

value and weight functions (VA,WA) and (VB,WB) with respective LOSUF CA

and CB:

(a) (GCCERA) For any F € D CCEA(F) < CCEB(F), where CCEA(F) and

J’
CCEB(F) refer to the CCE of F for (VA,WA) and (vB,wB), respectively.
(b) (GCPRA) In a simple portfolio set-up with safe asset r and risky
asset E; where E(23 > r, let X, and Xp be the respective conditional

risky—-asset demands of (vA,wA) and (vB,wB) who have identical ini-

tial wealth. Then X, <»xB regardless of the probability and the

distribution they are conditional upon.

(¢) (Concavity) For any F ¢ DJ, CA(X;F) is at least as concave in x as

CB(x;F).

In addition, each of the above conditions implies the following:

(d) (GCERA) For any F € D CEA(F) < CEB(F), where CEA(F) and CEB(F)

J’



refer to the CEs of F for (VA,WA) and (VB’WB)’ respectively.

(e) (GPRA) In a simple portfolio set-up with safe asset r and risky

asset ;, where E(E} >r, let X, and Xp be the respective risky-asset

demands of (VA,WA) and (VB,WB) who have identical initial wealth.

Then XA < xB.

Proof: (a) » (b) follows from Theorem U7.3.

(b) » (c): Suppose there exists H & D. such that CB(y;H) is more concave

J
in y than CA(y;H). Then, there exist h1 < h2 and q € (0,1) such that

Cp(hysH) N CghysH)
ACT IR YWD

so that, for some 6 > 0,

Cy(hy3H)=C, (B, —q 6;H)

> 1 (4.9)

Co(h,;H)-C (h,-06;H)
1> % ?h iq@'H)i; ?h 5 - (4.10)
gy a0 H)=Cp(hy ;3

. d .
Recall that JCA(t,H)d[H—F] = HE'WUA[(I_P)F+pH] =1 Inequality (4.9)

yields
Lo thosmy + L ¢ (hosH) < L € (h,—q83H) + = € (h.+03H)
5 Calhys 7 Calhys 7 Calhy=a8; 5y Calhyt 1),

which is

fCA(t;H)d[H—(%6h1+ %éhz)] > JCA(t;H)d[H-(%éhl_qe+ %6h2+9>],

or
d 1 1 1 1
ai)-{WUA[(1—p)(_2.<shl+ 20 VPRI, AD) By, ot 78, 4ot Hopey > 0
Since
WO, [(1-p)(36_ + L5 )4pH] = WU [(1-p)(26_ _ o+ =6, )+pH]
Alt:7P 2°h," Z'h, P A Z°h -q6 2 h,+6
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at p = 1, it is implied that, for some p sufficiently close to 1,
WUA[(l—p)(-]2;6h1+ %6h2)+pH] < WUA[(I—p)(%éhl_qe+ %6h2+6)+p}1]. (4.11)
Similarly, inequality (4.10) leads to
wuB[(l-p)(%-ah1+ %5h2)+pﬁ] > wuB[(1-p)(%eshl a6t %5h2_ QDPH. (4.12)

Let Yo be the common initial wealth of WU, and WU_. Construct a safe

A B
l—-EliEEE and a risky asset z = 16 | + 6 Let x, and
v, T+ y T2y 2h,ly " A

asset r

Xg be their respective conditional demands for z (conditional upon p and

H). Also let
9(1 q)] 9(1+q)
2

It can be verified that (4.11) and (4.12) are

X, = yo[l and x, = yo[l+ ]

2

Note that X < Yo < Xy

equivalent to (4.13) and (4.14) below, respectively:

WOL[(L-p)F, oH] < WU, [(L-p)F +pH], (4.13)

yor+x2(z—r)

WUB[(I—p)Fyo;+pH] > WUB[(l—p)F (4.14)

~ _(t+pH].
yor+x1(z T)
Since both WUA and WUB are conditional diversifers, the above amounts to
Xp < Y, < Xps contradicting condition (b).
(¢) » (a): In light of Theorem U7.3, it suffices to prove that (c) imp-

lies that WUA is more GMRA than WUB. Suppose G is a simple wups of F to

WUA and single-crosses F at x* from the left. As CA(X;F) is at least as

concave in x as CB(X;F), by Lemma 4.3,

Cp(x*; F)
J[G—F]C (x;F)dx > W 16~ F] Ly (x;F)dx. (4.15)
Define % = (l-a)F+oG. It follows that
0 =L wu, (D] o = JT,(xF)A6-F] = - [[6-F1 ¢} (xsF)dx



Cp(x*;F)
< W_) - J16-F] CI;(X;F)dX}

Gy (x*;F)
A d o
i C]'B(X*;F) da wUB(F )’d=0'

4

1 ] ]
with ¢!, CB > 0, this implies I

@
WUB(F ) > 0. Hence, WUB(G) > WUB(F).

(a) » (d) and (b) »> (e) follow by definition.
Q.EQD.

Theorem LGU7 (CRA): The following are equivalent for a pair of LGU func-

tionals VA and VB with LOSUF CA(x;F) and CB(x;F), respectively:

(a) (GCCERA) For any F € D CCEA(F) < CCEB(F), where CCEA(F) and

J)
CCEB(F) refer to the CCEs of F for A and B, respectively.

(b) (Concavity) For any F £ D CA(x;F) is at least as concave in x as

J’
CB(X;F)-

If, in addition, both VA and VB are conditional diversifiers, then the

above conditions are equivalent to:
(c) (GCPRA) In a simple portfolio set-up with safe asset r and risky

asset ;, where E(E} > r, let X, and Xp be the respective conditional

money risky-asset demand of VA and VB who have identical initial

wealth. Then X, < Xg regardless of the probability and the distri-
bution they are conditional upon.
Each of the above conditions implies (e) and (d) below:

(d) (GCERA) For any F € D CEA(F) < CEB(F), where CEA(F) and CEB(F)

A
refer to the CEs of F for A and B, respectively.

(e) (GPRA) In a simple portfolio set-up with safe asset r and risky
asset ;, where E(;) 2 r, let X, and Xy be the respective (uncondi-
tional) money risky-asset demand of V, and V_, who have identical

A B
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initial wealth. Then X, < Xp

Proof: Omitted since it is similar to the proof of Theorem WU7. Also, see
Theorem 4 in Machina (1982a).

In this section, we first defined the meaning of one individual being
more risk averse than another individual in the sense of certainty equiva-
lent, compensated spread, as well as risky-asset demand. We then investi-
gated if the comparative risk aversion in one sense implies the same in
another. Our finding can be summarized as follows. First of all, in
order to lay the ground for a meaningful study of comparative risk aver-
sion, it is helpful to iImpose four properties about preference orderings,
namely completeness, transitivity, continuity in distribution and consist-
ency with stochastic dominance. Under these fairly basic assumptions, we
were able to demonstrate that "A 1s more GCERA than B" <= "A is more
GCCERA than B" <=> "A is more GMRA than B" => "A is more GCPRA than B" =>
"A is more GPRA than B". This finding is interesting because it contra-
dicts the casual but widely-held belief that the equivalence of compara-
tive GCCERA and GMRA depends on the underlying preference theory. We are
thus convinced that GCCERA and GMRA are more fundamental than previously
thought in the sense that they are 'theory—independent'.

When we assume linear GAteaux differentials to obtain LGU, the
G4teaux derivative C(x;F), called LOSUF (abbrevation for lottery-specific
utility function), is the wutility function whose degree of concavity
serves to measure the degree of risk aversion in its conditional sense.
As stated in Theorem LGU7, V, is more GCCERA than V_ iff CA(X;F) is more

A B

concave in x than CB(x;F) for every F.



When the functional form of { 1s identical at all distributions, or
put differently, when { is distribution—-free, all conditional versions of
risk aversion will reduce to their unconditional counterparts. The compa-
rative risk aversion for this case is characterized in Theorem EU7.

Another distinction between Theorem EU7 and Theorem LGU7 is the ab-
sence of the conditional diversifer requirement in Theorem EU7. This is
because all EU maximizers are generically diversifers.

We have known that WU is a preference theory intermediate between LGU
and EU. Comparisions between Theorem LGU7 and Theorem WU7 however reveal
few advantages of WU over LGU so far (one being that all WU agents are
also inherently diversifers). This does not mean that the additional
structures on WU are in vain. We shall find the functional form of WU
useful when we wish to obtain more specifics of CRA. For example, suppose
two WU agents héppen to have the same value function. ' It can be shown
that the agent whose weight function decreases faster will be more GCCERA.
Similarly, if they share the same weight function, the agent with more
concave LOSUF will be more risk averse.

The appeal of the specific functional form is particularly evident
when the problem involves explicit optimization as in the portfolio choice
decision (cf. Theorem WU6) or in the study of the normality property of

risky—-asset demand to be examined in the next section.



5

DECREASING RISK AVERSION AND THE NORMALITY OF RISKY—-ASSET DEMAND WITH

DETERMINISTIC WEALTH

Section 3 is devoted to studying the behavioral implications of an
individual's risk aversion. In Section 4, we compared two individuals and
investigated the implications of comparative risk aversion. Now, let us
turn back to one single individual but allow his initial wealth to vary.
The questions we attempt to answer are: As an individual gets richer, will
he be willing to pay a higher or lower insurance premium for a given risk?
Will his demand for the risky asset in our one-safe-asset-one-risky-asset
world increase or decrease?

These questions can be answered under different assumptions about the
riskiness of the ageﬁt's wealth. In this section, we continue to assume
that the decision maker has deterministic initial wealth. We will allow
it to be stochastic in the next section.

This section contains two subsections. In Subsection 5.1, we review
the decreasing risk aversion characterization under EU. Subsection 5.2

focuses on the normality of risky-asset demand under WU.

5.1 Decreasing Risk Aversion under Expected Utility

Arrow (1971) convincingly argued for the appeal of decreasing abso-
lute risk aversion which implies that, as an agent gets richer, he should

become less’ risk averse in the sense of demanding cheaper insurance
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policies and investing more money in the risky asset.

If the same individual with a different level of wealth can be viewed
as if he were a different person, then the characterization of comparative
risk aversion (CRA) can be restated straightforwardly to characterize de-
creasing risk aversion (DRA). EU 1s a preference theory under which this
can be done. Theorem EU8 below is a direct translation of Theorem EU7.
In accordance with the literature, we replace the certainty equivalent
conditions by the insurance premium ones and state the concavity condition
in terms of Arrow-Pratt index.

Theorem EU8 (DRA, Arrow-Pratt): The following properties of a continuous,
increasing, twice-differentiable von Neumann-Morgenstern utility func-
tion u(y) are equivalent:

Wy uT(yp)
——— for all Yo <y

(a) (Arrow-Pratt Index).—-67(§;7 > - u'(yl)

1

(b) (Conditional Insurance Premium) For any p € (0,1] and H € DJ, sup-
pose m_ = n(yo,g|p,H) and mo= n(yl,z p,H) are u's conditional
insurance premia for risk € at initial wealth levels Yo and s
respectively. Then U > & for all ¢ if Yo < Y-

(c) (Conditional Risky-Asset Demand) In a simple portfolio set-up with
safe asset r and risky asset ;, where E(E} > r, suppose X and Xy
are u's conditional risky-asset demands at initial wealth levels Yy
and ¥i» respectively. Then X < Xy if Yo < Yy

(d) (Insurance Premium) Suppose n,= n(yo,g) and T o= n(yl,g) are u's

insurance premia for risk € at initial wealth levels Y, and Yi»

respectively. Then L > Ty for all ¢ if Y < Y+



(e) (Risky-Asset Demand) In a simple portfolio set-up with safe asset r

and risky asset 2; where E(EB ? r, suppose X and x, are u's risky-

1
asset demands at initial wealth levels Yo and Yy respectively.

Then X < X if Yo < Yqye

Theorem EU8 says that, if an EU decision maker's preference exhibits
decreasing absolute risk aversion, then his conditional, as well as uncon-—
ditional, insurance premium for any risk will decrease and his condition-
al, as well as unconditional, money risky-asset demand will increase as he
gets richer. The asset demand implication is often referred to in the
literature as the 'normality of risky-asset demand'.

Taking Theorem EU8 as a benchmark, we may consider the following two
generalizations. First, 1f we continue to assume that both the initial
wealth and the wealth increment are deterministic but adopt more general
preference functionals, how will the characterization be modified? It
appears that, beyond EU, the DRA characterizations will not be a straight-
forward restatement of its CRA counterparts. This will be explained
shortly.

The second generalization of Theorem EU8 is to extend the initial
wealth or even the wealth increment from deterministic to stochastic.

This will be dealt with in Section 6.

5.2 Decreasing Risk Aversion and the Normality of Risky—-Asset Demand

- under Non-Expected Utility

Once the wutility function becomes lottery-specific, difficulties

arise in directly translating CRA characterizations to DRA ones. To
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illustrate, consider the unconditional simple portfolio choice problem
under WU. In the context of CRA, suppose both investors have the same
initial wealth Yo Let X\ and Xp denote the risky-asset demands of CA and
CB’ respectively. By optimality, we have

J'CA(YOHXA(z-r);FyorﬂA(;_r))dF(Z) =0 (5.1)
and
JCB(yor+xB(z-r);Fyor+xB(;;r))dF(z) = 0. (5.2)
In the context of DRA, assume X, is CAS risky—-asset demand at 4] such
that
JCA(y1r+x1(z_r);Fy1r+x1(E;r))dF(z) = 0. (5.3)

If investor CA at y, can be viewed as investor CB at Y, we may replace CA
by CB and Y1 by Yo in (5.3) to obtain (5.4) below:

JCB(yor+x1(z—r);F ))dF(z) = 0. (5.4)

yor+x1(z—r

The CRA characterization in Theorem WU7 can be used to characterize DRA
only 1f the relation between Xp and Yo in (5.2) 1is identical to that be-
tween Xy and v, in (5.4). This would be the case if the distributions

that CB depends‘upon in (5.2) (i.e. F )) and (5.4) (i.e.

y°r+xB(z—r

) were identical. Since X5 # x. in general, we conclude that

F ~
yor+x1(z r) 1

the DRA characterization in terms of asset demand cannot be obtained sim-
ply by rephrasing the asset demand condition in Theorem WU7. This argu-
ment also applies to the insurance premium condition.

Why does the distribution—-dependence of LOSUFs cause problems in

characterizing DRA? In the context of CRA, say in terms of insurance



premium, we compare the degree of concavity of two individuals' LOSUFs

CA(y;éy - )} and CB(y;éy _ﬂh) which are exogenously given and do not shift
o A o
because the distributions they depend upon remain unchanged. As we turn
our interest to DRA, again, we have two LOSUFs, one depends on Fy ol
o

another on Fy 2 However, these two LOSUFs are not independent of each
1

other because they originate from the same preference functional. The
change of an individual's risk attitudes as his wealth varies therefore
depends on the movement along [ as well as the shift of . L. This will be
explained in greater detail after we derive the necessary and sufficient
condition for the normality of risky-asset demand under WU.

One advantage of WU over LGU is its structural specifications which
enable us to optimize using calculus and perform comparative statics
without utilizing directional or path differentiation. This advantage
results in Theorems WU8.1 and WUB8.2 below:

Theorem WU8.1 (DRA and Conditional Risky-Asset Demand): The following

properties of a pair of properly structured value and weight functions

(v,w) with increasing, concave LOSUF [(x;F) are equivalent:

C'(y;6) _ pw'(y)
EL(C (O] Eglvl
(a) P(Y;P,F,H) = - T (y;G) (where G = PF+(1—P)H) (5.5)

is decreasing in y for all p £ (0,1] and F, H ¢ DJ;

(b) (Conditional Risky—-Asset Demand) In a simple portfolio set—up with
riskfree asset r and risky asset Z = r+ﬁ, where E(ﬁ) > 0, let X and
X be (v,w)'s conditional risky-asset demands at initial wealth

levels Y, and Yq» respectively. Then, X < Xy if Y, <Y¥ye



Proof: The CSPC under WU is

~+(1-p)H).

Max V(pF
X yor+xn

The FOC and SOC for x* to be optimal are as follows:
FOC: [C'(y*;G)ndF(m) = 0 (3.9)
SOC: [C"(y*;G)n4dF(m) < 0, (3.10)

where G = pF§§+(1—p)H and ;* = yor+x*ﬁ.

The rest of the proof is similar to that of Theorem WU8.2.
Q.E.D.
Although Theorem WU8.1 is more general than Theorem WU8.2, we elect
to present a complete proof of the latter because it is less complicated
notation-wise and sacrifices little substance.

Theorem WU8.2 (DRA and Risky-Asset Demand): The following properties of a

pair of properly structured value and weight functions (v,w) with
increasing, concave LOSUF C[(x;F) are equivalent:

C'(y;F) _ w'(y)

(a) o(y;F) = - E[C'(E?}y;Fﬁ[W] (5.6)

or equivalently,

- imy = _ G(y3F) w'(y)/E[w] '
PysE) == ZrnEy t T ELCT (D) ] (-7

is decreasing in y for all F;
(b) (Risky-Asset Demand) In a simple portfolio set-up with safe asset r
and risky asset z = r+%, where E(ﬁ) ? 0, let X and X be (v,w)'s

risky-asset demands at initial wealth levels Yo and Yis respective-

ly. Then, X < 3 if Yo < Yy

Proof: The SPC problem under WU is



Max V(I)W(y)dF

w(y)ar where y = yor+xn.

The FOC and SOC for x* to solve the above are as follows:
FOC: [C'(y*;F)mdF(m) = 0 (5.8)
SOC: [C"(y*;F)n4dF(n) < O. (5.9)

Implicitly differentiating the FOC (5.8) w.r.t. x* and Yo yields

dy, - SC"(F)n4dF ’ )

where the argument y has been omitted to simplify the expression. By

S0C, the denominator of the RHS of (5.10) 1s positive. Therefore, the

dx*

dyo

sign of is the same as that of

Jreney—w (2B g

which can be rewritten as

E[C'(F)]
Elw]

Also, recall that E(E} > r implies x* > 0 according to Theorem U6.

E[C"(y3F) *7] E[w'(y)*n]. (5.11)
(a) > (b): We need to consider two cases —— 1 > 0 and n < O.
Case (i): n >0

y = yor+x*n > y,r-

Expression (5.7) decreasing implies that

- (C"(Y;F) _E[C"(F)] w'(y) ) <
' (y;F) E[w] C'(y;F)

p(y, r3F) = p .

Multiply both sides by -Z'(y;F)n:

(s - n B oigimyng (5.12)
Case (ii): n< O

y = yor+x*n < Y T

Expression (5.7) decreasing implies that
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_ (C"(y;F) _E[8'(®)] w'(y) ) >

T (y; ) E[w]  C'(y;F) Po

o
Multiplying both sides by -C'(y;F)n yields (5.12) with stict inequality

so that we can take its expectation as follows:

BCHHT - el D EEDL 5 g ron im0, by Foc)
Hence dx* 0.
’ az

(b) > (a): To prove necessity, suppose (5.7) is increasing at some ini-
tial wealth level §o' Then, following steps in the sufficiency proof

4
will lead to é%— < 0, which contradicts condition (b).

dyo

Q.E.D.
The logic in the proof of Theorem WU8.2 is similar to that in Arrow's
(Theorem EUS8). We first totally differentiate the FOC for the simple
portfolio choice problem to obtain the expression of dx*/dyo. Then we

show that p given by (5.6) decreases in y is equivalent to dx*/dyo > 0.

Theorem WUB8.2 is a special case of Theorem WU8.1. Nevertheless, the
following discussion will focus on Theorem WU8.2 Because it is a one-step
extension of the now well-known 'normality of risky-asset demand' under EU
attributed to Arrow (1971). By 'one-step' we mean that the only generali-
zation from Arrow's result to Theorem WU8.2 is the preference functional.
In contrast, Theorem WUB.1 involves two changes -- one is the preference
functional, the other is the introduction of another distribution H.

