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ABSTRACT

Although the field of Natural Resource Economics is relatively young,
its growth has been rapid and it is now of substantial size. In that part
of the field devoted to exhaustible resources, however, the literature is
primarily qualitative with relatively 1ittle attention having been
directed towards empirical testing of the qualitative predictions. The
purpose of this dissertation is to construct a dynamic model of extraction
for a specific exhaustible resource, to obtain empirical estimates of the
extraction technology and to perform hypothesis tests of the model's
predictions. The specific resource chosen is 0il and the empirical work
is based on 0il reservoir data from the Province of Alberta.

The building of the oil-reservoir extraction model draws on the
principles of oil-reservoir engineering. Under the assumption that a
rational agent manages the reservoir, the empirical implications for the
number of wells to be used and the strategy for pressure maintenance
activities are derived. A dual, restricted cost function forms the basis
of the embirica1 work. Estimation of the parameters of this cost function
through its implied factor demand equations permits information about the
extraction cost characteristics of individual reservoirs to be obtained
and hypothesis tests on the structure and characteristics of the cost
function to be performed. It is found that oil pools producing in the
sample year (1973) in Alberta are not homogeneous with respect to cost.
Rather, the pools in the sample show a high degree of variation in
geological factors that significantly affect extraction costs. The

evidence strongly suggests that marginal extraction costs are a non-



increasing function of extraction rates in the range of observations. In
addition, marginal extraction costs vary systematically across pools with
variation in key geological factors. Since the current system of
prorationing in Alberta allocates monthly demand among the producing pools
in the province, the above results imply that a marginal reallocation
which increases the share of demand produced by the relatively low-cost
pools will lead to an efficiency gain.

The empirical results are found to support the model's predictions
regarding the behaviour of the shadow price (or costate variable) for pool
pressure. Finally, the results are used to test and conditionally confirm
the hypothesis that o0il reservoirs in Alberta have been exploited in order

of declining quality over time.
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CHAPTER 1

Introduction

Although the field of Natural Resource Economics is relatively
young, its growth has been rapid and it is now of substantial size. 1In
that part of the field devoted to exhaustible resources, however, the
Titerature is primarily qualitative with relatively little attention
having been directed towards empirical testing of the qualitative

predictions.1

This is surprising since most of the predictions are
conditional upon the quantitative nature of the extraction technology as
will be explained in this chapter. The purpose of this dissertation is to
construct a dynamic model of extraction for a specific exhaustible
resource, to obtain empirical estimates of the extraction technology and
to perform hybothesis tests of the model's predictions. The specific
resource chosen in this application is oil and the empirical work is based
on oil reseryoir data from the Province of Alberta, the major
0il-producing region in Canada.

In positive or normative models of resource extraction, it is
commonly assumed that the objective is to choose the depletion path which
maximizes the present-value of net returns from extracting the resource.
The cost of extracting the resource at any point in time is often assumed
to be a non-decreasing function of the rate of extraction and possibly a

non-increasing function of the stock of remaining reserves. The first

assumption allows for the possibility that marginal extraction costs may

1. Some notable exceptions, Lasserre (1982), Slade (1982), Uhler (1979a)
and Cairns (1981), will be discussed in this chapter. In addition there
are empirical models which are not designed to perform hypothesis tests

such as Bradley (1980) and Campbell and Scott (1980).



rise with faster extraction rates, holding the stock level constant. The
second assumption allows for the possibility that for a given extraction
rate, the cost function may shift upwards as the stock of reserves is
depleted. The qualitative characteristics of the optimal path of
extraction rates can then be derived. What is interesting is that many of
these qualitative results depend upon the quantitative nature of the cost
function.

To see this and to review some of the basic predictions of
exhaustible resource economics, consider the following representation of
the cost function which is discussed above:

Clw(t),q(t),S(t)) (1.1)
where w(t) is a vector of factor prices in period t, Q(t) is the
extraction rate in period t, and S(t) is the remaining stock of reserves
at time t. If the cost function is meant to be an aggregate
representation of individual cost functions, then the decreasing-in-S
assumption embodies the additional assumption that it is optimal to
utilize individual deposits in increasing cost order.? If one assumes
that (1.1) is the cost function for an individual deposit, then the
decreasing-in-S assumption is meant to capture the increasing difficulty
with which additional units are extracted as the deposit 1is depleted.

The importance of the quantitative nature of the extraction cost
function becomes apparent by examining the characteristics and predictions

3

of the solution to the typical optimal depletion problem.” Suppose for

2. This is a basic result in Resource Economics. See, for example,
Hartwick (1978), Solow and Wan (1976), Solow (1974), Ulph (1978) and if
Kemp and Long (1980) then also Lewis (1982). However, the conditions
under which an aggregate representation exists are very restrictive:
Blackorby and Schworm (1982).

3. These characteristics and predictions are well known. There are many
references but three that are particularly useful are Dasqupta and Heal
(1979), Levhari and Liviatin (1977) and Peterson and Fisher (1977).



example there is perfect foresight, complete information, constant prices,
an initial stock of reserves of size Sy and a discount rate, § > 0. Under
these conditions, the output supply function or extraction rate may be
increasing or decreasing over time, depending on the quantitative nature
of the cost function:
dQ/dt = [Cre - S(P - C

- ¢ /e (1.2)

s o/ Q0
where P is the output price, time arguments have been suppressed and a
subscripted C denotes the partial derivative of the cost function with
respect to the variable in the subscript. If depletion does not affect
extraction costs then Cg = Cgs = 0. Consequently, dQ/dt < 0 since

(P - CQ) > 0. This is the case of the "tilting" of the extraction

profile towards the present first made explicit in the theory of the
extractive firm by Scott (1967). If, however, Cg < 0 and, as is
reasonable to assume, CQS < 0 (so that depletion causes total and

marginal costs to rise), then the sign of dQ/dt is ambiguous. If the
absolute value of Cg is small (relative to &(P - CQ)) then dQ/dt < 0.
Conversely, if the absolute value of Cg is large, then dQ/dt > 0. The
reasoning for this result is this: The preference for present over future
profits, as reflected in the positive discount rate, tends to tiit the
extraction profile toward the present. The depletion effect, however,
tends to tilt the extraction profile toward the future so that the higher

extraction costs can be postponed, thereby reducing the present value of

costs. The net effect of the two opposing forces depends upon the size of



Cs relative to the size of §(P - CQ).“

The total volume of reserves that is economically recoverable also
depends critically upon the guantitative nature of the extraction cost
function. If Cg is equal to (close to) zero, then all of the reserves
will be (may be) extracted. If Cg < 0, it will normally be optimal to
leave some of the resource in the ground, the amount depending on the size
of Cg. Moreover, the extent to which price and tax changes affect the
total volume of recoverable reserves depends upon the quantitative nature
of the cost function.®

The above results hold whether (1.1) is viewed as an aggregate cost
function or as the cost function for an individual deposit. There has
been a limited amount of empirical estimation of extraction technologies
which are conditional upon the state of depletion as in (1.1). At an
aggregate industry level, Unhler (1979a) found the state of depletion of
explorable land to have a significant impact on the outcome of current
exploration activity. Zimmerman (1977) assumed the state of depletion of
coal could be represented by declining quality of characteristics such as
seam thickness. At the level of an individual deposit, Slade (1982) and
Lasserre (1982) have provided evidence which contributes substantially to
the understanding of the supply behaviour of extractive firms. In Slade
(1982), estimation of a cost function for an individual copper deposit
yielded the result that Cg < 0 and Cqs < 0. The estimated cost
function was then used to simulate optimal supply paths under a variety of
price and tax regimes. In Lasserre (1982), factor demand and output

supply functions were estimated using data on a number of individual hard

4. See Levhari and Liviatin (1977, 187) for an example in which dQ/dt > 0
over the entire life of the deposit.
5. See Conrad and Hool (1981), Heaps (1982), Levhari and Liviatin (1977),

and Slade (1982).



rock mineral deposits. Again, the stock of reserves of the deposits were
found to have a significant influence on the behaviour of the extractive
firm.

Understanding the supply behaviour of the extractive firm is
important because it is predicted to be different from the supply
behaviour of the standard static firm. Testing whether a set of data
supports this prediction, however, is more difficult and has not
previously been done. The extractive firm is predicted to make current
supply decisions by weighing the current costs and benefits of extraction
against the opportunity cost of reducing the finite stock size. Stated in
terms of a first-order condition, the competitive extractive firm equates
marginal cost plus the shadow price of the stock to market price in each
.period. Thus, the shadow price is the only variable that would make the
behaviour of the extractive firm appear to differ from the behaviour of
the standard static firm. If the predictions are correct, the shadow
price is positive, but its size depends inversely on the size of the stock
of reserves, and its time path depends on the discount rate and the
quantitative nature of the cost function. In an interesting paper, Cairns
(1981) calculated a shadow price for Canadian nickel reserves and found it
to be very small relative to market price. The implication of this is
that firms would not make serious optimization errors if they ignored the
shadow price and just behaved as static profit maximizers. While an
ingenious approach, it does not permit testing of the theory of the
extractive firm.

In the extraction of oil, a key stock variable is reservoir
pressure. The associated shadow price of pressure behaves Tike the

reserve shadow price, is an inverse function of the stock of pressure, and



is equal to zero if the firm behaves as a static profit maximizer. In
this dissertation, a variety of hypothesis tests are performed on the
shadow price of pressure, thereby permitting one to test the predictions
of the theory of the extractive firm as applied to the case of reservoir
oil.

The predicted characteristics of a competitive industry equilibrium
are conditional upon the nature of the extraction cost functions of the
individual deposits that make up the industry and in particular on whether
and in what way they are heterogeneous. While few would argue that the
assumption of cost homogeneity is realistic, it is another matter to
determine what factors contribute to and the extent to which they
contribute to, cost heterogeneity in a cross-section of deposits. For
example, a mineral deposit may be of very low grade and yet be a low-cost
deposit owing to its size and proximity to the surface.® In this
dissertation, an extraction cost function is estimated which can be used
to calculate the extent of cost heterogeneity in a cross-section of oil
pools and the extent to which variance in key geological factors
contribute to this heterogeneity.

The nature of inter-deposit cost heterogeneity influences the
character of the competitive equilibrium over time. Suppose, for example,
there are R deposits, each with a constant but different unit extraction
cost and there is complete information by all firms. Under these
conditions, the deposits will be sequentially exploited in increasing cost
order. The testable predictions are that one should observe a rise in the
unit costs of deposits brought into production over time and one should
not observe any variation in unit costs in a cross-section of deposits at

any point in time.

6. See Bradley (1980) for example.



If, on the other hand, individual deposits have rising marginal cost
functions then industry equilibrium at any point in time is characterized

by the following condition:

i Toed,yd o
+ A = + A 5 = e .
Cq Cq 3 1,3 =1,2,...,R (1.3)

where A1 is the shadow price of the ith deposit. Thus, (1.3) implies
there may be variation in marginal extraction costs in a cross-section of
deposits at any point in time. Over time, the predictions are less
precise than when unit costs are constant, but one would still expect to
observe a trend towards the use of higher cost deposits. These hypotheses
of equilibrium behaviour are tested in this dissertation for the Alberta
0il industry.

The dissertation is organized as follows. In Chapter 2, a necessary
overview of the principles of o0il reservoir engineering is provided and
the extraction function that forms the basis of the o0il extraction model
is developed.

In Chapter 3, the dynamic model of extraction of oil from an
underground reservoir is formulated and analyzed. A one-period,
restricted or variable extraction cost function, dual to the one-period
technology set, is derived. This function forms the basis for the
empirical work.

The empirical model is specified in Chapter 4. This involves the
specifying of a functional form for the extraction cost function and the
derivation of the estimation equations. The econometric problems
associated with these equations are discussed and solved and the data are

discussed.



The empirical results are presented and analyzed and hypothesis
tests are performed in Chapter 5.

The dissertation is concluded in Chapter 6 by drawing on the results
of Chapter 5 to test the hypothesis that deposits of higher cost have been
- brought into production over time in the Alberta o0il industry. In
addition, the chapter contains concluding comments.

Appendix A contains the technical derivations to the econometric
problems in Chapter 4. Appendix B contains a listing of data sources and

a listing of the names of the o0il pools used in the sample.



CHAPTER 2

Principles of 0il Production®

2.0 Introduction

The purpose of this chapter is to provide an elementary overview of
oil reservoir engineering principles and to derive the implicit
representation of an oil reservoir production function that will form the
basis of the o0il extraction model.

The flow of fluids and gases through a porous medium such as an 0il
reservoir is a highly complex process dependent on many physical
properties of the rock such as its porosity (the ratio of the volume of
pore space to the total volume of the oil bearing rock), pore geometry,
the distribution and size of the channels connecting the pores,
wettability (the degree to which water or oil adheres to the surface of
the rock across which it flows), viscosity, and temperature. The combined
effect of all of these factors is captured in a single characteristic
called permeability. Measured in a unit called the darcy, permeability is
a measure of the ease with which a fluid or gas can flow through some
medium.

Reservoir pressure is the driving force of o0il production. When a
pressure differential is created in the reservoir by the sinking of a
well, hydrocarbons are forced towards the point of relatively low pressure
until the pressure differential is eliminated. The velocity of the flow

in response to a given pressure differential is determined by the

1. The primary sources for this chapter are Dake(1978) and Skinner(1981).
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permeability of the reservoir. In most cases, the pressure differential
at the well bore is maintained by causing the reservoir's hydrocarbons to
flow up the well to the surface either by gas 1ift or by a pumping
system. (Reservoir pressure is normally sufficient to cause fluids to
flow into the well but only occasionally all the way to the surface). In
almost all cases, the natural reservoir pressure is depleted as the
contents of the reservoir are extracted, eventually to a point where it is
insufficient to overcome the natural resistance to flow provided by the
host rock. The exception to this rule is the pure water-drive mechanism
in which there is a virtually endless supply of water from a connected
aquifer to fill the spaces vacated by the hydrocarbons, thereby preventing
pressure decline. In practice, however, most reservoirs have a
combination of drive mechanisms: solution gas expansion, gas cap
expansion, and a water drive mechanism. In these cases, reservoir
pressure declines with extraction. It is possible, however, to inhibit
pressure decline with artificial pressure maintenance schemes, sometimes
referred to as secondary recovery techniques.

There are three basic techniques for maintaining reservoir pressure.
‘The first-is simply to reduce the rate of fiuid extraction from the
reservoir. The second is to inject fluids (normally water) into the
reservoir rock some distance from a producing well. The injected fluids
replace the extracted fluids thereby inhibiting pressure decline. An
interface between the injected fluids and the reservoir hydrocarbons is
formed. The success of this interface, called a floodfront, in displacing
or pushing the hydrocarbons towards the producing wells depends largely on
the relative permeability of the fluids. The relative permeability of

water to oil, for example, is the ratio of the absolute water permeability
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to the absolute o0il permeability. If the reservoir is highly permeable to
water relative to oil, water flows more easily than oil through the
reservoir. In this case, the floodfront would have Tittle success in
displacing oil since the injected water would simply bypass the majority
of the oil. Conversely, if the reservoir has a low water-oil relative
permeability, the floodfront would displace a much larger fraction of the
reservoir oil.

A third technique involves injecting gas or natural gas liquids
(captured in production) back into the reservoir to create or enhance a
gas cap. Sufficient gas injection raises the reservoir pressure and
forces the fluids towards the producing wells.

Many of the hydrocarbons can appear in gaseous or liquid form in the
reservoir depending on the temperature and pressure. Consider a cylinder
containing 100% ethane (C;Hg). For a given temperature, as pressure falls
from high to low, the ethane changes from a liquid to a gas. The point at
which this transition occurs is called the vapour pressure point. This is
shown as a function of pressure and temperature in Figure la.

The same relationship is shown in Figure 1lb for a cylinder containing
100% heptane (C7H16). The diagram indicates that under the same
temperature and pressure conditions where ethane is a gas, heptane is a
1iquid. Thus, when both are present in the cylinder, there are regions in
which both are gases, both are liquids, and one is a gas and the other is
a liquid. The latter is the two-phase region. As shown in Figure lc, the
bubble-point line separates the liquid phase region from the two-phase
region. It is so named because as pressure falls from high to low, the
first bubbles of gas appear at tﬁis line. The dew line separates the gas

from the two-phase region. This is where the first drops of liquid or dew
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appear as pressure rises from low to high.

The bubble point has significance because of the dramatically
different characteristics of reservoir production above and below it.
Above the bubble point, each reservoir barrel of oil contains a certain
volume of dissolved gas, Rg. As this barrel is produced and brought to
the surface, the lower atmospheric pressure will cause the gas to separate
yielding a gas-o0il ratio equal to Rg. However, if reservoir pressure
falls below the bubble-point, some of the dissolved gas is released and
becomes free gas in the reservoir. Gas has a far lower viscosity than oil
and therefore a far higher velocity. Thus, when gas is freed, it travels
to the producing wells at a far higher speed than oil. As a result, the
producing gas-oil ratio, GOR, will rise dramatically as shown in Figure
2.2-

The higher producing GOR implies that reservoir pressure declines far
more rapidly per barrel of 0il produced than it does if the reservoir is
kept at or above the bubble-point.

The bubble-point has important implications for pressure maintenance
techniques such as water injection. As pressure falls, the amount of
water that must be injected to replace produced oil so as to maintain
constant pressure, say, takes a sudden jump upwards at the bubble-point
since the volume that was occupied by the large amount of produced gas

must also be replaced.

2. The temporary dip in GOR at the bubble-point is due to a lag caused by
the gas having to overcome friction before flowing freely.
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2.1 The Reservoir Production Function

The above discussion makes it clear that it is pressure differentials
that cause o0il to be produced, production that promotes pressure decline
and injection that inhibits pressure decline. A natural way to model
production then is in terms of the pressure differential at the well bore,
a variable controlled by the rate of pumping at the surface. However, the
data required to make this approach operational are not available. An
alternative approach must therefore be adopted. In this section, such an
alternative to modelling production, based on the material balance
equation of reservoir engineering, is derived.

The material balance equation is based on the law that fluids and
gases occupy less space when under greater pressure. Removal of fluids
from a reservoir causes a finite drop in reservoir pressure. If one were
able to take the produced fluids back down to the reservoir at the lower
pressure, they would occupy a larger volume of space. The difference in
the space occupied by the fluids at the lower pressure is identically
equal to the production, expressed in terms of reservoir pressure. This
identity will be used to form the basis of the implicit functional
relationship determining the production of oil.

In order to understand the material balance equation, some
definitions are required:

R = initial oil in place in stock tank barrels(stb) ,ie evaluated at
standard surface conditions

v = initial hydrocarbon volume of the gas cap divided by the initial
hydrocarbon volume of the oil

g = oil production in stb (cumulative over a finite period of time)
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Rp = cumulative gas-oil ratio in standard cubic feet (scf) per stb

Rg = the gas content of a barrel of oil in scf per stb

Bg = the volume in reservoir barrels that one scf of gas will occupy
as free gas in the reservoir.

Bo = the number of barrels occupied by 1 stb of oil at reservoir

pressure in reservoir barrels (rb) per stb. Note: By >1 due to the
fact that at higher pressure, more gas dissolves in the o0il thereby
increasing its volume,

Assume that reservoir pressure falls by an amount dP=P4- P; > 0. The
resulting change in the reservoir volume occupied by the
reservoir fluids is equal to the sum of the following three sources of
expansion:

First, the 0il plus the originally dissolved gas expands when
pressure drops. Call this amount of expansion A. A is a function of the
initial oil reserves, R, the size of the pressure drop, dP, and a number
of reservoir specific parameters which are not available in the data sef
but which are all functions of reservoir pressure. Thus A is implicitly
written as a function of R, Py, and dP.

Second, the gas cap, if there is one, expands by an amount B, which
is a function of v,R,Pp, and dP.

Third, the hydrocarbon pore space shrinks because the reservoir water
expands by an amount C, which is also a function of v,R,Py, and dP.

Surface production is observed to be g stb of 0il plus qRp scf of
gas. If these two volumes are taken down to the lower reservoir pressure,
P,, some of the gas will dissolve in the g stb of oil yielding a volume
occupied of gBy. A1l that is known about the total gas that was produced

is that qRg will dissolve in the oil and the remainder, q(Rp - Rg)
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will be free gas, occupying a volume of q(Rp - RS)Bg. Thus, the

total oil and gas production, evaluated at reservoir pressure, Py, is
a[Bo+(Rp -Rs)Bg]

and this must be equal to the sum of the three sources of expansion caused

by the pressure drop. This equality is the material balance equation:

q[Bo+(RP-RS)Bg] = A(R,dP,P_) + B(v,R,dP,P ) + C(v,R,dP,P )

Therefore,

g = D(v,R,dP,PO)/{BO+(RP—RS)Bg} (2.1)

If a gas cap is not present, v=0 and Rp = Rg, so that the above
expression simplifies. These parameters as well as By and Bg are not
available in the data set but are also functions of reservoir pressure.
Thus it must be assumed that the following implicit relationship is

representative of the material balance equation:
q = G(R,Py,dP) - (2.2)

It is assumed that (2.2) represents the relationship for an
individual well since it is only through a well that production can be
realized. Thus, the arguments of (2.2) are well-specific. Although the
0il1 reserves per well that are capable of influencing a well's production

are not observable, reserves-per-well is a function of variables which
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are observable,namely the pay thickness of the reservoir into which the
well is drilled and the water saturation level of the reservoir. Pay
thickness is simply the thickness of the oil-bearing portion of the porous
rock. It varies from as Tittle as 1 metre to as much as 100 metres in the
sample of 0il pools to be used in the empirical work. It is without doubt
the most important determinant of reserves-per-well. MWater saturation is
also an important variable - a reservoir that is highly saturated with
water therefore has a Tow 0il saturation.

Finally, it is assumed that reserves-per-well is a function of the
number of wells in the reservoir that are competing for the migratory
reservoir fluids. Thus, the production relation for an individual well is
given by:

q = h(N,W,Pq,dP,Z)

where W = water saturation level
Z = pay thickness
N = number of wells in the reservoir

Assuming these arguments are constant throughout the reservoir, 3 the
total output of o0il from the reservoir as a whole is simply the output per

well multiplied by the number of wells in the reservoir:

Q = gq*N = f(N,W,Py,dP,Z) (2.3)

This function implicitly represents the production relationship for the

reservoir oil. The controllable variable factors of productions are N and

3. Data availability make this assumption necessary.
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dP. The production function is assumed to be increasing at a non-
increasing rate in these two variables. Because g must be increasing in
R, then Q must be decreasing in W and increasing in Z. Finally, the
production relation may have the property of decreasingness in P ,due to
the fact that under greater pressure, a cubic metre of reservoir oil will
contain less surface oil (evaluated at surface conditions) because of its
higher dissolved gas content.

