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Abstract

Three methods for obtaining robust estimates of

correlation matrices were compared in conditions of

asymmetrically contaminated normal distributions. The

estimators examined included a multivariate trimming
(MVT) procedure based on the Mahalanobis distance
measure, and two procedures derived from the robust
estimation of regression coefficients. The regression
coefficients were obtained from the sample cumulant
generating function of the residuals. Monte Carlo
results werevobtained for various levels of sample
size and outlier contamination. Correlations obtained
from the regression procedures were observed to be
highly robust with respect to asymmetric contamination
and were able to withstand larger amounts of outlier
contamination than the MVT estimates. The MVT
estimates tended to be slightly less biased than
correlations obtained from the regression procedure in
conditions with the smallest amounts of contamination.
The use of these estimates for outlier identification

is discussed.
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A Comparison of Some Robust Estimates of Correlations

in the Presence of Asymmetry

In the analysis of data from psychological tests or
experiments, observations are frequently encountered which
appear to be inconsistent with the majority of the observa-
tions in the sample. These observations, which often become
apparent during data insbection or editing, stand out from
the rest of the observations in the sample by having values
that may seem to be unusually large or small fdr the vari-
ables involved. Commonly referred to as wild points or
outliers, these obsefvations méy be present as isolated
occurrences scattered throughou£ a sample or they may occur
as small groups that, although similar to each other, differ
from the majority of the observations.

Wild points or outliers frequently occur as a result of
errors in recording or measurement. Data obtained from psy-
chological tests, for example, may contain outlying obser-
vations that arise from errors that occur in the administra-
tion or scoring of the tests. In other situations, outliers
may occur when human observers make errors in recording
subject responses or errors may occur when subjects fail to
follow instructions provided in the administration of a. test
or experiment. Outlying observations also frequently occur
as a result of laboratory equipment that fails to function
properly and consequently generates spurious results. The

sensitivity of human subjects to small changes in experi-



mental procedure, or individual differences in prior expect~
ancies about the purpose of experiments in which a subject
participates, are factors that may affect some individuals in
the sample differently than the majority, and consequently
result in the presence of outlying observations. A common
source of outlying observations in psychological research is
the result of individuals other than those from the popula-
tion of interest that are erroneously included in the sample
being examined. This problem arises in areas such as clini-
cal psychology where mental disorders that display similar
symptoms may differ in their etiology, resulting in samples
of individuals from populations of interest that are contam-
inated by the presence of individuals from other populations.
For example, in the development of a psychological test for
the assessment of depression, a researcher may choose a sample
of individuals that displays a particular set of symptoms
that define the disorder of interest. If a proportion of the
sample consists of individuals that differ from the majority
of individuals in the underlying cause of the disorder, such
as undetected organic or drug related effects, the test
scores of these individuals may differ from those of the
larger group and subsequently provide test results that may
be misleading.

When an inspection of sample data reveals errors produced
by equipment failufe, misclassified individuals, or in
recording and measurement, a standard practice is to remove

the questionable observations from the sample prior to



analysis. In many situations, however, the source of
anomalous observations may not be apparent from an inspec-
tion of the data. The researcher is then faced with the
problem of how to decide if the observations in question
are valid or duvue to error.

In the absence of information indicating that outlying
observations are the result of errors, a common choice is to
assume that the questionable ovservations are valid and
include them in the sample. In these situations
the sample distribution is often observed to closely
approximate the assumed form of the population distribution
in spite of the presence of a small number of outliers.

The outlying observations are then included in the sample
since it is often assumed that commonly used statistics
such as means, variances and covariances, which perform
optimally under the ideal ﬁodel, will also perform well in
conditions that deviate slightly from the ideal form of the
distributioﬁ.

A demonstrated limitation, however, of the usual
estimates of means, variances and covariances is their
sensitivity to slight departures from an idealized form of
the distribution (Huber, 1977b, p.l). For example, among
approximately 70 estimates of location, the arithmetic mean
has been shown to be one of the least.robust location
estimates in the presence of outliers (Andrews, Bickel,
Hampel, Huber, Rogers and Tukey, 1972). The usual esti-

mates of variances and covariances are also sensitive to



small deviations in the shape of a distribution caused by

the presence of outliers, since these estimates are adversely
influenced by information contained in the tails of a
distribution {(Gnanadesikan & Kettenring, 1972; Huber, 1977b,
pp. 41-47; Tukey, 1960, pp. 448-485).

Since outliers are present in most data obtained in
practice, the usual estimates of means, variances and covar-
iances should be used with caution (Tukey, 1979, pp. 103-106).
While the proportion of outliers present in typical data
sets has been estimated to be between five and ten percent
(Hampel, 1974; Huber, 1977b, p. .3), in psychology errors in
measurement are often difficult to observe directly, and
subject variability may often result in heavy-tailed
distributions or samples in which the proportion of outlier
contamination is greater than 10 percent. Because of the
prevalence of outliers in applied research, a recommended
procedure for the analysis of experimental data involves
performing two sets of analyses for a given sample, one
using standard statistical procedures and one using robust
or outlier resistant methods. If the results of the two
analyseé differ, the results of the robust procedure should
be used (Hogg, 1979, pp. 1-17; Tukey, 1979, pp. 103—106).

Biased or misleading results in the analysis of experi-
mental data is a common problem.in psychological research
since data are often analyzed without prior ihspection for
errors. This is frequently due to the routine application

of readily available computer programs to perform the



desired statistical analysis. The increasing use of
automated data acquisition and storage systems also may
result in errors that are undetected prior to‘analysis.
Data sets obtained in this way are also frequently large,
making visual inspection of the data impractical. The
routine use of outlier resistant statistics in these
situations provides a method in which the effects of
unknown sources of érrOr may be reduced or removed.

In the case of univariate data, a comparison of the
usual estimates of means and variances with robust
estimates of these parameters may often provide valuable
information about which observations may be classified
as outliers and consequently iﬁdicate sources of error.
in the case of multivariate'data, however, the presence
of outlying observations affects not only estimates of
location and scale but also the orientatidn or
correlation between variables. In addition, different
types of outliers may be present, those that are the
result of errors that affect oniy a subset of the
components in an observation vector, or those that
affect all of the components equally.

The effect of outlying observations on estimates
of correlations or covariances is an important con-

sideration in practice since these estimates are



routinely used in psychology for examining relationships
among groups of variables, or for input to more complex
analyses such as principal components or féctor analyses.
The sensitivity of the usual product-moment estimates of
correlations and covariances to the presence of outliers
may frequently result in the introduction of bias in the
results of these analyses. As an example of the . .. .
sensitivity of the sample correlation, r, to the presence
of outliers, Figure 1 is a scatter plot of 50 observations,
48 of which were artificially generated from a population
with a correlation, p , equal to .98. The sample
correlatibn of the 48 observations is .97. The addition
of the two outliers that appear at the upper left of
Figure 1, however, reduces the overall correlation to
.27.

The sensitivity_of r to the presence of outliers
indicates that the use of robust estimates of r are
necessary even in conditions with small amounts of
outlier contamination. Although initial investigations
of the robust properties of r have been primarily
concerned with the effect of nonnormality on the
distribution of r (Pearson, 1929; Kowalski, 1972), of
with robust hypothesis tests for r (Duncan & Layard,

1973), moreﬁreéent:reSearchﬁhaszinvolved,the'development



FIGURE 1

Scatter Plot of 50 Observations with 2 Outliers
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of correlation and covariance estimates that are robust
with respect to the presence of outliers and a number of
robust estimates have been proposed.

Robust Estimation Methods

There are currently few methods for the treatment
of outliers that are widely used in psychological research.
Perhaps the best known method involves the removal or
winsorizing of extreme scores in the analysis of
variance. This procedure and its use with the t-test
are discussed by Winer (1971, pp. 51-54).

M-estimates. Of currently available outlier

resistant statistics, the class of M-estimates (Huber,
1964), obtained from modified maximum likelihood
Aestimation methods, are among the most useful in applied
research. For the estimation of a location parameter
in the presence of outliers or long-tailed distributions,
M-estimates are more efficient than many well known
statistics such as the mean or median, and they are
only slightly less efficient than the mean for
normally distributed errors.

For a continuous random variable X, with probability
density function f(x), and a sample of size n, M-estimates
of a location parameter 6, are obtained by solving an

equation of the form



n
(1) I ¥(x, - 6) =-0."

This is equivalent to minimizing the log likelihood

function

where q>(xi - 8) = -1n f(xi - 8). The relation between

the functions V¥ and ¢ is then
— = ' - = —F! -— -
¥ (x. ) ¢ (xi ) f (xi e)/f(xi 8).

For a normally distributed random variable X,
$(x) = x2/2 + ¢, ¥(x) = x, and the solution to (1)
above is 8 = x = (1/n)Ix, (Hogg, 1979, p. 2). Robust
M-estimates of location are obtained by choosing
alternative forms of the function Y in (1) above so
that the resulting estimates are reasonably efficient
and are able to.withstand a small amount of outlier
contamination. Since M-estimates obtained from (1)
are not generally scale invariant, the function solved

in practice is usually of the form

l\y((xi - 9)/s) =0

Ho B

i
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where s is a robust estimate of scale such as

s = median |xi ~ median Xi]/'6745'

The constant .6745 is used to adjust for asymptotic
normality {(Hampél, 1974).

The multivariate trimming procedure. The

multivariate trimming procedure (MVT), (Devlin et al.,
1975; Gnanadesikan & Kettenring, 1972) provides for p
variables, an iterative approximation to the mean
vector m*'= im*l,...,m*p], and covariance matrix S*,

by calculating at each step the squared distances

2 = _ * L *_l - * s
dy (y; - m*)'s (y; - m*), i=l,...,n

where Xi =[yil""’yip] are .the original observation
vectors from a sample of size n. At each stéep 10 percent
of the most extreme observations are set aside and the
remaining observations used to compute m* and S* in

the same manner as the usual estimates of m and S.

The procedure begins by using the usual estimates of m
and S as starting values or; in the presence of large
amounts of contamination, robust initial estimates are
used. The procedure is terminated when the absolute

value of the Fisher z-transform of the r;k does not change
between successive iterations by more than 10-3.
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Multivariate M-estimates. M-estimates of covariance

matrices (Maronha, 1976) are obtained by methods similar
to the MVT procedure. These estimates are also calculated
iteratively, but insteéd of deleting a portion of the

data with the largest di values, weights are assigned to
each observation based on these distances. Estimates of
the mean vector and Covariance matrices are calculated

from the formulas
m* = [zw,(d;)y;1/ [iwy(d;)] and

g* = (1/n)2w2(di2) (y.

