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Abstract

During the last few decades, the search for powerful
computing machines has been one of the several endless
pursuits among the scientific community. In this thesis,

several novel architectural ideas for the designs of high-

performance computing machines are presented, and the
practicality and usefulness of cyclical architectﬁres -— ones
which have their hardware resoucms cyclically arranged -- in
this respect are examined. These ideas are illustrated with

the use of specific application examples' including parallel
sorting, packet-switched communications and the design

methodology of a class of next-generation computers.

In the first part of our studigs, the structure and
control algorithms of a single-chip, recirculating systolic
sorter (RSS), are ©presented. The correctness of the
algorithms 1is proved, and general operational constraints are
derived. This parallel sorter is highly amenable to VLSI
implementations because of the simple control structure and
the regular, repetitive and near-neighbour type of
interconnections required. - The number of quadruple
comparators needed to sort N items is N/4, and the average
sorting time 1is found to be bounded by (logN)**2 and N. A
ﬁardware termination is incorporated into the control unit of
the sorter, so that the sorting process can be terminated as

soon as the input list is in the desired order. .
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In the second part of our studies, a novel loop-
structured switching network (LSSN) 1is presented. It is
intended for packet communications in large-scale systems
consisting of hundreds to thousands of interconnected devices.
With L 1loops -- where L is a power of two, it can connect up
to N=L(logL) pairs of transmitters and receivers, using only
N/2 two-by-two switches; in terms of s&itch counts and the
amounts of wiring, this network is very advantageous when the
value of N is large. It can be extended incrementally, and
is free of the store-and-forward type of deadlocks which
prevail in other <cyclical, packet-switched networks. Our
simulation results show that its average throughput rate and
delay are close to that of other designs despite its

relatively low switch count.

In the third part of our studies, a new design
methodology for the next-generation computers is described.
Our proposed system, the Event-Driven Computer (EDC) 1is
primarily a data-driven system which has 1its computing
resources arranged as a circular pipeline, and it is
supplemented with control-driven activities. Such a combined
approach 1is aimed at extracting the advantages of both the
"pure" data-driven and control-driven computations while
alleviating their shortcomings. Compared to other designs,
an EDC has the merits of a simpler architecture, better
resource utilization, array processing capabilities and a

higher speed range.
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As 1s shown by our studies, the properties of the
cyclical architectures depend greatly on how the information
packets interact with each other; deadlocks, for instance,
will occur on systems such as the Loop-Structuréd Switching
Network because of the asynchronous, circular requests of
network resources by the packets (we have, however, presented
a deadlock avoidance scheme), but will not occur on
synchronous systems such as the Recirculating Systolic Sorter.
In general, the régource utilization of the cyclical
architectures are higher than that of the acyclic ones ~-- or
equivalently, the cyclical architectures can handle larger
amounts of inférmation with relatively smaller areas -- they
are therefore more suitable to the designs of very large-scale

systems,

Key phrases:

computer architectures, next-generation computing,
systolic arrays, parallel sorting, packet-switched networks,
store-and-forward deadlocks, data-driven and control-driven

computations.
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Chapter 1I. Introduction

1. Background Information

The demand for high speed computation is ever-
increasing, particularly among the scientific community
engaged in large-scale computation such as  weather
forecasting, realtime battlefield assessment, artificial
intelligence and simulations of very large and complex
processes. While conventional computer systems can handle
many of the current demands, they suffer from certain
drawbacks -- ranging from software obesify tc hardware
inextensibility -- which severely restrict their usefulness in
the design of the SOfcélled "fifth-generation™ computers [1]
.which ére currentfy being planned for future very large-scale

applications.

The first four generations of computers are commonly
distinguished by their constituent technologies =-- vacuum
tubes, transistors, integrated circuits and, currently, very
large-scale integration' (VLs1). Central to the fifth-
generation concept 1is a break with the conventional, or
sometimes referred to as the Von Neumann, computer
architecture that has prevailed in the first four computer

generations [2].

Several classes of computer architectures have been
proposed for the next-generation computers, including tree

structures, square and cube arrays, pipelines, systolic arrays



[3], data-driven systems [4], demand-driven systems [5] and
dynamic structures [55,57,611]. As of today, none of these
architectures has yet evolved to become the single, dominant

basis of research work in this area.

In this thesis, we will look into another interesting
design methodology -- cyclical architectures -- for highly
parallel applications, and several ideas based on the concept
of cyclical architectures will be proposed. Our new designs
will also incorporate the fundamental principles of systolic,

packet communications, data-driven and control-driven systems.

Systolic systems are characterized by their data-flow
pattern: rhythmic data movements analogous to the pulsations

in the arteries caused by the recurrent contractions of the

hearts. Because of their simple, highly repetitive
structures, systolic systems are very amenable to VLSI
implementations. The algorithms of many  specialized

applications such as the Fast Fourier Transform and matrix

multiplications, have been proposed for systolic computation

[31.

Packet communications are traditionally meant for
computer systems which are geographically apart and
interconnected via local networks; but recently, they have
also been proposed for multiprocessor systems consisting of
tens to thousands of closely interconnected processing and
storage modules -- examples are data-driven computers in which

instruction executions are triggered by the arrivals of input



operands which are encapsulated into the form of packets, and
networks are used to convey these packets among the hardware

modules.

Data-driven computers have recently received enormous
attentions due to their simplicity 1in the explorations of
asynchronous parallelism; but on the other hand, they do not
take advantage of the simple control structure that exists in
array computation, and also some inherently sequential
activities do not conform naturally to the notion of data-

driven computation.

In the conventional, control-driven computers,
instruction executions are sequenced explicitly by control
signals generated by the central processing units; in contrast
to data-driven systems, they are more advantageous in handling
array computation because they make use of the simple control
structures which exist in array computation; but on the other
hand, the expioitations of parallelism 1in control-dfiven
systems are more difficult because explicit control signals
are needed to specify the branching and merging of execution
paths, which otherwise could be done implicitly in data-driven
systems by operand packets which are sent among the

instructions.

More details of these various systems will be provided

in the following chapters.

We believe that 1in order to gain significant



improvement in the computation speed over existing computer
systems, the new designs may have to depart from the prevalent
sequential computation 1in both hardware and software to
various extents. In other words,  some of the existing

development tools such as off-the-shelf components, compiler
techniques, etc., may not be useful in our designs; for these
reasons, we will only emphasize the architectural aspects but

not any immediate implementation.

Throughout this dissertation, the term "processor" |is
used to denote a piece of passive hardware capable of only
primitive operations; on other hand, "computer" refers to a
fullfledged machine 'capable of executing high-level
operations; "highly parallel” or "next-generation"
applications are those <containing large amounts of both
synchronous and asynchronous, high and 1low-level computation
which can be 'performed in parallel, such as those examples

quoted in the beginning of this chapter.

2. Cyclical Architectures

The rationale of our advocacy of cyclical architectures
is based on the behaviour of program executions. As
exhibited in the execution cycles of instructions as well as
"DO-LOOPS" which exist in nearly all scientific and business-
oriented programs, the ways in which most programs are
‘executed, are basically cyclical in nature. It is therefore

very spontaneous to envision a class of architectures which



have their resources arranged into a cyclical configuration as

follows:
Feedback path
Computation path
Input ---> (storage, processors and switches) ----> Output

Fig.I.1. The cyclical configuration.

The main computation path in Fig.I.1 consists of both

processing and switching elements, and either shift-registers

or memory words are used for buffering and storage purposes.

The information which goes through the feedback path are

packets of either data, control sﬁgnals or both, depending on

the applications.

Current research involving such cyclical architectures

could be broadly classified into three areas depending on the

nature of the feedback signals:

(1)

Special-purpose processors attached to  host
computers: 'Examples are processors for the Fast
Fourier Transform [6,7]) and matrix transposition [9].
For this area of application, the burpose of feedback
is to allow further interactions among the data
elements and also to re-use the resources along the

computation path.



(2) 1Interconnection networks for processor-to-memory or
processor~to-processor communications: Examples are
single-staged shuffle-exchange networks [9,12] and
multi-staged shuffle-exchange networks [20,21,22].
For this area of applications, the sole purpose of
feedback is to re-use the resources: there 1is no
interactions among the data.

(3) Fullfledged, high-performance computers: With only a
few exceptions [28,60], nearly all data-driven
systems are based on the cylical configuration [4,5].
For this area of applications, packets are fed back
as the reéult of the completion of instruction
cycles; and new instruction packets are brought into
the computation path when certain result packets are
received at the end of the feedback path.

If a system could be implemented with either the
cyclical or the acyclic configuration, then the relative
merits and demerits of the two configurations are as follows.
In general, the <cyclical configuration would give rise to
better resource utilization than the acyclic one, because its
resources could be used repeatedly by means of feedback; this
feature would incur tremendous savings in system resources,
especially when the size of the system is very large.
Therefore, if the entire system is to be considered for
fabrication on a single integrated-circuit chip, its cyclical

configuration would be a better choice. On the other hand,



the control of the cyclical configuration is usually more
difficult: in some systems, mésking bits are needed to disable
a subset of the processing resources [9]; while 1in others,
feedback counts are required_td separate the feedback signals
from the incoming ones. If the cyclical configurations are
used asynchronously (e.g., as packet-switched communications
~ networks) , then they would be susceptible to the store-and-
forward type of deadlocks due to <circular requests of
resources. Another important characteristic of  packet-
switched, cyclical systems 1is their lack of responsiveness,
because when interrupts occur, the computation path could
already be congested with information packets such that the

interrupts cannot be processed immediately.

3. Objectives and Scope of the Thesis

The main objective of this thesis 1is to advocate
cyclical architectures as the basic design principle of a
class of high-performance systems. Our ideas will be
demonstrated by specific applications including parallel
sorting, packet-switched communications and the design of a
novel computer -- all of which are of current research
interest. The advantagés of our designs relative to others
will be discussed, and the methods to resolve the various
afore-mentioned demerits of. cyclical architectures will be

presented.



In Chapter 1II, we will present a recirculating
systolic sorter (RSS) which 1is designed as a single-chip,
parallel sorting module to be attached to a host computer.
The sorting algorithms, design of the controller, and relative
merits of the RSS will be detailed. Chapter III will
describe a loop-structured switching network (LSSN) intended
for communications in  packet-switched, multiprocessing
environments. The topology, properties and performance
analysis of LSSN will be discussed, and the occurrénce and
resolution of deadlocks will be presented. Chapter IV will
outline the design of the Event-Driven Computer (EDC) which is
primarily a data-driven system supplemented with control-
driven activities. The rationale of design, hardware and
-software organizations and performance of EDC will be
addresséd. General discussions and suggestions of further

work will be given in Chapter V.



Chapter II. A Systolic Processor For Parallel Sorting

Abbreviations:
N: Number of input items
C,Column#: Number of columns
R,Row#: Number of rows
P,Comparator#: Number of comparators
i: Loop index
j: Moving position index
J: Fixed position index
M(i): Initial marker's position in loop i
t: Comparison cycle time

"*": A marker

1. Introduction

Sortihg ‘has been én important operation in business
and computer engineering épplications [13]. Many standard
and novel sorting algorithms could be found in the literature
[9-17]; some of them are optimal in time complexities, some in
the number of comparators used while others 1lay emphasis on
architectural designs, i.e., processor interconnections, data

flow, control strategies and implementation technologies.

‘In this chapter, we present a parallel sorting network

which embodies the concepts of both the cyclical architectures
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and the systolic systems .[3]. Systolic systems are
characterized by their data flow pattern: once data are loaded
from the memories, they and/or their intermediate results will
move within the system along predetermined paths provided
among the processing elements, and every element accepts and
distributes data from and to its neighbours in a rhythmic
fashion analogous to the pulsations in the arteries caused by

the fecurrent contractions of the heart.

A major advantage of such systems lies in the fact
that processor-memory communications are involved only during
the 1loading of the input data and unloading of the final
results; therefore, there is no delay due to bus contentions

and memory access conflicts during the computation time.

This study will demonstrate thatt 'a cyclical
architecture coupled with systolic data movements can perform
the wuseful' task of sorting. Because of the highly regular
interconnection, simple control and addressing structures, the
-area required by this design is very compact, and hence it is
highly amenable to VLSI implementations. A description of
the recirculating systolic sorter (RSS) will be given in
Section 2, and the sorting algorithms, in Section 3. The
constraints on RSS will be discussed in Section 4 while
Section 5 will analyse the RSS algorithms and their timing
complexities. The relative merits of RSS will be compared

and discussed along with other designs in Section 6.
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2. The Recirculating Systolic Sorter (RSS)
2.A. Network Description

A schematic diagram of the proposéd sorter RSS is
given in Fig.II.t. The RSS network consists of an array of
"gquadruple" comparators which are arranged into R rows and C
columns. The whole array is articulated by 2*R circular
loops as shown, Each of the .quadruple comparators holds and
sorts four input items during a comparison cycle, except those
situated at the top and bottom and located in the odd-numbered
columns of the array, where only either the upper or lower
portion of these comparators 1is involved ‘in the sorting

process.

During the initial loadihg phase, all the loops are
opened at the Input/Output switch and connected to the input
lines; data items enter the network through the loops in a
serial manner, with neighbouring loops shifted in 'opposite
directions. After the network has been loaded, the input
lines will be disconnected and all the loops will be closed.
Before sorting commences, the comparator array has to be
"marked" -- the sole purpose of which is to place a marker in
a certain position within each loop, to indicate the beginning
and end of that loop. The convention of marking adopted here
is that the "head" of each loop will be associated with a

marker, and the position on the right-hand side of the marker
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will be regarded as the "tail" of that 1loop. The reader may
refer to the examples given in Section 3 for illusfrations; in
these examples, asterisks are used to represent markers,

Noﬁice that the marking schemes -- i.e., the ways to place the
markers on the array prior to the first cycle of sorting --
are different for the two examples, and they will be referred

to as Scheme A and Scheme B respectively.

After the marking procedure, one of the proposed RSS
algorithms will be applied to the array. During a comparison
cycle, 1input data are compared and exchanged within the
guadruple comparators. If a pair of data has to be
exchanged, then their associatig markers, if there are any, do
not move with them but will remain where they aré._ ‘However,
between successive comparison cycles and when the data are

shifted, the markers will be shifted along with the data with

which they are associated.

A schematic diagram of the control unit wused is
presented in Fig.II.2. This wunit generates the control
signals (i.e., "Opcode" in Fig.II.2) to indicate one of the
operations to be performed by the comparators: (1) Vertical-
comparison; (2) Horizontal-comparison; (3) Diagonal-comparison
and (4) Shift-operation. At the end of each comparison
cycle, the control wunit will test the status of the array
(i.e., "Exchange/No-Exchange") to see whether any exchange has

taken place during that cycle. It also has a cycle counter
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which keeps track of the current number of consecutive "No-
Exchange" cycles. In other words, the content of the counter
is incremented wupon entering a new cycle, and 1is reset
whenever there 1is at least one exchange in that cycle; when
the count reaches twice the number of columns (i.e.,
Count=2*C), a termination signal will be generated. At this
stage, the input items have been sorted into a linear 1list.

As demonstrated in the examples of Section 3, the first items
of the sorted 1lists are accompanied by asterisks in the
uppermost loops, and the last items are on the right-hand side

of the asterisks in the lowest loops.

2.B. The Quadruple Comparator

The quadruple comparators have a higher logic density
than the conventional, binary sbrters,used in other networks,
but the number of input/output lines per comparator of the
former is only sliéhtly more than that of the latter.
Fig.I1.3 gives a sketch of the input/output configuration of a

quadruple comparator.
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data in s=n>
marker {n --->

sec> data out

Oppen loop
=-==> marker out

|

<=== data in
<-=-- marker in

data out «e==
marker out<---

iy i gy

lower loop

clock--->

op code---~> I l

exchange/no exchange<---

Fig.I11.3. The schematic diagram of a quadruple comparator.

In addition to the two sets of input and two sets of
output data lines, there are four singlefbit’ lines used for
shifting of markers along the two 1loops connected to the
.comparatbrs: one line is for the clock signal, one 1line is
used to indicate whether any exchange has taken place during

the current comparison cycle, and two lines for the opcodes.

Essentially what a comparator unit accomplishes is the
following. I1f it is located in an odd-numbered column, then
it will push the smallést of the four data items which it
holds to its upper-right neighbour; if it is in an even-
numbered column, then it will retain the smallest and the

largest items in its upper-right and 1lower-left positions
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respectively. However, when markers are present inside the
. comparator, the situation becomes somewhat different and will

be described in the next subsection.

2.C. The Comparison/Exchange/Shift Operations
For the convenience of 1illustration, the following
symbois will be used throughtout this chapter:
(i) Direction of comparison
head
or -

tail v

(ii) Direction of shift

Fig.II1.4. Symbols used for comparison and shift.

The direction of comparison 1is wused to show the
ordering of items after each comparison. In‘Fig.II.4(i), the
solid arrow,head indicates the position of the larger item for

an ascending order; if, on the other hand, a descending order
is desired, then the arrow head will indicate the smaller one.
Without loss, of generality, the ascending order will be
assumed in this study. The open arrow of Fig.II.4(ii) is

used to indicate the direction of movement for both the items
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and the markers during the "Shift" operations.

The four operations performed by a comparator are

depicted in Fig.II.5 and described below:

1.

Vertical-comparison: The two 1items on the upper
portion of the comparator are compared to the two at
the bottom in parallel, with the directions of
comparison pointing downward. The presence of

markers is ignored.

Horizqntal—dompafison: Case(i) When no marker is
inside the comparator: the two items on the right
portion of the comparator are compared to the two on
the 1left in parallel, with the directions of
comparison pointing to the left; case(ii) When one or
two markers are present: when a marker appears on the
left portion of the comparator, the corresponding
direction of comparison points to the right;

otherwise it points to the left.

Note that in the horizontal comparisons, the
direction of comparison always points from right to
left according to the convention adopted, unless when
both the head and the tail of a loop are involved in
the comparison, i.e., when the marker appears on the
left portion of the comparator, then the direction
will be reversed. This reversal prevents the

minimum and maximum items in a loop from crossing
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over each other, and it is achieved by the action

taken in Case (ii) above.

Diagonal-comparison: The two items on the upper
portion of the comparator are compared to the two at
the bottom in parallel, with the directions of

comparison pointing downward and crossing each other.

At the first glance, the diagonal comparison
involving the top-right and 1lower-left items seems
redundant, because these two 1items are already in
order after the vertical and horizontal comparisons;
however, it is useful when two markers appear on the
left portion of the comparator simultaneously.
Furthermore, the top-left/bottom-right comparisons
provides an exchange not provided by the combination

of the vertical and horizontal comparisons.

Shift: Case(i) 1if the comparator is located in an
even-numbered column, then its top two items will be
shifted to the 1left and its lower two items to the
right; case(ii) ik the comparator is located in an

odd-numbered column, 1its top two items will be

shifted to the right and its lower items to the left,.
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in even columns

time= ts

Fig.lI.5. The four operations performed by the quadruple
comparators.



3. The RSS Algorithms

3.A. Algorithm I

This algorithm involves only
comparison", "Horizéntal-comparison" and
but not the "Diagonal-comparison™, and is

following program fragment written in Pascal:

the

described

20

"Vertical-

"Shift" operations

in the

Program Recirculating-Systolic-Sorter;

Var
Terminate : boolean;
Column# : integer;
Row# : integer;
Comparator# : integer;
Exchange ¢ boolean;
Count-No-Exchange: integer;

(*Initialization*)
While NOT Terminate do
(*enter next cycle of comparison%*)
Begin
for C:=1
Begin
Vertical-comparison;
Horizontal-comparison;
End;
Check-Terminate;
Shift;
End;

to Comparator# do

(Algorithm I)

The procedure "Check-Terminate"

following global variables:

1. "Exchange" - This boolean variable
to be "False" before a new
commences, and is set to be "True"

manipulates the

always

is reset
comparison cycle
if any exchange
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takes place during the cycle.

"Count-No-Exchange" - This variable keeps track of
the number of consecutive cycles which have no
exchange, and 1is reset to zero whenever "Exchange"
equals "True".

"Terminate" - This boolean variable controls the
"WHILE-DO" loop, and 1is set to be "True" if the

following condition is satisfied:

Condition(1) (for termination):

Count-No-Exchange > 2*Column#

3.B. Algorithm 1II

This algorithm is similar to Algorithm I except that

the "Diagonal-comparison” operation is included in its "WHILE-

DO" loop:
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Program Recirculating-Systolic-Sorter;

While NOT Terminate do
(*enter next cycle of comparison*)
Begin
For I:=1 to Comparator# do
Begin
-Vertical-comparison;
Horizontal-comparison;
Diagonal-comparison;
End;
Check-Terminate;
Shift
End;

(Algorithm 11)

3.C. Examples

" Two examples using three columns, three rows and eight
comparators (i.e., C=3, R=3, P=8) are presented in Fig.II.6
and Fig.II.7. After the 1initial 1loading and marking
procedﬁres; Algorithm I and II are applied to fhe first and
second examples respectively. The contents of the comparator
array are shown for the first and the last two cycles. Both
input 1lists are sorted into the ascending order. At the end
of the last cycle, the minimum of each loop is indicated by
the markers and the direction of increasing values is from
right to left. All the numbers in a given loop are greater -

than or equal to those in the next loop above.

1
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at cycle time = 47
at cycle time = 1 at cycle time = 48
-9 16 [+] 3 2 (o] [+) [} [+) ~1f *-1 [+] 04 (o] o] [«] -1 -1
11 .2 2 5 7 17 2 2 -1 2 2 2 2} * ¢ 2 2 2
8 o *13 [+ 16 -t .2 S S 3 3 2 2 .2 8 s 3 3
15 10 7 1 8 *B 7 .7 7 8 8 7 .7 8 7 8 7 7
-7 12 8 2 7 2 11 10 9 8| * 8 12 12 11 10 -] 8 -8
2 .3 2 S 17 8 16 16 15 *13 17 17 16 15| *13 17 17 16
verticatl comparison vertical compariaén vertical compar ison
v ' v v
-1 2 [+] 3 2 [+ [+] [+] [¢] -1 *-1 [} v [ [<] o] [3) -1 -1
11 *16 2 o4 7 17 2 2 2 1 2 2 2 2] = 1 2 2 V 2
8 O 13 S 8 -1 .2 -] 5 3 3 2 T2 ) .2 L S5 3 3
15 10 7 1 16 *8 7 .7 7 8 8 7 .7 8 7 8 7 7
* 2 3 8 2 7 2 1 10 8 8} =8 12 12 11 10 9 8 L -]
7 *12 2 5 17 8 16 16 15 *13 17 17 16 18] *13 17 17 16
horizontal comparison -.horlzontll compar {son hor izontal compar ison
\J v v
EEX} 2 [+ 2 [+} [+ [ [+] -1 *~1 [4] L_o o___o o__-1___*-1 |
16 11 2 o| 17 2 2 2 2 2 L2 2_* 1 2___2 2_1]
8 ol * s 13| 8 -1 2 s 5 al 3 2| R S |
15 10 7 1| 186 <8 7 e 8 7 8 7 =7 CRR) R A
*2 al o 2] 7 2 11 10l o 8| *8 12| [Ci2_1i_w0 5__6._+8 |
12 .7 2 -1 17 8 16 16 15 *13 17 17 [Ce___15_=*13 TT__17___16_]
shift l------------» shift ]------—----» v

Fig.II.é6.

and Marking Scheme A.