The production relation for a hypothetical oil reservoir in (2.3)
forms the basis for the dynamic model of 0il extraction that is developed

and analyzed in the next chapter.
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CHAPTER 3

An 0il-Reservoir Extraction Model

3.0 Introduction

Building upon the aspects of basic oil reservoir engineering
outlined in Chapter 2, the purpose of this chapter is to construct an
empirically testable model of o0il extraction. In the first part of the
chapter, Section 3.1, the literature which deals specifically with the
problem of oil-reservoir extraction modelling is reviewed. In Section
3.2, an alternative model is constructed and its behavioural implications
are examined. In Section 3.3, a restricted or variable one-period cost
function is constructed which is consistent with the dynamic and techno-
logical structure of the model of Section 3.2. The term 'restricted’
implies that the cost function embodies cost-minimizing factor use subject
to some restrictions on the choice set. The form such restrictions
commonly take is that at least one factor of production remain fixed. 1In
this chapter, there are two types of restrictions placed on the choice
set. The first is of the fixed-factor type although a somewhat broader
view of what constitutes a factor of production is taken. The second
restriction is of a different type, involving a restriction on the path of
a state variable. The reason for imposing this restriction will be made
clear. It is through this restricted or variable one-period cost function
that the oil-extraction model will be empirically tested. In order to
examine the dependence bf the implied optimal depletion behaviour on the

parameters of the restricted cost function, the dynamic optimization
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problem is reformulated in terms of the cost function and analyzed in

Section 3.4.

3.1 Review of 0il Extraction Models

There are two characteristics which distinguish the problem of
modelling oil extraction from that of other exhaustible resources: the
common property nature of 0il and the pressure dynamics of oil reser-
voirs. The common property problem is similar to the problem first
analyzed by Gordon (1954) in the context of the fishery. It has been
analyzed recently in the context of 0il industry behaviour by Eswaran and
Lewis (1982). The problem of pressure dynamics becomes important when one
is modelling the extraction behaviour from individual reservoirs as is
done in this thesis. 1In only two studies, Unhler (1979) and Kuller and
Cummings (1974), has this important characteristic been incorporated into
0il1 extraction models. In these cases, the common property problem is
avoided either by making the model normative so as to derive the
conditions for optimal extraction as in Kuller and Cummings (1974) or if
the model is positive, as in Uhler (1979) and this thesis, by assuming the
reservoir is under unitized management.! Before proceeding with the
development of the extraction model based on the results of Chapter 2, a
brief review of these two papers 1is presented.

In Kuller and Cummings (1974), care is taken to incorporate
technological aspects of oil reservoir engineering into the model. They

consider an individual reservoir from which n firms are extracting oil

1. This is not an unrealistic representation of modern oil reservoir
management practices.
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and their probliem is to determine the optimal management policy of the
reservoir as a whole; that is, a policy which maximizes the present value
of joint profits. Their primary concern is to incorporate the following
three features into the model: (i) the extraction rate from a well
depends on the number of wells and the extraction rates of other wells,
(i1) investment in pressure maintenance, by augmenting pressure, can
increase extraction rates, and (iii) total recoverable reserves depend on
the time path of extraction. The contribution of the paper is the finding
that in determining optimal extraction rates, more than the traditional
user cost [Scott (1967)] should be taken into account. Rather, there is a
user cost associated with each of the above external effects of a firm's
extraction rate. In addition, the optimal investment stategy for firms
should also take account of its external effects on reservoir pressure and
production capabilities of other firms. The model is too general and too
arbitrary in the sense that all functional relationships are implicit to
permit the derivation of any behavioural predictions or to permit
empirical app1ﬁcation. The main value of the paper 1is in drawing
attention to the many positive and negative externalities that exist in
0il extraction.

Uhler (1979), on the other hand, formulates a model which makes
explicit use of pressure dynamics equations. While the stock of
recoverable reserves is not written as an arbitrary function of the path
of extraction rates, as in Kuller and Cummings (1974), it is shown that
the extraction path, through its effect on pressure decline, can affect
the stock of reserves that are ultimately recovered. It is also shown
that this undesirable effect can be reduced if not totally eliminated when

3
pressure maintenance through water injection is a technical possibility.
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While the model to be developed in the next section is more in the
~ spirit of the Uhler model than the Kuller and Cummings model, it differs
from both on a fundamental level: the specification of the production
relation. In both of the models under review, it is assumed that there

exists a physical upper 1imit on the extraction rate of the following

type:
Q € h(P,X)

where P is the level of reservoir pressure and X is a vector of capital
inputs such as the number of wells. Ignoring the question of whether or
not such a limit exists, an empirical problem arises in trying to estimate
the parameters of extraction technology implied by this specification. As
Uhler shows, if marginal extraction costs are rising or if extraction
rates affect ultimate reserves directly as for Kuiler and Cummings, Q will
seldom be allowed, if ever, to reach this upper limit. It is therefore
impossible to estimate the extraction technology implied by this
specification. This is not the case fdr the production relation derived
in Chapter 2. Rather, it is amenable to empirical estimation and is
firmly based on the principles of reservoir engineering.

The assumption of an upper extraction 1imit which is a function of
reservoir pressure, however, is a clever analytic device which captures
the crucial effects of presure dynamics. The implication of the
assumption is that water injection will never occur unless the constraint
is to become binding at some point in time. Even then, as Unler shows,
water injection will not necessarily occur. For example, in the special

case of linear extraction costs, Uhler finds that the constraint will
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become immediately binding which has the effect of causing the shadow
price of pressure to rise continually as the oil is extracted at the
maximum, but declining, rate possible. Only if the shadow price becomes
sufficiently high at some date will water injection commence so as to
inhibit pressure and, hence, production decline. As will be shown,
similar results are obtained in the model to be presented. One difference
is that the shadow price of pressure is predicted to rise during an
initial phase of extraction and to fall thereafter until the terminal
date. The implied path of reservoir pressure is first rising or falling,
depending on the initial stock of pressure and is ultimately falling.
These two phases may be separated by a third phase in which water

injection is used to maintain a constant stock of pressure.

3.2 The Extraction Model

Two approaches to modelling oil extraction were surveyed in the
previous section. In this section, the reservoir-specific production
relation developed in Chapter 2 is used to form the basis of an
alternative extraction model.

In Chapter 2, it was argqued that the production relation for the

rth reservoir could be represented in the following way.

Q.(t) = FL-P ()N ()P (t),Z,] (3.1)
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Np(t) = number of 0il wells in the reservoir in period t
Ly = vector of natural factors of production specific to

reservoir r (water saturation and pay thickness)

Letting fi be the partial derivative with respect to the ith

argument, the production relation has the following properties:

f1.>0 f1; 0
f,>0 fp 80
f3 <0

fy >0 fuy $0

The partial derivatives with respect to the 4th argument hold only if
water saturation is indexed negatively and pay thickness is indexed
positively.

Reservoir pressure is viewed as a stock of capital which can be
maintained through water injection or utilized through production. If one
permits water injection to augment pressure, it is not the net pressure
change during t, -5(t), which enters the production relation but the gross
pressure change before injection that must énter. Define the gross

pressure change as

(t),2.] ~ B (t) (3.2)

where the g function measures the extent to which water injection in the
rth reservoir in year t, m.(t), augments the rth stock of pressure

given Pp(t) and Zp.
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Thus, the production relation for the rth reservoir becomes
Q.(t) = Flu (t),N (£),P (t),Z ] » (3.3)

The convention of referring to up(t) as the utilization rate of
the stock of pressure in the rth reservoir is adopted. In addition the
r subscripts and time arguments will be suppressed except where it creates
ambiguity. To derive behavioural implications, the model is given more
structure with the following simplifying assumptions. An individual
reservoir of known depth and physical characteristics is assumed to
contain a known quantity of recoverable oil. Common property problems are
eliminated by assuming that the reservoir is under unitized management.2
It is assumed that the objective of the reservoir manager is to maximize
the present-value of profits, taking the well-head price of oil as
constant. Finally, it is initially assumed that the two man-made factors
of production, N and m, are completely variable and their constant prices
are w; and wp, respectively.

Thus, the optimization problem facing the manager of the rth

reservoir is the following:

T
Maximize [ e'dt{wo-f(u,N,P,z) - wiN - wom}dt
<u,N,m,T> o

e
1]

subject to g(m,P,z) - u

= -f(U,N,P,Z)

©
—
o
~—
1

Po > 0

V2]

—

o

~—
{

—So>0
P,S,u,N,m >0

2. Given that quite recent Alberta data is to be used to test the model,
this is not an unreasonable assumption.
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where Py and Sy are the initial stocks 6f pressure and oil reserves,
respectively.

[t is instructive to analyze, to the extent possible, the solution
to the optimal depletion problem. While the general model and not even
special cases of it can be explicitly solved, a good deal can be learned
about the nature of the solutions by making use of optimal control theory
to generate the equations of motion of the system and phase diagrams to
analyze this motion.

Letting A; and A, be the costate variables associated with the
state variables, P and S respectively, the present-valued Hamiltonian

function for this problem is given by:
H = e'St{wo-f(u,N,P,z)-wlN-w2m+A1[g(m,P,z)-u]-Az-f(u,N,P,z)}
Assuming the existence of an interior solution, the following

conditions must hold at every point in time in order to maximize the H

function at every point in time:

3H/3u = 0 » (wg - A2)fy - 21 =0 (3.4)
BH/ON = 0 > (Wo - Az)fy - w1 = O (3.5)
3H/am = 0 > -w2 + Agy = 0 (3.6)
c et = - [(wo - A, + Aygple”®t (3.7)

re ot = 0 (3.8)

d
dt
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For given terminal conditions (to be determined using transversality
conditions) these five equations determine the optimal time paths of all
variables. Interpretation of these first-order conditions is facilitated

by obtaining an expression for A;. Using (3.5) and (3.6), (3.7) becomes:

dhe b dt = - [(Fpui/fy) + (Walg,)gp)]e™" (3.7")

Integrating both sides of (3.7') over time from t to T, an approach

developed by Levhari and Liviatin (1977), yields,

1 -8t _ T -8t
tI )\16 dt = -tf e [(fpwl/fN) + (WZ/gm)gp]d’r
so that
.
(MeToay(£)e™®t = - [ e T [(Fomi/fy) + (walg, )gp ldv

t

At this point it is useful to impose a subset of the transversality

conditions, namely:
M (T)P(T) = 0

These conditions imply that if it is optimal to leave a positive
stock of the pressure, then it must yield zero value to the optimal
program at the terminal time. Assuming that a positive stock is left

unexploited, then,
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() = S et (usey) + (wa/g gpldr (3.9)

In equation (3.9), the first term in brackets can be interpreted as
the change in 0il production due to a marginal change in the stock of
pressure (fp) multiplied by the opportunity cost of producing one more
unit of oil (w;/fy) and hence the shadow value of a unit of oil. Thus,
the first term in brackets is the marginal value product of pressure.

The change in pressure may also affect the efficiency of injection.
The second term in brackets in (3.9) expresses the marginal valuation of
this effect. More precisely, it is the marginal pressure product (gp)
multiplied by the opportunity cost of altering the stock of pressure
(w2/gp) and hence the shadow valuation of that change.

The sum of the two terms in brackets in (3.9) then is the
instantaneous total value of a marginal change in the stock of pressure.
If the change occurs at time t, its effects are felt in all time periods
following t until the termination date, T. Expression (3.9) shows that
X1(t) is the present-valued sum of the instantaneous values of all these
future effects caused by a change in the stock of pressure at time t.
Thus, A;(t) can be interpreted as the marginal value or the shadow price
of reservoir pressure at time t. Note from (3.7) that this shadow price
does not follow any simple time path. While it may be increasing or
decreasing at any particular point in time, it must terminate at zero. Its
time path will be examined in more detail for some special cases of the
general model below.

The other costate variable, A,, is the shadow price of o0il reserves
or marginal user cost. In this model, it follows a very simple time path:

it must grow exponentially at the rate of discount. Its positive terminal
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value is determined by the condition that S(T)=0.
The first-order conditions can be understood more fully by taking the

ratio of (3.4) and (3.5) to obtain:

fu/fN = A1/wy (3.10)

Since X, is the shadow price of pressure, it is the endogenous factor
price for the factor of production, u. Thus (3.10) merely states that
there must be equality between the marginal rate of substitution (between
u and N) and relative factor prices. In most models of optimal depletion,
factor price ratios are constant over time unless one allows for exogenous
time trends. However, in this model, there is an endogenous time trend in
the factor price ratio. While A; is falling, the utilization of pressure
relative to the number of wells in the reservoir must rise.

The condition determining the optimal level of pressure maintenance,
(3.6), states that the marginal cost of augmenting pressure, w,/gy, must
equal the marginal value of pressure, x;. Thus, fhe shadow price of
pressure is instrumental in determining the optimal level of water
injection into the reservoir. This point is emphasized here because it
will be repeatedly referred to in the next section and in subsequent
chapters.

The remaining transversality condition, to determine the optimal
length of the depletion program, is that depletion should continue as long
as H(t) > 0 ,but should stop when H(t) = 0. Denoting this time by T then

gives:

H(T) = 0 » (wg-22)f(u,N,P,2z) - wyN - wom = 0 (3.11)
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where all variables are evaluated at t=T.

There is reason to believe that m(T)=0. Indeed, one would expect that
it is usually the case that pressure maintenance is terminated sometime
before the end of the depletion program, after which pressure is merely
depleted. This hypothesis is substantiated later in a special case of
this general model. It is possible to show now that m(T)>0 is
inconsistent with the terminal condition A;(T)=0 but that m(t)>0 for t<T

is possible. At time t=T, it is true that,
-Wo/9m <Ay 3 m >0

where the inequalities hold with complementary slackness. When X;=0, it
must be true that -w,/gyp<0 as long as gp>0. Thus, m=0. Since
A1(T)=0, then m(T)=0. If X (t)>0 for t<T, m(t)>0 for t<T if gy
approaches infinity as m approaches zero. Otherwise, it is possible for
m(t)=0 for some finite period of time at the end of the depletion program
as A;(t) approaches zero.

Substituting m(T)=0 into (3.11) and combining it with (3.5) evaluated

at t=T yields the following condition:
fy = f/N (3.12)

This condition states that the marginal contribution of a well to
reservoir output must equal average reservoir output or output per well at
the terminal moment. This condition can be thought of as determining the

optimal number of wells with which to extract the final barrel of oil.
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Because the shadow price of pressure is zero at T, there is no
incentive to conserve on its use. Hence, it will be used up to the point
of zero marginal returns, f, = 0, at the terminal moment. This does
not imply, however, that the stock of pressure is exhausted since as P
becomes small, so does f(u,N,P,z) thereby making H(t) approach zero.

Thus, it will seldom pay to utilize all remaining pressure.

A common problem with non-linear optimal control models is that it is
impossible to characterize their solutions with much precision. The
problem presented here is no exception. Linear models, however, are
amenable to more precise characterizations and often provide insight into
the solution of the general, non-linear model. For this reason, two
special (linear) cases of the above general model are presented below. In
both cases, it is assumed that the models are linear in the control

variables. Specifically, it is assumed that

In the first case examined, it is additionally assumed that Qp=0 while
in the second case Qp > 0. Finally, it is assumed that N is fixed and
exogenous to the problem at hand. One can think of N as being fixed
capital which is optimally chosen at t=0. A1l subsequent decisions are

then conditional on the fixed value of N.
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Case 1
These modifications make the Hamiltonian, written below, linear in

the control variables and independent of the state of the system.

H = {wouQ(N)-wiN -wom + A;(&m - u) - >\2uQ(N)}e'(St

The Hamiltonian is maximized with respect to u amd m at every point

in time by adhering to the following 'bang-bang' rules:

{u { < (wo-22)Q(N)
u* = { uefo,u] as a1 { = (wg-x2)Q(N)
0 { > (wg-22)Q(N)
{ m { > wo/E
m* = { me[o,m] as Mo { o= wolt
0 { < wy/t

The costate variables must follow the paths given by:

A -8 <0 ;3 P>0

XZ'G}‘ZiO N SZO

which must hold with complementary slackness.
As is usual, for given terminal conditions, these rules determine the
optimal paths of all variables. There are nine sub-regions through which

these paths may travel. Three regions are defined by the function,

A(t) = (wo - A2(t))Q(N)
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and three regions are defined by the constant w,/g, the marginal cost of
pressure maintenance. As long as S(t) > O, the A function is falling over

time as follows:
A(t) = -8x,(t)Q(N) < 0

Region Al is defined by A;(t) < A(t). Since A (t) = 6xy(t) > 0 as
long as P(t) > 0, then A (t) is rising and A(t) is falling so that
A(t)-r;(t) is positive but diminishing in Region Al.

Region A2 is defined by X;(t) = A(t) and can hold only for an instant
while P(t) > 0.

Region A3 is defined by A;(t) > A(t). Since A (t) rises while P(t) >
0 and A(t) falls, this region, once entered, will never be left. In
region A3, u* = 0 so it is the region in which it is never prdfitab1e to
exploit the reservoir. This region does not require examination and
therefore, three sub-regions can be eliminated from the analysis.

The conditions determining the 'bang-bang' solution values for the
control variables are fairly easily interpreted. If the marginal shadow
value of pressure, A;, exceeds (is exceeded by) the marginal value product
of pressure, (wy - X2)Q(N), then set u equal to its minimum (maximum)
value, If there is equality between marginal shadow value and marginal
value product, then the value of the Hamiltonian is independent of the
value of u.

If the shadow value of pressure also exceeds (is exceeded by) the
marginal cost of augmenting pressure, w,/£, set injection, m, equal to its
maximum (minimum) value. Equality between XA, and w,/& implies the value

of the Hamiltonian is independent of the value of m.



34

Region A3 has been ruled out as uninteresting leaving six sub-regions
to analyze. A phase diagram will be used to analyze the motion of the
system through these regions. In order to construct the phase diagram,
one must know the relative size of A(t) and w,/&. One possibility is that
A(t=0) < wp/E in which case A(t) < wy/& for all te(0,T). The phase
diagram, Figure 3, then applies.

The region above A(t=0) is A3 where u* = 0. Thus, interest focuses
only on optimal programs that begin with x; < A(t=0). In this sub-region,
u* =T and m* = 0 so that P < 0 and X, = 8X; as long as P > 0. The
motion of the system through all regions is depicted in the phase
diagram. As 1is apparent, given any Py > 0, the optimal program must start
and finish with x;(t) < A(t). Moreover, it must finish with P(T) = 0
since it would be suboptimal to leave some pressure unexploited as long as
there are 0il reserves left to be extracted. However, if this is true,
then pressure is depleted before reserves are depleted which means this
cannot be an optimal solution. Thus, if one assumes that the initial
stock of natural reservoir pressure is insufficient to deplete oil
reserves, then A(t) < wy/E cannot be the case. More precisely, the time
required to deplete pressure is T = Po/u , which,if less than the time
required to deplete reserves, % = Rg/uQ(N), implies that A(t=0) > w,/E.
This is the more interesting of the two possibilities since it will
involve pressure maintenance in the optimal solution. However, the case
depicted in Figure 3 is a real possibility if the size of initial pressure
relative to reserves is large and indeed one does observe o0il reservoirs

being depleted without ever having undergone pressure maintenance.
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The more interesting case for analysis, where A(t=0) > wy/&, is
depicted in the phase diagram in Figure 4. This diagram is drawn under
the assumption that U = &m so that P = 0 for wy/& < A;(t) < A(t). More-
over, it is drawn holding A(t) constant over time while it is known that
A(t) < 0, so that the upper boundary tends to fall over time. It may be
deduced, however, that A(t) > wp/t for all te(0,T). To see this, suppose
that A(t) < wp/E. This implies m(t) = 0 since A;(t) < A(t) for u* > 0.
By assumption, the region above w,/E must be entered since injection is
required to deplete reserves. Thus, if A(t) were to fall below wy/& at
any point in time, the system would be in the region above both A(t) and
W, /E which is where u* = 0 and m* =m . Since this is the region that
is never left once entered, it is suboptimal to enter it -and therefore it
is suboptimal to have A(t) < wyp/Z at any time if A(t=0) > wy/g.

Since P(T) = 0 is a terminal condition, a path must be chosen which
reaches the vertical axis in Figure 4. The only optimal path that
satisfies this condition is the one where \; reaches w,/& just as P is
exhausted. At this moment it becomes optimal to begin injecting water at
the maximum rate. Call this point in time T'. Then for t < T', A (t) =
(wz/E)e's(Tl't), where T' = Py/u.

At time T', P(T') = 0 and A (T') = wp/E. It must also be the case
that A(T') > w2/E. If A(T') = wo/E = A1(T'), then it would make no
difference to profits whether the remaining o0il were extracted or not
which cannot be the case since the Hamiltonian is independent of the state
of depletion. Thus, it must be the case that u = uand m=mat t = T'.
Since P = 0, then P(t) = 0 and X;(t) < 8x;(t) for t > T'. It is possible
that the system remains at the point where A; = wy/E and P = 0 until time

T when S(T) = 0.
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uQ(N), the remaining reserves at T' are
So - Po-Q(N)

Finally, it can easily be shown that the final depletion date, T, is equal

Since Q

S(T*)

to So/(uQ(N)).

As one would expect, the total depletion time is independent of the
the initial stock of pressure and the marginal cost of pressure
maintenance in this simple model. The first stage of the optimal
depletion program during which pressure is depleted and oil is produced at
the maximum rate with no pressure maintenance, is of length T' which does
depend positively on the initial stock of pressure and inversely on the
maximum utilization rate of pressure.

The fact that it is optimal to deplete pressure to its minimum level
before beginning pressure maintenance is not suprising. It is, in fact,
similar to a result in the Resource Economics literature regarding the
optimal timing of exploration for reserves from which to extract. The
analogous result is that it never pays to discover reserves prematurely,
before existing reserves are depleted as long as exploration costs are
linear and extraction costs are independent of the stock of known
reserves., (See Pindyck (1978))

Thus, if one were to make pressure maintenance a non-linear function
of the rate of water injection as in the general model, one would expect
it to be optimal to begin pressure maintenance before pressure reaches its
minimum level in order to reduce the present value of injection costs.

A more interesting reason for there to be pressure maintenance when
the stock of pressure is positive, however, is the existence of stock
effects in production. These are said to exist whenever the production

possibilities are influenced by the stock of pressure.



39

Case 2

The production function is now permitted to depend on the stock of
pressure so that Q = uQ(N,P) with Qp > 0 and Qpp < 0. How will this
modification alter the optimal depletion program?

The switching functions determining the optimal controls do not

change but A(t) is now dependent upon P(t) as well as A,(t) so that
A(t) = -Aa()Q(N,P) + (wg - A2(t))Q(N,P)P
Moreover, A;(t) now follows the time path given by
A1(t) = 8x(t) - Qp(N,P)
Thus, A;{(t) may be rising or falling, but assuming P(T) > O then it
must eventually fall to zero at time T. The following results suggest
that it may be optimal for A;(t) to change direction during the program.

Drawing a phase diagram for this case requires finding the locus of

points in A;,P - space at which A1 = 0. This occurs wherever

6>‘1 = QP(N’P)

which implies &d\;| = Qpp(N,P) <O
dp |X,=0

Thus, the isocline is negatively sloped and does not touch either axis if
we assume that Qp tends to infinity as P approaches zero and to zero

only as P approaches infinity. This isocline is shown in Figure 5.
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Because 311/3X1 =r >0, then A, is increasing above and decreasing
below the il = 0 locus. Combining this information with the information
about the optimal controls in the various regions produces the motion that
is depicted in Figure 5. Only the case having A(t=0) > wy/£ is examined
and the diagram is drawn holding A(t) constant even though it 1is known to
move over time. A(t) will fall whenever Xx;(t) < A(t) but may rise or fall
when Ap(t) > A(t).