;- m¥)(yy; - m¥)t.

The weights wq and W, suggested by Maronna are of two

types. The first is defined as
wo(d,) = (p + £)/(f + da%) = w,(a%)
149 P i 24910

which results in maximum likelihood estimates for a
p-variate t-distribution with f degrees of freedom.
The second set of weights are similar to those

proposed by Huber (1977a) and are of the form

1, d,<k

i— 2 2

wl(di) = : and wz(di) = [wl(di)] /B.

k/di, otherwise
The value of.k2 can be chosen as a proportion of the

chi-square distribution with p degrees of freedom, i.e.,
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k2=X§(p df) for 0<a<1l, and B is chosen so as to make
S* an asymptotically unbiased estimate of the covariance
matrix in a multivariate normal distribution.

Estimates based on di measures have several
limitations. Theoretical fesults suggest that these
estimators may break down when the proportion of outliers
in a p-variate saméle is approximately 1/p (Maronna,
1976). The results of Devlin et al. (1981) have also
shown that multivariate M—eétimators are very sensitive
to asymmetrically distributed outliers, withstanding
only 1 or 2 percent contamination for p=20.

The problem of increased outlier sensitivity in
high dimensional cases appears to be less important for
these estimators than the presence of asymmetric outliers.
The results of DeVlin et al. (1981) have shown that for
p=20, and symmetrically distributed outliers,
multivariate M-estimators can withstand 10 to 20
percent contamination which is improved to 25 percent
using robust starting points in the calculations. The
use of robust starting points in the asymmetric case
did not improve the performance of the M-estimators
but it did improve the performance of the MVT procedure,
increasing its ability to withstand asymmetric outliers

from 4 to 10 percent.
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Robust estimates of regression parameters. Robust

M-estimates of regression parameters are obtained by a
straightforward extension of methods for obtaining
M-estimates of location. For the general linear

regression model

Vs

i = Bt leil+82xi2+,...,+s X.  + .,

p 1p 1

estimates of the vector of regression coefficients
' §'=[Bo,sl,...,ep], are obtained by solving the normal

equations

-
ll
=
n

<
|
:
»

n .
and i ¥ ——— xij =0, j=l,...,p,

—
0]

where §i=[l,xil,xi2,...,xip] and s is a robust scale
estimate of the residuals. In the bivariate case, the
robust properties of,regressién coefficients obtained
with different choices of ¥ have been examined by
Ramsay (1977), and uses of.robust M-estimates of
regression parameters in applied research are discussed
by Agee and Turner (1979, pp. 107-126).

Other robust estimation procedures. As an




14
alternative to multivariate M-estimators for obtaining
robust correlations among a large number of variables,
Huber (1977b, pp. 99-101) has proposed some coordinate
dependent procedures. These methods involve applying a
monotonic transformation to each variable and then
calculating the correlation estimates from the trans-
formed data. The use of these procedures may be limited
in practice since they are designed for symmetrically
distributed outliers and by transforming each variable
independently of the other, information provided by the
overall shape of the sampling distribution is unused
in calculating the robust estimates.

Devlin, Gnanadesikan and Kettenring (1975)
examined several estimates of p that were designed to
be insensitive to outliers. They found that an effective
estimator for reducing outlier influence could be
obtained from sums and differences of standard scores
for two variables. The method involves calculating

the robust standard scores,

Y*ij = (yij - m*j)/'v*jjl (i=ll"'ln; j=l,2)

where m*j and v*jj are robust estimates of the mean and
variance of yj. This is followed by obtaining robust

estimates of var(y*l + y*z) and var(y*l - y*z) using a
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trimming procedure for variances and then calculating
the robust estimate of p from the identity

r*(y* ,y*,))=1/4 [var (y* +y*,) - var(y* -y*))I.

A disadvantage of this estimator is that it requires
the accurate estimation of the variable means and
variances for the sums and differences of the variables
involved. |

Other bivariate outlier resistant estimates of o
have been based'on methods of trimming extreme
sample observations. These include methods of convex
hull trimming (Bebbington, 1978) and ellipsoidal
trimming (Titterington, 1978). These procedures have
the disadvantage of being computationally complex in
high dimensional cases or demonstrate slow convergence
in calculating a solution.

Procedures that provide robust estimates of
bivariate correlations have disadvantages when used for
estimating correlation matrices. When the elements of
a correlation matrix have been calculated individually,
the resultant matrix may not be positive definite, and
will require methods for adjusting the eigenvalues of
the matrix to ensure that they will all be greater than
Zero.

In situations where a proportion of the sample
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observation vectors contain missing components,
bivariate estimates of correlations may be preferred to
the simultaneous estimation of all the elements of a
covariance or correlation matrix. By calculating the
covariances or correlations separately when missing data
is present, more of the sample information is used since
observation vectors with missing components will not
have to be ‘discarded.

A method for obtaining robust estimates of covariance
matrices that may avoid the limitations of the above
estimators has been suggested by Mosteller and Tukey
(1977, pp. 203-219). The method is based on robust

regression techniques. First, for the variables

§'=(xl,...,xp), xj is regressed on (xl,...,xj_l),
j=2,...,p, using an iterative procedure (Mosteller &
Tukey, 1977; pp. 333-379). This is followed by arranging

the robust regression weights in a lower triangular

matrix B*, pxp, where the elements b*jk=0 if j<k; and if
| *
3>k, by K

xj on (xl,...,xj_l). The next step is to form a matrix 7%,

is the coefficient for x, in the regression of

nxp, of transformed observations, where the transformed

.,2, 1, are obtained from the original

variates z!={z..,..
—i il ip

3 | R .
Observations §i—[xil,...,xip] by calculating

= -~ n*
z; (T B )}_{i.

Since the sample covariance matrix S, may be obtadined from
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S = (1/(n-1))zx;x] = (I-B%) "1 [(1/(n-1)) 1z 2! 1 (1-B%)" 1,

a robust covariance matrix estimate S* is obtained by
constructing a diagonal matrix D¥*, pxp, containing robust
estimates of the variances of the elements of 24 and then

calculating

1 -1

S* = (I - B*) "D*(I - B*')

The calculation of S* by the above method does not require
the robust estimation of the intercept in each regression

equation since the elements of z, are,

zij = Xij—lexil_‘"_Bj—l,jxi,j—l

I
0

i3 T Boj
where eij is the residual error, agd Boj ié the intercept
corresponding to the jth regression equation. A robust
estimate for the correlation matrix R*, is then obtained
by rescaling S*. Robust variance estimates of the
elements of z may be obtained from a procedure that
involves the use of Tukey's biweight (Mosteller & Tukey,
1977; p. 208), br from other robust estimates of scale.
In practice the above regression procedure has
several limitations. For example; when symmetrically
distributed outliers are present in samples drawn from
nonnormal distributions, Devlin et al. (1981) have shown

that correlations obtained from this regression procedure

tend to be slightly less efficient than estimates obtained
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from either multivariate M-estimates or the MVT procedure.
They also noted that the regression based estimates of
covariances are not affine invariant, but are invariant
only up to changes of scale and sign of the original
variables.

Robust Procedures for Asymmetric Outliers

A major limitation of multivariate M-estimates
and the MVT procedure is their sensitivity to asym-
metrically distributed outliers. Since sample observations
with extreme scores may frequently result from systematic
errors in data collection, or from samples that contain
members from other populations, the assumption of
symmetricaliy distributed outliers may often be overly
restrictive. General methods for the robust estimation
of covariances and correlations in the presence of
asymmetrically distributed outliers are currently
unavailable. In the location case, the treatment of
asymmetric outliers has been discussed by Jaeckel (1971},
and a class of M-estimates of location resistant to the
presence of asymmetry has been examined by Collins (1976). .
The problem of asymmetric outliers has been
discussed by Chambers and Heathcote (1981l) in the
context of robust regression. 'They proposed estimates
of regression parameters based on the sample of empirical
cumulant generating function (cgf) (Kendall & Stuart,

1977, pp. 97-126) and provided some results which
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indicate that these estimates are less sensitive to
asymmetric outliers than estimates of regression
parameters obtained from Tukey's biweight procedure or
from the class of M-estimates proposed by Huber: (1973).

Characteristic function based estimates. The

estimation of regression coefficients based on the =
empirical égf has been. shown by Chambers and Heathcote
(1981) to be an extension of least squares estimation.
The method involves for a sample of size n, estimating
the regression coefficients’§‘=[Bl,...,6p], from the
sample characteristic function of the residuals in the

~general linear regression model

When the residual error, e, is normally distributed with

mean 0 and characteristic function

B (1) = exp((-1/2)0%t?),

minimizing the error variance

2 _ -1 ety 2
6. =mn ]Z{._(yk X B)7,

is equivalent to minimizing, for a fixed value of t,

the sample analogue of

G(g;t)=—t—21og|E(elt€)|2

14

which may be written as



n
G (Bit)=-t 2log[n 112
k=1

exp (itly,-x18)) |,
with Gn(gjt) defined at 0 by continuity. Chambers and
Heathcote (1981) noted that for t=0, the minimization
of Gn(g;t) above corresponds to the estimation of g8 by
least squares. They also showed that for a matrix of
mean deviated independent variables X, and a vector of
true parameter values gd,,the distribution of

n_l/z(g-éo) is normal with covariance matrix

2(t)=c?(t) [(x'x)_17%,

where (X'X) _ is the asymptotic form of the covariance
matrix of x.
The scalar quantity czit) above is derived from

the characteristic function of the residual error,

E(elte). By writing E(elte)'in terms of its real and

imaginary components u(t) and v(t),

E(elty=u(t) + iv(t)

02(t) may be shown, when E(elte)#o, to have the form

) w?(8) (1-u(2t)) - 2u(t)v(t)v(2t) + v (£) (L+u(2t))

c”(t)=
262 (0 (£) + v2(e))2

with oz(t) defined at 0 by continuity. For normally

distributed error, the above expression reduces to
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6.2 (t)=t sinh (0€2t2)
which is symmetric with a global minimum at the origin.
In practice the form of the sample estimate of

o 2(t), obtained by replacing u(t) and v(t) with their

sample equivalents

n .
2. _ -1 I
u (8it) =n kil cos (t(y, -x8))
o . y n .
and vn(ﬁ;t) = n kil 31n(t(yk—§kg)),

may be examined by calculating estimates ofﬁoz(t) over

a range of values of t. In situations where asymmetric
error distributions may be the result of outlier
contamination in samples drawn from an underlying normal
distribution, Chambers and Heathcote (1981) noted that
the form of 02(t) differed significaﬁtly from that
obtained when errors were normally distributed. For
example, the minimum of 02(t) was observed to be at a
value of t other than 0 in the asymmetric case, and
oscillations, which were absent for normally distributed
errors, were observed over the range of t. If outliers
are identified and removed from the sample, Oz(t) may

be recalculated in order to determine if the sample

distribution more closely resembles a distribution that
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is normal in form. The examination of the sample
estimate of oz(t) in‘this way provides useful information
about the amount and type of outlier contamination
that may be present in a sample.