<<< gorted l1ist >>>

An example to illustrate RSS Algorithm I
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at cycle time = 18 at cycle time = 19

*-3 32 o 8 3 2 3 2 o of -2 *-3 -3 2 2 (4] ] =2
22 5 5 11] 16 35 *2 6 5 5 5 4 6 5 5 5 4 »2
.17 o} 27 2| 33 -2 15 11 3 8 6 =*6 .6 1] 11 8 € ‘g
31 22| 15 3] 16 *18 11 17| 18 16| 16 15 17 16] 15 16] 15 =15
.45 26| 18 sl 18 s 31 22| 22 191 18 *18 *18 26} 22 22] 19 18
P P 6 11] 34 =48 *26 3s| 24 33| 22 27 35 34} 233 32| 27 *31
vertical compar ison vertical comparison vertical c&mpar|son
v v ' v
*-3 3 0 ) 3 2 2 2 o -2 *-3 -3 2 2 5} 0 2
22 32 2] 16 35 * 3 € 5 5 5 4 6 5 5 5 a 3
.47 o] 27 11| 16 -2 11 11 [ 8 €6 *6 *6 1| 1 8 6 6
31 221 15 3| 33 =18 .45 17} 15 16 16 15 17 16] 15 16| 15 =15
*6 6| 19 4l 15 s 26 22| 22 18] 18 *18 *18 26| 22 22| 19 18
15 26 6 14 34 .48 .34 35 34 33 32 27 as 34 33 32 27 *3
horizontal compar ison ' hor 1zontal [ ‘compar {son hori{zontat compar ison
v ' v
*-3 5 0 8 3 2 2 2 4] of -2 =*-3 -3 2 2 %) o ~2
32 22 2] 35 1 *3 6 5 s 5 4 6 s 5 5 4 o3
*0 17| 27 1| 16 -2 1" " 8 X € *6 .6 11| 14 8 6 6
31 22| 18 3] 33 =*18 15 | 16 15| 16 15 17 16| 18 15| 15 *45
*6 6} 19 4]l 15 5 26 221 22 19| 18 *18 *18 26| 22 22| 18 18
26 15 [ 11] 34 eq8 *31 35| 34 33 32 27 35 34| a3 32| 3t 27
diagona) compar {son ' diagonal compar {son diagona? compar fson
v v v
=3 5 3 3 ] 2 o o[~z +3 -3 73 o 6___-3_]
32 22 3 35 =*16] |+ 23 3 5 5 5 4] s 5__ 5 & __4__*3 |
*0 17| 27 1] 16 -2 " 11 8 6 6 +¢6| [+ _11__ 8 6 s_J
31 22 4 3| 33 .18 .S 17] 16 15| 16 ss) [Ta___ve__v6___15__1s__*15 |
s 6 6] 19 15| 15 5 26 221 22 18] 18 18] [*18 26__22___22___19____18_)
26 15 6 11} 34 18 *31 st 34 33| 32 27| [3s 34__33___32__31__ *27
ahift |_“““"» ] <<< sorted 1ist >>> v
shift meremmecee3>

Fig.11.7. An example to illustrate RSS Algorithm 11
and Marking Scheme B.

-
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4. Operational Constraints

4 .A. Constraints on the Size of RSS

Most sorting networks impose certain constraints on
the size of the networks. For examples, Batcher's bitonic
sorter [13] requires that the number of its input lines be a
power of two, and some mesh sorters [14,15] work on sQuare
arrays only. The basic constraint of the RSS array appears

to be less stringent:

Requirement (1):

Column$ >2

Row# >1

Further constraints may or may not be required
depending on the marking schemes used: In Scheme A and B to be
deécribed below, Requirement(1) 1is sufficient to guarantee
correct operations of both RSS algorithms when Scheme A is
‘used, but an additional <constraint .-- which will be given
later on -- on the size'of‘RSS will be needed when Scheme B is

used.
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4.B. Marking Scheme A

It is observed from our simulation studies that only
certain ways of marking the array can guarantee correct

results, and one such ways is given below.

Marking Scheme A:

/

The initial marker position, M(i), of loop i is:

where i=1,2,;..2*Row#~1, 0< M(i) <= 2*Column%, and M(0)

can be any value in the range of M(i).

Scheme A is applied to the example of Fig.II.6, where
M(0)=1, M(1)=3-1=2, M(2)=5—2=3,‘ ‘M(3)=9-3=6, AM(4)=7-6=1,
M(5)=3-1=2, and the pattern repeats. I1f there are only two
columns, then M(3)=6MOD(2*Column$)=2. The rationale behind

this scheme will be explained in Section 5.B.

4.C. Marking Scheme B

In the second scheme, the markers are placed along the

two sides of the comparator array, as demonstrated in
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Fig.II.7. This method 1is simpler and we may use the
Input/Output lines to insert the markers; and also, the
retrieval of the final sorted list is easier than when Scheme

A 1is used,

However, this scheme requires that the number of
columns of the RSS array be twice an odd integer, or the next

higher integer of that value:

Marking Scheme B:
M(i) := 1, 4 for i=even

:= 2*Columni, for i=odd.

Requirement(2) (for Scheme B only):
Column¢ := 2*(An odd integer) ,0r

= 2*(An odd integer)+ 1

5. Analysis of the RSS Algorithms

5.A, Analogy with the Odd-Even Transportation Sort

The RSS algorithms bear some resemblance to the 0dd-
Even Transportation Sort [11]; therefore, a brief explanation
of the "0dd-Even sorter would be helpful in ahalysing the RSS

design:
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Stage S=0 | 3 . . . N-1

a
2y —*
a

input : ‘l

!

'

sorted ouput

2
l Il
e I
. 3

d
1 x
1 R

Fig.II1.8. The Odd-Even Sorter.

In Fig.I1.8, the appearance of an arrow indicates the
presence .of a conventional, binary sorter situated at that
position. . An item a(j) will be compared to another item
a(j') at stage s if,

' = § o+ (~1)%*%(j+s) cececennseness{II 1)

where all j', j and s are greater than or equal to zero and

are less than N, where N is the number of input lines.

The value of j' will alternate between (j+1) and (j-1)
when s 1is incremented. This sorter guarantees correct
sorting of N items in N cycles [11], but it requires a total
of N*(N-1)/2 sorters; it is therefore impractical if N is

large.
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5.B. Correctness of the RSS Algorithms and Marking Schemes

In this section, we will first prove that the RSS
algorithms are correct, and then the two marking schemes will
be derived. In Lemma (II.1), we will examine the effects of
the RSS algorithms on each loop of the RSS array, temporarily
ignoring the interactions among the loops; then Theorem (II.1)
will show that with these interactions, a complete sorting

process can be achieved.

Lemma (II.1): The Odd-Even Transportation Sort is performed on
each of the RSS loop when either Algorithm I or II is applied
to the RSS array.

Proof: Let us consider three indexes i,j and J on the RSS
array. As demonstrated in Fig.I1I1.9, i(=0,1,..2*R-1) indexes
the 1loops of the RSS array; J(=1,2,..2*C) indexes the fixed
positions of the array; and for loop i, M(i) indicates the
initial position of the marker of the loop, and j(=0,1,...2*R-
1) indicates the distance of a position away from the marker.
Because the markers are shifted with time, j is therefore a

function of time and is related to other indexes as follows:

j=[ (M(i)+2C-J) + (2C+(t*(-1)**i)MOD 2C)IMOD 2C .....(II1.2'")

=[4C + M(i) - J + (t*(-1)**i)MOD ZC]MOD 2C teereneeel(11.2)
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Fig.I1I1.9. The three indexes: i, j, and J, and the

initial marker position M(i).
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Fig.11.10. The horizontal comparisons carried out on the

RSS array.
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The first composite term in expression (II.2') shows
the effect of the initial marker's position on j, and the
second composite term is due to the effect of time indexed by
t. The modulo functions are used to trim the values of t and
j because both of them are repetitive with a periodv of ,2C.
The reader may verify easily that expression (II.2) is correct

from the example of Fig.II.9.

Having established the relationship among the indexes,
we will now derive several expressions to relate a pair of
data items {a(i,j),a(i',j')} 1involved in a comparison.
First, let us consider the horizontal comparison. In
Fig.II.Q; a(i,J) is always compared to a(i,J') where

J' =J— (—1)**J .'...'..'......‘....'005(1103)
For item a(i,j), j is related to other indexes as in (II.2):
j = [4C+M(i)=-J+(t*(-1)**i)MOD 2C] MOD 2C

Similarly for item a(i',j'):

j'= [4C+M(i')-J'+(t*(-1)**i')MOD 2C] MOD 2C

= [4C+M(i')=-J+(-1)**J+(t*(-1)**i')MOD 2C] MOD 2C

For a horizontal comparison, i equals i', therefore j' reduces
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to:
j'=j+(—1)**J 0.o.-oo.-oooonooo.oo-oo--..ao(1103')

Again from expression (II.2):
J= -j+4C+M(i)+(t*(-1)**i)MOD 2C + 2KC

where K is any positive integer such that J will be positive.
Substituting J into (I1.3'), we obtain the expression for 3j',

where a(i',j') will be compared to a(i,j) horizontally,

Jre=—g+(=1)%*[§+M(i)+2C+(t*(-1)**i)MOD 2CJ......(I1I.4)

Within loop i, M(i) and (-t1)**i are constants, therefore j'
will alternate between (-j;1) and (-j;1) as t increases. By
comparing (II.4) and (II.1), we can see that the "Horizontal-
comparison" when coupled with the "Shift" operations, will
perform the Odd-EQen Sort as far as loop i is concérned, and
therefore items within a loop can be sorted within 2*C cycles.
This point is further illustrated in Fig.II.10.

Q.E.D.

Theorem (II.1): The entire RSS array 1is capable of sorting
with the combination of either Algorithm I or Algorithm II,

and either Marking Scheme A or Scheme B.
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Proof: In addition to the Odd-~Even comparisons within a loop,
the RSS alsobcompares the items of any two adjacent loops by
means of the "Vertical-comparison"” and . "Diagonal-comparison”;
the purpose of these operations 1is to move smaller items
upward and larger items downward. It is easily discernible
that, if comparisons are provided between the head (i.e.,
a(i+1,0)) of one loop, and the tail (i.e., a(i,2C-1)) of the
next higher 1loop, then odd-even sort will be carried out on

the entire RSS array.

Therefore, the proof of this theorem is reduced to the
proof that the "head-tail“'compa;isons are 4provided by the
combination of the algorithms and the marking schemes. Let
us consider the_"Vertical-comparison" between a péir of items
{a(i,j),a(i',j")1}. In Fig.I11.9, note that a(i,j) will be

always compared to a(i',j') if,
i'=i—(—1)**(i+rJ/2]) ;-no-.o.no.occ.‘oooo-.oooo(llcs)

From expressions (1I1.2,4 and 5), we can obtain the position J

where the head and tail of any two loops meet:
j=2€ -1 , => 4C+M(i)-J+(t*(-1)**i)MOD 2C = 2KC+2C-1 c..(11.6)
j'=0, => 4C+M(i')-J+(t*(-1)**(i+1))MOD 2C = 2K'C ......(II.7)

Combining expressions (II.6 and 7), we obtain,
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BC+M(1i)+M(i')-2J = (K+K')*2C+2C-1
=> J=K"CH+(M(i)+M(i")+1)/2 tiereeeeeenesenonneansslll.B8)

where K and K' are integers such that 0<=j<2C, and K" equals
either -1, 0 or 1 because 1<=J<=2C. Expression (II.8) means
that the tail of loop i will be compared to the head of loop
(i+1) at either halfway between M(i) and M(i'), i;e.,
J=(M(i)+M(i")+1)/2, or J=(M(i)+M(i')+1)/2+C, depending- on
whether there is any comparator situated at these locations.

From expression I1I1.8,

M(i)+M(i+1)+1 = 2(J-K"C)

=> M(i)+M(i+1) = 2(J-K"C) -1 ..... ceessnessesl(Il.9)

Expression (I1.9) gives rise to another requirement for the

marking of the RSS array:

Requirement(3):

(for marking schemes other than Scheme A and B)

M(i)+M(i+1)=An odd integer

This requirement will ensure that the tails and heads

of the loops will be compared by the vertical comparisons.
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'is automatically satisfied when Marking Scheme A or B is

used, but has to be considered for other marking schemes.

Q.E.D.

Now we will derive Marking Scheme A. From (II.5),
i'=i+1 and i'=i-(-1)**(i+ [J/21)

=>i+[J/21=An odd integer

=>[J/21=(An odd integer) - i

Case(i) at i=even, [J/21=0dd; therefore,

=> J

2% (An odd integer), or

= 2*(An 0dd integer) =1  teieeneennnea..(I1.10)
from expressions (II.9 and 10),
=> M(i+1)= 4*(An odd integer)-2K"C-1-M(i), or
= 4*(An odd integer)-2K"C-3-M(i) e (11.11)

Case(ii) at i=odd, [J/21=even; therefore,

=> J=2*(An even integer), or

=2*(An even integer)-1 tesecsnsecs osesa(II.12)

from expressions (II1.9 and 12),
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=> M(i+1)=4*(An even integer)-2K"C-1-M(i), or

=4*(An even integer)-2K"C-3-M(i)......(II.13)

We could obtain Scheme A by setting K"=0 in expressions

(IT.11 and 14):
M(i+1)=4*i-2+1-M(i)

Or, equivalently,
M(i)=4%i-2+1-M(i-1)

which is Scheme A and where 1<=M(i)<=2C, for i:=1,2,...2R .

To derive Scheme B, let

M(i):=1, for i=even

¢+=2C, for i=odd
Case(i) At i=o0dd, from expressions (II1.8 and 12),
J=RK"C+(1+2C+1)/2=2*(An even integer), or
=2*(An even integer)-1

=> J=K"C+C+1 6{3,4’7'8......} ...........(1.1014)

out of the three possible vaules of K", i.e., -1, 0, and +1,
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only K"=0 can satisfy both expression (II.14) and (1<=J<=2C);

therefore,
J=C+1 6{3,4,7,8,.....}
=>C 6{2,3,6’7100-00}

=>C:=2*(An odd integer), or

:=2*(An odd integer)+1 SRR & S §-)
Case(ii) At i=even, from expressions (II.8 and 10),

J:=K"C+(2C+1+1) /2

=K"C+C+1 €{1'2,5,6......} ....I.....I.(II.16)

both K"=0 and K"=-1 can satisfy expression (II1.16) and

" (1<=J<=2C) simultaneously:

when K"=0, Ce{0,1,4,5..... } chescessnns (I1.17")

when K"=-1, C= Any positive integer ceressnecness (IT 17)

For all values of i, both expressions (II.15 and 17) can be

satisfied simultaneously by the requirement below:

C := 2*(An odd integer), or

:= 2*(An odd integer)+!1
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=>C €{2,3,6,7,000000.}
which is Requirement (2) of Scheme B.
Now let us consider the diagonal comparisons, and we

will show that Requirement (3) can actually be waived when

Marking Scheme B is used with Algorithm II.

Again, from Fig.II.9, items a(i,j) and a(i',j') will

be compared diagonally if,

J'=J-(-1)**J I..'.‘....."...(II.,3)

$T=im (= 1)*%(1413/21)  errernnranenn, (11.5)

Converting J and J' into j and j' using expressions (II.2 and

3):
j=[4ctg(i)-a+(t*(—1)**i)Mon 2C] MOD 2C
j'=[4C+M(i")=-J+(~1)**J+(t*(-1)**i')MOD 2C] MOD 2C

The heads and tails of the loops will be compared by the

diagonal comparisons if,

j=2€-1
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Substituting these values into the above expressions, we get,

j=2C-1, => 4C+M(i)-J+(t*(-1)**i)MOD 2C=2KC+2C-1

j'=0, => AC+M(i+1)=J+(=1)**J+(t*(=1)**(i+1)MOD 2C=2K'C
Adding up the two expressions,

BC+M(1)+M(i+1)-2J+(-1)**J=(K+K"'+1)*2C-1

=> M(i)+M(i+1)=2J-2K"C-1-(-1)**g
=2(J-K")C-1-(-1)**J
=2(J-K")C, or 2(J-K")C-2

=An even integer.

The last result shows that Requirement_(3) can be waived when
Scheme B is used with Algorithm 1II, because if M(i)+M(i+1)
equals an odd integer, then the head-and-tail comparisons will
be provided by the "Vertical-comparison", but if it equals an
even integer, then it will be provided by the “Diagonél—

comparison” as demonstrated above.

The various requirements for the marking schemes are

summarized in Table.II.1.
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Table II.1 - Requirements of the RSS marking schemes.

Marking Scheme| Algorithm I Algorithm II
A Requirement (1) Requirement (1)
B Requirements(1)&(2) | Requirements(1)&(2)
others Requirements(1)&(3) and others to be

\

derived from expressions II.5 and II1.8.

_5.C. Correctness of the Termination Methods

1f the RSS array is correctly marked and Requirements
(1), (2) and (3) are dulf met, then Condition (1) of Section
(2.C) is sufficient to guarantee proper termination. The
reason is that, as we can see from expressions (II.2,4 and 5),
the comparison pattern repeats every 2C cycleS; if there is no
exchange in the most recent consecutive 2C cycles, then there
will be no further exchanges in the subsequent comparisons,

meaning that the sorting process must have terminated.
5.D. Timing Complexities
The RSS simulation program is listed in Appendix B for

reference. Input parameters to the simulator include the

numbers of rows and columns -- these two numbers determine the
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total number of items to be sorted -- and the initial seed
value for the generation of the ihput list; at the end of each
simulation run, the simulator will produce the sorted list as

well as the number of sorting cycles needed.

Fig.II.11 show the numbers of cycles needed by RSS
Algorithm I to sort on arrays with various combinations of
numbers of rows and columns. These 'simulation results
indicate that with Algorithm I, the average number of cycies
needed to sort a random set of N items is bound by the
line N, and approaches N/2 as N increases.

o/
Wheén Algorithm II is used, the number of cycles needed

will be much smaller -- due to the presence of diagonal
comparisons, and the examples of Fig.I11.6 and 1II.7 help
illustrate this point. However, the actual speeds of
Algorithm II may or may not exceed that of Algorithm I,
because its comparison cycle include the diagonal comparison

and hence its cycle time will be longer.
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6. Discussions

Since sorting is such a common and necessary operation
in computer applications, there are dozens of sorting
algorithms described in the literature. In this chapter, we
have presented two similar sorting algorithms which apply the
systolic 1idea to a cyclical architecture, and the functional
design of a sorter (RSS) based on these algorithms has also
been suggested. Our prima;y goal is to look into the design
of a special-purpose VLSI chip that can be attached to a host

computer such as the one envisioned by Foster and Kung [19]:

SYSTEMBUS 2 2
!

] | | B 1

Primary || Pattern eeo |Disk | | Tape
CPU | | Memory || Matcher || FFT || Serter | - 'e Pe

Fig.II.12. A general-purpose computer system with speciai-
purpose chips attached [19].

Undoubtedly, the wusefulness of the sorter is not
limited to scientific computation , it could also be used in

office information systems and relational data base machines.

With the stated goal in mind, we now compare our
proposal with some existing ones using the following criteria:

(a) time complexity; (b) hardware complexity and (c¢) control
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complexity.

(a) Time Complexity: In Table.II.2, the sorting times of
some existing algo;ithms could be divided into four
categories, namely, O(logN), O((logN)**2), O(N**(.5)
and O(N), where N 1is the number offitems to be
sorted. Muller and Preparator's algorithm [10] is
in the faster category, but it requires a
discouraging number of comparators, O(N**Z).
Batcher's bitonic sorter [13] and the)zerfect shﬁffle
[9] are both in the O{((logN)**2) category, and they
are characterized by the shuffle-exchange type of
interconnections. The two mesh sorting schemes sort
N**2 items on a NxN mesh with approximately O(N)
time, therefore they belong  to the O(N**0.5)
category. Nassimi and Sahni's mesh sorting scheme
[14] is based on Batcher's bitonic merge algorithm
and it needs approximately 14N routing steps and
2*l1ogN compare-exchange steps on a NxN mesh;
moreover, it requires that the input Sﬁbfiles be pre-
sorted. ‘ Thompson and Kung's mesh sorting scheme
[15] needs roughly 6N+O((N**(2/3))1ogN) routing steés
and N+O((N**(2/3))1ogN) compare-exchange steps. The
RSS algorithms belong to the O(N) category, but
because of their simpler control structures and near-
neighour type of data movements, their actual sorting

times might be 1less than those of the mesh

sorting schemes which require more complex control



(b)

(c)
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and data movements.

Hardware complexity: Sorters with shuffle-exchange
type of interconnections are not well-suited to VLSI
implementations, because shuffle-exchange networks
have a very low degree of regularity and modularity,
and require wires of various lengths. It has been
shown by Thompson [18] that at least
O((N**2)/(logN)**2) chip area is required to lay out
an N-vertex shuffle-exchange network =-- this is a
serious drawback when N is large. On the other

hand, because the interconnection patterns required

'by the mesh and the RSS algorithms are highly regular

and repetitive, these two types of sorters could be
fabricated easily by replicating the circuits of a

single comparator unit for the entire arrays.

Control complexity: The logic of the various
operations (i.e., Horizontal-comparison, Vertical-
comparison and Diagonal-comparison) can be hardwired
into each of the quadruple comparator, and the
control unit showh in Fig.I1I.! simply broadcasts the
sequence of these operations to all the comparators.
The control structure required by the RSS algorithms
is therefore comparable to that required by the
Batcher's bitonic sorters, and is much simplér

than that required by the mesh sorters. The
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simplicity of the RSS controller is another important

factor when the VLSI implementation is concerned.

Most other sorting networks impose certain non-trivial
' constraints on their sizes; for examples, the Batcher's sorter
and the perfect shuffle network require that the number of
input lines be a power of two, and the mesh sorting algorithms
operate on square arrays. The contraints of the RSS
algorithms (see Table.II.1) appear to be 1less stringent in

this respect.

In summary, although the RSS design is not optimal in
every aspect, it is highly amenable to VLSI implementations as

far as its hardware and control complexities are concerned.



Table 11.2 - Complexities of Sorting Networks+

Method #1lnput! #Comparators Time Interconnection Control
Batcher’'s Bitonic Sorter([13] N ~O(N{10gN}*+*2)] O({1ogN}**2) high low
Muller & Preparator’s{10] N O(N**2) 0(10gN) 1ow high
Perfect Shufflel[9] N 0(N) o( {1ogN}**2) high Tow
Thompson & Kung’s Mesh Sort[15] NxN NxN mesh O(N)++ low high
Nassimi & Sahni’s Mesh Sort[14] NxN NxN mesh O(N)++ low high
RSS N 0(N) O(N)++ Tow Tow

Notes: + 1In terms of amenability to VLSI

++ Please see discussions in Section I1.6.

implementations.

Ly



Chapter III. A Novel Loop-Structured Switching Network

(LSSN)

1. Introduction

Many large-scale computer applications such as 1image
processing, weather forecasting and ballistic missile defence
systems, require execution rates of more than one billion
instructions per second. With the advent of VLSI
technologies, it is feasible and more flexible to construct
such large-scale systems by interconnecting hundreds or even
thousands of off-the-shelf processing and storage devices, to
work in a co-operative manner. Although several existing
networks can provide the ;equiged communication ‘bandwidth
among these devices, they are expensive to build and difficult
to expénd. Fbr examples, the switch counts of a NxN crossbar
and a NxN baseline f20] are O(N**2) and O(NlogN) respectively;
for N=1024, the crossbar would require more than a million
switches while the baseline would neea about five thousand of
them. Another disadvantage of using large number of switches
is that of system reliability -- the networks are more likely

to fail when more switches are used.