Within the domain of EU, Arrow (1971) showed that, when the initial
wealth and the wealth increment are both deterministic, an investor's pre-
ference will display decreasing absolute risk aversion if and only if the

single risky asset is a normal good to him (i.e. dx*/dyo > 0). In addi-
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tion, his preference will display increasing relative risk aversion if and

only if the safe asset 1s a superior (or luxury) good (i.e. d(l—B*)/dyo >

0). The former result is contained in the equivalence of (c¢) and (e) in
Theorem EUS8.

It may at first appear somewhat surprising that condition (a) in

v"(y) ZW'(y)]
v'(y) w(y)

Theorem WU8.2 is neither the WU Arrow-Pratt index r(y) = -|

nor the concavity index -Z"(y:F)/C'(y;F). Given that EU is a special case
of WU, p(y;f) must reduce to the EU Arrow-Pratt index -v"(y)/v'(y) when w
is constant. It can be verified that this is indeed so. When w is not
~ constant, neither a decreasing concavity index nor a decreasing Arrow-
Pratt index will imply or be implied by a decreasing p(y;F). We have
partly explained at the start of this subsection why a decreasing concavi-
ty index is not the required condition. As to the Arrow-Pratt index, note
that p(y;F) depends on distribution F while the Arrow-Pratt index r(y)
does not. This means whether a risky asset 1s a normal good to a WU in-
vestor depends on not only his risk attitudes but also the attributes of
the risky asset. To see how the distribution of z affects one's demand
for it, recall that
C(y;F) = w(y)[v(y)-WU(F)]/ SwdF. (1.25)

In the context of simple portfolio choice, F is the distribution of the

final wealth ; = yor+x(g;r). C(y;F) is a weighted utility-deviation from

WU(F) with w(y)/J/wdF being the weight. We may interpret [ as a weighted
regret when v(y) < WU(F) and a weighted rejoicing when v(y) > WU(F). Let
us simply call ¢ (or more suitably -{) a weighted regret in general. The

derivative of [ given below:



ooy = W [v(y)-WIF) +w(y)v'(y)
CysE) = TwdF

D) (u(y-wue)] + 5 1 (y) (1.32)

is the contingent marginal weighted utility-deviation from WU(F) or the
contingent marginal weighted regref for the outcome y. When y increases
by $1, it causes two effects on {. The first is a 'weight effect', given
by [w'(¥)/E(w)][v(y)-WU(F)] -- marginal weight times regret. The second
one 1is a 'utility effect', given by [w(y)/E(w)][v(y)-WU(F)]' =
[w(y)/E(w)]v'(y) -- a weighted marginal regret.

The FOC for a WU maximizer's SPC problem is

[T (y*;F) dEC) = 0, (5.8)
or equivalently,
JE L (r*s Y ndR(m) = JETC (y*s Py ndR () s (5.8")

For an additional dollar's investment in ;, the extra income is n = z-r if
z realizes. ('(y*;F)n is the marginal utility contingent on the realiza-
tion of z. The LHS of (5.8') gives the expected marginal disutility from
'bad' outcome states while the RHS gives the expected marginal utility
from 'good' outcome states. The FOC means that, at optimality, the ex-—
pected marginal utility and disutility from investing an additional $1 in
z must balapce out so that the agent has no incentive to deviate from his
risky—-asset demand x*.

Note that in (5.8) C'(y;F) is the only term involving the parameter

Yo Therefore, in order to have the risky-asset demand x* rise when Yo

increases, {'(y;F) must behave in a particular manner. Differentiating

§'(y;F) w.r.t. Yo yields the following:
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w'(y) OWU(F)
JwdF 6y0

3}-?; L' (y3F) = r(y;F) -

ren(ysm - %30 o (ryar

r{¢(y;F) --%%é%l E[Z'(F)]}. (5.13)

The interpretation of p(y;F) defined by (5.6) is better illustrated by

expressing it as follows:

(5~ O WOIIELB)] 5= C(]/C(yF)
o o
p(y;F) = - T (y;F) T rE[C'(F)]
w'(y) '
Sl L ogn B SO (5.6")
E[C'(F)] C'(y;F) C'(y;F)
CE) W' (y)
- _ E[C'(F)] Efw] (5.6)

C'(y;F)
rE[C'(F)] = GWU(F)/byo is the ex ante expected marginal utility from an
extra dollar available for investment. To be consistent with stochastic
dominance, it must be positive. Since rE{{'(F)] is constant w.r.t. vy,

p(y3;F) will be decreasing in y if and only if

2

- [ay C'(y;F)]/C'(y;F) (5.14)

o
is also decreasing in y. Expression (5.14) has the interpretation of a
yo—elasticity, i.e. the proportional change in {'(y;F) induced by $1

increase in Yor Note that an increase in Yo will cause an upward shift of

WU(F), changing the benchmark based on which the magnitude of regret is
measured. Thus, the effect on ('(y;F) 1s twofold, one resulting from the
movement along (', the other from the shift of WU(F). These two effects

are represented in (5.13) by the two additive terms in the curly bracket.



p decreasing in y means that the 'normalized' yo—elasticity of the
marginal weighted regret (normalized by 6WU(F)/6yo) must be decreasing in

y. A decreasing yo-elasticity in turn means that the investor's intensity

of regret about not obtaining a marginally better outcome state lessens as
he becomes richer. This seems reasonable to be the condition for the nor-
mality of risky—asset demand -- as an agent gets richer, he will hold more
of the risky asset.

How must the value function v and weight function w behave in order

to display decreasing yo—elasticity in ¢'(y;F)? Before we answer this

question, assume that the SPC problem is uniquely solved for a risk averse
decision maker, i.e., C'(y;F) > 0 and C"(y;F) < 0. The following table

should be useful.

(a) () () (d) (e) (f)***
condition for
case -=-{"/C' w w'ow'/Ct (w'/C')' <0 condition for p' < 0
(1) + ¥ - + - always
_w T [ | w'/E[w] .
(2) ¥ v + ? av_ < C' [C'] > LC'(F)/E[C'(F)] }
(3) ¥ 4 - ? —-%T > - ET* as above
(4) ¥ 4 + 4 impossible as above
_ _ _ EL ' ! w' /E[W] '
) t \ \ F < -emmremT)
(6) + ¥ + ? —-%T < - %T** as above
(7) 4 4 - ? - %; > - E;?* as above
(8) 4 4 + 4 impossible impossible

* gufficient but not necessary for p' < 0 *%* independent of (e)
** pecessary but not sufficient for p' < O



In the above table, column (a) specifies whether { is decreasingly or
increasingly concave. Since the normality of risky—-asset demand is a form
of decreasing risk aversion, a decreasingly concave LOSUF is the more na-
tural case. Columns (b) and (c¢) indicate whether the weight function is
increasing or decreasing, concave or convex. When w is decreasing and
concave as in cases (1) and (5), the second term of p (cf. expression
(5.6)) will‘be decreasing. On the contrary, it will be increasing if w is
increasing and convex as in cases (4) and (8). For all other cases, the
direction is ambiguous. The condition under which w'/{' will be decrea-
éing is given in column (e).

When both =-g"/C' and w'/(' are decreasing in y, p will definitely
decrease in y as well. 1In this category is c;se (1) as well as cases (2)
and (3) when restricted by the additional condition given in column (e).
In case (8), the agent's preferences display increasing risk aversion in
the sense of risky-asset demand, i.e. he will reduce his investment in z
as he becomes wealthier —— a case normatively not very appealing. When -
"/ C' decreases but w'/{' increases, or -{"/{' increases but w'/{' de-
creases, the decreasing term must dominate in order to have the normality
result. It is interesting to note that even if the LOSUF { is increasing-
ly concave, normality is still attainable.

An increasingly concave { means that the agent will be more GCCERA or
GMRA as he gets richer. How can we justify such an agent's demanding more
of the risky asset when he has more money to invest? Since this will
never occor under EU, let us consider an EU agent as our base case. When
the weight function 1s constant, the second term of p vaniéhes and p

reduces to



Py = - V(N/E[V']
pEU(y’F) = v (y) .

Since E[v'] 1is constant in vy, decreasing in y is equivalent to -v"/v'

Peu
decreasing in y. The latter is of course the EU Arrow-Pratt index. PEy
is a normalized concavity index whose behavior happens to be consistent
with the Arrow-Pratt index.

When w is not constant, it is clear from (5.6) that a concave and/or
decreasing w will reinforce the decreasing risk aversion captured by a de-
creasing normalized concavity index. On the contrary, a convex and/or in-
creasing w will offset all or part of it. Recall that a decreasing w in-
dicates pessimism which is a source of risk aversion. A concave, decrea-
sing w therefore deplicts decreasingly pessimistic attitudes. For a WU
agent whose utility-based risk aversion 1s increasing in wealth (i.e.
[-¢"/C']'" > 0), if his pessimism decreases sufficiently fast when he be-~
comes richer, he might still increase his holding in the risky asset.

Interestingly, if we define a proportional version of p(y;F) as

follows:
yC"(y;F) _ yw'(y)
p*(y;sF) = yo(ysP) = - BBl (5.15)

it can be shown that d(l—B*)/dyo > 0 (i.e. the safe asset is a superior

good) if and only if p*(y;F) increases in y.

Can we obtain a similar condition for the normality of risky-asset
demand under LGU? The presence of the weight function in (5.6) apart from
C(y;F) leads us to believe that this is not possible without imposing more
structures on the functional V(F) or makiﬁg further assumptions.

It is worth noting that the insurance premium condition is absent in
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Theorems WU8.1 and WU8.2. There appears to be some fundamental distinc-
tions between insurance premium and portfolio choice. First of all, note
that the absolute size of the risk in the insurance premium condition re-
mains the same when the agent's initial wealth changes. In contrast, an
investor's risky-asset demand is a function of his investible wealth. As
he experiences an exogenous increase in his 1investible funds, he will
change his investment in the risky asset. Suppose his initial wealth in-
creases from Yo to y0+Ay and his risky-asset demand changes from X, to X .

As long as X # x the absolute size of the risk he is bearing will be

1°
altered. We also cannot be sure that the relative size of the risk will
not vary. |

Secondly,'as pointed out earlier, insurance premium is a consequence
of a decision maker's perception about the certainty equivalent for a
risk. In contrast, risky-asset demand is the result of an optimizing
behavior. As such, the derivation of the condition for PRA often makes
use of the FOC if it is obtainable. We have applied the same approach in
producing Theorems WU8.1 and WU8.2.

A natural way of deriving the condition for DRA in the sense of

insurance premium is the comparative static technique. Totally differen-

tiating WU(FyO+E = WU(6yo_“) = v(yo—n) yields
' ~ ~
IC (Fy +€)dFy +€
dn o o
€L -1 - - . (5.16)
dy vi(y,~m

DRA in the sense of insurance premium calls for dn/dyo <0, i.e.,

Jer(F_  ~)dF

Vo [ _
y0+€ 70+€ > v (yo ) o (5.17)
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Under EU, (5.17) reduces to
' ~ ' -
Ju dFy 4T 2u (yo )
o
which holds for all € if and only if —u"/u' is decreasing. When the pre-

ference functional is nonlinear in distribution, (5.17) will not be equi-

valent to (~C"/C')' < 0 in general.
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6

COMPARATIVE AND DECREASING RISK AVERSION INVOLVING STOCHASTIC WEALTH

In Section 5, both the initial wealth and the wealth increment are
assumed to be deterministic. When complete insurance is not available or
when a safe asset does not exist, this assumption is deemed unrealistic.
It is therefore of interest to see how the CRA and DRA characterizations
in Theorem EU7 and Theorem EU8 can be extended to allow for stochastic
initial wealth, or even stochastic wealth increments.

It should be pointed out that the wealth increment may confound the
agent's portfolio choice problem. To illustrate, let r and Z = r+% with
E(7) > O be the two assets in our simple portfolio set-up. Suppose an
agent's demand for z is X when his risky initial wealth is ;;. His final

wealth will be §gr+xoﬁ. If his demand for z changes to x, = xo+Ax (Ax may

1
be positive or negative) when his initial wealth increases to 91 = §;+Ay
(Ay > 0), his final wealth will be (§;+Ay)r+(xo+Ax)ﬁ if Ay is investible,

andv§;r+(xl+Ax)ﬁ+Ay if Ay is not investible.

When Ay is investible, Ax is a consequence of two effects. One may
be called a 'resource effect' —— an effect caused by an increase in his
investible resources. The other may be called a 'risk attitude effect' —-
an effect caused by the change in his attitudes toward risk which in turn
is caused by an increase in his 'consumable' income. We shall only be
concerned with the risk attitude effect 1n this section. In other words,

we assume that the anticipated wealth increment will be available only

- 103 -



after the investment decision is made, therefore noninvestible. For sim-
plicity, we say the wealth increment is ex post. In contrast, the unres-—
tricted wealth increment in Theorems EU8, WU8.1, and WU8.2 is ex ante.
Note that, when wealth increment is ex ante but can only be invested in
the safe asset, the result in this section still holds.

This section contains two parts. In Subsection 6.1, Theorem EU9 and
Theorem EU10, due to Ross (1981), extend Theorem EU7 and Theorem EU8, res—
pectively, to allow for stochastic initial wealth. In Theorem EU1l0, which
is in terms of DRA, the wealth increment is assumed deterministic.

In Subsection 6.2, we first illustrate that Ross' strong concavity
index does not have a WU or LGU counterpart. Theorems LGU9 and LGUlO are
then presented as special cases of Machina (1982b)'s Theorem 1 extended to
LGU by imposing additional structure on the linear GAteaux derivative (
(Chew, 1985). Again, we assume stochastic initial wealth and determinis-
tic wealth increments. Both initial wealth and wealth increment are
allowed to be stochastic in Theorem LGUll. This case apparently involves
too many risks for EU to handle. Hence, there 1s no Theorem EUll.

Since the results gathered in this section are either from Ross
(1981) or based on Machina (1982b) and Chew (1985), their proofs will be
discussed but not reproduced. The presence of this section is mainly for
the completeness of comparisons among EU, WU and LGU under different
assumptions about wealth levels, namely from (yo,Ay), to (;;,Ay), and then

to (y,,89)-
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6.1 CRA and DRA with Stochastic Wealth under Expected Utility

Suppose two EU agents U, and up have the same risky initial wealth

§;. Let Ty and Ty be their respective insurance premia for a risk € un-

correlated with ;;. Let X, and Xg be their respective risky-asset demands

in a simple portfolio set-up with assets r andAZ = r+7, where E(7 yo) =

E(T) > 0 for all Vo * 1f is more risk averse than Ug, we expect u to

YA A

be willing to pay a higher premium than uB for the insurance against a
given risk €. Similarly, we anticipate uy to invest more in the risky

asset than u, will. What is the proper condition for being 'more risk

averse' in this sense? The answer is given in Theorem EU9 below:

Theorem EU9 (CRA with ;;, Ross): The following properties of a pair of

continuous, strictly increasing, twice-differentiable von Neumann-

Morgenstern utility functions uy, and u, are equivalent:

B

W) up(yH)

a Strong Arrow—Pratt Index) - > -
(a) (Strong ) Y

(6.1)

for all k.
(a') (Strong Concavity) There exist a positive constant A and a decrea-

sing concave function h such that

u,(y) = hup(y) + h(y). (6.2)

(b) (Insurance Premium) Suppose Ty and nB are the respective insurance

premia for risk € of u, and up who have identical initial wealth ;;.

Then, > ﬂh for all € satisfying E(E yo) = E(€) for all Yoe

A
In addition, each of the above implies the following condition:

(¢) (Risky—-Asset Demand) Suppose u, and ug have identical wealth ;; and
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Xy, Xp are their respective risky-asset demands in a simple portfo-
lio set-up withvassets r and z = r+ﬁ, where E(ﬁ yo) = E(ﬁ) > 0 for

all Yor Then, X, < Xpe

Note that the risky-asset demand condition 1s implied but not equiva-
lent to the other conditions. This is another evidence that the nature of
insurance premium and risky-asset demand is not quite the same. In this

case, x, € X implies

A

2 '(y ™mn
0 > Efu, (y rxpmn]

E[Ku};(?oﬁxBﬁ)ﬁ] + E[h'(?onBﬁ)”ﬁ]

E[h'(;;r+xBﬁ)ﬁ]

Cov[h'(y r+xy M), N + E[h'(y rr,MIE[T]

which may be satisfied by a function h not simultaneously decreasing and
concave.

The strong Arrow-Pratt index condition in Theorem EU9 implies, but is
not implied by, the Arrow-Pratt index condition in Theorem EU8. Due to
its stronger form here, the initial wealth 1s allowed to be random. The
randomness is however not arbitrary. It must be uncorrelated to the risk
% to be insured or the risk % from the risky asset.

To gain some Iinsight into Ross' strong Arrow-Pratt index, consider an
infinitesimal risk € which is contingent on the realization of the initial
wealth ;;. Suppose € is likely to occur only if Y, E Y and will definite-
1y not occur 1if Yo € ?; E(E yo) = 0 and Var(g yo) = ¢¢ for every Yo e Y.

Moreover, let F and G be the distributions of ;; and §;+E, respectively.

The insurance premium 7 for this contingent risk is defined by equation

(6.3) below:
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Ju(y,-mdF = [ju(y +e)dG + f§u(yo)dF. (6.3)

Expand both sides via Taylor's series as follows:

Ju(y-mdF = [[u(y )-m'(y )+0(n?)]1dF

jﬁ(yo)dF - nfu'(yo)dF + 0(n9).

qu(yo+€)dG + f_u(yo)dF

Y
= Jyluly, yrea’ (v 0+ & w'(y_Yro(D)]de + AL,
= Jquly )dF + 9; Jqu (y )dF + f§u(yo)dF + o( %)
= Ju(y )daF + E; Jqu"(y )AF + o(a?).
Therefore,
~ o~ g2 Jyu (v )dF
(Y, ,€) = 7 TR | (6.4)

The term qu"(yo)dF is an expected diminishing rate of the marginal

utility which measures the disutility from $1 uninsured loss. Since the
risk € will likely be present only at Y, € Y, the integral is taken over

the set Y only. The term —fh'(yo)dF on the other hand gives the expected

disutility from paylng one extra dollar in premium for the insurance. The
expectation is taken over the union of Y and Y because the premium has to

be paid no matter Y, € Y or Y, € Y. The ratio of these two terms is the

modified Arrow-Pratt index for the case where the agent's wealth is sto-
chastic, and has the interpretation of "twice the insurance premium per
unit of conditional variance” of the infinitesimal contingent risk to be
insured.

For two EU maximizers u, and up with identical ;; distributed as F,

A
we have T > for all such risks only if
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AL . Lyus(y, )dF
th(yo)dF fhé(yo)dF

(6.5)

for all Y. Furthermore, under EU the risk € can be generalized to nonin-
finitesimal ones. It is straightforward to check that (6.5) holds for all

F~ and Y if and only if
o

) uX(y+k) s ui(y+k)
u, (¥) up(y)

(6.1)

for all k.

Condition (a') of Theorem EU9 says u, can be obtained by transforming
quia (6.2). Recall that, if u, is more concave than Ups then u,can be
obtained by "concavifying" up via an increasing, concave function. Does
(6.2) require u, be even more concave? Given an increasing, concave func-
tion up, suppose

u, (y) = Mg(y) + h(y),
and

up(9) = hlug(y],
where X > 0, h' < -Myp <0, h" <O, h' > O-and h" < 0. Then urs GZ\ >0,
ux, Gx < 0 and —ux/uA > —Gx u'. In other words, in order to have the CRA
characterization in Theorem EU7 céfry through to the case with stochastic
initial wealth, the utility function of the more risk averse individual A

must be more concave than in the case where wealth is deterministic. Note

that, because u, and up are not lottery-specific, neither will be A and

h(y). This is crucial for the proof of Theorem EU9.
In the context of DRA, suppose an agent's insurance premium for risk

€ at initial wealth ;; is no. When ;; is increased by a constant Ay in
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every state, how will his insurance premium change accordingly? If he is
decreasingly risk averse, we expect him to become more reluctant to pur-
chase insurance. Thus, the premium he will be prepared to pay for the
same policy should decrease. Similarly, we expect him to increase his
holding of the risky asset when he gets richer. The condition for this
sense of DRA is given in Theorem EUlO0 which 1s simply a rephrasing of
Theorem EU9.