The purpose of the present study was to examine
the robust properties of correlations obtained from the
regression procedure when estimates of the regression
coefficients are obtained from the sample cgf. The
major objective of this investigation was to observe
the sensitivity of correlations obtained in this way
to the presence of asymmetric outliers and to compare the
"efficiency of these estimates with those obtained from
the MVT procedure. The MVT procedure was chosen for
comparison since the results of Devlin et al. (1981)
have shown it to be more resistant to the influenée of
asymmetric outliers than other currently available

estimates of correlations.
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Method

Data Generation

Monte Carlo methods were used to generate
multivariate samples from a population with a known
correlation matrix, P. The number of variables p,
used in all conditions of the present study was equal to
6, with P chosen to représent a rénge'of correlations
typically encountered in practice.' One population
correlation matrix was ﬁsed in the present .case and
was obtained from Gorsuch (1974, p. 6).

For each replication of the present procedure,
independent, normally distributed random variables with
mean 0 and a variance of 1 were generated and arranged
in a nxp data matrix Y. The random number generator
RANDN, implemented on the University of British
Columbia's Amdahl 470-V/8 computer, was used to
obtain normally distributed observations. The algorithm
employed first generates, on the interval (0,1),
uniformly distributed random variables which are
subsequently used to obtain normally distributed
random samples from the application of Marsaglia's
rectaﬁgular—wedge—tail method (Knuth, 1968).

In order to simulate samples drawn from a multi-

variate normal population with a mean vector E'=[pl,...,p

P

]
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and correlation matrix P, (MVN(y,P)), an nxp data matrix X,
was obtained from the matrix Y by the transformation
X = YC'.
The pxp matrix C, was obtained from the product

v
where A is a diagonal matrix containing the eigenvalues
of P and V' is the pxp matrix of corresponding normalized
eigenvectors. .The data contained in the matrix X may
be shown to represent a sample drawn from the required
distribution since P=CC' and, by taking expectations
E(X'X)=E(CY'YC") |

=C E(Y'Y) C'

=CC'

=P.

In all conditions of the present study, samples

were generated by first drawing ny observations from a
distribution of the form MVN(E,P), with mean vector
2'=[0,...,0] and population correlation matrix P.
Outliers were simulated by drawing n, observations from
a distribution of the form MVN(E1,9I), representing
observation vectors with independent components
centered at My and having greater variability than
variables sampled from the population of interest. The

two samples were then combined for a total of n,+n,=N

172
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observations, with proportion of contamination n2/N.
The values of n, and n, were held constant within each
condition and the degree of asymmetry, or the distance
between the two distributions, was controlled by varying

the magnitude of u The representation of outliers as

1
observations from a ﬁormal distribution with a standard
deviation that is a multiple of the standard deviation
of the population of interest, has been frequently used
to model outlier contamination that may arise from a
wide variety of sources encountered in practice
(Andrews, et al., 1972; Devlin, et al., 1981; Ramsay,
1977; Tukey, 1960, pp. 448-485).

An alternative model for the generation of outlier
contaminated samples consists of drawing observations

from the mixture of distributions

(l-E)MVN(E.l’Pl) + €MVN(_E_21P2) »

An observation is drawn from MVN(El'Pl) with probability
(l-e) and from MVN (BZ,PZ) with probability €. This
model differs from that used in the present study by
representing contamination of the population from which
samples are drawn, rather than representing a specific
level of contamination in each sample. The method of
sample generation used in the present study was chosen

since a major objective was to observe the level of
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outlier contamination in sample data at which the
correlation estimates tended to breakdown. This is -
more eaéily observed in conditions with a constant
proportion of outliers in each sample, rather than in
conditions where the amount of contamination varies
between samples. Studies that have simulated outlier
contamination in a manner similar to that of the present
study include those conducted by Devlin. et al. (1975),
Hinkley (1978), and Johnson, McGuire and Milliken (1978).

Independent Variables

Sample size. The three levels of sample size

examined were 30, 60 and 120. These were chosen to
‘approximate small, moderate and large sample sizes that
commonly occur in practice.

Outlier contamination. Three levels of outlier

contamination were common to each level Qf'sample
size. These represented the proportions of .05, .10
and .15. In order to observe the performance of these
procedures in conditions with large amounts of con-
tamination, an additional condition in which the
proportion of outliers was equal to .25 waé observed
for a sample size of 60, and for a sample size of 120
additional levels of outlier contamination were

observed for proportions.cf .20, .25, and .30.
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Qutlier asymmetry. With the exception of three

conditions, the mean vector of the contaminating
distribution él’ was equal to 3. In order to compare
the correlation estimates when outliers were sampled
from a distribution with larger variances than the
population of interest, but with the same means, one
condition was examined in which the mean vector of the
contaminating diétribution was set equal to 0. In this
condition the sample size was equal to 60, with the
proportion of outliers in the sample equal to .10.

Two conditions were observed in which the amount
of overlap between the contaminating distribution and
the distribution of interest was varied. 1In each
condition the sample size was equal to 60 and the
proportion of outlier contamination was egual to .15.

In the condition of most overlap, was equal to 1,

By

and in the condition of least overlap, was equal to

By
5.

Variable order. Since the regression procedure

is not affine invariant, three conditions were examined
in which the order among the variables was altered.

For a sample size of 60 and two conditions of 10 and

15 percent outlier contamination;, results were obtained

when the order of the variables was reversed. In a
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third condition with a sample size of 60 and 10 perceht
outlier contamination, the order among half of the
variables was reversed while the order among the
remaining variables was left unchanged.

MVT Procedure

Computation of the MVT procedure was performed in
the same manner as described by Devlin et al. (1981).
At each iteration, the sguared distance

2 eview-l,o
d;=(x;-m*)'S* ~(x, -m*)

was obtained for each observation in the sample. This
was followed by removing 10 percent of the observations
with the largest di values and calculating ﬁew estimates
of the mean vector, m*, and covariance matrix, S*, from
the reduced sample. Valués of di were then recalculated
for the entire sample using the new estimates of m* and
S*. The procedure was iterated 5 times with convergence
to a solution usually occurring within 2 or 3 iterations.
A robust estimate of the correlation matrix R¥* was
obtained after the last iteration by rescaling the
elements of S*,

Robust estimates of m* and S* were used as starting
points for the MVT procedure. Similar to Devlin et al.
(1981), the vector of variable medians was used as an

initial estimate of m*, with the initial estimates of
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the elements of S* obtained from s*.,., = r..s¥*s¥*,
13 1] 1 3

Robust estimates of the standard deviations s{ and sg

were obtained from
s* = median |x, - median X, |/.6745.
i : i i

Regression Procedure

To obtain robust estimates of B* in the equation

S* = (I—B*)—lD*(I—B*')—l,

the elements of B* were first obtained by minimizing
the function

| -2 -1 7 2
G (Bit) = -t “log|n™" = exp(itl(y,-x/8))|".
i=1

The minimization of Gn(g;t) required two steps. A

value of t was first chosen such that estimates of the
regression coefficients satisfied the criterion of

minimum estimated asymptotic variance. (Chambers &
Heathcote, 1981). Since 02(t) is symmetric about the origin
an estimate of a minimum value of oz(t)'was obtained by -
calculating estimates of oz(t) at equally spaced intervals
over a range (0<t<T). The value of T was determined by the
scale of the residuals, and for the variables in the present
study, a value of T=2 was chosen. Using an interval width
of 0.1 over the range (0<t<2) required the calculation of 21

estimates of oz(t) and the value of t corresponding



to the minimum of the obtained values of éz(t) was
selected. For a finite sample size, Chambers and
Heathcote (1981) noted that %z(t) may have limitations

as an estimate of gz(t) when T is large. The calculation
of oz(t) required estimates of the quantities u(t), v(t),

u(2t). .and v(2t) which were obtained from

n
A v =1
un(ﬁ;t)—n ) cos(t(yk—§k§))
k=1
~ —]_n ~
and v (Bit)=n kil sin(t(y, -xz8)).

These estimates also required an initial estimate of
B prior to the evaluation of 82(t). From preliminary
results, least squares estimates of g based on the
entire sample were found to be inadequate for this
purpose due to their sensitivity to outliers. In
order to obtain a less biased initial estimate of g a
modified trimming procedure was used to remove a
proportion of the sample observations with the most
extreme values. The method involved calculating a

modified distance of the form
2 -1
d* = —-m* 'D —_m*x
i (_Xi m*) * (__Xi m*),

for each observation with the elements of m*'=[mf,...,m;]

consisting of 10 percent trimmed means and the pxp

diagonal matrix D* containing the corresponding 10 percent
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trimmed variances. This was followed by removing 20
percent of the observatibns with the largest d;z values
from the sample and calculating an initial estimate of
B from the remaining observations by least squares.

The second stép in obtaining robust estimates of
8 involved minimizing G _(8:t) using the value of t
obtained by the method described above. Writing Gn(g;t)

in terms of its real and imaginary components as

2

G_(85t)=-t  “log (u2 (85 t)+v2 (§;t))

and by taking derivatives with respect to the elements

of 8, the normal equations may be written

£l u (gn L 3 x..sin(tly.-x'g))
n-'= .-q Jk 3 =)=
J
-1 B
- vn(g;t)n jilxjkcos(t(yj—gﬁg)) =0, k=1l,...,p.