In this chapter, we introduce a novel loop-structured
switching network (LSSN) which overcomes the above problems..
The main feature of LSSN is its cycliéal connections; and it
only requires N/2 two-by-two switches for interconnecting N

pairs of transmitting and receiving devices; therefore, it is
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very attractive for large-scale, heterogeneous systems made up

of many devices.

From the structural and functional points of view,
LSSN is a packet-switched, multi-staged, blocking network with
distributed control. In the next section, we will present
its connection function, addressing and routing algorithms.
In Section three, several important properties of LSSN will be
revealed, and the causes of and method to avoid deadlocks will
be discussed. In Section ﬁouf, the results of our simulation
studies and performance evaluations will be presented.
Discussions and topics for further work are provided in
Section five, and the LSSN simulatién program are listed in

Appendix C for reference.

2. Network Topology

Networks using (logL) stages of two-by-two switches --
where L is a power of two -- are well—kﬁown [20,25,22,25,261.
Traditionally, they are used to connect L input to L output
terminals, 1i.e., for interconnecting L transmitte;s to L
receivers.. feedback paths are sometimes provided to route
the information back from the output side to the input side,
thus forming loops. LSSN is also based on +the concept of
feedback loops, but it differs from ofhers in that all its
switches could be used as both entry and exit stations for
data transmission and reception. With L loops -- where L is

a.power of two and at least equal to four -- LSSN can connect
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up to N=LlogL pairs of transmitters (Trs) and receivers (Rrs),
using only N/2 switches -- this feature renders it attractive
for large values of N. An example with L=16 and N=64 is

illustrated in Fig.III.1,

 2.A. Addressing Scheme and Connection Function

The following description can be easily understood if
the readers refer to the example of Fig.III.1, in which all
the switches have been set to the "Straight-through"
connection; a loop is defined as ‘a closed path in this
confjguration. For a LSSN with L loops, each of the loops is
labeled with L'=logL bits of code, i.e., LL"°"L1; which is
the binary representation of an integer in the closed range
[0,L-1]. The swifches are arranged into L' stages each of
which is 1labeled with §S'=llogL'l bits of binary digits

represented as dgiec-d4.

The output 1links of a switch at the s-th stage would

be assigned the following addresses:

¢£eft Output LQ.JIJZ = As'...¢1LL.....LS+10L8-1..L1

p(’.g—ht Output M: As'oooéllL.aooo‘L

s+1llso1 by

These addresses are obtained by concatenating the stage and

loop 1labels together, with the s~th bit of the address of the

left output link set to "0" and that of the right output link
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set to "1", One could verify this scheme on the example of

Fig.III.1.

Consider a switch 1located in the s-th stage, and
suppose one of its output links is part of the loop LL.'°"41,

then it realizes the following connection function:

LSSNS(LL,...LS.;.LI) = LL,...LS...LI » where £_ is the one's

complement of Ls'

The éonnection function states that at the s-th stage, any two
loops with labels differing only in their s-th bits will be

connected by a switch at that stage.

2.B. Routing Scheme

/

In LSSN, receivers (Rrs) are identified by using the
address of the output 1links to which they are connected,
whereas transmitters (Trs) need not be identified. To
dispatch a message, a Tr will generate a packet which has the
following format:

<f'f" ; destination address ; message >

where f'f" is a 2-bit field which will be referred to as the
feedback count, and 1is initialized to zero when a packet is
newly formed, and incremented whenever the packet goes through
the feedback paths. Later on, it will be shown that this

field would never require more than two bits regardless of the
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network size. The address of the Rr and the actual message

to be transmitted are also contained in the packet.

Two types of switches, namely Type-A and Type-B, will
be considered in our studies, and their schematic diagrams are

shown in Fig.III.3.
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A Type-A switch is similar to those wused in the
conventional packet-switched networks, except that it has two
built-in first-in-first-out buffers. When a packet enters a
Type-A switch located in the s-th stage, it 1is first placed
into one of its input buffers, and then switched to the left
output port if the s-th bit of its destination 'aégress is a

"0", or to the right output port if that bit is a "1",

As shown in Fig.III.3, a Type-B switch has a slightly
more complicated internal structure than a Type-A switch.
Its main features are the "structured buffer pools" which are
made up of three classes of first-in-first-out (FIFO) buffers:
Class-0, Class-1 and Class-2. It also contains féur
intermediate ports which are connected to the Class-0 and
»Clas§—1 buffers as shown. 1t has two sets of outgoing status
lines indicating the availabilities of its Class-0 and Class-1
buffers to its preceding switches (which are connected to its
left and righf input links), and two sets of incoming status
lines giving the same information from its succeeding switches
(wvhich are connected to its left and right output 1links).
The Class-k buffer -- where k is in {0,1,2} -- is used to
accomodate packets with a feedb;;k count of k; the Class-2
buffer is connected to the output port directly while the
Class-0 and Class-1 buffers are connected to the output port
through the intermediate ports. The functions of these

various mechanisms will be explained later on.

When a packet enters a Type-B switch located in the s-



th stage,
(a)

(b)
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it will undergo the following operations:
From an input port to the buffer pool: The packet
will be placed into one of the buffers according to

its feedback count;

From the buffer pool to the output port: Case(i) From
a Class-0 and Class-1 buffers: If the s-th bit of the

destination address of the packet is a "0", then the

~packet will be switched to the left intermediate port

(c)

then to the left output port; else it will be
swifched to the right intermediate port then Itq the
right output port.  Case(ii) From a Class-2 buffers:
The packet will be forwarded to the output port
connected to the Class-2 buffer without switching and

going through the intermediate ports.

From an output port to the exterior: At the output
port, the destination address of the packet will be
matched against that of the output link. If a match
occurs, then a strobe signal will be sent to the
receiver attached to that output link, and the packet
will be removed from the output port by that
receiver; else the next switch at the other end of
the output 1link will be strobed and the packet will
be forwarded to its input port. For the
transmission between the 1last and the first stages

via the feedback loops, the same operation will take
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place, but in addition, the feedback count of those
packets emerging from the output port of the last

stage will be incremented.

These three operations will be collectively referred
to as a single routing step for the Type-B switch. According
to the descriptions above, the Type-B switch must contain the
following features in addition to those depicted in Fig.III.3.
First of all, the addresses of its output links must be made
available to the matching operations (e.g., by storing the
addresses inside the switch), and there must be some logic
gates to perform the matching; the switch must be able to
determine whether or not it is located in the last stage of
the network by examining the labels assigned to 1its output
links, because the feedback counts of those packets passing
through it have to be incremented. Similar features must’
also be ©present in a Type-A switch, but those hardware

involving the feedback counts may not be included.

Since the rputing of packets is performed 1locally by
each of‘the'switches, LSSN has the advantage of not requiring
a central controller. On the other hand, the lack of central
‘control will give rise to conflicts among the packets for the
shéred network resources such as ports and links; the effects
of such conflicts on LSSN when Type-A and fype—B switches are

used will be detailed in the next section.
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3. Network Properties

First, some useful theorems concerning the behaviors
of LSSN with the presence of a single packet will be stated,
then the various properties of LSSN with the presence of more
than one packet will be examined. The proofs of all these
theorems are given in Appendix A, and all the algorithms used

are base-two.

Notice that even though the destiﬁation addresses
os,.AllL..Llcarried by a packet consists of (S'+L') bits of
information, only the L' iéast significant bits are invol?ed
in the switching operation (i.e., Operation (b) of Section
2.B); and the first S' most significant bits, together with
the L' least significant bits, are involved 1in the matchihg

- operation (i.e., Operation (c) of Section 2.B) only. This

observation leads to the following lemma:

Lemma III.1: Consider a LSSN which has L loops and a  packet
which is destined for the address 4gr---83€peec-.Ly, where
L'=logL and S'=llogL'1l. The packet will be routed to the
loop LL,{...Ll within L' stgps of routing after its

admission into the LSSN.

Example: Consider a LSSN with L=16, then L'=4 and S'=2. A
packet destined for the address (101111) will be routed to the
loop (1111) within 4 steps of routing regardless of where it

is generated.
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Lemma III.2: Consider a LSSN with L loops and a packet which
is destined for the address 45'-~'41LL"'°'51, where L'=logL -
and S'=llogL'1. After the packet has been routed to the loop

L yeennty

L , it needs at most another (L'-1) steps of matching

along that loop to reach its destination.

Theorem III.1: In a LSSN with L loops, a packet will be
delivered to 1its destination within (2logL =-1) steps of

routing regardless of where it is generated.

Example: In the example of Fig.III.1, L=16; therefore the

maximum number of routing steps is (2*4 - 1)=7.

\

Theorem III.2: The average number of rbuting steps (ARS)

needed to deliver a result packet in a LSSN with L loops is,

ARS(L)=(3logL-1)/2+2/L-1

Example: In the example of Fig.II1.2, since L=16, therefore,

ARS(L=16)=(310g16 -1)/2 + 2/16 -1 = 4,625,

Corollary III.t1: Any packet admitted into LSSN will go through

the feedback path at most twice.
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Example: In the example of Fig.III.1 and 2, if Tr49 -- which
is attached to link 10 0000 -- sends a packet to Rr32 -- which
is attached tollink 01 1111, then this packet will go through
the feedback paths twice: The first time through the 1loop

(1000), and the second time through the loop (1111).

Corollary 1III.1 explains why the packets only have to
carry two bits to indicate its feedback count f'f" , and also
why each buffer pool of the Type-B switch is made up of three

classes of buffers regardless of the network size L.

Theorem III.3: In a Type-B switch of a LSSN which has L loops,
the probability that the destination address carried by a
result packet will ‘match the label of an output link of the
switch, and hence the packet will be removed from the network
is:

P emoved =2L/{3LlogL-L+4}

where the transmission pattern 1is such that each and every
receiving port of the network is equally 1likely to receive
that packet.

Theorem III.4: The maximum average throughput rate (MATR) of a

LSSN with L loops is:
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MATR(L)=3/2xSp g, X10gLxL**2/{3L1ogL-L+4]}
?

where SR is the maximum rate of transmitting Result packet

s OW

between two switches via an output 1link.

3.A. Network Conflicts

When there are two or more packets in LSSN, they may
contend for the same network resources such as input buffers,

ports and data links, thus giving rise to conflicts.

If Type-A switches are used in LSSN, then there would

be two types of conflicts:

(a) A1 conflicts - which are the contentions due to the
simultaneous requests made by packets in the two

input buffers, for the same output port;

(b)) A2 conflicts - which are the contentions between an
output port and the Tr sharing the same link, for the

same input port of the switch at the end of the link.

A simple round-robin discipline can resolve both types
of conflicts and will ensure fairness. A better alternative

for A1 conflicts is to honor the input buffer which has more
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waiting packets in it; and if both input buffers are eqQually
occupied, then an arbitrary buffer will be chosen. As for A2
conflicts, the output ports perhaps should be given a higher
priority over the Tr's so that those packets which are already
admitted into the network could reach their destination faster
(i.e., a faster response time could be obtained). These
observations were obtained from the simulator 1listed in

Appendix C.

As for Type-B switches, there are three possible types
of conflicts (the reader may refer +to Fig.III.3 for the

following descriptions):

(a) Bt conflicts - which are due to the simultaneous
requests made by packets from the left and right

buffer pools, for the same intermediate port;

(b) B2 conflicts - which are the contentions among the
the intermediate ports and Class-2 buffer for the

same output port;

(c¢) B3 conflicts - which are the contentions between an
output port and the Tr sharing the same output 1link,
for the 1input port at the end of the link. B1
conflicts could be resolved by a simple round-robin
discipline: the <conflicting packets are switched to

the intermediate port alternately.



64

The resolution of B2 conflicts 1is more intricate.

Our simulation studies showed that the round-robin discipline
would give rise to unbearable propagation delay to certain
packets, but much better performance, 1in terms of average
throughput rate and delay, could be obtained with a priority-
based policy (an explanation will be given in Section 3.B)
which assigned the highest priority to the Class-2 buffer, and
then the intermediate port connected to the Class-1 buffers;
and finally the intermediate port connected to the Class-0
buffers. With this policy, packets in the Class-2 buffers
are switched to the output port immediately when the output
port becomes empty; as could be explained by Lemma 1 and 2,
these packets will always'reﬁain in the same loops, therefore
they need not go throught any intefmediate port.

Furthermore, since they are assigned the highest priority in
the use of the outpﬁt port, they will not accumulate and hence
the size of the Class?z buffers is always bounded. When the
Class-2 is empﬁy, the "eligible" intermediate port with the
next highest priority will be granted access to the output
port; An intermediate port connected to the Class-k buffers
is said to be "eligible™ if it 1is non-empty, and if the
incoming status lines indicate that the Class-k buffer of the
next switch is not full. As for the connections between the
last and first stage, an intermediate port connected to to the
Class-k buffer 1is "eligible"™ if it is non-empty and if the
' Class-(k+1) buffer of the next switch in the first stage is

not full. The difference in the above definitions of
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"eligibility" is discernible if one realizes that the feedback
count of a packet is incremented whenever it goes through the
feedback paths back to the first stage. The purpose of the
status lines is therefore to help prevent the output ports and
input ports from being clogged with packets which 'cannot be

switched away immediately.

The priority-based policy would favor those packets
originated at the lower stages, because the feedback counts of
these packets are incremented sooner than those originated at
the upper stages, and hence will be assigned higher priorities
sooner. However, our simulation studiesb shows that this
policy is superior than the round-robin discipline as far‘ as
the overall performance is concerned (an explanation will be

offered at the end of next section).

The resolution of B3 conflicts is rather straight-
forward: the conflicting Tr and the output port are granted
access alternately. But in addition, it is necessary for the
Tr to check that the Class-0 buffer (not just the input port)
at the entry point is not full before it can transmit. The
availability of the Class-0 buffer has to be checked because

newly admitted packets carry feedback counts of zero.
3.B. Deadlock and Avoidance Method

In conventional non-recirculating, packet-switched

N
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networks, thé blockage due to data path conflicts is temporary
as long as there is a fair scheduling policy; whereas in a
LSSN which wuses Type-A switches, blockage migh 1lead to
deadlocks -- the situations in which certain loops are clogged
with packets and no further switching can take place along
these 1loops, and very soon the whole network will become

impassable.

The deadlock problem in LSSN is attributable to the
store-and-forward type of data movements and the cyclical
reéuests of network resources. In a Type-A switch, 1if the
packets coming out of its two input buffers always contend for
the output ports, then the input buffers will be filled up
rapidly; and if all the input buffers and output ports along a
particular loop are filled with packets in trénsit, and if the
first packets of all these input bufferé are waiting for these
occupied output ports to be freed, then this loop will enter a
"single-loop” deadlock. A "multiple-loop" deadlock is
produced in a similar manner but it involves more than one

loop.

According to our simulation studies, the probability
of deadlock could be reduced significantly by increasing the
size of buffers and restricting the 1input 1load down to a
certain 1level; but this approach does not eliminate deadlocks
entirely, and moreover, it requires a deadlock detection

scheme and a recovery procedure. Perhaps it 1is more
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efficient to get around the deadlock problem by avoiding
cyclical requests of the network resources; and Type-B

switches are meant for such a purpose.

Our idea of using Type-B switches to prevent deadlocks
ié based on the concept of "structured buffer pools" put
.forward by Raubold and Haenle [29]. According to their
method, buffer pools are divided into K classes, where K s
the 1length of the longest path in the network concerned, and
if a packet is of r routing steps away from its transmitter,
then it may be placed into any Class-k buffer such that k<r<K.
élearly, their method has the drawback that K must be a
function of ;he network size. We eliminate this drawback by
classifying packets according to their feedback counts which

has been proved to be bounded.

With the use of Type-B switches, the LSSN will be free
oﬁ tﬁe store-and-forward type of deadlocks. A simple
explanation 1is as follows: for packets entering the buffer
pools, they will request buffers according to their feedback
counts, therefore there is no circular request on the buffers;
as for the shared links and input/output ports, these network
resources are granted to the requesting packets on the
condition that their occupations by the packets will always be
temporary. With this 1idea in mind, now we will state the

following theorem:

Theorem 111.5: The LSSN which uses Type-B switches is deadlock
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free.

An explanatory proof of Theorem III.5 1is given in

Appendix A.
3.C. Network Extensibility

Very often it is desirable to expénd a network after
it has been built; but usually such an expansion is difficult
with most, if not all, existing designs. LSSN has the very
useful property that it can be expanded incrementally by
adding more stages to the basic structure without complicating
the addressing. and routing algorithms. Of course, to
facilitate the expansién, there must be sufficient address

lines to account for the added stages and devices.

One way to expand the basic structure while keeping it
intact 1is to add the new stages. to the bottom of it --=
immediately after the last stage of switches and before the
perfect shuffle takes place. Sﬁppose there are L loops and
L' stages originally, and we want to add L" more stages, then
the expanded LSSN would have a total of (L'+L") stages as

shown:
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stage number, s

1 }

2 } -

: % basic structure
L' }

L'+1 ]

: ]

: ] additional stages
L' +L" ]

Now the stages and Rr's will be addressed using
S"=llog(L'+L")1 and {llog(L'+L")1+L'}={S"+L'} bits of binary
digits respectively. The addressing scheme and connectioﬁ
function for the newly added stages are:

Left output link = (AS""'°10£L'-1"°°L1)

£.)

Right output link= (& Lio1°°°*%

S""’AllL

'.L

LSSNS(tL'.."Ll) = (LL'.. 1)

In words, all the new stages would be treated much the
same as the last stage of the basic structure, i.e., the L'-th
stage; and there iS no shuffling among the output links of
these new stages; and packets  which are sent to them are
routed according to the L'-th bits of the destination

addresses of the packets.

In the expanded LSSN, the duty of incrementing the
feedback counts is performed by the (L'+L")th stage rather
than the t'-th; such a minor change has to be taken care of
during the expansion. We do not intend to derive theorems

from scratch for the expanded network because the validity of
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Corollary 1III.1 and Theorem III.2 are discernible if the new
stages are regarded’as the subsidiéries of the L'-th stage,
i.e., if stage L' through stage (L'+L") are considered as a
. single, compound stage. Lastly, we would like to point out
that LSSN could also be expanded in the more expensive way by

doubling its loop count.
4. Simulations and Performance Analysis

In our simulation studies, the throughput rate - and
delay are the two measures used for evaluations and
comparisons. Throughput rate is defined as the average
number of packets flowing throught the network per unit time,
and the delay of packets is defined as the average interval
between their generations and receptions.  The delay is made
up of "entrance delay" and "propagation delay", where entrance
delay is the average.duration that a packet has to wait at the
entry point, and propagation delay includes the time spent in
queueing and switching within tﬁe network. Request interval
is the varying parameter and is defined as the avefage time
between the last successful transmission and the generation of

the next packet.

In order to obtain some meaningful results and to
facilitate the analysis later on, we have made the following

assumptions:



(a)

(b)

(c)

(a)
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The transmitting and receiving pairs are randomly

selected out of the entire address space;

The transmission pattern is such that if the current
request to transmit is in process or blocked, then
the transmitter affected will not generate the next

request;

Packets are removed immediately from the network when

they arrive at their destination;

As for timing considerations, the amount of switching
delay in going through a conventional binary switch
was estimated to be five gate delays [30]: three for
path selection and two for data transfer. Since
Type-A switches would 1lead to deadlocks on LSSN,
their analysis will not be included in our studies.

A Type-B switch would need more delay than thé
conventional ones: three gate delays £for path
selection, two for data transfer from the input ports
to the buffer pools, two from the buffer pools to the
intermediate ports and another five for path
selection and data transfer from the intermediate
ports to the output ports -- a total of twelve gate
delays. In the case of those packets which are
inside Class-2 buffers, their switching delay are

shorter because they do not have to go through the
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intermediate ports. The main duty of the LSSN
simulator 1is to compute the total delays of each
individual packet by summing up its entrance,

switching as well as gqueueing delays.

These assumptions are considered justifiable, and they
have also appeared in the simulation studies of other packet
switching networks (e.g. references [25,30]). In the LSSN
simulator, a timer was associated with each packet entering
the network, so as to record each type of delays that it will
encounter. From time to time, the whole switching array was
inspected to make sure that no packet would be subjected to
substantial delay -- which 1is an indication of potential
deadlocks. The LSSN ﬁnder study had 16 1Qops and was fully
connected with 64 pairs of transmitters and receivers. The
effects of the buffer size on the network performance were
first investigated, and it was confirmed that because fhe
Class-2 buffers were given the highest priority in the B2 type
of conflicts, the maximum requested size of the Class-2
buffers was bounded to two. For this reason, the size of the
Class-2 buffers was fixed at two, and the sizes of the Class-0
and Class-1 buffers were varied from 4 to 14 (an arbitrary
range). Our results (please see Fig.III.5) show that the
variation of the sizes do not have a significant effect; the
reason is that when more buffers vere used, there would be
more traffic introduced 1into the network, although the

entrance delay of a packet is reduced, its propagation delay
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would be increased; as a result, the total delay is not much

affected.

In the second part of our study, we compared the
performance of a 64x647LSSN to that of a 64x64 baseline and
then a 16x16 baseline. The baseline networks were considered
because they are topologically eqguivalent to many existing
networks [20]. We must emphasize that our comparison studies
are not entirely fair because baseline-like networks could be
used as either circuit-switched networks (e.g., The Star
network [24])}), or packet-switched networks, whereas LSSN is
intended to be used as packet-switched networks only;
furthermore, the LSSN swiéches have a huch higher logic gate
density than the conventional dnes. For comparisons, we
'assumed that the switches used in the baselines had a buffer
size of 16 (an arbitrary number); as for LSSN switches, the
sizes of 1its Class-0, Class-1 and Class-2 buffers were fixed
at seven, seven and two, fespectively --- a total of 16 as
well, The results obtained for this buffer size are
presented in Fig.II11.5; other buffer sizes would produce

results very similar to these.

In Fig.III}S,'all the measurements were scaled by the
factor f which is the operéting frequency of the networks.
The value of f could be as high as 60 MHz if the switches are
fabricated with TTL gates, or 400 MHz with ECL gates. A

64x64 baseline would need a total of 192 switches whereas a
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64x64 LSSN and a 16x16 baseline would require 32 switches
each. Not only the numbers of switches would contribute to
the complexities of the networks, but the amounts of wiring

have to be considered as well,.

Our results show that if the request interval is very
short, the throughput of the LSSN will be close to that of the
16x16 baseline, and its delay will be about three times
higher; but when the request interval is longer than 40/f,
then both the throughput and delay of the LSSN will appfoach
that of the 64x64 baseline. If the request interval is
fﬁrther increased, the delay of the LSSN will be reduced to

that of the 16x16 baseline.

In summary, our results indicate that the performance
of a 64x64 LSSN can match that of a 64x64 baseline with a
significantly lower switch count and hence fewer wiring.
This savings is even more éubstantial when the sizes of the

networks considered are very large.
5. Discussions and Outlook

We have describeq a novel method to set up a
communication network based on the concept of cyclical
architectures; we have also presented the addressing and
routing schemes, and several properties of the network.

Although packet-switched, cyclically connected structures are,
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susceptible to the store-and-forward type of deadlocks when
used asynchronously, we have suggested a deadlock avoidance

scheme based on some unique features of our design.