Theorem EULO0 (DRA with ;; and Ay, Ross): The following properties of a

continuous, strictly increasing, twice-differentiable von Neumann-

Morgenstern utility function u(y) are equivalent:

(a) (Strong Arrow-Pratt Index) - EE$%§§1 is decreasing in y for all k.
(b) (Insurance Premium) Suppose T, o= n(?o,z) and T = n(?l,g) are u's

insurance premia for risk € at stochastic initial wealth levels ;;
and ;1 = §;+Ay, respectively. Then, Ay > O implies LA > & for all
€ satisfying E(E yo) = E(€) for all Y-

In addition, each of the above implies the following property:

(c¢) (Risky—-Asset bemand) Suppose x and %) are u's risky-asset demands
at initial wealth levels ;; and §i = §;+Ay, respectively, in a sim-
ple portfolio set-up with safe asset r and risky assetlg = r+7,

where E(7 yo) = E(M) >0 for all Yo+ Then, X < x, if Ay > 0.

1
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6.2 CRA and DRA with Stochastic Wealth Beyond Expected Utility

To derive the condition for comparative and decreasing GIPRA under
WU, we apply the same approach as in the preceding subsection. Consider

an infinitesimal risk & contingent on Y, € Y with E(E yo) = 0 and

Var(e yo) = o2 for every y_ € Y. Let F and G be the distributions of ;O

and §°+g, respectively. A WU agent's insurance premium is defined by
(6.6) below:

Jo(ymmwly =mdF  [pv(y +e)wly +e)det [qv(y wly )dF
Jw(yo—n)dF - JYw(yo+e)dG+f§w(yo)dF

. (6.6)

Expanding both sides via Tayor's series after cross multiplication yields

v o2 J¢C (v 3 F)AF
WY€) = —3 S Al AR

(6.7)

In view of the similarity between (6.7) and (6.4), one is tempted to
speculate that -C"(y+k;F)/C'(y;F) decreasing in y for all k and F is the
condition we are seeking for. This conjecture turns out to be incorrect.
It is true that

Gy (y+k; F) Ch(y+k;F)
)—
CA(y;F) Cé(y;F)

for all k and F if and only if, for every F € D there exist a constant

J’
AF > 0 and a decreasing, concave function hF(y) such that
CA(93F) = AgLa(ysF) + hp(y).

Since CA and CB are F-specific, A and h must also depend on F. As a

result, the proof of Theorem EU9 will not go through for WU.

From (6.7) we know that, if Ty is to be greater than Ty for all v, it

must be true that
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_ Cu(y3F) S L (¥3F)
JT (F)dF T (F)dF

(6.8)

for all y, where F is the distribution of y . Although (6.8) is derived
o g

for small risks, it turns out similar to Machina's condition for general
risks.

To extend Machina's results from FDU to LGU, we impose additional
structure on LOSUF { as below (Chew, 1985):

Assumption 6.1: The linear GAteaux derivative [(e;e¢): J x DJ + R of the

preference functional V(*): D, >R is continuously differentiable and ex

J
ante bounded, i.e., there exists M > 0 such that ’C(x;F){ < M for all x

€J and F ¢ DJ.

In this section, we suppose Assumption 6.1 is satisfied. In what
follows, the theorems are stated in terms of LGU only.

Theorem LGU9 (CRA with ;;): The following properties of two LGU function-

als V V., with increasing, concave LOSUFs {, and {_ satisfying Assump-
A B P

A’ 'B

tion 6.1 are equivalent:

Cy(y;F) Ca(¥3F)
(@) - o > - (6.8)
JEAZF)dF JCﬁ(F)dF .

for all y and F.
(b) (Insurance Premium) Suppose T, and Ty are the respective insurance
premia for risk € of CA and CB who have identical initial wealth ;;.
> € T = E(% .
Then, T TS for all € satisfying E(e.yo) E(g) at all Yo

In addition, if both VA and VB are diversifers, then each of the above

is equivalent to:

(¢) (Risky—-Asset Demand) Suppose CA and CB have identical wealth §; and
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X, Xp are their respective risky-asset demands in a simple portfo-

lio set-up with safe asset r and risky asset z = r+ﬁ, where E(ﬁ yo)

= E(M) » 0 for all Yy Then, X, < Xpe

Theorem LGU1l0 (DRA with ;; and Ay): The following properties of an LGU

functional V with increasing, concave LOSUF ( satisfying Assumption 6.1

are equivalent:

_ " (ysE) _ _C"(y*;F*) :
@ = mar 7 T TEEmaE (6.9)

for all y* > y and F*(s) = F(s-A), A > 0.

(b) (Insurance Premium) Suppose T and 7, are ['s insurance premia for

1
risk € at initial wealth levels ;; and ;1 = §;+Ay, respectively.

Then, T > ﬂi for all € satisfying E(E yo) = E(E) for all Yo if Ay >

0.

In addition, if V is a diversifier, then each of the above is equivalent

to the following:

(c¢) (Risky-Asset Demand) Let X and X, be C's respective risky-asset
demands at initial wealth levels 95 and ;1 = §;+Ay in a simple port-
folio set-up with safe asset r and risky asset z = r+m, where

E(T yo) = E(ﬁ) > 0 for all Yy* Then, X < x, if Ay > O.

1
Theorem LGUll (DRA with ;; and A;): The following properties of an LGU

functional V with increasing, concave LOSUF { satisfying Assumption 6.1

are equivalent:

- _C'(ysF) _ L' (y*;F*)
@ = 7Emer 7 T TeEeaEe (6.10)

for all y* >y and F* >! F.
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(b) (Insurance Premium) Suppose LA and M are C's insurance premia for
risk € at initial wealth levels ;; and ;i = §;+A;, respectively, and
Ay > 0. Then, LS > T for all € satisfying E(e yo) = E(E yo+Ay) =

E(E) for all y, and y_+4y.

In addition, if V is a diversifer, then each of the above conditions is

equivalent to:

(c) (Risky-Asset Demand) Suppose X and X, are {'s respective risky-
asset demands at initial wealth levels ;; and ;i = §;+A§ > §; in a
simple portfolio set—up with safe asset r and risky asset z = r+ﬁ,
where E(ﬁ yo) = E(ﬁ yo+Ay) = E(%) > 0 for all Yo and yo+Ay. Then X,

< xl.

Several points are worth noting in the above theorems. First, the
risk € in insurance premium condition and the risk 7 in the risky-asset
demand condition are required to be uncorrelated with ;; and A; in such a
manner that E(E yo) = E(E yo+Ay) = E(E) and E(ﬁ yo) = E(ﬁ'yo+Ay) = E(7) >

0 for all Y, and yo+Ay. When his wealth is risky, an agent's insurance

premium and risky—-asset demand will naturally depend on how different
sources of risks interact. The purpose of the uncorrelatedness restric-—
tion is to eliminate any possible offsetting or aggravating effect among
risks.

Secondly, the result in Theorem LGUll was originally proved by
Machina for Fréchet differentiable utility. Essentially, the proof is

comparative statics utilizing path derivative. For example, if F~ K~ is

+
Yo TE
indifferent to F~ , then there exists a path from Fr to F~ ,~ along
Yo "o Vo™ yo+€
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wﬁich the same utility level is maintained. 1In other words, this path is
an indifference curve. Consider a scenario similar to Kahneman and
Tversky (1979)'s probabilistic insurance. Suppose an agent can purchase
an insurance for € at a premium m(a) lower than the complete insurance

premium o If the risk € occurs, lots will be drawn to determine whether

1

the insurer or the insured is to absorb the risk in the event it occurs.
With o chance, the insurer will be responsible for Z; with l-a chance, the
insurer will walk away with the premium, leaving the agent to absorb the

risk. Naturally, m(a) increases in «.

d

’ a
-n(a)+E}’ da V(F)

a
Along the indifference path {F =oF~ +(1-a)F~
g path { . ~n(a) (1-a) 5,

= 0 at all a« € [0,1]. Similarly, given Ay » 0O, there is another

a
% =Zof ~ ~ - ~ ~ ~t .
indifference path {F =oF . ( )+(1 a)F : (o) }

If the agent

is decreasingly risk averse, then n(a) > 7w (o) at each a ¢ [0,1]. Define

—a. e 5
a path {F _aFyo+Ay—n(a)+(1 a)Fyo+Ay—n(a)+€}'

Since m(a) is too high to be

optimal for wealth ; +A;, a lower a will be preferred. Hence 4 V(Fa) <
o da

0.

When { satisfies Assumption 6.1, V is path differentiable on all
generalized smooth paths (see Chew (1985)). As such, Machina's results
will continue to hold.

Recall that the CRA condition we derived for infinitesimal risks is:

Ci(y;F) Co(ysF)
__A > - _ B (6.8)
T (F)dF TTE(F)dF .

for all y and F. 1In the context of DRA, we must take into consideration

the effect on the ratio caused by the shift of distribution. After a
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deterministic increase in ex post wealth Ay, the distribution of the final

wealth will be F§4Ay The condition for DRA therefore becomes

C"(y;F§;Ay)

- e —
T (Fy+Ay)dFy+Ay

(6.11)

decreasing in both y and Ay. This is the case of Theorem LGU10.

When the wealth increment is stochastic, it 1is required that the
ratio (6.11) decrease in y as well as in distribution in the sense of
first-degree stochastic dominance. Hence, condition (a) of Theorem
LGU11.

Obviously (6.10) implies (6.9). To see the distinction between them,
consider a positive stochastic wealth increase A; = AB with A > 0,

E(§ y ) = 0 for all y_and 8 is bounded from below by -A. Consider an
o o

agent who 1is decreasingly risk averse in the sense of Arrow. As his
wealth increases by a positive, deterministic amount A, he will become
less risk averse —— the implication of condition (6.9). When an uncorre-—
lated, zero-mean risk is added to his wealth, he will feel worse-off,
therefore become more risk averse. The net effect of an uncorrelated
zero-mean risk and a simultaneous deterministic increase in wealth however
is ambiguous 1in general. Condition (6.10) is stronger than (6.9) in the
sense that it further requires that the effect on an agent's risk attitude
caused by A not be offset by the opposite effect of any zero-mean risk ;]
bounded from below by —A.

This stronger measure can be rephrased to characterize CRA for the
case where agents have indentical stochastic initial wealth ;;. In such a

case, agent VA

CX(y;F) Cg(y;G)
T TTnaE > - I[AX(OTLE

is said to be more risk averse than agent VB up to A if
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for all vy, 8 and F, where § satisfies E(@) = 0 and min{e} > -A and G is
the distribution of s+8 if F is that of s.

Also note that there is no Theorem EUll. This is because the von
Neumann-Morgenstern utility function u(y) does not depend on distribution,
rendering EU incapable of handling the situation where both initial wealth
and wealth increment are stochastic. On the other hand, Theorems WU9,
WUL0 and WUll are omitted because they will be identical to their LGU

counterparts without the diversifier requirement.
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7

CONCLUSION

After an extended period of the predominance of expected utility in
economics and finance, there is a sense of excitement in terms of new di-
rections being contemplated. Descriptive validity has provided the pri-
mary impetus behind many attempts to construct theories beyond expected
utility. They 1include the theories of Allais (1953; 1979), Edwards
(1954), Handa (1977), Meginniss (1977) and Karmarkar (1978), Kahneman and
Tversky's prospect theory (1979), the regret theory of Bell (1982) and
Looms and Sugden (1983), Machina's Fréchet differentiable preference func-
tional analysis (1982a; 1982b) and weighted utility (Chew and MacCrimmon,
1979a; 1979b; Chew, 1980; 1981; 1982; 1983; Fishburn, 1983; Nakamura,
1984). 1In order to discriminate among these alternative preference theo-—
ries, further experimental studies will be needed to delineate their res-
pective domains of empirical validity.

Another way of discriminating among them 1s via their applicability
to the economics of uncertainty and information. In comparison with ex-
pected utility, few such_applications of alternative theories have been
reported to date. Of the 'misperception-of-probability' theories, Thaler
(1980) applied prospect theory to account for several puzzles in consumer
behavior. Shefrin and Statman (1984) partially applied prospect theory to
model investors' preference for cash dividends over stock dividends.

Among the theories of general preference functionals, implications of

both weighted utility and Fréchet differentiable preference functional
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approach for income inequality were presented in the respective papers of
Chew (1983) and Machina (1982b). Weber (1982) derived for homogeneous
weighted utility agents a Nash equilibrium bidding strategy that is compa-
tible with the 'discrepancies' in the observed bids under the Dutch auc-
tion and the first-price sealed-bid auction reported in the experiments
conducted by Cox, Roberson and Smith (1982). Machina (1982a; 1982b)
applied Fréchet differentiable utility theory to obtain conditions for
comparative and decreasing risk aversion, as well as for the normality of
risky-asset demands. Epstein (1984) applied Fréchet differentiable utili-
ty to mean-variance analysis and provided a refreshing and most powerful
defense of its theoretical soundness since the scathing attack by Borch
(1969) and Feldstein (1969).

With the exception of Machina's and Epstein's works, the above inves—-
tigétions are rather fragmentary in ﬂature. Among them, the studies of
Shefrin and Statman, Machina, and Epstein have direct relevance to
finance. 1In order to increase our undgrstanding of the applicability of
the numerous alternative preference theories to financial economics, two
lines of research apﬁear worthwhile. The first is to directly apply a
given theory to model specific situations in finance and obtain implica-
tions that can be compared to those based on expected utility in the
financial markets. The other is directed towards the derivation of condi-
tions for preference properties relevant to finance such as risk aversion
and the normality of risky-asset demands. This essay is intended towards
the latter.

We focus our attention on weighted wutility and contrast it with

expected utility and linear GAteaux utility which is Fréchet differenti-
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able when restricted to a bounded domain. Weighted utility and linear
Giteaux utility are selected because, unlike other proposed alternatives,
both are analytically tractable.

Under expected utility, if two lotteries are indifferent, then when
separately mixed with a third lottery at the same proportion, the two new
compound lotteries must also be indifferent. This implies that the indif-
ference curves in any simplex involving 3-outcome lotteries are parallel
straight lines. To accommodate Allais-type choice behavior, these two
compound lotteries must be allowed to lie on two distinct indifference
curves. Intuitively, the most liberal compromise is to permit a set of
indifference curves that do not intersect (or transitivity will be viola-
ted), and will behave in conformance with the law of the-more-the-better
(i.e. consistent with first—degree stochastic dominance). For technical
convenience, we.may also require the indifference curves to be continuous
and smooth.

It is not surprising that with so little structure imposed on the
preference ordering, risk aversion in different problem contexts might not
be equivalent. It is therefore necessary to specify the sense of risk
aversion being referred to. We defined, among others, risk aversion in
terms of conditional certainty equivalent, unconditional certainty equiva-
lent, mean preserving spread, and risky-asset demand. Without specifying
any preference theory, we proved that risk aversion in the sense of condi-
tional certainty equivalent and risk aversion in the sense of mean preser-
ving spread are equivalent as long as the underlying preferences are com-
plete, transitive, continuous in distribution, and consistent with first-

degree stochastic dominance. This was first showed for finite lotteries
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involving rational probabilities, then extended to general monetary lotte-
ries. This also holds in the comparative context, i.e., agent A is more
risk averse than agent B in the sense‘of conditional certainty equivalent
if and only if A is more risk averse than B in the sense of simple compen-
sated spread. We also showed that, regardless of the utility theory, A
being more risk averse than B in terms of simple compensated spread
implies that A will demand less of the risky asset in a world with one
safe asset and one risky asset.

In expected utility, properties of a preference ordering are largely
captured in the agent's von Neumann-Morgenstern utility function u(x). If
we can identify its non-expected utility counterpart, the analytical trac-
tability of a general utility functional will be greatly enhanced. For
this purpose, we imposed linear G&teaux differentials on utility function-
als and called such a functional a linear GAteaux utility. 1Its G&teaux
derivative {(x;F) 1s termed a lottery-specific utility function (abbrev.
LOSUF) which in many ways plays the role of the von Neumann—-Morgenstern
utility. For instance, consistency with the first-degree stochastic domi-
nance requires an increasing {; global risk aversion in terms of condi-
tional certainty equivalents and mean preserving spreads is characterized
by a concave {. Unlike gxpected utility, however, the concavity of [ is
not equivalent to pointwise local risk aversion. This gap is welcome be-
cause it can be used to explain why people purchase insurance and gamble
at the same time.

If 1linear G4teaux utility can resolve major controversies under
expected utility, why should we be interested in weighted utility which is

a special case of linear GAteaux utility? At least three arguments can be
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made in response. First of all, linear GAteaux utility is not axiomatic.
It is unclear what preference properties are embedded in linear G4teaux
utility. 1In contrast, weighted utility is a consequence of specific as-
sumptions about preferences, namely completeness, transitivity, continui-
ty, monotonicity, and weak substitution. As long as a decision maker's
preferences conform to these axioms, the analysis via weighted utility
will be valid. ©Note that the only axiom that departs from expected utili-
ty is the weak substitution. This appears to render weighted utility a
natural replacement for expected utility when a nonlinear preference func-
tional is called for.

Secondly, to generate all the indifference curves in a simplex of 3-
outcome lotteries (cf. Figure 1.l), the amount of information needed under
linear GAteaux utility might prove insurmountable as any smooth, noninter-
secting indifference curves are permissible. In comparison, weighted uti-
lity is far more efficient. It only requires the knowledge of one arbi-
trary indifference curve and the point at which all indifference curves
intersect. Of course, this also means that there will exist paradoxes
that can be explained by linear G&teaux utility but not by weighted utili-
ty. Nevertheless, when the problem context does not require generality at
the level of linear Gdteaux utility, the much greater efficiency of weigh-
ted utility may appear attractive.

Most importantly, the specific functional form of weighted utility
allows us to solve explicitly optimizing problems such as portfolio selec-
tion, intertemporal consumption decision, etc. For instance, some impli-
‘cations in thié essay are obtainable under weighted utility but not under

linear GAteaux utility. One is the observation that, no matter how risk
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averse he may be, a weighted utility agent, like his expected utility
counterpart, will invest a stictly positive amount in the risky asset as
long as the expected rate of return on the risky asset is strictly greater
than the safe rate of return. Aiso, we are assured that a risk averse (in
the sense of mean preserving spread) weighted utility agent's not—worse—
than sets are always convex so that his weighted utility is quasiconcave
in his risky-asset demands. Under linear GAteaux utility, this need be
assumed.

Another result unique to weighted utility is the necessary and suffi-
cient condition for the risky asset to be a normal good (cf. Theorem WU8).
With weighted utility, this condition is obtained by first optimizing the
agent's weighted utility to yield the first and second order conditions,
then performing conventional comparative statics. This approach is not
applicable to linear GAteaux utility without assuming a specific function-
al form. Even though some comparative statics can be carried out under
linear GAteaux utility via path differentiation, explicit solutions are
not obtainable without imposing more structures.

