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A B S T R A C T 

The approach developed by Eynon-Switzer (1983) to analyze the 

spatial-temporal structure of a data set obtained from the EPRI moni

toring network is applied to a data set obtained from the M A P 3 S / P C N 

monitoring network. In this approach, a spatio-temporal stochastic 

model, including deterministic components for seasonal varia-tion and 

rainfall washout, is fitted to the data. The results indicate that the 

model fails to capture some of the features of the underlying structure. 

In an effort to identify an appropriate model for the data, we 

examine the raw data in detail. An A N O V A model is fitted to the 

data. Different criteria such as Akaike, Schwarz, Mallows, etc, are used 

to identify the 'best' submodel (i.e. eliminate some terms in the full 

A N O V A model). The results indicate that it is possible to capture the 

deterministic component of the model with a much smaller model (i.e. 

fewer parameters). The normality of the residuals is also examined. 

The results indicate that the data from all stations except one can 

reasonably be approximated as coming from normal distributions. 
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1) I N T R O D U C T I O N 

1.1) Inferences for Spatial-Temporal D a t a 

Given a data set (pH levels in this case) obtained from a set 

of monitoring sites, it is often necessary in environmetrics to make 

inferences about events at nonmonitored sites. The solution of this 

problem usually involves some interpolation techniques (i.e. finding the 

'best' estimates for the data at nonmonitored sites). Kriging (Delhomme 

1978) is a simple method for interpolation to obtain contour maps over 

the whole region which contains the monitoring sites. However, the 

spatial covariance function for the whole region is required in order to 

do kriging. The spatial covariance function can possibly be modelled 

by using the estimated values of spatial covariances between pairs of 

monitoring sites, which in turn depend on the spatial-temporal stochastic 

model used to explain the raw data. Successful use of this scheme 

for inferences concerning spatial-temporal data requires an appropriate 

spatial-temporal stochastic model for the data. 
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In chapter 2 of this thesis, the approach followed by Eynon and 

Switzer (1983) is applied to the data set obtained by the MAP3S/PCN 

monitoring network. The results indicate that the spatial-temporal 

stochastic model developed for the variability of pH levels in their 

paper fails to capture some of the features of this independent data 

set. However, for the sake of illustration, we carry the approach 

through to its logical conclusion and obtain by kriging, contour maps 

for this data set. 

In an effort to identify a more appropriate spatial-temporal stochastic 

model for the data set, the underlying structure of the deterministic 

components of the data are carefully examined in chapter 3. The 

results show that there is some seasonal structure in the pH levels. 

The pH levels are not influenced by the rainfall volumes which show no 

seasonal structure of their own. A saturated ANOVA model is fitted 

to the pH levels and the importance of each component of the model 

is examined. The results suggest that the deterministic components of 

the pH levels can be captured by a simpler model than the saturated 

one. Many criteria for comparing different models are also described. 

Many of the models and methods of analysis employed in environ-

metrics are based on assumptions of normality; therefore, the structure 
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of the residual stochastic component is examined by simple normal 

probability plots. The results indicate that the data from all sites but 

one have residual variation which can be reasonably approximated as 

being normally distributed. 

1.2) Data Set Description 

The MAP3S/PCN network has nine monitoring stations which are 

located in the northeastern part of the United States. Data were 

collected for each day on which rainfall occurred from 1976 to 1982; 

one data record was collected per storm (i.e. event data). However, the 

stations started collecting data at different times; only data obtained 

at stations which were active for the entire year are considered (i.e. 

data obtained in the first year of operation, but with start-up time 

much later than January 1st of that year are ignored). About five 

percent of the data are missing (i.e. there was a storm but no data 

were reported for the pH level or volume); missing data are ignored 

in this work. As in the Eynon-Switzer analysis, only (field) pH level 

and Volume measurements are used although the data set provides 

much more information (e.g. Conductivity, Sulfite, Sulfate, H+,...). The 

variables considered are Time (t, t=0 on Jan 1**, 1976 and the unit 

is a day), Volume (rainfall volume was obtained from a raingauge and 
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measured in millimeters) and p H level. T h e station locations, the first 

active dates, and the A D S (Acid Deposition System) site identity are 

given in Table 1.1. Table 1.2 provides the number of rainfall events and 

the averages and standard deviations of the corresponding p H levels 

and rainfall volumes for each station in each year. 

1.2.1) p H levels 

T h e standard deviations of the p H levels are not entirely consistent 

from year to year and from station to station. T h e standard deviation of 

the data at station 020b (Illinois, Illinois) is consistently larger than that 

at other stations; this excess variability is easily seen in the plots of the 

raw data (Figures l . l . a - l . l . d ) . Station 065a (Penn State, Pennsylvania) 

exhibits a large standard deviation (.61) in 1980 due to an outlying 

data-value (a pH level of 7.31 in December 1980; see Figure l . l . d ) ; 

the standard deviation calculated without this single p H level is .30, 

a value which is perfectly consistent with the standard deviations of 

other years at this station (Table 1.2). 

T h e data corresponding to four stations (020b, 044a, 048a, 065a) 

are plotted in Figure 1.1 ( p H levels against Time) . These four plots do 

not demonstrate any obvious long-term relationship between p H levels 
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and Time; of course, seasonal patterns may be obscured by the severely 

compacted Time axis. However, the plots do show differences in the 

data corresponding to different stations. Station 020b (Figure 1.1.a) 

has a large variability in its pH levels; station 048a (Figure l.l.c) has 

distinctly smaller variability. Stations 044a and 065a (Figures 1.1.b and 

l.l.d) display the same overall pattern of relatively small variability. 

One difference is that there are some possible outliers in the data 

obtained at station 065a. The plots of the data of other stations (not 

included in this report) are similar to one of the above figures. 

1.2.2) Rainfall volumes 

The average rainfall volumes vary considerably from year to year 

and from station to station (Table 1.2). The average rainfall volumes in 

1979 are greater than those of other years at all stations but stations 

044a and 048a. The standard deviations of the rainfall volumes are 

large (Table 1.2), and vary greatly from year to year and from station 

to station. At most stations the standard deviations in 1979 are 

exceptionally large relative to those of other years; for example, at 

station 013a, the standard deviation is 29.49 in 1979 while those in 

other years are less than 15.28. Rainfall volumes are plotted against 

time for each station separately to examine whether there is any 
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obvious pattern in the data. The resulting plots do not suggest any 

obvious long-term relationship between the rainfall volumes and Time. 

Overall, all plots are similar; the plots of four stations (020b, 044a, 

048a, 065a) are presented in Figure 1.2. The great variabilites in the 

rainfall volumes are clearly demonstrated in all plots. There is one 

possible outlier at station 020b in August of 1979; the rainfall volume 

is 157.14 mm (the rest are less than 90.00 mm) and the corresponding 

pH level is 4.22. 
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2) E Y N O N - S W I T Z E R A P P R O A C H 

2.1) Introduction 

One general objective of the study of rainfall acidity is the deter

mination of 'best' estimates of a spatial process describing geographic 

fluctuations in the acid levels of rainfall at some unobserved locations 

using the observed data obtained at a limited number of stations moni

toring rainfall acidity. These estimates would allow consideration of the 

optimal design of networks to monitor the long term and potentially 

damaging effects of the components of acid rain. 

An approach for finding these estimates is provided by Eynon 

and Switzer (1983). In their paper, a parametric model is developed 

using data obtained from the Electric Power Research Institute (EPRI) 

network. A spatio-temporal stochastic model, including deterministic 

components for seasonal variation and rainfall washout and stochastic 

components for spatial, temporal, and measurement variation, is fitted 
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to the data. Using the method known as Kriging, the best linear 

unbiased estimates (BLUE) of seasonal and rainfall adjusted yearly 

average pH over the monitoring region are obtained. 

It should be noted that Eynon and Switzer use the data set obtained 

by the EPRI network which also has nine stations, each with two years 

of data. The geographical locations of stations in both networks are 

presented in Figure 2 . 1 . Although the geographical locations of the 

stations in the two networks differ, both networks cover essentially the 

same area. One difference is that rainfall volume is measured in inches 

in the EPRI network. 

In this chapter, we present the results of an attempt to validate 

the Eynon-Switzer model using the data obtained by the M A P 3 S / P C N 

monitoring network. The attempted validation follows the Eynon and 

Switzer paper in a step-by-step fashion. We also present some of the 

corresponding results from their paper using data obtained from the 

EPRI network. 

2.2) The Evnon-Switser M o d e l 

Eynon and Switzer propose the following model under which a 
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single year's data are analyzed : 
-logl0H+{x,t)=pH{x,t) 

i \ nr.\ t \ • 27rt 2irt 
= <*(x) + P(t) + a{x) sin — + b (x) cos — 

dob o65 

, c-I(x.t) . ,, 

+ ' ° s . o 1 _ e x p [ _ c . ; ( I > i ) l + ^ . o , 

where 

x denotes the two-dimensional location under consideration, 

t denotes the number of days starting from January 1**, 1976j 

I(x,t) denotes the observed rainfall in millimeters at location x 

on day t (Eynon-Switzer used inches in their analysis), 

pE(x,t) denotes the observed rainfall pH at location x on day t, 

given I(x, t) > 0, 

H+(x,t) denotes the hydrogen-ion concentration at location x 

on day t in gram-atoms per litre, 

a(x) is a stationary auto correlated spatial process describing 

the geographic fluctuations in annual pH level, 

P(t) is a zero-mean stationary autocorrelated time process 

describing temporal fluctuations not attributed to 

seasonal variation, independent of a(x), 

e(x}t) is a zero-mean stationary white-noise measurement 

error process, independent of a(x) and /?(£), 

a(x), 6(x)are location-specific model constants which describe 



seasonal fluctuations, and 

c is a washout rate constant. 

The correction for rainfall volume (i.e. the logarithmic term in 

the pH model) represents the simplest scavenging process in which the 

number of hydrogen ions picked up per unit time per unit volume of 

rain is proportional to the remaining atmospheric concentration. This 

process produces lower acidity (higher pH) for larger rainfall volume. 

The limit of the logarithmic term is zero as the rainfall volume tends to 

zero. Since /?(£) and e(x,t) are zero-mean residual processes, a(x) may 

be interpreted as the seasonally adjusted maximum acidity potential at 

location x. 

2.3) Preliminary Fitting of The Model 

In this section all parameters in the model are estimated by using 

the B M D P statistical computer package; the program used is Derivative 

Free Non-Linear Regression, P :AR. For each of the study years, the 

separate fitting of the data to the model proceeds in several stages. 

First, the constant coefficients a(x),b(x),c(x) are fitted by non-linear 

least squares separately at each station location i=l,...,9. The model 

used for the data (corresponding to events at times tj in the study 
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year under consideration) being fitted in this step is: 

pH(x{, tj) = a(x,) sin 
2lrfy 

+ b(xi) cos 
2nt3-

+ log 
c(xi) • I(Xi,tj) 

365 365 10 1 - exp[-c(x t ) • I[xi,tj)] 

+d{xi) + e(xi,tj). 

The values of the fitted parameters a(x,), 6(x,), c(x,), d(x,) for each year, 

and each station are presented in Table 2.1. Note that there are some 

negative values of e's at stations 020b and 057a. These values should 

always be positive in principle since c is defined as a washout rate. 

However, the magnitudes of these values are always very small. These 

negative values could possibly be the result of the round-off errors in 

the nonlinear fit of the model. 

Figure 2.2 shows the phases and amplitudes of the nine fit

ted seasonal curves for each year separately. Amplitude is calcu

lated as \fcfl + S2, and phase is the value of t which minimizes 

d sin | | | + 6 cos |||. Although most of the minimum points of the 

seasonal curves occur in the summer, the amplitudes and the times 

at which the minimum occurs for any station do not show great con

sistency from year to year. This fact is supported by the results 

presented in Tables 2.2.1 and 2.2.2 obtained by applying the A N O V A 

and the M E D I A N P O L I S H I N G decomposition techniques to the fitted 

11 
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coefficients a ( i , ) , Results in the Eynon-Switzer paper suggests a 

similar problem. Two figures (similar to Figure 2.2) in their paper 

show the same inconsistency described above. 