The topology of our proposed network LSSN resembles
that of some existing ones,. If only L processors are
attached to LSSN such that they all transmit packets through
the first stage and receive packets from the last stage, then
LSSN would be reduced to an indirect binary n-cube [21].
This similarity implies that those useful algorithms developed
for the indirect binary n-cube could be adapted for LSSN
easily. LSSN also :esembies the last stage of the Batcher's
bitonic sorter [13]; therefore, it 1is possible to perform
Batcher Sort on LSSN provided there exists a masking scheme to
disable some of the attached processors as data items are
circulated around the network. LSSN could also be partially
connected and wused as an arbitrator or a distributor -- both
of which are esseptial in the designs of data-driven computers

[4,5,8,52,53].

LSSN can also be used to perform arbitrary
permutations -- 1i.e., one-to-one mappings -- from the input
side to the output side. Such permutations would require the
presence of a central controller to compute the routing
information; alternatively, those frequently used control
patterns could be pre-computed and retrieved when needed.
The simpler, Type-A switches could be wused for such an

‘application and they will not cause the network to deadlock as
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long as .only one permutation 1is performed at a time, and
provided there are sufficient buffers inside the switches:
B(L)> MAX{MIN(2**[0.510gN1,N/2**[0.510gN1),

MIN(2**{0.510gN},N/2**[0.510gNJ)}

where B(L) is the number of buffers of the Type-A switches
needed to avoid deadlocks, and N=LlogL, where L is the number
of loops; the worst-case delay to perform a one-to-one mapping
is:

Tmax (L) = 2**[0.510gN]1+N/(2**] 0.510gN])-1ogL-1

" O(N**0.5)

and the average delay is:

Tavg(L)

O(logN)

These results could be found in reference [23]; because both
B(L) and Tmax(L) are intolerably large for large values of N,

we do not intend to include the analysis in this dissertation.

As is shown by our simulation results (Fig.III.6), the

perfofmance of the LSSN is not as good as that of the baseline
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nefwork for applications which 'have very short‘ inter-
transmission times; but if the transmitters are processors
which send out data packets ~as the results of instruction
executions -- i.e., if the processors compute and dispatch

alternately -- then the LSSN will be an attractive design.

Our proposed system trades off external hardware
complexities (e.g., component counts, wiring, etc.) with
internal hardware complexities (i.e., logic‘gate per switch).
High internal complexities can be easily achieved with today's
technologies, " but too many external components and wiring
often renders the system difficult to manage -- this is the

main motive behind our design.
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Chapter 1IV. Design and Evaluation of The Event-Driven

Computer (EDC)

1. Introduction

1.A. Background Information

In this chapter, we will examine how the concept of
cyclical architectures could be applied to the design of a
high-performance supercomputer; to start with, we will discuss
thé shortcomings of the conventional computer systems in this
respect, and then the approach of our design will be

identified.

Conventional computer systems are often referred to as
Von Neumann, or sometimes as Harvard, machines, and they all
have very similar "control" and "data" mechanisms. "Control"
mechanisms refer to the methods for scheduling instructions
for execution, and "data”™ mechanisms refer to the methods for
passing data among instructions. Von Neumann computers are
termed "control-driven" because their instruction executions
are sequenced by control signals generated by the CPUs
(Central Processing Units). In these computers, data are
péssed among instructions by writing and reading memory

locations which are specifically assigned to these data.

A major drawback of using Von Neumann computers in a
highly parallel environment is attributable to the need of,
and difficulties 1in, specifying concurrency -- either the

programmer or the compiler has to be careful with the
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generation of control signals, to ensure that memory locations
are not corrupted by wrongful information during read and
write operations. Such a drawback is easy to overcome in a
SIMD (Single Instruction stream Multiple Data streams [6])
system because there is only a single stream of executable
instructions; whereas in a MIMD (Multiple Instruction streams
Multiple Data streams) system, the asynchronous behavior of
memory accesses among the various instruction streams often
complicates the implementation of the control mechanisms,.

Another major drawback 1is attributable to the difficulty in
"load partitioning” which often gives rise to uneven work load
distributions among the processors and access bottlenecks in
the memory modules. Moreover, system extensibility is always
difficult to achieve, and increments in the number of
processors are often not accoméanied by proportionate

improvement in the system performance.

The goal of research in "data-driven" computers [4] is
aimed at alleviating the above shortcomings, and both their
data and control mechanisms are implemented very much
differently from those of Von Neumann systems: the data
mechanism is such that data are passed from the producing
instructions to the consuming ones directly without going
through any intermediate storage, and the control mechanism
is such that the consuming instructions would be readied for
execution if, and only if, they have received all the required
data and information. For a data driven computer, its

control mechanism could therefore be implemented as



83

suboperations incorporated into its data mechanism, which
could be easily implemented wusing well-known compilation
techniques (e.g., data-flow analysis). The absence of an
explicit control mechanism would ease the task of the
programmmer in specifying parallelism to a great extent. As
a result, the data-driven approach 1is very appealing to
multiprocessing and multiprogramming environments which
contain large amounts of unstructured, asynchronous
concurrency. However, the implicit control mechanism of
data-driven systems does not conform to the notion of certain
‘activities such as input and output operations, which are not
necessarily ready for execution when their data have arrived.

Further, the data mechanism of data-driven systems is very
inefficient‘in handling large arrays because sending arrays
among instructions for computation is both time and space

consuming,

N From the above discussions, it is clear that the 'data-
driven and control-driven approaches are complements of each
other; therefore, it 1is very natural to envision a class of
computers which combine their control and data mechanisms for
the purpose of better performance.

¢

1.B. Recent Developments

This section will examine three existing proposals

which adopt the combined approach:
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(1) Dependence-Driven system (1981) [32];
(2) Combined system (1982) [33];
(3) Piece-wise Data-Flow system (1983) [34].

The Dependence-Driven system 1is made up of a GCU
(Global Control Unit) and several processor clusters, each
capable of executing a high-level function., The compiler is
expected to produce all the static information about the
computation and the GCU will perform run-time scheduling.
This system 1is best-suited for computation which could be
heavily vectorized; however, the presence of . scalar
computation would cause some processing resources to stand
idle during their executions, thus giving rise to under-

utilization of these resources.

The Combined system integrates the concepts of the
"pure" data-driven computation and those of the "multi-thread"
control-driven computation. Trealeven et al [33] have shown
how iterations, procedure calls and resource management are
carried out on this system; not mentioned is how array
operations are performed. If array operations are decomposed
into individual packets each containing a participating array
element, then there will be enormous amounts of overhead
associated with the setting up and transmission of the
packets, and also to synchronize the completions of the array

operations.

Requa et al [34] have provided a rather detailed
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description of the PDF system which possesses both SIMD and
MIMD characteristics -- these two classes of compﬁtation are
performed on different typés of hardware modules which are not
interchangeable. We believe that if both scalar and array
operations could be carried out on the same type of hardware
modules, then there will be fewer module typeg, and hence the
system would be less expensive to design and easier to
control. The PDF systém avoids using any interconnection
network by limiting the number of scalar processors to about
eight; therefore, the speed of the PDF system is expected to
"have limited improvement over existing ones (please refer to

the Introduction Section of [34]).
1.C. Overview of Our Approach

Our objective is to design a heterogeneous

multiprocessor system which,

(1) is cépable of wusing hundreds to thousands of
processors;

(2) has a projected speed range of 100 to 1,000 MOPS
(million operations per second);

(3) possesses both SIMD and MIMD characteristics -- this
is to be achieved by combining the principles of
data-driven and control-driven computation;

(4) is intended for next-generation applications, and is
expected to depart from the prevalent, Von Neumann

architectures.
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In order to connect a -large number of processors
together and yet maintaining a high degree of flexibility, a
large switching network would be included in our design. To
achieve the desired speed range, the intended applications
must possess a large amount of concurrehcy to keep the
processors busy most of the time. Since the ratio of SIMD
and MIMD instruction mix differs from_ application to
application, in order to fully utilize‘its resources, the
system must be able to maintain roughly the same level of
performance regardless of the ratio of mix. We also believe
that in order to attain a significant achievement toward
ultra-fast computation, the new design may have to depart from
the prevalent Von Neumann systems in both hardware and
software; therefore, we only emphasize the architectural
aspects of our design rather than any immediate

implementation.

In our proposed system, there are two basic types of
operations -- scalar and compound operations, both of which
are scheduled for execution using data-driven principles; but
suboperations within a compound operation are sequenced for
execution in a control-driven manner. A compound operation
is either a computational array operation, an array alignment
opefation or a block of sequential program. A sequential
program is one which either requires a fast cohputation time
and could run faster when executed solely by a single
processor in a SISD (Single Instruction stream Single Data

stream) mode than by many of them in a MIMD mode (due to
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A
communications overhead), or is used to control an inherently

sequential process such as printing on the line printer.

I1/0 devices

—d LMs [ RPs
i &
IRs

| 1 Tps <: ' .> PSN

>

~

Fig.IV.1.  The EDC system block diagram.

As shown in Fig.IV.1, an EDC consists of six basic parts:
A Supervising Processor (SP); a bank of LocalvMemories (LMs);
several Transmitting Processors (TPs) and Receiving Processors
(RPs); a numbér of Instruction Registers . (IRs) and a Packet
Switching Network (PSN). The main duty of SP is to load and
spread instructions ‘and data into the bank of LMs, and to
initiate the appropriate TPs to start execution -- both using
the read/write 1links provided on the left of LMs and TPs.
Compound operations (i.e., array computation, array alignments
and executions of sequential programs) will involve the use of
these read/write links as well: when a TP receives such a
compound operation, it will become a subcontroller and request
SP either for the control of several TP-LM pairs for array
computation in a SIMD manner, or to initiate the.excution of a

block of sequential program on another TP in a SISD fashion.
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Information flowing -on the right of LMs and TPs are
encapsulated into the form of either result or instruction
packets: result packets are generated by TPs and are switched
through PSN to RPs which will place them into the proper LMs;
RPs are also responsible for the formation of instruction
packets: they retrieve the executable instructions and data
from LMs and buffer them intc IRs to wait for free TPs for
execution. Because each of the TPs will receive instructions
from' different instruction streams from time to time, the
interpretation of "MIMD" in this case 1is somewhat different

from the traditional one.

Other salient features of the EDC system include:

(a) Fewer module types: Only a few types of hardware
modules are usea, although each type is intended to
be wused in 1large amounts. This would reduce the
design costs and give rise to a simpler architecture
which 1is easier to control than one which uses a lot
of module types.

(b) Interleaved insfruction§ and skewed arrays: A subset
of the LMs are used to store seguential programs
which will be executed byAtheir associated TPs using
the read/write 1links in a SISD mode; while the
majority of the LMs are meant for non-seguential
programs which will be executed in a MIMD mode by TPs
using the packet-switched network. For the latter

case, the instructions will be interleaved into the
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LMs concernea,. thus randomizing and equalizing the
access pattern of TPs and RPs; array elements will be
skewed into these LMs using known storage techniques
[36,37] which allow different portions of of an array
to be referenced concurrently. These features would
reduce the problem of memory access bottlenecks.

(c) Overlapped array operations: While an array is being
operated on using the read/writellinks, several array
alignment operations could be carried out using the
packet-switched network which provides a novel way to
synchronize the completions of - the alignment
operations, and to signal thoge . instructions
dependent on them.

(di Extensibility: The EDC architecture 1is highly
extensible. After an EDC system has been built, the
numbers of TPs, RPs, IRs and LMs could Abe increased
incfementally. Such an advantage is attributable to

the extensibility of the network.

A more detailed schematic diagram of an EDC is shown in
Fig.IV.2. The functional descriptions of the system hardware
will be given in Section 2, and Section 3 will explain how
information is stored and processed in an EDC. Section 4 will
describe the nature of the programming language to be wused,
and Section 5 .will examing the' performance of an EDC. A
comparison of an EDC with the three afore-mentioned designs

and some suggested work will be given in Section 6.
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2. EDC Hardware Architecture

2.A. Processing Modules

(1) Supervising Processor (SP)

SP is the master controller of the whole system and it

oversees the executions of the following activities:

(a)

(b)

Program downloading and initialization: Programs.are
loaded from external sources such as the host
computer or bulk memories, and stored in the System
Memory (SM) initially. When a program 1is called
for, SP will access a storage utilization table (SUT)
which~ is located in SM, and allocate free memory
pages to the called program which will then be
fetched from SM and loaded into LMs. At the end of
loading, SP will signal the TPs concerned to start
execution, .

Input and output operaﬁions: Input data will first go
to the input buffer located in SM, and then proceed

to the appropriate LMs. If the various parts of an

: array‘ are to be referenced 1independently and

" concurrently, then it will be skewed into the first R

LMs using techniques described by Budnik et al

[36,37] for conflict-free accesses; the storage

pattern will then be recorded in an array description

table (ADT) located in SM for future references.
Output data will be transferred from LMs to the

output buffer which is also located in SM, and then



(c)

(a)
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to the outside devices.
Process and resource management: SP also handles
requests for process creations, interactions and

terminations, procedure calls and the use of memories

~as well as other resources. A request list (RL) is

maintained by SP to engueue those regquests that
cannot be honored immediately.

Setting up of compound operations: Scalar operations
need not go through SP and are executed by TPs
autonomously; whereas compound operations have to be
setup by SP. 1f the compound operation is an érray
operation, then SP will reguest a subset of the first

R TPs to perform the operation under the demand and

‘control of a subcontroller TP(j), where j>R. In the

case of a block of sequential program, SP will 1load

it into LM(k) -- where R<k<=M -- and request TP(k) to

execute it. In the former case, the choice of TPs
will be specified by the subcontroller TP(j)
according to the compound operation it has received;
in the latter case, the choice 1is arbitrary. The
Channel Selector (CS) will be setup by SP to realize

the above connections,

(e) Other operating systém'tasks: SP may either execute

these tasks directly, or regard them as‘application

tasks and assign them to TPs. The choice depends on

the nature of the 0.S. tasks.
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(2) Receiving Processors (RPs)

There are R RPs connected to the receiving side of the
network PSN. A RP will continuously remove the arriving
result packets from the network and update the contents of the
LMs accordingly. The formats of the various types of result
packets are listed in Table IV.6. A RP will respond to the

content of a result packet as follows:

(a) If it is an array element, then it will be stored
into the memory location as specified by its
destination address;

(b) 1f it 1is a scalar operand, the base address of an
array or a signalling token, then the receiving
processor will update thg instruction word given by
the destination address of the paéket, and it will
then examine whether that instruction has received
all the required information; if it has, then the
instruction will be placed in an instruction register
(IR) to wait for a free TP for execution (the
selection of IR-TP pairs will be given in Section
2.B.(3)); otherwise no further ‘aétion will take

place.

(3) Transmitting Processors {TP(1) to TP(R)}

This group of TPs will execute both scalar and array
operations. Any free TP belonging to this group will

continuously check its associated instruction registers for
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the addresses of executable instructions. If IR(k) contains
one, then TP(k) will fetch the corresponding instruction from
LM(k) and execute it. The computed results together with the
addresses of the next instructions will be packaged into
result packets which are then forwarded to the network for

distribution,.

A subset of these TPs may undergo an array operétion
under the control of TP(i) where i>R. When TP(i) receives
such a coﬁpound operation, it will generate and broadcast the
control signals to these TPs via the Channel Selector (CS).
As soon as these TPs have finished their current activities,
they will respond by fetching the array elements from their
LMs acéording to the broadcast ' signals. If the array

operaton is, "

(a) a computational activity, then these TPs will operate
on the elements and then store the results back to
the memories using the read/write links;

(b) an alignment operation, then these TP will package
the elements into result packets and forward them to
the network for alignment. After the last element
has been sent out, some of these TPs will be
requested by SP to generate a synchronization token
which will be forwarded to the network to indicate
the end of transmission (this synchronization process

will be described in Section 2.C(2)).
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If a TP 1is not involved in or has just completed an
array operation, it will resume 1its normal activities as

mentioned in the beginning of this subsection.
(4) Transmitting Processors {TP(R+1) to TP(T)}

The main function of these TPs is to execute scalar
operations; for those with LMs, they may be requested by SP to

execute sequential programs as well.

Any free TP belongs to this group will continuously
check 1its associated IR for executable instruction packets.
Unlike the previous group, these TPs require that the actual
instructions -- i.e., the opcodes, immediate operands and
addresses of next instructions -- be avéilable in the IRs, but.
not the addresses of the instructions, because these TPs do
not have direct read/write 1links to access the first R LMs
where the non-sequential programs are stored. The result
computed by these TPs will be packaged into result packets

which will then be forwarded to the network for distribution.

To initiate the execution of a sequential program, SP
will select any free TP-LM pair of this group, and the program
will be 1loaded into the LM, and the associated TP will be
requested to execute it. Upon completion, that TP will
either signal SP or produce a result packet to trigger other

instructions via the network.

The number of TPs could be larger than or equal to
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that of LMs, depending on the speeds of the various hardware

modules and the intended applications.

2.B. Storage Modules
(1) System Memory (SM)

The aforementioned input and output buffers are
located in SM which also contains application programs as well
as system software such as I/0 routines and interrupt service
routines. While in SM, all the addresses of a program will
remain in the relative form so that the program could be re-
locatable; when copied into LMs, these relative addresses will
be translated.into absolute ones by the TPs connected to the
LMs, wusing the base address provided by SP. If a program is
to be called repeatedly, then a copy of it will be kept in SM

for replication purposes.

SM also cbntains those aforementioned tables, namely,
the storage utilization table (SUT), the array description
table (ADT), the request 1list (RL), as well és avlinkage
information table (LIT) which provides the linkage information

between a calling program and its called progréms.

(2) Local Memories (LMs)

LM(1) through LM(R) are used to contain interleaved

5
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instructions and skewed arrays.‘ Their left ports are
connected to SP and TPs while their right ports to the RPs.

Contentions between RPs and TPs could be resolved by granting
théir requests in‘an alternating manner. LM(R+1) through
LM(M) are used to store sequential programs which are to be

executed solely by the associated TP.

At times SP will interrupt the above activities for
the loading and unloading of programs; such interferences
could be reduced by increasing the size of LMs so that most of

those freguently needed programs could reside in them.
(3) Instruction Registers (IRs)

IRs serve as buffers between RPs and TPs. As has
been mentioned in Section 2.A(3) and (4), IR(1) through IR(R)
contain only the addresses of executable instructions while
IR(R+1) through IR(T) contain the actual instructions;
therefore, the bufferihg capacities of these two groups of IRs

are different.

Associated with each IR are two single-bit flags: the
"Full/Not-Full"™ flag which indicates the status of the IR,
and the "Autonomous/Slave" flag which indicates the operating
mode of the connected TP. An autonomous TP is one which is
ready to accept or is currently executing instructions from
IRs, while a slave TP is one which is undergoing a compound

operation under the control of another processor.
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To schedule an executable instruction, RP(i) will
examine the flags of IR(i+n*R) in the order of increasng n
which is a non-negative integer, and the first IR which is not
full and is connected to an autonomous TP will receive the

instruction packet.

2.C. Switches

(1) Channel Selector (CS)

CS enables SP to select any of the TP-LM pairs to
perform those activities mentioned in Section 2.A(1), namely,
program loading, input and output activities and setting up of

compound operations.

The implementation of CS is quite straight-forward and

hence will not be discussed in this dissertation.
(2) Packet Switching Network (PSN)

Other conventional packet switching networks could be
used in place of PSN, but they require at least (N/2)1ogN
switches for a (NxN) connection, whereas PSN uses only (N/2)

switches; therefore, PSN is attractive when N is very large.

PSN is a modified version of Loop-Structured Switching
Network (LSSN) which has been described in Chapter 1II1I, and

its functions are:
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(a) to deliver result packets from TPs to RPs and LMs;

(b) to perform hardware synchronization to signal the

completion of array alignments.

It is the second function above which distinguishes
PSN from LSSN, The topoiogy and addressing scheme of PSN are
the same as that - of LSSN; but in order to perform hardware
synchronization on the network, the PSN switches have to be
diffefent from the LSSN switches. Fig.IV.3 illustrates the

schematic diagram of a PSN switch.
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Fig.IV.3. The schematic diagram of a PSN switch.
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In general, a result packet sent out by a transmitting

processor would have the packet format as follows:

<Feedback Count; Destination Address; Result Type;

Result>

When a result packet enters the input port of a switch, it
?ill be placed into the <Class-i buffer inside the switch
according to 1its feedback count ie{0,1,2}, which is set to
zero when the packet 1is. initially generated, and is
incremented whenever the packet goes through the feedback
path. In Fig.IV.3, all types of result packets except the
Synchronization packets, Qill bypaés the Synchronization
‘Stations when they -emerge from the buffer pools. For a
packet coming out of theJCIass-z buffer, it will be forwarded
to the output port immediately and directly when the latter
becomes empty; packets coming out of the Class-0 and Class-1
buffers will be switched to an intermediatp port to wait for
their turns to be transferred to the output port. For a
switch located in the s-th stage, the direction of switching
is determined by the s-th bit of the destination address of
the packet: if it is a "0" , then the packet will be switched

to the left intermediate port; else to the right one.

Because of the similarities that exist between the
topologies of PSN and LSSN, those theorems developed for LSSN
are also applicable to PSN. Theorem III.1 have shown that

for a network with L loops, the maximum number of switches
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- that any packet would have to go through in order to arrive at
its destination, is (2logL -1). Consider the case in which a
packet 1is admitted at the last stage of PSN and has to go
through the maximum number of switches, (2logL-1), then this
packet will be removed from PSN when it emefges from a Class-2
buffer located in the (logL-2)th stage -- which 1is the
furthest destination any packet will have to go regardless of
where it 1is originated; the significant of this observation
will be come obvious when we discuss the method of hardware
synchronization on PSN. Another important property of PSN,
as revealed by Lemma III.2, is that any packet which has
already acquired a feedback count of 2 will always remain in
the same loop .for any of its further routing\ steps -- this
explains why packets coming out of the Class-2 buffers in

Fig.IV.3 need not go through the intermediate ports.

The purpose of the Synchronization Stations 1is to
achieve the effect of hardware synchfonization on PSN -- i;e.,
to signal the completion of array alignment operations so that
other computation dependent on these operations may proceed.
After all the‘elements involved in an alignment operation have
been dispatched to PSN, eaéh of the first L TPs (i.e., those
TPs connected to the first stage of PSN) will be requested, by
either SP or the subcontroller of the alignment operation, to
forward a synchronization token in the form of a result
packet. These packets will be treated much the same as other
result packets except that they will be retained by the

Synchronization Stations when emerging from the buffer pools;



103

a synchronization packet retained by the left (right) Class-i
station would have to wait for the arrival of another
synchronization packet in the right (left) station of the same
class, then both packets will proceed to the intermediate and
output ports in a straight-through manner. Such a scheme
would ensure that the synchrohization packets will always lag
behind the array elements which they are trailing, and that
when these packets arrive at the Class-2 Synchronization
Stations of the (logL-2)th stage, all the array elements
concerned must have been delivered to their destinations (as
has been explained in the previous paragraph). Upon the
arrivals of the synchronization packets, the Class-2
Synchronization Stations‘ of the (logL-2)th stage will
transform them into signalling tokens by resetting fheir
feedback counts to =zero, and changing their result tYpes
(please refer to Table 1V.6 for their formats); these
signalling tokens will be retransmitted to trigger those_
instructions dependent on the cémpletioﬁv of the array
alignment operation, and their destination addresses are those

originally carried by the synchronization packets.