Since Gn(g;t) is not a convex function, a problem common
to some other robust estimates of location such as Tukey's
biweight or Andrew's sine (Andrews, 1974), a modified
Newton-Raphson procedure was used to obtain the estimates-
of g. The algorithm and its proof of convergence are
provided by Chambers and Heathcote (i98l). The procedure
involves simplifying the above normal equations to obtain
expressions of the form

n n

- L )
Tz xjksm(t(yj y;-(xt-x1)8), k=1,...,p.

-2,-1
i=1 j=1 J

L (8;t) =n
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Using the initial estimate of B obtained above as a
starting value and calculating E‘(E;t)=[Ll(§;t),...,
L (B;t)], a solution for B was obtained by performing

P
the interations

1

2 (mel) s (m) +(u’ (B 0)+v? (356)] T (X %) L (B t)

for m=1,2,..., with (X'X) provided by the covariance
matrix of the sample observations. The iterations
were continued until successive values of G_(8;t)
differed by less than 1x10~ 2. 1If the procedure failed
to converge after 40 iterations, the results for the
replication involved were removed from the study.
Failure to converge was infrequent, and in conditions
with large amounts of contamination, occurred in less
than 1 percent of the replications. The amount of
bias introduced by replacing the samples in these
replications was assumed to be negligible. The p-1
sets of regression coefficients obtained in the above
manner were arranged in the matrix B* and the estimate

of the sample correlation matrix R, was then obtained

by rescaling the elements of

=1 1

S* = (I-B¥*)  "DX(I-B*') .
The pxp diagonal matrix D* contained robust variance

estimates of variables obtained from the transformation

'z, = (I-B¥)x,, i=1,...,n.
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Robust estimates of the variances of z were obtained
by squaring the robust estimates of scale,
sk = miii;glzi -mﬁgigg z:y | /.6745,
for k=1,...,p.
A second method for obtaining robust estimates
of correlations, based on a modification of the above
regression procedure, was also examined in the present
study. This method involved removing a proportion
of the sample observations with the largest residuals
determined by the estimate of g obtained above.
The proportion of the observations removed was determined
by observing the form of az(t) calculated from the
reduced sample. Five percent of the observations with
the largest residuals were removed at each step of the
procedure and if the minimum value of 82(t) obtained from
the reduced sample was observed to occur for a value
of t»0, indicating the presence of asymmetry, an
additional 5 percent of the observations were removed.

~

The process was repeated until qz(t) was a minimum at
a value of t<.l or a maximum of 20 percent of the
observations were removed. A least squares estimate

of g was then calculated on the remaining observations

and used as a starting point for minimizing Gn(g;t) on
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the reduced sample. The purpose of this procedure was
to determine if estimates of B* and consequently S*
could be improved using estimates of 02(t) to identify
and'remove'outliérs.from sample data. To distinguish
the above two regression methods they will be
subsequently referred to as the REG1 and REG2 procedures.

In all conditions of the present study, 200
replications were performed. For each of the estimates
examined, the product moment correlations, the
correlations derived from the MVT procedure, the
correlations obtained from the two regression procedures,
the average bias of r, and the mean squared error
(MSE) of the Fisher z-transform of r were tabulated.

The bias of r was calculated as the mean deviation

of the sample correlation from the population parameter.
The MSE was obtained from the mean squared difference
between the z-transforms of r and the corresponding

parameter value.



The results for conditions with a sample size
of 30 are presented in Tables 1 to 3. Since conditions
of 5 and 15 percent contamination could not be represented
exactly for this sample size, two outliers or 6.7 percent
of the sample represented the condition with the least
amount of contamination, and five outliers, or 16.7
percent of the sample represented the condition with
the largest amount of contamination. In all tables the
column title UNCORR refers to the uncorrected or product
moment correlations.

The sensitivity of r to the presence of asymmetric
outliers is apparent from the results in Tables 1 to. 3.
The amount of bias present in the estimates is observed
to depend primarily on the location of the outlying
observations. The coordinates of the mean vector of
the contaminating distribution were all positive in
these conditions, consequently estimates of large
negative correlations contained the most bias. 1In
Table 1 for example, the bias of r for p=-.50 and
P=-.48 were .48 and .53 respectively, however, the
bias of r for p=.47 was .02.

For the levels of outlier contamination represented

by Tables 1 and 2, and MVT procedure is observed to be



P

.67
<47
.43
.40
.12
11
.03
-.07
-.10
-.14
-.14
-.17
-.41
-.48
-.50

UNCORR.

-.1120
.0196
.0330
.0538
.2058
.1847
.2793
.2594
.3190
.3149
.3418
.3104
.4710
.5289
4773

TABLE 1

Average bias of r and MSE of the z-transformed estimates

BIAS

MVT

-.0022
-.0223
-.0144
-.0042
-.0129
-.0294
-.0034
-.0022
.0169
.0084
.0141
.0143
.0166
.0364
.0125

for n=30 and 5 percent contamination

REG1

-.0167
-.0185
-.0133
-.0822
-.0390
-.0490
-.0221
.0016
.0593
.0565
.0232
.0589
.0419
.1278
.0265

REG2

-.0130
-.0283
-.0141
-.0367
-.0099
-.0234
-.0090
.0058
.0369
.0185
.0233
.0236
.0321
.0746
.0225

MEANS :

ZD
.81
.51
.46
.42
.12
<11
.03
.07
.10
.14
.14
<17
.44
.52
.55

MEAN SQ ERROR

UNCORR.

.1429
1113
.1348
.1316
.1540
.1535
.1894
1797
.2399
.2111
.2318
.2155
3972
.4498
« 3997

.2228

MVT

.0413
.0376
.0426
.0393
.0416
.0381
.0443
.0366
.0381
.0361
.0442
.0348
.0414
.0396
.0432

.0399

REG1

.0809
.0615
.0749
.0794
.0623
.0511
.0620
.0603
.0625
.0687
.0585
.0622
.0690
.0788
.0726

.0670

REG2

.0854
.0679
.0783
.0642
.0637
.0525
.0602
.0587
.0566
.0583
.0647
.0545
.0648
.0657

0716

.0645

g



p

.67
<47
.43
.40
.12
.11
.03
-.07
-.10
-.14
-.14
-.17
-.41
-.48
-.50

UNCORR.

-.1451
-.0010
.0605
.0531
.2444
.2523
+3266
.3564
.3686
. 3465
.3954
.4023
.5848
.6206
.6264

TABLE 2

Average bias of r and MSE of the z-transformed estimates

BIAS

MVT

-.0143
-.0057
.0113
.0044
.0149
.0061
.0228
.0373
.0019
-.0074
.0245
.0039
.0344
.0184
.0265

for n=30 and 10 percent contamination

REG1

-.0183
.0007
-.0017
-.0482
-.0024
-.0014
.0083
.0430
.0265
.0424
.0159
.0376
.0434
.0726
.0630

REG2

-.0440
-.0159
-.0117
-.0361
.0359
.0178
.0295
.0591
-.0049
-.0065
.0203
-.0004
.0561
.0449
.0410

ZD
.81
.51
.46
.42
.12
.11
.03

-.07
-.10
-.14
-.14
-.17
-.44
-.52
-.55

MEANS :

MEAN SQ ERROR

<UNCORR.

.1980
.1184
.1185
.1268
.1945
.2085
.2398
.2466
. 2497
.2328
.2647
.2645
.5157
.5570
.5711

.2738

MvT

.0417
.0387
.0401
.0517
.0417
.0446
.0374
.0422
.0403
.0440
0434
.0444
.0534
.0478
.0423

.0436

REG1

.0596
.0681
.0651
.0799
.0900
.0727
.0615
.0678
.0651
.0656
0724
.0590
0727
.0768
.0805

.0705

REG2

.0829
.0746
.0782
.0840
.0921
.0745
.0645
.0784
.0615
.0689
.0645
.0717
.0813
.0795
.0732

.0753

e



p

.67
.47
.43
.40
.12
.11
.03
-.07
-.10
-.14
-.14
-.17
-.41
~.48
-.50

UNCORR.

-.1241
0172
.0528
.0798
.2245
.2669
.2904
.4137
.4048
.4396
.4489
.4564
.6018
.6306
.7064

TABLE 3

Average bias of r and MSE of the z-transformed estimates

BIAS

MvT

-.0479
-.0132
.0468
.0303
.0987
.1224
.1215
.2085
.1798
.1815
.2112
.1948
. 3055
.2898
.3036

for n=30 and 15 percent contamination

REG1

.0295
.0124
.0079
. 0560
.0017
.0268
.0110
.0267
.0218
.0397
.0127
.0271
.0073
.0813
.0382

REG2

.0731
.0244
.0125
.0395
.0051
.0135
.0222
.05%24
.0027
.0069
.0082
.0064
.0260
.0406
.0266

ZD
.81
.51
.46
.42
.12
11
.03

-.07
-.10
-.14
-.14
-.17
-.44
-.52
-.55

MEAN:

MEAN SQ ERROR

UNCORR.

.1426
1217
.1268
.1213
.1762
.1958
2171
.2973
2913
.3174
.3176
.3222
.5078
.5809
6951

.2954

MVT

.1256
.1173
.1215
.1014
.1226
.1066
.1232
.1454
.1256
.1410
.1607
1321
.2432
.2300
.2498

.1502

REG1

.0764
.0717
.0651
.0735
.0648
.0564
.0596
.0600
.0681
.0635
.0648
.0675
.0652
.0807
.0611

.0666

REG2

.1113
.0831
.0818
.0685
.0616
. 0605
.0579
.0794
.0722
.0667
.0653
.0687
.0631
.0715
.0682

.0720

gt
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the least affected by the presence of asymmetric
outliers. The bias of the MVT estimates is small
relative to the bias of r in this condition, and for
the range of correlations in the present study,
appears to be independent of the magnitude of o.
Estimates obtained from the REGl and REG2 procedures
are slightly more biased than the MVT estimates in these
conditions, with estimates of negative correlations
that are slightly more biased than estimates of positive
correlations.

The correlation estimates with the largest amount
of bias have correspondingly large MSE's of the z-
transformed estimates. In Table 1, for example, the
bias of r for p=-.50 and p=-.48 account for more than
half of the magnitude of the squared deviations .
represented by the MSE. The average MSE's of the MVT
estimates in Tables 1 and 2 are .040 and .044
respectively, which for this sample size closely
approximates the variance of .037 for z-transformed
correlations. In the conditions represented by Tables 1
and 2 the MSE's of the REGl and REG2 estimates are
observed to be slightly larger than the MSE's of the
z-transformed MVT estimates.