T h e results obtained by applying the techniques described above to 

the fitted coefficients c(a;,), d(x,) are also presented in Tables 2.2.3 and 

2.2.4. Each table contains two parts. In Part (a) the average is used 

to do the decomposition. T h e coefficients are considered as the entries 

in a two-way table (yearxstation). Each entry could be represented as 

the sum of overall average, station effect, year effect and residual. T h e 

decomposition, then, is done by using an A N O V A - t y p e approach; for 

example, the year (row) effect is taken to be the difference between 

the row average and the overall average. In Part (b) the Median 

Polishing approach is used to do the decomposition. Each entry in the 

yearxstation table is replaced by the difference between itself and the 

row median. T h e median of these row medians is taken to be the 

overall effect. T h e year effect is taken to be the difference between 

the row median and the overall effect. The station effect is taken to 

be the column median of the new table. T h e residual is then the 

difference between the entry of the new table and the station effect; 

the sum of these effects and the residual results in the original entry 

of the two-way table. 
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In Tables 2.2.1 and 2.2.2 of estimated values of the seasonal co

efficients a(x) and b(x), there are many large residuals. These values 

appear at different stations and different years without any apparent 

pattern. Some year effects are much larger, in magnitude, than others. 

This suggests a considerable interyear variation in the year effect The 

station effect behaves the same way. Therefore, we may infer that the 

periodic coefficients a(x) and b(x) are inconsistent from year to year, 

and from station to station. Note that if the proposed model fitted the 

data well enough, then one would expect the periodic coefficients to 

be consistent at least from year to year. This suggests that these data 

do not have the periodic behaviour postulated in the model. We also 

apply the above decomposition techniques to the yearxstation tables 

of phases and amplitudes. The results which are not included in this 

thesis support our earlier conclusion that the phases and amplitudes 

are somewhat inconsistent from year to year. 

It is not surprising that the estimated values of d(x) (decomposed 

in Table 2.2.4) show little consistency from year to year, and from 

station to station. The overall effect, d(x)t should be different from 

station to station and possibly also from year to year. 

Table 2.2.3 shows some consistency in the estimated values of c. 
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There is only one large residual (at station 065a, in 1980) which is 

greater (but not very much) than the other residuals. The magnitudes 

of the year effect are approximately the same. The station effect, 

however, shows some variation. There are two relatively large values 

of the station effect which correspond to stations 020b and 048a. This 

points to possible differences in station effects. Besides, some of the 

residuals corresponding to stations 048a and 065a vary considerably from 

year to year (and also from station to station). Therefore, estimates 

of a common washout rate c obtained by using the data from all of 

the stations in each year separately, may not be consistent from year 

to year in conflict with a suggestion in the Eynon-Switzer paper; this 

is now examined in more detail. 

Following Eynon and Switzer, we fit a common value of the washout 

rate parameter c across all stations for each year separately. Using 

the previous estimates of a(x,), 6(xt), d(x,) (different for each station), 

we fit a common washout rate c for each year separately. The fitted 

values of the parameter c are: 

Year 1977 1978 1979 1980 1981 1982 
A 

c .0405 .0528 .0189 .0555 .0304 .0489 

se(c) .0050 .0060 .0037 .0067 .0095 .0049. 
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Here se(c) denotes the nominal asymptotic-theory standard error of c, 

based on independence assumptions on the residuals. As a rough check 

for significant year to year differences in these c-values, we apply the 

Newman-Keuls procedure. The c-values are assumed to be independent, 

with a common standard error of approximately .006 (this value is 

the root-mean square of the standard errors displayed above). While 

the assumptions giving rise to this procedure are not satisfied exactly, 

nevertheless, the results give us some rough indication of the behaviour 

of these c-values. As expected, there are some statistically significant 

differences (at the five percent level). Specifically, the c-value obtained 

for 1979 is significantly different from the c-values obtained for 1977, 

1978, 1980, 1982; and the c-value of 1980 is also significantly different 

from the c-value of 1981. 

Note: The fitted values of the common washout rate parameter c given 

by Eynon-Switzer are: 

c = 0.92 for year 1 (Sept. 78 - Aug. 79), 

= 1.10 for year 2 (Sept. 79 - Aug. 80). 

These values correspond to rainfall volume measured in inches. To 

make these values comparable with our values of c (corresponding to 

volume measured in millimeters), we divide c by 25.4 (1 inch = 25.4 
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millimeters). T h e converted values of Eynon-Switzer's c are respectively 

c = 0.92/25.4 = .0362, and c = 1.10/25.4 = .0433. 

These values of c agree with ours. Specifically, they are about in the 

middle of our range of values of c. 

T h e combined corrections for rainfall volume (using a common 

washout rate c for each year) and seasonality reduce the overall variation 

of an annual p H series; the residual standard deviation of a series is 

reduced by 0 - 30 percent from that of the corresponding uncorrected 

series. T h e ratios of sums of squares of residuals for the corrected 

series to that of the uncorrected series are presented in Table 2.3. In 

some cases, essentially no reduction is obtained by using the combined 

corrections. T h e reductions corresponding to station 020b in different 

years are always very small. The results presented in Table 2.3 do not 

show any obvious relationship between the percentage of the reduction 

and the stations or the years. 

We note that according to Eynon and Switzer, these corrections produce 

a 0 - 20 percent reduction of the residual standard deviation with their 

data. In addition, they note that each correction separately contributes 

about one-half of the reduction. T o see whether this is also true for 
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our data, we fit the full model and the reduced model in which the 

volume correction is omitted (i.e. with only seasonal terms) to eight 

different data sets. Each data set corresponds to one year at a specific 

station. T h e results are presented in Table 2.4. The reduction in 

the residual sum of squares due to the seasonal correction is much 

higher in some cases and lower in others than the reduction due to 

the volume correction. It is not obvious here whether each correction 

separately contributes about one-half of the reduction. 

2.4) Spatial and Temporal Components 

W i t h the estimated parameters a(x,), 6(x,) for each station, each 

year and the estimated common washout rate c for each year, the 

residual for the station at location x,- for collection day tj is given by: 

— • 2 T T £ J » . . 2ntj 
pH (xi, tj) = pH(xi, tj) - a(xi) sin - 6(x.) cos 

~ l o g i o 

365 v " 365 

C(X.) • I{Xi,tj) 

1 - exp[-c(x.) • I(xi,tj)]' 

These pH(x{,tj) values are treated as estimates of the combined random 

components a(x,) + fi(t3) + e(zi, tj). 

Define: 

Va(u) = E[a(x) — a(x + u)] 2/2 : the variogram of the spatial process, and 
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Vp(tv) — E\(3{t) — B(t + tu)]2/2 : the variogram of the temporal process. 

These quantities describe the geographic and temporal variation of daily 

'corrected' pH readings. Eynon-Switzer indicate that for convenience, 

the following two simple parametric models for the variograms were 

fitted: 

V a { u ) = l + [ u ' M - i ' 

where <7i,/ii,<?2 a r e non-negative constants and h2 is a symmetric 

positive definite 2 x 2 matrix. 

The contours of the spatial variogram Va(u) are concentric ellipses 

centered at the origin. The models satisfy the constraints of positive 

defmiteness required of all variograms. The above variogram models 

are also used to fit our data as described in what follows. 

2.4.1) Fitting the temporal variogram; 

The corrected pH values, pH(xi,t3), are used to estimate an un

smoothed variogram; 

l/2[pH(xi,tj) - pH(xi,t3i)]2 estimates Vp(w) + of , 

18 



for w = tj — tji, where o f - var(e (x, - , tj)). 

Note that Eynon and Switzer estimate o f by using duplicate pH 

readings. In fact, the replication variability was estimated separately at 

each station for each year. There were modest differences among these 

estimates but not so large as to warrant modelling o f as a function 

of location. In any event, their estimate, o f , turns out to be small 

relative to temporal and spatial variability, and a common value of 

o f = .019 was obtained with their data. In our data, since no replicate 

observations are available, o f is absorbed into the temporal variogram. 

So l/2[pH(xi,tj) — pH(xi,tj>)]2 estimates Vp(w). 

All rainfall days separated by a lag w (at a fixed station, separately 

in each year) are used to estimate Vp(w). The scatter plot of the 

estimates of the unsmoothed temporal variogram at station 072a in 

1982 is presented in Figure 2.3. All possible estimates are plotted; 

there are 1653 data points. Many of these estimates are near zero, but 

the variability of the temporal variogram estimates is very large. This 

pattern is, however, a typical one for all other plots of the temporal 

variogram estimates at different stations. 

Eynon and Switzer observe that the fitted value of the constant g2 

19 



could not be distinguished from zero with their data. To see whether 

this is true with our data, we fit the variogram model i +(_.2/ g 2)-i to 

four different data sets corresponding to different combinations of year 

and station; the results are presented in Table 2.5. Our results support 

the conclusion of Eynon and Switzer (that the nominal asymptotic 

standard error of the estimate is always bigger than the estimated 

value). We would propose to let <j_ = 0. 

It may be inferred that the temporal variogram has a constant 

value gfi. Using the data from all years and all stations, the estimated 

value of gi is gi = .1287. In Table 2.6, different constants gi which are 

estimated using the data from each year and each station separately 

are presented. Applying the previous decomposition techniques to these 

values, we obtain the results presented in Table 2.7. There are some 

unreasonably large values of residuals corresponding to station 020b. 

The effect of station 020b is 0.31. This is very large relative to the 

other values whose magnitudes do not exceed 0.08. This suggests an 

unusual pattern in the data obtained at station 020b; recall the excessive 

variability of the data at station 020b noted earlier. Specifically, the 

values of gi = 0.805 in 1979 at station 020b is very large relative to 

all others. Except for these consistently large values of station 020b, 

the results do not show any obvious pattern between the remaining 
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values. 

Note: O u r value of gx of .1287 is bigger than the value of gi + of = 

.079 + .019 = .098 obtained by Eynon-Switzer. One possible reason for 

this is that we appear to have outliers in our data. T h e excessive 

variability of the data at station 020b might be another possible reason. 

2.4.2) Fitting the spatial variogram; 

T h e corrected p H values, pH(x{,tj) are used as follows to obtain 

the unsmoothed variogram: 

l/2[pH(xi,tj) - p~H(xi>,tj)]2 estimates Va(u) +Vp(0+), 

where u is the vector joining station pairs (a;,-, £ ,< ) . Vp(0+) comes into 

the expression because the time unit was previously chosen as one day, 

and two readings of p H levels at two stations on a same day (i.e. 

same tj) might not have the identical collecting times so that the time 

lag is always 0 + . Hence 

l/2[pH(xi,tj) — pH(xi>,tj)]2 — gi estimates V a ( u ) . 

O f course, Va(u) can be estimated directly only for arguments u 

corresponding to two stations with events recorded on the same day. 
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With our data set, there are 2848 estimated values for the unsmoothed 

spatial variogram corresponding to two-dimensional vectors u joining 

the 36 station pairs. An attempt to fit Va(u) to this data set failed 

because the algorithm failed to converge. 

We note that Eynon and Switzer do not report any difficulties in fitting 

the spatial variogram. 

To find the estimated values of h\ and h2 for our data set, we try 

another approach. For each station pair, the simple average of all the 

available estimates of the unsmoothed spatial variogram is considered as 

a new data point. The number of unsmoothed estimates entering this 

average is treated as a case weight. This new data set has 36 data 

points, with a case weight attached to each point. However, the attempt 

to fit Va(u) to this new data set also fails; each of three different 

algorithms, Gauss-Newton and Marquardt algorithms (SAS statistical 

computer package), and Derivative-Free Non Linear Regression (BMDP 

package), fails to converge to a solution. 

The plot of this new data set is in Figure 2.4. The plot, however, 

shows that the proposed spatial variogram model is totally inappropriate 

for our data set. There are many negative estimates possibly because 
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of the large estimated value of Vp(0+) (i.e. gi = .1287). And there are 

also some unreasonably large values of the unsmoothed spatial variogram 

estimates. These estimates are always from those station pairs where one 

of the two stations was station 020b (Illinois, Illinois). The difficulties 

encountered in this fitting may be due to these values. This is another 

indication of the atypical behaviour of the data obtained at station 

020b. The plots of the unsmoothed spatial variogram estimates for 

each year separately (not included in this report) have approximately 

the same pattern as the above. 

The final step in the Eynon-Switzer approach is the interpolation 

step, called kriging. To carry out this step, an estimated spatial 

variogram model is required. Since there have been indications that 

station 020b could be the source of many problems that we have 

encountered in applying the approach to this data set, we will repeat 

the previous steps of the approach to the data set with station 020b 

removed. This may allow us to find estimates of the parameters hi 

and h2 in the spatial variogram model used by Eynon and Switzer. 

Besides, we would like to find out how well this approach work if we 

remove station 020b. This will be done in the next section. 
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2.5) Pitting Without Station 020b 

In this section we examine whether we can obtain estimates of 

the parameters hi and h2 from the data with station 020b removed. 