The above discussions point out a natural direction for further re-
search. It should be interesting to see how market behavioral implica-
tions obtained under expected utility in some specific financial economic
problems such as intertemporal consumption choice, information value and
compétitive bidding strategy will be altered under weighted utility. It
is possible that the results obtained under the expected utility hypothe-
sis are sensitive to agents' preferences. For example, it is well known
that under expected utility the Dutch auction and the first-price sealed-

bid auction are isomorphic, so are the English auction and the second-
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price sealed-bid auction. Nonetheless, Weber (1982) was able to demons-
trate that they might not be perceived as isomorphic by weighted utility
maximizers with decreasing, concave weight functions. Will the second-
price sealed-bid auction remain isomorphic to the English auction under
weighted utility? Will the demand-revealing property of the second-price
sealed-bid auction continue to hold under weighted utility?

On the other hand, some results obtained under expected utility might
prove robust to preference hypotheses. The equivalence between risk aver-
sion in the sense of mean preserving spread and risk aversion in the sense
of conditional certainty equivalent, proved in this essay, 1is such an
example. Most 1likely, introducing weighted utility will call for some
extent of modification in the results obtained under expected utility.
The necessary and sufficient condition for the normality of risky-asset
demand is such an example. This condition reveals that, when an agent's
utility function depends on the underlying distribution, the attributes of
the risk he is facing might affect his market choice behavior. We learn
from it that the equivalence between decreasing concavity of the utility
function and the normality of risky—-asset demand under expected utility
has much to do with the linearity of the preference functional -- an ana-
logy of state-independence.

No matter in which of the above categories the findings turn out to
be, they should help us understand the nature of the related market beha-

vioral implications.
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0

INTRODUCTION

One problem with the economy of a developing country is its capital
scarcity, which makes bank loans relatively inaccessible to most small
busi-nessmen and ordinary consumers. As a result, a broad class of spon-
taneously arising arrangements for the mutual provision of credit and sa-
vings 1s wide-spread in the developing world. The forms of the bulk of
these informal financial institutions are of the rotating credit type,
which, in the anthropological literature, are most frequently referred to
as the 'rotating credit association'. 1In a rotating credit association,
members make regular deposits into a pool which is available to satisfy
the borrowing needs of individual members in a rotating manner. The ac-
tual organization, including recruitment policy, size of deposit, and the
method of determining the order by which members receive funds, exhibits a
remarkable degree of variations in adaptation to local socio-economic and
cultural conditions. Examples range from an association in Keta, Ghana
(Little, 1957), in which the order of rotation was determined by seniority
and the size of deposit was not fixed, to those popular among the Chinese
and Japanese where the organizer gets the first loan interest-—free and the
subsequent loans are auctioned off to the highest bidder among the parti-
cipants who have not yet received loans (Geertz, 1962).

While rotating credit associations with an explicit finance focus are
prevalent among the developing countries (given their relatively under-

developed capital markets), there are other commonly observed non-market,
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expectation-based exchange activities that carry a significant rotating-
credit component. Neighborliness, gift exchange, poker clubs, etc. are
obvious examples.

Table 0.1 summarizes the characteristics of several variations of the
rotating credit association as well as neighborliness and gift exchange.
The various types of the rotating credit association differ mainly in
their methods of determining the order of rotation among members. In the
Chinese and Japanese versions, members compete for funds by submitting
sealed-bids. The African version is not very interesting since its rota-
tional order is determined by senlority or other 'sociological' criteria
rather than some form of interest rates (Little, 1957). The rotating cre-
dit association found in the Middle East is mainly for the purpose of pur-
chasing durable goods such as automobiles (among Israelis) and refrigera-
tors (among Lebanese). The last example of the rotating credit associa-
tion refers to the bilateral private arrangement popular among some Indian

laborers.!

Under this arrangement, a fixed amount 1is alternated between
two individuals at fixed intervals, often on pay days.

In Asian agriculture-based communities, neighbors gather efforts to
accomplish their seasonal harvest in rotation. In America, during the
pioneering days, similar arrangements were common for building houses,
fighting fires, etc.

The rotational nature inherent in gift exchange is particularly clear

in the context of wedding gifts. Most people begin by saving (giving wed-

L These examples were provided by the author's colleagues and friends.
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Table O.1: Examples of Rotational Exchange

Examples

Characteristics

Rotating Credit Assoclations

Middle Indian
Chinese|Japanese |African East Laborer

Neighborliness

Gift Exchange

nature

explicic
organizer

purpose

a bilateral
an informal financial market private
arraangement

tradition

tradition

yes no

satisfying borrowing or lending needs

mutual aids

friendship, etc.

Meubership
qualification

relationship

mutual selection

self-gelection

mutual selection

multiple bilateral bilateral

multilateral

Information
credit-
worthiness
based on)

kinship, job immobility, etc,

locational
immobility

status
immobility

Deposit

form
size

frequency

regular contribution ($ or kind)

aid to neighbors

gifts given out

fixed or variable fixed

variable

fixed

variable

|Withdrawal
form
size

frequency

loan (partially refund, $ or kind)

ald received

gifts received

fixed or variable|47 fixed

variable

fixed and once per cycle

{Ass ignment

mechanism

precision of
rotation

by competitive by seni-| by lot alternatiang
bidding ority

by needs

by tradition
e.g. weddings

precise

{mprecise




ding gifts) towards their wedding days when they ‘'withdraw' their ‘'sav-
ings' and take on a loan of gifts that are paid back over the subsequent
marriages of other eligible members of the 'wedding club' consisting most-
ly of friends and relatives. Interestingly, membership in a wedding club
is at least partially exogenous. Of similar nature is a poker cludb which
serves certain social functions without an explicit organizer.

Some arguments can be made to see insurance as a special form of the
rotating credit association where the insurance company acts as the orga-
nizer by selling policies and processingAclaims. The purpose of the ar-
rangement is of course risk sharing for the members and profit making for
the organizer. From the insurance company an Individual is associated
with, we may infer some private information. For instance, an automobile
owner insured by Preferred Risk Mutual Insurance Inc. in the United States
must be a non—drinker and non-smoker (assuming that people tell the truth
when applying for insurance).

On the deposit and withdrawal side, insurance policy holders make
fixed deposits by paying insurance premium periodically. The withdrawal
assignment mechanism is the key difference from the recognized financial
rotating credit association. First of all, the withdrawal is prompted by
the occurrence of presumably exogenous events which is random in cases
without moral hazards. Consequently, the rotation 1is imprecise in the
sense that a member may never get withdrawals. Secondly, even if insured
hazards do occur and withdrawals are granted, the size of withdrawals will
in general depend on the actual losses which again are randomly

determined.
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Even though the anthropological literature concerning the rotating
credit association is about a century's old (Geertz, 1962), the associated
repeated intertemporal competitive bidding process has never been the sub-
ject of a rigorous microeconomic study. The focus of this essay is on the
intertemporal bidding process in the Chinese version of the rotating cre-
dit association. Because of the interdependency between bids across peri-
ods, the intertemporal bidding process for the rotating credit association
is distinct from having repeated auctions independently across time. Ne-
vertheless, results in the competitive (single-period) bidding literature
will be of help in the development of our results.

Since the poineering work of Vickrey (1961), there have been numerous
studies of the resource allocation role of various forms of auction mar-
kets (Oren and Williams, 1975; Oren and Rothkoph, 1975; Green and Laffont,
1977; Milgrom, 1979; Wilson, 1979; Coppinger, Smith and Titus, 1980;
Forsythe and Isaac, 1980; Myerson, 1981; Harris and Raviv, 1981; Riley and
Samuelson, 1981; Cox, Roberson and Smith, 1982; Cox, Smith and Walker,
1982; Milgrom and Weber, 1982). (The reader is also referred to Stark and
Rothkopf (1979) and Engelbrecht-Wiggans _(1580) for extensive surveys.
Cassady (1967) is a good source of anecdotal historical examples.) Many
studies were concerned with four types of auction market forms - the
English auction, the Dutch auction, the first-price sealed bid auction and
the second-price sealed bid auction.

In the English auction, prices move upwards in progressively smaller
intervals. The purchaser pays the price that nobody 1is willing to bid
over. In contrast, prices in the Dutch auction move downward. The bidder

who stops the downward price movement purchases the object at that price.
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Vickrey argued that the English auction is isomorphic to the second-price
sealed bid auction where the highest bidder pays the price of the highest
rejected bid. This is supported in the experimental work of Cox, Roberson
and Smith (1982). Vickrey's other conjecture - the Dutch auction is iso-
morphic to the first-price sealed bid auction (where the highest bidder
pays the price of his own bid) - however, is falsified in the same experi-
mental study.

The organization of the rest of this essay is outlined below. A more
detailed description of the structure of the Chinese version rotating cre-
dit association, called 'Hui',? 1s given in Section 1 where we introduce
useful terms and notations, and describe eight actual cases of Hui.

Section 2 contains some preliminary analyses of several small, hypo-
thetical Hui (with 2 or 3 members only). The main objective 1s to inves-
tigate in a preliminary way the rationale for the existence of an informal
financial institution amid the more sophisticated, western—-derived banking
system and at the same time familiarize the reader with the workings of
Hui.

Section 3 presents the model's assumptions on an individual's in-
comes, preferences and expectations. We also state a definition of an
agent's intertemporal reservation discount vector, which 1is compatible

with, but does not depend on, agents' having access to some interest rate

2 The label 'Hui' 1is used in both the singular and the plural form.
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in a formal financial market, and prove its existence and wuniqueness.
This allows us to derive, in Section 4, the individual optimal bidding
strategy under the observed first-price auction (and the hypothetical
second-price auction) with the additional restriction of concavity and
time-additivity on his von Neumann-Morgenstern utility function, and a
decreasing marginal outbidden rate (increasing marginal outbidding rate)
on his subjective probability distribution of winning at each period. We
also discuss some comparative statics and efficiency implications of the
individual optimal bidding strategy.

In order to obtain a tractable form for a Nash equilibrium bidding
strategy, we, in Section 5, impose further restrictions, including risk
neutrality. This yields, for each agent, his ex post Hui borrowing and
lending interest rates. These rates depend on the history of the realized
winning bid, including the one for the period in which he wins the auc-
tion. Weighted by the Nash-equilibrium—induced probability of winning in
each period, corresponding ex ante (nondeterministic) interest rates re-
sult. Section 6 describes an application of the model built in Section 5
to a tacit collusion among a small group of suppliers selling an indivi-
sible commodity to a single buyer (e.g. the federal government). Section
7 concludes this essay by suggesting some potential directions for further

research.
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1

THE GENERAL STRUCTURE AND ACTUAL CASES OF HUI

1.1 The General Structure of Hui

A Hul consists of an organizer and N voluntary members of his choice
whom he brings together to form an informal market to satisfy their bor-
rowing and lending needs. For operating the market3 and bearing the de-
fault risk of each member, the organizer receives an interest-free loan of
NA, which is repaid in N equal installments of A at each of the N subse-
quent periods. The organizer, on the other hand, poses a common risk
shared by the N members collectively. Consequently, an otherwise multi-
lateral exchange relation is replaced effectively by bilateral ones.

Let O denote the organizer and n (= 1, 2,..., N) denote the partici-
pant who succeeds in bidding for the pool at the nth period. Let bin be

the bid submitted by participant i at period n, and bn = max{bin} be the
i

highest bid submitted at period n. We denote by A the 'size' of the per-
period, before-discount (or before-premium) deposit into the pool. The
member's actual payment at each period is related to A. 1In a 'dis-

count-bid' Hui, each member who has already received funds pays A at every

3 The services provided by the organizer include competitive recruitment
and selection of members, the execution of auctions, and the collection
and delivery of deposits.
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subsequent period. At period n, those who have not yet obtained loans pay

A--bn apiece. In a 'premium-bid' Hui, each member pays A at every period

before he succeeds in bidding for the pool. Once he wins, say at period n

by bidding bn’ he has to pay A.+bn at every subsequent period. Although

both discount-bid and premium—bid Hui are observed, the former is more po-
pular among the Chinese while the latter seems more to the Japanese's 1li-
king. The cash flow patterns for the organizer and the N members in both
a discount-bid Hui and a premium-~bid Hui are summarized in Table 1.1l.

From Table 1.1, it is clear that the number of participants, N, in a
Hui is also fhe number of periods this Hui 1s to last. Note that, among
the N members in a discount-bid Hui, member 1, who wins the pool NA-

(N—l)b1 in the first bidding, 1is a pure borrower, whereas member N, who

receives NA at period N, is a pure lender. The other members lie some-
where in between. In general, a member remains a lender until he receives
loans, at which point his status changes to a borrower. At each period,
only lenders are eligible to bid. Since the fund available at each period
must be granted to one member," the number of bidders decreases by one
every period, leaving the last member to collect NA at the end without
bidding. Obviously, an attr;ctive Huil consists of a 'good' mix of borrow-

ers and lenders. A Hui formed by a homogeneous group of borrowers will

* When no bids are submitted (or, equivalently, all bids are zero), the
winner is determined by lot. 1In the case of tie-bids, either the fund
is shared equally (consequently, future repayments are also shared
equally), or a second-stage bidding is conducted to select the winner.
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Table 1.1: Cash Flow Patterns of Hui Participants

a. Discount-bid Hui

period{ O 1 oo n oo N-1 N
participant

0 NA -A oo -A ces -A -A

1 -A A+(N-1)(A-b;) ... -A PN -A ~-A

n -A  =(A-by) ... nAK(N-D)(A-b) ... -A -A
N-1 -4 =(A-bj)) ...  =(A-b)) vee (N-1)A+(A-by_1) -A
N -A  =(A-b)) ...  —(A-b) vee —(A=bgy)  NA

b. Premium-bid Hui

period 0 1 .o n .o N-1 N
participant
0 NA _A LAY _A v e —A -A
1 -A NA e —(A+b1) SN —(A+b1) —(A+b1)
n—1
- N-2 -
N A -A ... -A cee -A NA+TY _1b,
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provide 1little room for trades. Similarly, a group of lenders will find a
Hui to be quite a boredom since no one will be bidding actively. This su-
ggests a dual problem to the one treated here —- the organizer's problem.
An effective (i.e. competitive) organizer presumably maximizes as his ob-
jective function the 'surplus' generated from members' participation. His
choice variable consists of the mix of membership in terms of their de-
grees of borrowing or lending needs. We shall not study the orgaﬁizer's
problem in this essay except to point out from time to time his salient

features such as the role of default risk.

1.2 Actual Cases of Hui

In November 1983, the financial sector in Taiwan was startled by the
largest-ever-scale Hui default in her history. This occurred in a small
town of 100,000 people named Chia-Li. Allegedly, over one thousand people
were involved for a total amount of four billion New Taiwan Dollars (NTS$)
(approximately US$100 million based on the current official fixed exchange
rate USS1 = NTS$40).

This incidence has led several legislators to urge for governmental
regulation on Hui operation in Talwan and has prompted at least one survey
on Hui statistics. Qualifying his figures as comnservative due to sub-
jects' reluctance to reveal their actual involvement, Wen Li Chung estima-
ted that the total Hui membership approximates 857 of the island's popula-
tion; the credit provided by Hui 1is roughly US$237.5 million per month, or
US$2.85 billion annually, which is about 21.92% of the island's national

income (Chao-Ming, 1983).
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In order to familarize the reader with the workings of Hui, we col-
lect in Table 1.2 eight actual examples found in Taiwan. Hui 1 was formed
among the employees of a CPA firm; its organizer was the personnel admi-
nistor who co-signed all other employees' pay checks. Hui 2 - 8 wére
formed among the employees of the state-—owned Taiwan Power Company (known
as Tai Power) which experiences very low turn-over. Thelr organizers were
uniformly senior, tenured employees. Each Hui is characterized by its
starting and ending time, the predetermined fixed payment A, the size of
its membership N (excluding the organizer), its type (discount-bid or
premium~bid), and the actual winning bids.

Organizing

According to the current practice in Taiwan, a prospective organizer
will draw up and then circulate among potential participants a Hul forma-
tion proposal with proposed size of payment (A) and membership (N), date
and frequency of meetings (e.g. every two weeks or every month) and other
features such as the minimum amount of bids, rounding-off policy (e.g.,
$901 and $904 bids will be considered as $900 and $905 respectively),
etc.

All interested parties are invited to sign up and suggest alterations
of terms. Based on the response and suggestions, initially proposed terms
may be revised. When terms and memberships are finalized, a form contain-
ing the agreed-upon terms and the names of members will be distributed to
all members. Usually the form is designed with space to fill in the win-
ning bid and the amount of the resulting pool at each period. The data in
Table 1.2 are taken from such forms. Because the individuals who provided

these forms stopped recording the winning bids after they obtained funds,
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Table 1.2: Actual Cases of Hui

Hui 1 2 3 4 5 6 7 8
start|Oct. 75|July 77 {July 77 |Mar. 78|Oct. 79|July 80{Jan. 81|July 81
end |June 77|Mar. 79|Jan. 79|Feb. 80|Apr. 82|June 84|May 83|Mar. 83
A 1,000*%{ 1,000 | 2,000 | 2,000 [ 2,000 | 5,000 | 5,000 |{ 5,000
N 20 20 18 23 30 47 28 25
type | disc. disc. disc. prenm. prem. disc. disc. prem.
min b} 300 600 900
time¥ winning bids
0
1 450 120 200 400 460 1,530 900
2 470 140 210 350 500 1,680 960
3 401 150 200 360 600 1,680 920
4 500 155 150 360 680 1,720 920
5 300%*| 150 160 360 600 1,610 950
6 135 170 320 550 1,680 960
7 125 170 310 530 1,590 980
8 110 150 340 500 1,750 } 1,000
9 110 160 330 560 1,610
10 100 150 310 500 1,620
11 115 160 280 500 1,640
12 125 150 280 490 1,520
13 140 160 230 510 1,660
14 130 170 250 600 1,670
15 100 160 250 500
16. 50 120 220 430
17 110 210 450
18 210 400
19 350
20 400
21 400
22 420
23 450

All Hui are on monthly basis.

All amounts are in New Taiwan Dollars (NT$); USS1 = NTS$40.

*%* The winner was determined by lot due to absence of bids.
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the data are incomplete.

Although this form is informal (e.g., it is not notarized, not signed
by the organizer and the members, etc.) and is provided mainly for the re-
cording convenience of the participants, it 1is, according to a recent
court ruling, acceptable as evidence for the existence of financial claims
and liabilities among Hui participants (Chao-Ming, 1983).

Organizer

In return for his services including recruiting members, conducting
auctions, collecting payments from each member, delivering the pooled pro-
ceeds to the winner, and most importantly assuming the default risk posed
by all members, the organizer obtains an interest-free loan at the start
of the Hui. Should any member default, the organizer must take over the
defaulting member's share and the Hui will continue without interruption.

To be an acceptable organizer, one must be believed to be trustworthy
and financially capable of assuming the defaulting shares. 'Informal cre-
ditworthiness' (in the sense that his gain from defaulting from his obli-
gations once will be more than outweighed by the loss from all future Hui
and other informal transactions) is a necessary attribute of any Hui orga-
nizer at the time a Hui is formed. We have yet to know a case in which an
individual is.able to organize a Hui (or to participate as a member) in a
circle where he 1is known to have defaulted before either as a Hui organi-
zer or a Hui member. Such enforcement by the discipline of continuous
dealings depends of course critically on some generalized definition of
immobility of which formal collateralization is an example.

As such, organizers need not be wealthy. The organizers in our 8

cases were either in a position to deter defaults, or, 1f default did
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occur, had the ability to assume the loss. For example, the organizer of
Hui 1 had access to all members' paychecks. As to Hui 2 - 8, the likeli-
hood of the organizers' running away is rather slim as a job with Tai
Power is considered more valuable than the pool in most cases.

Besides the organizer's character and creditworthiness, the risk of a
Hui depends to a large extent on its orientation and the mix of its mem-
bership. For instance, because all Hui in Table 1.2 were formed mainly
for the saving purpose and involved no businessmen, they were virtually of
no default risk. By now, all the 8 Hui have ended without dispute.