The optimal depletion program now depends critically on the initial
stock of pressure. Suppose it is 1akge such as at P''. The optimal
trajectory starting at point a requires setting u* =U and m* = 0 for
the entire program. The shadow price first rises and then falls,
eventually to zero. Alternatively, had the initial stock of pressure been
lower, at P' say, the optimal trajectory starting at point b approaches
the intersection of the X1 = 0 locus and tﬁe wyo/E line where the value of
m is switched from zero to m so that P = 0 and &; = 0. The system may
remain in this position for some finite period of time until remaining

reserves decline sufficiently to make it optimal to leave this stationary

point by setting m* = 0. The trajectory then descends into the lower
region finishing finally where X;(T) = 0. This implies an interestihg
optimal time path for reservoir pressure as shown in Figure 6.

During the initial phase of depletion, pressure declines at the
maximum possible rate until it reaches some critical level, ﬁ. This
critical pressure level may be maintained over much of the life of the
reservoir provided economic conditions do not change. As exhaustion of
the o0il reserves approaches, pressure maintenance is terminated and

pressure decline at the maximum rate is once again observed and continues

until the terminal date.
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A third possibility occurs if the initial stock of pressure is very
low, such as at P''*. If initial oil reserves are large enough to warrant
the investment, the optimal trajectory starts at point c where u* = 0
and m* = m. Thus, in this case, there is an initial period of pressure
buildup with no extraction of 0il from the reservoir. This continues
until pressure reaches another critical level. At that point, extraction
of 0il commences and pressure maintenance continues so that u* = U and
m* =m and there follows a period of time in which the pressure level of
the reservoir is kept constant. As before, this situation ends when o0il
reserves have become so low that continued pressure maintenance is not
optimal. At this point, the trajectory enters the lower region where
u¥ =7 and m* = 0 so that P = -U until S(T)=0. This will normally
occur with P(T) > 0. The implied path of reservoir pressure is shown
in Figure 7.

The final point to be made is that in this case the total length of
the depletion program does depend upon the initial stock of pressure and
the marginal cost of pressure maintenance.

To summarize, this special case of the general model implies that the
optimal depletion of the reservoir may or may not involve pressure
maintenance. It was found that this will depend largely on the stock of
initial pressure relative to the stock of o0il reserves. If pressure
maintenance is warranted, one would expect to observe a phase in the
depletion brogram during which pressure is maintained at a constant
level. This is to be followed by a phase of pressure decline as the oil
reserves near exhaustion. The initial phase may involve pressure decline
or pressure buildup, depending upon the initial stocks of pressure and oil

reserves. Of additional interest is the fact that the lower the cost of
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pressure maintenance, the more likely is the optimal trajectory to include
a phase of pressure maintenance. This result is due to the dependence of

the production function on the level of reservoir pressure.

3.3 The Variable Cost Function

The objective of this section is to generate a one-period cost
function which embodies the dynamic nature and the technology inherent in
the model of 0il extraction developed and analyzed above. The purpose of
compacting this information into a static cost function is to facilitate
the testing of the model and the obtaining of information about the
determinants of the optimal extraction policies of oil reservoirs.
Estimates of the parameters of the static cost function can be obtained
using available data on individual o0il reservoirs in the Province of
Alberta. An additional important feature of this procedure is that it
permits one to estimate the state-dependent cost of o0il extraction as a
function of the exogenous 'natural factors of production' that
differentiate reservoirs.

A cost function embodies the cost-minimizing choice of factors of
production at a point in time that produce a given level of output at that
point in time. The complication at hand is that factor use at time t
affects not only costs at time t but also in all time periods thereafter
through their effect on the state variable, P, of the system. In order to
eliminate this complication, it is necessary to restrict thé choice set of
the factors of production in the cost-minimization exercise in such a way
that this state variable follows some exogenously determined path during

the period. In this way, the dynamic optimization problem is made a
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two-stage optimization problem. The first stage is to find the minimum
cost at any point in time as a function of the exogenous change in the
state variable. The second stage is to find the maximum present value of
the program by determining the optimal changes in the state variables at
each point in time.

Another way of stressing the need for the restrictions on the
technology set in order to generate the cost function is as follows. To
obtain a cost function, one chooses the cost-minimizing input bundle that
produces some output level, given factor prices. Because the factors
affect the state of pressure, however, their true factor prices consist of
the market purchase price plus the value of their effect on the optimal
program by affecting the state of the system. That is, one needs to know
the endogenously determined shadow price of pressure in order to choose
the cost-minimizing input bundle. This is unobservable, however, so that
it is impossible to generate the cost function in the standard way. By
restricting the choice set to conform to an exogenous change in the state
of pressure, one prevents the choice of an input bundle from affecting the
state of the system since it is exogenously given both at the beginning
and at the end of the period. Thus one eliminates the need for shadow
prices 1in generating the cost function. It is, however, a restricted cost
function.3

The instantaneous cost-minimization problem is written formally below

showing the restrictions on the technology set.

3. In different contexts, this technique has been utilized by Berndt,
Fuss and Waverman (1977), and Diewert and Lewis (1981) and has been

reviewed by Berndt, Morrison and Watkins (1981).
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Minimize ( wiN + wom) (3.13)

<u,N,m>

Such that Q = f(u,N,P,Z) (3.14)
P =g(mP,z) -u=-0 (3.15)

where (Q,6 are given constants,

The two constraints implicitly define the instantaneous technology
set (Diewert and Lewis (1981)) in that the factors of production must be
chosen so as to satisfy the constraints. By substituting (3.15) into
(3.14), the unobservable factor of production, u, can be eliminated from
the minimization problem. The restriction on the input bundle now reduces

to

flg(m,P,z) + 6,N,P,z] = Q (3.16)

which has the properties of a standard production function. Thus, the
problem is reduced to a standard cost-minimization exercise which is known
to yield a dual cost function with known properties.“ Thus, the

following is the one-period variable cost function for oil extraction:

C(W]_,Wz;P,e,Q,Z) (3.17)

A1l non-price arguments of the restricted cost function are treated
as 'netputs' following Diewert(1974) and McFadden(1978). Netputs may be

inputs or outputs and are treated symmetrically. Here, the sign

4. Diewert (1973,1974,1978), Diewert and Lewis(1981), and McFadden(1978).
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convention adopted is that inputs are indexed with positive numbers and
outputs are indexed with negative numbers. Thus, the cost function is
positive and is non-increasing in the netput vector. For example, output
is indexed negatively. A larger output means a smaller Q (now a negative
number) and hence higher costs if cost is decreasing in netputs. Diewert
(1973) shows that if the production technology exhibits constant returns
to scale, the (negative of the) restricted cost function will be
homogeneous of degree one in the netput vector. The restricted cost
function is also non-decreasing, quasi-concave and homogeneous of degree
one in factor prices.

It is well known that a cost function satisfying the proper
regularity conditions embodies all of the technological parameters of its
dual production function. It is also the case that a similar dual
relationship exists between a restricted cost function and its underlying
production fﬁnction. Indeed, as will be shown, all of the technological
parameters needed to find the solution to the dynamic optimization problem
are embodied in the static, variable cost function. Moreover, these
parameters can be estimated through the restricted factor demand equations
which are easily obtained using Shephard's Lemma:

N*(WlsWZ;P:69QsZ) 3C(W1,W2;P,9,Q,Z)/3W1

(3.18)

BC(WI,WZ;P,G,Q,Z)/3W2

*
m (Wl,Wz;P,e,Q,Z)

One need only specify a functional form for the restricted cost
function which has the properties described above, apply Shephard's Lemma

to obtain the factor demand equations and estimate the parameters of the
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cost function through the two factor demand equations using data on the
variables listed in (3.18) for individual oil reservoirs.

Before specifying a functional form for the cost function and
proceeding with its estimation, it is useful to undertake the second stage
of the two-stage optimization problem to see how the static, variable cost
function fits into the dynamic optimization problem and through a brief
analysis of the solution, to see that it contains all of the information
needed to solve the overall maximization problem.

The second stage of the optimization problem is written as follows:

T
Maximize | e'rt{on(t) - Clwy,wp3P(t),0(t),qQ(t),Z]}dt
6,Q,T> o

subject to P(t) = -8(t)
S(t) = -a(t)
P(O) = Pp >0
S(0) = Sog >0

The present-valued Hamiltonian for this problem is

—Gt{

H=e" "{wQ - Clwy,w2;P,6,Q,2] - %18 - A,Q} (3.19)

where time arguments have been suppressed and A, and A, are the costate
variables associated with P and S, respectively. If an interior solution
exists, then maximization of H at each point in time implies that the

following conditions hold at each point in time:

3H/3Q =0 > wy - Cy - A2 =0 (3.20a)
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aH/36 = 0 + -Cg - Ay = O (3.20b)
dret/dt = cpe O (3.20¢)
dre /it = 0 (3.20d)

Given T and P(T) the above four conditions determine the time paths
of Q,6,P, and the costate variables. Interpretation of the first-order
conditions proceeds as in the previous section by imposing a subset of the
transversality conditions (A;(T)=0 ) and manipulating (3.20c) to obtain

the following expression for A;.

a(t) = - [ e 8T tegq (3.20¢")

Since Cp < 0, then X (t) > 0. As is apparent from (3.20c') this
costate variable is the present value of the change in all future costs
that result from a marginal change in the current stock of reservoir
pressure., It can therefore be interpreted as the shadow price of
pressure,

From (3.20b), the optimal solution, if it is interior, requires
equating -Cg (the negative of the current marginal cost of a change in
the stock of pressure) with the shadow price of pressure. (Recall that
Co < 0). Figure 8 depicts this relationship.

Recall that when & > 0, pressure is falling (an input) and when 6 < 0
pressure is rising (an output). If pressure has a very high shadow price

such as A{, it is optimal to inject so much that reservoir pressure

actually rises by the absolute value of -8'. If the shadow price is low
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such as A, ', it is optimal to reduce pressure by 6''. This may or may not
require positive injection of fluid into the reservoir. For extremely
small values of Xy, pressure decline will be high and there will almost
certainly be zero injection.

The position of the curve in Figure 8 depends upon the values of all
other arguments in the cost function. In particular, it depends upon P,
the stock of reservoir pressure. Since A; is the costate variable for P,
it must be a decreasing function of P. Thus, if two reservoirs are
identical in every respect except for the levels of pressure, A; would be
higher in the reservoir with the lower pressure making it optimal to have
a slower rate of pressure decline in that reservoir which may imply a
higher level of water injection.

Because -A; = Cg at an interior solution, one can test the above
hypothesis empirically by estimating the cross-partial derivative, Cgp

since

=911 /3P = Cgp

The partial derivatives of the restricted cost function contain
sufficient information to permit one to empirically estimate the shadow
price of pressure and reserves and to test hypotheses about their signs.
These partial derivatives can be estimated through the factor demand
equations,

The dependence of the solution to the optimal depletion problem on
the partial derivatives of the restricted cost function can be
demonstrated by taking total time derivatives of (3.20a) and (3.20b).

Solving these for b and & yields the fo]]oWing:



52

Oe
|

= {CoglCap® +8(Comwo) ] = CoqlCqpe0-CotaCy}/(CooCoq=Coy)  (3.21)

De
|

= {CqqlCap=8-CptsCql - CoqlCop+0-8(wa-Co) 1H/(CCoq=Caq)  (3.22)

As is apparent, the direction of change of both control variables is
dependent upon the parameters of the cost function. In (3.21), if one
assumes that the state of pressure has no influence on cost and sets all
partial derivatives involving P equal to zero, one obtains the following

simpler expression:

. -6C,,(wp - C.) - 6C, = C
Q- 86\ "0 7 q 6 Qs (3.23)

2
CQQCSB - CGQ

which is negative if Cge < 0 since Cg < 0 and Cgg > 0. This
corresponds to the standard result of the simple Hotelling-type model of
optimal depletion but requires a stronger assumption (CQe < 0) to obtain
the negatively-sloped production profile. Corresponding to this result is
the condition that the shadow prices of the two state variables must rise
(in absolute value) at the rate of discount over time.

Under the same assumptions, one obtains a simpler expression for the

change over time in ©:

§C.C.. + 8(wg - C.)C
§ = ®°Q ° ~ 0'"eQ (3.24)

2
CQQCOG - CBQ

which is negative indicating that it is optimal for the rate of pressure

decline to diminish over time.
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Thus, if the level of reservoir pressure does not affect the cost of
extraction, one expects to observe pressure decline at a declining rate
and a declining extraction rate throughout the life of the reservoir. The
cost function provides a method of empirically testing for these
conditions.

The optimal time paths of Q and © are more complicated when the cost
of extraction is dependent on the state of pressure. Associated with this
case is the result that the time rate of change of A; may be positive,
negative, or zero.

To obtain some insight into this problem, it is necessary to once
again simplify and resort to the use of phase-diagram analysis. Assume
that extraction costs are linear in the rate of extraction of oil. Then

the first-order conditions for a maximum become

—Ce - )‘1 =0

N ﬁ. . < wo - CQ

Q" = { Qefo,Q] as Az { =Wy - Cq
0 > WO - CQ

where Cq is the (assumed) constant marginal cost of extraction.

Al = 5X1 + CP
Xz = GAZ
p = -0

§ = -Q
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To draw a phase-diagram in 8,P - space, use the following two

equations which describe their motion:

-0

e
il

(3.25)

Coob = 8Cq = Cp = Copb

where it is assumed that @ = 0. This will be true except when the system
switches from one region where ip < Wg-Cq to where A > Wp-Cq. At

this point, Q will make a discrete change of magnitude Q and then return
to Q = 0. Setting 6 = 0 to find the locus of points where pressure change

is zero yields:

GCe - CP + Cep°6 =0

In order to determine the slope of this isocline one requires
information about cross-partial and third derivatives. 1In the absence of
this information, assume that third derivatives are zero. It 1is known
that Cop > 0 since 3Xx;/3P = -Cgp < 0. It is reasonable to assume that
the numerator of the expression for the slope of the isocline, given
below, is positive for small & since Cpp > 0. Formally, it is assumed

that:

38 Cpp - 8Cep
— 1. = >0
3P |6=0 5Cop
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This assumption then generates the isocline and motion shown in
Figure 9.

A saddlepoint equilibrium occurs at the pair (P*,O) where P* >
0. Depending on the time available, T, which depends on the stock of
initial reserves, and depending upon the initial stock of pressure, the
system may reach this stationary point and remain there for some finite
amount of time. For example, suppose the system starts at the point a
with an initial stock of pressure equal to P'. The trajectory follows
6 <0 and P < 0 until (P*,0) is reached. It remains there until
reserves are sufficiently depleted that continued pressure maintenance is
not warranted. It then leaves in a northwesterly direction as shown with
8 >0 and P < 0 until exhaustion of the oil reserves.

Alternatively, had the system started with an initial stock of
pressure of P'', the optimal trajectory starts at point b with 6 < 0,
6 >0 and P > 0 until (P*,0) is reached. During the initial phase of
pressure buildup, it may be optimal for simultaneous extraction of oil
reserves to occur provided X, < wo-cq. This possibility was ruled out
in the case analyzed in Section 3.2 by the assumption that the production
function was linear in u and pressure maintenance was linear in m. The
corresponding assumption here would be that cost is linear in 6. By not
making this assumption, one allows for the possibility of simultaneous
extraction and injection at variable rates so that pressure may rise, fall
or remain constant. As before, after a finite period of time, the system
must leave the stationary point in a northwesterly direction with §>0
and P < 0. Note that while P > 0 implies m > 0, P < 0 does not imply
m = 0. Thus, the final phase of the depletion program may involve

simultaneous extraction and injection but in such a way that there is a
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steady decline in reservoir pressure until o0il reserves are exhausted.

The stationary point occurs at P* > 0 due to the assumption that
Cp # 0. 1If, on the other hand, it were assumed that extraction costs
were independent of the state of pressure so that Cp = 0 then the 6 = 0
isocline would intersect the P = 0 isocline at the origin. This implies
that the system cannot come to rest until pressure is completely depleted
and is analagous to the first case of the linear model examined in Section
3.2 where injection does not occur before pressure is depleted to its

minimum level. This result follows from (3.25) which now reduces to:

Ceee = 5C6 <0 for P >0.

Thus, § <0 as long as P > 0 so that the system cannot come to rest
at a positive level of pressure. On the other hand, when P = 0, this
condition becomes Ceeé > 68Cg which 1is consistent with 6 = 0 so that
the system, if it does come to rest for some period of time, must do so at
P =0. The slope of the & isocline is undefined in 6,P - space but one can
think of it as being vertical and coincident with the vertical axis.

It has been demonstrated that the extraction cost function contains
the information needed to solve the dynamic optimization problem. In
general, one does not expect all reservoirs to be identical and therefore
not to have identical optimal extraction policies. As discussed earlier,
inter-reservoir quality differences are captured in the cost function by
differences in the vector of natural factors of production. A cross-
sectional view of reservoirs at a point in time will reveal differences in
the components of the z vector and in the values of the state variable

P(t). The latter can be expected to give rise to cost differences at a
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point in time but is controllable over time. Of greater interest are
uncontrollable or exogenous sources of cost variations across reservoirs -
the natural factors of production or the components of the z vector.

In terms of the phase diagrams, inter-reservoir differences caused by
z differences will lead to shifts in isoclines and trajectories. In terms
of first-order conditions for a maximum, these differences will lead to
differences in marginal extraction costs, Cq, the marginal cost of
changing the stock of pressure, Cg, stock effects, Cp, shadow prices
A1 and A, and, of course, the level of total costs. A1l of this
information is embodied in the variable cost function and can be estimated
empirically.

One of the more interesting effects of z-differences is on the shadow
prices. Because one observes a large variation in pressure maintenance
practices in a cross-section of oil reservoirs, one naturally wonders
whether this is due to the fact that the pools are at different states of
depletion or if there are fundamental quality differences in the
reservoirs caused by differences in the components of the z vector that
explain this fact. One can attempt to answer this question using the
information obtained through estimating the parameters of the cost
function. As discussed in an earlier section, the primary determinant of
water injection is the shadow price of reservoir pressure. In the next
chapter, the hypothesis that the shadow price of pressure varies in a
systematic way with variation in natural factors of production across
reservoirs thereby explaining the observed wide variation in pressure

maintenance practices across o0il reservoirs is tested.
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The z vector can also be a source of rent differentials across oil
reservoirs through its effect on the cost of extraction. This information
is also contained in the restricted cost function.

In the actual circumstances of the Province of Alberta, the oil
extraction industry is subject to strict government regulations on the
extraction rates of individual reservoirs. The dynamic optimization
problem of the reservoir manager can be modified to accomodate these
additional restrictions in the following way. The objective is now to
minimize the cost of producing an exogenously given stream of extraction

rates given by the vector 5:

T st
Minimize [ e~ C(wywz;P,Q,6,Z)dt
{6} 0

wm
—_
o
~
1l
w
o

Given Sg, T is determined by'ﬁz The only problem therefore, is to

choose the time path of 6. The present-valued Hamiltonian is given by
H = e-Gt {C(Wl,WZ;P,b’,e,Z) = Ae}

One wishes to minimize H at each point in time which implies that the

following conditions must hold:

Cg -2=20
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A - S\ = -Cp

where X is the shadow price of reservoir pressure. Thus, this modified
problem is similar to that already analyzed but simpler because there is
only one state variable. A special case of the problem not yet analyzed
occurs when the variable cost function is linear in 6 and Q is constant.

The optimal controls for 6 are then given by the following:

Co < A ® = Omax ‘
if { Co = set =0 (3.26)
Co > X = -Bmax

where it is assumed that a physical Timit of 8pa4 exists on the rate at
which pressure can be altered. Recalling that Cg is negative, then X is
also negative in this minimization problem. Thus (3.26) says that if the
absolute value of Coy, the marginal cost of augmenting pressure, exceeds
the absolute value of A, the marginal benefit of augmenting presure, set
8 = Opax- This implies rapid depletion of reservoir pressure and no
water injection. Alternatively, if the absolute value of Cgq is Tless
than the absolute value of A, set 8 = -8p3¢x. This implies a rapid
buildup of reservoir pressure and, hence, a positive rate of water
injection. The equations of motion, combined with (3.26) can be used to
derive the following phase diagram in Figure 10.

If the initial stock of pressure is particularly large such as P,
the optimal trajectory remains in the region of maximum pressure decline
which implies that pressure maintenace is never undertaken. With a lower
initial level of pressure, P;, the optimal trajectory first involves a

period of rapid pressure decline and zero water injection, followed by a
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period of constant pressure at the quasi-stationary point, followed by a
final period of rapid pressure decline. As before, the system must
terminate with A(T)=0.

In this chapter a model of oil extraction has been developed and its
implications for depletion behaviour have been analyzed. A one-period
variable cost function has been constructed which is dual to the
one-pe}iod technology set of the model. The cost function can be used to
empirically test the model and to obtain extraction cost information. 1In
the empirical application, two approaches to modelling the man-made
factors of production are taken. The first approach is to assume that
both N and m are variable factors and that each is optimally chosen at
every point in time. In this case, the variable cost function contains
both factor prices as arguments. In the second approach, it is assumed
that N is a fixed factor of production that is optimally chosen at t=0.
A1l subsequent decisions are then conditional on the fixed stock of oil
wells in place. In this case, the variable cost function is a
factor-requirements function for m, and does not contain factor prices but

does contain the stock of wells, N, as an argument.
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CHAPTER 4

The Empirical Specification and Estimation Procedures

4.0. Introduction

In the previous chapter, a model of 0il reservoir depletion was
developed and the arguments of the variable extraction cost model were
specified. It was argued that the parameters of this function which,
given appropriate data, could be empirically estimated could convey
information not only about the optimal depletion strategy of oil
reservoirs but also about inter-reservoir extraction cost heterogeneity.

Two approaches to modelling oil well capital have been adopted. The
first is the "putty-putty" approach in which an oil well is a completely
variable factor of production. In this case, Model I, the two variable
factors of production (the number Qf 0il wells and the rate of water
injection) are chosen in any period so as to minimize the one-period
variable extraction costs. The second is the "putty-clay" approach. In
this case, Model II, the number of o0il wells is chosen only in the initial
period so as to minimize the present-value of the cost of producing an
exogenous output stream over an endogenous period of time. Thereafter,
all variable input decisions are made subject to the existence of a fixed
stock of o0il wells. The only remaining variable input in the restricted
technology set is the rate of water injection. Thus, the variable cost

function of Model II is equivalent to a factor-requirements function.
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In this chapter, the data and econometric proqedures employed to
obtain estimates of the variable cost function parameters for both models
are presented and discussed. This includes the specification of
functional forms for the variable cost functions, derivation of the
estimation equations and discussion of and solutions to the econometric
problems associated with these equations. The chapter is organized into
two sections. In Section 1, Model I is completely specified and
analyzed. A discussion of the data, most of which is the same as that
used for Model II, is inciuded in this section. Model II is completely
specified and analyzed in Section 2. Appendix A contains the technical
derivations used to obtain some of the results in the chapter and Appendix

B documents the data sources.
4.1. Model I
The variable extraction cost function of Model I is implemented by

assuming that the units of time are discrete one-year periods and that the

non-price netput vector includes the following observable variables.

W = the water saturation level in the rth reservoir

Prt = the pressure level in the rth reservoir at the beginning
of year t

8yt = the observed change in the pressure level in the rth
reservoir during year t

Qrt = the observed production of oil from the rth reservoir

during year t

the pay thickness of the rth reservoir.