We repeat the previous steps of the Eynon-Switzer approach on the 

reduced data set and present the results in what follows. 

The estimates of parameters a,b,c,d in the Eynon-Switzer model are 

the same as before. Now we use these estimates to fit a common c 

value for each year separately. The fitted values of the parameter c 

are: 

Year 1977 1978 1979 1980 1981 1982 

c .0405 .0622 .0297 .0654 .0492 .0530 

old c .0405 .0528 .0189 .0555 .0304 .0489 

se(c) .0050 .0054 .0033 .0060 .0044 .0049 

where the notation is the same as in section 2.3. The estimated 

values of c for the years in which the data from station 020 are 

removed turnout to be larger than those obtained earlier; the largest 

increase, 0.0188, is in 1981. As before, we apply the Newman-Keuls 

procedure to check for significant year to year differences in these c-

values. An approximate common standard error of c is about 0.005. 

The result obtained in this step is generally similar to that in section 

2.3 although there are differences. Specifically, the c-value for 1980 
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is no longer significantly different from the c-value of 1981, and the 

c-value obtained in 1979 is significantly different from all the rest. 

We use estimated values of a, b and a common c to estimate the 

temporal variogram Vp as in section 2.4.1. As before, the fitted value 

of g2 is negigible (i.e. the temporal variogram would have a constant 

value gi). Using all the data together (excluding station 020b), the 

estimated value of gi is 0.095; this value is comparable to the Eynon-

Switzer estimated value of ffi+of = 0.098. This supports our claim that 

our earlier estimated value of g\ is larger than Eynon and Switzer's 

because of the excessive variability of the data obtained at station 

020b. 

Using this gi, we obtain the unsmoothed estimates of the spatial 

variogram as in section 2.4.2. Our attempt to fit the model for Va to 

these estimates fails (i.e. the nonlinear regression fit fails to converge 

to a solution for h\ and h2) using all the different approaches described 

in section 2.4.2. 

To examine the unsmoothed estimates of the spatial variogram, we 

plot them in Figure 2.5. The points with unusually large values in 

Figure 2.4 do not appear in this plot; however, the proposed model 
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for the spat ial variogram st i l l does not seem to be appropriate. Note 

that there are st i l l many estimated values of the spatial variogram 

which are negative. Th is suggests that we may st i l l be overestimating 

the temporal var iogram gi, although our estimated value of gi is now 

comparable to Eynon and Switzer's. 

So the removal of station 020b f rom the data set has not resolved 

the difficulty in obtaining estimates of the parameters hi and h2 in the 

Eynon-Switzer spatial variogram model. Consequently, the interpolat ion 

procedure called kriging, undertaken by Eynon-Switzer could not be 

carried out with this spatial variogram. However, to demonstrate the 

complete approach of Eynon-Switzer, we consider an alternate spatial 

variogram model in the next section. 

2.6) Kriging With a Different Spatial "Variogram 

We have learned from our earlier analysis that the Eynon-Switzer 

model does not appear to be appropriate for this data set. Consequently, 

the interpolation step based on the residuals from this model seems 

inappropriate. However, to demonstrate the considerable value of the 

Eynon-Switzer approach in analyzing spatial-temporal data (when the 

model is appropriate), we carry out the interpolation step with the 
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spatial variogram 

) 

Va(u) = a-/(tt?_o) + 6* N l i 

where u is the vector joining station pairs; ||«|| is the length of u and 

J(u^o) 1S * n e indicator function. The parameters a and b are fitted 

with constraints a > 0, b > 0, using the above unsmoothed estimates of 

the spatial variogram. The estimated values of a and b are 0.000 and 

0.005 respectively. For each year, the estimated values of the realized 

spatial process ct(x) at the station locations x = x,- can be obtained by 

<*(*») = — 2 — , 

Tli 

where n,- is the number of rainfall days at station i in the given year. 

The estimates a(x,) for each year are presented in Table 2.8. Because 

of the rainfall volume correction, these estimated values are smaller 

than the simple averages of the uncorrected pH levels (station 020b 

in 1979 is an exception; this may be due to the excessive variability 

of pH levels at this station 020b in 1979). At other stations, the 

differences range from 0.01 to 0.20 and they vary from year to year 

and from station to station. To put the corrected pH values of Table 

2.8 on the original scale we would need to add a number of pH 

units corresponding to the washout associated with the average daily 

rainfall at that station in that year. Although the washout rate c 

is assumed to be common across stations in each year, the large 27 



differences in average daily rainfall across stations in each year mean 

that these adjustments will differ somewhat from station to station in 

each year. For example, in 1979 when the estimate of the washout 

rate is c = .0189, these adjustments range from 0.05 to 0.10. Similarly, 

in 1982 when c = .0489, the adjustments range from 0.08 to 0.22. It is 

important to add these adjustments to the corrected p H levels before 

doing the interpolation because estimates at unobserved locations (i.e. 

contour maps) will be substantially influenced by these values. 

Since the spatial-temporal model for the p H levels does not seem to 

be appropriate, resulting contour maps may be misleading. We would 

like to demonstrate how the kriging method works, but do not intend 

to take the interpolating results seriously. For this reason adjusting the 

corrected p H levels seems unneccessary. The interpolation step described 

below is carried out without first adjusting the corrected p H values. 

T o obtain estimates of the p H levels for unobserved locations (sub

sequently, contour maps), we use the interpolation technique called 

kriging (Delhomme 1978). The 'best' linear unbiased estimate of oc(x0) 

at an unobserved location x0 is given by 

9 
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where the weights Ai,...,A9 are chosen to minimize 

v{x0) = E[a*{x0) - ot{x0)}2 

subject to __]^»'( xo) = 1- With stationarity assumptions about the 

process underlying the data (cf. Journel and Huijbregts (1978)), the 

quantity v(x0) can be expressed as a quadratic form in the A,'s whose 

coefficients depend on the spatial variogram V a , the temporal variance 

parameter gi, and We minimized this quadratic form for each 

x0 on a fine grid over the eastern United States using the above 

estimated parameters for the spatial variogram. The contour maps of 

these resulting interpolated values are presented in Figure 2.6 (produced 

using the computer language S) for each of the four years from 1979 to 

1982. The contour maps could possibly be useful in investigating the 

pattern of changes from year to year. However, as mentioned earlier, 

these results could be misleading, so attempting to draw conclusions 

from these results seems unwise. 

2.7) Conclusion 

In this attempt to validate the Eynon-Switzer model using the 

M A P 3 S / P C N data we obtain some results which are consistent with 

those based on the EPRI data set. However, some of the results differ. 

Specifically, there are significant differences between the estimated values 
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of the yearly washout rate c. O u r estimated constant value of the 

temporal variogram Vp is larger than that reported by Eynon and 

Switzer, possibly because of some potential outliers in our data set 

(including station 020b). This is supported by the results obtained in 

section 2.5 using the data set with station 020b removed, where the 

estimated value of Vp is about the same as that obtained by Eynon 

and Switzer (.095 vs .098). The spatial variogram model proposed by 

Eynon-Switzer does not appear to be appropriate for the M A P 3 S / P C N 

network, possibly because of the differences in geographical location 

between the two networks. Overall, the indication obtained from our 

analysis is that the Eynon and Switzer model does not completely 

capture the structure of this data set. However, to investigate their 

complete approach throughly, we use an alternate spatial variogram 

model to obtain the contour maps for 1979 to 1982. But as e we 

have already concluded that the proposed spatial-temporal model for 

the p H levels appears to be inappropriate, drawing conclusions from 

these contour maps seems ill-advised. 

Since this approach is unsuccessful for this data set, we propose to 

examine the raw data in more detail with a view towards identifying 

structure which may be present. This will be done in the next chapter. 
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3) D A T A E X P L O R A T I O N 

We now start a careful examination of the data in an attempt to 

uncover any underlying structure which may be present. We examine a 

number of factors which may be expected to influence the pH readings 

and investigate the possibility of consistent relationships between pH 

levels and these factors. There may also be some relationships between 

these factors. 

3.1) Factors to Be Examined 

As described earlier, there are about 3000 data points in the data 

set. Each data record contains the time of the event (the storm), the 

location of the station, the rainfall volume of the storm, and other 

information. Note that in this examination one pH reading of 7.31 at 

station 065a in 1980 is removed. The new mean and standard deviation 

for this year at this station are 4.04 and 0.33 respectively, while the 

old ones are 4.14 and 0.61 (Table 1.2). The removal of this obvious 

outlier makes the new standard deviation of this year consistent with 

other years at this station (about 0.3). 
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T h e location of the station should be one important factor. Most 

stations are located in heavily industrialized areas; therefore, the pollu

tants in the sky at each station are possibly influenced by the chemicals 

released from the factories in that area. There are also possibly some 

long-range transportation effects, that is tall remote smokestacks emis

sions are carried by strong winds at high altitudes over very long 

distances to the location. These contaminants may affect the acidity 

of the storm at the station under consideration. For these reasons, 

we expect the effects on the p H levels of the geographical locations 

of stations may be different from station to station. In our study, 

the station factor is a categorical variable with nine categories; each 

specifies a single station. 

Another important factor is the time of the storm. In some 

factories, the volume of production is seasonal (i.e. for some specific 

periods, production is very high, and in some other periods, production 

is low). During periods of high volume production, more contaminants 

are released into the sky. These substances may affect the p H reading 

of the storm. Further, during the summer season, forest fires may 

pollute the sky; these obviously change the chemistry of the storm, 

which will in turn affect the p H readings of that storm. For these 

reasons, we expect the time (i.e. seasonal) factor is important for 
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this study. T o account for seasonality, time is divided into years and 

months. Note that Egbert and Lettenmaier (1986) divided time into 

years and seasons (3 or 4 months each), but did not discover any 

obvious patterns in p H levels. For this reason, we use a shorter time 

period (i.e. one month) in this analysis. 

Another important factor is rainfall volume. It is generally believed 

that the p H reading varies monotonically with the rainfall volume. 

However, in the previous chapter, our observations of the effect of 

volume as represented by the scavenging term used by Eynon-Switzer 

(1983) do not support this belief. Therefore, we will examine more 

general relationships between rainfall volumes and p H levels. 

3.2) Preliminary Examination of The Structure of The Data 

We first examine the relationships among Time, Volume, Station, 

and also between these factors and the p H levels. In this section we 

use monthly averages of p H levels and Volumes instead of individual 

values. T h e monthly average p H level (or Volume) is just the simple 

average over the events in each month. Since these monthly averages 

smooth the original data (i.e. reduce the variability), relationships may 

be more clearly exhibited in the averaged data than in the original 

(individual) data. If there are no obvious relationships in the averaged 
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data, relationships in the original data set seem unlikely. One potential 

problem with this approach is that taking averages could cancel out 

some effects which we may be able to detect in the individual data. 

However, this is unlikely to occur since with only a few observations 

available in each month (about 1-8 points), effects are very hard 

to detect even if they are present in the individual data. Note 

that relationships suggested by the monthly-average data can always 

be examined subsequently in the individual data. Working with the 

average data also has the practical advantages of reducing the size of 

the data set to about 500 data points from about 3000 data points. In 

the following sections, we examine the relationships among the factors 

in detail using the averaged data set. 

3.2.1) Relationships between p H and M o n t h , p H and Station 

We would like to find out whether or not the Station and T i m e 

factors affect the readings of p H levels. The T i m e factor has two 

components: Year and Month . In each year, there are 12 monthly 

averages at each station. T o examine the relationships among these 

factors, we will look at the data of each year (all stations) separately. 

If there are obvious relationships in each year, we hope to be able 

to recognize how they change over the years. This would subsequently 
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help us to understand the relationships among the factors for all years 

of data. 

The monthly average data in each year are fitted with the following 

additive model: 

where 

pHij denotes the pH average of Month j at Station i, 

fi denotes the overall effect, 

or,- denotes the Station effects, i = 1 to 9, 

Pj denotes the Month effects, j = 1 to 12, 

€ij denotes the residuals. 