According to our observation, the risk level of a Hui increases if
the organizer and/or any members are small businessmen. This is because
in many instances the businessman members, with higher opportunity costs
of capital, would bid.higher and draw funds from the pool first while
their ability of paying up their shares depends on the subsequent success
of their business or their ability to borrow from other Hui.

It is worth noting that the recent boom of Hui in Taiwan has intro-
duced the so—called 'professional organizers' who have profited from their
entrepreneurship in arbitraging across Hui or channelling funds to lucra-
tive ventures. This new breed of professionals usually have good and
broad connections with friends, relatives, colleagues, ex—-colleagues,
neighbors, etc., and consequently have special access to valuable informa-
tion about either profitable investment opportunities or people's credit-—-
worthiness. Being a professional organizer however does not necessitate
full-time involvement. It is an occupation often taken up by housewives.

To minimize his risk, a prudent organizer must be selective and is

often reluctant to accept people whom he is not familar with as members.
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In immigrant Chinese communities in North America, a new immigrant seeking
membership is often required to either produce a guarantor acceptable to
the organizer, or be a saver in the initial periods to establish his abi-
lity to make periodic payments (Light, 1972). 1In Africa and Middle East
where lottery is the allocational mechanism for rotating credit associa-
tions, it is a common practice that new faces are not allowed to draw lots
and have to be the last ones to withdraw funds until they are better known
and have established their creditability (Ardener, 1964).
Members

Hui has reportedly existed among the Chinese for at least 800 years
(Geertz, 1962).° 1In a sense, the presence of this informal financial ins-
titution reflects a more formal aspect of the existing and generally immo-
bile relationships among the members. Today, most saving-oriented .Hui
(which are viewed as more conservative but safer) are still formed among
individuals who know each other fairly well either directly or indirectly.
Naturally, some people are willing to take risk for higher returns by
joining Hui that have greater involvement with businessmen. With some
'superior' information and by careful search and other measures,® it is
not uncommon for one to realize a 307 - 407 annualized rate of return

without much risk.

5 In earlier Hui, especially those found in agriculture-based communities,
the exchange commodity was often in kind, being rice in many cases.
Today, money 1is the only known currency traded in Hul prevalent in
Taiwan.

® For instance, pick a Hui whose organizer is your next door neighbor who

runs a TV shop and has enough TV sets in stock which you can lay your
hand on in time if situation calls for such auctions.
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Frequency of Meeting (Bidding)

The frequency of Hui meeting and bidding depends to a large extent on
the size of the payment (A), the size of the membership (N) and the finan—
cial background of the members. Most saving-oriented, middle-class-based
Hui such as the eight cases we presented are on monthly basis. Bi-weekly
meeting is also quite common.

It is noticed that speculative Hui tend to have shorter intervals.
Many Hui involved in the Chai-Li scandal were allegedly on a daily or bi-
daily basis.

Size of Membership

The size of membership in Table 1.2 ranges from 18 to 47. A member-
ship of 47 is uncommon for a saving-oriented, monthly Hui, especially
given the size of payment NT$5,000.7 1In general, the size of membership,
the size of payment and the frequency of meeting are interdependent.

It is believed that the longer a Hui lasts, the greater 1is its risk
of default. Most people tend to prefer a duration of one and half years
to two years so that the pool NA is not too small and yet the default risk
is not unaffordable.

It is quite common that more than one individual share one membership
or one individual assumes more than one share. The latter case is of par-
ticular interest as it is tantamount to permitting coalition among bid-

ders. Such practices allow Hui to display a somewhat greater degree of

7 A college graduate's starting monthly salary was about NT$12,000 in
1980.
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flexibility in accommodating more desirable size of saving and borrowing.
This seems to parallel the insurance market where an individual chooses
among a fixed menu of policies rather than specify the size of his own
needs together with the price he is willing to pay (Rothschild & Stiglitz,
1976).

A member is also allowed to sell his share to other members or some
outsiders before the Hui ends as long as he is able to obtain the approval
from the organizer. This can also be done if the original member guaran-
tees the creditworthiness of the member(s) he introduces.

Discount-~Bid vs. Premium—-Bid

The bulk of Hui in Taiwan are of the discount-bid type. Most Hui
found among Chinese in ﬁorth America, on the contrary, are premium-bid
ones. Although these two types are similar in substance, there are insti-
tutional differences:

a. The payment made by a member who has not withdrawn funds is A in a
premium-bid Hui and A minus the current winning bid in a discount-bid
Hui. This provides an incentive for a member to take a more active
part in bidding. As a result, a discount-bid is likely. to encourage
greater participation. This is consistent with the general impression
that discount—-bid Hui are more 'exciting'.

b. The interest-free loan an organizer obtains 1is the same (NA) in both
types of Hui. 1In the event a member defaults, the per-period amount
the organizer would be responsible for however is different, being A in
a discount—-bid Hui and A plus the défaulting member's winning bid in a
premium~bid Hui. Moreover, bids in a discount-bid Hui are bounded from

below by structure (it cannot go beyond A), but may in principle be
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very large in a premium-bid Hui. The organizer therefore has reasons
to prefer discount-bid Hui over premium-bid ones. This can at least
partly explain the fact that most 'speculative' Hui are of the dis-
count~bid type.

n-1

c. The pool available at period n is NA+Zi___1bi in a premium-bid Hui and

NA—(N—n)bn in a discount-bid Hui. The former appeals to people who
wish to obtain at least NA when they win. The latter is preferred by
those who wish to pay less. This argument is at least to some extent
superficial since, before joining a Hui, a participant can select a Hui
of the characteristics that suit his preference.

d. In a society with wide-spread illiteracy, discount-bid arrangements
have the additional advantage of requiring less record keeping as each
participant's future payments are independent of past winning bids.

Bidding

On the bidding day (often during lunch time of the pay day), members
‘wishing to bid would submit their bids to the organizer. The loan alloca-
tional mechanism for Hui has tended to be via first-price sealed-bid auc-
tions.

Until the recent boom of Hui in Taiwan, the bidding had been relati-
vely 'calm'. For example, many saving-minded members simply did not bo-
ther to bid. A member who could not show up for the bidding often autho-
rized another member to bid on his behalf or informed the organizer of his
bid in advance. After the bidding, only the winning bid was revealed.

Recently, Hui bidding has become more competitive. The following
phenomena attest to it:

a. The information about needs for loans is guarded as top personal secret
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to prevent strategic competition.

b. Eligible bidders not in need of funds would strategically give false
signals (usually by talking casually about the amount he intends to
bid) to induce higher bids from rival bidders.

c. Members would withhold their bids until the bidding meeting to ensure
that their friends or the organizer cannot leak the information.

d. Increasingly, organizers announce all submitted bids without revealing
the identity of the bidders (except the winner). This practice may
have implications for the role of iﬁformation and learning in the Hui
setting.

It should however be noted that, in less—commercialized Hui such as
those reported in Table 1.2, some non-market economic factors, e.g. fri-
endship and social norms, still play a role. For instance, if a member
needs funds to hospitalize his ailing parent, it 1s very likely that all
eligible bidders will agree upon a low, nominal bid and effectively grant
a subsidized loan to him (provided of course that he is not too unpopu-
‘lar). This corresponds to the insurance function of a Hul and other in-
formal market mechanisms.

Bids

What factors affect the level of bids? Intuitively, we expect bids
to increase in A and N as suggested by the data in Table 1.2. Also, pre-
mium-bids are expected to be higher than discount-bids since the size of
loan in the former is larger.

The economic determinants of a Hui member's bid include at least his
investment opportunity cost of capital, his stochastic or nonstochastic

non—-investment needs for funds, and a strategic component inherent in most
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game behavior.

First, consider the investment cost of capital in the formal finan-
cial markets. In this essay, a financial institution is considered 'form-
al' if it relies on externally recognized and collateralized evidence to
enforce non-default from without (e.g. the legal system). In contrast,
Hui is 'informal' in making use of creditworthiness information generated
within the (informal) institution to enforce non-default (i.e. enforcement
from within). The most familiar formal financial market is the conven-
tional banking system. Almost everybody can save with banks. Therefore
the relevant opportunity cost of capital for Hui participants who do not
have other investment opportunities would be the bank interest rate for
saving which is the same for most individuals.

For those people who have other investment opportunities, the cost of
capital in the formal financial market is the bank lending interest rate
applicable to him. The reality is however more complicated due to the im-
perféction of the formal financial market. First of all, capital ration-
ing does exist. Banks, which cannot demand more than the regulated inter-
est rate, prefer to deal with large corporations due to risk consideration
and economy of scale. Loans for small businesses and consumption are
available, but the process could be forbiddingly‘costly and the require-
ments difficult to fulfill. For example, a standard requirement for small
business loan 1s two or more noncorporate guarantors. The interest rate
for an unobtainable loan 1s effectively infinity. It 1is then not surpris-

ing that many small businessmen offer a rate as high as 50% annually for
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loans from Hui.®

For people who participate in more than one Hui (which is a common
practice), the interest rate of other Hul might be the relevant opportuni-
ty cost of capital. This 1is especially true for the professional Hul ar-
bitragers.

It should however be noted that for an informal financial mechanism
such as Hui to sustain over a long period of time, the pooled capital must
be eventually channelled to economically productive activities which yield
real returns. In other words, the 'rate of return'” on Hui must be sup-
ported by growth in real economic activities outside of the Hul system.
If the funds keep circulating within a Hui system giving high returns and
never flow to the real economic production sector, then this Hui system
would eventually lead to a pyramid. This is evident in light of the 1983
Chia-Li fiasco, in which the most striking and devastating feature of the
Hui involved is a widespread practice dubbed 'feed-Hui-with-Huil', i.e., a
participant draws funds from a Hui to make payment in another Hui. Feed-
Hui-with-Hul operation was also blamed for the failure of Chit Fund

Corporations in Singapore during 1972 and 1973 (Chua, 1981).

8 Ironically, the popularity of Hui has rendered an individual's ability
to finance through Hui a signal of his creditability. How can a person
who cannot be accepted into a Hui expect someone else to guarantee his
loan? But if one can borrow from Hui, why should he need to borrow from
the bank?

9 The 'rate of return' from Hui suggests a possible general equilibrium
model which is beyond the scope of this essay.
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As to the stochastic or non-stochastic non-investment needs for
funds, the single most important use of loans from Hui has been house pur-
chase and renovation.!? Purchases of durable goods, children's education
expenses, wedding expenses and foreign travel are other uses of funds from
Hui.

It seems reasonable to say that Huil participants have a 'reservation
price' for loans available at each period largely determined by his oppor-
tunity cost of capital which depends on (a) his investment opportﬁnity
elsewhere, (b) his cost of capital in the formal financial market or other
financial sources, and (c) his pérsonal needs for funds. This is consis-
tent with the way Huli participants calculate the upper boﬁnd of their
bids. Usually, an individual whose only alternative is saving with banks
will use the bank saving interest rate to calculate the highest discount
he can afford to give up. If he has other use of funds, a premium will be
added to the basic saving rate and the maximum affordable bid 1is calcula-
ted accordingly. Later in Section 3, we will formally define this reser-
vation price for loans as the 'reservation discount’'.

Would a Hui member bid his reservation discount? Not in general.
How his bid deviates from his reservation discount will be considered in
Section 4 where we study the optimal bidding strategy for Hui members.

Due to the saving—-orientation, the bids in Table 1.2 are lower than

those in average Hui. For instance, the internal rate of return of the

10 The required minimum downpayment is often more than 60% of the price.
Usually, it will take more than one Hul to obtain enough funds for this
purpose.
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first winner of Hui 6 is approximately 1.33% per month, whereas it is not
uncommon to have 30%Z - 507 annualized ex post Hui borrowing interest rate
(to be defined in Section 5, Definition 5.1) in many Hui where small busi-
nessmen are involved. The latter of course have higher default risk.
Whether the perceived default risk leads to higher bids or the other way
around has yet to be investigated.

Note that not any two Hui on Table 1.2 are strictly comparable. For
example, Hui 1 and 2 had the same A and N and were both of the discount-
bid type, but took place two years apart. As discussed above, bids are to
a large extent determined by interest rates in the formal financial mar-
ket, which vary over time. Even if they had existed contemporarily, mar-
ket segmentation might still prevent bids from attaining parity.

Even though Hui 3 was smaller than Hui 2 by two members, we would ex-
pect the winning bids in Hui 3 to approximately double those of Hui 2.
The fact that the bids in Hui 3 were much lower than expected could be be-
cause of the existence of the organizer. The organizer is expensive to
keep and the fewer members a Hui has, the more costly the organizer is to
each member, everything else being constant. We will show in Section 2
that a Hui with only two members can not afford to have an organizer.

If all members' expectations and opportunity interest rates remain
constant over time, one would expect their bids on the average to be in-
creasing over time. This is mainly due to the decreasing number of eli-

gible bidders who (with payment Arbn) will enjoy the discount. Although

none of the winning bid streams in Table 1.2 are monotone over time, it
could be the result of bidders' changing expectations or opportunity

rates.
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Learning

As long as a member knows or is able to estimate his opportunity cost
of capital, deriving the reservation discount is straightforward. The
spread between his reservation discount and his bid is a more strategic
issue. The discussion under Bidding tells us that Hui participants do be-
have strategically, including actively seeking information on rivals' re-
servation discounts. Obviously, other bidders' opportunity cost of capi-
tal, risk attitudes, bidding strategies, etc. are valuable information.

A question of interest here is: Do participants abstract useful in-
formation from the distribution of past winning bids? 1In repeated single-
period .auctions where the same group of bidders compete for, say govern—
ment defense projects, it is evident that bidders learn about their ri-
vals' reservation prices or bidding strategies from past biddings (Green
and Laffont, 1977; Milgrom, 1979; Myerson, 1981; Milgrom and Weber, 1982).
Therefore, a realistic bidding model must allow for bidders' Bayesian
learning behavior.

In the context of Hui, we feel, based on the following reasons, that
the learning issue is not as critical as in repeated single-period auc-—
tions. TFirst of all, once a Hui member wins a bidding, he drops out the
competition for the rest of the Hui duration. Secondly, when a Hul bidder
loses in bidding, he still gains in his dual role as a 'seller' of the
loan. This suggests a weaker incentive for costly information search.

To keep our analysis simple in this essay, we will assume that Hui
bidders' current bids do not depend on past winning bids or bids in

general.
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Default

Roughly speaking, there are two types of Hui default, one incurred by
the organizer, the other by the member. Most organizer-caused defaults
are well-planned. The plot usually goes as follows. The organizer will
recruit as many members as possible and add to the list of participants a
few nonexistent names. At the start of Hui, he collects NA as the organi-
zer. At the next few periods, he submits high bids iIn the name of those
nonexistent members and obtains loans. After his 1ist of nonexistent
names 1is exhausted, he simply disappears. A Hui member can avoid this
type of default by insisting on knowing all other members.

The other type of default results from one or more members' not being
able to make their shares of contributions after they have drawn funds
from the pool, possibly due to unfavorable outcomes of their investments
elsewhere. Although the organizer is in principle the only one who as-—
sumes all default risks posed by members, it is a fact that a participant
does not completely ignore this type of default risk when he makes the
decision to join a Hui.

While we recognize the presence of the default risk in the Hui set-
ting, we will not in this essay attempt a model formally incorporating it.

Instead, it will be assumed that default risk is negligible.
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2

THE ECONOMICS OF HUI WITH TWO OR THREE MEMBERS

The purpose of this section is to provide some basic understanding of
Huil by performing some preliminary economic analyses on several simplified
Hui examples. Specifically, we assume that all Hui considered here are
default riskfree and of the discount-bid type, and that all agents have an
explicit opportunity interest rate which remain constant throughout the
Hui duration. Moreover, the Hui are small in size, with only two or three
members, with or without an organizer.
Following the preceding section, we use the following notations:
A ¢ the size of the per-period, before-discount deposit into the pool;
n (=1, 2, 3): the participant who succeeds in bidding for the pool at
the nth period;
0 : the organizer who receives an interest—-free loan of NA repaid in N
equal installments of A at each of the N subsequent periods;
b, : the bid submitted by participant i at period n;

in
bn = max{bin}: the highest bid submitted at period nj;

r, ¢ member 1i's opportunity interest rate, i =1, 2, 3.

Two—Member Hui Without An Organizer

Consider first a Hui with 2 members and no organizer. The ex post

cash flows for its members are
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time 1 2

member
1 A—b1 -A
2 —(A—bl) A

Suppose member i's only alternative is to save with banks at a rate r

i
How much should he bid at time 17

If he is to receive funds at time 1, the proceeds will go to his bank
account. The (gross) return after one period must not be less than A, the
amount he has to pay at time 2. If he is to lend at time 1 and get the

money back at time 2, the Hui lending rate must be at least equal to the

bank saving rate T, . Let \ denote a bid that satisfies the above condi-
tions. Then,
(A_Vi)(1+ri) = A,
which implies
Ar
_ _ A _ i

The v, in (2.1) can be interpreted as the 'price' for getting a loan of A

at time 1. Expression (2.1) says that the price (in time 1's dollar) of a
loan A for one period is the present value of the one-period interest

earned on A. Let's call vy member i's reservation discount for the loan

available at time 1. ©Note that

dvy A

dri (1+r

y > Oo
Va
i)

In fact, regardless of the size of membership, a Hul member's reservation
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discount for funds available at each period is an increasing function of

his opportunity interest rate . We therefore have the following

proposition:

Proposition 2.1: A Hul member's reservation discount increases in his op-

portunity interest rate.

Obviously, if the two members have the same opportunity interest rate
and each knows this fact, then there is no point to form a Hui. It will
be better off for both members to sa?e with the bank to avoid possibility
of default and retain the flexibility of making withdrawals any time they
please. This argument can easily be extended to an N-member Hui:

Proposition 2.2: Suppose a group of individuals have an identical opportu-

nity interest rate which is a common knowledge shared by every indivi-
dual. Then, it is to everyone's advantage not to form a Hui.

What if .2 > r, and both ry and r, are known to each member? In this

case, both members know that

Ar Ar
It is easy to see that member 1 has incentive to lower his cost of Hui
borrowing by bidding under vy On the other hand, member 2 have no incen-

tive to bid under v, and would bid over v, only in an attempt to push up

2 2
member 1's bid. If member 2 wins with a bid between V1 and Vs both mem—
bers are worse—off. To illustrate this, assume A = $100, r, = 20% and r,
= 10Z. Accordingly, vy o= $16.67 and v, = $9.09. We can then calculate

the ex post interest rates and profits from Hui for both members depending

on the actual winning bid.
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Table 2.1: Ex Post Interest Rates and Profits for A 2-Member Hui

—- An Example
ex post
bids member cash flows interest rate profit*
b1 = 16.67 > b2 1 +83.33 -100 20% (borrow) 0
2 -83.33 +100 20% (lend) 8.34
b1 = 12.00 > b2 1 +88 -100 13.6% (borrow) 5.6
2 -88 +100 13.67% (lend) 3.2
b1 = 9.09 > b2 1 +90.91 -100 10% (borrow) 9.09
2 -90.91 +100 10% (lend) 0
b1 < b2 = 9.09 1 -90.91 +100 10% (lend) -9.09
2 +90.91 =100 - 10% (borrow) 0
b1 < b2 = 12 1 ~88 +100 13.6% (lend) -5.6
2 +88 -100 13.67 (borrow) -3.2
bl < b2 = 16.67 1 -83.33 +100 20% (lend) 0
2 +83.33 -100 207% (borrow) -8.34

* The profit is (A—b)(1+ri)—A for the borrower and A—(A—b)(1+ri) for

the lender, where b = max{bl,bz}.
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It follows from the analysis in Table 2.1 that:

Proposition 2.3: For a 2-member Hui with r, > Tys it is not Pareto-optimal

for member 2 to win the only bidding at time 1.
The actual split of the potential profit depends on these two mem-
bers' relative bargaining positions.
If each member knows only the>distribution of his rival's reservation
discount, the bidding strategy becomes much more complicated and will be
examined in Sections 3 - 5.