N
-
0]
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Let the vector X = (X, X2,..., X5) represent the above list of
netputs and let w; be the input price per 0il well and w, be the input
price per unit of water injection. The functional form for the variable

extraction cost function is specified as the following quadratic:

13 AN
Clwy,wz2; X) = a. w. X, + Y B/ w.Vw. X (4.1)
i=1 jo1 17175 i=1 §=1 h=1 ij- i "j"h
5 5 2
+1/2 ) ) ) v XiXow
i=1 j=1 h=1 137755 h

The suppression of time and reservoir subscripts, which will be
continued hereafter, should not cause any confusion: unless otherwise
stated, all observations are made in the same year and in all cases, the
reservoir subscript r is attached to each component of the X vector and
the two dimensional vector of variable factors of production.

The specification in (4.1) guarantees that the variable cost
function is homogeneous of degree one in factor prices but does not
automatically satisfy the properties of concavity or non-decreasingness in
factor prices. Similarly, the regularity conditions with respect to the
netput vector are not automatically satisfied but must be numerically
checked: variable costs muét be non-decreasing in Xi if Xj is an
output and non-increasing in X5 if X5 is an input. The variable cost
function need not satisfy the conditon of convexity in the netput vector
since the possibility of increasing returns to scale is not ruled out by
the specification in (4.1).

The parameters in equation (4.1) cannot be estimated directly

because cost data are not available on a reservoir-by-reservoir basis.
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However, the parameters can be estimated by using Shephard's Lemma on
(4.1) to obtain the variable-cost-minimizing factor demand equations, data
for which are available. These are given by

5

= T a1jxy + [B11 + Brawa/wy) /2]
j=1 j

5 5
Xj + 1/2 1 ) vijXiXj
1 1=1 J=1

=2
|

W~ on

(4.2)

1/27 & ERE
023%g * [B22 + B1a(wi/wa) /2] | X5 + 1/2 ] _Elyij1Xj
21 5

J

J=1 i=1

3
!
I~ o

where N and m are the variable-cost-minimizing demands for the number of
0il wells and the rate of water injection, respectively.

Because the sample is cross-sectional and for the reasons given in
the data section below, the relative factor price w;/wy, is a constant
across all observations in the sample. Thus, the Bjj terms combine with
the ajj terms to yield estimates of parameters which are composites of
these underlying parameters. The resulting estimation equations are
written as the system in (4.3) where it is assumed that any errors,

reflected in the e and u terms, respectively, are completely random.

5 5 5
N= T ayjX;+ /27 1 vijXiXj+e
J=1 =1 J=1

5 5 5
= ;2 azjXj + 1/2.2 ‘Z YijXiXj + u
J=l ']:1 J=1

3
!

In addition it is assumed that the error terms e and u are jointly
distributed normal random variables with zero mean and covariance matrix I

where



67

g (¢
eI pou eI

g 0 ag
o, eI uI

where I is the identity matrix. Thus, each equation is assumed to have a
constant variance.

The system of equations in (4.3) forms the basis of the econometric
model used to estimate the parameters of the variable cost function.?
There are, however, three features of the system in (4.3) that require
special attention in the estimation of its parameters. First, there are
across-equation restrictions on the yjj parameters that must be
satisfied. Second, a significant percentage of the observations on the
dependent variable, m, occur at its lower limiting value of zero thereby
creating the potential for limited dependent variable bias. Third, the
"exogenous" variable, X3 = 8, is known to be an endogenous variable in the
dynamic stage of the cost minimization problem thereby creating the
potential for simultaneity bias. These three econometric issues will be

dealt with thoroughly after a discussion of the data set that will be used

to generate the parameter estimates.

4.1.1 Data

A1l observations were made for the year 1973 on 80 o0il pools
situated throughout the Province of Alberta. The size of the sample and
the pools included in the sample were determined by the following

factors. Of all the oil pools in the Province that were in operation in

1. Although the structural parameters, ajj and B8jj, cannot be
estimated, this is of little consequence as long as the cost function is
not applied to data in a year other than that used to generate the
parameter estimates.
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1973, all those that began operation before 1962 were excluded. This
practice, which eliminates the majority of potential observations, was
adopted due to the perverse regulatory framework that existed in Alberta
before 1962: the rate of extraction that any pool was allowed was closely
Tinked to the number of oil wells drilled into the poo].2 Hence, the
extraction rate, Q, cannot be treated as an exogenous variable in the
variable cost function for pools developed before 1962.

Because 1973 is the observation year, pools developed in 1971 or
later were also excluded to ensure that all of the pools in the sample
were fully operational. Of the remaining pools (approximately 300), a
complete set of observations could be obtained for only 80. A detailed

discussion of the data sources is provided in Appendix B.

N: The number of o0il wells

This dependent variable is the total (or cumulative) number of o011
wells observed to be in place by the year 1973. Across the 80 pools in
the sample, N ranges from a minimum of 1 well to a maximum of 256 wells
with the average number of wells per pool being 15.74 and the standard
deviation being 35.77.

Casual observation of time profiles of N on a pool-by-pool basis
cannot produce firm conclusions about whether o0il wells are variable or
fixed factors, but can offer some evidence in support of one or the other
views. If one looks at these time profiles, it appears that in the
majority of cases, the build-up of oil wells occurs fairly rapidly (over a
one or two year period) and is then followed by a relatively long period

in which the number of wells is constant. There are deviations from this

2. Watkins (1977)
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phenomenon, however, in which there is a gradual build-up and sometimes a
decline in the number of wells. An explanation of the deviations which is
consistent with the view that an o0il well is a fixed factor is that at
development time the true size of the oil pool is unknown. The drilling
of some wells can sometimes lead to the knowledge that the pool is larger
than believed and, hence, to the drilling of additional (step out) wells.
Thus, one may observe a gradual build-up of wells in a pool because of
incomplete information about the reservoir and not because oil wells are
variable factors.

On the other hand, there are arguments in support of the view that
an oil well is a variable factor. First, given that the decision to sink
a well is irreversible, it is still a simple matter to postpone the
investment until any time desired thereby creating some degree of
variability in the decision regarding the optimal number of wells to hold
at any time. Second, it is possible, and is frequently practised, to
convert an oil weil to a water injection well at any time, again adding
some variability to the decision regarding the optimal number of wells to
hold at any particular time.

It is clear that to keep the model tractable, the assumption that an
011 well is either "putty-putty" or "putty-clay" has to be maintained.
Casual observation, however, suggests that an oil well is more correctly
viewed as a quasi-fixed factor of production in which elements of both
"putty" and "clay" are present and that either view will, at best, act as
an approximation. While it is not possible to test the hypothesis that an
0il well is variable against the alternative that it is fixed, the
reasonableness of the empirical results for Model I versus those for Model

II will be helpful in choosing one over the other.
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m: The rate of water injection

This dependent variable is the quantity (m®) of water observed to
have been injected into a pool during 1973. Over the 80 pools in the
sample, m ranges from its limit value of zero up to a maximum of 3.937
million m®> of water. Its mean value of 214.0 thousand m® and standard
deviation of 638.6 m® are deceiving measures because 61.2% of the
observations on m occur at the limiting value of zero. The fact that only
38.8% of the pools in the sample were under water injection in 1973 is
consistent with the results of theoretical analysis of optimal reservoir
depletion in Chapter 3 where it was argued that an initial period of zero
water injection is optimal under certain conditions on the production

technology.

W: Water saturation

This exogenous variable is the percentage of the liquid volume of
the reservoir that is water. It ranges in value from 5% to 50% with a

mean and standard deviation of 21.35% and 11.18, respectively.

P: Pressure

This variable is measured in pounds per square inch absolute at the
beginning of 1473. It ranges from 160 to 4600 PSIA with a mean value of

1841.4 and a standard deviation of 739.1.

8: Change in pressure

The observed change in reservoir pressure during 1973, measured in
PSIA, has a mean value of -6.0, a standard deviation of 176.91 and a range

from -500 to +1000 PSIA. Note that, unlike the analytical model, 6 here
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is not measured as the negative of pressure change. The control variable,
8, was indexed negatively in the analytical model to facilitate

interpretation of the shadow price of pressure.

Q: Extraction rate of oil

This exogenous variable, measured in m3

, i1s the observed production
of crude o0il over the entire year of 1973. It ranges from 1922 to

2,926,100, has a mean of 182,150 and standard deviation of 490,960.

Z: Pay thickness

This is the average thickness of the oil bearing rock in the
reservoir and is measured in metres. Its mean value across the reservoirs
in the sample is 22.3 metres, it has a standard deviation of 28.57 and

ranges in value from 1 to 100 metres.

Wi and wy: Factor prices

The rental price of an oil well is clearly a function of the depth
to which it must be drilled to reach the reservoir and perhaps other
location-specific factors such as rock hardness. These factors can
therefore lead to a significant level of variation in the price of oil
wells across pools.

The cost of drilling injection wells is equivalent to that of
drilling production wells and is affected in the same way by depth and
rock hardness as is the cost of production wells. Therefore, it will be
argued that although there may be variation in the levels of factor prices
across pools at a point in time, there is not variation in the ratio of

factor prices across pools at a point in time. The assumptions required
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to draw this conclusion are made explicit in the following argument.

While it is possible to obtain data for the price of oil production
wells, no such data exist for the price of water injection. One reason
for this is that the true price of water injection is an unobservable
shadow price as will be explained below. It is possible, however, to
infer the value of this shadow price from available data.

It is common practice for water injection to occur through wells
that have been converted from production to injection. Thus, the
appropriate factor price for water injection in any time period includes a
shadow price which depends upon the optimal number of conversions in the
period. This is given by a simple first-order condition: production
wells will be converted to injection wells up to the point that the
marginal value product of production wells is just equal to the marginal
value product of injection wells (net of conversion costs). Since the
optimal number of production wells to hold at any point in time is
determined by equating the marginal value product of the wells with the
(market-determined) rental price, one can deduce that the appropriate
factor price for injection wells is the rental price of oil production
wells plus conversion costs. If one then assumes that the level of water
injection per injection well is a constant so that m = a<Nj; where m =
level of water injection, N1 = number of injection wells and a =
constant, then the price of water injection relative to the price of oil
wells is equal to 1/a, a constant across pools, assuming zero conversion
costs.

Following these assumptions, the average value of a over the sample
is 1.7 X 108m®. Because m has been scaled to have units of 10%m® in the

estimation, the price of water injection relative to the price of oil
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wells 1is therefore, 0.59. This information is not required to obtain the
parameter estimates but it is needed, as will be seen, to compute the
predicted values of the partial derivatives of the variable cost function
and the predicted variable costs.

In order to compute the predicted variation in variable cost over
reservoirs, additional assumptions must be made about the price-depth
relationship. The assumption adopted here is the simplest one possible:

the capital price per well is a linear function of depth as shown below.

w; = wy*DEPTH

where w; is the observed capital price per metre of oil wells. This unit
price is calculated by dividing total industry expenditures in Alberta in
1973 on development well drilling and related surface equipment by the

total development metres drilled by the industry in 1973. The capital

price can then be converted to a rental price by making assumptions about
the average life of oil wells or one can simply normalize by setting the
rental price per metre equal to unity. The data sources are described in

Appendix B.

4.1.2. Econometric Issues

As was suggested above there are three econometric features of the
system of equations in (4.3) that require special attention. These are
discussed in increasing order of complexity in this section but the

technical details are relegated to Appendix A.
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Parameter Restrictions

It is a common characteristic of variable cost or variable profit
functions which contain several fixed netputs that the implied system of
factor demands satisfy several equality restrictions on the parameters in

different equations.3

In (4.3) the equality restrictions are clearly
indicated: the Yij i=1,2,...,5; j=1,2,...,5 parameters are the same in
the two equations. Thus , ordinary least-squares cannot be used to
estimate the parameters and satisfy the restrictions. An iterative
approach, combined with OLS would work but the method adopted here is
maximum likelihood estimation. The SHAZAM* econometrics package easily

accommodates this problem. The equality restrictions are imposed at each

iteration.

Limited Dependent Variable Bias

The second econometric problem is more difficult than the first but
is not new. Tobin (1958) first dealt with the statistical problems caused
by a clustering of dependent variable observations at a 1limiting value in
the context of a single-equation model. Wales and Woodland (1980)
extended this to a more general case of a two-equation model. In either
case, ordinary least squares will yie1d biased estimates because the
assumptions of the linear regression model are not satisfied. In
particular, a necessary assumption is that the expected value of each
error term is equal to zero. However, this is not possible when the
dependent variable assumes its limit value of zero, say, since only
positive (and never negative) errors are possible due to the truncation

from below. When the expected value of the errors is not zero, OLS is

3. See Diewert (1973) and (1974) for example.
4. White (1978)
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known to yield biased estimates.

The solution to this problem proposed by Tobin was to obtain maximum
Tikelihood estimates of the parameters, taking care to correctly specify
the likelihood of a set of observations by taking account of the
truncation from below. This will yield estimates which are consistent and
efficient. - The following is the modification of the system of equations
in (4.3) used to eliminate the limited dependent variable bias.

Using the notation of Wales and Woodland (1980), rewrite the right-
hand sides of the equations in (4.3) as g(x; a;,y) + e and h(x; az,y) + u,

respectively. The estimation model is:
N =g(x; aj,v) +e

0 if h(x; a,y) +u<O0
m={ (4.4)
h(x; az,y) + u if h(x; az,y) +u >0
This model requires that if the desired water injection rate is
negative, it must be set at its minimum permissable value, zero. Let F(v)
be the cumulative unit normal distribution function and let f(v) be the
unit normal density function for a random variable, v. Let n(u,e) be the
joint normal density function for the error terms with covariance matrix
I, as given above. Without loss of generality, order the data so that the
first q observations are those for which m assumes the value zero and the
remaining R-q observations are those for which m exceeds zero.
As is shown in Appendix A, the likelihood function for a sample of R
observations is given by
R

eF(yy)e e 4.5
. a flage;)Fly;) j=q+1n(uJ,eJ) (4.5)

—
{]
==

i
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where ae = 1/0¢
3y = 1oy

1/2
y; = -[hy (xs az,Y)ea, + eipae]/(l-oz)

The objective is to maximize (the logarithm) of (4.5) with respect
to ae, ay, p, and the parameters of the variable cost function. Even
though the estimation equations in (4.4) are linear in the parameters, the
first derivatives of the logarithm of the likelihood function are
non-linear making an analytical solution impossible. Hence, a numerical,
non-linear optimization routine must be used.® The Hessian matrix of the
1ikelihood function, evaluated at its maximum, yie]dé standard errors and
t-statistics, for the parameters, which are asymptotically valid for

hypothesis testing.

Simultaneity Bias

The third econometric issue that must be addressed is that of the
potential for simultaneity bias in the estimation of the variable cost
function parameters. The source of this potential bias is the endogeneity
of 8, the change-in-pressure variable, in the dynamic cost minimization
problem and its treatment as an exogenous variable in the variable
extraction cost function. As will be shown, there is good reason to

suspect that 6 is correlated with exogenous variables not present in the

5. University of British Columbia's "Monitor for Nonlinear Optimization,"
a routine which permits the user to call any one of a variety of
optimization routines and to monitor its performance interactively, was
used to maximize (4.5). The optimization routines that were used are
FLETCH and FNMIN, both of which are quasi-Newton methods. Analytical
derivatives were not supplied, but were numerically computed by the
Monitor.
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estimation equations. The effects of these excluded variables could be
entering through the error terms thereby leading to a correlation between
® and the errors and this, in turn leads to estimation bias.

The variable extraction cost function includes 6 as an argument by
design. While explicit solutions for dynamic factor demands are
obtainable in the context of infinite-time horizon models of the firm,
this is not the case in the context of a finite-time horizon model of the
extractive firm. Instead, it is impossible to obtain an explicit solution
for 6 in an endogenous and finite time horizon model.® For this reason,
® is held constant so that the variable cost function can be explicitly
defined.

It is possible, however, to obtain an explicit solution for 6 under
certain conditions: first, the objective function must be quadratic or
linear and second, the time horizon must be assumed to be exogenous.7

If a reduced form equation for 6 can be obtained, it can be used to
eliminate the source of potential simultaneity bias in the regresion model
in (4.4). The remainder of this section, then, is devoted to the
derivation of a reduced form equation for 8 as a function of an assumed,
exogenous time horizon.

It is assumed that the objective of the reservoir manager is to
minimize the present value of the cost of producing an exogenously
determined, constant output rate, Q, over a finite and exogenous time

horizon, T and that all prices are constant. Formally, the problem is to

6. The assumption of a quadratic objective function implies exhaustion
must occur in finite time.

7. In essence, this makes the problem of solving for 6 similar to the
problem of solving for dynamic factor demands in the infinite time horizon
models of the firm where quadratic objective functions are also employed.
The practical difference created by the finiteness of the time horizon,
however, 1is substantial as can be verified by looking at Appendix A.
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;
Minimize [ e °Tc(wy,waiW,P,0,0,2)dt (4.6)
{e} o
subject to P = -8
P(O) = Po
P(t) >0

Time subscripts have been and will continue to be suppressed where
it does not cause ambiguity. In (4.6), only 6 and P are functions of
time. Factor prices, which are constant, are suppressed in the

following. The Hamiltonian function is

H = e-dt{c(w,P,e,Q,Z) - )\9}

Assuming an interior solution exists, the following conditions must hold

at every point in time to minimize H:

Cg -2 =0 (4.7)

>
1
o2}
>
1

_Cp

where the arguments of the cost function have been suppressed. Equations
(4.7) determine the optimal time paths of P and 6, given any starting or

finishing points for A. An optimal finishing point is to have the level

of pressure such that its shadow price is zero at time T. This

requirement is written as condition (4.8)

AMT) =0 (4.8)
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Together, these three conditions completely solve the problem given
P(0) = Pp and P = -8. However, to obtain an explicit solution is
difficult even when the objective function is quadratic.

The procedure for obtaining the explicit solution is based on
solving a system of simultaneous linear differential equations. This
system is obtained in the following way. Since C(+) is quadratic, the

first equation of (4.7) can be used to explictly solve for 6 as a function

of A and P, say 9(A,P). Using P = -6 and the second equation in (4.7) the

system of linear differential equations becomes:

o d
4]

S - cp[w,P,e(A,P),Q,Z] (4.9)

e
fl

—G(X,P)

The endogenous variables are A and P which, because the equations in
(4.9) are linear in X and P, can be explicitly solved as functions of
time, Py, and Ay, the initial shadow price. This puts the solution
for 6 in terms of an unobservable variable, XAy. This variable can be
eliminated, however, by making use of the transversality condition. Since
(4.9) can be used to solve for A(t) as a function of iy, it also yields
A(T) as a function of Ay. Since A(T) must equal zero, Xy can be
solved for as an explicit function of T. Substitution of this result then
yields A(t) as an explicit function of T and therefore provides the
explicit solution for 6 as a function of T, Py, all of the constant
variables and all of the parameters of the quadratic objective function.
This exercise, which is carried out in Appehdix A, yields the

following reduced form equation for 6(t):
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-6(t) = AjA(t) + ByP(t) + CyyW + Cy2Q + Cy3Z + Cyy (4.10)

where,

(2) = (p - gy (S TFET0_BT-5a(T-0

}

(4.11)
22 {B1L(r1-A1)e 1 - (rpAy)e 28 1B, (1 <Ay Je 2 F-(r p-ny )e 2 T/

{Bl[(Vl-Al)erlT-(Vz-Al)erzT]}

]

and €1 = hyiW + hypQ + hy3Z + hyy

Q3 = hoyW + hppQ + hasZ + hyy

A1l of the parameters that appear in (4.10) and (4.11) are functions
of the structural parameters of the variable cost function and the exact
‘re1ationships are written out in Appendix A.

The reduced form equation for ©(t) in (4.10) is a non-linear
function of the parameters of the variable cost function, the initial
level of reservoir pressure, Py, the exogenous time horizon T, the
current "age" of the reservoir, t, and the other three exogenous variables
of the model: W, Q, and Z.

It was stated earlier that there is reason to suspect that 8 is
correlated with exogenous variables that do not appear in the regression
model in which 6 is taken to be exogenous, thereby creating the potential'
for simultaneity bias. The source of this suspicion is made clear in
(4.10) and (4.11) where it is apparent that the optimal choice for 6 at
time t depends, in a systematic way, on three variables, t, T and Pg,

that do not appear in the regression model in which 6 is taken as
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exogenous. Thus, the potential does exist for 8 to be correlated with the
residuals in that regression model.

At the conceptual level, the reduced form equation for & in (4.10)
can be estimated simultaneously with the equations for the original two
dependent variables, N and m, in (4.3) or (4.4), by imposing the
complicated parameter restrictions across equations that are written in
Appendix A. This procedure will yield consistent estimates of the
structural parameters. At a practical level, however, this procedure is
unlikely to be successful given the large number of parameters and the
non-linearity of the estimation equations combined with the additional
non-linearity of the likelihood function created by the limited dependent
variable problem. Moreover, the benefit probably does not justify the
cost of carrying out this procedure when one considers the following
alternative.

At a cost of not being able to obtain estimates of the structural
parameters but only reduced form parameters, the non-linear parameter
restrictions need not be imposed. The simultaneity bias problem is still
eliminated and the reduced estimation cost is probably well worth the
sacrifice of information implied by this procedure.

Without imposing parameter restrictions across equations, only the
distinct parameters of the reduced form equation for 8(t) can be
estimated. As is shown in Appendix A this yields the following highly

simplified version of the reduced form equation:
-e(t) - ao[esl(T+t)+Bz(T-t)_eBI(T+t)-82(T-t)](PO_N_Q_Z_I)

+ ajW + ayQ + agZ + oy + B{P (4.12)
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The next step that might be considered is to estimate the resulting
unrestricted, three-equation system. This is unlikely to be successful
however, because of the very large number of parameters. An alternative
is to make the substitution of (4.12) into (4.3) or (4.4) to eliminate
8(t) and then to estimate the resulting reduced form parameters. The
resulting reduced form equations are quadratic as before, but no longer
contain © and cannot be used to identify the structural parameters.

Redefine X3 jn the following way:

{e31(T+t)+32(T-t)_e31(T+t)-82(T-t)}(

X3 = Po-W-Q-2-1)

Then substitution of (4.12) into (4.3) yields the following estimation

equations:

=2
"

5 5 5
Eo1 + L E15X5 + 1/2 1 1 wijXiXj + e
j=1 i=l j=1
(4.13)
5

5 5
= Egp + L E2iXj + 1/2 1 ) wijXiXj + u
i=1 =1 j=1

3
[

The practical difference between the system in (4.13) and that in
(4.3) is that the former is non-linear in the parameters and contains 4
additional parameters, £q1, &g2, B1, and B, and 4 additional variables, a
constant, Py, t, and T.

Although the structural parameters cannot be identified this is not
a serious concern: the parameters in (4.13) will still yield estimates of
the effects of the exogenous variables on extraction costs and the

estimates are free of simultaneity bias. The drawback of the system in

(4.13) is the requirement of observations on T which has been treated as
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an exogenous variable. Since T really is an endogenous variable one might
reasonably argue that while one source of simultaneity bias has been
eliminated by substituting 6 out of the model, another has been introduced
by including T in the model. While this is true, if one were able to
solve for T, it would be a function only of the exogenous variables
already included in the regression model. Thus, there is Tess reason to
suspect T to be systematically correlated with the residuals.