The residuals may contain not only the pure errors, but possibly also 

some other effects such as a rainfall volume. We proceed to obtain 

rough estimates of the parameters by using ANOVA-like and median 

polish decompositions which are described in detail in section 2.4. The 

monthly averages are arranged in a 2-way table; the factors are Month 

and Station. We fit the model by this rough method for years 1977 

to 1982 separately. The estimated values of the parameters a and P 

for the years from 1977 to 1982 are presented in Tables 3.1 and 3.2 

respectively. 
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T h e estimates of \i are: 

Year 1977 1978 1979 1980 1981 1982 

A N O V A 4.14 4.10 4.27 4.18 4.14 4.21 

Median 4.14 4.07 4.22 4.14 4.16 4.25 

Note that similar estimates of /x are obtained by both methods. T h e 

monthly averages range only from about 3.5 to 5.5, and most of them 

are about 4. Therefore, the values of the overall effect obtained by 

taking the overall average and the median should be very similar. T h e 

differences of the estimates from year to year are not large. If we had 

many more years of data, then we could investigate whether there is 

a true yearly effect or a trend (pattern) over the years by examining 

the estimated values of /./. Unfortunately, these issues could not be 

examined thoroughly because we have only six years of data. Although 

the six estimated values of fi (i.e. for the six years) are similar in 

magnitude, it is not reasonable to ignore the yearly effect on the p H 

levels. Therefore, we still assume that there is some yearly effect on 

the p H levels. 

T h e station effects (&) for the different years are plotted against 

Station in Figures 3.1.1 ( A N O V A ) and 3.1.2 (Median Polish) to see 

if there is any consistent pattern from year to year. Similarly, the 
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monthly effects (f3) for the different years are plotted against Month 

in Figures 3.2.1 and 3.2.2. Note that the plots for the two methods 

of decomposition are qualitatively similar for both sets of estimates. 

Figure 3.1 shows that the station effects are quite different from 

station to station. In Figure 3.1.2, there are large positive effects 

from stations 013a (0.05-0.27) and 020b (0.12-0.34). There are also 

some large negative effects from station 057a; for example, the effect 

is -0.30 in 1979. The effects for the remaining stations are very small 

or centered around zero. The changes in the station effects from year 

to year are considerable for most stations; stations 048a and 072a are 

exceptions. In general, Figure 3.1.1 has similar features, although there 

are some differences. The effects do not change from year to year at 

station 013a. The effects vary more from year to year in Figure 3.1.1 

than Figure 3.1.2. Overall, the effects are quite different from station 

to station in both plots. This observation supports our belief that the 

geographical location of a station is an important factor in explaining 

the pH levels obtained at that station. 

Note that at station 020b, both estimates of the effect of Station for 

1979 are unusually large (Figure 3.1). The reason is that in November 

1979, there was only one storm with an unusually high pH level of 7.12; 
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therefore, the monthly average of this month is greater than those of 

other months (7.12 compared to about 4.0-5.5). Moreover, the estimate 

for 1979 (Figure 3.1.1) based on the A N O V A decomposition is greater 

than that from the Median decomposition (Figure 3.1.2). This may be 

explained by the robustness of the Median Polish decomposition. The 

monthly average of November in 1979 is obviously an outlier. The 

decomposition using medians reduces the effect of the outlier on the 

estimated values of the parameters more than the decomposition using 

averages (ANOVA). 

Figure 3.2 shows some interesting results. The monthly effects 

vary considerably from year to year. However, the effects change in 

a somewhat consistent manner from month to month. Generally, the 

effects decrease slowly from January to August, increase sharply from 

September to November, and then decrease a little in December. Note 

that this general pattern only becomes apparent when the effects for 

all years are plotted together. In each year, the pattern of the effects 

is somewhat different from the general pattern. For example, the effect 

increases from January to February (sharply) in 1981 and from March 

to April in 1982; the general pattern suggests a decrease in both cases. 

These plots also indicate that the minimum of the monthly effects 

always occurs in the summer. This result supports the expectation 
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that levels of acidity increase in the summer. Overall, although there 

are differences in the patterns of different years, the general picture 

described above is the only apparent structure in the data. 

3.2.2) Relationships between Volume and Station, Volume and Month 

T h e monthly average of the p H levels adjusted for these additive 

station, monthly, and yearly effects, denoted by pH^-, is 

pHi3 = pH^ -/*-<*,-- fa. 

T h e results which follow are based on the adjusted p H levels obtained 

by using the estimated values of /z, a, P provided by the median 

polish decomposition. We use the median polish estimates here because 

there are possible outliers in the data set." T h e effect of outliers on 

the estimated values of parameters is much less pronounced with the 

median decomposition than the A N O V A method; therefore, the median 

decomposition is more appropriate. 

Since we wish to determine the relationship between p H levels and 

Volumes, we proceed to find the station, monthly, and yearly effects 

on the rainfall volumes so that we can adjust the rainfall volume for 

these effects as we did for the pH levels in the previous section. This 

is done in what follows. 
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The relationship between Volume and Station and Month can be 

examined by an approach similar to that in section 3.2.1. In each year 

we fit the following model: 

Vi] = /* + 7 i + + e,y 

where 

Vij denotes the volume average in Month j at Station i, 

H denotes the overall effect, 
7,- denotes the Station effects, i = 1 to 9, 

Uj denotes the Month effects, j = 1 to 12, 

€ij denotes the residuals. 

We obtain estimates of the parameters [i, 7 , and u by using the 

median polish and ANOVA-like decompositions. We fit this model to 

the data of each year separately from 1977 to 1982. The estimated 

values of /z are: 

Year 1977 1978 1979 1980 1981 1982 

ANOVA 14.42 12.82 17.07 10.53 10.77 12.00 

Median 15.32 14.03 20.31 11.00 12.39 13.43 

The estimates of n are quite different from year to year. Therefore, we 

infer that there is a substantial yearly effect on the average volumes. 

The distribution of the monthly average rainfall volumes has a long left 
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tail in each year (all stations); consequently, the median is greater than 

the average. This is reflected in the above table where the estimates 

of fi based on the median decomposition are in every case larger than 

those based on the A N O V A decomposition. 

The estimated values of the parameters 7 and w are presented in 

Tables 3.3 and 3.4, respectively and are plotted in Figures 3.3 and 

3.4 respectively. Figure 3.3.1 suggests some differences between stations. 

The effects vary greatly from year to year at some stations. Specifically, 

the effect for 1979 at station 013a is much greater than that for other 

years. Also, the effect for 1979 at station 048a is less pronounced 

than that for other years. The difference between 1981 and 1982 at 

station 171b is large (about 8). Figure 3.3.2 suggests a qualitatively 

similar general pattern although there are some differences. The effect 

of 1979 at station 020b is very small in Figure 3.3.2 but it is large 

relative to other years in Figure 3.3.1. This is due possibly to the fact 

that the average volumes are greatly different from month to month 

in 1979 at this station. As a result, the average and the median of 

the monthly rainfall volume averages of this year (station 020b) are 

greatly different; the average is about 20.71 mm and the median is 

about 7.82 mm. Consequently, the results of the two decomposition 

methods are quite different for year 1979 and station 020b. Note that 
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there was no rainfall event in February 1979 at this station. Overall, 

Figure 3.3 suggests that the monthly volumes are substantially different 

from station to station. 

Figures 3.4.1 and 3.4.2 show that the monthly effects do not exhibit 

any obvious pattern. Although the estimates are quite different from 

year to year, they are scattered around zero. This suggests that 

seasonality is not important for monthly average rainfall volumes. This 

result seems surprising; average rainfall volumes might be expected to 

differ from season to season. Since seasonality was important for pH 

levels and might be expected to be important for rainfall volumes, this 

issue is now examined further. 

We apply the SUPER S M O O T H E R developed by Friedman and 

Stuetzle (1982), to all individual (event) data. The Super Smoother 

uses local linear fits with varying window width determined by local 

cross-validation. In general, this smoother takes bivariate data and 

produces a smooth fitted relationship between the two variables. In 

this exercise we use Volume and Time as a bivariate data set. Both 

Volume and Time are measured as in chapter 2 (i.e. Volume is 

measured in millimeters and Time is the number of days from January 

l*t,1976 to the day of the event). The relationship produced by the 
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smoother is Volume as essentially a constant over Time. The constant 
is 13.6 mm which is very close to the average of all individual rainfall 
volumes. We also apply the same procedure with Volume adjusted 
for the Year and Station effects. The result indicates that there 
is no obvious relationship between the adjusted Volume and Time 
(i.e. Month). The smoothed curve provided by the smoother does 
not resemble any standard functional form (Eynon-Switzer suggested a 
logarithmic relationship between Volume and Time). 

These results suggest that the rainfall volume of a storm is not 
influenced by the time of the storm (i.e. there is no seasonality). It 
appears that the effect of the factor, Month, on the average rainfall 
volumes can be ignored. 

The model for the monthly average rainfall volume can now be 
written as: 

Vi3- = / i + 7t + 

where everything is as previously defined. Using the estimated values 
of the parameters fi and 7, we obtain the adjusted average rainfall 
volume as follows: 

Vii = Vij - p, - 7,-. 



V represents the monthly average rainfall volume adjusted by the yearly 

average and the station effect. Note that we use the median estimates 

to estimate /z and 7 . 

3.2.3) Relationship between pH and Volume 

We now search for a relationship between monthly average pH levels 

and rainfall volumes using the adjusted data (V, pH) instead of the 

original data (V, pH). Note that if there is indeed a relationship 

between pH and Volume then it would be more easily detected using 

the adjusted data than the original data. The effects of each factor 

(Year, Station, Month) on the volume and the pH level are different; 

therefore, under the influence of these different effects, the original data 

may suggest some relationship which is not true. 

As a first step, pH is plotted against V in Figure 3.5. Only data 

from 1979 to 1982 is used because only three stations were active in 

1977 and only five stations were active in 1978. Station 171b is not 

included since it has only two years of data. There are about 400 

data points. The figure shows that most data points lie near the origin 

(i.e. V = 0, pH = 0). There are some unusually large values of pH 

and V. There are four large values of pH corresponding to the values 
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of V ranging from -10 to 5. There are also four large values of V 

corresponding to pH ~ 0. With these points deleted, the figure does 

not show any irregularities. To examine these unusual points further, 

we plot the data from each station separately in Figures 3.6.1 to 3.6.8. 

These figures reveal that all of the four large values of pH and the 

largest value of V are from station 020b. They also show that the 

other three large values of V are from some possible outliers in the 

data. Indeed, at station 013a, there is one monthly average rainfall 

volume of 75.20 mm (average of two storms), while the remaining 

values range from 3.15 to 34.59 mm. At station 072a, there are two 

average rainfall volumes of 69.36 and 70.76 mm, while the rest range 

from 2.14 to 31.01 mm. The plot for station 020b (Figure 3.6.2) 

shows an unusual pattern. The strange behaviour of station 020b is 

not surprising since as mentioned previously, the monthly averages of 

rainfall volumes vary greatly from year to year and from month to 

month at this station. The plots of other stations do not show any 

obvious pattern for pH and V; there are a few outliers. Overall, 

the plots do not show any obvious relationship between the adjusted 

rainfall volumes and pH levels. Since we did not see any relationship 

in the adjusted data, we are convinced that there is no relationship 

between the rainfall volumes and the pH levels. It appears that the 

45 



rainfall volume is not an important factor in explaining the pH levels. 

In the light of the above preliminary examination, we conclude that 

Year, Station, and Month are three important factors in explaining the 

pH levels. The rainfall volumes do not appear to influence the pH levels. 

In the next section, using the individual (event) data, we examine how 

these factors influence the pH levels in detail. To investigate this issue, 

we first fit an ANOVA model to the event data to see if we can fit 

this data with a simpler model (i.e. fewer parameters). 

3.3) An ANOVA Model 

An ANOVA model would represent the pH values corresponding to 

the individual events as follows: 

(1) pHijki = fi + cti + Pj + 7fc + (aP)ij + («7)tfc + {Pl)jk + {apl)ijk + etjkh 

where 

pHijki denotes the pH level of the Ith storm occuring 

at the ith Year, j t h Station and kth Month, 

H denotes the overall effect, 

or,- denotes the Year effect, i = 1,..,6, 

Pj denotes the Station effect, j = 1 , . . ,9 , 

7^ denotes the Month effect, k = 1,..,12, 
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[ctj3)ij,(at'i)ik,[l3'i)jk denote the second order interactions, 

(a/?7),-yfc denotes the third order interaction, 

Cijki denotes the residual. 

This is a saturated A N O V A model in which the pH level is represented 

as a combination of two parts. The stochastic part is represented by e 

and the remaining components of the model represent the deterministic 

part (where all factors are considered fixed). In the following sections, 

we estimate these two parts and then examine each estimate carefully. 

This examination is intended to reveal the stochastic structure of the 

data; for example, whether the residual variation can be reasonably 

approximated by the normal distribution. We would also like to capture 

the deterministic component of the pH level with a simpler model (i.e. 

one with fewer parameters). 