When a result packet arrives at an output port of a
PSN switch, its destination address will be matched against
that of the output link connected to the port. I1f a match
occurs, then the RP connected to that link will be strobed and
the result packet will be handed over to it; otherwise the
packet will be forwarded to the switch situated at the other

end of the link.
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More details of PSN could be found in Chapter II1I
which also explains how to expand the network incrementally --
a significant advantage of PSN over other conventional
networks. Although a PSN switch has a much complex internal
structure than a conventional binary switch, the savings in
the number of switches as well as external wiring will offset
sﬁch a disadvantage when the size of the network is 1large.
With today's technologies, a high internal complexity could be
easily achieved, but if a system involves too many external

components, it will still be difficult to manage.
3. EDC Information Structure

3.A. Machine Instruction Formats

(1) Format for sequential programs: It is similar to that of
conventional computer systems, and is arranged as one
double-byte of opcode followed by either one or moré

double-bytes of operaﬁds.

<416 bits—»

Opcode

Operands

(2) Format for non-sequential programs: It is used to encode
scalar and those encapsulated compound operations, and 1is

made up of eight double-bytes which are divided into 4

fields: (a)Opcode| (b)Control (c) Operand (d) Next
field Information field Instruction
field field

Y

«-16bits-»<€—16bits —>-4 6x16bits
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The "Opcode" and "Control Information" fields are of
one double-byte each, while the "Operand”™ and "Next

Instruction” fields share the remaining six double-bytes.

(a) "Opcode" field: Tables IV.1 and 2 show the four
categories of scalar and compound operations
respectively, along with some typical examples and
their data-flow graphs.

(b) "Control Information" fields: It is further

dividedlinto five subfields:

(1)Result| (2)Format|(3)#0perands|(4)#Tokens |(5)#Tokens
type type Required Required To Go

" «3bits—se— 4bits—se—— 3bits—ee——3bits—se—3bits—=
— constant A~variable—/

(1) "Result type": Specifies whether the computed
result will be of single or double precision, a
numerical or boolean value, or a signalling

- token., |

(2) "Format type": Speéifies the type of format
used to accomodate operands and the addresses
of those instructions dependent on the current
instruction.

(3) "#0perand Required": Specifies the number of
operands needed by the instruction.

(4) "#Tokens Required": Equals "4#Operands Required”
plus the total number of signalling tokens
needed.

(5) "#Tokens To Go": Equals "#Tokens Required”
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minus the number of tokens received.

When a RP receives an operand or a signalling
token, it will decrement the "#Tokens To Go" of the
receiving instruction; when this value reaches zero,
the receiving instruction will be placed into an
instruction register (IR) to wait for execution.

(c) & (d) "Operands” and "Next Instruction" fields:
- The various types of formats used by scalar and
compound operations afe listed in Tables IV.3 and

4 respectively. These simple formats will meet
almost all the computational needs; 6therwise new
formats could be added if necessary (a total of 4
bits are assigned to the "Format Type" field which

could account for -16 formats).

In Table IV.3, "Opi" refers to the i-th operand of an
instruction and "Nextj" refers to the address of the ﬁ-th next
instruction, and "NextT" and "NextF" are the addresses of the
next instructions when the result of a boolean operation is
"True"™ and "False" respectively. Format No.8 is useful for
those operations such as "Duplicate” and "Wait" which do not

carry embedded operands.

In Table IV.4, "No. of elements" refers to the total
number of array elements involved in the array operation, and
"Stride" is the difference in the indexes of two neighboring

array elements which take part in the operation. Both the
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"No. of elements" and "Stride" are obtained from the loop
control statements such as "DO I=1,64,2" or "FOR I=1to64step2
DO". In Table 1IV.4, "(V1)" 1is the base address assigned

to the resulting vector Vi, and "(V2)" and "(V3)" are those of

the input vectors V2 and V3, respectively.

All coméound operations except those "Reduction" ones
would produce vectors which are too expensive (in terms of
time and space) to be sent to each andA every instruction
requiring them; _therefore, only the base addresses of the
vectors will be sent. As for "Reduction" operations such as
summation and product, their scalar resuits would be treated

much the same as those produced by scalar operations.

Although the formats shown in Tables 1IV.3 and 1V.4
have 1limited numbers of "Next 1Instructions"” fields, their
actual fan-outs could be extended infinitely by having one or
more of their "Ne#t Instructions" fields point to a number of

"Duplicate" operators.
3.B. Packet Formats

There are two classes of packets that exist 1in EDC,

namely,

(a) Instruction packets: They flow from RPs to TPs and
‘reside in IRs while waiting for execution. = (Please

refer to Table 1V.5.)
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(b) Result packets: They are produced by TPs and are
forwarded to RPs via the network PSN. (Please refer

to Table IV.6.)

3.C. Program Organization

The EDC program organization is similar to those of
the existing computer systems. Both the application and
system software are made up of three types of program

components:

(1) Main programs: They are activated via external means
such as the console and not to be called by other
program components,

(2) Procedures: They are activated by explicit calls from
the program components. The calling programs use
"Call" and "Distribufe" opératdrs and jthev called
programs use "Distribute" and "Return" operators for
parameter passing. As depicted in Fig.IV.4, when the
"Call" instruction has gathered all its input tokens,
it will be dispatched by a RP to a free TP which will
then request the program code from SP,. If the
program code does not exist 1in LMs, then SP will
allocate free memory pages to it and load it from SM
to LMs, and its starting memory location will be

returned to the requesting TP which will then proceed
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with other computations. when the "Return" operator
is executed, all the computed results will be routed
back to the calling program and the memory pages

assigned to the called program will be released.

| P a b ‘j | ‘
m) -\ )
ilcaLL R & -’;;:;j;:;T;;*k DISTRIBUTE

b M.J
] [

g
|

j|DISTRIBUTE ﬁ

: } .-k\\\\“--§\ RETURN| ¥ }

(M.J:e) c M.

Fig.IV.4 Parameter passing between the calling program M
and called program P, "a" and "b" are the input parameters
and "c" is the returned result, and "j" is the return
address.

(3) Task programs: They are used to protect shared data
and/or physical Tresources so as to ensure their
proper use. A task program consists of one or more
entry points whéreby other programs could send data
or signals to 1it, and therefore it is a means of

providing communications and interactions among the

various types of program components.

The impleméntation of parameter passing between a task
and the calling programs is very much the same as that of
procedure calling; the major difference is that a procedure is

activated by an explicit call while a task program is
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activated when the program which declares it comes into
existence; also, a procedure terminates when the computed
results are returned to the callers, whereas a task program
may continue to serve other <callers until an explicit
terminqtion statement 1is encountered, or the program which

declared it has terminated.

e.g. Task t;

Accept A(x:Real)Return(y:Real);

End A;
End t;
Callers _ Task t
=a22ers - The execution
///////path of task t
-_“‘~\~\\\\ !4~—\‘L///,,~The entry point A
. J’/////,Rendezvous
-
K/
/ |!
|
/ 1
-

Fig.IV.5. The interactions between calling programs and a
task program.

The example of Fig.IV.5 shows a task with a single
execution path; but in general, a task could be "multi-

threaded"” -- i.e., made up of several concurrent execution

paths.

The advantages of using task programs instead of low-

level concurrency primitives such as semaphores [42] in
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handling inter-program activities are ease of use and clarity.
Furthermore, the implementation of tasks conforms to the
principle of data-driven computation. Compared to other
high-level constructs, a task 1is quite different from the
"monitor™ of Concurrent Pascal [38] but very similar to the

"task™ of Ada [44].
3.D. Data Structure

We only discuss arrays in this paper although some
other more complicated structures [49,68] may also be
considered in our design. The handling of arrays in an EDC is

illustrated in Fig.IV.6.

System Memory

SuT = -
?L QT glcmT T I ' Local Memories
i M
]
skewed | | 1 :
rrays ! || ——
P l :
| | l 1 | 1 !
LI B T L
Lo l | Mz
unskewe
arrays :
LMy,

Fig.IV.6. The physical and logical arrangements of EDC
memory system. The first R LMs are logically divided into
pages as shown.

IM(1) to LM(R) are used to stored skewed arrays so
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£hat they may be processed concurrently by TP(1) through
TP(R). However, for reasons of efficiency or algorithmic
constraints, an array may not be ékewed but instead, will be
either loaded entirely into a local memory LM(k) and processed
by TP(k), or divided among several TP(k)-LM(k) pairs where
k>R. The decisions concerning these arrangements could be
made either statically at compile time, or dynamically by SP
at run time. The array description table (ADT) - and storage
utilization table (SUT) must always be updated to reflect the

storage patterns.
. 3.E. Process and Resource Management

In the EDC environment, a process is defined as either
a main or task program in‘ execution, and those procedures
called and data strﬁctures owned by the program are regarded
as parts of the process. The treatments of process creations
and terminations are very similar to that of procedure calls:
the request to create a process will be first placed on the
Request List (RL) until it is removed by SP, which will then
assign an unused identification number (ID) from the linkage
information table (LIT) and free memory pages from the storage
utilization table (SUT) to the process; SP.will then load the
memories allocated with the program code and initialize it to
run. When the process terminates, SP will again wupdate SUT

and LIT accordingly.

As illustrated in Fig.IV.7, the management of hardware
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and/or software resources could be implemented conveniently
-using a task program. The numbgr of unused resources of a
particular type (e.g., the number "N" of Fig.IV.7) is stored
in a memory location which can only be accessed from within
the critical region-enclosed by the "Select"” and "End Select"”
operators. In order to prevent malicious accesses to that
memory location, only one request at a time would be allowed
to enter the critical region to modify the number of the
resources, and this is achieved with the use of a signalling
token as shown. The content of that memory 1location |is
incremented whenever a "Release" request is honored and

decremented whenever an "Acquire" request is granted.

Signalling
Task Program token
Requests from Release ' ///
processes
Acquire {:\\ {
SELECT

(gcquire)
N:=N-1

.

N

_ END SELECT
Acknowledgement gpquired : 44/4//
to processes ﬁéleased C

Fig.IV.7. The implementation of a resource manager using
a task program.

The "Select"” operator used in the resource manager of
Fig.Iv;7 does not conform faithfully to the data-driven

principles, because its execution is triggered by the arrivals



of the signalling token plus at least one request -- not
necessarily all of them, If there are several requests at
the same time, then they will be engueued when they arrive,
and the selection policy for these requests could be either
first-come-first-served or priority-based, depending on the

implementation.

4. EDC Programming Language Structure

A program that runs on EDC takes the form of either a
main program, a procedure or a task program, and it is
cdmposed of one or more "program blocks" which are collections
of instructions that have no branching into or out of the
blocks, except at the beginnings'and endings. The advantages
of wusing blocks are program clarity and that existing

techniques of optimizing compilers could be used.

The objective of this section 1is to present some
useful ideas concerning the design of the EDC programming
language, and to illustrate how some language constructs are
compiled 1into data-flow graphs which could be easily
translated 1into machine code using the formats presented in

Section 3.
4.A, EDC Statements and Program Blocks

(1) Declaration statements: Most of them are wused to assist
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(3)
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the compiler in setting up the data-flow graphs and are
not translated into executable operations. = Exceptions
are the declaration of task programs and arrays, which

will be compiled into operations that will request SP for

process creations and memory space respectively.

Assignment statements: In a conventional sequential
program, variable names could be wused repeatedly to
represent different entities in different parts of the
program without causing much confusion; however, such a
"convenience" would often 1lead to obscu;ities in a
concurrent environment. In the EDC system, the Single
Assignment Rule (SAR) is used to avoid such confusions
whenever necessary. ‘The SAR simply states that a
variable name must not be assigned more than one value
within its scope; when applied to data-flow graphs, it
means th;t each arc of the graphs could have atmost one

source of origin.

"Begin/End" block: The "Begin" and "End" statements will
be compiled into "Wait" operators as demonstrated in
Fig.IV.8. The "Wait" operator is a means of imposing
dependencies among prbgram blocks so as to achieve the
desired sequentiality not explicitly expressed by their

data dependencies.
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tokgn(s) token(s)
e.g. Begin ¥
. Begin: Wait|
End; Program graph‘
i
End: Wait

Fig.I1V.8 A "Begin/End" block and its data-flow graph.

(4) "IF" block: It will be compiled 1into a boolean plus a
number of "Switch"ing operators which are used to direct
the flow of input operands into either the "IF" or "ElSE"
part of the program. Sometimes certain emanating arcs
-have to be "grounded™ in order to discard the unused

operands after the conditional test.

Ci c2 A B
e.g.IF(C1 » C2)THEN
: N
ELSE
ENB; SWITCH SWITCH
®- - T F / T F
T/F

Fig.IV.9 &an "IF" block and its data-flow graph.

(5) "Match"™ block: It will be compiled into a series of
boolean and "Switch"ing operators as shown in Fig.IV.10. The
input operand "C" will be matched against all the comparands

"c1,C2, ...." in parallel, and the "Switch"ing operators
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will direct the operands to the part of the program which has
a successful match. An "Else" part should be provided in

case all the matches fail.

C1 A C2 B

e.2. MATCH (C)

CASE(C1)DO J |
CASE (C2)DO SWITCH ! @
ELSE T _F

END;

Fig.IV.10. A "Match"” block and its data-flow graph.

(6) "Loop" block: An EDC loop is different from the "For-all"
and "Do-all" loops proposed in other data-driven languages
[a0]. Since parallél array computations in EDC are
encoded as compound-operations; it is not necessary to use
"Loop"s for these computations; instead, loops are used
for iterations and recurrence operatisns which exhibit
data dependencies between two successive loop

computations.
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C1 c2 X

e.g. LOOP WHILE(C1=C2)DO

NEXT X 2= ...
NEXT Cli= ...

NEXT C2:%= oo , | m
4 ——
LOOP EXIT T/F

XLAST := X3

END;
Loop
body
I
: [/ / Y
NEXT C1 :::i/} XLAST
NEXT C2

Fig.IV.11. A "LOOP" block and its data-flow graph.
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As exemplified by Fig.IV.11, the data-flow graph of a
EDC loop contains some arcs which have two sources =-- one
outside the 1loop and another one within the loop body --
implying that some variables are assigned'more thén once, thus
violating the Single Assignment Rule. A common remedy
[39,65] 1is to place prefixes such as "NEW" and "NEXT" infront
of those variable names in question. Thus, "NEXT X" would be
treated differently from "X" during a loop computation, but
"NEXT X" will be updated as "X" at the boundary of two
consecutive loop computations, and "NEXT X" will be an
entirely new variable when the next loop computation

commences.

When the conditonal test associated with a 1loop is
satisfied, the 1loop will be exited and then some of the
computed results will be passed to the exterior of the loop by
assigning them to names that are not wused within the loop

(e.qg. "XLAST" of Fig.IV.11).

(7) Prefix for sequentiality: As has been mentioned before,
certain activities such as input and output are inherently
sequential, and it is more convenient‘ and efficient to
execute their instructions in the order specified by the
programs; and the "SEQ"uential prefix is meant for such

purposes.

If an instruction block is prefixed with "SEQ",

then signalling tokens would be used to enhance its data-
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flow graph to achieve the desired sequentiality. I1f an
entire program is prefixed with "SEQ", then it will be
compiled into a sequential programs using the format

mentioned in Section 3.A(1).
4.B. Language Constructs for Array Processing

Array operations are probably the richest source of
synchrbnous parallelism and abound in scientific computations.
This section will discuss how one-dimensional arrays are
encoded and executed in EDC; arrays with a higher dimension
will be reduced into one-dimensional arrays before their
computations.'

(1) Parallel Vector Operations: The range and stride of a
| parallel vector operation are indicated with the use of an

"INDEX" set, which has to be declared prior to its use as

follows:
(A) (B)(C)1
e.g. DECLARE | : \
I: INDEX 1..64 STRIDE 2 -
BEGIN (ADD)
C(I) := A(I)+B(I); }
ENﬁ; (C)

Opcode |Control |#Elements|Stride]|Address Address Address

(ADD) | Infor. =64 =2 of Output|of Input |of Input |Next?2

, Array=(C) |Array=(A)|Array=(B)

Next1

Fig.IV.12. The statement, data-flow graph and machine co
of a parallel vector operation. The machine code format
is as described in Table 1IV.4.
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Both the range and stride indicated in an index
are regarded as input operands to the array operation, and
they could be either constants or variables to be
determined at run time: The base addresses of the input
arrays (i.e., (A) and (B) of Fig.IV.12) are received from
the preceding operations, and that of the output array
(i.e., (c) of Fig.IV.12) 1is obtained from the memory
manager prior to the execution of the operation, and is
sent to the succeeding operations as an input operand.
The execution of such operations has been described in

Section Z.A.(I) and (3).

(2) Reduction Operations: This is another type of array

operations frequently encountered, and there are six of

them, némely, "SUMmation", "PRODUCT", "MAXimum",
" 3 ” " " L ” .
MINimum”", "AND" and "OR". (X) //J
e.g. DECLARE ' \‘ '
J: INDEX 1.,1024
BEGIN (SUM)
xsum := SUM(x(J)); l
: XSUM
END;

Opcode|Control|#Elements|Stride|Address sl next2
of ‘input’' |Next4|Next ex
(SUM) |Infor. =1024 =1 Array=(X)

Nextl

Fig.IV.13. The statements, data-flow graph and machine
code of a reduction operation. The machine code format
is as described in Table 1IV.4.
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When an array is to be reduced, its elements will
be partitioned and loaded into several LM(k)'s -- where
k>R -- and each part of it will be processed by the
associated TP independently; at the end of the
computation, each of these TPs will forward its partial
result in the form of a result packet, via the network to
an instruction which will combine all the partial results.
The number of TP-LM pairs used for a reduction operation
depends on the size of the array and the speeds of the
various hardware and software modules, and has to be

optimized in order to obtain the shortest possible

computation time.

Alignment operations: "SHIFT" and "ROTATE" are two
alignment primitives: the T"ROTATE" operator moves the
array elements cyclically 'by the amount specified after
the operator, while the "SHIFT" operator functions in a
similar way except that there is no cyclic feedback of
array elements, and zeroes are inserted into phe positions
vacated by the shifting operations. The direction of an
alignment could be fixed arbitrarily; and if none of the
operators is specified, then the "SHIFT" operation will be

assumed.
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(a)(X) K 4
e.g. x := a(K SHIFT -1); \\
y := b(I ROTATE 2);
SHIFT
z :=c(J -1); u
(X)
v ent Stride|Address Address Displace-
Opcode|Control|#Elements N tout|of Inpat |mente -1 |Next2,1|

Fig.IV.14. The statements of some alignment operations,
"and the data-flow graph and machine code of the "SHIFT"

operation.

5. Performance Analysis

5.A. Flow Analysis of EDC

In order to simplify the performance analysis of EDC
and to arrive at some meaningful results, some assumptions
will be made; later on, the justification of these assumptions

will be discussed.

(1) Assumptions:
(a) The problems to be processed by EDC comprise a large
amount of concurrency which will keep all the TPs
busy most of the time;

- (b) Initially all the computations are assumed to be of
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scalar type; compound operations will be ignored
temporarily;

(c) The scalar operations are randomly distributed among
the first R LMs, thus giving rise to
approximately equal packet £flow among the output

ports of the network PSN.

(2) Constraints On Communications Loads:

As stated in Section 2.C(2), the maximum throughput

rate (MATR) that can be delivered by a PSN with L loops is:

MATR(L) = 3/2xS  _ xlogLxL**2/{3L1ogL-L+4} .....(IV.1)

’
(packets/second)

(3) Constraints On Processing Loads:

In order to prevent the instruction registers (IRs)
from overflowing, the total processing speed of TPs must
exceeds that of RPs, i.e.,

TxS P > RxS

I,T 1,RP

T> (§I,RP/_S'I’TP)XR .....(Iv.z)

where T and R are the numbers of TPs and RPs respectively, and

§I RP is the average rate of producing instruction packets by
L
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a RP, and § is the average rate of consuming instruction

I,TP
packets by a TP.

For a PSN with L loops, we can connect up to a maximum
of N=LlogL pairs of TPs and RPs. "If all the input ports are
connected with TPs, then T=N=LlogL, and from expression

(1v.2),

R< (SI,TP/SI'RP)XLXIOgL .......'OOOOOQ(IVOB)

If each RP 1is capable of accepting §R rp result
1
packets from the network per second, then the maximum

acceptance rate of result packets (MARP) by RPs per second is:
MARP=SR , RPXR

Since most of the scalar instructions will be compiled into
binary operations, meaning that on the average, the acceptance
of every two result packets will cause one instruction to be

readied for execution, i.e.,

§I'RP = SR,RP/2 Q......Q..O....Ol............'(IVO4)

If RPs are connected to all the output ports of the
network, then}R=LlogL and the maximum acceptance ’rate of
result packets of such a fully connected configuration (MARP¢)

is:
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MARP =Rxs —(LlogL)st RP oooooooooooooovo.o....(IV.S)

£ R,RP

But the value of R is constrained by expression (IV.3);
therefore, the maximum acceptance rate subjected to such a
constraint is:

YxLxlogLxS

MARP < (SI,TP/ I,RP

R,RP
!
Substituting S =S /2 into the above expression,
R,RP I,RP
MARPé’max°2LXI°gLXSI TP oooooo.goooooooo-o-o?oo-or-(IV.s)

Expressions (IV.1, 5 and 6) show that the EDC performance
depends on the network size L, the speeds of TPs, RPs and the

switches.

5.B. Example:

Let us consider some typical values for the speeds of
the various hardware modules, and then examine the EDC

pérformance as a function of the network size, L.

We will assume that each TP and RP is capable of 3
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'MOPS (million operations per second) on the average ~-- this
assumption is fair and has also appeared in other studiés (for
instance, see reference ([30]). Since most of the scalar
instructions require two result packets as their input
operands, approximately half of the result packets coming out
of PSN will not trigger their receiving instructions for
execution; to process such a result packet, a RP would need
one operation to retrieve the token count (i.e., "#Tokens To
Go") of the receiving instruction, one operation to decrement
it, one operation to store it back and another one to store
the result token -- a total of four operations. The other
half of the result packets would ready the receiving
instructions for execution; to process such a result packet, a.
RP would require eiéht more operations to transfer an B-byte
instruction word from its associated LM to an IR, in addition
to the four operations mentioned above. Therefore, the
average number of operation needed to process a result is (4 +

(8+4))/2=8, and hence the ' value of SR,RP

packets per second. As for TPs, let us assume that the total

equals (3x106/8)

number of operations needed for a TP to fetch an instruction
from an IR, execute it, package the result into a result
packet, and then forward it to the network, is around 40 (one

might try other values); therefore SI.Té=(3x106)/40 packets
per second. As. for the §peed of the PSN switches, ER,SW
_equals"f/tmiﬁ'yhere "f" is the clocking frequency of the
network, and "tgin" is the minimum number of clock pulses

needed to transfer a packet from the output port of a switch
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to the input port of the next switch. In this example, tmin
is assumed to be 10 while f is taken to be 40 MHz; therefore,

the value of § equals 40x106/10=4x106 packets per second.

R,SW
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The MART, MARP, and MARPc,max curves of this example
arevplotted against the network size L, and are shown in

Fig.IV.15,

(106 packets/sec.) MARP

300 -
MATR

200 1

MARP

C,MAX
100
L=znumber
° of loops

Fig.IV.15. The MARPp, MATR and MARPc,max curves of the given
example.
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In this example, the maximum throughput rate
attainable by the EDC is limited by the MARPc,max curve which
is the lowest among the three curves. Two observations could
be obtained from Fig.IV.15:

(a) The relative positions of the MARPy and MARPc,max curves
suggest that in this example, it 1is not necessary to
connect all the output ports of the PSN with RPs. For

L=64, then T=LlogL=64x6=384; from expréssion (1v.2):

/
max_(SI TP/ 1, RP)xT (3x10 /40)/(3x10 8)x384

=154, .