Direct observations on T are not available. This information is
inferred from other data. In particular, the variable T is approximated
by dividing observations on reported recoverable oil reserves by Q, the
observed 1973 broduction of oil. This procedure undoubtedly leads to
measurement errors as is obvious from the fact that the maximum value of T
calculated in this way is 712 years. However, the mean value of 34.05
years is very reasonable as is the minimum value of 6 years and standard
deviation of 78.5 years. One is forced to assume the measurement errors
are random and indeed, there is no reason to suspect otherwise.

The simplest way of dealing with the simultaneity bias problem is a
"two-stage" approach in which the ordinary least-squares predicted values
of 6 obtained from a regression of & on all of the exogenous variables in
the system are used in place of the observed values of 6 in the two-
equation system for N and m. The predicted values of & are uncorrelated
with the error terms in the equations for N and m. Hence, the maximum-
likelihood estimates of the parameters in these two equations using the
predicted values of 6 are consistent,

Finally, it should be noted that the full system of three equations
for 6, N and m is block recursive in that the first block consisting of

one equation for 6 depends only on exogenous variables and the second
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block consisting of the two equations for N and m depends only on
exogenous variables plus an endogenous variable, 6, determined in the
first block. Thus, if the error term in the first block is uncorrelated
with the error terms in the second block, the simultaneity problem
vanishes. Thus, maximum likelihood estimates of the parameters in the
two-equation system for N and m, using observed values for 6, would be

consistent,
4.2. Model II

As an alternative to treating an oil production well as a variable
factor of production, the model is reformulated here under the assumption
that an oil well is a fixed factor, the number of which is optimally
chosen only during the initial development phase of the oil pool. For
analytical purposes, this phase is assumed to occur instantaneously at
t=0. For practical purposes in data collection, this development phase is
permitted to take up to 5 years.

As was stated in the introduction to this Chapter, after setting the
factor price for water injection to one, the variable cost function of
Model II is equivalent ﬁo a factor requirements function which shows the
quantity of water injection required to produce some output rate Q, given
8, N and the other fixed factors. It is non-increasing in arguments which
are inputs and non-decreasing in arguments which are outputs. The
following quadratic function is specified for the factor requirements
function.

6

6 )
m(x) = b, + I bx;+1/2 § ]

XX, (4.14)
i=1 j=1 j=1 9

p 9
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where, X; = water saturation level, W
Xo = pressure, P
X3 = pressure change, 8
Xy = extraction rate, Q
X5 = pay thickness, Z
Xe = number of oil wells, N

The parameters of (4.14) can be estimated directly using the
one-equation version of the limited dependent variable model already
described. This eliminates the limited dependent variable bias but not
the source of potential simultaneity bias. The latter can be handled in
exactly the same way as it was for Model I. The objective of the
reservoir manager is assumed to be to minimize the present-value of the
cost of producing a constant, exogenous output stream over an exogenous

time period:

T

Minimize | e ®m(W,P,8,0,Z,N)dt + ¢-N
{o,N} o (4.15)
subject to P = -0
P(0) = Pq
P(t) >
N >

where ¢ is the market price of an oil well. The Hamiltonian for this

problem is:

H = m(w,P,G,Q,Z,N) - A8 (4016)
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Except for the addition of N in the Hamiltonian, (4.16) is identical
to the Hamiltonian for Model I associated with the minimization problem
(4.6). Since N is exogenous in (4.16), the solving of the reduced form
for 6(t) is carried out in precisely the same way and the solution appears
exactly the same except for the addition of one exogenous, constant. Thus

the reduced form is

[B1(THt)+B2(T-t)_ B1(T+t)-B5(T-)

-8 (t) = o Po-W-Q-Z-N-1)

+ oW+ axQ + a3zZ + ayN + ag + B;P (4.17)

where, although the notation is the same, the parameters in (4.17) are not
the same as those in (4.12).
To find the reduced form equation that is to be estimated, redefine

X3 as

[eB1(TH)¥B2(T-t)_ B1(T+t)-B5(T-t)

X3 = e Po-W-Q-Z-N-1)

Substitution of 6(t) into (4.14) then yields:

6 6 6
m(x) =T + Y T.X; +1/2 )} J T..X X +ep (4.18)
0 4= M7 i=1 j=1 W

which is the reduced form estimation equation after the addition of error

term e, a random normal variable with zero mean and constant variance.
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The Optimal Number of Wells

Just as it was possible to find an explicit solution to the dynamic
optimization problem, it is possible, although more difficult, to solve
(4.15) for the optimal level of initial investment in N, the number of oil
wells. The resulting reduced form parameters can be estimated with
available data.

Assuming an interior solution to the minimization of (4.15) with

respect to N, the following first-order condition must hold at an optimum:

;
3/aN [ e ®tm(W,P,6,Q,Z,N)dt + ¢ = 0 (4.19)
0

If the first stage of the minimization problem has already been
carried out so that 6(t) and P(t) are known, then (4.19) can be explicitly
solved for N as long as the objective function is quadratic.

The solution of (4.19) is carried out in Appendix A. However,
because it is known that the structural parameters of (4.19) will not be
identified in the reduced form equation for N, no attempt has been made in
the derivation to preserve them.

The resulting reduced form equation determining the optimal number

of wells is given below.

N=¢/D+ W(fiodo + f11q1 + f12q2 + f13a03 + 1,04 + f15)/D +

+

fa202 + f23q3 + 40y + f25)/0 +

Z(f30q0 *+ f3191 + f3202 + f33q3 + f3uqy + f35)/D +  (4.20)

Q(f20q0 + f2101

Po(fs1q1 + fs2q2 + f53q3 + fsuqy + fs5)/D +
(feodo + fe1q1 + fp2q2)/D
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where,

D = -{fuodo *+ fu1d1 + fy202 + fiy3qs + Fuuqy + fusqs)

and,

{]
—
—
1
124
1
o)
—‘
S
~
(o]

Yo
q = [T 1] /(rp-0)

a0 = (7278717 /(rpm6)

as = [e!Z178)T.1]/(2r,-6)

qv = [T 2T 01/ (r 1 4ry-6)

as = [eZ27)T_1]/(2r5-5)

The parameters to be estimated are r;, r, and the fij. The fact
that the relative price of 0il wells enters the regression equation
correctly suggests that a different data set is used to estimate the
parameters of (4.20). The data set to be used here is somewhat larger
than that used in previous regressions but the main difference is that the
observations on the dependent variable N are now dated. An observation on
the variable N now includes the number of wells drilled in the initial
development of the poo]8 and the date at which the development began.

The sample includes most of the 80 observations used in the previous

8. Some pools in the sample had two or more distinct development phases
separated by several years of a constant N. In these cases, only the
initial development period was used as the observation.
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regressions9 plus additional observations on pools developed up to and
including 1975 for a total of 110 observations. Table I shows the total
number and the percentage of observations occuring at each date, the
average number of wells per pool, N, and the average well depth per pool
in metres DEP.

To calculate ¢y, the relative price of oil wells at the time N is
chosen, it is assumed that the price of water injection in year 0, is
expected to remain at that level for all subsequent periods. The
assumptions required to calculate a price series for water injection and
the method for actually calculating ¢ are made clear in the following

chapter. The data sources are documented in Appendix B.

9. Excluded were pools which had no distinct development phase but
displayed a steady and gradual rise in N over time and pools which had no
development phase but produced with only the original discovery well.

Approximately 20% of the pools fell into these categories.



TABLE I

DATE NO. % NTOT N DEP
1963 6 5.4 149 24.8 4611.8
1964 9 8.2 343 38.1 1883.2
1965 11 10.0 276 25.1 1449.5
1966 19 17.3 127 6.7 2591.9
1967 10 9.1 56 5.6 1631.2
1968 10 9.1 89 8.9 1309.9
1969 8 7.3 54 6.8 1644 .5
1970 4 3.6 65 16.3 1709.3
1971 6 5.4 44 7.3 1241 .4
1972 6 5.4 28 4.7 3060.0
1973 3 2.7 76 25.0 1397.1
1974 5 4.5 157 31.4 1393.5
1975 1 0.9 3 3.0 1095.5
1976 7 6.4 281 40.1 1278.3
1977 5 4.5 96 19.2 846.1
NO. NUMBER OF OBSERVATIONS

%

N

EP = AVERAGE WELL DEPTH PER POOL (METRES)

PERCENTAGE OF TOTAL NUMBER OF OBSERVATIONS
NTOT = TOTAL NUMBER OF WELLS DRILLED
AVERAGE NUMBER OF WELLS DRILLED PER POOL

90
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CHAPTER 5

Empirical Results

5.0 Introduction

In the previous chapter, two empirical models of variable extraction
costs were formulated, the estimation equations associated with each model
were derived and the estimation problems and procedures were described.
Recall that in Model I, the estimation equations consist of a system of
two equations determining the two variable factors of production at time t
(the number of 0il wells and the rate of water injection). Model II,
which differs in that oil wells are assumed to be fixed rather than
variable factors of production, consists of one equation determining the
one variable factor of production at time t (the rate of water
injection). An additional but independently estimated reduced form
equation in Model II is that determining the optimal number of o0il wells
to be drilled in the initial time period, t=0.

In this chapter, the empirical results obtained from estimating the
parameters of these two models are presented and analyzed. The remaining
part of the chapter is organized into 4 sections. In Section 5.1 the
results obtained for Models I and II when 6 is treated as an exogenous
variable are presented and analyzed. The effects of limited dependent
variable bias are examined in this section in that two sets of results are
presented for Model I: the first set is obtained by ignoring the Timited
dependent variable problem and the second set is obtained from consistent,

maximum likelihood estimation. In Section 5.2, the results obtained for
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Models I and II when 8 is treated as an endogenous variable are presented
and analyzed. Section 5.3 contains the results of estimating the reduced
form equation from Model II determining the optimal number of o0il wells to
be drilled at t=0. The chapter is concluded in Section 5.4 with a summary
of the empirical findings and the implications for (i) the optimal
depletion strategy of o0il reservoirs and (ii) the extent and determinants

of extraction cost heterogeneity among the oil reservoirs in the sample.

5.1 The Variable Extraction Cost Function: Exogenous 6

The complete set of parameter estimates for Models I and II are
presented in Table III. The first column contains the estimates of Model
I parameters obtained when the limited dependent variable problem is
ignored. The second column contains estimates of the same parameters
obtained by maximum likelihood estimation which takes account of the
limited dependent variable problem. The third column of Table III shows
the parameter estimates for Model II obtained by maximum 1likelihood
estimation which takes account of the limited dependent variable problem.
In each co]umn; the asymptotic t-statistics are shown in parentheses
beside the associated parameter estimate and the logarithm of the value of
the maximized likelihood function, L, is printed at the bottom of the

column.!

1. Because Model II was estimated using the SHAZAM econometrics package,
the reported t-statistics are actually the t-statistics for the
"normalized" regression coefficients of Tobin's (1958) original article.
The normalization is obtained by dividing all coefficients by the standard
deviation of the residuals. These t-statistics can, nevertheless, be used

to perform the standard (asymptotically valid) hypotheses tests.
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To facilitate the interpretation of the results in Table III, the
estimation models associated with each of the columns in Table III are
summarized in Table II. Note that the subscripts denoting the observation
index have been suppressed but that each oil pool provides one observation
and that all 80 observations occur in the year 1973. Also not shown in
Table II is the fact that for estimation purposes, the data terms in the
equations were scaled to make the parameter estimates of similar orders of

magnitude.

Limited Dependent Variable Bias

Comparison of the estimates in Columns 1 and 2 of Table III
demonstrates the effect of the limited dependent variable bias which is
inherent in the estimates of Column 1. One would expect the maximum
likelihood estimates in Column 2 to be considerably different from those
in Column 1 due to the large number of observations which occur at the
1imit value. Visual inspection of the first two columns of Table III
substantiates this expectation.

In Column 2, 12 parameter estimates are lower and 13 are higher in
value than those in Column 1. The average percentage change in values is
1088.3%. The largest decrease is -3811.4% (a,5), the largest increase is
27,559.3% (v15) and the smallest change is -3.4% (a;,).

One can use the asymptotically valid likelihood ratio (LR) test to
perform a test of the hypothesis that the parameters in the two columns
are equal. This test was performed by computing the log of the 1likelihood
function (used in estimating the parameters in Column 2) when all of the
parameters (except those in the covariance matrix) are restricted to equal

the values contained in Column 1. This produced a function value of
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Table II

Summary of Estimation Models

MODEL I (column 1 of Table 5.1)

N = g(x,a1,Y) + e = aj W+ a;P + ayse + ay,Q + ajs + 1/2y,W?

-+

Y1oWP + Y1 3WO + Y ,WQ + YysWZ + 1/2vP? + y3P6 + v,,PQ + Y,5PZ

1/27330% + ¥3,0Q + Y3507 + 1/2v44Q% + v4sQZ + 1/2v5sZ% + e

+

m = h(x,a2,Y) + U = a0 + ayP + ay30 + a,Q + apsZ + 1/2v1 W?

+

Y12WP + Yy3W0 + vy, WQ + vigWZ + 1/2Y22P2 + v53P8 + v,,PQ + Yo5PZ

1/2v3302% + ¥340Q + Y3507 + 1/2¥4,4,Q% + YusQZ + 1/2vs5Z2 + u

+

MODEL II (column 2 of Table 5.1)

N = g(x,a;1,Y) + e

h(x,az,Y) + u if  h(x,az,y) +uzo
m =

0 if h(x,a5,Y) +u <0

MODEL II (column 3 of Table 5.1

m=by + byW+ byP + b3d + byQ + bsZ + bgN + 1/2g,1W? + g WP
+ g13W8 + g14WQ + g1sWZ + gighN + 1/2g,,P% + gp3P8 + ,,PQ + gosPZ
+ ga6PN + 1/29338% + 9348Q + 93507 + 936N + 1/29,4Q° + gus0Z
+ guQN + 1/2gssZ% + gsgIN + 1/2ggeN?



Table III

Model I and Model II Parameter Estimates: Exogenous 6

1. Model I 2. Model I 3. Model II
a;, | 0.2395 ( 1.75) | 2.5448E-2 ( 0.13) || b, | -0.1560  (-0.
a2 | 0.3159 ( 1.39) | 0.7177 ( 1.69) || by 0.5574  ( 2.
aj3 | 0.2264E-1 ( 0.16) | 6.1258E-2 ( 0.31) || b, 0.1073  ( 0.
as | 1.1781 (10.03) | 1.1381 ( 4.40) || b, | -0.1820  (-0.
ays | -0.3745 (-3.67) | -0.5795 (-2.49) || bs | -0.3301  (-2.
agy | -0.27496-1 (-0.51) | -0.2696 (-1.83) | bg | -0.1055  (-0.
azp | -0.6743E-1 (-0.59) | 0.2754 ( 0.74) || 913 | 0.6013E-1 ( 1.
a3 | -0.9154E-1 (-1.38) | -5.3030E-2 (-0.33) (| g9;, | -0.8929  (-2.
ay | 0.6851 ( 6.16) | 0.6553 ( 2.57) || 913 | 0.6274  ( 2.
aps | -0.5461E-2 (-0.08) | -0.2136 (-0.96) || g1 | 1.6322  ( 2.
y11 | 0.2309e-2 ( 0.11) | 7.8638E-2 ( 1.52) || 9,5 | 0.1259  ( 3.
Y12 | 0.2006 ( 0.95) | -0.1344 (-0.23) || g1 | -0.8616  (-0.
Y13 | 0.3475 ( 1.97) | 0.6638 ( 1.62) || 920 | -3.8696  (-2.
Y1y | -0.9640 (-2.75) | -0.6190 (-0.85) || 9,5 | -1.5633  (-2.
yi5 | 0.3484E-1 ( 2.08) | 9.6365 ( 1.72) || 95, | 0.5838  ( O.
Yas | 0.4518 ( 0.81) | -1.3592 (-0.64) || g,5 | 0.2997  ( oO.
Yo3 | 0.3367E-1 ( 0.16) | -0.4461 (-0.55) || g, | 10.884 (1.
Yoy | -1.6335 (-5.97) | -1.3336 (-1.87) || ga3 | -4.5317  (-3.
Yos | -0.4035 (-2.05) | -0.4409 (-0.80) (| g3, | 0.1332 (1.
va3 | -1.1502 (-1.33) | -1.6662 (-0.58) || 935 | 3.8046  ( 3.
Ya, | -0.2583E-1 (-0.25) | 8.0319E-2 ( 0.37) || gss | 0.2353  ( 1.
Yss | 1.7009 ( 2.40) | 2.1293 ( 0.97) || 94, | 0.5793E-1 ( O.
Yy, | 0.8800E-1 ( 1.79) | -8.0732E-3 (-0.08) || g4s | 0.2477E-2 ( 0.
Yus | -0.2209 (-4.06) | -0.2834 (-2.64) || gue | -3.1498  (-2.
yss | 1.5961 ( 2.82) | 4.749 ( 2.77) || 955 | 4.2358  ( 3.
gse | -0.2958  (-4.
L -459.82 -419.047 %6 | 2.8005 (1.
bg 0.9464  ( O.
L -59.57

Column 1: Model I: Limited dependent variable problem (LDV) ignored.
Column 2: Model I: Maximum likelihood taking account of LDV problem.
Column 3: Model II: Maximum likelihood taking account of LDV problem.
Asymptotic t-statistics in parentheses.
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-440.880 which is smaller than the maximum value of -419.047. The LR test

statistic is A' where

At = 2[In(Lg) - n(Ly)]

where In(Lg) and In(L;) are the logarithms of the Tikelihood functions
under the null (restricted) hypothesis and alternative (unrestricted)
hypothesis, respectively. The test statistic, A', is asymptotically
distributed as a xz(K) where K = the number of restrictions. The LR test
statistic for the current hypothesis test is 43.66 which exceeds the
critical value for x2(25) of approximately 37.6 at the 5% level of
significance as well as the c¢ritical value of 40.6 at the 1% level of
significance. Thus, the null hypothesis that the parameters in Columns 1
and 2 are equal can be rejected.

It is clear that the statistical effect of the limited dependent
variable bias is to cause large changes in the individual parameter
estimates and a significanf reduction in the likelihood of the sample.
Moreover, the estimates in Column 1 are inferior on economic grounds as

will be shown in the discussion of regularity conditions.

Hypothesis Tests on the Exogenous Variables

The statistical significance of the individual exogenous variables
is investigated with the LR test. The test of the hypothesis that an
individual exogenous variable, Xj, has no influence on variable
extraction costs is a test of the joint null hypotheses that each of the

parameters in the following partial derivative are equal to zero:
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2 2 5
Model I:  3c(wy,wp;X)/dX. = J a..w.X.+ J ) v..X.w
i j=1 Jititi h=1 j=1 ij%jh
6
Model II: am(X)/aXi = b, + jzlgijxj

The test on an individual Xj is carried out by maximizing the
likelihood function subject to the restrictions that the above parameters
are equal to zero. The LR test statistics obtained from doing this for
both models (including both sets of Model I estimates) and for each of the
Xy are summarized in Table IV.

The critical x2(7) at a 5% significance level is 14.07. Thus, all
null hypotheses can be rejected in Model II and all but one can be
rejected in Model I. There is, therefore, agreement among all estimates
that the controllable netputs-extraction rate, pressure, and number of o0il
wells in Model II - have significant effects on variable extraction costs,
and the natural netputs - pay thickness and the water saturation level of
reservoirs - also have significant effects on variable extraction costs.
There is conflict between the results of Models I and II, however, over
the significance of the effect of the controllable netput, 6 (change-in-
pressure).

Acceptance of the null hypothesis in Model I that 6 does not affect
variable extraction costs is a surprising and undesireable result. It
suggests that while the level of reservoir pressure affects variable
costs, the rate at which pressure is diminished does not. It implies that
there is no unique solution to the dynamic cost minimization problem.
Moreover, it implies that in the production relation which is dual to the

variable cost function, ® has no impact on the rate of oil production.



TABLE IV

Likelihood Ratio Test Statistics
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Column Change Extrac- Pay No.
of Water In tion Thick- of
Table III Saturation Pressure Pressure Rate ness Wells
MODEL I 1 20.64 44 .18 8.92 278.18 59.08 -
MODEL 1 2 19.42 18.22 7.76 180.29 44 .47 -
MODEL II 3 25.44 14 .96 20.00 101.52 53.04 47.84
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The principles of 0il reservoir engineering, outlined in Chapter 2,
suggest that this result is incorrect.

Two arguments can be put forward to explain the conflicting results
concerning the effect of 6 on variable extraction costs. The first is
that multicollinearity between 6 and the other exogenous variables may
exist thereby causing the effect of 6 to appear insignificant. From
Chapter 4 it is known that the reduced form equation for © (obtained from
solving the dynamic minimization problem) includes some terms which are
linear in the other exogenous variables of the model. There is,
therefore, justification for suspecting the existence of
multicollinearity. However, the strength of this argument is diminished
by the fact that 8 is statistically significant in Model II. If there did
exist a serious multicollinearity problem, its effects ought to be
observed in Model II as well as Model I. The fact that they are not
suggests a second argument.

If the true model of variable extraction costs is Model II where an
oil well is a fixed factor of production, then the dependent variable N in
Model I will not be influenced by 6, the observed pressure change in one
year of a reservoir's life. Because of the across-equation restrictions
in the estimation of the two factor demands in Model I, the two equations
are not independent. It is therefore possible that the known dependence
of water injection on 6 was not sufficient to overcome the possible
independence of the number of wells on 6.

It was stated earlier that it is not within the scope of the thesis
to perform formal testing of hypotheses regarding the nature of oil wells
as factors of production, fixed or variable. However, the above analysis

suggests that, on the grounds of the reasonableness of the results

analyzed so far, Model II is preferable to Model I.
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The Tikelihood ratio tests have indicated that all of the arguments
of the variable cost function (with the exception of ©® in Model I) have a
significant effect on the variable cost of extracting oil. The
qualitative nature of each effect is determined by computing the predicted
values for each of the partial derivatives of the variable cost function
with respect to its arguments. This exercise must also be carried out to
determine whether the function that has been estimated is indeed a

variable cost function.

Regularity Conditions

The necessary conditions for the estimated functions in Models I and
IT to be a variable cost function and a factor requirements function,
respectively are that they be increasing or decreasing in their arguments
depending on whether they are outputs or inputs, respectively. Each
partial derivative of a quadratic function depends upon the values of
various parameters and the values of all of the exogenous variables.

Thus, the regularity conditions cannot be globally satisfied but should be
satisfied at least in the neighbourhood of the sample means of the
exogenous variables or preferably at all data points.

The sufficient conditions for the estimated function in Model I to
be a variable cost function are automatically satisfied. A common
sufficient condition is that a cost function be concave in input prices.
Because the effects of input prices are not discernable in the cross-
section sample used to generate the parameter estimates in Table III, this
condition cannot be violated. An additional sufficiency condition is that
a variable cost function be convex in the vector of fixed netputs if the

underlying technology exhibits constant returns to scale. However, since
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the possibility of increasing returns to scale is not ruled out in the
empirical models, this is not a condition that must be satisfied. Thus,
only the first-order regularity conditions, explained below, must be
satisfied.

Inspection of the variable cost function for Model I in Chapter 4 or
the factor demands for Model I in Table II indicates that each partial
derivative with respect to one of the Xj exogenous variables has the

following form:

Cj = apjwp + agjwy + (W1+W2).§1 YijX3 (5.1)
J:

where C; denotes the partial derivative of the cost function with
respect to Xj.