3.3.1) Fitting the ANOVA model 

As mentioned in chapter 1, the standard deviations of the pH levels 

are quite different from station to station; they also vary somewhat 

from year to year (Table 1.2). Therefore, it seems reasonable to allow 

the pH levels to have different variances for different yearxstation 

combinations; we assume that all pH levels measured in the same year 

and same station have the same variance. Using the data in each 
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year and each station (about 50 to 100 data points), we can get an 

estimate of the variance (as presented in Table 1.2). However, since we 

know that monthly effects are important, we can get a better estimate 

by utilizing this knowledge about the structure of the data. Given a 

fixed year and a specific station, we can write the pH level of the Ith 

storm observed in the kth month as: 

pHki — + CM, 

where 

pit denotes the monthly effect, k = 1,..,12, 

eki denotes the residual. 

Since we assume that the residuals in each yearxstation combination, 

have the same variance, a2, we get an unbiased estimator S2 for cr2, 

given by 

(2) ?2 HkE,(pHki~pHk.)2 

E f c K - 1 ) 
where 

p~Hk denotes the average of all pH levels in the kth month, 

i%k denotes the number of observations in the kth month. 

These estimates are a bit smaller than those adjusted only for the yearly 

average instead of the monthly average. We present both estimates of 
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the variances in Table 2.2 where the estimates adjusted for monthly 

average are denoted by sd(adj). 

With these estimates of the variances for the pH levels, we use a 

weighted least squares (WLS) method to fit the model (1). There are 

two ways of fitting this model. The first is to consider the estimates of 

the variances obtained above as the true values; the second is to carry 

out re-weighted least squares in which the variances are re-estimated 

after each iteration until they do not change substantially. Here, to 

remain consistent with our assumptions about the variances, we use the 

former and think that the above estimates are already very close to 

the true values. Since the primary objective of this fitting is to obtain 

the estimated values for the deterministic components, not to estimate 

the variances, the use of the re-weighted least squares method seems 

unnecessary. 

In what follows, the saturated model and various submodels will 

be fitted. To convince ourselves that the estimated values of the 

parameters would not be much different with re-weighting, we carried 

out the re-weighted least squares with one simple submodel consisting 

of Year, Month, and Station effects only: 

pHijki = (M + ai + fa + 7fc + eijki. 
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Our previous estimates of the variances were used as initial values and 

the maximum likelihood method was used to re-estimate the parame

ters and the variances, assuming normal data. The fitting procedure 

converged after three iterations (the absolute change in the estimated 

values of each parameter is less than .01) and the maximum of the 

differences between our estimated values of parameters (i.e. iteration 

1) and the resulting values from the re-weighting method is less than 

.02 for each parameter. This supports our belief that re-weighted least 

squares is unnecessary. 

Using the procedure G L M in SAS with weights tu,-y defined as 

1 

No

where Sfj is the estimated variance for year i at station j , calculated 

using (2), we get the following results (Y=Year, M=Month, S=Station): 

Source df SS MS 

Y 5 81.6 16.32 

M 11 366.7 33.34 

S 8 222.4 27.80 

Y M 55 311.6 5.77 

YS 29 198.3 6.84 

MS 88 172.0 1.96 
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Y M S 319 521.8 1.64 

Error 2400 2449.1 1.02 

Total 2915 4323.5 

Note that by using the WLS method to fit the parameters, we assume 

that TpHijki/Sij has a variance of 1. Our estimated value of the variance 

(MSE) is 1.02, which is close to 1. This indicates that our estimates 

for the variances used in the fitting are appropriate. 

In this table, df denotes the degrees of freedom of the effect and 

SS is the reduction in the weighted residual sum of squares due to the 

source (factor), obtained by adding these sources sequentially to the 

model in the order listed. More precisely, let RSS(f) be the weighted 

sum of squares of residuals when fitting the model denoted by / : 

RSS(f) = Y^wi3ipHi3kl-f) 2, 
ijkl 

where / denotes the WLS fitted model. 

Then each SS can be written in terms of these RSS's. For example, 

the sum of squares due to the factor, Month, SSM, is given by 

SSM = RSS(fi + a{ + pj) - RSS(fi + or,- + p3 + -)k). 

The corresponding MS is just the ratio of SS and df. The sums of 

squares due to the sources in the above table are not substantially 
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influenced by the order in which the components are sequentially added 

to the model. Specifically, provided that all l * f order effects are entered, 

essentially the same SS's for higher order effects are obtained using 

different orders. The results in the table correspond to what seems 

the most natural order. Using the above results, we examine the 

deterministic and stochastic components in the next sections. 

3.3.2) Deterministic component 

In the saturated model (1), we use 516 parameters to capture the 

deterministic component. In the hope of finding a simpler model (one 

with fewer parameters) which adequately represents the deterministic 

components, we examine whether we can drop some effects from the 

full model. To examine this question, we compare different submodels 

containing combinations of the effects and interactions. 

It is obvious that the main effects are very important (the mean 

square for each of the main effects is at least 16.6, while the largest 

mean square for the second order interactions is at most 6.8). Moreover, 

it is reasonable to include a higher order interaction term in the model 

only when the lower term is also included. For example, if the 

yearx month interaction is in the model then the year and month 
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effects must be in the model. Guided by these criteria, we consider 

only eight specific submodels and the full model. We use the log-linear 

convention to identify the submodels; for example, [Y,SM] represents the 

model containing Y, S, M , and SM. The results comparing the models 

to be considered are provided in the following table (p = number of 

parameters): 

Submodel P RSS R2 R2 C P - p Ax 

[Y,M,S] 25 3652.8 .16 .15 761.8 3852.3 3702.8 

[YM,S] 80 3341.2 .23 .21 505.2 3979.4 3501.2 

[YS,M] 54 3454.5 .20 .19 592.5 3885.3 3562.5 

[Y,MS] 113 3480.8 .20 .16 677.8 4382.3 3706.8 

[YM,YS] 109 3142.9 .27 .25 335.9 4012.5 3360.9 

[YM,MS] 168 3169.2 .27 .22 421.2 4509.5 3505.2 

[YS,MS] 142 3282.5 .25 .20 508.5 4415.4 3566.5 

[YM,YS,MS] 197 2970.9 .31 .26 251.9 4542.6 3364.9 

[YMS] 516 2449.1 .43 .31 49.1 6565.7 3481.1 

In this table, the values of various statistics often used as criteria 

for choosing the 'best' submodel are also included. These criteria, which 

are similar to those suggested in Weisberg (1980) for independent and 

identically distributed (iid) residuals, are described in what follows. 
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a) M u l t i p l e correlation coefficient 

The square of the multiple correlation coefficient R2 is often used 

as a criterion for comparing models. In this case, since we have only 

independent but not identically distributed residual data, we use an 

analogue of R2, which is calculated by using the weighted sums of 

squares, for comparing submodels. A computing formula for R2 in a 

p-parameter model (denoted by R2) is: 

P 2 — i _ R^Sp  
p ~ SYY' 

where 

RSSP is the weighted residual sum of squares using the 

submodel with p parameters, 

S Y Y is the total sum of squares, given by 

SYY = £ 0 • « WijtpHvu - fH...)2, 

where 

pH denotes the overall average, 

Wij is as previously defined. 

Note that the large values of R2 indicate that more variability is 

explained by the model. A disadvantage of this method is that it 

is only useful for comparing different models with a fixed number of 

parameters. 
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b) Adjusted R2 

To adjust the method in (a) for the stated disadvantage, corre

sponding to suggestions in Weisberg (1980), one may use an adjusted 

version of R2, denoted by R2 and defined by 

where n is the total number of observations. 

Note that as before large values of R2 indicate that more variability 

is explained by the model. The adjusted value can be negative. 

c) Mal lows ' Cp statistic 

Let pHijkl be the predicted value of the corresponding observation 

obtained by the submodel. Let the mean square error (mse) be defined 

as 

mse(fHijkl) = var(fHijM) + [E(fHijkl) - E{pHijkl)]2. 

The submodel which makes the weighted mean square errors, given 

by Wij x mse(pHi:jki), as small as possible is preferable. Note that 

Weisberg (1980) suggests this criterion only for the iid case. However, 

since we use the weighted mean square error criterion, we in fact have 

an iid case where pHijki/Sij is the raw data with variance equal to 
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1. The Mallows' Cp statistic for a p-parameter model is defined by 

C p = RSSp + 2p - n, 

where RSSP is as previously defined. Mallows (1973) suggests that 

good models will have negative, or small, values of Cp — p. 

We calculate R2, R2, Cp with SYY=4323.5 and n=2916, and 

present the results in the above table. All three methods suggest that 

the saturated model is the best one among those submodels considered. 

This suggests that all terms in the full model are needed to account 

for the pH levels. Note that the full model corresponds to using the 

monthly average as the fitted value for the pH level of any particular 

event. 

Our objective in investigating the deterministic component is to 

reduce the full model to a model with fewer parameters which still 

captures the structure in the deterministic component of the data. To 

find a simpler model, we would first have to examine whether any of the 

different sources (i.e. Y, S, M , YS,...) could be dropped from the full 

model without serious effect on its ability to capture the deterministic 

component. This would hopefully lead us to a submodel. Subsequently, 

we would investigate the possiblity of replacing the remaining parameters 

with fewer parameters by using simple (possibly nonlinear) functional 
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forms to represent some of the effects which were identified as important 

(a periodic form to represent any seasonality evident in the estimated 

Y , M , and Y M effects, for example). 

Using the M S due to the sources, we can see if any source can be 

el iminated. As noted earlier, the M S due to the main effects are very 

important; they range from 16.32 to 33.34. W i t h MSerror ~ 1.02, rough 

F tests would yield very smal l p-values for these main effects. The fate 

of interaction terms are not so clear. The M S due to the yearx month 

(MSYM) and yearxstat ion (MSys) interactions are considerably smaller 

than the M S due to the main effects (the values are 5.77 and 6.84), 

but rough F tests would yield smal l p-values. The M S due to the 

monthxs ta t ion (MSus) and yearxs ta t ionxmonth (MSYSM) interactions 

are much smaller than MSYM and MSYs (MSMS = 1.96, MSySM =• 

1.64); intuit ion suggests that these interactions are not really important. 

A l though the rough F tests would st i l l yield statist ical significance for 

these interactions, the significance in this case may be inevitable and 

due to the very large number of observations available (2916). The 

results using different criteria (described above) also suggest that every 

term in the model is important in explaining the p H levels (i.e. the 

fu l l model is the 'best ' one). Note that none of these methods 'adjust ' 

for the large number of observations available even though the latter 
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plays an important role in these results. 

To pursue this issue further, we can use the criteria proposed by 

Schwarz (1978) and Akaike (1973) for comparing the fit of different 

models. Let p be the number of estimable parameters in a model. 

Schwarz proposed that the model which maximizes 

B = log(maximum likelihood) - | log(n) 

be chosen. Since the number of observations (n) is fixed, with the 

assumption of independent and normal data having known variances 

(i.e. ofy = 5?), the criterion is equivalent to minimizing 

Bi = RSSp -fpxlog(n). 

Akaike proposed that the model which maximizes 

A = log(maximum likelihood) - p 

be chosen. With the same assumptions, this is equivalent to minimizing 

Ai = RSSP + 2 x p. 

Note that log(n) = 7.978, so Bi — Ai + 5.978 x p in this case. 

The values of Ai and Bi for the submodels are presented in the 

above table. According to Akaike's criterion, the submodel [YS,YM] 
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is the best; the last two terms in the full model (i.e. SM, YSM) 

can be dropped. This supports our earlier suggestion that MSSM and 

MSYSM are not really important. Schwarz's criterion, however, prefers 

the submodel [Y,S,M] to the rest. Nishii (1984) proves that the criteria 

proposed by Mallows and Akaike are asymptotically equivalent under 

general conditions; asymptotically, they have a positive probability of 

selection only for models that properly include the true model. However, 

the Schwarz criterion behaves somewhat differently; the model chosen 

by the Schwarz criterion is a 'consistent' estimator of the true model. 

To a certain extent, this behaviour is evident in our analysis. The three 

'best' submodels chosen by the Mallows and Akaike criteria are the 

same (although their rankings are slightly different), but the Schwarz 

criterion indicates that smaller submodels are preferable. Since the 

term log(n) adjusts for the large number of observations available, the 

Schwarz criterion may be more appropriate in this present context than 

those of Akaike and Mallows. These results clearly suggest that the 

deterministic component of the pH levels can be captured by some 

simpler model than the saturated one. 