Two-Member Hui With An Organizer

How would the introduction of an organizer change the picture? With

an organizer, the cash flows for the participants become the following:

participant period 0 1 2
0 2A -A ~A
1 -A 2A—b1 —-A
2 -A —(A—bl) 2A

Given the opportunity interest rate L) member i (i 1, 2) will demand at

least a rate of return equal to T which means his reservation discount
\ would be such that
A

A(1+ri) + —(—m—; = 2A - Vi’

which implies vy = - Arf/(1+ri) < 0. Hence,

Proposition 2.4: It is not possible for a 2-member Hui to support an orga-

nizer (who obtains an interest—free loan) and yet yield a positive rate

of return to both members.
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Three-Member Hui Without An Organizer -

In this case, the cash flows are as follows:

member time 1 2 3
1 2(A—b1) -A -A
2 —(A-bl) 2A-b2 ~-A
3 —(A—bl) —(A-bz) 2A

Now, because there will be two biddings, one at time 1, the other at time
2, each member i will have a reservation discount for the funds available

at time 1 (i.e. vil) and another for funds available at time 2 (i.e. Viz)'

If his opportunity interest rate is T, what will be his reservation dis-

counts Vi1 and ViZ? Given his fall back position (i.e. obtaining 2A at

time 3), v and v should satisfy the following conditions:

11 i2
- 2 -
2(A vil)(1+ri) A(1+ri) + A, (2.2)
- 2 = -
(A vil)(1+ri) + A (2A viz)(1+ri), (2.3)
_ 2 _ -
(A Vil)(1+ri) + (A viz)(1+ri) 2A. (2.4)
Relations (2.2) - (2.4) together guarantee a rate of return r and imply
_3 _ 1
Vip =z Al 1+ri]’ (2.5)
21 _ 1 _ 1
viin 7 A2 - CEEREL (2.6)
i i
Note that Vio does not depend on Vi1 and can be obtained by solving
(2.3) and (2.4). The interpretation of Vio becomes clearer if we take the
incremental cash flows of (—A+vil,2A-v12,—A) over (—A+vil,—A+v12,2A),

i.e., (0,3A-2v12,—3A). In a sense, 2vi can be interpreted as the price

2

(in the form of pre-paid interest) of getting an implicit loan of 3A at
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time 2, payable at time 3. To verify this, rewrite (2.5) as (2.7):

2vi2 = 3Ari/(1+ri). (2.7)

The RHS of (2.7) gives the present value of the one-period interest on 3A.
Similarly, (2.6) can be rewritten as (2.8):

3vyy = [3Ar+v,,1/(1+ry), (2.8)
which offers a similar interpretation for TR
Note that, as stated in Propostion 2.1, dvil/dri > 0 and dviz/dri >

0. Moreover, v,, > Vi due to the decreasing number of members who would

i2
benefit from the discount.

We know from Proposition 2.2 that, if v, = r, = r, is a common know-

1 2 3
ledge to all members, then there 1s no reason for them to form a Hui.
Suppose members have heterogeneous opportunity interest rates, and assume

without loss of generality that r, > r, > ry. Proposition 2.3 can be ge-

1
neralized to Proposition 2.5 below:

Proposition 2.5: Suppose the N members of a Hui have hetergeneous opportu-

nity interest rates r i=1, ..., N, and assume without loss of gene-

i
rality that Ty > r, D oeee D Tye* Then, it is to the group's advantage
that, at each period, the bidder with the highest opportunity interest
rate obtains loan first.

The term 'advantage' in Proposition 2.5 needs clarification. For a
2-member Hui, both 'profit' and 'ex post interest rate' given in Table 2.1
is well defined because a member is either a pure lender or a pure borrow-
er. It is not so for a Hui with 3 or more members due to the 'ill-be-

haved' cash flows which twice change signs, consequently might have non-

unique internal rates of return.
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For a BHui interest rate to be meaningful, it is important that bor-
rowing rates be distinguished from lending rates. For each member (except
the pure lender who obtains funds at the last period), there are one Hul
borrowing rate and one Hui lending rate, both derived from the same cash

flow stream. For instance, given his opportunity interest rate r, and

cash flow (—A+b1,2A—b A), member 2's Hul borrowing and lending rates,

20"
denoted by Y, and Yq respectively, are such that
A

2) T 1IFT

(A—bl)(l+y£) = (2A-b >

and

(24-b,) = (A-b )(1l+r,) = T

In other words, to calculate his Hui borrowing rate, we assume that he
borrows only after he has drawn funds from the pool; before that, he lends

at his opportunity interest rate T,ye Symmetrically, he lends in Hui up to

the time he obtains funds; thereafter, he borrows at his opportunity rate.

As an example, assume r, = 20%, r, = 167, ry = 10% and A = $100. The

reservation discounts for each member will be as follows:

1 g Vi1 Vio

1 20% §23.6 §25.0
2 16 19.7 20.7
3 10 13.2 13.6

Suppose bidders shade their bids wunder their reservation discount
(This is an optimal bidding strategy under a set of assumptions. See

Sections 3 - 5.) so that the actual winning bids are b1 = b2 = $20. Then,
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the actual cash flows and the Huli borrowing and lending rates for each

member are given below:

time
i r, . 1 2 3 Yp Yy
1 20% $160 -$100 -5100 16.3% -
2 15 - 80 + 180 - 100 13.6 16.3%
3 10 - 80 - 80 + 200 - 15.8

This table tells a happy story. Member 1 borrowed at 16.3%, lower
than his opportunity rate 20%. Member 3 lends at 15.8%, higher than his
opportunity rate 10%Z. Member 2's outcome depends on his position. If he
put the $180 proceeds in his bank savings account, he is more 1likely to
see himself as having saved with Hui for one period. The interest rate he
earned from lending $80 for one period is 16.37%, higher than 16%Z. If he
needed a loan at time 2 for some purpose and considered himself as borrow-
ing a one—-period loan with a maturity value of $100, his Hui borrowing
rate is 13.6%, less than 16%.

We shall not consider 3-member Hui with an organizer here because it

is a special case of the model to be studied in Sections 3 - 5.

- 165 -



3

THE MODEL FOR AN N-MEMBER HUI WITH AN ORGANIZER

Notations
As In Sections 1 and 2, we will use the following notations:

A : the size of the per-period, before-discount deposit into the pool;

n (=1, ..., N): the participant who succeeds in bidding for the pool at
the nth period;

0 : the organizer who receives an interest-free loan of NA repaid in N
equal installments of A at each of the N subsequent periods;

bin: the bid submitted by participant i at period nj;

f

bn : the highest bid submitted at period n;

bi : the second highest bid submitted at period n.

Other notations will be defined and explained as they arise.

Assumptions
Unless otherwise stated, the following assumptions are made through-
out the paper.

Assumption 0: There is no possibility of default.

Assumption 1: There is no Bayesian learning from past winning bids by

individual members in deciding their current bids.

Assumption 2: Each individual i has a deterministic and known income

stream Ii over the duration of Hui prior to the participation, where

I, = (Ts0seeesyds 121, 2, ey N

- 166 -



Assumption 3: Each individual i has a continuous and strictly increasing

von Neumann-Morgentern utility function Ui defined over his income

stream.

Assumption 4: To each bidder i, the bids from all other bidders at period

n are drawn independently from probability distribution F a with support

i
contained in some interval [En,Bn].
To investigate an expected utility maximizer's optimal bidding stra-
tegy, we need to define both the 'reservation price' in the context of Hui
and 'positive time preference':

Definition 3.1: The reservation discount vector 2 of participant i is any

vector v, = (vil’viZ""’vi,N—l) such that participant i is indifferent

to the N alternative cash flow patterns listed in Table 3.1. In other

words,

Ui(Yin) = Ui for all n=1, 2, ..., N, (3.1)
where

Yo, = (T;07A, 15 HWNA-(N-1)v,, I oA, .00, I 0mA),

Y, = (IiO—A,Iil—(A—vil),...,Iin+NA-(N—n)vin,...,IiN-A),

We shall refer to ﬁi as participant i's reservation utility at the

beginning of the Hui.

. Definition 3.2: An agent i is said to exhibit positive time preference if

-his preference for income streams of the form~(xo,...,xN) is such that
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Table 3.1: Partiéipant i's Indifferent Cash Flow Patterns
in a Discount-bid Huil

period O 1 e o n e e N—l
alternative

0‘ NA _A eo —A cee _A

1 -A A+(N—l ) (A"Vil) ce e -A e -A

N —A —(A—Vil) e "(A"Vin) ° e —(A"vi,N_l)
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(xo,...,xh,...,xk,...,xN) is strictly preferred to (xo,...,xk,...,xh,
...,xN) if and only if X, > X, for h=0, 1, ..., N and k > h.

A set of sufficient conditions for the existence and uniqueness of v,

is given in Lemma 3.1.

Lemma 3.1: The reservation discount vector vy exists and is unique if the
‘continuous, strictly increasing von Neumann-Morgenstern utility Ui exhi-
bits positive time preference.

Proof: See the Appendix.

The proof of Lemma 3.1 involves the construction of a reservation
discount vector, which is then shown to be unique. Note that, in Table
3.1, all entries in every two adjacent rows, say rows n and ntl, are iden-
tical except the nth and the (n+l)th ones. This feature allows the conve-
nient backward construction of reservation discounts, starting with peri-
ods N and N-1 to obtain v

From the way v, is constructed, v de-

i,N~1° i in

pends only on v which in turn depends on v eess In other

i,n+l’ i,n+2’
words, as auctions are conducted and bids revealed at periods 1, 2, ...,

n, vy for all k > n does not change as long as bidder i's preference and

income stream remain unchanged. Consequently, the property of reservation
utility previously mentioned also applies to the Hui cash flow at any in-

termediate period k. We may call it member 1i's conditional reservation

utility at period k, denoted by ﬁ?, given some realized cash flow (c

0°¢1

""ck—l)' In other words,
k =k
Ui(Yi k+t) = Ui) t = 0, 1! sy N—k’ (3'2)
b4
where
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k = — ——
Yi,k+t = (co,cl,...,ck_l,Iik (A vik),...

’

I, (e NA-(N-k-t)v

1,k+ (3.3)

TRITSL e T EEDR

The conditional reservation discount vector VE then refers to (v

ik?

s e,V ), irrespective of the realized cash flow (c

1,N-1 0°C12 " %1

The reservation discount has a familiar interpretation when the indi-
vidual is risk neutral with time preference being completely described by
an interest rate available in some formal financial sector. In this par-
ticular case, individual i's reservation discounts represent his market-
based opportunity cost bf Hui dealing, and can be obtained by equating the
present values of the N alternative cash flow patterns listed in Table
3.1. By tendering bids equal to his reservation discounts at each period,
a Huil participant can at least attain a utility level equal to his reser-
vatibn utility, which is what he can obtain from the formal financial mar-
ket. 1In this sense, reservation discounts describe an individual's 'fall
back' position with respect to joining the Hui. It is clear that, if a
member bids his reservation discounts throughout the duration, his ex post
utility from participating a Hui will never be less than his ex ante re-
servation utility.

When an individual has no access to the formal financial market, or
if the formal financial market does not exist, his reservation discounts
can be interpreted as related to some sort of 'as if' interest rate which

reflects his 'internal' opportunity cost such as time preference for

consumptions.
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4

OPTIMAL INDIVIDUAL BIDDING STRATEGIES

It is shown in Section 3 that a Huil participant can ensure a utility
level, called 'reservation utility', by submitting a bid equal to his re-
servation discount. TIn this section, we consider an expected utility ma-
ximizer's optimal bidding strategies. To make the problem tractable, we
impose, via Assumption 3', the requirements of concavity, time-additivity,
and positive time preference on individuals' preferences.

Assumption 3': The von Neumann-Morgenstern utility of each individual i,

Ui’ is continuous, strictly increasing, concave, and time-—additive with

(strictly) positive time preference.
We can write a time—additive von Neumann-Morgenstern utility function
in the following way:

N
Zn=0)\inui(xn)' (4.1)

Ui(xO""’xN) =
It is easy to see that strictly positive time preference is, in this case,
equivalent to requiring the time preference coefficients to be strictly

decreasing, i.e.,

1= MAa > ANy D ees DA

0> M1 x> O (4.2)

i

With time~additive utility, our problem can be solved working back-
ward through dynamic programming. From Table 1l.la, we note that, at the
last period N, the only member who has not yet received'funds obtains NA.
There is no need for bidding and therefore no uncertainty involved. As we

proceed backward to periods N-1, N-2, ..., the number of bidders increases
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by one each time. At each period, the prospect of losing entails the ex-
pected utility gain from participation in subsequent periods. In general,
there are N-nt+l bidders at period n, each of whom submits a bid that maxi-
mizes his current expected utility which incorporates, in a nested way,
the potential subsequent expected utility gain from future periods. The
actual form of the expected utility function depends on the auctioning me-—
thod (i.e. first—-price or second-price). We shall first consider the case

of first-price competitive bidding as the allocation mechanism.

4.1 First-Price Competitive Bidding

- In a first-price sealed bid Hui where Assumptions O (no default), 1
(no learning), 2 (deterministic and known pre-Hui income stream), 3' (con-
tinuous, strictly increasing, concave, and time-additive von Neumann-—
Morgenstern utility with strictly positive time preference) and 4 (inde-
pendent and identical bid distribution for each agent) hold, bidder i's

expected utility at period n of a bid b is given by expression (4.3):
in

f — — —
EU; (b, ) = {xinui(11n+NA (N-n)b, )

N N-n
+ D MOy (Typ® HEF g (B D)
+ [ A, u, (1, -A+x)+EUXT . JdrF, ()] T (4.3)
bin in"1i*"in i,n+l in ?
where
goxf = mof o ) = Max mUE (b ). (4.4)
i,n+l i,n+l* "i,n+l i,n+l" "i,n+l

The first term of the RHS of expression (4.3) is the utility for bid-

der i if he wins at period n, whereas the second term gives his utility in
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the case of losing. The component Xinui(Iin-A+x), where x € (bin’bn]’ is
f

his utility from post-bidding income at the current period. EU”:'E,n+1 is
independent of the winning bid at period n and represents the expected
utility at the next period providing that bidder i submits his expected
utility maximizing bid at each of the subsequent periods.

Sufficient conditions for an individual's bid to maximize the expec—
ted utility globally are formally stated in Theorem 4.1 below after we
define the terms 'marginal outbidden rate' and 'increasing (decreasing)
marginal-outbidden-rate distribution', which ensures that the expected

utility function is pseudo—concave.

Definition 4.1: The marginal outbidden rate for a probability distribution

F is given by F'/F.
An interpretation of the marginal outbidden rate will be provided
shortly after Theorem 4.1.

Definition 4.2: A probability distribution that yields an increasing

(decreasing) marginal outbidden rate 1is called an increasing (decrea-

sing) marginal-outbidden—-rate distribution.

In Theorem 4.1, we suppress the individual and time subscripts (i and

n) to F, b, I and v without fear of ambiguity.

Theorem 4.1: Suppose Assumptions 0, 1, 2, 3' and 4 hold. Then, for the
class of decreasing marginal-outbidden—-rate distributions, the indivi-
dual's expected utility maximizing bid at the nth period, b, exists
uniquely; and 1s given by the solution to the following equation:

F'(b) u' (I+NA-(N-n)b)
F(b) [u(IHNA-(N-n)b)~u(I+NA-(N-n)Vv) ]-[u(I-A+b)~-u(I-A+v)+E*]

(4.5)

with
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£ =n+1
*= —
E (l/Xin)(EUg’nIl Ui ), (4.6)

is given in expression (4.4) and ﬁn+1 is bidder i's condi-

where EU’;‘f
i i

,n+1
tional reservation utility at period n+l.
Proof: See the Appendix.

Equation (4.5) 1s the first order condition for b to maximize the
difference between the expected utility and the conditional reservation
utility at period n, which, by construction, 1s a constant. The unique-
ness of the expected utility maximizing bid is established by showing that
the first order condition is satisfied uniquely (since the LHS of equation
(4.5) is decreasing by assumption, and the RHS increases in b by the con-
cavity of u), and that the second order condition is satisfied locally.

The decreasing marginal outbidden rate F'(b)/F(b) has the interpreta-
tion as the conditional probability that an individual bidding b is 'mar-
ginally' outbid by his second rival given that he has outbid his first
rival. A decreasing marginal outbidden rate means that as an individual
raises his bid, the increase in the chance of outbidding his rival must
not be slower than the increase in the chance of being marginally outbid.
A common class of decreasing marginal-outbidden-rate distributions 1is
given by the power probability distribution, of which the uniform distri-
bution used in Section 5 1s a special case.

When bids are uniformly distributed and bidders are risk neutral, the
individual expected utility maximizing bid will have a closed-form solu-
solution (given in expression (5.3)). We will have more detailed

discussions on this special case in Section 5.
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4.2 Second-Price Competitive Bidding

The formulation of a competitive bidding model for the hypothetical
second-price sealed bid Hul is similar to that of the first-price model,
with minor modifications to incorporate the feature that the effective
(i.e. implemented) discount is the second highest bid. Under Assumptions
0, 1, 2, 3' and 4, the problem of the expected utility maximizer i at pe-

riod n is stated below:

s -
Max EUin(bin) =
bin § N-n
fl—)n Ao, (T, HNA-(N-m)x)+, 2 Ay u (T, -A) MA[F, ()]
_ _ %5 N-n-1.,_
+ (N n){)\inui(lin A+bin)+EUi,n+1}[Fin(bin)] [ Fin(bin)]
1-)n X s N-n-1
— - %
+ (=) [ Sy N ey (T AtY)EUY ) bF, (3] dF, (x), (4.7)
in "in
where
%5 = gys % = 8
EUY a1 = BUy P ) = Max EUY (g ) (4.8)

The first term in expression (4.7) is the utility for bidder i if he
succeeds in bidding. The second term is his utility if he fails and turns
out to be the second highest bidder. The last term accommodates the case
where his bid is the third or below.

Suppose an individual who bids b knows that he has been outbid by one
of his rivals. It is then to his advantage to be outbid by another rival,
so that he, as well as other losers, can benefit from a higher second bid.
Parallel to the 'marginal outbidden rate' in the first-price case, we need
a 'marginal outbidding rate' for our second-price model.

Definition 4.3: The marginal outbidding rate for a probability distribu-
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tion F is given by F'/(1-F).

F'(t)/[1-F(t)] is commonly known in the reliability literature as the
'failure rate' (or 'hazard rate'), which is the conditional probability
that a product will fail at time tt glven that it has survived up to time
t. In the bidding context, the marginal outbidding rate F'(b)/[1-F(b)]
has the interpretation of the conditional probability that an individual
bidding b will marginally outbid his second rival given that he has been
outbid by his first rival. To make sure that the expected utility func-
tion is single-peaked, we require the bid distribution F to yield an in-
creasing marginal outbidding rate. It is easy to check that the power
probability distribution with index greater than or equal to one belongs

in this category.

Definition 4.4: A probability distribution that yields an increasing (de-

creasing) marginal outbidding rate is called an increasing (decreasing)

marginal-outbidding-rate distribution.

After suppressing the subscripts i and n, we state in Theorem 4.2 a
set of sufficient conditions for an individual's bid to maximize his ex-
pected utility globally.

Theorem 4.2: Suppose Assumptions O, 1, 2, 3' and 4 hold. Then, for the
class of increasing marginal-outbidding-rate distributions, the indivi-
dual's expected utility maximizing bid at the nth period, b, exists
uniquely; and is given by the solution to the following equation:

F'(b) _ -u' (I-A+Db)

1-F(b) [u(THNA-(N-n)b)~u(I+NA-(N-n)v) |- [u(I-A+b)-u(I-A+v)+E*] °’ (4.9)
with
E* = (1/xin)(EU§fn+1-ﬁ;+1), (4.10)
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where EU‘ISn+1 is given in expression (4.8) and ﬁ2+1 is his conditional
’

reservation utility at period ntl.
Proof: Omitted.