The results of Table 3 demonstrate that the MVT
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estimates were unable to withstand a contamination
level of 17 percent. In this condition the MVT
estimates were strongly biased and like r, estimates
of the largest negative correlations contained the
most bias. The regression based estimates were
relatively unaffeCted by this level of contamination.
The bias and MSE's of the z-transformed REGl1 and REG2
estimates in Table 3 were similar to their levels in
the conditions with less outlier contamination
represented by Tables 1 and 2. Across the conditions
represented by Tables 1 to 3, the average MSE of the
REG1 estimates were .067, 071 and .067. For the REG2
estimates the corresponding average MSE's were .065,
.075 and .072. A limited number of replications
were observed for 20 percent contamination and n=30;
however, the REGl and REG2 estimates were unable to
withstand this level of contamination and were strongly
biased.

Tables 4 to 7 contain the results for n=60 and
conditions of 5, 10, 15 and 25 percent contamination.
In the 5, 10 and 15 percent contamination conditions,
the results are similar to those obtained for n=30.
Overall the MVT estimates were less biased and had

smaller MSE's than the REGl and REG2 estimates in the



p

.67
.47
.43
.40
.12
.11
.03
-.07
-.10
-.14
-.14
-.17
-.41
-.48
-.50

UNCORR.

-.0729
.0036
.0373
.0443
.1707
.1839
.1988
.2403
.2685
.2935
.2686
.3148
.3576
.4021
.4391

TABLE 4

Average bias of r and MSE of the z-transformed estimates

BIAS

MVT

-.0011
-.0064
.0017
.0001
.0041
.0106
.0002
-.0047
.0120
.0007
.0075
.0053
-.0057
.0032
.0076

for n=60 and 5 percent contamination

REG1

-.0135
-.0164
-.0047
-.0598
.0061
.0094
.0017
.0067
.0370
.0388
.0158
.0447
-.0046
.0769
.0106

REG2

-.0180
-.0100
.0010
-.0043
.0247
.0237
.0258
.0084
.0204
.0105
.0047
.0219
-.0053
.0143
.0037

ZD
.81
.51
.46
.42
.12
.11
.03

-.07
~.10
-.14
-.14
-.17
-.44
.52
-.55

MEAN :

MEAN SQ ERROR

UNCORR.

.0805
.0649
.0653
.0662
.0905
.0939
.1029
.1182
.1282
.1486
.1300
.1663
.2110
2677
.2899

.1349

MVT

.0211
.0207
.0188
.0210
.0174
.0204
.0229
.0194
.0173
.0179
.0198
.0185
.0195
.0192
.0229

.0198

REG1

.0373

.0381
.0295
.0349
.0244
.0267
.0273
.0250
.0250
.0262
.0253
.0303
.0259
.0426
.0342

.0302

' REG2

.0385
.0309
.0279
.0249
.0273
.0299
.0319
.0264
.0216
.0245
.0233
.0266
.0257
.0283
.0306

.0279

Iy



p

.67
.47
.43
.40
.12
.11
.03
-.07
-.10
-.14
-.14
-.17
-.41
-.48
-.50

UNCORR.

-.2656
.0107
.0363
.0357
.2203
.2422
.2521
.3587
3793
.3885
.4002
.4095
.5484
.5784
.6296

TABLE 5

Average bias of r and MSE of the z-transformed estimates

BIAS

MVT

-.0096
-.0015
-.0043
-.0021
.0001
.0031
.0017
.0128
.0249
.0228
.0199
.0152
.0224
.0217
.0235

for n=60 and 10 percent contamination

REG1

-.0123
-.0102
-.0153
~-.0588
-.0067
.0055
-.0064
.0162
.0437
.0539
0177
.0433
.0156
.0716
.0278

REG2

-.0175
-.0101
-.0158
-.0247
.0169
.0277
.0269
.0199
.0300
.0269
.0144
.0195
.0264
.0391
.0206

.81
.51
.46
42
.12
.11
.03
-.07
-.10
-.14
-.14
-.17
-.44
-.52
-.55

MEAN:

MEAN SQ ERROR

UNCORR.

.0946
.0605
.0607
.0660
.1072
.1233
.1202
.1938
.2105
.2146
.2188
.2356
.3903
.4599
.5218

.2052

MVT

.0201
.0221
.0226
.0181
.0209
.0176
.0190
.0202
.0207
.0222
.0252
.0205
.0229
.0229
.0261

.0214

REG1

.0320
.0280
.0292
.0325
.0244
.0222
.0278
.0212
.0263
.0324
.0339
.0293
.0282
.0406
.0306

.0292

REG2

.0382
.0315
.0347
.0316
.0284
.0280
.0302
.0259
.0250
.0278
.0331
.0283
.0302
.0361
.0349

.0309

Zv
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.67
.47
.43
.40
.12
.11
.03
-.07
-.10
-.14
-.14
-.17
-.41
~.48
-.50

UNCORR.

-.1479
-.0126
.0624
.0648
.2437
.2655
.3346
.3895
.4266
.4454
4293
4691
.6434
.6862
.6855

TABLE 6

Average bias of r and MSE of the z-transformed estimates

BIAS

MVT

~-.0306

.0373°

.0659
.0631
.1754
.1799
.2199
.2254
.2667
.2875
.2621
.2929
.3752
.4253
.4023

for n=60 and 15 percent contamination

REG1

.0025
.0053
. 0047
-.0114
.0049
-.0015
.0013
-.0065
-.0016
.0037
.0016
.0058
.0151
.0536
.0102

REG2

-.0190
-.0041
.0040
.0056
.0407
.0291
.0470
.0167
-.0190
-.0209
.0005
.0003
.0139
.0357
.0095

.81
.51
+46
.42
.12
<11
.03
-.07
-.10
-.14
-.14
-.17
-.44
-.52
-.55

MEAN:

MEAN SQ ERROR

UNCORR.

.0968
.0487
.0629
.0516
.1304
.1357
.1810
.2226
.2462
.2658
.2452
.2875
.5081
.5936
.6057

. 2455

MVT

.0661
.0637
.0725
.0622

.0894 "

.0903
.1151
1112
.1349
.1404
.1267
.1415
.2180
.2806
2742

.1325

REG1

.0362
.0276
.0273
.0290
.0244
.0228
.0240
.0207
.0261
.0261
.0236
.0216
.0238
.0298
.0275

.0260

REG2

.0524
.0342
.0367
.0356
.0261
.0303
.0315
.0296
.0312
.0321
.0266
.0290
.0273
.0324
.0318

.0325

158 7%



p

.67
.47
.43
.40
.12
.11
.03
-.07
~-.10
~-.14
-.14
-.17
-.41
~.48
-.50

UNCORR.

-.1908
-.0197
.0071
.0112
.2561
+2695
3222
.4286
.4445
<4717
.4606
.5182
.6876
7759
.7783

TABLE 7

Average bias of r and MSE of the z-transformed estimates

BIAS

MVT

-.1065
.0449
.0558
.0539
.2601
.2775
.3221
.4101
.4381
.4515
.4261
.5000
.6238
.6963
.7107

for n=60 and 25 percent contamination

REG1

-.0120
-.0123
-.0225
.0083
-.0028
.0215
.0064
.0067
.0355
.0259
.0135
.0430
. 0480
.0568
.0444

REG2

-.0480
-.0212
-.0351
-.0263
.0420
.0611
. 0445
.0469
.0326
.0151
.0218
.0493
.0632
.0724
.0499

.81
.51
.46
.42
.12
11
.03
-.07
-.10
-.14
-.14
-.17
-.44
-.52
-.55

" MEAN:

MEAN SQ ERROR

UNCORR.

.1134
.0389
.0430
.0312
.1159
.1381
.1536
.2384
.2556
.2874
.2658
.3326
.5662
.7365
. 7412

.2705

MVT

.0813
.0604
.0704
.0554
.1363
.1555
.1728
.2417
.2689
.2818
.2537
.3244
.4936
.6236
.6383

.2572

REG1

. 0449
.0440
.0436
. 0408
.0272
.0332
.0330
.0403
.0337
.0297
.0340
.0299
.0351
.0363
.0438

.0366

REG2

.0649
.0496
.0511
.0387
.0335
.0414
.0369
.0497
.0408
.0368
.0433
.0445
.0391
.0437
.0494

.0442

47
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5 and 10 percent contamination conditions. The bias
and MSE's of the MVT estimates were'relatiﬁely constant
across the range of p in the 5 percent contamination
condition, however estimates of negative correlations
were slightly more biased in the presence of 10 percent
contamination. The REGl estimates of negative correla-
tions were slightly more biased than the REG2 estimates
in the 5 and 10 percent cohtamination conditions,
however, in the conditions with more than 10 percent
contamination the REGl and REG2 estimates contained
similar amounts of bias.

The average MSE of the z-transformed MVT estimates
were .020 and .021 in the 5 and 10 percént contamination
conditions which closely approximates for n=60, a
variance of .017 for z-transformed correlations. The
MSE's of the REG]1 and REG2 estimates were‘slightly
larger in these conditions and were .030 and .029 for
the REGl estimates and .028 and .031 for the REG2
estimates.

In the conditions of 15 and 25 percent outlier
contamination, the MVT estimates were observed to
break down and provided estimates that were strongly
\biased with large MSE's (see Tables 6 and 7). 1In these

conditions the bias of the REGl1 and REG2 estimates was
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approximately the same or smaller than their values in
the 5 and 10 percent contamination conditions. In the
25 percent contamination condition the REGl and REG2
estimates were less stable and had larger MSE's than
in the 5 to 15 percent contamination conditions. 1In
the 15 percent contamination condition for example,
the average MSE's of the REG1 and REG2 estimates were
.026 and .033 which increased to .037 and .044 in the
presence of 25 percent contamination.

The results for conditions with n=120 appear in
Tables 8 to 13. The range of contamination examined
in these conditions varied from 5 to 30 percent in
intervals of 5 percent. For this sample size the
results were similar to the n=30 and n=60 conditions.
The MVT estimates were the least biased and had the
smallest average MSE's in the 5 and 10 percent
contamination conditions but were observed to break
down in conditions with more than 20 percent .
contamination. The REGl estimates of negative
correlations in the 5 and 10 percent contamination
conditions were observed to be slightly more biased
than the REG2 estimates, however the REG2 estimates
of positive correlations were slightly more biased than
the REGl estimates.