The model [YS,YM] chosen by Akaike's criterion is already much 

simpler than the full model (109 versus 516 parameters). However, 

according to the criterion proposed by Schwarz, an even simpler model 
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can possibly be used. Nishii's results suggest that although the sub

model chosen by the Schwarz criterion is an asymptotically 'consistent' 

estimator of the true model, the submodel chosen by the Akaike cri

terion has a greater likelihood of properly containing the true model. 

Therefore, to find the smallest possible model for the pH levels, we 

would need to examine the estimated values of the parameters in 

the model [YS,YM] to see whether they can be approximated by a 

smoothed function. This smoothed function (if found) would be a 

proposed model and its properties and fit to the data could be further 

examined. However, due to limitations of time, this interesting project 

must be deferred. 

3.3.3) Stochastic component 

Many methods of analysis employed in environmetrics are based 

on assumptions of normality. Therefore, it is important to check the 

normality of the pH levels. The simplest way of examining this question 

is to use the normal probability plot. The residuals from the full model 

of the previous section are standardized and plotted for each station 

(all years together) separately. Using SAS, we calculate the normal 
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probability by 

Pr(ei) = *-l(ri-l)/(n+1-), 

where 

e,- denotes the residual of the Ith observation, 

7'i denotes the rank of e,-, 

n denotes the total number of residuals, 

$ denotes the cumulative normal distribution. 

The resulting plots for the different stations are presented in Figures 

3.7.1 to 3.7.9. The plots of stations 013a, 044a, 171b are presented in 

3.7.1, 3.7.4, 3.7.9 respectively. These plots do not suggest any violation 

of the normality assumption. 

Figure 3.7.3 represents the normal plot of data from station 043a. 

The plot is very well-behaved, except for one possible outlier: pH=5.95 

in November 1980 (the rest of the pH readings in that month range 

from 4.02 to 4.35). The normal plot for station 048a (Figure 3.7.5) 

has a similar property. It also has one possible outlier: pH=6.00 in 

December 1981 (the rest of the pH readings in that month range from 

3.70 to 4.71). The plot of station 072a (Figure 3.7.8) does not suggest 

any serious violation of the normality assumption; however, there is one 

apparent outlier: pH=6.57 in June 1981 (the rest of the pH readings 
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in that month range from 3.86 to 4.07). 

Figures 3.7.6 and 3.7.7 represent data from stations 057a and 065a 

respectively. The plots do not show any serious violation of the nor

mality assumption. However, these plots have some disturbing features. 

Although most stations have collinear data, there are some points on 

both tails which are slightly off those straight lines. A more careful 

examination of the data from these stations is described below. 

Figure 3.7.2 represents the normal plot of data from station 020b. 

The normal plot shows a serious violation of the normal assumption. 

Instead of having a roughly linear, a curve is obtained; the data needs 

to be examined more carefully. 

We can investigate these 'questionable' stations further by examining 

the normal plots for each year in each of these stations separately. 

The plots (not included in this work) for stations 057a and 065a for 

each year separately show that except for some outliers in the data, 

there are no obvious violations of the normality assumption. However, 

the plots of station 020b suggest a serious departure from normality. 

The plots for 1978 to 1982 are presented in Figures 3.8.1 to 3.8.5 

respectively. Except for Figure 3.8.1, the plots clearly exhibit the 
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extreme skewness of the data from this station. Figure 3.8.1 shows 

that the data for 1978 support the normality assumption except for 

some apparent outliers. 

These results indicate that the stochastic components of the p H 

levels obtained at station 020b cannot be considered as arising from a 

normal distribution. However, except for a few possible outliers, the 

data from the remaining stations can be reasonably approximated as 

normal. 

3.4) Conclusion 

In this chapter, we have examined the data set carefully in an 

attempt to uncover underlying patterns which might be used to find an 

appropriate model for the p H levels. T h e results indicate that there is a 

seasonal structure in the p H levels. Specifically, the time effects decrease 

slowly from January to August, increase sharply from September to 

November, and then decrease a little bit in December. T h e rainfall 

volumes, however, do not show any obvious seasonal structures. There 

is no obvious effect of the rainfall volumes on the p H levels. T h e 

station effects are quite important in explaining the p H levels. 

T h e deterministic components of the p H levels were examined by 
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fitting a saturated A N O V A model; the importance of the individual 

components in the model were also investigated. The results suggest 

that the deterministic components can be captured by a smaller model 

than the full model. 

The stochastic component was examined for the appropriateness 

normality assumptions by using normal probability plots. The results 

indicate that serious violations of the normality assumption are found in 

the data obtained at station 020b. However, except for a few possible 

outliers, the data from other stations can be reasonably approximated 

as normal. 
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4) C O N C L U S I O N 

In this study, we have learned that the model developed by Eynon 

and Switzer (1983) for analyzing p H levels, does not seem to be 

appropriate for the data obtained from the M A P 3 S / P C N montoring 

network. However, the general approach seems to be useful in analyzing 

the spatial-temporal data. For this reason, the approach including the 

interpolation step called kriging was completely demonstrated using the 

Eynon-Switzer model. 

In an effort to identify a more appropriate model for the data, we 

examined the raw data in detail. A full A N O V A model, including the 

three factors, Year, Month , and Station, was fitted to the individual p H 

levels. T h e results suggested that the residuals have different variances 

at different stations. T h e normality of the residuals was examined. 

T h e conclusion is that the data from all stations except one can 

reasonably be approximated as coming from normal distributions. This 

is a very useful result because many methods of analysis employed in 
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environmetrics are based on assumptions of normality. 

Different criteria such as Akaike, Schwarz, Mallows, etc, are used to 

identify the 'best' submodel (i.e. fewer parameters than the full model) 

for capturing the deterministic component of the data. The results 

suggested that it is possible to capture the deterministic component by 

a much smaller model than the full model. 

It would be very interesting to examine whether the 'best' submodel 

can be represented by a smoothed function. The abilities to fit the 

data and the properties of this smoothed function (if found) could be 

further examined. Moreover, since the variances of the residuals of the 

data are not homogeneous from station to station, we must have the 

estimates of the variances of the residuals at any locations in order 

to do interpolation (kriging in this case). The question of whether we 

would be able to estimate these variances is also interesting. However, 

due to limitations of time, these interesting projects must be deferred. 
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Table 1.1: 

Site location : The MAP3S/PCN monitoring network. 

AOS site Elevation F i r s t active Years of 
identity Location Latitude Longitude (meters) date data 

013a Lewes, Delaware 38 46 00 75 00 00 0 01--Har-78 4 
020b Illinois, Illinois 40 03 12 88 22 19 212 20--Nov-7 5 
043a Uhiteface, New York 44 23 26 73 51 34 610 11--Oct-76 6 
044a Ithaca, New York 42 24 03 76 39 12 509 26--Oct-76 6 
048a Brookhaven, New York 40 52 00 72 53 00 25 09--Feb-78 5 

057a Oxford, Ohio 39 31 51 84 43 25 284 01--Oct-78 4 
065a Penn State, 40 47 18 77 56 47 393 22--Sept-76 6 

Pennsylvania 

072a Virginia, Virginia 38 02 23 78 32 31 172 12--Dec-76 5 
171b Oakridge, Tennessee 35 57 41 84 17 14 341 07--Jan-81 2 

* 
A. Olsen and C. Watson, "Acid Deposition System (ADS) for S t a t i s t i c a l 

Reporting", EPA-600/8-84-023, September 1984, pp. C.7-C.13. 
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Table 1.2; Summary of data. 

pH Volumes(mm) 
ADS Identity Year No. of ~ ~~~7 

r a i n f a l l s Mean sd sd(ad_) Mean sd 

013a 79 
80 
81 
82 

52 
71 
64 
73 

4.37 
4.25 
4.22 
4.26 

.40 

.35 

.40 

.55 

.28 

.30 

.36 

.48 

24.99 
12.88 
13.16 
13.31 

29.49 
13.92 
12.97 
15.28 

020b 78 
79 
80 
81 
82 

50 
40 
94 
87 
80 

4.25 
4.73 
4.28 
4.34 
4.37 

.55 

.89 

.68 

.65 

.52 

.58 

.77 

.69 

.57 

.48 

10.44 
19.80 

9.21 
10.68 
11.12 

12.92 
29.48 
11.65 
14.26 
14.01 

043a 77 
78 
79 
80 
81 
82 

83 
54 
50 
87 
99 
98 

4.24 
4.16 
4.08 
4.03 
4.06 
4.21 

.33 

.31 

.18 

.29 

.23 

.39 

.32 

.24 

.17 

.26 

.23 

.37 

12.97 
14.16 
17.08 

9.52 
10.92 

8.22 

13.18 
12.39 
14.39 

7.78 
16.10 
10.06 

044a 77 
78 
79 
80 
81 
82 

52 
60 
62 
75 
72 
80 

16 
05 
08 
19 
10 
14 

.28 

.27 

.29 

.32 

.23 

.33 

.20 

.20 

.27 

.27 

.20 

.31 

19.06 
13.83 
17.80 
12.41 
16.49 
11.54 

14.20 
11.09 
19.63 
12.20 
17.06 
12.01 

048a 78 
79 
80 
81 
82 

48 
71 
64 
80 
69 

4.07 
4.10 
4.14 
4.18 
4.23 

.35 

.49 

.51 

.45 

.45 

.30 

.42 

.44 

.39 

.40 

14.86 
12.93 
12.61 
11.93 
15.49 

15.21 
18.15 
12.77 
13.26 
18.55 

057a 79 
80 
81 
82 

47 
75 
75 
83 

4.22 
4.08 
3.80 
3.99 

.23 

.29 

.24 

.37 

.20 

.24 

.19 

.30 

15.08 
11.72 

9.67 
11.20 

16.97 
13.34 

8.42 
13.20 

065a 77 
78 
79 
80 
81 
82 

80 
70 
61 
40 
69 
86 

4.06 
4.04 
4.20 
4.14 
4.19 
4.23 

.27 

.30 

.27 

.61 

.30 

.36 

.22 

.25 

.24 

.20 

.25 

.33 

14.93 
13.00 
18.57 
12.46 
11.64 

9.46 

17.84 
11.03 
18.57 
12.61 
15.24 
10.85 

072a 

171b 

78 
79 
80 
81 
82 

81 
82 

57 
51 
65 
56 
58 

65 
64 

4.06 
4.17 

,09 
.15 
,15 

.16 

.27 

.34 

.30 

.30 

.46 

.30 

.23 

.23 

.28 

.29 

.31 

.48 

.29 

.23 

.22 

18.00 
25.30 
10.85 
14.98 
16.01 

14.63 
23.14 

17.47 
32.42 
11.50 
21.79 
14.74 

13.75 
20.17 
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T A B L E 2 . 1 ; 