To satisfy the first-order regularity conditions, the estimated
function must be non-increasing in inputs and non-decreasing in outputs.
Since it is only the sign of the partial derivative that need be known,
the dependence of equation (5.1) on the level of factor prices can be
eliminated by dividing through by (w;+w,). This yields normalized partial
derivatives, the signs of which depend only upon relative factor prices in
the observation year. Following the arguments made in Chapter 4, w,/w, =
1.69 so that wy/{(wi+wy) = 0.63 and wy/(witwy) = 0.37. It is these
normalized partial derivatives that are calculated to determine the
qualitative effects of the exogenous variables.

For Model II, the partial derivatives depend only upon the price of
water injection. Setting this price equal to unity then yields the

normalized partial derivatives for Model II.
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These partial derivatives were calculated at all data points and at
sample means for the functions associated with Table III. Table V below
contains the predicted values of the normalized partial derivatives at
sample means for each of the three columns in Table III.

Table V

Normalized Partial Derivatives at Sample Means

Column of
Model Table III Cw CP Ce CQ CZ CN
Model I 1 -1.51 0.32 -0.17 0.61 -2.66 --
Model 1 2 0.16 0.10 0.14 0.52 -0.27 -
Model 1II 3 0.35 0.01 0.10 0.23 -0.36 -0.57

A1l partial derivatives should be positive with the exception of
Cz, Cy and possibly Cp which can be positive or negative for the
reasons given below. Thus, the function estimated in column 1 of Model I
does not satisfy the regularity conditions for a variable cost function.
Conversely, the function estimated in Column 2 of Model I (elimination of
limited dependent variable bias) does satisfy the regularity conditions.
Similarly, the variable cost or factor requirements function of Model II
satisfies all regularity conditions at sample means.

That the parameter estimates of Model I in column 1 (limited
dependent variable problem ignored) are inferior on economic grounds to
those in column 2 of Table III (limited dependent variable bias
eliminated) is apparent from the above discussion of the results of the
regularity conditions checks. In the following discussions of each of the
partial derivatives, therefore, column 1 estimates are ignored. Thus,

from this point, all references to the estimates of the parameters of
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Model 1 mean the consistent, maximum likelihood estimates contained in

column 2 of Table III.

Water Saturation: W

The estimated functions in Models I and II are increasing in the
water saturation level of the reservoir in the neighbourhood of sample
means but not at all data points. This relationship is intuitively
explained as follows. Because higher water saturation means lower oil
reserves per well and because oil reserves per well are a natural factor
of production, more inputs must be used and hence a higher cost incurred
to obtain a given level of extraction when water saturation is higher.

It is interesting to note that the water saturation variable is
probably capturing two effects: the reserves effect discussed above and a
relative permeability effect. The latter is explained as follows. The
permeability of water relative to 0il is an increasing function of the
water saturation level of the reservoir. The larger is this relative
permeability, the less resistance is there to the flow of water through
the reservoir relative to oil and hence the less successful is the
displacement of 0il by water injection. Thus, the greater the water
saturation level, the larger the volume of water that must be injected to

displace a given volume of 0il production.

Pressure: P

The estimated functions are increasing in the current level of
reservoir pressure. One might reasonably believe this to be an incorrect
result. However, recollection of the production relationship developed in

Chapter 2 will explain the apparent error. There it was shown that for a
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given change in reservoir pressure, 6, the surface production of o0il may
be a decreasing function of reservoir pressure: under higher pressure,
more gas and less oil is contained in a unit of reservoir oil. When that
unit is brought to the surface, the oil content is lower, the greater the
reservoir pressure from which it originated. This effect causes variable
costs to increase with pressure.

Conversely, the amount of water injection required to maintain or
augment pressure is a decreasing function of pressure at or below the
"bubble point" of the reservoir as discussed in Chapter 2. This effect
causes cost to decrease with pressure,

Thus, the net effect of pressure on cost could be positive or
negative. However, since it is generally regarded as bad reservoir
management to operate a reservoir be16w the "bubble point" most of the
observations in the sample are probably at or above bubble point. This
hypothesis is substantiated by the positive predicted values for the
normalized partial derivatives at sample means and at 63 out of 80 and 41
out of 80 observations in Models I and II, respectively.

One must be cautious not to infer from the fact that the predicted
variable cost is increasing in pressure that the lower the pressure, the
better off is the reservoir owner. The fallacy of this inference is due
to two facts. The first is the bubble-point-induced discontinuity
described above. The second is that the lower the stock of pressure, the
fewer are the units available for depletion in the dynamic optimization

model.
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Change-in Pressure: 9

The estimated functions are increasing in 6, the change-in-pressure
variable.? When 8 is positive it 1is an output (pressure rises) and when
9 is negative it is an input (pressure falls). An increase in pressure
decline, for example, leads to a decrease in the variable costs required
to achieve a given extraction }ate, other things equal. The estimated
functions satisfy this regularity condition at sample means and at all

observations but one in Model I and all but 19 in Model 1I.

The Extraction Rate: Q

As required, variable costs are increasing in the rate of extraction
of 0il for both of Models I and II. For Model I, this condition was also

satisfied at all observations and at all but 5 observations in Model II.

Pay Thickness: Z

An increase in a reservoir's pay thickness leads to an increase in
01l reserves per well and should therefore lead to a reduction in variable
extraction costs. This condition is satisfied by Models I and II at
sample means, for all observations for Model I, and all but 25

observations in Model II.

Stock of 0il Wells: N

In Model II, an increase in this fixed factor of production should
lead to a decrease in the requirement of the variable factor, water

injection and hence a decrease in variable costs. This condition is

2. For the empirical model, this variable is definded as 8 = Py-Pg4]
and is therefore equal to the observed pressure change during 1973. For

the analytical model, 6 was defined as the negative of pressure change.
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satisfied at sample means and at all but 11 observations. Thus, water
injection and o0il production wells are substitutable in the restricted

technology set.

Predicted Value of Variable Extraction Costs

The final regularity condition that must be satisfied is that the
predicted value of the estimated function be non-negative. This condition
is satisfied at sample means and the majority of data points for Model I
and for all data points in Model II.

Models I and II satisfy all reqularity conditions, at least in the
neighbourhood of sample means. In the following sections, the estimated
parameters of these functions are exploited by way of hypothesis testing
to extract information about (i) the characteristics of the optimal
solution to the dynamic cost minimization problem or the optimal depletion
policy of an 0il reservoir and (ii) the factors giving rise to inter-pool

cost heterogeneity.

Constant Returns to Scale

Constant returns to scale in the restricted production technology
is equivalent to linear homogeneity of the variable cost function and the
factor requirements function in the vector of fixed netputs. Thus, the
null hypothesis of constant returns to scale is directly testable through
these functions. A likelihood ratio test is used to perform this test.
The estimated function is linear homogeneous in Model I iff y4ij = 0 for
all i and j and in Model II iff gij = 0 and by = O for all i and j.
Imposing these restrictions and maximizing the likelihood functions over

the remaining parameters produces LR test statistics of 45.27 and 92.42
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for Models I and II, respectively, both of which exceed their respective
critical values of 25 and approximately 36 for x2(15) and x2(22). Thus,
the null hypothesis of constant returns to scale is soundly rejected.
This result is interesting not only in itself but also because it implies
that one cannot rule out the possibility of non-increasing marginal

extraction costs.

The Marginal (Variable) Cost of Extraction

| Non-increasing marginal variable extraction costs imply that an
increase in extraction rates will lead to an increase in the rents earned
by a reservoir, assuming exogenous prices. With respect to the policy
practice of the Alberta government of determining the allocation of
aggregate provincial production among the o0il pools operating in the
province, non-increasing marginal variable extraction costs imply that a
more efficient allocation could be achieved by increasing the allowable
extraction rates to each of a reduced total number of o0il pools. It is
current practice in the Province of Alberta to pro-rate provincial crude
011 supply to market demand. Each month, aggregate demand for crude oil
is determined by asking refineries to reveal their desired purchases for
the month., This aggregate is then allocated among the operating pools in
the province in a manner that is considered equitable. In particular,
each pool's share of aggregate production is set equal to its share of
aggregate crude oil reserves, provided the implied extraction rate does
not exceed a maximum permissable rate determined by government engineers.
This allocation rule is unlikely to maximize aggregate rents. A
rent-maximizing rule would allocate production so as to equate marginal

extraction cost plus marginal user cost across pools. That is, assuming
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an interior solution, the rent-maximizing rule requires that

¢l ruct=cdrued ; i,j=1,2,...R

Q Q

This allocation rule must hold at every point in time. Marginal cost in
the ith pool is a function of the optimally chosen 61 and ucl is the
marginal user cost of the reserves in the ith pool. This allocation

rule implicitly determines the optimal extraction rate for each pool such
that the sum of allocations equals aggregate demand. It is apparent that
the optimal extraction rate for a pool cannot occur on a flat or
decreasing portion of the marginal cost function (assuming it eventually
turns upward at Q < aggregate demand). Thus, if the estimated functions
imply flat or decreasing marginal costs in the range observed, one may
conclude that the existing allocation in Alberta is not maximizing
aggregate rents (unless marginal cost is constant and equal across pools
for all Q < aggregate demand). Information about the marginal cost
functions within and across pools is obtained with the following
hypothesis tests.

The null hypothesis that marginal variable extraction costs are a
constant function of the extraction rate is tested with an asymptotically
valid t-test of the null hypothesis that y,, = 0 for Model I and g4, = O
for Model II, in Table III. The null hypothesis cannot be rejected in
either case.

The policy implications of this result are reinforced by the fact
that 6, a factor of production, has been held fixed. If marginal costs
are non-increasing when a factor of production is held fixed they are a

fortiori non-increasing when that factor is allowed to vary. However, the
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policy implications are moderated by the fact that the result only applies
to marginal changes in extraction rates in the range observed in the
sample.

To achieve an efficient allocation of an aggregate level of
production among pools requires the knowledge of whether marginal
extraction costs, which may be non-increasing in the extraction rates of
pools, differ for different pools. The results in Table III indicate that
marginal variable extraction costs vary in a systematic way with variation
in the natural factors of production. In Model I, marginal costs are not
significantly affected by differences in water saturation levels (vy;,) but
are significantly lower in pools that have a larger pay thickness (v,s5).
The opposite is true for Modé1 II: marginal costs are significantly
higher in pools that have a higher level of water saturation (g;,) but are
not significantly affected by differences in pay thickness (gu5).

While these results are consistent with the hypothesis that marginal
costs are significantly affected by the level of 0il reserves per well,
the minor conflict in the results again suggest that one of the models is
a better description of the process by which the data were generated than
the other but is not helpful in determining which model is better.
However, an explanation of the conflict is available. If the water
saturation level is acting primarily as a proxy for the relative
permeability of water to oil, the conflict in results is understandable.
In Model II where the number of wells is an explanatory variable, the
reserves-per-well effect is probably captured by the number of wells in
place so that the effect of pay thickness is insignificant and the effect
of water saturation is as a proxy for relative permeability. In Model I,

the reserves-per-well effect, via pay thickness, is an important
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determinant of the number of wells but relative permeability, via water
saturation, does not influence the choice of the number of wells. The
latter effect must dominate the estimation of y;, which, recall, is
restricted to be equal in the two factor demand equations.

The null hypothesis that marginal (variable) extraction costs are
independent of 6, the change-in-pressure variable cannot be rejected for
either Model I (v34) or Model II (g3,). The effect of the level of
reservoir presure on marginal (variable) extraction costs, a priori, is
ambiguous depending on whether the reservoir is above or below the "bubble
point". A two-tailed t-test cannot reject the null hypothesis that y,,=0
in Model I and g,,=0 in Model II at the 5% level of significance. Thus,
the Tlevel of reservoir pressure does not appear to have a significant
impact on marginal (variable) extraction costs.

In Model II, the effect of the stock of 0il wells on marginal
(variable) extraction costs is given by gug. The null hypothesis that
gus=0 can be rejected at the 5% significance level. Thus, marginal
(variable) extraction costs are significantly lower if the stock of oil

wells in place is higher.

The Shadow Price of Pressure

Recall that in the dynamic cost minimization model, 6 (change in
pressure) is the control variable. In Chapter 3 it was shown that, if an
interior solution exists, the Hamiltonian function is maximized by
equating (the absolute value of) 3C/36 with the (absolute value of) the
shadow price of pressure A, at each point in time. Thus, one ought to be
able to infer from the predicted values of 3C/36 and am/36 interesting

information about the shadow prices of pressure for the various oil pools
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in the sample. To do this, however, requires the assumption of an
interior solution. A solution can be interior only if the Hamiltonian
function, and therefore the variable cost or factor requirements function,
is non-linear in the control variable 6. This is a testable hypothesis:
the results in Table III show that the null hypothesis that the variable
cost function is Tinear in 6 cannot be rejected in Model I (vy33) but can
be rejected for the factor requirements function in Model II (g33). Thus,
the assumption of an interior solution is reasonable in Model II but not
in Model I.

Linearity of the Hamiltonian function in 6 implies a "bang-bang"
control or corner solution in which there is non-equality between 3C/36
and the shadow price, A. This makes it difficult to make inferences about
A from the estimated characteristics of 3C/36 and am/36. In particular, a
prediction of the reservoir depletion model developed in Chapter 3 is that
the higher is an 0il1 pool's shadow price for pressure, the more likely is
the pool to be under water injection. While it would be interesting to
test this prediction by testing if, indeed, the calculated shadow prices
for pools under water injection are higher than those not under water
injection, it does not seem possible without assuming an interior
solution, an assumption which cannot reasonably be made for Model I. The
following argument, however, explains how the results can still be used to
test the hypothesis even for Model I.

Supbose the cost function is linear in 8, as in Model I, so that the
optimal control for 6 is of the "bang-bang" type. From the analysis of
the solution to the dynamic problem in Chapter 3, it is known that if a
pool is not under water injection, then laC/ae| > |A|: the (absolute

value of the) marginal cost of augmenting pressure is greater than (the



112

absolute value of) the marginal benefit. Conversely, a pool which is
under water injection necessarily has '3C/86| < ,A'. The observations
have been ordered so that the first 49 observations are all of the pools
which are not under water injection and the remaining 31 are all of the
pools which are under water injection. Define uy as the average predicted
value of 3C/36 over the first 49 observations and u; as the average
predicted value of 9C/36 over the remaining 31 observations. If ug < uy,
then it is necessarily true that, on average, the shadow prices for
pressure are higher for the pools which are under water injection than for
the pools which are not under water injection.

Thus, the null hypothesis to be tested is that uy = u; against the
alternative that ug < u;. If the null can be rejected for both of Models
I and II, then one has found that A is, on average, significantly higher
for pools that are under water injection. If the null hypothesis cannot
be rejected, no conclusions can be drawn about A in Model I, but one can
conclude there is no significant difference in the shadow price between
the two groups of pools (recalling that it can be assumed that A = 3C/36
in Model II).

The hypothesis test is performed by considering the first 49 and the
remaining 31 predicted values of 3C/36 as two independent samples. The

t-statistic is computed as

- 2 2
t = (uy - wg)/(sy + sp)t/?
31 49

where s% is the sample variance of the ith sample, i = 1,2. The

relevant statistics are given below in Table VI.
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TABLE VI

Testing for Equality of Shadow Prices

Model I Model II
Mo 0.128 0.059
Hy 0.163 0.160
t 1.60 2.22

At approximately a 7% level of significance, the null hypothesis can
be rejected in Model I but not at a 5% level of significance. In Model
[T, the null hypothesis is decisively rejected. These results, therefore,
imply that the shadow price of pressure is significantly higher for oil
pools which are under water injection than for pools which are not under
water injection.

The results in Table III also indicate that for Model Il at Tleast,
where the assumption of an interior solution is reasonable, the shadow
price of pressure varies systematically with observed differences in
pressure, water saturation level, and pay thickness over the oil
reservoirs in the sample. The shadow price is significantly lower for
pools with higher pressure (non-increasingness is a sufficient conditon
for a minimum in the dynamic cost minimization problem). The shadow price
is significantly higher when the water saturation level is higher, a

result consistent with the hypothesis that water saturation is acting
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primarily as a proxy for relative permeability and not for reserves per
well in Model II. A higher level of water saturation reduces the
effectiveness of water injection thereby requiring a higher value to be
placed on pressure in order to make it optimal to inject a greater volume
of water to displace a given volume of 0il. The shadow price of pressure
is significantly higher in pools which have a greater pay thickness. This
result is consistent with the phase-diagram analysis of the dynamic model
in Chapter 3 where it was argued that a shadow price would be set high
only if 0il reserves were sufficiently large to warrant water injection.
However, it is not consistent with the earlier hypothesis that the effect
of reserves-per-well is captured by the number of wells and not pay
thickness in Model II. In addition, the results in Table III show that
the shadow price is not significantly affected by the number of wells in
place. It is possible, therefore, that the effect of reserves on shadow
price is being captured by pay thickness and not the number of wells in
place.

The results in Table III are consistent with the dynamic model of
reservoir depletion in Chapter 3 and suggest that differences in the key
physical characteristics of reservoirs lead to a significant level of
heterogeneity in extraction costs of reservoirs in operation at the same
point in time. This latter issue will be returned to after presenting and
analyzing the results obtained when the reduced-form equation for 6 is

used to substitute & out of the estimation models.
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5.2 The Variable Extraction Cost Function: Endogenous 6

It was argued in Chapter 4 that the inclusion of 6 as an exogenous
variable in the estimation models is a source of potential sumultaneity
bias. While it is impossible to test the hypothesis of no correlation
between error terms since it is not possible (in practice) to estimate the
three-equation model, the purpose of this section is to attempt two ways
of eliminating the simultaneity problem if it exists. The first is to use
the solution for the optimal 6 to eliminate 8 from the estimation
equations and then to obtain parameter estimates of the resulting
reduced-form equations, (4.13) and (4.18), which, for convenience, are
reproduced in Table VII. The second is to use OLS predicted values for ©
instead of observed values for 6 in the two-equation estimation model.

Certain empirical restrictions had to be imposed in order to obtain
results for the estimation models in Table VII. These models have two
complicating features not present in the estimation models which have
already been presented. The first is the larger number of parameters to
be estimated (4 more in Model I and 3 more in Model II) bringing the total
number of parameters to 33 and 31 for Models I and II, respectively. The
second is the non-Tinearity of the equations in Table VII - all estimated
equations have been linear in parameters to this point. These additional
complications reduce the chance of achieving a numerical solution to the
maximum likelihood problem, a problem which is already inherently
non-Tinear due to the limited dependent variable problem.

In an attempt to estimate Models I and II, satisfactory convergence
was not achieved. A satisfactory convergence is one where the function

value cannot be improved by more than a specified tolerance level and both
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Table VII

Estimation Equations: 6 Endogenous

Model 1
5 5 5
N=8n+ ) EigXj+ 1/20 1 ¥ijkikj+ e
j=1 i=1 j=1
5 5 5
m=Ep + L G25% *1/2.0 L wijXiXj + u
j= 1 i=1 j=1
where X3 = {e81(T+t)+Bz(T-t)_e31(T+t)-32(T-t)}(PO_W_Q_Z_l)
Model 11

6 6 6
m(x) =T + JT.X. +1/2 ) ] T..X.X: +e,
° qm U iz o, WO

where Xy = [eB1(T#E)*B2(T-1) 81 (T+2)-82(T-t)y(p _y_q-z-n-1)
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the first and second order conditions for a maximum are satisfied. This
problem was dealt with by imposing the restrictions that certain
parameters equal zero. The following paragraph explains how this was
done.

In the attempt to maximize the likelihood function over all 33
parameters for Model I, the function value moved rapidly initially to a
value of approximately -419. From this point, a very large number of
iterations produced very small increases in the function value. When the
convergence criterion was reduced from 10-8 to 10'6, an apparent
convergence was achieved and the first-order partial derivatives were all
extremely small. However, the second-order partial derivatives did not
satisfy the conditions for a maximum. The step-size parameter used to
numerically calculate these derivatives was increased in size but the
problem remained. Consequently, the following procedure was adopted for
determining which parameters could be set to zero. The set of 33
parameters was partitioned into 3 overlapping subsets. The 1likelihood
function was maximized with respect to one subset at a time, holding
constant all parameters in the complement set, thereby reducing the
effective number of parameters over which the function was being
maximized. In practical terms, this is quite important since the
numerical optimization routines are known to not work well with more than
20 parameters. It was then possible to achieve successful convergence
with .respect to a subset of parameters, conditional on the values of the
remaining parameters. The computed asymptotic (but conditional)
t-statistics could be compared over subsets. The t-statistics which were
stable across subsets were used to provide information about which

parameters could be set to zero without significantly affecting the value
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of the likelihood function. A group of parameters (2 or 3) would then be
set to zero and the whole process restarted in an attempt to achijeve a
successful convergence over the full set of non-zero parameters. In Model
I, a total of 10 parameters had to be set to zero before a satisfactory
convergence could be achieved with respect to the remaining 23

parameters.3

In Model II, 10 parameters were set to zero leaving 21
parameters. In both cases, the restrictions do not appear to have
significantly affected the value of the likelihood function. The final
results are presented in Table VIII. The analysis of these results, while

less exhaustive, follows the pattern set in Section 5.1.

Regularity Conditions

The first-order partial derivatives of the estimated functions are
somewhat more complicated to calculate than previously since the X3 term
involves each of the exogenous variables except pressure at time t. The
predicted values at sample means of the normalized partial derivatives are
presented in Table IX,.

The most striking result in Table IX is that the estimated function
in Model I fails to satisfy the cost-function regularity conditions in 2
out of 4 cases. Variable costs are predicted to be decreasing functions
of the extraction rate and the water saturation level. These are
unacceptable results.

A second notable result is that the estimated function in Model II
still satisfies all regularity conditions. This provides further evidence
in support of the preference for Model II over Model I as a description of

the process by which the data were generated.

3. Nine zeroes appear in Table VIII - the tenth is p.
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Table VIII

Maximum Likelihood Estimates: 6 Endogenous

Model I Model 11

€01 0.0 Ty 0.0

€11 0.0 ry 0.0

€12 0.4749 ( 2.79) Iy 0.1127 (1.19)

€13 0.0 I's 0.0

E1y 1.2554 (7.12) Ty 0.0

€15 | -0.3674 (-3.60) I'e -0.1918 (-2.23)

€02 0.0 Te 0.0

€7 | -6.2441E-2 (-0.96) Ty 1.9501E-3 ( 0.11)

€20 | -0.1177 (-0.72) Tr'yo | -0.3397 (-0.93)

€23 | -99.336 (-1.15) Tyz | -11.793 (-2.35)

Eoy 0.9330 ( 5.01) Tiy 1.2901 ( 5.62)

€25 0.2354 ( 2.23) I'is 9.400E-2 ( 3.14)

Y11 0.0 Tig 0.0

V12 0.0 Ty | -1.3921 (-1.90)

V13 2.1033 ( 1.17) To3 7.6933 ( 1.25)

viy | -1.3048 (-3.75) Tpy 0.0

Vis 0.0 T 0.0

VYoo 0.7999 ( 0.84) Tyg 5.0135 ( 2.00)

V23 2.5304 ( 1.05) T33 19.576 ( 1.89)

Yoy | -1.9324 (-2.88) T3y 5.9167 ( 3.84)

Yos | ~-1.4415 (-3.14) I'ss | -1.4085 (-3.89)

¥v33 | -209.91 (-0.67) Ty | -4.8828 (-0.93)

V3y 25.340 ( 1.06) Tyy 0.0

Y35 1.0012 ( 1.31) I'ys 0.0

Yyy 0.0 F'ye | -4.1806 (-4.68)

Yys | -0.4756 (-4.37) I'sg 6.3320 ( 4.03)

¥ss 0.0 Fsg | -0.2292 (-4.91)

B -3.8975 (-7.36) Tes 5.2227 ( 5.81)

By -0.6906 (-1.21) B1 -9.0769E-2 (-5.60)
By -0.1296 (-5.65)

L -419.519

' L -71.6673

Asymptotic t-statistics in parentheses



120

Table IX

Normalized Partial Derivatives

Cw CP CQ CZ CN
Model 1 -1.342 -0.196 -0.825 -1.565 --
Model II 0.316 -0.60 0.274 -0.298 -0.430

A third result in Table IX is the negative sign on the predicted
partial derivatives witH respect to pressure. This is a perfectly
acceptable result and is consistent with the findings in Section 5.1:
because 8 1is no longer held constant in the cost function, there is no
reason for variable costs to be an increasing function of reservoir
pressure as is the case when & is held constant.