In conditions with n=120, the REG1l and REG2 estimates



p

.67
.47
.43
.40
.12
.11
.03
-.07
-.10
-.14
-.14
-.17
-.41
-.48
-.50

UNCORR.

-.0739
.0259
.0375
.0387
.1786
.1891
.2167
.2748
.2908
.2988
.2916
.3404
.4206
.4493
.4732

TABLE 8

Average bias of r and MSE of the z-transformed estimates

BIAS

MVT

.0028
-.0042
.0012
-.0028
.0053
.0016
.0036
.0022
.0023
-.0028
.0112
.0013
.0007
.0063
.0045

for n=120 and 5 percent contamination

REG1

-.0004
-.0069
-.0013
-.0629
-.0027
-.0009
-.0049
.0064
.0186
.0306
.0263
.0213
.0083
.0704
.0134

REG2

~.0022
~-.0088
.0053
~.0077
.0131
.0135
.0149
.0095
.0071
.0047
.0226
.0065
.0055
.0126
.0103

.81
.51
.46
42
.12
.11
.03
-.07
-.10
-.14
-.14
-.17
-.44
-.52
~.55

MEAN:

MEAN SQ ERROR

UNCORR.

.0499
.0321
.0359
.0377
.0644
.0685
.0823
.1093
.1185
.1191
.1190
.1466
.2336
.2766
.3036

.1198

MVT

.0102
.0105
.0093
.0103
.0091
.0112
.0110
.0108

.0084 .

.0095
.0106
.0088
.0090
.0085
.0102

.0098

REG1

.0197
.0131
.0137
.0216
.0092
.0119
.0130
.0123
.0110
.0136
.0133
.0109
.0112
.0208
.0150

.0140

REG2

.0220
.0144
.0142
.0147
.0101
.0126
.0131
.0121
.0105
.0109
.0143
.0102
.0130
.0126
.0152

.0133

Ly



TABLE 9

Average bias of r and MSE of the z-transformed estimates
for n=120 and 10 percent contamination

BIAS MEAN SQ ERROR

p UNCORR. MvT REG1 REG2 Z, UNCORR. MVT REG1 REG2
.67 -.1073 .0040 -.0015 -.0045 .81 .0572 .0093 .0168 .0186
.47 .0168 -.0027 -.0079 .0061 .51 .0304 .0088 .0128 .0180
.43 .0352 -.0004 -.0090 .0017 .46 .0354 .0080 .0124 .0154
.40 .0475 -.0015 -.0484 -.0028 .42 .0305 .0094 .0152 .0160
.12 .2412 .0023 -.0097 .0342 .12 .0998 .0091 .0123 .0165
.11 .2579 .0054 -.0063 .0348 .11 .1056 .0102 .0123 .0158
.03 .3011 -.0005 -.0101 .0337 .03 .1284 .0097 .0117 .0155
-.07 .3479 .0046 .0010 -.0036 -.07 .1584 .0101 .0104 .0124
-.10 .3986 .0122 .0227 .0058 -.10 .2004 .0101 .0128 .0124
-.14 .4220 .0116 .0365 .0028 -.14 .2145 .0115 .0147 .0159
-.14 .3941 .0070 .0052 -.0114 -.14 .1890 .0092 .0111 .0132
-.17 .4293 .0124 .0302 .0112 -.17 .2206 .0105 .0123 .0139
-.41 .5710 .0166 .0139 .0069 -.44 .3828 .0106 .0139 .0139
-.48 .6285 .0254 .0685 .0333 -.52 .4820 .0104 .0200 .0152
-.50 .6394 .0125 .0107 .0002 -.55 .5017 .0114 .0145 .0149
MEAN: .1891 .0099 .0136 .0152

8¥%



p

.67
.47
.43
- .40
.12
11
.03
-.07
-.10
-.14
-.14
-.17
-.41
~-.48
-.50

UNCORR.

-.1471
.0004
.0391
.0426
.2433
.2623
.3035
.3949
.4103
.4532
.4563
.4635
.6364
.6773
.7162

TABLE 10

Average bias of r and MSE of the z-transformed estimates

BIAS

MVT

-.0474
.0381
. 0527
.0397
.1521
.1686
.1956
.2454
.2720
.2734
+2949
.2783
.3531
.3870
.4080

for n=120 and 15 percent contamination

REG1

.0057
.0052
-.0002
-.0266
.0017
.0005
-.0084
-.0048
.0110
.0267
.0012
.0222
.0044
.0243
.0121

REG2

.0003
0117
.0085
-.0099
.0446
.0452
.0421
.0012
.0034
.0108
-.0006
.0152
.0039
.0152
.0097

Zp
.81
.51
.46
.42
.12
.11
.03

-.07
-.10
-.14
-.14
-.17
-.44
.52
-.55

MEAN s

MEAN SQ ERROR

UNCORR.

.0729
.0253
.0252
.0265
.0954
.1060
.1294
.1931
. 2066
.2475
.2507
.2519
.4711
.5511
.6159

<2179

MVT

.0448
.0370
.0366
.0298
.0573
.0656
.0724
.0959
.1064
.1088
.1235
.1118
.1802
.2236
.2468

.1027

REG1

.0154
.0144
.0139
.0135
.0118
.0114
.0109
.0108
.0110
.0142
.0113
.0149
.0096
.0128
.0135

.0126

REG2

.0176
.0171
.0l64
.0138
.0155
.0155
.0167
.0134
.0138
.0155
.0135
.0173
.0133
.0135
.01l67

.0153

6V



.67
.47
.43
.40
.12
.11
.03
-.07
-.10
-.14
-.14
-.17
-.41
-.48
-.50

UNCORR.

-.1777
-.0164
.0113
.0342
.2764
.2763
.3340
.4046
.4434
.4710
.4786
.4913
.6912
.7372
.7545

TABLE 11

Average bias of .r and MSE of the z-transformed estimates

BIAS

MVT

~.0705
.0377
.0688
.0814
.2440
.2500
.3057
.3640
.3868
.4015
4234
.4215
.5786
.6025
.6225

for n=120 and 20 percent contamination

REG1

-.0097
.0022
~-.0004
-.0071
-.0017
.01l62
.0085
.0042
-.0030
.0028
-.0054
-.0028
.0286
.0186
.0155

REG2

.0125
.0090
.0130
.0026
.0548
.0705
.0695
.0072
.0097
.0145
.0081
.0050
.0264
.0171
.0141

Zp
.81
.51
.46
.42
.12
.11
.03

-.07
-.10
-.14
-.14
-.17
-.44
.52
-.55

MEANS:

MEAN SQ ERROR

UNCORR.

.0908
.0205
.0233
.0218
.1139
.1161
.1472
.1966
.2388
.2603
.2710
.2791
.5459
.6502
.6852

.2440

MVT

.0495
.0314
.0424
.0462
.0992
.1070
.1328
.1712
.1964
.2063
.2199
.2203
.4022
.4531
.4858

1909

REG1

.0155
.0149
.0145
.0131
.0132
.0134
.0138
.0109
.0119
.0113
.0101
.0120
.0129
.0118
.0138

.0129

REG2

.0179
.0165
.0197
.0183
.0206
.0248
.0232
.0153
.0172
.0155
.0125
.0167
.0160
.0174
.0152

.0178

064



p

.67
.47
.43
.40
.12
.11
.03
-.07
-.10
-.14
-.14
-.17
-.41
-.48
-.50

UNCORR.

-.2050
-.0288
.0077
.0208
.2619
.2593
.3347
.4160
.4407
.4825
.4789
.4944
.7088
.7624
.7856

TABLE 12

Average bias of r and MSE of the z-transformed estimates

BIAS

MvT

-.1249
.0196
.0576
.0732
.2720
.2689
.3419
. 4047
.4329
.4654
.4687
.4810
.6663
.7104
.7312

for n=120 and 25 percent contamination

REG1

-.0005
-.0005
.0145
.0159
.0166
.0651
.0510
.0124
.0323
.0213
.0326
.0246
.0612
.0565
.0664

. REG2

.0126
. 0046
.0259
.0002
.0801
.1149
.1042
.0288
.0304
.0127
.0356
.0308
.0693
.0744
.0587

ZD
.81
.51
.46
.42
.12
.11
.03

-.07
-.10
~.14
-.14
~.17
-.44
~.52
-.55

MEAN :

MEAN SQ ERROR

UNCORR.

.1086
.0255
.0183
.0202
.0987
.0960
.1465
.2072
«2327
.2659
+2693
.2805
.5754
.6857
.7342

.2510

MVT

.0718
.0340
.0337
.0385
.1188
.1091
.1589
.2058
.2314
.2608
.2665
2771
.5176
.6093
.6495

.2388

REG1

.0222
.0264
.0228
.0201
.0184
.0258
.0229
.0226
.0204
.0191
.0270
.0199
.0223
.0251
.0300

.0230

REG2

.0288
.0219
.0222
.0171
.0232
.0338
.0303
.0251
.0217
.0189
.0215
.0255
.0244
.0322
.0263

.0249

TS



67
.47
.43
.40
12
.11
.03
-.07
-.10
-.14
-.14
-.17
-.41
-.48
-.50

UNCORR.

-.2176
-.0529
-.0077
.0092
.2586
.2718
.3391
4252
.4586
.4809
.4838
.5099
. 7142
.7782
. 7966

TABLE 13

Average bias of r and MSE of the z-transformed estimates

BIAS

MVT

-.1512

.0037
.0466
. 0497
.2738
.2799
.3418
.4401
.4681
.4779
.4892
.5108
.6976
. 7477
.7661

for n=120 and 30 percent contamination

REG1

-.0224
-.0127
-.0003
.0251
.0655
.1067
.1025
.0872
.1145
.0938
.1061
«1237
+1611
.1568
.1706

REG2

-.0332
-.0138
.0035
.0055
.1068
.1457
.1438
.1434
.1363
.1110
.1531
.1508
.1994
.2006
.2181

.81
.51
.46
.42
.12
.11
.03
~.07
-.10
~-.14
-.14
-.17
~-.44

’ --52

—‘55

MEAN :

MEAN SQ ERROR

UNCORR.