The proof of Theorem 4.2 would be similar to that of Theorem 4.1. We
can first obtain the first order condition for a problem equivalent to
(4.7), then show that, with an increasing marginal-outbidding-rate distri-
bution, the first order condition 1s uniquely satisfied by a bid which

also satisfies the second order condition.

4.3 1Implications

In this subsection, we will discuss several implications of Theorems
4.1 and 4.2, making relevant comparisons when apPropriate. First of all,
the following corollary tells us that the standard thinking in the bidding
literature that bidders will shade their bids in first-price auctions re-
mains true of agents' behavior in a Hui.

Corollary 4.1: Under the hypotheses of Theorem 4.1, an agent's expected

utility maximizihg bid is less than his reservation discount.

Proof: Suppose this 1s not true. Then ui > 0 implies that the RHS of

equation (4.5) 1is negative. But the LHS of the equation is positive.
This is a contradiction.
Q.E.D.
The well-known result that second-price auctions are demand reveal-
ing, however, does not in general apply to Hui according to the corollary

below.
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Corollary 4.2: Under the hypotheses of Theorem 4.2, an expected utility

maximizer will shade his bid under his reservation discount only if the
expected utility gain from the next and subsequent periods will more
than compensate his utility loss at the current period from shading his
bid.

Proof: Omitted.

In a first-price sealed bid Hui, an individual has no incentives to
bid in excess of his reservation discount since, when he wins, the amount
he obtains is a decreasing function of his bid. If he loses, his bid does
not affect what he has to pay. In contrast, due to the disparity between
the winning bid and the effective discount, an individual in a second-
price sealed bid Hui has some incentive to bid over his reservation dis-
count. When a bidder wins, the amount he obtains depends on the highest
rejected bid rather than his own bid. When he loses, the higher the se-
cond bid, the less he willbhave to pay. Because there 1s a chance that
his bid might turn out to be the second highest, he has some incentive to
bid over his reservation discount. He, however, will inflate his bid only
up to a point beyond which his expected utility gain from future biddings
will outweigh the current benefit. If he perceives sufficiently high ex-
pected utility gain from subsequent periods, he might even bid under his
reservation discount. Obviously, he will overbid at the last second peri-
od due to the absence of uncertainty at the final period. Hence, Corol-
laries 4.3 and 4.4.

Corollary 4.3: Under the hypotheses of Theorem 4.1 (Theorem 4.2), an ex-

pected utility maximizer in a first— (second-) price sealed bid Hui will

lower his bid at the current period if his percelved expected utility
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gain in the future increases.

Corollary 4.4: Under the hypotheses of Theorem 4.2, an expected utility

maximizer will submit a bid higher than his reservation discount at the
last second period.

Regardless of the ‘auctioning methods, possible gains from future bid-
dings tend to drive down the present bid. The possible gain in the cur-
rent bidding will push the bid even lower in the first-price Hui, but has
the opposite effect in the second-price Hui. Therefore, a member's bid in
the first—-price Hui is unambiguously lower than his reservation discount,
but this is not necessarily the case for the second-price Hui.

Suppose each bidder's reservation discounts correctly measure the
true value he places on loans being auctioned off each period. Then, if
all bidders follow the demand-revealing bidding strategy, i.e., bid exact-—
ly their reservation discounts, the allocation of loans will be efficient
in the sense that the loan always goes to the most needing agent (indica-
ted by the highest reservation discount), leaving no room for Pareto im-
provement. On the contrary, if someone else wins the loan, the most need-
ing person can presumably make a side-payment to 'purchase' the loan. An
allocation upon which no Pareto improvement can be made is called a

Pareto—-efficient allocation of the loan provided within the Hui.

It is well known in the competitive bidding literature that a first-
price sealed bid auction is not a Pareto—efficient allocation mechanism
while the demand-revealing second-price sealed bid auction is. Do we have
parallel results in Hui auctions? The answer is negative (except for the
last second period in a second-price Hui). We construct an example to

illustrate this.
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Example 4.1: Suppose (i) individuals 1 and 2 are competing for a $100
before—-discount loan in a first-price Huil, (i1) individual 1 is risk

averse whereas individual 2 is risk neutral with u(xl,xz) = x1+xx2,

where A = 1/(l4r), r is 1individual 2's non-Hui borrowing as well as
lending interest rate, (iii) both individuals have the same pre~Hui in-
come stream (100,0), (iv) their respective reservation discounts, actual
bids and ex post incomes are given below:

individual reservation discount bid ex post income

1 25 12 ( +16,+100)
(winner) 2 20 16 (+184,-100)
By the definition of reservation discounts and the dominance argument,
we have
(+175,-100) ~ (+25,+100) >- (4+16,+100) for individual 1,
(+184,-100) >- (+180,-100) ~ (+20,+100) for individual 2.
Suppose individual 1 makes a side-payment of $9 to individual 2 to 'buy'
the loan, the resulting income streams for individuals 1 and 2 will be
(+175,-100) and (+25,+100), respectively. Since
u(+25,+100) = 105 > 104 = u(+184,-100)
both individuals 1 and 2 are better off.
Similar examples can be constructed for a second-price Hui with N > 3. H
Hence Proposition 4.1 below:

Proposition 4.1: The expected utility maximizing bids given in Theorems

4,1 and 4.2 will not in general yield a Pareto—efficient allocation of
credits among Hui participants.
This non~Pareto—-efficiency comes from the observation that neither

the first- nor the second-price sealed bid Huil exhibits the demand-reveal-
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ing property. The amount by which an individual will shade or inflate his
bid depends on his preferences and expectations. When individuals' pre-
ferences and expectations are allowed to differ, we can not in general
expect the highest bidder to have the highest reservation discount. How-
ever, by Corollary 4.5 below, we can expect an individual to submit a
higher bid when his reservation discount increases.

Corollary 4.5: An individual's optimal first- (second-) price sealed bid,

given in Theorem 4.1 (Theorem 4.2) increases in his current-period re-
servation discount.
Proof: See the Appendix.

Cox, Roberson and Smith (1982) showed that, when all bidders have
identical preferences and expectations, the ordinary first-price sealed
bid auction will be Pareto—efficient. Corollary 4.5 tells us that this is
also true for Hui auctions. Hence, Corollary 4.6:

Corollary 4.6: Under the hypotheses of Theorem 4.1 (Theorem 4.2), the

first— (second-) price sealed bid Hui will be a Pareto-efficient alloca-
tion mechanism for credit 1if all individuals possess the same tastes
(i.e. utility functions and time preference coefficients) and expecta-
tions (i.e. bid distributions at the current and each of the subsequent
periods).

It was mentioned previously that the actual outcome of a Hui depends
on the composition of its members. One question of interest is: How does
a member's time preference affect his optimal bid? Other things being
equal, a higher preference for current consumption (characterized by a
higher time preference coefficient for the current period) should lead to

a higher bid for loans currently available. The result that supports this
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intuition is formally stated in Corollary 4.7.

Corollary 4.7: Under the hypotheses of Theorem 4.1 (Theorem 4.2), an indi-

vidual optimal bid in a first— (second-) price Hui increases as his re—
lative time preference for current consumption increases.

Proof: See the Appendix.
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5

A NASH PROCESS OF INTEREST RATE FORMATION

Having derived the individual optimal bidding strategy for an agent
with a time—additive von Neumann-Morgenstern utility and studied some of
its implications in Section 4, we are ready to explore the question of how
the winning bids of utility maximizing agents will determine for Hui mem-
bers their respective interest rates ex ante and ex post. The definitions
of interest rates which are appropriate in the Hui context will be given
after the derivation of the Nash equilibrium individual bidding programs
whiéh will yield the relevant interest rate in an endogenous manner. In
addition to tractability, the Nash model of strategic interaction has
found empirical support in experimental studies of the competitive bidding
behavior for single as well as multiple object auctions (Cox, Roberson and
Smith, 1982; Cox, Smith and Walker, 1982). Furthermore, the Nash assump-
tion may be more plausible given the auctioning mechanism (sealed bid)
used by Hui, which helps members to remain anonymous.

In this section, we will demonstrate that the optimal individual bid-
ding strategies derived in Section 4 will lead to a Nash equilibrium under
risk neutrality and linear bid distributions. The risk neutrality assump-—
tion, stated below as Assumption 3", replaces Assumption 3'.

Assumption 3": Each individual i is risk neutral with the time-additive

utility Ui defined over his income stream X, = (xio,...,xiN) and given

by expression (5.1) below:

5 N

Uy (x9) = T oMn¥in (5.1)
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where 1 = %10 > xil Doeee D AiN > 0.

We ﬁave two justifications for the risk neutrality assumption.
First, it helps us avoid confounding the risk attitude in individuals'
bidding behavior which is the main focus of this essay. Second, observa-
tions of the actual dispersions of discount bids tend to be relatively
small compared with either the loan available or the pre-Hui incomes so
that we are virtually looking at gambles whose outcomes cluster within a
small interval for which a linear function is a good approxiﬁation. This
seems to accord with observations that Hui participants tend to use mone-
tary value, rather than some subjective utility worth, in their bid calcu-
lation (Huang, 1981).

Under risk neutrality and uniform bid distributions, the individual
optimal first- (second-) price bid given by expression (4.5) (expression
(4.9)) will be linear in the reservation discount. Since a uniform dis-
tribution is preserved via a linear transformation, we can replace Assump-
tion 4 by Assumption 4°'.

Assumption 4': Each individual i's reservation discount for the fund

available at period n, Vin® is independently drawn from a common uniform
distribution Hn with support [gn,;n], where n =1, ..., N-1; i.e.,

H (vy ) = (v -v )/ (v v ) (5.2)
for all i, where n = 1, ..., N-1. Furthermore, each individual i ob-

serves his own reservation discount vin before he submits his bid bin'

Assumption 4' implies that each individual i's bid for the fund
available at the nth period, bin’ will be uniformly distributed over the

interval [Qi

n’Bin]’ where Pin and Bin correspond, through a linear rela-
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tionship, to v, and ;n’ respectively, and are individual-specific because

different bidders might perceive different gains from future biddings. 1In
order to produce consistent expectafion, we will assume that each agent
believes that every other bidder has the same discounted expected gain
from future biddings as his own, contingent on losing at this period.
Since an agent's expected gain 1is discounted using his appropriate time

preference coefficient, we shall refer to it as subjectively discounted

expected gain from future bidding participation. This restriction is

formally stated as Assumption 5:

Assumption 5: Each individual 1 believes that all other bidders' subjec-

tively discounted expected gains from future bidding participation, con-
tingent on losing in the current bidding, are equal to his own.
We shall denote member 1's subjectively discounted expected gain at

% %
period n by Gin' Note that Gin

is his expected gains from biddings taking
place in periods nt+l, nt+2, ..., N-1, subjectively discounted to period n,

%
and that GiO

can be interpreted as member i's expected 'surplus' for join-
ing the Hui.

Given the modified assumptions, the Nash equilibrium bidding programs
for the first—price and second-price sealed bid Hul are given in Theorem
5.1 and Theorem 5.2, respectively. To simplify notations, we let m = N-
n+l denote the number of eligible bidders (those who have not yet received
funds) at period n.

Theorem 5.1: Suppose Assumptions O, 1, 2, 3", 4' and 5 hold. Then, the

Nash equilibrium bidding program for individual i in a first-price seal-

ed bid Hui is given by
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£ 1 1 f
** = - - - =
b v Yn) m Gin

in in mtl (vin (5.3)

where Gii is the subjectively discounted expected gain from future bid-

ding participation, given iteratively by

f m~2
* = —
Gin (}\i,n+l/>\in)[(m 2)/(bn+1 n+1) ]
—h% % - m-2
{(vi,n+1 % 0+ ? (PF nt1 B
+1 tosf -3
+j ’n vy 1 ¥6) ) (b))t dxl (5.4)
i,n+l ’

for n=1, 2, ..., N-1.
Proof: See the Appendix.
The proof involves identifying the bid function (5.3) as a candidate
for a Nash equilibrium and verifying that it is indeed the case.
Theorem 5.2: Suppose Assumptions 0, 1, 2, 3", 4' and 5 hold. Then, the
Nash equilibrium bidding program for individual i in a second-price
sealed bid Hui is given by:

*S= L -— -— *S
bin Vin + m+1 (vn v ) m Gin (5.5)

where Giz is the subjectively discounted expected gain from future

bidding participation, given iteratively by:

m-2
/N D I(@=2)/(b_ =B )" 1e

%5
Gln (A i,n+1

i n+1 m-3
{(m—Z)f—n+1 x--l—)n+1) (Vi,n+1—x)dx

b . )™ (5 -b*

*
+ (b nt+l i,n+1)

- %S *
T V1,0 VT i) (P n1 o

+1 X s n-4
+ (m-3) [} ’n . (y-v +6*°  )(y-b_, )" ‘dydx}, (5.6)
b* 1,0+ bi,n+l i,n+l "i,n+l ntl

forn=1, 2, ..., N-1.
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Proof: Omitted since it is similar to the proof of Theorem 5.1.

We summarize in Table 5.1 the Nash bidding strategy for period n, as
well as the corresponding expected values and variances of the effective
discounts (i.e. winning bid under the first-price method and second high-
est bid under the second-price method).

With risk neutrality and uniform distributions, Vickrey (1961) showed
that, in a single—-object auction, the expected prices under the first- and
the second-price auctioning methods are the same, but the corresponding
variance is higher under the latter. In our Hui bidding model, similar
results do not appear obvious. It is straightforward to check that, for
all m > 2, the variance of the effective discount (i.e. the bid that is
implemented) is higher under the second-price than under the first-price

£ £ s

auctioning method. If we further assume that G* = G* = G*~ = ¢*° for
in n n in

all 1, then the expected effective discount will be higher under the se-
cond—-price than under the first-price method for all m. Therefore, from a
borrower's standpoint, it seems reasonable to conjecture that the first-
price method will be preferable to the second-price method. When m = 2,
the second-price method, from the 1lender's point of view, dominates the
first-price method since the former yields a higher expected effective
discount with the same variance. However, given the multi~period nature
of Hui, the double role played by its members, and the fact that the same
auctioning method must be followed consistently throughout a cycle, it is
not presently clear how to carry this line of argument to favor one method
over another.

Since the auctioned object in Hui 1is a homogeneous monetary loan, it

will be desirable to have some measure by which one can compare the per-
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Table 5.1: Nash Bidding Strategies and Their Derivatives

Restrictions: - no default, no learning
- risk neutrality with positive time preference

linear distribution of reservation discount v over [y,V]

identical subjectively discounted expected gains G*

First-Price

Second-Price

Nash bidding strategy, b
b

b

Bid distribution, F(b)

E(b), E(bS)

var(bf), var(ps)

V- BT (v-v) —-% G*

I<
|
Bl
Q

*

<l

+ i (F-y) - 1o

(v=v)/(v-x)
m 2 = 1
B (y-v) - L g*
v+ D)2 v-v) - &
n’ v-y) 2

(m+1) *(m+2)

v + E%T (v=v) --% G*

Y+ g -0 - ok

v - Lo

(v=¥)/(v-¥)

= 2m - 1

vV - ——— (v-¥) - £ G*
(mt+1)2 m

+ m2+1 ("‘7__‘_’) _ 1

(m+1) 2 n

(m+1) *(m+2)

G*

m = N-nt+l: number of bidders at period n




formance of different Hui from one's point of interest (e.g., borrowing or
lending). This measure would preferably be in some form of interest

rates. One 1is attempted to consider the rate r that solves equation

(5.7) below:

-1 n-k N n—-k
Thog(Ab ) (L4 )™ 4+ L T AT )T = NAH(N-n)(A-b ), (5.7)
where bo = 0 and bn = bi (bi) under the first- (second-) price auctioning

method.
This measure implicitly assumes an indentical interest rate for bor-

rowing and lending -- T which misleadingly looks like some kind of ex

post interest rate for participant n who won the bidding at period n.
This internal rate of return however turns out a poor choice given the
typical Hui cash flows which, except for the organizer and participant N,

change signs twice, yielding non-unique solutions for r -

In Section 2, we motivated, using a numerical example, the distinc-
tion between Hui borrowing and lending rates. We now formally define
them.

Definition 5.1: The ex post Hui borrowing interest rate to member n (who

won the loan at period n), n =1, ..., N, with opportunity cost of capi-

tal r is the rate YE that solves equation (5.8) below:

NAH(N-R) (A-b ) = Io_c(a-b ) (1 )™ = 2 1 AT, (5.8)

where by, = by = 0 and b_ = bi (b%), k = 1, ..., n, under the first-

0 N
(second-) price auctioning method.

Definition 5.2: The ex post Hul lending interest rate to member n (who won

the loan at period n), n =1, ..., N, with opportunity cost of capital
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r is the rate Ygthat solves equation (5.9) below:
-1 Ln-k _ _ _ o N n-k
oAb Y(A+Y )™ = NaR(N-n)(A-b ) - % AL+ )T, (5.9)

f s
where b0 = bN = 0 and bk = bk (bk), k=1, ..., n, under the first-

(second-) price auctioning method.

Note that the ex post Hul interest rates to the nth member defined
above are functions of the winning bids (or the second highest bids) at
periods 1, 2, ..., n, and are independent of those at periods nt+l, ..., N-
1. Therefore, one member's ex post Hul interest rates will in general
differ from another's.

For an individual deciding on whether to join a Hui, an ex ante (ex-
pected) interest rate is perhaps more relevant.

Definition 5.3: Given member i's opportunity cost of capital r, and plan-

i

b,

ned bidding program (bil’biZ"'°’ 1,N—1)’

his ex ante Hui borrowing

interest rate Rb is given by expression (5.10) below:

i
b _ N-1,a-1 . _ b
RD = s LM (1-H, (b, )] JH_(b, JE(YD), (5.10)
where Hk(bik)’ k=1, «.., N-1, is the probability that member i will

win the loan at period k by submitting a bid equal to b " and E(yg)

i
solves equation (5.11):

n-k

T AE ) [ 1T N AR YT = Nar(Nen) [A-E(D )] (5.11)

for n =1, 2, ..., N-1; E(bn) is the expected effective discount given

in Table 5.1, and b0 = 0.

Definition 5.4: Given member i's opportunity cost of capital T, and plan-

b ), his ex ante Hui lending

ned bidding program (bil’biz"'°’ i,N-1
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interest rate Rf is given by expression (5.12) below:

R, = 2 T 11-R (b, 01 (b, E(YD, (5.12)
L

where E(Yh) solves equation (5.13):

~-1 2,0k, . N n-k _ _ -
21'1:___0[A—E(bk)][1+E(Yn)] +E, ALl 17T = NAR(N-R) [A-E(D)] . (5.13)
forn=1, 2, ..., N-1; E(bn) and Hn(bin) are the same as in Definition

5.3.

Note that the bids that are used to calculate the ex ante interest
rates in Definitions 5.3 and 5.4 are expected effective discounts while
those used in Definitions 5.1 and 5.2 are realized effective discounts.
Essentially, the ex ante Hul borrowing (lending) interest rate to a member
is his winning-probability-weighted average of the expected borrowing
(lending) interest rates induced by the expected effective discounts
throughout the duration. 1In general, we would expect different members to
have diffefent ex ante Hui interest rates since their expectations, income
streams, as well as time preference characteristics, may differ, giving

rise to different reservation discounts.
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6

AN APPLICATION TO COLLUSION AMONG SEVERAL SELLERS UNDER REPEATED AUCTIONS!!