The predicted negative signs on Cy and Cq in Model I are
undoubtedly related to the parameter restrictions that had to be imposed
to obtain maximum likelihood results. Of the 10 parameters set equal to
zero, 5 of them involve terms in W or Q. All of the individual parameters
that make up these partial derivatives except y;, have the correct sign.
The negative sign on ¢;, implies that marginal costs are lower when water
saturation is higher. This result is not consistent with the theory, nor
is it consistent with the finding in Model II, where T';j, is significantly
greater than zero. It is, however, consistent with the negative (but
insignificant) estimate of vy, in Section 5.1. While this probably
explains the failure of Model I to satisfy the regularity conditions, it
does not justify it and one is still inclined to favour Model II over

Model 1I.
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The Marginal Cost of Extraction

Are marginal extraction costs still a non-increasing function of the
extraction rate as was found in Section 5.1? There was strong evidence in
support of the hypothesis that ¢,, and T,, are not significantly different
from zero which is why these were among the parameters that were set to
zero to obtain the results in Table VIII. However, the derivative of the
marginal cost function involves more terms than just these single
parameters since X3 involves all exogenous variables except P(t). Thus

the slope of the marginal extraction cost curve is given by

Model I: 32C/3Q% = yy, + vgg(eXl-e¥1)2

Model I1: 32C/3Q2 = Ty, + I33(e*2-eY2)2

where (e*1-eY1)? and (e*2-e¥2)2 are the (squares) of the terms involving T
and t and have the values 1.2x10-° and 1.421x10-2 at sample means for
Models I and II, respectively. Thus, the slope of the marginal cost curve
depends on the signs of ¥33 and TI'33. Referring to Table VIII, the
estimates of these parameters are not significantly different form zero at
the 5% significance level, but T'33 is significantly different form zero at
the 10% level. Moreover, it has a positive sign which implies an
upward-sloping marginal variable e*traction cost curve. This result
contradicts the finding in Section 5.1 when 6 is held constant.
Simultaneity bias is a possible explanation of the conflict. However,
another explanation which is perhaps more realistic is the fact that the
X3 term involves a conglomeration of all exogenous variables, thereby
restricting the second-order marginal effects of Q (since Ty, = 0) to be

felt through T33 which also reflects part of the second-order effects of
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all other exogenous variables except initial pressure. This result is not
considered good evidence in support of the hypothesis of an upward-sloping
marginal cost curve.

In Model I marginal extraction costs are still predicted to be
significantly lower for pools with higher pressure and a larger pay
thickness. In Model II, marginal extraction costs are significanf]y
higher in pools with a higher water saturation Tlevel and are significantly
lower in pools with a larger stock of oil wells * reinforcing the earlier
evidence of substitutability between water injection and production wells.

Pay thickness appears to have a significant positive effect on
marginal extraction costs, at the 10% level. However. this result again
is felt only through the T33 term since Tyg is one of the coefficients set
to zero. Thus, as for the effect of Q on marginal costs, not much
confidence is placed on the estimated effect of Z on marginal costs
through the I'33 term alone.

The exponent coefficients are significantly different from zero in
Model II but only one is in Model I. It is interesting to note that the
roots of the characteristic equation of the differential equation system
can be simply calculated since r; = 8, + B, and ry = ) - B, where r, and
r, are the roots. Thus, both roots are negative in Model I but are of
opposite sign in Model II.

The second method of dealing with the simultaneity problem is a
two-stage procedure. In the first stage, an ordinary least squares
regression of & on all of the exogenous variables in the system including
Po, T-t, and in Model II, N, was performed. The resulting predicted

values for 6 were then used in the second stage in which the parameters of

4. The latter result is given by T3 + T'33(e*2-e¥2)2 which is negative.
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Models I and II were estimated using the maximum likelihood techniques
already discussed. The consistent parameter estimates obtained from
applying this procedure are reported in Table X.

The estimates in Table X are directly comparable to those in columns
2 and 3 of Table III. The estimates for Model I satisfy all regularity
conditions at sample means. Moreover, there are no notable changes in the
results in Table X as compared to those in column 2 of Table III. The
same cannot be said for Model II.

There are some significant changes in the results obtained from
Model II when the two-stage approach is used. The most significant of
these relates to the marginal variable cost of extraction. The results in
Table X show that g4s and gu¢ are both significantly greater than zero
indicating that marginal costs or the marginal factor requirement is
increasing in pay thickness and the number of wells. These results differ
from the results of Table III and are contrary to expectations. An
additional difference in results, but one that would be considered
acceptable, is that gy, is significantly greater than zero indicating that
marginal costs are increasing in the extraction rate. All of these
results are unacceptable, however, due to the fact that this estimate of
Model II fails to satisfy regularity conditions. In particular, it is
estimated that the factor requirement is decreasing in the rate of
extraction and increasing in the level of pay thickness at sample means.
For this reason, the model was re-estimated, excluding the pay thickness
variable from the regression. The reasons for this are twofold: first,
as has been suggested, it is believed that the effect of reserves-per-well
js being captured, to some extent, by the number of wells so that the

number of wells is interfering with the intended effect of pay thickness.



124

Table X

Maximum Likelihood Parameter Estimates: Using Predicted Values for 8

1. Model I 2. Model II 3. Model II
a 0.1236E-1 ( 0.01) b, -0.2681E-1 (-0.20) 0.0780 ( 0.39)
ayo 0.6711 ( 1.53) by 0.2239 ( 0.57) 0.1860 ( 0.53)
a3 0.3447 ( 0.55) bs -0.1262 (-0.27) 0.3234 ( 0.92)
ayy 1.3798 ( 6.53) by 0.3150 ( 1.06) 0.6628 ( 1.73)
a;s | -0.5027 (-2.16) bs 0.6160E-2 ( 0.04) 0.0
as; { -0.2740 (-1.98) bg 0.9118E-1 ( 0.60) -0.2457 (-1.20)
azo 0.1924 ( 0.50) g;; | -0.1323e-1 (-0.32) -0.0177 (-0.35)
an3 0.1765 ( 0.29) di12 0.5236 ( 0.44) -0.1996 (-0.25)
asy 0.8974 ( 4.31) d13 0.7770 ( 0.41) -0.0939 (-0.10)
azs | -0.1177 (-0.55) diy 1.2396 ( 1.85) 0.3763 ( 0.40)
Y11 0.1093 ( 1.61) 915 0.2808E-1 ( 0.50) 0.0
Y12 | -0.8683 (-0.55) g16 | -5.0970 (-1.57) 1.1184 ( 0.26)
Y13 | -1.5800  (-0.59) gpo | -3.8511  (-1.64) | -1.1854 (-0.58)
Yiu | -1.2032 (-2.75) gp3 | -2.2481 (-1.19) -0.3041 (-0.23)
Y1is 0.1076 ( 1.26) Joy -10.952 (-2.46) -2.6903 (-2.21)
Yoo | -0.5896  (-0.29) gs | 0.5099  ( 0.61) 0.0
Yo3 | -0.3734  (-0.19) g6 | 41.212  { 2.94) 3.5968 ( 0.46)
You -0.6935 (-0.44) 933 -11.002 (-1.11) -4.0539 (-1.58)
Yos | -0.7936 (-0.92) g3y | -15.949 (-2.57) -0.6620 (-2.13)
Y33 2.7480 ( 0.24) d3s 12.375 ( 1.25) 0.0
Y3y 2.2069 ( 0.72) d3e 6.3087 ( 2.93) -1.7244 (-1.61)
v3s | -1.4281 (-0.13) Ouy 0.9374E-1 ( 2.12) 0.0945 ( 1.66)
Yy -0.1215 (-0.55) dys5 4.4959 ( 2.50) 0.0
Yys | -0.9088 (-1.09) 9ug 7.4310 ( 1.59) -2.8766 (-1.56)
Yss 5.0355 ( 1.08) gss | -1.8114 (-0.39) 0.0
gse -0.4295 (-3.73) 0.0
L -421.93 966 -5.2932 (-1.22) 6.2435 ( 2.03)
bg -2.4763 (-0.93) -2.9758 (-0.80)
L -62.74 -82.44

Asymptotic t-statistics in parentheses
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Second, it is known from the results to be presented in the next section
that the number of wells is strongly correlated with the extraction rate
(positively) and pay thickness (inversely). If multicollinearity is
affecting the results adversely, eliminating one of the variables may
improve the results. Pay thickness is chosen as the variable to be
eliminated because on a priori grounds, it is the least likely variable to
have an important influence on water injection requirements. The results
are reported in the third column of Table X.

With pay thickness eliminated, the estimate of Model II satisfies
all regularity conditions at sample means. An interesting finding is that
water injection is an increasing function of the number of wells, at
sample means. This result, which is contrary to that in Table III,
indicates that water injection is a complement of and not a substitute for
production wells. This finding can be explained by a feature of oil
reservoir production practices that is not captured in Model I or Model
II: production wells can be and often are converted to injection wells.
Even though production wells and water injection may be substitutes in the
production of o0il flow from the reservoir, this feature may tend to create
a positive relationship between the number of conversions and the number
of production wells at any point in time. Thus, when the econometric
model does not standardize for this conversion feature, it is possible to
observe complementarity rather than substitutability between the rate of
fluid injection and the number of production wells. "

The most interesting of the results for Model II concerns the
hypothesis of a flat marginal extraction cost curve. The gy, parameter is
significantly positive in the second column of Table X but is not

meaningful since marginal cost is negative in this case, as was discussed
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above. In column 3, when pay thickness is excluded, the g,, parameter
scarcely changes in value, but the asymptotic t-statistic falls
sufficiently that the null hypothesis can be rejected only at about the
10% level of significance. The size of the g,, coefficient, however,
indicates that the marginal cost curve is very nearly flat: at sample
means, the implied elasticity of the marginal cost curve is .08. Thus,
although there is some evidence to reject the hypothesis of non-increasing
marginal costs, the implied slope of the marginal cost curve is, for

practical purposes, flat.

5.3 The Optimal Number of 0il Wells: Model II

Model II 1is incompliete until the problem of the optimal number of
0il wells to drill at time zero is solved and the parameters of the
resulting reduced-form equation are estimated. The purpose of this
section is to present and analyze the parameter estimates. For
convenience, the reduced-form equation determining the optimal number of
0il wells is reproduced in Table XI.

Referring to Table XI, one sees that the parameters to be estimated
are ry, rp and the fjj. It turns out, however, that there is an extremely
high degree of multi-collinearity among the qg,q;,...q5 data terms. A
variety of starting values for r; and r, were tried, including the values

estimated in the previous section, but there remained nearly perfect

collinearity among the qo,ql,...q5 terms. It was therefore impossible to

estimate any of the parameters in Table XI. Instead, assume that the

BoT

do,d1...9s terms are perfectly correlated with the term e" %', where B, is

an unknown parameter. Using this in Table XI yields the following



Table XI

Estimation Equation for Number of Wells:

Model 11

N* =

where
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reduced-form equation for N, the parameters of which can be estimated:

N = By + B1{(¢e + BaW + B8,Q + BgZ + BgPy + eg3 (5.2)

where e3 is a normally distributed random error term. Before ané]yzing
the maximum likelihood estimates of the parameters in equation (5.2), an
explanation of ¢, the price term is necessary.

In Chapter 4, it was argued that the relative price of o0il wells and
water injection is constant across reservoirs at any point in time. It
was also argued that the price of water injection was at least partially a
shadow price determined by the optimal conversion of production wells to
injection wells: wells will be converted up to the point that the
marginal value product of injection wells equals the marginal cost of
injection wells (which is equal to the marginal value product of
production wells plus the marginal conversion cost). It is possible for
there to be variation in the relative price over time periods. However,
data limitations require that it be assumed that any variation in the
relative price over time is caused by variation in either the price of oil
wells or the market price of conversion but not by the shadow price
component of the full factor price for injection. This is equivalent to
assuming that, if an oil well is converted to injection, it is converted
when its marginal value product in oil production reaches a certain level,
a level which is constant over the years in the sample.

Having made this assumption, it is possible to use data showing
total industry capital expenditures on pressure maintenance and secondary

recovery by year plus data showing the net addition to the stock of
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pressure maintenance wells in the province (this includes new wells plus
conversions) to obtain an average market price per injection well.® This
capital price should be converted to a flow price per unit of water
injected. However, because it is assumed that injection per well is
constant and because the flow-price conversion factor is assumed to be
constant across pools for empirical purposes, variation in the relative
capital prices described above will be equivalent to variation in the
relative factor prices. Thus, ¢, for estimation purposes is the average
price per oil well divided by the average price per injection well; it is
constant across pools in any year, but varies over the years in the
sample. It is assumed that ¢ is expected to remain constant over the life
of the pool by the decision-maker at t=0.

Parameter estimates are presented in Table XII. Asymptotic
t-statistics appear in parentheses beside the associated estimate.

Table XII

Maximum Likelihood Parameter Estimates

Bo 23.557 (2.53)
B1 -3.3090 (-1.42)
B2 -0.41693 (1.23)
B3 0.072387 (0.33)
By 0.33011 (12.20)
Bs -0.36419  (-3.28)
B -0.36094 (-0.96)
L -498.9081

These estimates were obtained using the SHAZAM econometrics package.

5. The sources for these data are discussed in Appendix B.
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One expects the relative price of oil wells to have a negative
impact on the number of wells drilled. If it is expected that the
relative price is to remain high, it would be desirable ex ante to
substitute water injection at some future date for wells drilled now. The
estimate of the relative price effect is given by B, in Table XII. The
parameter estimate is significantly less than zero at the 10% level of
significance but not at the 5% level. The implied price elasticity of
demand at sample means is -0.39. Hence a 10% rise in the relative price
of 0il wells leads to approximately a 4% fall in the number of wells
drilled to produce a given rate of output, indicating an inelastic demand
for 0il wells. This is not a surprising result in view of the fact that
01l wells are absolutely essential to extract oil from a reservoir. These
results indicate that it would take a doubling of the relative price of
0il wells to lead to a reduction of 6 wells on the average pool of 17
wells, in order to produce a given output rate.

The number of wells drilled to produce a given output rate is
responsive to the pay thickness of the reservoir. The estimate of this
effect, Bs, is significantly less than zero at even the 1% level of
significance. At sample means, the estimate of 85 implies an elasticity
with respect to pay thickness of -0.33. It is not uncommon for one
reservoir to have a pay thickness double that of another. The results
here indicate that, all other things equal, 33% fewer wells would be
drilled in the average reservoir with twice the pay thickness of another.

The hypothesis that the number of wells is independent of the
planned average extraction rate is decisively rejected. It is apparent

from Table XII that the estimate of B, is significantly greater than zero.
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The water saturation level of reservoirs does not appear to have a
significant impact on the number of wells drilled. This finding
substantiates the hypothesis that water saturation is not acting as a
proxy for reserves per well as was intended in the model - this effect
appears to be captured in pay thickness. Rather, water saturation, in
view of its significant impact on water injection, appears to be acting as
a proxy for the relative permeability of water to oil.

The greater is the initial pressure in a reservoir, the fewer are
the wells required to produce a given rate of output since the rate of
pressure decline can be increased to take advantage of the high natural
pressure. While the estimate of Bg has a negative sign in Table XII, it
is significantly less than zero only at about the 17% level of
significance.

The coefficient on the constant term is significantly greater than
zero and the coefficient on the exponent, B8,, is not significantly
different from zero except at the 20% level of significance, using a
two-tailed test. This does not imply that T does not have a significant
impact on N, however, since the constant term is known to be a function of
T.

This concludes the presentation of parameter estimates. The
implications of the findings in this section and the previous sections for
0il reservoir cost heterogeneity and for optimal depletion policies are

discussed in the next section.
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5.4 Implications and Summary of Results

The empirical results presented in the two previous sections are
reasonably consistent with both theoretical extraction models developed in
Chapter 3. Model II, however, performed better under empirical testing
than Model I.

0f the two major econometric issues, the limited dependent variable
problem appears to be the more important and the more easily handled.

Two approaches for dealing with the simultaneity problem were adopted.
In the first approach, the attempt to simultaneously estimate the
reduced-form equation for 8 (change-in-pressure) was not completely
successful, primarily due to the highly non-linear nature of the reduced
form equation. In the second, two-stage approach, greater success was
achieved. In both cases, the majority of results were qualitatively
similar to those obtained when 6 was treated as an exogenous variable.
The notable exception was the issue of whether or not marginal extraction
costs are a non-increasing function of the extraction rate. It was
consistently found that this hypothesis could not be rejected when 6 was
treated as an exogenous variable but some evidence to the contrary was
found when 6 was treated as an endogenous variable. The latter is not
considered to be strong evidence, however, for the reasons explained in
Section 5.3.

The policy implications of evidence in support of the hypothesis
that marginal extraction costs are non-increasing in the extraction rate
are important given the fact that allowable extraction rates for
individual pools are determined by regulation. The results here suggest

that a reallocation of aggregate output among pools will lead to
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efficiency gains. This finding could be given more substance if detailed
cost data were available on a pool-by-pool basis.

The traditional argument in favour of slower extraction rates is
that overly rapid extraction leads to a rapid pressure loss and hence a
reduction in the volume of ultimately recoverable 0il reserves. The
modern technology of pressure maintenance through water injection,
however, makes this traditional argument far less appropriate now than in
the early days of the o0il industry. The results of this thesis are
consistent with this view. Pressure decline manifests itself through an
increase in the shadow price of pressure in the theoretical model. Thus,
if pressure decline becomes a problem, the resulting higher shadow price
should lead to a greater desire to artificially maintain pressure by
injecting water into the reservoir. The empirical findings support this
hypothesis in that it was found that the implied shadow price of pressure
was significantly higher for pools under water injection than for pools
not under water injection. Thus water injection was found to respond
positively to higher shadow prices which in turn respond inversely to the
levels of pressure. Rapid extraction rates, therefore, do not necessarily
lead to a loss of recoverable reserves.

The results suggest there is a great deal of variation in extraction
costs and marginal extraction costs across pools. In a competitive
equilibrium, one would observe equality among the sum of marginal

® One could invoke the

extraction and marginal user costs across pools.
assumption of competitive equilibrium and then infer the user cost
distribution from the predicted distribution of marginal extraction

costs. However, the Alberta market is clearly not in competitive

6. This is true if one assumes upward-sloping marginal extraction cost
curves.
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equilibrium since the output rate choice for each producer is not
determined by the producer. While one could infer the rent (as a residual
earning) distribution from the predicted distribution of marginal costs,
one could not make any inferences about the efficiency of the allocation
of production across pools. However, the latter is not the case if
marginal extraction costs are non-increasing in the extraction rate. In
this'case, differences in marginal extraction costs are due to differences
in the quality of reservoir-specific characteristics (not marginal user
costs) and an efficient allocation would involve favouring of the low-cost
pools. For example, if marginal extraction cost functions for reservoirs
are non-increasing in extraction rates but are at different levels for
different reservoirs, then an efficiency gain could be made from a
marginal reallocation of the fixed aggregate output level away from the
high-cost towards the low-cost reservoirs. A closer examination of the
predicted variation in unit extraction costs is made below.

Reservoir pay thickness has consistently been found to have a
significant negative impact on variable extraction costs. In view of the
extreme variation in this natural factor of production among the 0il pools.
in the sample, one wonders how the pools with a low pay thickness compete
with the pools endowed with a pay thickness perhaps 50 times as large.
There are two explanations. The first is the fact, once again, that
allocation of production among pools is not necessarily efficient. The
second is the possibility of compensating variation in pool depth, a
natural factor of production not yet analyzed. The trade-off between
depth and pay thickness which maintains constant unit extraction costs

will also be examined below.
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In order to compute the predicted variation in unit extraction costs
and to calculate the depth-pay thickness trade-off, a number of
simplifying assumptions will be made. First, all calculations will be
made using the results for Model II when 8 is treated exogenously.
Second, the capital cost of 0il wells will be converted to a fixed cost
per year, a task that requires other assumptions that will be made clear.
Third, it will be assumed that unit operating costs in any year (fuel,
Tabour, maintenance and miscellaneous but not injection) are constant
across poo]s.7 This is a restrictive assumption but is the best
available. Its effect will be to reduce the predicted variation in unit
costs across pools. However, since the primary objective is to
demonstrate that there is a great deal of variation in unit extraction
costs across pools, this assumption will only strengthen the argument by
forcing more smoothness on the predicted variations than really exists.

Let ¢t be the (real) capital price per metre of wells drilled in
year t. Let Dpy be the average depth of the rth reservoir which was
developed in year t. Then the capital cost of developing the rth

reservoir is

where e is a coefficient which allows for the possibility that the cost of
wells is not linear in depth, N.t is the number of wells drilled into
the rth reservoir in the development year and Kpt is the capital

cost.® Assuming a T-year life and a discount rate of §, this is

7. The data used for this calculation are documented in Appendix B.
8. The parameter e is not estimated but the calculations that follow are

done for the reasonable range of values of from 0.9 to 1.3.
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converted to a fixed cost per year of k. in the following way.

.
K = | e'Gtkrdt

where t has been set to zero. Solving for ky yields

- 5. =87
kr = § Kr/(l -e )

In the computations, § is set equal to 0.15 which means that the term on
the denominator rapidly approaches the value of one as T gets large. (For
T = 20, it equals 0.95 and for T = 30 it equals 0.99).

A flow price per unit of water injection is calculated in roughly
the same manner. This will result in a somewhat crude approximation of
the unit water injection costs since the only data available are
development expenditure data on pressure maintenance. However, as will be
seen, water injection costs are small relative to development costs so
calculation errors will not drastically affect the total cost per unit
estimates. Moreover, the estimates of injection costs here are consistent
with the range of values estimated in Watkins (1977) using industry -
supplied cost data for a small number of specific oil pools.

If ¢1 is the capital cost per metre of injection wells and o is
injection per well, then the flow cost per unit of injection is

wop = 67°D88/[a(1-e7T)]
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If the output rate of the rth reservoir in 1973 is Qr, then the

calculated extraction cost per unit of o0il produced is

Cr = kr/Qr + WZr'mr/QY- + 0oC (5.3)

where m,. is the water injection rate of the rth reservoir and oc is

the (assumed constant) operating cost per unit of output. The extraction
cost is converted to the units of 1973 dollars per barrel. The results
are presented in Figure 11.