(b) The relative positions of MART and MARPc,max curves
indicate that for most of the time, the capacity of PSN
will be higher than that regquired, and hence the extent
and probability of traffic congestion in the PSN is

expected to be low.

1f there are always computations to keep all the TPs

busy, then the raw speed attainable by the EDC is:

rx3x10° = 384x3x10% = 1152 (MOPS)

From Fig.IV.15, the maximum rate of flow of result packets in

the system is:

6
MARP (L=64)=57.6x10 (packets/sec.)
¢, max :
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and the maximum rate of flow instruction packets is:

6

RxS P=Rx§

6
= 10 8/2=28.9x10
R,R RP/2 154x(3x y/8/

I (packets/second)
-9 .
The curves of Fig.IV.15 are useful in estimating the
size of the EDC architecture for a desired speed, and it also
indicates which part of the architecture will be the most

likely performance bottleneck after the system has been built.

5.C. Considerations for Generalized Computations:

1,rp’ S1,rp 2794 Sp gy @

from those in the previous example, then expectedly, different

If the values of S re different

throughput curves and conclusions would be obtained.

In general, computations in EDC will be made up of
both scalar and compound operations  which are mixed with
unknown ratio, therefore, ;ssumption'(b) has to be removed for
generality. - The result of such a removal would give rise to
a better performance because the execution of compound
operations --i.e., array operations and sequential programs --
is control-driven, and reguires simpler control structures and
incur less communications .overhead than scalar operations
which are data-driven. Assumptions (a) and (c) are
justifiable since EDC is intended for applications involving
large amounts of concurrency; and the interleaving of
instructions and skewing of arrays would spread the programs

randomly and evenly among the TP-LM pairs.
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6. Discussions and Outlook

A design methodology has been proposed for a class of
next-generation supercomputers. Our proposal, which is naméé
"Event-Driven Computer (EDC), is primarily a data-driven system
supplemented with control-driven activities. Although we do
not emphasize the immediate implementation of EDC, most of its
haréware are implementable with off-the-shelf components
except the PSN switches which, however, could be easily
fabricated with today's technologies. If the éSN (Packet
Switching Netwérk)'conéists of 64 1loops, then approximately
400 TPs (Transmitting Processors) can be attahced to the
system, and the maximum rate of flow of instruction and result
packets will be approximateiy'58 and 30 million per second,
respectively; and the raw speed attainable by the EDC will
exceed 1,000 MOPS. Since the proposed EDC language structure
is similar to the existing ones [39,41,44,69], many of the
techniques available today could be applied to its compiler

design.

Compared to the Dependence-Driven System [32], the
resources of EDC are better utilized: when a TP is not
involved in an array operation, it could always get a scalar
instruction from its associated IR (instruction register) and
execute it. The array processing capabilities of EDC also
distinguish it from the Combined System [33]. The speed
range of EDC is expected to be many times higher than that of

the PDF System [34].
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Because only a few component types are used, the
design costs of EDC are expected to be low. Since most of
the programs are randomly distributed among the LMs thus
equalizing the memory access 1load, the serious problem of
‘memory bottlenecks could bé reduced. As for array processing
capabilities, array computation could be carried out by a
subset of the first R TP-LM pairs using the read/write 1links
‘provided; and the alignments of arrays could be performed
using the PSN which provides a novel synchronization method to

indicate the end of each array alignment.

Designing a supercomputer is not a simple task; we
have . presented some architectural ideas, but there are still
several issues which deserve immediate attentions before the
EDC concepts could become practical. Firstly, the detailed
specifications of the EDC hardware have to be developed, and
the division of labor between the'compiler and hardware has to
be clarified at the outset. Secondly, it is necessary to
analyse the effects of run-time overhead (such as program
loading) on 'theA system perforﬁance,' and remedies (such as
increasing the size of LMs) have to be provided if_the effects
are severe. Thirdly, if several independent processes are
run simultaneously, then an identification method is necessary
(unique identification tags are often proposed for other data-
driven systems [48]). Foﬁrthly, the policies used by SP to
schedule compound operations and processes play an important

role in providing the processors with énough operations to
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keep them busy; it 1is not sure whether there exist such
policies and those found in the literature could be useful in
this aspect. . Fifthly, we have suggested that array
computation .be encoded as compound operations, but perhaps
those operations on small arrays could be decomposed into
scalar operations so that the load submitted to SP sould be

reduced; the criteria of such decompositions constitute

another area of further study. Sixthly, it would be
convenient to the users if more data structures -- such as
records and lists -- are provided. Lastly, although studies

on fault“tolerance in packet communication architectures have
‘been found in the literature [45], a specific study concerning
EDC in this repect is indispensable. We feel that only after
these above ‘issues have been adequately dealt with, can a

supercomputer then be built along the lines set forth for EDC.
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Scalar operation

Typical examples

Data-flow graph .

l1.Arithmetic and
logic

ADD, MUL,OR

|

ADD
2.Boolean EQUAL? E:::é '
- —@9-!
3.Data transfer SWITCH
and control ——
T/F
DUPLICATE
DUP
WAIT § ?
|
K]
4 .Procedural CALL,RETURN .
calls CALL

Table II1I.2 - Compound operations.

Compound operation

Typical examples

Data-fIow graph ¥

1.Vector arithmeti
and logic

c{(ADD), (MUL)

(ADD)

2.Reduction

(SuM), (PRODUCT) ,
(MAX), (MIN)

(suM)

3.Vector boolean

(EQUAL?)

G EE

4 ,Alignment

(RIGHT SHIFT),
(LEFT ROTATE)

*See Section 4 on the use of these operators.




Table III.3 - The "Operand/Next instructions" fields
' of scalar operations,
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Computation Format No. Operands/Next instructions
Scalar Arithmetic, 1 Op1 Op2 (Op3 |Op4 |Next2| Nextl
Logic and Procedure 2 «~——0pl — 5| «—0p2———| Next2| Next1l
Call 3 Op1 Op2 | Next4| Next3| Next2| Next1
4 <——OP1 — > | Next4| Next3| Next2| Next1
[y Oop1l Next5| Next4| Next3| Next2{ Nextl
Boolean & 45——0pi-———> «—Op2 —> Nextq! Nextp
Vi Op1l Op2 | Nextsq| Nextp Nextp| Nextp
Data Transfer & 8 Next6 | Next5| Next4| Next3| Next2| Nextl
Control

«

416bit—16 —16 %1616 —<"16—>

Table I11.4 - The "Operand/Next instructions" fields
of compound operations.

Computation Format Operands/Next instructions
Vector Arithmetic No; No. of
and Logic eléments Stride | (V1) |(V2)|(V3) |Next2 | Nextl
Vector Boolean 10 [NO- Oof Isiride | (v1)|(v2)|(v3) |Next, | Next
elements T F
11 No. of Stride | (V1) |(V2)iDis- |Next2 | Next1l
Alignments clements Eé%geq

Reduction 12 ﬁgémggts Stride | (V2) |Nextg|Next3|Nexts | Nextq

4—8.hit —8 —-16—2¢16—16—x16—3¢—16
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Table I11.5 - The formats of instruction packets.

Packet Content Packet Format
a. Instruction Address|<Address of instruction>

b. Actual Instruction <bpcode;result & format types;operands:
word Next instruction addresses)

Table I11.6 - The formats of result packets.

Result Type Packet Format

a.Scalar Operand

b.Array Element
being aligned

c.Base Address
assigned to an
array

<l’-'eedback Count;Destination Address;Result Type;Result>

d, Signalling Token <%eedback Count;Destination Address;Result Type>

e. Synchronization <?eedback Count;Destination Address;Result Typ%>
Token
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Chapter V. Conclusions

1. Summary of Results

In Chapter 11, we have presented a re-circulating
systolic sorter (RSS) and two algorithms which work on RSS.
The correctness of the algorithms has been proved and general
operational constraints have been derived. This design 1is
highly amenable to VLSI implementations due to the following
attributes: (1) the simple control structure required by the
algorithms; (2) the regular, repetitive and near-neighour type
of 1interconnections among the comparators; and (3) the
systolic data movements. The sorting array is also well-
suited for fabrication on shift-register type of storage and
logic devices such as magnetic bubble memories (MBMs) and
charge-coupled devices (CCDs), because of 1its closed-loop
structure. The number of quadruple comparators needed to
sort N items is N/4, and the average number of sorting cycles,
as found by our simulation studies, 1is within the range
[(logN)**2 NIJ. A hardware termination method is incorporated
into the control wunit of the sorter, so that the sorting
process can be terminated as soon as the input list is in the

desired order.

Chapter III describes a novel' loop-structured
switching network (LSSN) intended for packet communicétions in
highly parallel applications. With L loops, it can connect
up to N=LlogL pairs of transmitting and receiving devices,

using only N/2 two-by-two switching elements. Therefore, it
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is very cost-effective in terms of its component‘count. Its
topology resembles that of the 1indirect binary n—cdbé
network{21], but a much higher device-to-switch ratio can be
achieved by LSSN because all the links between the switches
could be used as both transmitting and receiving stations.

It has the advantage of incremental extensibility, and it is
free of the store-and-forward type of deadlocks which prevail
in other cyclical packet-switched networks. Our simulation
studies have shown that the average throughput rate and delay
of LSSN are «close to that of other designs despite its

relatively low component count.

Chapter‘ 1V describes a new design methodology for the
next-generation computers. Our proposal, the Event-Driven
Compﬁter (EDC) 1is primarily a data-driven, ‘heterogeneous
system which is supplemented with control-driven activities;
such a combined approach is aimed at extracting the advantages
of both the "pure" data-driven and control-driven systems
while alleviating their shortcomings. Compared to other
designs, EDC has the advantages of a simpler architecture,
better resource utilization, array processing capabilities and
a higher speed range. The LSSN of Chapter III has been
modified for this application; with a configuration of 64
loops, this network can connect up to approximately 400
processors, and hence an execution speed of more than 1,000

million operations per second can be obtained by the EDC.
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2. General Discussions

The main theme of this thesis is to demonstrate the
practicality and wusefulness of cyclical architectures in the
designs of high-performance processors and computers. Our
ideas have been illustrated through the wuse of specific
application examples including pafallel sorting, packet-
switched communications and the design methodology of a novel,

next-generation computer.

The ideas of feedback in our proposals are entirely
different from that of process control, which uses feedback
signals for correctional purposes (i.e., additive or
multiplicative manipulations of the input signals); in the RSS
arrays, feedback allows data items to be further compared
among themselves until the whole input list is sorted; in the
network LSSN, the scle purpose of feedback is to re-use the
network resources until the packets are routed to their
destinations, but there is no direct interaction (such as
comparisons in the RSS arrays) among the information packets,
other than competitions for the network resources; in the EDC,
the arrivals of result packets in the feedback path signify
the completion of one or more instruction cycles, and as a
result, new instructions may or may not be brought into the
computation »path for executions, depending on fhe amounts of
information they have gathered. The manners 1in which
feedback packets interact with each.other contribute greatly

to the properties of the <cyclical architectures. For
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instance, the LSSN 1is susceptible to the store-and-forward
type of deadlocks (we have, however, demonstrated how this
problem can be solved), but the deadlock problem do not exist
in the RSS, because data movements in the RSS network take
place along specific paths and there is no data path conflict;
in the case of the EDC, if there are always memory locations
available in the Local Memories to await the result packets
coming out of the network (i.e., if the programs are correctly
writfen, compiled and loaded), then the EDC syétem should be
deadlock-free. Another property of packet-switched, cyclical
architectures is their lack of responsiveness -- interrupts
cannot be processed immediately because the computation path
could already be congested with packets when the interrupts
occur; while 1in the EDC, direct read/write links connecting
the Transmitting Processors and the Local Memories allow
programs to be executed in a control-driven manner, without
going through the PSN and the feedback path; therefore, fast
execution and hence short reponse times could be expected.

In general, resources in cyclical architectures are better

utilized when compared to those in the acyclic systems.

3. Suggestions for Futher Work

In this thesis, we have developed some ideas based on
several new architectural concepts and demonstrated their
practicality and usefulness. We have not implemented any of
the proposals, because we feel that more related work has yet

to be done. Specific topics for further research have been
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suggested in the previous chapters; in particular, work
concerning the detailed hardware specifications and fault
tolerance studies of the three designs, should perhaps receive
the utmost attentions, since our proposed systems are designed
to make wuse of hundreds to thousands of interconnected
processing and storage components, failures of single
components will paralyse the entire systems, and these

important issues are not included in our studies.
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Appendix A

Lemma III.1: Consider a LSSN which has L loops and a packet
which is destined for the address ag,...4,¢/,...4, , where
L'=logL and S'=[logL'l. The packet will be routed to the

loop L L within L' steps of routing after its

L'..'.. 1
admission into the LSSN,

N

Proof: Suppose the packet is admitted into the LSSN via the

loop ¢r,..

packet will be routed to the loop Lﬂ,..t "Li by & switch
s

L'°'Li . According to the routing scheme, this
s

located in the s-th stage, where s=1,2,...L', Since the
maximum value of s is L', only L' steps of routing are
required to route the packet to the aforementioned loop

Ll et et

Lemma III1.2: Consider a LSSN with L loops and a packet which
is destined for the address °S'°°41LL"’L1 o where
L'=logL and S'=flogL'l. After the packet has been routed
to the loop 4, ,...4, , it needs at most another (L'-1) steps

of matching along that loop to reach its destination.

Proof: According to the routing scheme, the destination
*
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L is one of the L' output links along

address & '“'41LL"“ 1

S

the loop <£ L

L.... 1 L]
this 1loop, it will be removed by either the receiver attached

After the packet has been switched to

to the link which is part of that loop, or one of the remainig
(L'-1) receivers attached to the same loop. In either case,

at most (L'-1) steps of matching are necessary.

Theorem III.1: In a LSSN with L 1loops, a packet will be
delivered to its destination within (2logL -1) steps of
routing regardless of where it is generated.

Proof: This theorem is a result of Lemma 1 and 2.

Theorem 1I11.2: The average number of routing steps (ARS)
needed to deliver a result packet in a LSSN with L loops is,

ARS(L)=(3logL-1)/2+2/L-1

Proof: Without loss of generality and for simplicity, we shall
consider a transmitter (Trf located in the first stage of the
network. The routes frém this Tr to the set of output links
which can be reached without going through the feedback
paths, as shown in Fig.III.2, 1is in the form of a "binary
tree"” which branches out toward the lower end of the network;
the routes to the remaining set of output links would include-
the feedback paths, and is in the form of an irreqular,

"tapering" tree. The number of routing steps needed to reach
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the receivers on these two trees'are tabulated in Table III.1,

From Table III.1; the average number of routing steps
needed for a Tr to reach any output link is therefore,
ARS(L)={(2x1+4x2+, .+L1ogL)+(L-2) (logL+1)+(L-4) (1ogL+2)+. ...
+(L/2)(2logL-1)}/{(2+4+,.+L) +(L-2)+(L-4)+..+(L/2)}
={(LlogL-2logL+L)+(LlogL-4logL+2L)+(LlogL~L/2logL+
L{logL-1)+LlogL}/{LlogL}
={L(logL+(logL+1)+(logL+2)+..+(logL+logL-1))-
logL(2+4+,.L/2)}/{LlogL}
={LlogL(3logL-1)/2-210ogL(2**(logL-1))/{LlogL}
=(3logL-1)/2+2/L-1 |

Table.III.1 - The number of routing steps needed to reach the
receivers of the "binary" and "tapering" trees.

Stage # of Rr Binary tree Tapering tree .
#Rrs #steps #Rrs | #steps
stage 1 2 1 L-2 logL+1
stage 2 4 2 L-4 logL+2
stage(logL-1)}| L/2 logL-1 L/2 2logL-1
stage(logL) L logL 0 2logL

Corallary III.1: Any packet admitted into LSSN will go through
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the feedback path at most twice.

Proof: Consider a transmitter(Tr) which sends a packet at the
s-th stage to a receiver(Rr) is of r routing steps away; and
suppose there are L' stages in the network. The number of

feedbacks, F, could be calculated as:
F(L)=Quotient((s+r-1)/L")

The reader may verify the correctness of this
expression with a simple example on Fig.III.2, The maximum

value of F is therefore,
F(L)max=Quotient((smax + Thax ~ 1 )/LY)
Since Spax = L' and rpae = 2L'-1 (from Theorem III.1), then

F(L)max=Quotient((3L. - 2)/L)

= 2

Theorem II11.3: For a LSSN with L loops, the probability that
the destination address carried by a result packet will match
the label of an output 1link, and hence the packet will be

removed from the network is:
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P =2L/{3LlogL-L+4}

removed

where the transmission pattern is such that each and every
receiving port of the network is equally likely to receive

that packet.

Proof: Since the LSSN has L loops, it would have 1logL stages
of switches and LlogL pairs of transmitting ports (TPs) and
receiving ports (RPs). Consider the case in which a TP in'
each stage of the network transmits a result packet to each
and every RP in the network, then the number of packets
transmitted by each stage of RPs is as tabulated in Table

I111.2.

In Table 11I1.2, "Feédback Count" 1is the Anumber of
times the packets will go through the feedback paths in order
to reach their destinations, The correctness of this table
could be verified on the example given in Fig.III.3. . From
this table, the total number of packets that will be received
by the RPs connected to a particular stage, say the last
(i.e.; logL-th) stage, is obtained by summing up the numbers
across the corresponding row of the table, and it is:

N = LlogL
matched

and the total number of switching operations performed by the
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same stage is:

= +
Ntotal Nmatched Nunmatched

where N is the number of packets which will notbe
unmatched - .

removed by RPs of that stage because of unmatched destination

addresses carried by them. In the case of the (logL)-th

stage, N d could easily be computed as the sum of

unmatche
products of the entries and their repective "Feedback count"s
in Table II1I.2:
= - -4)+ - -
N nmatched 1x{(L-2)+(L-4)+...+(L-L/2)+(L-L)
+L+(L-2)+...+(L-L/4)+(L-L/2)
+L/2+L+(L-2)+...+(L-L/8)+(L-L/4)

+

+44B+16+. ... +(L-8)+(L-2) }+
2x{(L-L/2)

+(L-L/4)+(L-L/2)

+(L-L/8)+(L-L/4)+(L-L/2)

+

+(L-4)+(L-8)+....+(L-L/2)}

Let N'=(L-2)+(L-4)+...+(L-L/2), then after re-arrangement,

N inmatched =N’
+L+N'
+L/2+L+N'+(L-L/2)
+L/4+L/24L+N'+(L-L/2)+(L-L/4)

+
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+4+8+,,,,+L/2+L+N"+(L-L/2)+(L-L/4)+..+(L-4)
=N'logL+(1+2+3+,..+logL-1)*L
={L(logL-1)~(2+4+8+...+4L/2)}*logL
+fL(1+logL-1)(logL-1)/2}
={L(logL-1)~(L-2)}logL+{LlogL(logL~-1)/2}
={3L(logL)**2}/2-{3L1logL}/2+210gL

=> ={3L(logL)**2}/2~{LlogL}/2+2logL

Niotal

P = N N
removed matched / total

=(Llogi)/{(3L(logL)**2)/2-(LlogL)/2+ZlogL}
={2L}/{(3L(logL)**2)/2-L+4}
Q.E.D.

Theorem 11I.4: The maximum average throughput rate (MATR) of a
LSSN with L loops is:

MATR(L)=3/2xSp g x1logLxL**2/{3L1logL-L+4]}

where SR SW is the maximum rate of transmitting Result packets
. _ —_

between two SWitches via an output link.
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Proof: Sincere there are LlogL 1links in a L-looped LSSN,
therefore, the maximum average rate of delivering packets to
all the receiving ports could be formulated as:

MATR(L)=LlogLx$S )xP

R,SW”“'Pconflicted removed

wvhere Pconflicted is the probab111ty that an output link will

not contain a packet due to conflicts within the switch
concerned, and it could be computed with the 1illustrations

8 1S
ot 1

Fig.III.6.

|
l
:

On the average, 25% of the time an output link will
not receive any packet due to conflicts in the switch,

therefore,

1-P d'=3/4

‘ conflicte
and also,
MART(L)=3/4xS_ swxldngL**z/{3LlogL-L+4}
4
=3/2xSR’swxlongL**Z/{3LlogL-L+4}

Q.E.D.
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Theorem III.5: The LSSN which uses Type-B switches is deadlock

free.

Proof: Type-B switches provide two essential features in

avqiding deadlocks in LSSN:

(a) The intermediate ports are used to hold packets with
feedback counts of 0 and 1, such that they are not
eligible to contend for the output ports 1if they.
cannot be _switched to the next stage immediately,
i.e., if the buffer pools of the next switch has no

room to accept them.

(b) The feedback counts of the packets emerging from the
last stage are incremented so that when they are
fedback to the first stage, they will request buffers

of the next higher class.

The first feature ensures that links that are shared
by packets with various feedback counts will not be clogged.
The second feature prevents the formation of any cyclical
request loop. With these two features, the path traversed by
any packet in the network is "spiral" rather than "cylical" in
shape, and the whole network could be conceived as several
spirals interconnected in parallel, with the Class-0 buffers
of the first stage as the heads of the spirals, and the Class-

2 buffers of the last stae as the tails. Since there is no
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cyclical request of resources, the network 1is therefore

deadlock free.



Appendix B

PROGRAM RECIRCULATING-SYSTOLIC-SORT;

CONST
INIT_SEED = 3;
MARKER_COLUMN = 1;
RANGE = 100.0;
(* LARGEST RANDOM NUMBER TO BE SORTED *)
TYPE
STORE_RECORD = RECORD

MARKER : BOOLEAN;
ITEM : INTEGER
END;

COMPARATOR_RECORD RECOROD

INIT_ROW, INIT_COLUMN : INTEGER;

Al, AJ, BI, BJ, CI, CJ, DI, DJ : INTEGER;

TEMPORARY : INTEGER
END;

DATA_ARRANGE_TYPE = (RRANDOM, SSQUENTIAL);:
VAR
N_COMP, H_COMP, V_COMP : INTEGER;:
LTMIT_NO_SWITCH : INTEGER;

ROW, COLUMN : INTEGER;

STORE : ARRAY (. O .. 50, O .. 50 .) OF STORE_RECORD;
COMPARATOR - : ARRAY (. 1 .. 200 .) OF COMPARATOR_RECORD;
TOTAL_CYCLE, SWITCH_PER_CYCLE : INTEGER;

SEED : INTEGER;

Ji, I, J, K, JJ, ODD_START., EVEN_START : INTEGER;
TEMPA, TEMPB, TEMPC, TEMPD : INTEGER:

TEMP_COL : INTEGER;

MARKERA, MARKERB, MARKERC, MARKERD : BOOLEAN;
TERMINATE : BOOLEAN;

DATA_ARRANGE : DATA_ARRANGE_TYPE;

DECR : INTEGER; .