.1189
.0192
.0149
.0165

- .0956

.1004
.1486
.2171
.2484
.2655
.2702
.2976
.5853
.7151
.7525

<2577

MVT

.0798
.0279
.0270
.0290
.1139
.1160
.1600
. 2407
.2691
.2707
.2849
.3104
.5634
.6676
.7087

.2579

REG1

.0344
.0272
.0307
.0263
.0294
.0432
.0416
.0553
. 0408
.0310
.0508
.0527
.0810
.0784
.0856

.0472

REG2

.0336
.0236
.0296
.0203
.0341
.0474
.0460
.0534
.0458
.0348
.0506
0612
.0896
.0945
.1042

.0512

2S
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were relatively unaffected by levels of contamination
up to 20 percent. The bias and average MSE's of these
estimates were of similar magnitude for this range of
contamination; however, in conditions of 25 and 30
percent contamination (TébleS'12 and 13), a sharp -
increase in the bias and MSE's was observed.

The three conditions that involved varying the
location of the outlying observations are represented
in Tables 14 to 16. Table 14 represents the condition
with the‘contaminéting and population distributions
centered at the same location, i.e., the mean vectors
were equal. The bias of the MVT and regression based
estimates was smaller in this condition than in conditions
with asymmetric contamination. The relative performance
of the regression based estimates and MVT estimates
in this condition was similar to the asymmetric
conditions with the REG1 and REG2 estimates having
slightly larger levels of bias and MSE. The MVT
estimates were observed to be less sensitive to
symmetrically distributed outliers in this cqndition,
having less bilas and equivalent MSE's in comparison to
the equivalent condition of asymmetric contamination
shown in Table 5. The REGl and REG2 were also less

biased in the symmetric condition, however MSE's of



p

.67
.47
.43
.40
.12
.11
.03
-.07
-.10
-.14
-.14
-.17
-.41
-.48
-.50

UNCORR.

-.3232
~-.2163
-.2115
-.1995
-.0298
-.0274
-.0199
.0165
.0603
.0771
.0808
.0651
.2133
.2146
. 2680

TABLE 14

Average bias of r and MSE of the z-transformed estimates

BIAS

MVT

-.0080
.0073
-.0069
-.0053
.0032
. 0069
.0126
.0026
.0015
-.0090
-.0023
-.0085
.0023
.0050
.0087

for n=60 and 10 percent contamination -

Symmetric contamination condition

REG1

-.0183
.0120
-.0111
-.0514
.0061
.0068
.0176
.0043
.0193
.0151
-.0102
.0122
.0059
.0600
.0021

REG2

-.0249
-.0056
-.0193
-.0199
-.0020
.0050
.019%96
.0057
.0080
-.0065
-.0085
-.0010
.0082
.0293
.0046

.81
.51
.46
.42
.12
.11
.03
-.07
-.10
-.14
-.14
-.17
-.44
-.52
-.55

MEAN :

MEAN SQ ERROR

UNCORR.

.2487
.1169
.1097
.0932
.0513
. 0497
.0450
.0455
.0532
.0516
.0562
.0401
.0955
.1140
.1393

.0873

MVT

.0206
.0194
.0213
.0203
.0212
.0224
.0198
.0185
.0188
.0173
.0195
.0165
.0245
.0214
.0197

.0201

REG1

.0380
.0258
.0233
.0309
.0234
.0259
.0221
.0212
.0261
.0322
.0284
.0241
.0297
.0361
.0294

.0278

REG2

.0417
.02706
.0274
.0275
.0271
.0274
.0248
.0230
.0265
.0263
.0264
.0212
.0320
.0333
.0331

.0283

4%



p

.67
.47
.43
.40
.12
.11
.03
-.07
-.10
-.14
-.14
-.17
-.41
-.48
-.50

TABLE 15

Average bias of r and MSE of the z-transformed estimates

UNCORR.

-.3609
-.2661
-.2236
-.2158
-.0091
-.0170
.0264
1174
.1032
.1559
.1305
.1570
.3015
.3731
.3718

BIAS
MVT

-.1496
-.1084
-.0908
-.0937
-.0064
-.0034
.0005
.0611
.0465
.0779
.0608
.0732
.1201
1272
.1587

REG1

-.0177
-.0188
-.0205
-.0559
-.0007
.0028
-.0024
.0065
.0087
.0370
.0043
.0253
.0102
.0518
.0073

REG2

-.0325
-.0353
-.0301
-.0414
-.0031
.0063
.0005
.0221
.0059
.0279
.0109
.0237
.0207
.0343
.0176

Zp
.81
.51
.46
.42
.12
.11
.03

-.07
-.10
-.14
-.14
~-.17
-.44
~-.52
-.55

MEAN:

for n=60 and 15 percent contamination -
Mean vector of contaminating distribution = [1,...,1]

MEAN SQ ERROR

UNCORR.

.2805
.1376
.1091
.1018
.0451
.0483
.0500
.0592
. 0547
.0650
.0632
.0667
.1623
.2127
.2210

.1118

MVT

.1033
.0750
.0516
.0548
.0395
.039%6
.0367
.0420
.0438
.0471
.0427
.0442
.0704
.0675
.0790

.0558

REG1

. 0827
.0273
.0277
.0320
.0237
.0203
.0261
.0207
.0265
.0288
.0221
.0230
.0261
.0260
.0298

.0262

REG2

.0416
.0335
.0339
.0330
.0233
.0213
.0265
.0272
. 0280
.0294
.0260
.0290
.0271
.0300
.0316

.0294

qq



p

.67
.47
.43
.40
12
.11
.03
-.07
-.10
-.14
-.14
-.17
-.41
-.48
-.50

UNCORR.

.0223
1921
.2309
.2528
.4994
.4987
.5764
.6582
.6901
.7188
.7224
. 7379
.9518
. 9995
1.0197

TABLE 16

Average bias of r and MSE of the z-transformed estimates

for n=60 and 15 percent contamination

Mean vector of contaminating distribution = [5,...,5]
BIAS MEAN SQ ERROR
MVT REG1 REG2 ’Zp UNCORR. MVT REG1
.0500 .0107 -.0300 .81 .0663 .1092 .0337
.1732 -.0029 -.0449 .51 .1554 .1437 .0317
.2029 .0172 -.0311 .46 .1748 .1683 .02921
.2193 -.0336 -.0148 .42 .1947 .1697 .0325
.3833 .0018 .0462 .12 .4298 .2641 .0224
.3882 .0137 .0634 .11 .4161 .2580 .0292
.4420 .0102 .0423 .03 .5116 .2999 .0218
.5066 -.0159 -.0013 -.07 .6238 .3653 .0286
.5172 .0166 .0042 -.10 .6678 .3708 .0243
.5294 .0146 -.0181 -.14 .6948 .3747 .0224
.5484 .0136 .0207 -.14 .7207 .4219 .0282
.5533 . 0069 -.0202 -.17 .7366 .4139 .0244
.6891 .0001 .0047 -.44 1.1474 .5919 .0280
.7384 .0736 .0269 -.52 1.2776 .7029 .0417
.7446 .0250 .0032 -.55 1.3178 .7090 .0293
MEAN: .6090 .3576 .0285

REG2

.0748
. 0467
.0512
.0305
.0327
.0384
.0278
.0471
.0261
.0251
.0312
.0290
.0324
.0335
.0337

.0373

a9
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these estimates were similar in both the’symmetric and
asymmetric conditions.

In the conditions of 15 percent contamination and
n=60 represented by Tables 15 and 16, the REG1l ..
estimates were relatively unaffected by the distance
between the contaminating and population distributions,
with similar levels of bias and MSE in these conditions.
The REG2 estimates were adversely affected by the
distance between the distributions being more biased and
having larger MSE's in the condition with the largest
separation between distributions represented by Table 16.

The results of conditions which involved reordering
the variables appear in Tables 17 to 20. Tables 17
to 19 contain the results for conditions in which the
order of the variables was reversed. For n=60, the
levels of contamination examined in these conditions
were 5, 10 and 15 percent. Corresponding conditions
with the original variable order are represented by
Tables 4 to 6. The REGl1 and REG2 estimates were observed
to be relatively unaffected by the order of the variables
in these conditions. The bias and MSE's were similar
for both variable orders with the average MSE of the
REG1l estimates being .030, .029 and .026 in the original

variable order and .028, .028 and .026 in the reversed



p

.67
.47
.43
.40
.12
.11
.03
-.07
-.10
-.14
-.14
-.17
-.41
-.48
-.50

UNCORR.

-.0897
-.0178
~.0033
.0224
.1618
.1661
.2004
«2373
.2401
2777
. 2827
.2819
.4018
.4482
4097

Average bias of r and MSE of z-transformed estimates
for n=60 and 5 percent contamination -

BIAS

MVT

.0030
.0182
.0102
.0004
.0015
.0337
.0078
.0118
.0088
.0211
.0050
.0082
.0098
.0128
.0149

TABLE 17

Order of variables reversed

REG1

-.0481
-.0163
-.0585
-.0020
-.0045
-.0154
-.0024
.0319
.0182
.0183
.0149
.0379
.0129
.0193
.0235

REG2

-.0223
-.0207
-.0321
-.0059
.0029
-.0055
.0138
.0162
.0185
.0245
.0133
.0091
.0214
.0279
.0242

ZP
.81
.51
.46
.42
.12
11
.03

-.07
-.10
-.14
-.14
-.17
-.44
-.52
-.55

MEAN :

MEAN SQ ERROR

UNCORR.

.0878
.0671
.0696
.0635
.0963
.0938
.1094
.1158
.1248
.1342
.1434
.1390
2444
.3079
.2661

MVT

.0221
.0212
.0251
.0179
.0193
.0180
.0208
.0244
.0227
.0222
.0185
.0222
.0230
.0184
.0249

.0214

REG1

.0426
.02601
.0338
.0217
.0248
.0248
.0288
.0304
.0255
.0266
.0223

.0271

.0264
.0266
.0332

.0280

REG2

.0345
.0275
.0297
.0229
.0231
.0235
.0262
.0302
.0268
.0277
.0230
.0257
.0280
.0265
.0327

.0272

8¢



p

.67
.47
.43

L 40

.12

11

.03
-.07
-.10
-.14
-.14
-.17
~.41
-.48
-.50

UNCORR.