The rotating credit association studied in previous sections can be
applied to a form of tacit collusion among a small group of sellers in a se-
quential bidding setting with a single agent buying at regular intervals,
via sealed bid auctions, an indivisible commodity from a fixed group of
eligible sellers. The form of conspiracy 1is non-cooperative in the sense
that once the rules are agreed upon and followed, the individual behavior is

profit-maximizing in the usual Nash sense.

6.1 The Structure of Rotating Credit Collusion

Consider a buyer buying at regular intervals via sealed-bid auctions a
single indivisible commodity supplied by a seller from a fixed grbup of N
sellers.'? Actual bids submitted are not to exceed the buyer's reservation
price denoted by b'. The sellers enter into bidding at no costs. In the
absence of any collusion, sellers maximize their discounted expected profits
given the actions of others. In a collusion with side payments, the seller
with the lowest cost will be pre-selected to win the auction at any period

and the spoils will be split according to some pre-agreed sharing rule.

11 This section is essentially taken from Chew, Mao and Reynolds (1984).

12 o gimilar structure can be defined for a single seller and several
buyers repeated bidding setting.
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In rotating credit collusion, the N sellers agree, prior to the start
of an N-period bidding cycle, on a withdrawal bid level b" which is less
than b". At period n during an N-period bidding cycle, only the m (= N-
n+l) 'living' bidders (those who have yet to win an auction in any given
cycle of N periods) are allowed to bid at or lower than b”. The n-1
'dead' sellers (those who have won once prior to the given period) with-
draw by submitting bids above bw, forfeiting their chance to win but
giving an appearnace to the buyer of still being active bidders. The in-
centive to do this is provided by the knowledge that the game will restart
after each of the remaining living sellers has won once. The final 'win-
ner' will receive b" at period N. This is accomplished by submitting a
bid of b” under first-price auctions or submitting a bid at less than b”
but receiving bY from the next highest bid submitted by a predetermined

(e.g., the winner at period 1) dead seller under second-price auctions.
6.2 Assumptions

The following notation will be used in this section.

=4

the number of sellers;

b, : ith seller's bid at period n;

=2
.o

the lowest (i.e. winning) bid at period nj;

b° : the second lowest bid at period n;

bn = bﬁ (bs) in a first-price (second-price) setting;
b’ : the single buyer's reservation price;
b” : the withdrawal bid level, B < b
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Other notations will be explained when they appear.

Assumption O: Tﬁere is no default.

Assumption 1: There is no Bayisian learning from past winning bids.

Assumption C2: Each seller i has a deterministic and known costs stream

over time: ¢y = [cil’ciZ""’cit""]'

Assumption C3: Each seller maximizes his expected net present value of his

profits stream given a market discount factor op.

We define below a reservation price v, for the ith seller at period

in

n based on the certain knowledge (Assumption 0) that the worst he can do

is to receive bW at the NEE auction:

-(N~n) _ -
o) (Vin cin) b cinN® (6.1)
n
We will refer to vy = {vin""’viN}’ n=1 2, ..., N, as the ith seller's
reservation price vector at period n. Obviously, ViN b” for all i.

Assumption C&:. Every seller at period n believes that the reservation

price of the other sellers are drawn independently from a common uniform

distribution over [v_,v_].
-n’'n

The discounted expected gain from future participation in bidding for

seller i at period n-1 (n =1, ..., N-1), denoted by Gi,n—l’ is defined
by:

Gy qe1 = PPy (By (B v, IHI1-P; (B D16, ], (6.2)
and

i,8-1 = O (6.2")

where Pin(bin) denotes the ith seller's subjective probability of winning

the auction with a bid of bin at period n. The probabilities of winning
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can be derived after we obtain the Nash equilibrium bidding strategies in

the next subsection. 1In particular, G represents the overall discounted

io0
expected gain from participation in the conspiracy at the start of each
bidding cycle.

Assumption C5: Every seller believes that the discounted expected gain

from participating in future biddings for all other sellers, contingent

on losing in the current period, are equal to his own, 1i.e., Gin = Gn

for all i, where n =1, ..., N.
Assumptions C4 and C5 are symmetry assumptions making the m (= N-n+l)
sellers more alike. They are imposed in order to avoid using the tradi-

tional homogeneous sellers assumption.

6.3 Nash Equilibrium Bidding Strategies

Consider first the case of sécond—price auctions. Since in this ro-
tation credit collusion model, a bidder is purely a seller (unlike the Hui
bidder who is both a seller and a buyer), it 1is clear that the demand-
revealing property of second-price auctions applies here. (See Vickrey
(1961) and Cox, Roberson and Smith (1982).) Hence,

Theorem 6.1 (Second-Price): Under Assumptions 0 - 1 and C2 - C5, the

second-price Nash equilibrium bidding program bin for seller i is given

by:

+G, forn=1, ..., N-1, (6.3)

in in in

and

- e <bY, (6.3")

iN iN
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where

-1 - - -k k-n_ .-
T (RIS R (S VI S 2 B (6.4)
forn=1, ..., N-2, and
Gi’N_l = 0. (6.4")

Proof: Omitted.
For the case of first-price auctions, we posit the following recur-

sively defined bidding program:

bin = Vi + Gin + (l/m)(vn—vin), forn =1, ..., N-1, (6.5)

and

biN = Vin = b. (6.5")

The distribution of bin’ F is given by:

in?

lmFin(bin) = (;n—vin)/(;n_!n) = n(;n—bin+Gin)’

where n = m/[(m—l)(;n—gn)]. Clearly, the probability of winning Pin is
given by
m-1
Pin(bin) = [1_Fin(bin)] . (6.6)

That (6.5) is a Nash equilibrium bidding strategy can be demonstrated
by showing that it maximizes the discounted expected gain from

participation in the current and future biddings, Gi n-1° given by
’

expression (6.2). Hence,
Theorem 6.2 (First-Price): Under Assumptions 0 - 1 and C2 - C5, the first-
price Nash equilibrium bidding program bin for the seller i is given

recursively by expression (6.5) with Gin given by expression (6.4).

Proof: Omitted.
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Note that the expected gains from participation in the bidding cons-

piracy Gin are equal under first-price or second-price auctions. Consequ-

ently, the per period expected costs from the buyer's point of view unéer
either auction institution are the same. This appears to correspond with
Vickrey's results for single-object auctions; We do not expect this to
remain the case 1f we extend the model to incorporate risk aversion in
light of the results of Cox, Roberson and Smith (1982)'s extension of

Vickrey's model.
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7

CONCLUSION

This is a first attempt from the rational choice perspective at a ri-
gorous understanding of the 'rotational' competitive bidding process as a
mechanism for interest rate formation, as well as loans and savings allo-
cations. To familarize the reader with the Hui structure, we began by
giving several actual examples gnd using small Hui to illustrate the in-
terworking of its structural parameters. We then introduced a definition
of an agent's reservation discount vector, and demonstrated its existence
and uniqueness under fairly general circumstances. It turne& out to be
particularly useful for the derivation of an optimal individual bidding
strategy. 1In order to acquire tractable result, we gave up a lot of gene-
rality to obtain the Nash equilibrium bidding program and the associated
ex post borrowing and lending interest rates as well as the ex ante win-
ning-probability~weighted interest rates.

A side-reward from the Nash exercise 1s an almost explicit expression
of members' surpluses for joining the bidding market and, hence, of the
total members' surplus, which provides a natural candidate for an effici-
ency measure of different rotating credit markets. For example, loan
allocations may be determined by lot, by seniority, or by other 'socio-
logical' criteria (Little, 1957), not forgetting the neighborhood loan

shark or pawn shop, the credit union, and the insurance companies.!3 The

13 We may also examine a discriminative version of the rotational bidding

process where the winner of an auction at period n collects Arbjn
rather than A-b, from bidder j.

- 198-



total members' surplus also provides the natural objective function for
the dual problem —- the organizer's problem —-- of the optimal combination
of the membership. These are promising topics for immediate follow-up
research.

Another direction for future work concerns the risk sharing aspect of
the rotational bidding process. We can introduce an insurance dimension
to the problem by adding an exogenous probability of a large loss in in-
come at any one period, and study how the optimal bidding strategy may be
modified to reflect the need to cover unexpected losses over time.

Another refinement of the model is to introduce risk aversion into
the Nash model (e.g., agents may have time-—additive, constant relative
risk aversion von Neumann-Morgenstern utility function with their risk
aversion indexes drawn from some known probability distribution).

What about introducing the possibility of default? This, if properly
done, would considerably enrich the current model and should provide a
theoretical explanation behind the typlcally observed risk sharing struc-
ture of a rotating credit association where the organizer bears the de-
fault risk of each member, but poses a common risk to the membership col-
lectively. There appears to be a curious parallel between agency theory
and the rotational bidding problem. The principal'’s problem is to expli-
citly manipulate the agent's payoff structure relative to the information-
monitoring technology available, while the Hui organizer implicitly mani-
pulates the member's payoff and his share of default risk by optimizing
over the time preference, risk attitude, and riskiness of the other mem-
bers over available membership pool. The organizer can also attempt to

change the rules such as bearing only half of the default risk instead.
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In the opposite direction, a rotating credit association in Vancouver,
with a monthly loan pool of approximately $10,000, was formed jointly by
its 20 members who are mutual friends, completely doing away with the
orgaﬁizer (Chang, 1981).

Beyond the immediate horizon is the question of the role of the in-
formal financial sector whose capital is financed mainly by numerous rota-
ting credit associations with organizers acting as information and risk
arbitragers between the formal and the informal sectors. This seems to be
a reasonable approximation to the capital market of Taiwan, Hong Kong,
Singapore, and other east Asian countries and many African nations. One
estimate puts the size of Ethopia's informal financial sector at 8% of its
GNP (Miracle, Miracle and Cohen, 1980). Such a description may even
apply, in the developed countries, to certain pocket of the pupolation
within the overall economy. In Hawaii today, the rotating credit associ-
ations, called 'ko' among the Japanese, are sufficiently prevalent as  to
be declared illegal.‘'"

Since Akerlof's "the market for lemons” paper (1970), we have under-
stood a lot more about the cause of market failures due to informational
asymmetry which makes the formal financial sector inherently imperfect. A
not unreasonable conjecture may be that the informal sector complements
the formal sector in financing smaller, shorter—-term capital, by its rela-
tively greater efficiency in information, monitoring, and even enforcement

(which may, at times, be rather unorthodox). This seems to find at least

1% This information came from conversations with a Japanese American
student from Hawaii.
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superficial support in the coexistence of the sophisticated financial ins-
financial institutions of the formal sector in the West along with the ro-
tating credit association type financial markets (among black West Indian
immigrants in Brooklyn, New York; 'the very poor' in San Diego; and in
centers of Asian immigration in the developed countries (Miracle, Miracle
and Cohen, 1980)) and other forms of informal financial institutions, such
as the above-mentioned intra-family loans, loan sharks and pawn shops.

In Section 6, we described a simple way in which collusion among a
small group of sellers (since the gain from the rotating credit collusion
is inversely related to the number of participants) in a repeated auctions
setting can take place with minimal monitoring. This model may be modi-
fied or extended in a few ways. Instead of the private but known and de-
terministic cost streams, we may assume that every seller draws from a
distribution his cost prior to each bidding period and investigate the
effects of various distributional and informational assumptions about the
costs on the resulting bidding strategies. We may also assume tﬁat sel-
lers have additive intertemporal utilities which are not necessarily 1li-
near to study the effects of intertemporal risk aversion.

A different question related to the collusion model is whether there
is an incentive to default on the agreement once a seller has won in a
particular bidding period. 1In Chew and Reynolds (1984), it is shown that
rotating credit collusion is consistent with noncooperative Nash behavior
in an infinite horizon framework under a symmetric uncertain wvariable
costs assumption. The length-of-collusion analysis of Radner (1980) and
the collusion-with-bonding analysis of Eswaran and Lewis (1983) may also

be adapted to shed light on this question.
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APPENDIX

Proof of Lemma 3.1:

By the definition of Vs

Uy n-1) = Uiy = Uy
where
Yyn-1 = Tyo ATy (Avyy)seee, Iy WAV, N1 Tin™A)s
and
Yin = (IiO—A’Iil—(A_vil)""’Ii,N~1_(A-Vi,N—1)’IiN+NA)'
By monotonicity of U, Ui(Yi,N—l) decreases in Vi N-1 and Ui(YiN) increa-
ses in v + Given monotonicity and positive time preference, we have

1i,N-1

) -
Yin-1 ¢ Vin-1 S Vi,N-1

where YiN-1 " —‘IiN_Ii,N—l‘ and vi"N_.1 = (N+1)A. Let
a = Ui(Yi,N—1|v1,N—1=Yi,N—1)’ a = Ui(Yi,N—l‘vi,N—1=vi,N—1)’
d = Ui(Yivai,N—1=Yi,N—1)’ d

= Ui(Yivai,N—1=Vi,N—1)'

Again, positive time preference and monotonicity imply that

a>d, (A.1)
a > a, (A.2)
d <d, (A.3)
and a < d. (A.4)

Since Ui is assumed continuous, inequalities (A.l), (A.2), (A.3) and

(A.4) imply that v exists and is unique.

1,N-1

By similar arguments, it can be established that, in general, there
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exists a unique v, = (Vil’viZ"'°’vi,N—l) with Vi, € [zin’vin]’ where
_ 1
Yip = ™oLy 0T wmm LTy g POV a0
- _ NH
Vin © §emdl M

for all n ¢ {1,...,N—1}, such that equation (3.1) holds.
Q.E.D.

Proof of Theorem 4.1:

At period n, b, , k = 1, ..., n-1, are known. Given time-additive
. ) .k ’

utility, the conditional reservation utility of member i at period n is

=-n _ oj- 1 _ N S
Ui —vZk ik i(I -(A vik))+kijui(lij+NA (N J)v )+ Zk—3+1 m i A),

j=mn, ntl, ..., N. (A.5)
Under assumptions 0, 1, 2, 3' and 4, the problem of member i at period n
. £ A '
is choosing bin to maximize EUin(bin) given in expression (4.3). Note

that maximizing EUin(bin) is equivalent to maximizing

_ 1 f _rn
Ein(Pyn) = 7;‘ [EU;,(Pyn)T4]
= o— EUL_(b, )
7;; in
-l (T, NA- (), DN AL ul (T, -A) F, (b, )V
KI; in 1 "in in Zk=n+1 ik i Tik in' in
1 =n+1 N-n
‘m{ﬁn‘li“m‘( DA A P CIR) R
= {ui(Iin+NA—(N—n)bin)—ui(Iin+NA—(N-n)vin)}[Fin(bin)]N_n
+ fsn I, -A+x)-u, (I, -A+v, ) + iﬁiﬁil E* arF, ()N "
bin[ui( in ARy (Ty —Adv, Ko 1 a1 J4F (T
(A.6)
where
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= Max E

%* = *
Ef or1 = Bi nn (Pf ni) 1,041 P4 17

The first order condition for bin to maximize expression (A.6), after
suppressing the individual and time subscripts, is

0 = E'(b) = ~(-n)F() N2 {ur (T+NA- (N-n) b)Y F(b)- ¢F" (b) }, (A.7)
where
¢ = u(IHNA-(N-n)b) ~ u(I+NA-(N-n)v) - [u(I-A+b)-u(I-A+v)+E*], (A.8)
and

E* = (A,

*
1,n+1/ xin)Ei

yn+l’

Note that (A.7) implies equation (4.5).
With increasing utility, the RHS of equation (4.5) is increasing in
b. With decreasing marginal-outbidden-rate distribution F(b), the LHS of
equation (4.5) 1is decreasing in b. ) Therefore, the bid that satisfies
(4.5) is unique.
The second order condition for b to maximize (A.6) requires that
(N-n)u" (I+NA-(N-n)b)F(b) - [(N-n+l)u'(I+NA-(N-n)b)+u'(I-A+b)]F'(D)
+ ¢F"(b) < O,
which is satisfied locally by the b that solves equation (4.5) if F yields
decreasing marginal outbidden rate. Hence, the bid that maximizes (A.6)
is unique.

Q.E.D.
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Proof of Corollary 4.5:

%
We want to-show that the sign of %%— is positive. Take total
derivative of both sides of equation (A.7) to obtain
T(b*
0 = E"(b*)(db*) + égséh_l

= E"(b%)(Bb%) + (8-n) [F(b)]Y IR (b)) (3D (ow) .«

(ov)

Therefore
L a  t{CL b htts A CUICEY AN CON

where

gg = (N-n)u' (I+NA-(N-n)v) + u'(I-A+v) > O.

*
Since E"(b*) < 0 and F'(b) > 0, we have %%— > 0 as desired.

The proof for the second-price case is similar.

Q.E.D.
Proof of Corollary 4.7:
Take the total derivative of (A.7) to obtain
OF ;0 (Pin
= E" * % -
0 Ein(bin)(abin) + I oA ](axin)
in
which implies
% 1 %
s OO T 1
[ ) .
a)\in a)\in Ein(bin)
Since
JE' (b* ) A
in® in N-n-1 1i,n+l
e = - % 1 % ) oE* Pt LA
% (N=n) [Fy (b )] PP B a2 > O
in in
and E;n(bgn) < 0, we have shown that abin/bkin > 0.
The proof of the second-price case is similar.
Q.E.D.
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Proof of Theorem 5.1:

In this proof, without fear of confusion, we will omit the time index
n to simplify the notation.
Suppose, at period n, bidder j believes that all his rivals adopt the

bidding strategy function (5.3). By assumption 4', v,, for all i # j, is

i’

~uniformly distributed over [y,;]. Since bi is linear in Vi by Assumption

4, bi will be uniformly distributed over [9,5], where

1
b=v-g5%
- - 1 - 1
= - e - - —_ %
b VS (v-v) = Gi'

Recall that m = N-nt+l is the number of bidders at period n and that G? is

the identical subjectively discounted expected gain from future bidding
participation.

The inverse of (5.3) is

_ _ ol _ 1 1
vy = f(by) === [by ~ oy v + 5 GFl-
Therefore,
f(bi) v-v 1
Fo(b) =F (v) = [ Tdl ==1=nib -y+<6}l,
y v-v
and
. - - m+1 =
Fi(b,) = n (=) /(v=y).

Under Assumptions O, 1, 2, 3", 4' and 5, the expected utility differ-

ence for bidder j of a bid bj is
E. (b,
J( J)

1 m-1 b 1 m-2
= (m-l)(Vj-bj)[n(bj-2+ = Gg)] + (m—l)lbj(x—vng)[n(x-z‘*‘ = Ggl ndx,
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1

PR o ¢ _ o L m-1 b _ _ m-2,
= (m-1)n {(vj b)(byvk 2 6B + jbj(x v H6%) (x-v+ = G¥) dx}. (A.9)

The first order condition for bg to maximize Ej is

0 = E'(b%
J( J)
= (@-1) T L bh-vk L e T 2o (o (b ~vt L GE)H(m=1)(v .~ )=(b ,~v 4GC*) ]
J—- m ] jJ—- m ] J ] J 1 1]
m-1 1 m-2 m+l
= (m-1 b*-v+ = G* -(m+l) b*+mv . +v- —— G* A.10
()n(J_mJ) ¢ )J J_mJ], ( )
which implies
1 m+1 1 1
* o= = - T %) = - —v) - = G*
bj — (mvj + v — Gj) vj ) (vj v) - Gj' (A.11)
It 1s straightforward to check that
E%(b%) = —(m-1) (o)™ L bx - v + L ™2 < 0
J 1] J - m J

since m > 1. Thus bﬁ also satisfies the second order condition. Since

bidder j's optimal strategy (A.ll) 1s the same as all his rivals', we have
shown that the strategy function (5.3) 1is indeed a Nash equalibrium
bidding strategy at period n.

It then follows that the vector b, = (b b b

1 1120400 > with bin

i,N—l)’
given by (5.3), where n =1, 2, ..., N-1, is a Nash equilibrium bidding
program.

Q.E.D.
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