CONTINUOUS_NO_SWITCH : INTEGER;

PROCEDURE SETUP_NETWORK;
BEGIN (* SETUP_NETWORK *)
ROW := 2 * V_COMP; )
COLUMN := 2 * H_COMP;
N_COMP := V_COMP * H_COMP - TRUNC (H_COMP / 2);
(* *NUMBER OF COMPARATORS* *)

LIMIT_NO_SWITCH := 2 * H_COMP + 4; (* TERMINATE IfF NO SWITCHING
CONTINUQUSLY *)
I := 0;
J = 0;
FOR K := 1 TO N_COMP DO
WITH COMPARATOR (. K .) DO

BEGIN

(* ** EACH COMPARATOR WILL HOLD 4 ITEMS TO BE SORTED* *)

INIT_ROW := I;
INIT_COLUMN := JU;
I := 1+ 2;

153
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IF I >= 2 * V_COMP - 1t THEN
BEGIN
= I -2 * V_COMP + {;
J + 2
END
END (* SETUP_NETWORK *);

FUNCTION RANDOM (VAR SEED : INTEGER) : INTEGER;
BEGIN (* RANDOM *)
RANDOM := TRUNC ((SEED / 65536 - 0.1) * RANGE);
SEED := (25173 * SEED + 13849) MOD 65536
END (* RANDOM *);

PROCEDURE CHECK_TERMINATE;
BEGIN (* CHECK_TERMINATE *)
IF SWITCH_PER_CYCLE = O THEN
BEGIN :
INCR (CONTINUOUS_NO_SWITCH);
IF CONTINUQUS_NO_SWITCH >= LIMIT_NO_SWITCH THEN
TERMINATE := TRUE
END :
ELSE
BEGIN
SWITCH_PER_CYCLE := O;
CONTINUOUS_NO_SWITCH := O
END
END (* CHECK_TERMINATE *);

PROCEDURE INITIALIZE;
BEGIN (* INITIALIZE *)
FOR I := O TO (ROW - 1) DO
FOR J := O TO (COLUMN - 1) DO
WITH STORE (. I, J .) DO

BEGIN
IF DATA_ARRANGE = RRANDOM THEN
ITEM := RANDOM (SEED)
ELSE
BEGIN
ITEM := SEED;
SEED := SEED - DECR
END;

(:u wxkoxkxx k% *k*MARKING EACH‘LOOP****'**** x) )
IF ((J = 2 * MARKER_COLUMN - 2) AND (I MOD 2 = 1)) OR ((v = 2 =
MARKER_COLUMN - 1) AND (I MOD 2 = 0)) THEN

MARKER := TRUE
ELSE MARKER := FALSE
"END;
'FOR K := 1 TO N_COMP DO
WITH COMPARATOR (. K .) DO
BEGIN
TEMPORARY := O;
Al := INIT_ROW;
AJ := INIT_COLUMN;
BI := AI;
BJ := AJ + 1;
CI := AL + {1;
CJ := AJ:
DI := AI + 1;
DJ := AJ + 1
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END:
TOTAL_CYCLE := O:
SWITCH_PER_CYCLE := O;
CONTINUOUS_NO_SWITCH := O;
TERMINATE := FALSE
END (* INITIALIZE *):

PROCEDURE VERTICAL_COMP;
BEGIN (* VERTICAL_COMP *)

FOR K := 1 TO N_COMP DO
WITH COMPARATOR (. K .) DO
BEGIN :
IF (STORE (. Al, AJ .).ITEM > STORE (. CI, CJ .).ITEM) THEN
BEGIN

TEMPORARY := STORE (. AI, AJ .).ITEM:
STORE (. AI, AJ .).ITEM STORE (. CI, CJU .).ITEM;

STORE (. CI, CJ .).ITEM TEMPORARY ;
INCR (SWITCH_PER_CYCLE)
END; i
IF (STORE (. BI, BJ .).ITEM > STORE (. DI, DJ .).ITEM) THEN
BEGIN '

TEMPORARY := STORE .(. BI, BJ .).ITEM; :
STORE (. BI, BJY .).ITEM := STORE (. DI, DU .).ITEM;
STORE (. DI, DJ .).ITEM := TEMPORARY;:
INCR (SWITCH_PER_CYCLE)
END
END
END (* VERTICAL_COMP *):

PROCEDURE DIAGONAL_COMP:
BEGIN (* DIAGONAL_COMP *)

FOR K := 1 TO N_COMP DO
WITH COMPARATOR (. K .) DO
BEGIN
IF (STORE (. Al, AJ .).ITEM > STORE (. DI, DJ .).ITEM) THEN
BEGIN :

TEMPORARY := STORE (. Al, AJ .).ITEM; :
STORE (. AI, AJ .).ITEM STORE (. DI, DJ .).ITEM;

STORE (. DI, DU .).ITEM TEMPORARY ;
INCR (SWITCH_PER_CYCLE)
END; ' -
IF (STORE (. BI, BY .).ITEM > STORE (. CI, CJ .).ITEM) THEN
BEGIN

TEMPORARY := STORE (. BI, BJ .).ITEM:
STORE (. BI, BJ .).ITEM := STORE (. CI, CJ .).ITEM;
STORE (. CI, CJ .).ITEM := TEMPORARY; '
INCR (SWITCH_PER_CYCLE)
END
END
END (* DIAGONAL_COMP *);
(* DIAGONAL_COMP *)

PROCEDURE HORIZONTAL_COMP;
BEGIN (* HORIZONTAL_COMP *)

FOR K := 1 TO N_COMP DO
WITH COMPARATOR (. K .) DO
BEGIN
TEMPA := STORE (. AI, AJ .).ITEM;
TEMPB := STORE (. BI, BJ .).ITEM;
TEMPC := STORE (. CI, CJ .).ITEM;
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TEMPD := STORE (. DI, DJ .).ITEM;
MARKERA := STORE (. AI, AJ .).MARKER;
MARKERB := STORE (. BI, BJ .).MARKER:
MARKERC STORE (. CI, CJU .).MARKER;:
MARKERD STORE (. DI, DJ .).MARKER;
TEMP_COL := TRUNC (INIT_COLUMN / 2):
IF ((NOT MARKERA) AND (TEMPB > TEMPA)) OR ((MARKERA) AND (TEMPB <
TEMPA)) THEN
BEGIN
TEMPORARY := STORE (. BI, BJ .).ITEM;
STORE (. BI, BJ .).ITEM := STORE (. AI, AJ .).ITEM;
STORE (. AI, AJ .).ITEM := TEMPORARY:
INCR (SWITCH_PER_CYCLE)
END; .
IF ((NOT MARKERC) AND (TEMPD > TEMPC)) OR ((MARKERC) AND (TEMPD <
TEMPC)) THEN

BEGIN
TEMPORARY := STORE (. DI, DJ .).ITEM;
STORE (. DI, DU .).ITEM := STORE (. CI, CJ .).ITEM:
STORE (. CI., CJ .).ITEM := TEMPORARY;
INCR (SWITCH_PER_CYCLE) ¢
END
END
END (* HORIZONTAL_COMP *);
PROCEDURE DISPLAY:
BEGIN (* DISPLAY *) :
WRITELN; :
WRITELN: :
WRITELN (‘NUMBER OF SWITCHING = ’, SWITCH_PER_CYCLE : 5);
WRITELN (‘AT CYCLE TIME = ‘, TOTAL_CYCLE : 5);
FOR I := O TO (ROW - 1) DO
BEGIN
IF (I MOD 2 = O) THEN
BEGIN
WRITELN;
WRITELN
END;

FOR J := O TO (COLUMN - 1) DO
WITH STORE (. I, J .) DO
BEGIN . :
IF (J MOD 2 = O) THEN WRITE (’ * : 1):
WRITE (ITEM : 4)
END;
WRITELN
END
_END (* DISPLAY *);

PROCEDURE TRU_DISPLAY:
BEGIN (* TRU_DISPLAY *)
WITH COMPARATOR (. 1 .) DO
BEGIN
EVEN_START := AJ:
ODD_START := CJ
END;
WRITELN;
WRITELN;
WRITELN (‘AT CYCLE TIME=‘, TOTAL_CYCLE : 5);
FOR I := O TO (ROW - 1) DO
BEGIN



IF (I MOD 2 = O) THEN
BEGIN
FOR U := EVEN_START TO EVEN- START + COLUMN - 1 DO
BEGIN
JJU := J MDD COLUMN;
IF STORE (. I, JJ .).MARKER THEN
WRITE (° */ STORE (. I, JuU .).ITEM : 2)

ELSE WRITE (-’ ‘, STORE (. I, JJ .).ITEM : 2)
END;
WRITELN
END
ELSE
BEGIN
FOR J := ODD_START TO ODD_START + COLUMN - 1 DO
BEGIN
JU = J MOD COLUMN;
IF STORE (. I, JJ .).MARKER THEN
WRITE (' *  STORE (. I, JJ .).ITEM : 2)
ELSE WRITE (’ f, STORE (. I, JJ .).ITEM : 2)
END;
WRITELN
END

END
END (* TRU_DISPLAY *);

PROCEDURE SHIFT;
BEGIN (* SHIFT *)

FOR K := 1 TO N_COMP DO
WITH COMPARATOR (. K .) DO
BEGIN
IF (AI MOD 2 = 1) THEN AJ := (AJ + 1) MOD COLUMN
ELSE AJ := (AJ + COLUMN - 1) MOD COLUMN;
IF (BI MOD 2 = 1) THEN BJ := (BJ + 1) MOD COLUMN
ELSE BJ := (BY + COLUMN - 1) MOD COLUMN;
IF (CI MOD 2 = 1) THEN CJ := (CJ + 1) MOD COLUMN
ELSE CJ := (CJ + COLUMN - 1) MOD COLUMN;:

IF (DI MOD 2 = 1) THEN DJ := (DJ + 1) MOD COLUMN
ELSE DJ := (DJ + COLUMN - 1) MOD COLUMN
END
END (* SHIFT =);

BEGIN (* PARA_SORT *)

H_COMP := 6;

V_COMP := 3;

SEED := INIT_SEED;

DATA_ARRANGE := RRANDOM:

DECR := 1;

WHILE (H_COMP <> -999) DO
BEGIN

WRITELN (‘H_COMP/V_COMP/SEED/RAND/DECR=', H_COMP : 5, V_COMP
: 5, DATA_ARRANGE : 5, DECR : 5);
WRITELN ('ENTER NEW VALUES/ -999 FOR TERMINATION'):
READLN (H_COMP, V_COMP, SEED, DATA_ARRANGE, DECR);
IF (H_COMP <> -999) THEN
BEGIN

SETUP_NETWORK ;

INITIALIZE;

TRU_DISPLAY;

WHILE (NOT TERMINATE) DO

BEGIN

S,
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SEED
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INCR (TOTAL_CYCLE);

VERTICAL_COMP;
HORIZONTAL_COMP;
DIAGONAL_COMP;
CHECK_TERMINATE;
SHIFT
END;
TRU_DISPLAY;
WRITELN;
WRITELN (‘'NUMBER OF
WRITELN (‘'NUMBER OF
WRITELN (‘NUMBER OF
WRITELN (‘NUMBER OF

- LIMIT_NO_

END
END
END (* PARA_SORT *)

HORIZONTAL COMPARATORS =’, H_COMP : §):
VERTICAL COMPARATORS =‘, V_COMP : 5);

ITEMS SORTED=‘', ROW * COLUMN : 5);
DOUBLE_COMPARISON/SHIFT CYCLES =’, TOTAL_CYCLE
SWITCH : 5)
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Appendix C

PROGRAM LSSN;
(*DEADLOCK FREE
*USE CENTRAL BUFFERS FOR SIMULATION,ELSE STACK OVERFLOW
. *CLASS_O,_1,_2 BUFFERS ARE PRIORITIZED:
CLASS-2 = HIGHEST
CLASS-1 = MIDDLE
CLASS-0 = LOWEST
*MAY 1983 *)
CONST
N_Sw=32;
N_TR=64;
N_RR=64;
TR_INTL=10;
T_SIMULAT=1000000;
T_TRANSFER=2: '
T_DECIDE=3;
T_SWITCH=2;
FO_SIZE=7;
F1_SIZE=7;
F2_SIZE=2;
FO12_SI1Z2E=FO_SIZE+F1_S1ZE+F2_SIZE;
F_TOTAL=2*N_SW*FO12_SIZE;

TYPE

BUFFER_RECORD=RECORD
B_EMPTY :BOOLEAN;
B_TR_TIME: INTEGER;
B_DEST:INTEGER:
B_FEEDBACK_COUNT : INTEGER;
END;

FIFO_RECORD=RECORD
F_START,F_STOP:INTEGER;
F_TOP,F_BOTTOM: INTEGER;
F_EMPTY,F_FULL :BOOLEAN;
F_COUNT : INTEGER;

END:;

INPORT_RECORD=RECORD
I_TIMER:INTEGER;
I_EMPTY:BOOLEAN;
I_TR_TIME:INTEGER;
I_DEST:INTEGER;
I_FEEDBACK_COUNT: INTEGER;

END;

OUTPORT_RECORD=RECORD
O_TIMER:INTEGER;
O0_EMPTY,0_MATCHED :BOOLEAN;
O_TR_TIME:INTEGER;
O _DEST:INTEGER;
O_FEEDBACK_COUNT : INTEGER:
O_RR,O_NEXT_SW,O0_NEXT_PT:INTEGER;
END;
SWITCH_RECORD=RECORD
INPORT:ARRAY(. O..1 .) OF INPORT_RECORD;
FIFO:ARRAY(. 0..1,0..2 .) OF FIFO_RECORD;
OUTPORT:ARRAY(. O..1 .) OF ODUTPORT_RECORD:
END;
TR_RECORD=RECORD
T_EMPTY,T_BLOCKED:BOOLEAN:



T_DEST:INTEGER;

T NEXT _SW,T_NEXT_PT:INTEGER;

T TIMER INTEGER; (*TRANSMIT WHEN TIMER REACHES CLOCK*)
END;

VAR
SWITCH: ARRAY( 1..N_SW .) OF SWITCH_RECORD;
TR:ARRAY(. 1..N_TR .) OF TR_RECORD;

BUFFER:ARRAY(. 1..F_TOTAL .) OF BUFFER_RECORD;
FMAX:ARRAY(. O..2 .) OF INTEGER;(* MAX USAGE OF FIFO*)
CLOCK: INTEGER;

SEED: INTEGER;

R_PACKET,T_PACKET: INTEGER;

TOTAL_DELAY: INTEGER;

MAX_DELAY: INTEGER;

TR_DELAY:INTEGER; (*BLOCKAGE AT ENTRANCE*)

FUNCTION RANDOM (VAR SEED:INTEGER) :REAL;
BEGIN

RANDOM: =SEED/65535;

SEED := (25173*SEED+13849)MOD 65536;
END;

PROCEDURE INITIALIZE:

VAR

T1,81,1PI1,0PI,CI,.PI,BI: INTEGER
TEMPI:INTEGER;

BEGIN

WRITELN(‘LAST STAGE DOES NOT MATCH LOOP NUMBER,JUST INCR FB#’);

WRITELN(’'NUMBER OF SWITCHES=' ,N_SW:5);
WRITELN( ’NUMBER OF TR=' ,N_TR:5):

WRITELN('FIFO SIZE OF CL-0,1,2,TOTAL PER SWITCH=',FO_SIZE:5,

F1_SIZE:5,F2 szzs 5,FO12_SI12E:5);

WRITELN( ‘REQUEST RATE 1/TR_INTL 10:5);
WRITELN(’'TR INTL= TR_INTL 7);
WRITELN(’SIMULATION TIME=',T_SIMULAT:5);
FOR SI:=1 TO N_SW DO WITH SWITCH[SI] Do
BEGIN (*S*)

FOR IPI:= O TO 1 DO WITH INPORT[IPI] DO

BEGIN (*IPx*)

I_TIMER:=0;
1 EMPTY:=TRUE;
I _DEST:=-1;

I_TR_TIME:=0;:
I_FEEDBACK_COUNT: =0;

END:(*IP*)
FOR PI:=0 TO 1 DO
BEGIN :

FOR CI:= O TO 2 DO WITH FIFO[PI.CI] DO
BEGIN (*BP,CL*)
F_EMPTY:=TRUE;
F_FULL:=FALSE;
F_COUNT:=0;
END; (*BP,CL*)

(**DETERMINE MEMORY LOCATIONS FOR EACH SWITCH’S BUFFER*‘)
TEMPI:=FO12_SIZE*(2*SI-2+PI)+1;
FIFO[PI.0).F_START:=TEMPI;

FIFO[PI,O).F_TOP:=TEMPI;
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FIFO[PI
FIFO[PI
FIFO[PI,
FIFO[PI,
FIFO[PI,
FIFO(PI,

,0]
,01.

1].

.F_BOTTOM:=TEMPI;

F_STOP:=TEMPI+FQ_SIZE-1;
F START 'TEMPI+FO SIZE;

1] F TOP =TEMPI+FO_! STZE;

1].
1].

F BOTTOM -TEMPI+FO SIZE:
F STOP =TEMPI+FO_ STZE+F 1 _SIZE-1;

FIFO[PI,2]. F_START =FIFO[PI,1]. F_STDP*1

FIFO[PI,

FIFO[PI,

FIFO[PI.
END;

2].
2].
2].

F_TOP:=FIFO[PI,1].F_STOP+1;
F BOTTOM =FIFO{PI, 17.F _STOP+1;
F_STOP:=FIFG[PI,2].F START+F2 SIZE-1;

FOR OPI1:=0 TO 1 DO WITH OUTPORT(OPI] DO
BEGIN(*OP*)
O_TIMER:=0;
O_EMPTY: =TRUE;

O_TR TIME:

=o;

O_MATCHED : =FALSE;

O_DEST:=-1;:

O_FEEDBACK_COUNT : =0;
READLN(O_RR,O0_NEXT_SW,0_NEXT_PT):

END; (*OP
END;: (*S*)

*)

FOR TI:=1 TO N_TR DO WITH TR[TI) DO

BEGIN(*Tx*)

T_EMPTY :=TRUE;

T_BLOCKE

T_DEST:=-

D:

T_NEXT_SW:
T_NEXT_PT:

REPEAT

1:

FALSE;

TRUNC((TI+1)/2);
(TI+1)MOD 2;

T_TIMER: -TRUthRANDDM(SEED)*z*TR INTL);
UNTIL T_TIMER>O AND T_TIMER<2*TR_INTL;:

END; (*T*)

FOR BI:=1 TO F_TOTAL DO
WITH BUFFER[BI] DO

BEGIN

B_EMPTY : =TRUE;
B_TR_TIME:=0;

B_FEEDBACK_COUNT : =0;

B_DEST:=-1;
END;
CLOCK:=0;
TOTAL_DELAY:=0;
TR_DELAY: =0;
R_PACKET:=0;
T PACKET:=0;
MAX_DELAY:=0;
FMAX[O]:=
FMAX[1]):=0;
FMAX[2]:=0;

(**MAX USAGE OF EACH CLASS OF BUFFERS*)

END; (*INIT*

)

PROCEDURE TR_GET_DEST;

VAR
T:INTEGER:
BEGIN

FOR T:= 1 TO N_TR DO WITH TR{T] DO
BEGIN(*T*)
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IF T_TIMER <= CLOCK AND T_EMPTY AND NOT T_BLOCKED THEN
BEGIN(*TIMER*)
REPEAT
T_DEST := TRUNC(RANDOM(SEED)*65);:
UNTIL ( T_DEST IN (. 1..64 .) AND T_DEST <> T )
T_EMPTY:=FALSE;
END; (*TIMER*)
END;
END; (*TR_GET_DEST*)

- FUNCTION ROUTE(SW, DT:INTEGER) : INTEGER:;
VAR .
SR,DR:INTEGER;
BEGIN
SR:=SW;
DR:=DT;
ROUTE:=1; (*INITIAL SETTING*)
IF SR<=8 AND ( (DR-1) MOD 2 =0) THEN
ROUTE: =0
ELSE IF SR<=16 AND SR>8 AND ( TRUNC((DR-1)/2) MOD 2 =0) THEN
ROUTE : =0
ELSE IF SR<=24 AND SR>16 AND ( TRUNC((DR-1)/4) MOD 2=0) THEN
ROUTE:=0
ELSE IF SR<=32 AND SR>24 AND ( TRUNC((DR-1)/8)MOD 2=0) THEN
ROUTE : =0 .
END;

PROCEDURE TR_TO_INPORT;
VAR
TT:INTEGER;
PACKET_COUNT: INTEGER;
BEGIN
FOR TT:=1 TO N_TR DO WITH TR[TT] DO
BEGIN(*T*)
IF NOT T_EMPTY AND T_TIMER<=CLDCK THEN
WITH SWITCH[T_NEXT_SW],INPORT[T_NEXT_PT] DO
BEGIN(*READY TO TRANSMIT*)
PACKET_COUNT : =FIFO{T_NEXT_PT,0].F_COUNT;
IF ( I_EMPTY) AND I_TIMER<=CLOCK AND
FIFO[T_NEXT_PT,0].F_COUNT<FO_SIZE AND
FIFO[T_NEXT_PT,1].F_COUNT<F1_SIZE AND
FIFO[T_NEXT_PT,2].F_COUNT<F2_SIZE THEN
PACKET_COUNT<(FO_SIZE-1)*(TRUNC(T_NEXT_SW/8.4+1)*B/N_SW) THEN
{ FIFO[O,0).F_COUNT < ( TRUNC(T_NEXT_SW/8.4)+1)) AND’
(FIFO[1,0].F_COUNT< ( TRUNC(T_NEXT_SW/B.4)+1)) THEN
BEGIN(*GRANTED TO TRANSMIT*)
I_TIMER:=CLOCK+T_TRANSFER;
I_EMPTY:=FALSE;
I_DEST:=T_DEST;
1_FEEDBACK_COUNT: =0;
I_TR_TIME:=CLOCK;
T_EMPTY:=TRUE;
T_TIMER:=CLOCK+ TRUNC(TR_INTL*2*(RANDOM(SEED)));
T_DEST:=-1;
T_BLOCKED:=FALSE;
INCR(T_PACKET);
END
ELSE



BEGIN
T_BLOCKED:=TRUE;
INCR(TR_DELAY); (*INCREMENT TOTAL TR_DELAY*)
END;
END; (*READY TO TRANSMIT*). .
END; (*T*)
END; (*TR_TO_INPORT*)

PROCEDURE TRANSFER( SS,BB,CC,PPRT,00PT,CC_NEXT:INTEGER);
VAR
ST,BT,CT,PTRT,OPT,CT_NEXT:INTEGER;
BEGIN(*GRANT CLASS-CL BUFFER*)
ST:=SS;
BT:=BB;
CT:=CC;
PTRT:=PPRT;
OPT:=00PT;
CT_NEXT:=CC_NEXT;
WITH SWITCH[ST].FIFO[BT,CT],OQUTPORT{OPT] DO
BEGIN
WITH BUFFER[PTRT] DO
BEGIN
DECR(F_COUNT);
O_TIMER:=CLOCK+T_SWITCH+T_DECIDE:
O_EMPTY:=FALSE; -
O_DEST:=B_DEST;
IF O_DEST NOT IN (. 1..64 .) THEN )
' WRITELN('?27?2? WRONG DEST, LINE 2577?2727’ ,0_DEST:5);
IF O_DEST=0_RR THEN O_MATCHED:=TRUE
ELSE O_MATCHED:=FALSE;
O_FEEDBACK_COUNT : =CT_NEXT;
O_TR_TIME:=B_TR_TIME;
B_EMPTY:=TRUE;
B_DEST:=-1;
B_FEEDBACK_COUNT:=0;
B_TR_TIME:=CLOCK;
F_FULL:=FALSE;
F_BOTTOM:=PTRT;
IF F_TOP=F_BOTTOM THEN
F_EMPTY:=TRUE
ELSE F_EMPTY:=FALSE;
END
END (*CLASS_CL*)
END;