T h e f i t t e d c o n s t a n t c o e f f i c i e n t s o b t a i n e d b y 

f i t t i n g t h e E y n o n - S w i t z e r m o d e l 

Y e a r P a r a -

m e t e r 0 1 3 a 0 2 0 b 0 4 3 a 

S t a t i o n 

0 4 4 a 0 4 8 a 0 5 7 a 0 6 5 a 0 7 2 a 1 7 1 b 

77 

78 

79 

8 0 

8 1 

8 2 

a 

b 

c 

d 

a 

b 

c 

d 

a 

b 

c 

d 

a 

b 

c 

d 

a 

b 

c 

d 

a 

b 

c 

d 

- 0 . 1 4 7 8 

0 . 2 6 0 6 

0 . 0 1 8 7 

4 . 2 7 7 8 

- 0 . 0 6 1 6 

0 . 1 4 6 7 

0 . 0 9 0 6 

4 . 0 4 1 4 

0 . 1 2 4 2 

0 . 2 2 5 8 

0 . 0 4 5 0 

4 . 1 0 8 5 

0 . 1 0 8 2 

0 . 2 3 3 1 

0 . 0 8 5 5 

4 . 6 6 0 6 

0 . 0 1 8 5 - 0 . 0 0 1 5 

0 . 1 3 7 5 0 . 1 8 5 5 

0 . 0 4 6 6 0 . 0 4 2 2 

4 . 1 3 1 1 3 . 9 9 1 8 

- 0 . 1 1 0 0 0 . 2 0 6 3 

- 0 . 0 0 6 6 0 . 1 8 9 7 

- 0 . 0 0 6 4 0 . 0 2 2 7 

4 . 2 6 7 8 4 . 1 1 4 5 

0 . 0 2 1 8 - 0 . 0 4 7 7 

0 . 1 6 3 1 - 0 . 0 5 0 7 

0 . 0 7 6 3 0 . 0 6 6 2 

3 . 8 5 8 8 3 . 8 7 4 0 

- 0 . 2 4 1 5 

0 . 3 5 8 3 

- 0 . 0 2 8 9 

5 . 0 5 3 8 

- 0 . 1 8 1 0 

0 . 3 0 3 9 

- 0 . 0 0 1 5 

4 . 3 8 4 6 

- 0 . 0 5 3 0 

0 . 3 8 2 1 

- 0 . 0 0 0 4 

4 . 3 9 9 0 

- 0 . 0 1 9 3 

0 . 0 5 7 5 

0 . 0 1 6 1 

4 . 3 3 7 4 

- 0 . 0 2 4 1 - 0 . 1 0 1 7 

0 . 0 7 2 9 0 . 1 1 1 7 

0 . 0 3 4 8 0 . 0 5 6 5 

3 . 9 5 5 0 3 . 8 9 0 5 

0 . 0 7 4 2 - 0 . 0 4 6 6 

0 . 3 1 9 5 - 0 . 0 0 8 1 

0 . 0 3 3 7 - 0 . 0 0 5 6 

4 . 0 5 6 3 4 . 2 4 0 8 

- 0 . 0 4 4 6 

0 . 1 5 6 1 

0 . 0 2 8 5 

3 . 9 9 2 9 

0 . 0 2 5 2 

0 . 0 3 6 5 

0 . 0 5 5 3 

3 . 9 5 2 7 

- 0 . 1 8 4 0 

0 . 0 4 9 4 

0 . 0 6 9 0 

4 . 0 8 5 9 

0 . 0 3 6 6 

0 . 1 8 5 5 

0 . 0 4 4 9 

4 . 0 7 3 1 

0 . 0 4 1 2 

0 . 1 8 3 0 

0 . 0 3 1 1 

4 . 0 1 3 7 

- 0 . 0 3 8 3 

0 . 2 0 6 2 

0 . 1 0 2 6 

3 . 9 2 9 8 

- 0 . 1 4 9 9 

0 . 1 0 7 5 

0 . 1 3 7 1 

3 . 8 8 0 2 

0 . 1 3 6 8 

0 . 1 2 3 2 

0 . 1 4 3 1 

3 . 9 0 8 0 

- 0 . 1 0 4 8 

0 . 2 1 7 6 

0 . 1 3 7 5 

3 . 9 1 9 4 

0 . 2 0 5 8 

0 . 0 7 2 9 

- 0 . 0 0 2 0 

4 . 0 7 8 4 

0 . 1 5 3 1 

0 . 0 3 6 7 

0 . 0 3 3 1 

3 . 7 2 9 3 

- 0 . 0 3 9 2 

0 . 1 3 2 2 

0 . 0 2 6 6 

3 . 9 3 1 3 

0 . 0 5 9 8 

0 . 2 3 6 4 

0 . 0 3 4 8 

3 . 9 6 1 8 

0 . 0 4 7 4 

0 . 1 6 5 2 

0 . 1 0 6 9 

3 . 8 0 8 3 

- 0 . 0 0 4 5 

0 . 0 8 7 1 

0 . 0 4 4 S 

4 . 0 6 0 7 

0 . 0 5 8 6 

0 . 3 8 1 3 

0 . 1 8 0 5 

3 . 9 2 3 6 

0 . 0 9 4 5 

0 . 1 4 9 6 

0 . 0 4 4 7 

4 . 1 1 4 1 

1 3 7 5 

1 6 9 4 

0 5 1 6 

1 2 0 5 

0 . 0 9 4 1 

0 . 0 2 5 7 

0 . 0 4 7 7 

3 . 9 0 5 6 

, 0 8 7 1 

, 0 8 0 7 

0 2 5 4 

4 . 0 3 8 1 

- 0 . 0 1 7 6 

0 . 1 5 5 9 

0 . 0 6 6 5 

3 . 9 6 2 3 

0 . 0 7 7 1 

- 0 . 0 3 9 9 

0 . 0 2 0 1 

4 . 0 7 2 2 

0 . 0 3 9 9 

0 . 1 4 7 1 

0 . 0 2 5 9 

4 . 0 6 0 2 

0 . 0 7 7 1 

0 . 0 5 1 0 

0 . 0 4 9 5 

4 . 0 1 7 6 

0 . 0 5 4 6 

0 . 0 8 8 2 

0 . 0 0 8 7 

4 . 2 3 5 9 
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Table 2.2t ANOVA and median decompositions on a,b,c, and d. 

(1) The residuals and effects obtained by decomposing the estimated 
coefficients a(x) using AVERAGE (part a) and MEDIAN (part b). 

(a) This uses AVERAGE for decomposition. 

Ads Id. 013a 020b 043a 044a 048a 057a 065a 072a 
Year 

171b Eff e c t 

Resld. 77 -0 01 -0 02 0 00 0.02 
78 0.04 0 16 -0 02 -0 08 -0 04 0 02 0.05 
79 -0.08 -0.07 0 05 -0 02 0 17 -0 04 0 04 -0 03 -0.07 
80 -0.05 -0.06 -0 02 0 06 -0 11 0 16 0 05 -0 02 -0.02 
81 0.07 -0.00 -0 02 -0 00 0 11 0 04 -0 18 0 01 -0 05 0.05 
82 0. 1 1 0.09 -0 18 -0 02 -0 08 -0 10 0 11 0 03 0 01 -0.01 

Col. e f f . 
Overall average 

Col. e f f . 0.00 -0. 10 -0. 00 -0 01 -0 02 0 07 0 03 0 02 0 05 0.00 

(b) This uses MEDIAN for decomposition. 

Ads Id. 013a 020b 043a 044a 048a 057a 065a 072a 171b 
Year 

Ef f e c t 

Res. 77 0.01 -0 00 -0 01 0.02 
78 0 06 0. 18 0 00 0 -0 04 0 03 0.03 
79 -0 10 -0 07 0.05 -0 02 0 22 -0 04 0 01 -0 05 -0.07 
80 -0 05 -0 05 -0.01 0 08 -0 04 0 17 0 04 -0 01 -0.03 
81 0 05 0 -0.02 0 01 0 17 0 04 -0 20 0 -0 04 0.05 
82 0 1 1 0 10 -0. 16 -0 00 -0 00 -0 08 0 10 0 03 0 04 -0.02 

Overall median 
Col . e f f . 0 02 -0 10 -0.01 -0 02 -0 08 0 06 0 05 0 03 0 04 -0.00 

72 



(2) The residuals and effects obtained by decomposing the estimated 
coefficients b(x) using AVERAGE (part a) and MEDIAN (part b). 

(a) This uses AVERAGE for decomposition. 

Ads Id. 013a 020b 043a 044a 048a 057a 065a 072a 171b E f f e c t 
Year 

Resld. 77 -0 01 -0 03 -0 00 0. 04 
78 -0. 16 0 15 0 06 -0 13 0 03 0 02 -0. 07 
79 0 03 0. 12 -0 05 -0 08 0 16 -0 08 -0 13 -0 00 0. 02 
80 -0 1 1 0. 04 0 01 -0 03 -O 08 -0 03 0 14 0 04 0. 04 
81 o 03 o. 18 -0 05 0 03 -0 OO -0 00 -0 03 -0 10 0 OO -O. 02 
82 0 02 -0. 16 -0 06 0 04 0 08 0 08 -O 03 0 07 0 02 -0. OO 

Overal1 a\ 
Col. e f f . 0 07 0. 07 -0 04 0 03 -0 00 -0 09 0 05 -0 07 -0 08 0. 15 

(b) This uses MEDIAN for decomposition. 

Ads Id. 013a 020b 043a 044a 048a 057a 065a 072a 171b Ef f e c t 
Year 

77 -0.01 -0 04 0 01 0 05 
78 -0 25 0. 13 0 02 -0 15 0 03 -0 06 -0 04 
79 0 07 0 1 1 0.01 -0 03 0 22 -0 02 -0 05 0 -0 03 
80 -0 10 0 0.04 -0 01 -0 05 0 00 0 19 0 01 0 02 
81 0 01 0 1 1 -0.05 0 02 0 -0 00 -0 01 -0 15 -0 01 -0 01 
8.2 -0 01 -0 24 -0.06 0 01 0 07 0 07 -0 02 0 01 0 01 0 01 

Overal1 median 
Col. e f f . 0.09 0.15-0.04 0.04 O -0.08 0.04 -0.01 -0.07 | 0.14 
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(3) The residuals and effects obtained by decomposing the estimated 
coefficients c(x) using AVERAGE (part a) and MEDIAN (part b). 

( a ) T h i s u s e s AVERAGE f o r d e c o m p o s i t i o n . 

Ads Id. 
Year 

013a 020b 043a 044a 048a 057a 065a 072a 171b E f f e c t 

R e s l d . 77 0 01 -0 01 -0.03 -0.01 
78 -0.01 -0 02 0 01 -0 04 0.03 0 01 0.00 
79 -0 01 0.00 0 02 0 02 -0 04 0 01 -0.01 0 01 -0.03 
80 0 01 -0.02 -0 03 -0 03 0 01 -0 03 0.08 0 01 0.02 
81 -0 01 0.01 0 01 -0 03 0 04 0 02 -0.03 -0 01 0. 02 -0.00 
82 0 02 0.01 0 02 0 03 0 02 0 00 -0.03 -0 02 -0. 03 0.01 

O v e r a l l a verage 
C o l . e f f . 0 01 -0.05 -0 01 0 01 0 05 -0 04 0.03 -0 01 -0. 02 0.05 

(b) T h i s u s e s MEDIAN f o r d e c o m p o s i t i o n . 

Ads Id. 013a 020b 043a 044 a 048a 057a 065a 072a 171b E f f e c t 
Year 

Res. 77 -0.00 -0.01 -0.01 -0.01 
78 -0.01 -0.04 0.01 -0.07 0.04 0 0.01 
79 -0.03 -0.00 0.00 0.02 -0.08 -0.01 0.01 0.01 -0.02 
80 0.02 0 -0.03 -0.02 0 -0.03 0. 12 0.02 0.01 
81 -0.02 0.01 0.01 -0.02 0.02 0.02 -0.01 -0.02 0.02 -0.00 
82 0.02 0.02 0.01 0.04 0.00 0.01 -0.01 -0.02 -0.02 0.00 

O v e r a l l median 
C o l . e f f . 0.02 -0.06 0.00 0.01 0.08 -0.03 0.01 -0.01 -0.02 0.05 
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(4) The residuals and effects obtained by decomposing the estimated 
coefficients d(x) using AVERAGE (part a) and MEDIAN (part b). 

(a) This uses AVERAGE for decomposition. 

Ads Id. 
Year 

013a 020b 043a 044a 048a 057a 065a 072a 171b Effect 

Resid. 77 0 13 0 07 0 00 -0.04 
78 -0 13 0 17 -0 01 0.04 -0 10 -0 01 -0.09 
79 0 02 0 43 -0 21 -0 20 -0.00 0. 1 1 -0 07 -0 10 0. 13 
80 -0 06 -0 08 -0 02 0 14 -0.02 0. 1 1 -0 05 -0 02 -0.02 
81 0 02 -0 06 -0 06 0 08 0.01 -0.24 0 15 0 10 -0 08 -0.03 
82 -O 07 -0 16 0 04 -0 04 -0.02 -0.07 0 1 1 0 04 0 10 0.01 

Overall average 
Col. e f f . 0 06 0 42 -0 03 -0 11 -0. 14 -0.07 -0 07 -0 06 0 06 4.07 

(b) This uses MEDIAN for decomposition. 

Ads 1d. 013a 020b 043a 044a 048a 057a 065a 072a 171b Ef f e c t 
Year 

77 0 14 0.02 -0 02 -0 03 
78 0 0 22 -0.01 0 09 -0 07 0 02 -0 13 
79 0 16 0 62 -0 10 -0.15 0 11 0 22 0 02 -0 02 0 04 
80 -0 03 -0 01 -0 02 0.07 -0 03 0 10 -0 08 -0 05 -O OO 
81 0 03 0 00 -0 07 0.01 0 -0 25 0 1 1 0 05 -0 09 0 00 
82 -0 06 -0 10 0 02 -0. 1 1 -0 03 -0 10 0 07 0 0 09 0 04 

Overal1 median 
Col. e f f . 0.06 0.38 0.00 -0.02 -0.11 -0.03 -0.01 -0.00 0.09 | 4.02 
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Table 2.3: The ratio of residual SS's of the corrected and uncorrected series of pH levels. 