-.1141
-.0078
.0095
.0499
.2353
.2399
. 2713
.3402
.3367
.3883
.3894
.4136
.5552
.6113
.6228

TABLE 18

Average bias of r and MSE of the z-transformed estimates

BIAS

MVT

~-.0095
-.0049
-.0011
-.0069
.0123
.0202
.0202
.0102
-.0006
.0080
.0148
.0117
.0029
.0051
.0095

for n=60 and 10 percent contamination -

Order of variables reversed

REG1

-.0458
-.0109
-.0340
-.0061
-.0030
-.0023
.0103
.0205
.0002
.0052
.0159
.0214
-.0041
.0035
.0069

REG2

-.0408
-.0097
-.0176
.0052
.0158
.0047
.0309
-.0024
.0149
.0180
.0117
.0077
.0094
.0159
.0063

Z

P
.81
.51
.46
.42
.12
.11
.03
-.07
-.10
-.14
-.14
-.17
-.44
-.52
-.55

MEANS :

MEAN SQ ERROR

UNCORR.

.0909
.0632
.0574
.0709
.1209
.1200
.1414
.1784
.1698
.2058
.2211
.2329
.4039
.4869
.5203

.2056

MVT

.0222
.0190
.0142
.0195
.0210
.0178
.0206
.0217
.0210
.0223
.0200
.0214
.0202
.0208
.0192

.0201

REG1

.0412
.0291
.0288
.0266
.0320
.0252
.0246
.0289
.0246
.0278
.0255
.0256
.0264
.0272
.0264

.0280

REG2

.0419
.0310
.0289
.0309
.0323
.0263
.0267
.0345
.0270
.0318
.0302
.0327
.0313
.0345
.0282

.0312

65



P

.67
.47
43
.40
.12
.11
.03
-.07
-.10
-.14
-.14
-.17
-.41
-.48
-.50

UNCORR.

-.1543
-.0032
.0252
.0336
.2810
.2570
. 3440
.3936
-4431
.4333
. 4580
.4523
.6705
.6991
.7041

TABLE 19

Average bias of r and MSE of the z-transformed estimates
' n=60 and 15 percent contamination
Order of the variables reversed

BIAS

MVT

-.0691
.0215
.0407
.0372
.1810
.1657
.2164
.2563
.2677
2685
.2818
.2841
.4064
.4176
.4017

REG1

-.0300
-.0230
-.0323
-.0171
-.0253
-.0195
-.0074
.0142
-.0030
.0035
.0022
-.0048
.0185
.0198
.0059

REG2

-.0384
-.0317
-.0384
-.0041
-.0139
-.0353
.0173
-.0139
.0228
.0230
.0100
-.0233
.0376
.0375
.0148

.81
.51
.46
.42
.12
<11
.03
-.07
-.10
-.14
-.14
-.17
-.44
-.52
-.55

MEANS:

MEAN SQ ERROR

UNCORR.

.1031
.0519
.0505
.0595
.1600
.1267
.1894
.2123
2695
.2553
.2771
«2699
.5519
.6170
.6374

.2554

MVT

.0803
.0603
.0704
.0652
.0967
.0911
.1062
.1279
.1339
.1350
.1417
.1436
.2474
.2768
.2809

.1371

REGL.

.0333
.0268
.0227
.0301
.0274
.0257
.0268
.0250
.0223
.0276
.0246
.0199
.0252
.0274
.0260

.0261

REG?2

.0423
.0288
.0328
.0308
.0332
.0308
.0306
.0296
.0283
.0321
.0293
.0289
.0318
.0351
.0285

.0315

09



p

.67
.47
.43
.40
.12
.11
.03
-.07
-.10
-.14
-.14
-.17
~-.41
~.48
-.50

UNCORR.

-.1074
.0275
.0328
.0402
.2374
.2311
.2905
. 3465
.3733
.4134
.4036
.4001
.5833
.6106
.6522

TABLE 20

Average bias of r and MSE of the z-transformed estimates

BIAS
MVT

.0005
.0041
-.0033
-.0043
-.0121
-.0105
-.0035
.0138
.0033
.0119
.0040
.0090
.0251
.0218
.0215

for n=60 and 10 percent contamination -

Order of the last three variables reversed

REG1

-.0133
-.0023
-.0136
-.0205
-.0422
-.0268
-.0173
.01l61
-.0052
.0101
.0023
-.0025
.0681
.0722
.0180

REG2

-.0165
.0091
.0031

-.0286

-.0390

-.0276

-.0143
.0303
.0262
.0468
.0057
.0330
.0499
.0398
.0258

.81
.51
.46
.42
.12
.11
.03
-.07
-.10
-.14
~-.14
-.17
-.44
-.52
-.55

MEANS :

MEAN SQ ERROR

UNCORR.

.0824
.0636
.0528
.0623
.1190
.1134
.1474
.1838
.2073
.2420
.2291
.2307
.4386
.4801
.5601

.2142

MVT

.0213
.0195
.0181
.0252
.0243
.0233
.0234
.0198
.0193
.0200
.0215
.0175
.0233
.0213
.0223

.0213

REG1

.0371
.0247
.0236
.0337
.0301
.0255
.0256
.0246
.0216
.0272
.0252
.0232
.0385
.0389
.0332

.0288

REG2

.0427
.0305
.0262
.0335
.0298
.0277
.0269
.0295
.0272
.0347
.0312
.0319
.0329
.0338
.0360

.0316

T9
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order. The average MSE of the REG2 estimates were |
.028, .d3l,and .033 in the original order and .027,
.031 and .032 in the corresponding conditions with
" reversed order.

The results for a third combination of variables -
with n=60 and 10 percent contamination, are presented
in Table 20. In this condition the order of the first 3
variables was unchanged and the order of the remaining 3
variables reversed. The REGl and REG2 also appear to
be'unaffedted.by this combination of variables having
levels of bias and MSE's similar to that obtained in
c@nditions of equivalent levels of contamination and
sample size.

From an examination of the results across conditions
in the present study some general features of the
estimates were apparent. The predominant feature of r
was its sensitivity to small amounts of outlier
contamination. In addition to the level of contamination,
r was sensitive to the location of the outlying
observations and the correlations among the variables in
the contaminating distribution. For example, in the
symmetric contamination condition represented by Table 14,
r was less biased for values of p near 0 than for

larger values of p, since the correlations among the
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variables in the contaminating distribution were equal
to 0. The demonstrated sensitivity of r to various
forms of outlier contamination indicate that for many
kinds of data frequently encountered in psychological
research the use of r for examining the relationships
among variables is often inappropriate.

In all conditions of 5 and 10 percent contamination
in the present study, the MVT estimates were the least
biased and had the smallest MSE's of the estimates
examined. The bias of the MVT eStimaﬁes in conditions
with more than 10 percent contamination indicates that
a limitation of the'MVT procedure is its dependence on
the amount of trimming that must be initially specified.
In practice, for example, if the amount of outlier
contamination in a sample is underestimated when
specifying the amount of initial trimming, the MVT
estimates will be biased. Conversely, if the amount of
initial trimming is overestimated, the removal of wvalid
observations for the sample will tend to bias r toward
0.

The ability of the regression estimates to resist
large amounts of asymmetric contamination was the
principal finding of the present study. These estimates
were able to withstand up to 25 percent contamination in

sample sizes of 60 and 120 and were only slightly more
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biased than the MVT estimates in the 5 and 10 percent
contamination conditions. The REG2 procedure did not
provide significantly better estimates than the REGL
procedure in any of the conditions examined.

Implications for Practice

The results of the present study, and that of
previous researdh, demonstrate that there currently
exists no single robust estimate of a correlation
matrix that out performs other robust correlation
estimates across conditions of commonly encountered forms
of outlier contamination. In practice, therefore, the
choice of robust estimator of correlations will depend
primarily on the amount of prior information available
about the form of outlier contamination. present in the
sample. A researcher, for example, may become aware
of conditions or processes which have resulted in the
generation of errors by human observers or laboratory
instruments. In situations where errors are known to be
symmetrically distributed, multivariate M-estimators
of the form proposed by Maronna (1976) have been shown
to be preferable to those obtained from the MVT
procedure (Devlin et al., 198l1). If a small or moderate
amount of asymmetric contamination is known to be

present in sample data, the results of Devlin et al. (1981)
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and of the present study indicate that the MVT
procedure would provide relatively unbiased estimates.
In other situations, if a large.amount of asymmetric
contamination is known to exist in sample data, the
results of the present study indicate that estimates -
obtained by the characteristic function based regression
method would be less biased than those obtained from
the MVT procedure.

For most kinds of data obtained in practice,
however, a researcher often lacks informétion regarding
the presence or absence of outlying observations. In
these situations the use of graphical methods such as
sample histograms, scatter plots and other exploratory
data analysis techniques (Tukey, 1977) provide an
important step prior to the analysis of data that will
aid in the identification of errors, or iﬁdicate'the
form of outlier contamination.

In addition to graphical techniques, the MVT
procedure provides a method for detecting the presence
of outlying observations. Using robust initial estimates
of the mean vector and corresponding covariance matrix,
correlations obtained from the MVT procedure may be
compared to the usual:iiproduct moment correlations.

If the correlations obtained by the'two'methods_arel

observed to differ significantly, the presence:cf outliers
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would be indicated. Although the MVT procedure may
indicate the presence of outliers, a limitation of this
method is that it'provides'little'information about the
symmetry or asymmetry of the sample distribution.

The detection of outliers may also be accomplished
by the application of the characteristic function based
regression procedure. A major advantage of this method
involves the use of the function 32(t) to detect the
presence of asymmetry in the sample distribution. The
- routine inspection of 82(t) over a range of values of
t, prior to the analysis of data may indicate, in
addition to the presence or ébsence of asymmetry,
departures from normality (Chambers & Heathcote, 1981).
This may suggest alternative analysis strategies, or
indicate the presence of previoﬁsly unknown subgroups
in the population. When inspection of 82(t) indicates
that the sample distribution is symmetric and contains
a small or moderate amoﬁnt of contamination, correlation
estimates obtained from the MVT procedure or from
multivariate M-estimates may be preferred. If a
large amount of outlier contamination is indicated or
suspected to be present in sample data, the characteristic
functién based regression procedure should be applied.

Of currently available methods for obtaining
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robust estimates of correlation matrices, the MVT and
regression procedures, in addition to multivariate
M-estimates, provide robust methods for most types of
data encountered in practice. By reducing the
frequency of misleading results and making eXperimeﬁtal
findings easier‘tO‘réplicate, the routine use of these
procedures in combination with standard methods of
analysis will serve to improve'the'quality of research

in psychology.
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