PROCEDURE OUTPORT_TO_INPORT;
VAR
S,0P:INTEGER;
BEGIN -
FOR S:=1 TO N_SW DO WITH SWITCH[S] DO
FOR 0OP:=0 TO 1 DO
WITH OUTPORT[OP],SWITCH[O_ NEXT_SW].INPORT[O_NEXT_PT] DO
BEGIN(*S,0P*)
IF NOT O_EMPTY AND NOT O_MATCHED AND O_TIMER<=CLOCK THEN
BEGIN(*READY TO TRANSMIT*) .
IF ( I_EMPTY) THEN
BEGIN(*GRANTED TO TRANSMIT=*)
" I1_TIMER:=CLOCK+T_TRANSFER;
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I_EMPTY:=FALSE;
I_DEST:=0_DEST;
I_TR_TIME:=0_TR_TIME;
I_FEEDBACK_COUNT:=0_FEEDBACK_COUNT:
O_TIMER:=CLOCK+T_TRANSFER;
O_DEST:=-1;
O_EMPTY : =TRUE;
O_FEEDBACK_COUNT : =0;
O_TR_TIME:=CLOCK;

END

ELSE
BEGIN(*BLOCKED*)
(**%xnerrs«QUTPORT IS BLOCKED?7772772*%*%*****etknksstx)

WRITE('AT T,SW,NEXT SW, FB_COUNT )
WRITELN( CLOCK:3.5:S.O_NEXT_SW:3.0_FEEDBACK_COUNT:4):
O_EMPTY:=FALSE;
END;
END(*READY*)
ELSE
IF O_MATCHED THEN(*REMOVE PACKETS*)
BEGIN
O_TIMER:=CLOCK;
O_EMPTY:=TRUE;
O_MATCHED:=FALSE;
INCR(R_PACKET);
WRITELN('RECEIVED AT TIME,DEST.RR,DELAY=',CLOCK:5,0_DEST:5,
O_RR:5, CLOCK - O_TR_TIME: 5);

TOTAL_DELAY: —TOTAL _DELAY+(CLOCK - o _TR_TIME);
IF (CLOCK-O0_TR_TIME)> MAX_DELAY THEN
MAX_DELAY:=(CLOCK - O_TR_TIME);
O_DEST:=-1;
O_FEEDBACK_COUNT : =0;
O_TR_TIME:=CLOCK;
END; ( *REMOVE PACKETS*)
END; (*S,0P*)
END; (*OUTPORT_INPORT*)

PROCEDURE INPORT_TO_POOL ;
VAR
SS,IP:INTEGER;:
BEGIN
"FOR $S:=1 TO N_SW DO WITH SWITCH[SS] DO
FOR 1P:=0 TO 1 DO WITH INPORT[IP] DO
BEGIN (*S,IP*)
IF NOT I_EMPTY AND I_TIMER<=CLOCK THEN
BEGIN (*READY TO STORE PACKETS INTO.BUFFER POOL*)
IF FIFO[IP,I_FEEDBACK_COUNT].F_FULL THEN
WRITELN(/!!!!INIF_FULLI!IIIT S,P,CL=",55:2,1P:2,1_FEEDBACK_COUNT:3):
WITH FIFO[IP,I_FEEDBACK couwr] Do
IF NOT F_FULL THEN
BEGIN .
F_TOP:=(F_TOP+1);
IF F_TOP>F_STOP THEN F_TOP:=F_START;
WITH BUFFER[F_TOP] DO
BEGIN
INCR(F_COUNT);
IF F_COUNT>FMAX[I_FEEDBACK_COUNT] THEN



FMAX[I_FEEDBACK_COUNT]:=F COUNT

B_EMPTY:
B_DEST:=

=FALSE;

I_DEST;
B_TR_TIME:=I_TR_TIME;
B_FEEDBACK_COUNT:=1_FEEDBACK_COUNT;
=CLOCK+T_SWITCH+T_DECIDE;

I_TIMER:
1_EMPTY:=TRUE;

I _DEST:=-1;
I_FEEDBACK_COUNT:=0;
I_TR_TIME:=CLOCK;
F_EMPTY:=FALSE;

IF F _ToP=F_BOTTOM THEN F_FULL:=TRUE
ELSE F FULL =FALSE:

END
END
END
END (*S,IP*)

END; (*INPORT_BUFFER POOL*)

PROCEDURE POOL_TO_OUTPORT;

VAR

PTRP:INTEGER; (*POINTER OF STRUCTURED BUFFERS‘)

TERMINATE :BOOLEAN;

SP,0OPP,PP,CLP,CLP_NEXT:INTEGER;

CHECK_DEST: INTEGER;
CHECK_BIT:INTEGER;

OK_TRANSFER:BOOLEAN;

NOW_SCHEDULED : INTEG
BEGIN

ER;

FOR SP:=1 TO N_SW DO WITH SWITCH[SP] DO
FOR OPP:=0 TO 4 DD WITH OUTPORT[OPP] DO

BEGIN(*S,0P*)

IF O_EMPTY AND O_TIMER<=CLOCK THEN
BEGIN(*READY TO ACCEPT PACKETS FROM CLASS _0,_1,_2 BUFFERS*)

NOW_SCHEDULE
TERMINATE : =F

D:=0;
ALSE;

WHILE (NOW_SCHEDULED<6) AND (NDT TERMINATE) DO

CASE NOW_SCHEDULED OF

BEGIN
0: BEGIN
t: BEGIN
2: BEGIN
3: BEGIN
4: BEGIN
5: BEGIN
<>: BEGIN
END;

PP:=0; CLP:=2; END;
PP:=1; CLP:=2; END;
PP:=0; CLP:=1; END;
PP:=1; CLP:=1; END;
PP:=0; CLP:=0; END;
PP:=1; CLP:=0; END;
WRITELN( ERROR IN POOL TO QUTPORT!!! 11! ") END;

PTRP:=(FIFO[PP, CLP] F_BOTTOM+1);

IF PTRP>FIFO[PP,CLP]. F_STOP THEN PTRP:=FIFO[PP,CLP].F_START;

(*REMOVE PACKET FROM BOTTOM OF BUFFER*)
CHECK_DEST:=BUFFER[PTRP].B_DEST;
CHECK_BIT:=ROUTE(SP,CHECK_DEST):
(*DETERMINE SWITCH BIT OF PACKET*)

(*1F FEEDBACK PACKET,
1.

IF O_NEXT_SW
BEGIN

IF CLP<2 AND (((CHECK_DEST-1)MOD 16)=((O_RR-1) MOD 16))THEN

CLP_NE
ELSE

IN (.

XT:=2

.8

IF CLP<2 THEN

THEN GO TO NEXT CLASS OF BUFFER*)

.) THEN
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CLP_NEXT:=CLP+1
ELSE CLP_NEXT:=CLP
END -

ELSE
CLP_NEXT:=CLP;
IF O_NEXT_SW IN (. 1..8 .) AND CLP<2 THEN
CLP_NEXT:=CLP+1;
ELSE CLP_NEXT:=CLP;
WITH SWITCH[O_NEXT_SW].FIFO[O_NEXT_PT,CLP_NEXT] DO
IF (NOT FIFO[PP,CLPT.F_EMPTY) AND
(F_COUNT< (F_STOP-F_START)) AND
(CHECK_BIT=0PP) THEN
BEGIN
OK_TRANSFER: =TRUE;
TERMINATE : =TRUE;
O_TIMER:=CLOCK+T_SWITCH;
0_EMPTY: =FALSE:
END™
ELSE
WITH BUFFER[PTRP] DO
BEGIN
OK_TRANSFER:=FALSE;
NOW_SCHEDULED : = (NOW_SCHEDULED+1) ;
TERMINATE : =FALSE;

END;
END; ( *WHILE*)
IF OK_TRANSFER THEN TRANSFER(SP,PP,CLP,PTRP,OPP,CLP_NEXT);
. END; (*EMPTY*)
END; (*S,0P*)
END:(*POOL_TO_OUTPORT‘)

PROCEDURE GROSS_DISPLAY;

BEGIN

WRITELN( ‘AT TIME=‘,CLOCK:5);

WRITELN( " T_PACKET=',T_PACKET:7);

WRITELN(" R_PACKET=‘,R_PACKET:7);

IF R_PACKET > 1 THEN

WRITELN(" AVERAGE DELAY=',TOTAL_DELAY/R_PACKET:10:5);
WRITELN( " MAX DELAY= ‘' MAX_DELAY:5);

WRITELN(" AVERAGE TR_DELAY= ‘', TR_DELAY/T_PACKET:10:5)};

WRITELN( AVERAGE THROUGHPUT=’, R PACKET/T SIMULAT:10:5):
WRITELN(" UNDELIVERED PACKETS=", T_PACKET- R_PACKET 5);
WRITELN(” MAX FIFO USAGE=‘ FMAX[O]:3,FMAX[1]:3,FMAX[2]:3);
WRITELN(" TOTAL FIFO USAGE=',FMAX[O]J+FMAX{1]+FMAX[2]:5);
END;

PROCEDURE DETAIL_DISPLAY;

VAR

SW,C,.P,B:INTEGER;

BEGIN

WRITELN{ 'BUFFER DISPLAY OF SWITCH ARRAY');
WRITE(’ S PT CL B SRC DST SBIT STEP FB GEN_T TR_T BF_T DE_T DE_2?'):
WRITELN(’ F_TOP F_BOTTOM MAX_USED’);
FOR SW:=1 TO N_SW DO WITH SWITCH[SW] DO
BEGIN
FOR £:=0 TO 1 DO
BEGIN
FOR C:=0 TO 2 DO WITH BUFFER POOL[P cl oo
BEGIN



IF. F_FULL THEN WRITELN(‘BUFFER FULL:S,P,C *,SW:3,P:3,C:3);

IF NOT F_EMPTY THEN
BEGIN
FOR B:=0 TO FIFO_SIZE-1 DO WITH BUFFER[B] DO
IF NOT B_EMPTY THEN
BEGIN
WRITE(’ ’,SwW:2,’ ‘,P:2,’ ’,C:2," ‘.,B:2,’ *,’ ',B_DEST:S5);
WRITE(B_FEEDBACK_COUNT:3,’ ’);
WRITELN(B_GENERATE_TIME:5 B_TR_TIME:S5,’ “,
F_TOP:6,F_BOTTOM:6);
END;
END;
END;
END;
WRITELN;
END;
END;

PROCEDURE DEBUG;

VAR

B:INTEGER;

BEGIN

WRITELN('DISPLAY OF BUFFERS’):

FOR B:=1 TO F_TOTAL DO WITH BUFFER[B] DO

BEGIN .

IF NOT B_EMPTY THEN
WRITELN(B:7,B_TR_TIME:5,B_DEST:5,B_FEEDBACK_COUNT:S5);

END;

END;

BEGIN( *LSSN*)
SEED:=8476;
INITIALIZE;
FOR CLOCK:=1 TO T_SIMULAT DO
BEGIN
TR_GET_DEST;
INPORT TO _POOL;
POOL_TO_OUTPORT;
OUTPORT_TO_INPORT:
" TR_TO_INPORT;
IF CLOCK> T_SIMULAT -1 THEN GROSS_DISPLAY;
END;
END.

(*INPUT FILE WHICH CONTAINS THE INTERCONNECTION PATTERN OF THE LSSN*)

167



168

References:

10.

1.
12.
13.
14.
15,
16.

17.

T. Moto-oka (editor) 1982. Fifth Generation Computer Systems.
North-Holland Publishing Company.

IEEE Spectrum. Tomorrow's Computers. Vol.20, No.!'1, Nov. 1983.

H.T. Kung & C.E. Leiserson,"Systolic Arrays for VLSI," Dept, of
Computer Sc., Carnegie-Mellon Univ.,, Tech. Rept. CS-79-103, Apr.
1983, :

Computer, Vol. 15, No. 2, Feb. 1982. Special issue on data-flow
computers. o '

P. C. Treleaven, D. R. Brownbridge and R. P. Hopkins,"Data-Driven
and Demand-Driven Computer Architectures," ACM Computing Surveys,
Vol. 14, No. 1, March 1982,

H.S. Stone,"Parallel Computers,” in Introduction to Computer
Architectures, edited by H.S. Stone et al, 1875, Science
Research Associates, Inc.

W.R. Cyre & G.J. Lipovski,"On generating Multipliers for a
Cellular Fast Fourier Transform Processor," IEEE Trans. on
Computers, C-21, pp83-87, 1972.

D. P. Misunas,"A Computer Architecture for Data Flow
Computation," MIT/LCS/TM-100, Cambridge, MA., 1975.

H.S. Stone,"Parallel Processing with the Perfect Shuffle,"
IEEE Trans. on Computers, C-20, pp153-161, 1971,

D.E. Muller & E.P. Preparata,"Bounds to Complexities of Networks
for Sorting and Switching,” J. Ass. Comput. Mach., Vol.22,
pp195-201, Apr. 1975. '

D.E. Knuth, The Art of Computer Programming, Vol.3, Sorting and
Searching. Addison-Wesley, Reading, Mass., 1973.

T. Lang & H.S. Stone,"A Shuffle-exchange network with simplified
Control," IEEE Trans. on Computers, Vol.C-25, pp.55-65, Jan. 76.

K.E. Batcher,"Sorting Networks and their Applications,” Proc.
AFIPS 1968, Spring Joint Comput. Conf., pp307-314, Apr. 13968.

D. Nassimi & S. Sahni,"Bitonic Sort on a Mesh-Connected
Parallel Computer," IEEE Trans. on Comput., V10-C28, No.1,
pp2-7, Jan,.1979.

C.D. Thompson & H.K. Kung,"Sorting on a Mesh=Connected Parallel
Computer," Comm. of the ACM, Vol.20, No.4,pp263-271, Apr. 1977.

H.T. Kung,*Let's Design Algorithms for VLSI Systems," Dept. of
Computer Sc., Carnegie-Mellon Univ., Tech. Rep., Jan. 1979.

F.S. Wong & M.R, Ito,"A Systolic Sorter and its Simulation
Results," Dept. of E.E., The Univ. of British Columbia, Tech.
Rep., Oct. 1982. ' , ’



18.

19.

20.

21,

22'

23.

24.

25.

26.

27,

28.

29.

30.

31.

32.

33.

169

C.D. Thompson,"A Complexity Theory for VLSI," Ph.D. Thesis,
Carnegie-Mellon Univ., Dept. of Computer Sc., 1979.

M.J. Foster & H.T. Kung,"Design of Special-Purpose VLSI
Chips: Examples and Opinions," Dept. of Computer Sc.,
Carnegie-Mellon Univ., Tech. Rep., Sep. 1979.

C. Wu & T. Feng,"On a Class of Multistage Interconnection
Networks," I1EEE Trans. on Computers, Vol. C-29, No. 8, Aug.
1980, pp. 694-702.

M.C. Pease,"The Indirect Binary n-Cube Microprocessor Array,"
IEEE Trans. on Computers, Vol. C-26, No.5, May 1977, pp.458-473.

Computer, Vol.14, No. 12, Dec. 1981, Special issue on intercon-
nection Networks.

F.S. Wong & M.R. Ito,"A Novel Packet Switching Network," Tech.
Rept., Dept. of E.E., The Univ. of Britihs Columbia, Canada,
July 1982,

C. Wu, T. Feng & M.C. Lin,"Star: A Local Network System for
Realtime Management of Imagery Data," IEEE Trans. on Computers,
Vol. C-3t1, No., 10, Oct. 1982, pp. 923-933.

D.M. Dias & J.R. Jump, "Packet Switching Interconnection Networks
for Modular Systems," in Computer, Vol. 14, No. 12, Dec. 1981,
pp.42-53.

A.R. Tripathi & J. Lipovski,"Packet Switching in Banyan
Networks," Proceedings of the 6th Annual Symposium on Computer
Architectures, 1979, pp.160-167.

K.E. Batcher,"Sorting Networks and their Applications,"
Proceedings of AFIPS 1968, Spring Joint Computer Conf., pp.307
-314, 1968. .

F. S. Wong and M. R. Ito,"A Large-Scale Data-Flow Computer
For Highly Parallel Signal Processing," Proceedings of the
1982 International Conference on Circuits and Computers,
New York, Oct. 1982.

E. Raubold & J. Haenle,"A Method of Deadlock-free Resource
Allocation and Flow Control in Packet Networks," Proceeding
ICCC 1976, Toronto, Canada, Aug. 1976, pp.483.

G.H. Barnes & S.F. Lundstrom,"Design and Validation of a
Connection Network for Many-Processor Multiprocessor
Systems," in Computer, Vol. 14, No. 12, Dec. 1981, pp31-41.

K. S. Weng,"An Abstract Implementation for a Generalized
Data Flow Language," MIT/LCS/TR-228, Cambridge, MA., 1978.

D. D. Gajski, D. J. Kuck and D. A. Padua,"Dependence-Driven
Computation,” Proceedings of the IEEE 1981 Compcon Spring,
ppo 168-1720 !

P. C. Treleaven, R. P. Hopkins and P. W. Rautenback,"Combining
Data Flow and Control Flow Computing," The Computer Journal,



34.

35.

36.

37.

38.

39.

40.

41,

42.

43.

44.

45.

46.

47.

48.

49.

Vol. 25, No. 2, 1982, pp. 207-271. 170
J. E. Requa and J. R. McGraw,"The Piece-wise Data Flow
Architecture: Architectural Concepts," IEEE Transactions on
Computers, Vol. C-32, No. 5, 1983, pp. 425-437.

F. S. Wong and M. R. Ito,"A Loop-Structured Switching Network,"

Techical Rept., Dept. of E.E., The Univ. of British Columbia,

1982, (Accepted by IEEE Trans. on Computers.)

P. Budnik and D. J. Kuck,"The Organization and Use of Parallel
Memories," IEEE Trans. on Computers, Vol. C€-26, 1971, pp.
1566-1569.

D. H. Lawrie and C. R. Vora,"The Prime Memory System for Array
Access," l1EEE Trans. on Computers, Vol. C-31, No. 5, 1982,
PpP. 435-442.

B. Hansen. The Architecture of Concurrent Pascal. Prentice-~
Hall, Inc. 1977. .

W. B. Ackerman,"Data Flow Languages," Proc. of the 1979
National Computer Conference, 1979, pp. 1087-1095.

S. F. Lundstrom and G. H. Barnes,"A Controllable MIMD
Architecture," Proc. of the 1980 International Conference
on Parallel Processing, 1980, pp. 19-27.

D. Comte, N. Hifdi and J. C. Syre," The Data Driven LAU
Multiprocessor System: Results and Perspectives," Information
Processing 80, S. H. Lavington (Ed.), North-Holland Pub. Co.,
1980, pp. 175-179.

E. W. Disjkstra,"Co-operating Sequential Processes," in
Programming Languages.  F. Genuys (Ed.) Academic Press, 1968.

W. B. Ackerman and J. B. Dennis,"VAL -- a Value-oriented
Algorithmic Language: Preliminary reference manual," MIT/LCS
TR-218, Jan. 1979,

Reference Manual for the Ada Programming Language, Proposed
Standard Document. US Department of Defense, 1980. -

C. K. C. Leung,"Fault Tolerance in Packet Communication
Computer Architectures," MIT/LCS/TR-250, 1980.

D. A. Adams,"A Computation Model with Data Flow Sequencing,”
Computer Science Dept., School of Hummanities and Science,
Stanford University, TR~CS17, Dec. 1968.

Arvind, K. P. Gostelow and W. E. Plouffe,"An Asynchronous
Programming Language and Computing Machine,"™ TR-114a, Dept.
of Infor. and Comp. Sc., UC Irvine, Dec. 1978.

Arvind, V. Kathail and K. Pingali,"A Dataflow Architecture
with Tagged Tokens," MIT/LCS/TM5174, Cambridge, Mar. 1980.

Arvind and R. E. Thomas,"I-Structure: An Efficient Data Type
for Functional Language," MIT/LCS/TM-178, Sept. 1980.



50.

5t1.

52.

53.

54.

55.°

S6.
57.
58.
59.
60.
61.

62.

63.

64.
65.
66.

67.

171
J. D. Brock and L. B. Montz,"Tranlation and Optimization of

Data Flow Programs,” Proc. 1979 Intl. Conf. on Parallel
Processing, Bellaire, Michigan, Aug. 1979, pp. 46-54.

A. L. Davis,"The Architecture of DDMi: A Recursively
Structured Data Driven Machine,” Univ. of Utah, Comp. Sc. Dept.
TR-UUCS-77-113, 1977,

J. B. Dennis and D. P. Misunas,"A Preliminary Architecture for
a Basic Data-Flow Processor," Project MAC. MIT CSG Memo 102.

J. B. Dennis and D. P. Misunas," A Computer Architecture for
Highly Parallel Signal Processing,™ Proc. of the ACM 1974
National Conference, pp. 402-409,

J. B. Dennis and K. S. Weng,"Application of Data Flow
Computation to the Weather Problem," Proc. of the Symposium

on High Speed Computer and Algorithm Organizations, April 1977,
pp. 143-157,

S. 1. Kartashev and S. P. Kartashev,"Dynamic Architectures:
Problems and Solutions,"” in Computer, July 1978 issue.

S. P. Kartashev and S. 1I. Kartashev, "Supersystems for the
80's,” in Computer, Nov. 1980 issue.

G. J. Lipovski,"On a Varistructured Array of Microprocessors,"
IEEE Trans. on Computers, Feb. 1977, pp. 125.

J. R. McGraw,"Data Flow Computing: The VAL Language,"” MIT/LCS
TM~-188, Jan. 1980,

L. B. Montz,"Safety and Optimization Transformation of Data
Flow Programs," MIT/LCS/TR-240, Cambridge, Ma., Jan. 1980.

J. Rambuagh,"A Data Flow Multiprocessor,” 1EEE Trans. on Comp.,
Feb. 1977, pp.138-146.

S. S. Reddi and E. A. Feustel,"A Restructurable Computer
System," IEEE Trans. on Computers, Jan. 1978, pp. 1-20.

R. M. Shapiro and et al.,"Representation of Algorithms as
Cyclic Partial Ordering," Applied Data Research, Wakerfield,
Mass., Report CA-7112-2711, Dec. 1971,

H. J. Siegel and et al.,"A Survey of Interconnection Methods
for Reconfigurable Parallel Processing Systems,"” National
Computer Conference 1979, pp. 529-542.

M. R. Sleep,"Applicative Languages, Data Flow and Pure
Combinatory Code," IEEE Compcon 1980, pp.112-115.

P. C. Treleaven,"Explorating Program Concurrency in Computing
Systems," in Computer, Jan. 1979, pp. 42-49.

C. G. Vick and et al.,"Adaptable Architectures for
Supercomputers,” in Computer, Nov, 1980, pp.17-36.

1. Watson and J. Gurd,"A Prototype Data Flow Computer with
Token Labelling," National Computer Conference 1979, pp.623-628.



172

68. D. P. Misunas,"Structure Processing in a Data Flow Processor,"
Proceedings of 1976 International Parallel Processing, Aug. 1976
pp. 100-105.

69. R. H. Perrott, "A Language for Array and Vector Processors,"
ACM Trans. on Programming Language and Systems, Vol. 1, No. 2,
Oct. 1979, pp. 177-195. .