Station 

Year 013a 020b 043a 044a 048a 057a 065a 072a 171 

1977 .86 .63 .50 

1978 .99 .55 .52 .56 .52 .79 

1979 .72 .86 .73 .48 .68 .98 .65 .74 

1980 .70 .90 .82 .73 .75 .72 .57 .68 

1981 .75 .85 .73 .61 .98 .73 .74 .90 .07 

19S2 .70 .98 .77 .55 .53 .89 .76 .81 .86 

Average .73 .92 .74 .59 .70 .71 .62 .80 .77 
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Table 2.4: Sums of squares errors for different models. 

Station Year SS_!(_ia>j) RSS_ R s s ; ; „ 

043a 1977 8.97 8.23 09.0 7.71 06.7 

1978 5.11 2.95 73.2 2.80 05.4 

* 1979 1.G7 1.59 05.0 1.22 30.3 

1980 7.27 G.12 18.8 5.95 02.9 

072a 1982 5.28 4.59 15.0 4.28 07.2 

OGSa 1978 4.25 3.84 10.7 3.30 16.4 

044a 1981 3.82 2.86 33.6 2.34 22.2 

013a 1980 8.54 7.80 08.5 5.71 3G.G 

SS_;(_) denotes the sum of squares error corresponding to fitting a reduced model which 

involves only term d (i.e. pH = d). 

Similarly, SSE(_ i 0 IJ,) corresponds to the model 

. 2nt , 2rrt 
^ = O S m 3 W + 6 c ° 3 3 6 5 + ' / -

Note : the full model is 

2?r£ 2nt e • I 
P H = fl8in 365 + 6 C ° S 3C5 + / 0 g l 0 l - e x p ( - c / ) + * 

* denotes (SS_;(j) - S S £ ( _ i 0 > l j ) / SS£( r f ( _ i t ) (in percent). 

'** denotes (SS^JJ,.,!) - SSK(/««)) / ^E{/uii) («n percent). 
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Table 2.5: 

The results of fitting the temporal variogram Vp(w) to the data, where 

V p [ w ) = i + 1 ^ / 1 . 1 - ' ' 

Station Year Number of 
data pts. 

9i se(ffi) 92 se(c7 

013a 1070 1326 .116 .004 2.93 3.54 

013a 1980 2085 .085 .002 2.04 2.37 

072a 1982 1G53 .079 .003 2.85 3.72 

171b 1982 2016 .0G0 .002 1.54 2.C0 
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Table 2 .6: Temporal variogram estimated with data of each year and each station using 

where tj and tj> belong to the same year, and i denotes station i . 

Station 

Year ' 013a 020b 043a 044a 048a 057a 005a 072a 171b 

1977 .094 .050 .038 

1978 .320 .056 .040 .100 .053 .094 

1979 .115 .805 .026 .051 .108 .057 .051 .008 

1980 .085 .430 .071 .075 .208 .080 .242 .003 

1981 .122 .364 .042 .033 .153 .043 .066 .204 .030 
1982 .234 .275 .117 .009 .125 .122 .098 .078 .000 

79 



Table 2.7 

The residuals and effects obtained by decomposing the estimated 
coefficients gi using AVERAGE (part a) and MEDIAN (part b). 

(a) This uses AVERAGE for decomposition. 

Ads i d . 013a 020b 043a 044a 048a 057a 065a 072a 171b Eff e c t 
Year 

Resid. 77 0. 10 0.07 0.02 -0.07 
78 -0.09 0.01 0.01 -0.03 -0.02 0.01 -0.02 
79 -0.06 0.33 -0.08 -0.04 -0.02 -0.05 -0.08 -0-07 0.04 
80 -0.08 -0.03 -0.02 -0.00 0.03 -0.02 0. 13 -0.06 0.02 
81 -0.00 -0.06 -0.01 -0.01 0.02 -0.02 -0.01 0. 12 0.00 -0.01 
82 0. 10 -0. 16 0.05 0.02 -0.02 0.05 0.01 -0.02 0.01 -0.00 

Overall average 
C o l . e f f . 0.01 0.31 -0.06 -0.08 0.02 -0.06 -0.04 -0.03 -0.08 0. 13 

(b) This uses MEDIAN for decomposition. 

Ads i d . 013a 020b 043a 044a 048a 057a 065a 072a 171b E f f e c t 
Year 

Res. 77 0 06 0.02 -o oo -0.02 
78 -0 05 -0 00 -0.01 -0 06 -0 01 0 01 0.00 
79 -0 00 0 45 -0 02 0.01 0 02 -0 00 0 00 0 -0.01 
80 -0 05 0 05 0 00 0.01 0 04 0 00 0 17 -0 03 0.01 
81 0 00 0 -0 01 -0.01 0 -0 02 0 01 0 13 0 01 -0.00 
82 O 06 -0 14 0 02 -0.03 -O 08 0 01 -0 01 -o 05 -O Ol 0.05 

Overal1 median 
Col . e f f . 0 05 0 30 -0 02 -0.02 0 09 -0 00 -0 01 0 01 -0 04 0.07 
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Table 2.8: 
The estimated value of Ct in year i i s 

<*(*.) = „ ' 
m 

S t a t i o n 1979 

Year 

1980 1981 1982 

01 3a 4. 28 4. 1 1 4. 14 4. 1 4 
020b 4. 84 4. 28 4. 33 4. 27 
043a 4. 01 3 94 4. 00 4. 12 
044a 4. 00 4 .05 4. 02 4. 03 
048a 4 .09 4 .03 4. 13 4. 10 
057a 4 .16 3 .95 3. 72 3. 89 
065a 4 .14 4 .13 4. 14 4. 13 
072a 4 .06 3 .98 4. 05 3. 99 
171b 4. 07 4. 07 
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Table 3.1; 
Station e f f e c t s , using ANOVA and Median decompositions (pH l e v e l s ) . 

S t a t i o n 

Year 

S t a t i o n 1977 1978 1979 1980 1981 1982 S t a t i o n 

Anova Median Anova Median Anova Median Anova Median Anova Median *P°va Median 

013a .09 .22 .07 .06 .08 .06 .08 . IS 
020b . 11 . 15 .64 .31 .24 .12 .25 . 13 . 16 . 16 
043a .09 .10 . 11 . 14 -.19 -.17 -.12 -.12 -.07 -.11 -.01 .00 
044a -.01 .00 -.06 -.04 -.19 -.17 .00 .07 -.03 .07 -.06 -.06 
04Ba -.04 -.02 -.13 .03 .02 .06 .03 .00 .02 .03 
057a -.04 .02 -.09 -.07 -.30 -.33 -.22 -.25 
065a -.08 -.07 - .05 -.08 -.05 -.02 -.04 -.12 .03 . 13 .01 -.02 
072a -.06 .02 -.09 -.09 -.08 -.06 -.01 -.05 -.06 -.10 
171b .02 .04 .06 .04 

Table 3.2; 
Monthly e f f e c t s , using ANOVA and Median decompositions (pH l e v e l s ) . 

Year 

1977 1978 1979 1980 19B1 1982 

Anova Median Anova Median Anova Median Anova Median Anova Median Anova Median 

January .02 .09 .38 .40 .02 18 .24 20 -.09 _ 11 .05 .06 
February -. 13 -.22 -.10 -.19 -.07 02 -.05 - 03 . 18 .18 .01 .01 
March .26 .20 . 11 . 12 -.09 - 06 . 12 14 . 14 10 -.07 -.05 
Aprl 1 .07 .09 .01 -.01 -.02 - 02 .03 01 -.03 - 01 . 15 .09 
May -.22 -.25 . 10 . 15 -.04 - 06 -.18 - 04 -.05 - 07 -.16 -.18 
June -. 11 -.12 -.11 -. 17 -. 18 - 11 -. 14 - 11 -.08 - 13 -.01 -.02 
J u l y -.31 -.34 -.07 -. 11 -.29 - 22 -.06 - 12 -.09 - 13 -. 18 -.25 
August -. 13 -.10 -.08 -.02 -.22 - 12 -.32 - 24 -. 17 - 17 -.21 -.26 
September -.03 -.06 -.12 -. 10 . 18 26 -.06 - 08 -.05 - 09 -.04 - . 14 
October . 13 .11 -.01 .05 .11 03 .28 18 -.07 07 .08 .01 
November .20 .23 -.08 . 10 .41 19 . 12 19 . 15 04 . 17 .09 
December .28 .29 . 11 .09 . 18 08 .00 01 .02 05 .22 . 17 
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Table 3.3: 

Station e f f e c t s on r a i n f a l l volumes, using ANOVA and Median 
decompositions. 

Year 

1977 1978 1979 1980 1981 1982 

Anova Median Anova Median Anova Median Anova Median Anova Median Anova Median 

- 2 . 4 6 
3 . 0 0 

- 2 . 8 9 
6 . 6 1 

-0.54 0 . 0 0 

1 1 . 3 9 1 1 . 6 8 2 . 2 9 5 . 0 9 0 31 1.78 0 57 3 09 
- 3 . 8 8 - 4 . 5 1 0 . 4 0 - 9 . 2 5 - 2 . 8 0 - 3 .07 - 2 61 - 2 . 2 6 - 2 02 - 0 11 

0 . 5 5 0 . 4 8 - 2 . 4 8 0 . 3 8 - 0 . 5 4 - 0 . 3 6 -1 24 -1 . 9 6 - 5 t o -4 31 
- 0 . 5 1 0 . 3 7 - 2 . 2 0 - 0 . 0 5 1 .29 1 12 4 81 6 . 3 1 -1 64 0 0 0 

1 .05 - 0 . 3 7 - 8 . 0 1 - 5 . 6 9 1 .09 2 . 9 5 -1 09 0 . 0 0 1 99 3 93 
- 3 ; 4 4 - 2 . 6 6 - 0 . 2 7 - 0 .74 - 2 94 - 1 . 2 9 - 2 28 - 2 31 

- 1 . 2 8 - 2 . 0 3 - 2 . 0 9 0 . 0 5 - 0 . 5 2 - 0 . 4 3 -1 86 -1 .97 - 4 0 5 - 2 40 
3 . 8 4 5 . 6 3 6 . 4 5 4 . 18 - 0 . 5 8 0 37 2 31 1 . 42 2 17 1 89 

2 33 3 . 7 3 10 53 11 20 

Table 3.4: 
Monthly e f f e c t s on r a i n f a l l volumes, using ANOVA and Median 
decompositions. 

Year 

January 
February 
March 
Apr 11 
May 
•June 
J u l y 
August 
September 
October 
November 
December 

1977 

Anova Median 

1978 1979 1980 1981 1982 

Anova Median Anova Median Anova Median Anova Median Anova Median 

- 9 . 2 1 - 1 0 . 6 2 
- 9 . 0 8 - 7 . 2 0 

4 . 4 1 2 . 7 5 
2 . 7 4 1 .72 

- 1 0 . 0 9 - 7 . 2 4 
2 . 4 6 - 1 .20 

- 5 . 3 0 - 2 . 6 3 
- 0 . 5 0 - 3 . 1 1 

7 . 2 5 6 . 6 9 
9 . 9 3 1 0 . 5 0 
4 . 0 4 3 . 2 5 
3 . 3 4 4 . 5 8 

1 0 . 1 6 9 . 6 7 
- 2 . 6 3 - 2 . 1 0 
- 3 . 4 7 - 0 . 6 7 
- 3 . 5 7 - 1 . 8 6 

8 . 9 8 1 2 . S O 
- 4 . 6 0 - 5 . 5 7 
- 0 . 3 4 - 0 . 9 8 

0 . 5 7 1 .43 
- 1 . 7 1 - 0 . 2 0 
- 2 . 3 0 1-69 
- 4 . 0 4 - 5 . 2 7 
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(a) Station 020b ( I l l i n o i s . I l l i n o i s ) (b) Station 044a (Ithaca,NY) 

(c) Station 048a (Brookhaven,NY) (d) Station 065a (Penn State,PA) 

Figure 1.1: F i e l d pH. 
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Figure 2.1 : The pH monitoring networks. 
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(b) 1978 

Figure 2.2; 
Phase and amplitude of seasonal pH variation: (a) 1977; 
(b) 1973; (c) 1979; (d) 1980; (e) 1981; (f) 1982. The 
direction of the ray for each station indicates the time 
of the year of lowest pH. The length of the ray indicates 
the amplitude of the seasonal variation. 
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(c) 1979 

(d) 1980 
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Figure 2 . 3 : 
The estimates of the unsmoothed temporal variogram obtained for 
data of station 072a, in 1982. 
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Figure 3.7; Normal plots for each station ( a l l years) separately. 
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Figure 3.8: Normal plots for each year separately at station 020b. 
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