Figure 11 shows the unit extraction costs across pools using the
predicted values for N and m. The average well-head cost per barrel is
$2.33. The average water injection cost for pools actually under water
injection is $0.22 per barrel of o0il produced. It is interesting to note
that the average unit extraction cost for pools under injection is $1.53
per barrel, lower than the overall éverage. The operating cost is
estimated to be $0.412 per barrel for each reservoir.

In generating this plot, the following 2 observations were removed
to improve the scaling of the Y-axis:

-19.43

1. Predicted unit cost

15.91

2. Predicted unit cost
However, these observations were included in computing the averages that
appear above. The number of pools used to generate this plot, 64, is the
number in common between the 80 used to estimate the injection equation
and the 110 used to estimate the development well equation.

As can be seen in Figure 11, there is a very large degree of
variation of unit costs across pools implying a large degree of variation

in the rents accruing to various pools. If the hypothesis of



Predicted Cost per Barrel

12‘7

10

2 —

138

FIGURE 11

Predicted Extraction Costs $1973/bbl: Model i

hA\/ X $2.33

i
20 40 60 80
Pool Number



139

non-increasing marginal extraction costs is correct, then the results
shown in Figure 11 imply that a more efficient inter-pool allocation of
provincial output could be achieved. They also imply that rents were
distributed widely among pools in 1973 that would undoubtedly have been
excluded in an efficient allocation.

The unit cost calculations can be used in demonstrating the
depth-pay thickness trade-off. At the average value of $2.33, the
distribution of unit cost among its 3 components is the following:

0i1 well fixed cost: 74.2%

Water injection cost: 9.0%

Operating cost: 16.8%

Holding oc constant, a 10% increase in the average depth of a
reservoir leads to a 7.5% increase in the calculated extraction cost per
barrel if e = 0.9 and a 10.8% increase if e = 1.3.

It was found that the elasticity of the number of 0il wells drilled
with respect to pay thickness is -0.33 at sample means. Thus, a 10%
increase in the pay thickness of a reservoir leads to a 3.3% decrease in
the fixed oil well costs per barrel on average. It can also be calculated
that a 10% increase in pay thickness leads to a 25.6% reduction in unit
injection éosts on average. Combining the two effects, a 10% increase in
pay thickness reduces extraction costs per barrel by 4.76% on average.

Thus, a 15.8% increase in pay thickness if e = 0.9 or a 22.7%
increase if e = 1.3 will reduce costs by the same amount that a 10%
increase in depth will increase costs, all other things held constant. At
sample averages, this means that a 2.36 metre increase in pay thickness
for e = 0.9 or a 3.40 metre increase for e = 1.3 is required for a 124.8

metre increase in pool depth to keep extraction costs from rising. If the
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behavioural hypothesis of the competitive model that the pools brought
into production in the sixties were in approximately the same cost or
quality category, then one would expect the pools in the sample to
reflect, on average, this approximate trade-off of between 52.9 and 36.7
metres of depth for each 1 metre of pay thickness. An ordinary least
squares regression of depth on pay thickness, forced through the origin,
produces a slope coefficient of approximately 37 metres. With a
t-statistic of 7.95, it is not significantly different from 52.9. There
is, of course a great deal of variation about this regression line
probably due to the regulatory influence and this is what causes a good
deal of the variation in unit extraction costs across pools.

It is now quite clear that reservoir depth and pay thickness are the
two major determinants of extraction cost heterogeneity. It is satisfying
that the data observed at a point in time are consistent with there being
a positive trade-off on average of the two factors. In the next chapter,

the relationship between these two factors over time is examined.
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CHAPTER 6

011 Extraction Costs: Concluding Comments

6.0 Introduction

A basic prediction of the Economic Theory of Natural Resources is
that, given positive discount rates, firms will tend to exploit
exhaustible resources in order of increasing cost. In the Province of
Alberta then, one would expect to observe the depletion of 0il resources
being manifested in a trend toward the use of lower quality oil pools over
time. Drawing on the implications of some of the empirical results of
this thesis, this depletion hypothesis is put to the test in Section 6.1.
In Section 6.2, the results of the research undertaken in this thesis are
summarized, conclusions are drawn and directions for future research are

suggested.

6.1 The Depletion Hypothesis

_In the previous chapter, a significant inverse relationship was
found to exist between extraction costs and pay thickness. It was
hypothesized that extraction costs are an increasing function of pool
depth. Thus, if o0il pools are developed in order of increasing cost,
there should exist, in any period of time, a positive trade-off between
the depths and pay thicknesses of pools brought into production. A
significant relationship of this type was found to exist, on average,

among the pools studies in Chapter 5. Moreover, if pools are developed
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in order of increasing cost, one would observe a worsening of this
trade-off over time as lower quality pools are brought into production.

The data set used to test the depletion hypothesis consists of
observations on all oil pools® discovered in the Province of Alberta
between the years 1910 and 1978. Each observation consists of the average
pool depth, the average pay thickness and the discovery date of the pool.
Ideally one would like to date each observation by development date rather
than discovery date. However, the former is not as readily available as
the Tatter. Moreover, discovery date is an excellent measure of
development date in most cases since a pool is commonly recorded as a
discovery only when development is a profitable undertaking.

The simplest way in which the hypothesis of declining quality can be
supported is for the data to show a trend of increasing depth and
decreasing pay thickness over time for o0il pools brought into production.
To test for this possibility the following calculations were made. For
each discovery year from 1910 to 1978, the average depth and pay thickness
over all pools reported discovered in that year were calculated and
plotted over time in Figures 12 and 13.

Only 7 pools were reported discovered before 1940 and for some of
these pools pay thickness was not recorded. Thus, in Figure 12, the first
positive observation for pay thickness occurs in 1931. From the early
1940's until the late 1960's, pay thickness displays an increasing, not a
decreasing, trend followed by a decreasing trend until 1978. An ordinary
least squares line, when fitted to this data, has a significantly positive

slope.

1. There were a total of 1567 o0il pools and the data were taken taken
from a magnetic tape described in Appendix A.
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Figure 13 shows an upward trend in the average depths of pools
discovered between 1940 and the mid 1960's, and a gradually declining
trend thereafter.

Two observations can be made at this point. The evidence in Figures
12 and 13 does not appear to support the hypothesis of declining quality.
Moreover, it is apparent that the mid to late 1960's is a key period in
which something happened to reverse the upward trends of depth and pay
thickness.

A second way in which the data can support the hypothesis of
declining quality is to show a worsening over time of the positive
trade-off between depth and pay thickness among pools being brought into
production. If the hypothesis is correct, plots of depth on the y-axis
against pay thickness on the x-axis, which have a positive slope, should
shift upwards over time. This behaviour was looked for in the data by
fitting least-squares regression lines between the depth and pay thickness
of pools discovered in each time period. Time periods were taken to be
five-year intervals starting in 1940. The final period was a four-year
interval from 1975-1978, producing a total of 8 time periods. For each
time period, the predicted values of depth were calculated using a range
of pay thickness which did not exceed the observed range for that period.
The resulting regression lines are plotted in Figure 14.

It is apparent in Figure 14 that, for the first 5 time periods, the
data do display the upward-shifting trade-off behaviour expected under the
hypothesis of declining quality. However, the trade-off lines take a
dramatic downward shift for the 1965-69 and 1970-74 periods, after which

the upward-shifting behaviour is renewed with the 1975-78 period.



in metres

DEPTH

FIGURE 14

Depth vs Paythickness by 5 Year Periods

3500 - _
1960-64 ‘
1975-78
3000
1955-59
1950-54
2500
2000 -
1970-74
1945-49 1965-69
1500 -
1000 \\\\\\\\\\\\\o 1940-44
500 | | 1 | T ]
0 20 40 _ 60 80 100 120

PAY THICKNESS in metres

9vI1



147

While the sudden reversal in the late 1960's of the 25 year trend
towards the use of lower quality oil pools may appear perplexing, the
explanation is quite simple. The exploration-discovery relationship is
subject to randomness. At any point in time, there is a positive
probability that a relatively high-quality, low cost pool or group of
pools will be discovered. This is precisely what happened in Alberta in
1966 and continuing into the early 1970's with the discovery of the Zama,
Rainbow and Virgo oil fields. The discoveries in this period were
dominated by the Zama field in which 100 pools were discovered in 1967
alone. The majority of these pools were relatively shallow with a large
pay thickness.

Thus, the data are consistent with the hypothesis of declining
quality. However, one must recognize that there is a certain degree of
randomness in discovery patterns and hence in the position of a depth-pay
thickness trade-off curve at any point in time. Moreover, one must
recognize the possiblity that the probability of discovery is positively
correlated with the quality of the discovery. One can hypothesize that
had the existence of the Zama, Rainbow and Virgo fields been known, their
pools would have been exploited long before many of the pools that
actually were exploited between 1950 and 1966.

While the data are consistent with the depletion hypothesis of
declining quality, this finding does not imply that Alberta oil has become
increasingly scarce. If scarcity is defined in economic terms so that
extraction cost is a relevant measure, the cost-increasing effect of
declining quality over time may or may not have been offset by the cost-
reducing effect of technological progress. Moreover, Figure 14 suggests

that even in the absence of technological change, average real extraction
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costs of new pools in the early 1970's were probably less than those of
the early 1950's.2 Moreover, by 1975-78, average real extraction costs
of new pools were probably scarcely any higher than in the early 1950's,
even in the absence of technological improvements.

These findings suggest that a direction future research might take
is to construct indices of real extraction costs between time periods.
This could be done by estimating the parameters of the variable extraction
cost function for a base period and for some later period and then
constructing an aggregate average cost index for each time period using
weighted averages of the arguments of the cost function. The ratio of the
two indices is a measure of relative scarcity between the two periods. If
its value is greater than (less than) (equal to) one, the resource is more
(less)(equally) scarce in the later time period. A technical difficulty
with this project applied to Alberta oil is the pre-1962 distortions
induced by the regulatory framework that probably caused extraction costs

to be higher than otherwise.

6.2 Summary and Conclusions

The general concern in writing this dissertation has been to provide
some empirical content to Natural Resource Economics and to test some
basic predictions of the theory. The specific resource chosen in this
application is o0il in the Province of Alberta. A dynamic model of o0il
extraction was constructed, drawing heavily on the principles of oil
reservoir engineering and taking care to make it empirically operational.

The empirical implications of the model under the assumption of rational

2. Assuming the real prices of factors of production did not display
substantial increases.
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or optimizing behaviour of a reservoir manager were analyzed. A variable
cost function, dual to a restricted one-period technology set was defined
and formed the basis of the empirical work. Two versions of the
extraction model were estimated. The second model, in which an 0il well
is viewed as a fixed factor of production chosen at the initial
development date and in which water injection is a variable factor chosen
in each period proved superior to the first model in which both are viewed
as variable factors of production chosen optimally in each period. In
both cases, a limited dependent variable problem was successfully overcome
in the estimation. The potential simultaneity bias problem created by the
restriction that had to be imposed on the one-period technology set was
solved analytically, but due to the complexity of the resulting estimation
problem, less practical success was achieved.

Estimation of the parameters of the variable cost function permitted
information about the extraction technology of individual reservoirs to be
obtained and hypothesis tests about that technology and about some
theoretical predictions to be performed. It was found that oil pools are
not homogeneous with respect to cost and hence, technology. Rather, the
pools in the sample showed a high degree of variation in geological
factors that significantly affect extraction costs.

The evidence strongly suggests that marginal extraction costs are a
non-increasing function of extraction rates in the range of observations.
Moreover, marginal extraction costs showed systematic variations across
pools in the sample. These results imply that a more efficient allocation
of provincial production among pools could be achieved by increasing the

shares of the relatively low cost pools.
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The empirical results were found to support the testable predictions
of the dynamic extraction model. It was possible to infer information
about the shadow price of reservoir pressure from the estimates of the
variable cost function. The results supported the hypothesis that the
shadow price is inversely related to the level of reservoir pressure,
Moreover, the results supported the prediction that pressure maintenance
activities are more likely to be undertaken in pools with higher shadow
pricés. Interestingly, one would not expect to obtain these results if
the assumption of unitized reservoir management was incorrect. In the
absence of cooperative behaviour, the common property probiem would make
most of the benefits of pressure maintenance external to the individual
firm, thereby making the perceived shadow price of pressure very small or
equal to zero.

Finally, the evidence of a statistically significant posifive
trade-off between the depth and pay thickness of pools brought into
production at a point in time suggests that the hypothesis that deposits
will be exploited in roughly sequential order is supportable. The high
degree of variation of predicted unit extraction costs observed at a point
in time is consistent with this finding because of the presence of
regulatory controls under which relatively inefficient pools are permitted
a share of provincial production. The data support the hypothesis of a
worsening over time of the positive trade-off between depth and pay
thickness with the condition that the trade-off is subject to random
improving shifts due to the random nature of the exploration-discovery

relationship.
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APPENDIX A

Econometric Problems

A.l1. Limited Dependent Variable Bias

The likelihood function (4.5) is derived as follows. The

probability of observing m=o0 in the rth 6i1 pool, given ey, is

Prob(mr = O:Er) = Prob(ur < - hr(x;az,y):er)

which, using the joint distribution for u and e becomes _

-hp(x3az,Y)
=Jmf n(u..e.)du,

-hp(x3a2,Y)
= f n(ur:e Yen(e

=00

)du

r r

where n(v) is a normal distribution (the marginal) and n(ur:er) is the
conditional normal. This becomes

_hY‘(X;aZ aY)

1/°ef(er/0e):mf n(u.:e.)du,

L]
[+}]
—+

—~
u
¢

~—

]
-

—~

~<
-
~—

where Yy = -[h

The probability of observing m. > 0 is simple given by
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Prob(mr > O:er) = n(u_,e )

Thus, the 1ikelihood of q + R-q observations is the product of the
probabilities of observing each observation as given above, and this

yields (4.5).

A.2. Simultaneity Bias

The reduced form solution for 6(t) which appears in (4.10) is

derived below. The first order conditions (4.7) are

wiays + wpapz + [Y13W + v23P + v330 + v3,Q + v3sZ](witwp)-2 = 0

A8\ =-{wiajp + wpaga + [Y1oW + v22P + ¥238 + v24Q + v25Z](wi+wo)}

Thus, the first equation can be explicitly solved for 6 and

substituted into the A equation to yield

A= (8-v23/v33)% + 1.6(Y83/v33-v22)P + 1.6(v23713/¥33-Y12)W
+ 1.6(Y23Y34/Y33-Y24)Q + 1.6(Y23v35/Y33-Y25)Z
+ v23/v33(a13+0.6az3)-(a12+0.6a5,) (A4.1)

where, w;/w2 have been set equal to 1.6. Using the solution for © in

P = -0 yields

p = -A/1.6, /yqqP + 1/y33(0.6a;3 + 0.4az,

+
3 Y23 Y33

(A4.2)
+ Y13W + v34Q + v352)
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Thus (A4.1) and (A4.2) form the explicit analogue of the system in (4.9).

This system can be simplified as follows:

P = AjA + BiP + G

>e

= Aoh + BoP + G2

A; = -0.6v33

Bi = Y23/¥33

Gy = CyiW + Cy2Q + Cy3Z + Cyy
Ci1 = Y13/Y33

Ci2 = Y3u/Y33

C13 = Y35/v33

Ciy = (0.6a13 + 0.4a23)/v23
A2 = 8 - ¥23/Y33

By = 1.6(Y23/Y33 - Y22)

Gp = Co1W + C22Q + Co3Z + Cpy
C21 = 1.6(v23Y13/Y33 - Y12)
C22 = 1.6(v23Y3u/Y33 - Yau)

Cou = Y23(ays + 0.6a23)/v33 - (a;z + 0.6azy)

(A4.3)

(A4.4)

(A4.3) is a non-homogeneous system of linear differential equations.

The solution is tedious but straightforward:

P(t) = clerlt + czer2t + 2

>
—~
t
-
il

1/31{(Y1-A1)C1erlt + (V2~A1)Czer2t} +

(A4.5)

(A4.6)
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where,
Q1 = (B2Gy - A1G2)/(A1A2 - B1B3)
Q2 = (B1G2 - A261)/(A1A2 - B)B3) (A4.7)
ri,r2 = 1/2(A1+B1) * [(A1+B1)? - 4(ABy-B1A;)]1Y/2

c1 = {(ra-A1)(Pg-21) - Bi(Ag-92)}/(rz-ry)
c2 = {B1(Xg=02) - (ry1-A;)(Po-21)}/(rp-ry)

Notice that ¢; and c, were determined from the initial conditions
for the two endogenous variables; ie. P(0)=P, and A(0)=r,. Also note
that r; and r, are the roots of the characteristic equation.

While Py is observable, Xy is not. It can be eliminated however
by evaluating (A4.6) at t=T and setting A(T)=0 and solving the resulting
equation for Ay. Substituting this expression back into (A4.6) yields:

A(t) = (AlBZ-AlBl'AZBl)(PO-Ql){eBI(T+t)+82(T't) ]

B (T+t)-B (T-t)
e 2T By + 20/B1 (B[ (r1-A1)e" 1T - (rp-Ap)e"2T] - (Ad.8)

Bl (r1-Ay)e T - (rp-Ap)e" 211}/ {(r1-Ay)e 1T = (rp-Ap)e"2T}

where,

By = (A;+B1)/2

1/2[ (Ay+B1)? - 4(A1Bp-AzB;]1/?

B2

Substitution of (A4.7) into

P(t) = -8(t) = AjA(t) + ByP(t) + G
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yields the reduced form solution for 6 as a function of exogenous
variables and the structural parameters of the variable cost function.
This appears as (4.10) and (4.11) in Chapter 4 where the following

parameter simplifications were made:

ho = (A1B2-A1B1-A2B;)/8;

h1y = (B2C11-A1C21)/(A1A2-B1B2)

hi2 = (B2C12-A1C22)/(A1A2-B1B2)

h13 = (B2C13-A1C23)/(A1A2-B1By)

hiy = (B2Cy14-A1C24)/(A1A2-B1B>) (A4.9)
h21 = (B1C21-A2C11)/(A1A2-B1B>)

haz = (B1C22-A2C12)/(A1A2-B1B>)

hz3 = (B1C23-A2C13)/(A1A2-B1B>)

hoy = (B1C2y-A2C14)/(A1A2-B1B))

If the system of equations is to be estimated without imposing the
parameter restrictions in (A4.4), (A4.7) and (A4.9) then only the distinct
paramters of (A4.8) can be estimated. To determine what these are, carry

out the substitution of A(t) in the -6(t) equation to obtain:

-0(t) = AthgPoY¥y + [Cy; - Ahghy Yy + Aphgho Yo W +
[Ci2 = AjhghyaYy + AjhghooY,]Q +
[Ci3 - AjhghysYy + AjhghgpsY,]Z + (A4.10)

[Cru = Ahghy,Yy * Ajhghy,Yo] + ByP

where Yy = [eBl(T+t)+Bz(T-t)_esl(T+t)-32(T-t)]
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Yo = (Tl-Al)erlt-(rz-Al)erzt-Bz/Bl[(rl'Al)erlt-(Tz-Al)erzt]

(ry-Ape 1t - (rp-ap)e"2t
There are clearly too many paramters in (A4.10) to obtain unique
estimates of each. Some will have to be almalgamated with others. There

is more than one way to do this but the following is the one chosen:

-0(t) = agPg¥y + [ay-0gh Y W + [ap-aghy,¥,]Q +

[a3-0ghy3Y1)Z + [ay-aghy,Y,] + ByP (Ad.11)
where ag = Ajhg
a;p = €11 + Athoha Y2
as = Cy2 + ArhghaoYo (Ad.12)
ag = Ci3 + ArhghasYs
ay = Cyy + ArhghayYa

Because there still remain non-unique parameters in (A4.11) the

following restrictions must be imposed:
hiy = hy2 = hyz = hyy =1

The resulting reduced form equation below, which also appears as

(4.12), has 8 unique parameters:

- -8(t) = agPeYy + [ay-agYy W + [az-agYi]Q +

[ag-agY1]Z + [ay-agY ] + BP (A4.13)


http://A4.ll
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A.3. The QOptimal Number of Wells

In the following, (4.19) is solved for N. No attempt is made to

preserve the relationships between structural and reduced form parameters.

Using (4.14)

am/aN(-)

be + g16W + gogP + 9360 + gueQ + gseZ + 9eeN
[ba + g1oW + gooP + 9238 + gouQ + gosZ + gpgN]aP/aN
+ [by + gy3W + 93P + 9330 + g3,Q + g3sZ + gggNJa6/aN  (A4.14)

+

where,

clerlt + Czerzt

O
—
t
N
1

+

P(t) = -8(t) = rlclerlt + rzczerzt

Cy = ayoPo + aniW + a;32Q + ay;3Z + ajuN + aj5 + a1l
Co = aggPg + agiW + a22Q + a3l + agyN + azs + azgkg
Ao = ag(Pp - 21)[e

@y = byiW + by2Q + bysZ + byyN + bys

rlT _ erzT] - a9,

Qp = byiW + bypQ + by3Z + byyN + by

PlT 2T

let y; = e * - e"2' and notice that it is constant over time. Thus,
c1 = [awo+agy1]Po + [a11-b11y ]W + [a12-b12y1]0Q

+ [ay3-by3y1]Z + [a14-biuy1IN + [a1s-bysy1] - 2192

A similar expression exists for c,. The parameters in these expressions

will not be identifiable so are amalgamated at this stage. This yields:
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€1 = dygPo + dy W + dy2Q + dy3Z + dyuN + dys

Cp = dpoPo + dp W + dppQ + dp3Z + doyN + dps

Therefore,

Y‘lt Y‘zt
3P(t)/3N = dyue + dyyue + by

36/3N = - {rldlherlt + Tzdzuerzt}

Now, rewrite P(t) and 8(t) using the definitions of c;,c, and

P(t) = [dge Padpee2b Py + [byy+dy e bed,ype 28w +
[b12+dlzer1t+dzzer2t]0 + [b13+d139r1t+d239r2t]z +
[b14+dluer1t+dzuer2t]N + [b15+d159r1t+dzser2t]

0(t) = - [ridige Peradaee 2% Py < [r1dy e hird, e 25 W -

rit rot rit rot
[r1dize Y4radyse 27]Q - [rydyge 17+radyge 27)7 -

[r1d1u9r1t+rzd2uer2t]N - [r1d159r1t+r2dzser2t]

The next step is to substitute these expressions into the expression
for am(+)/3N and then combine like terms. One need only do this for one
of the terms because of the similarity of the coefficients on terms. This

is done below for the W term:
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am(=)/aN = ... + W{916+(d1uer1t+dzuer2t+b1u)
rit rot rit t
[912%922(b11*d1 e 1o +dy e 2Y) - gos(ridije M o4r,dye2Y)] -

t rot t t
(ridyge’ 2 4radane’2) [gratgas(by+d e M ord,y e 2Y)

933(P1d116r1t+r2d216r2t)]} + ...

Collecting like exponent terms in this coefficient and almalgamating

parameters yields:
am(=)/aN = ... + Wifro+fy e tbaf pe" 2her e 1bug o(M1¥r2) e 2raty,

The partial derivative am/3N can now be integrated and then solved
for N. Define the following variables obtained upon integration:

Q0 = (1-¢°T)e

a = [e(rl—G)T-l]/(Vl-G)

a2 = (27T 1]/(rp-0)

g5 = [eZ1=8)T 1)/ (2r ) -6)

qu = (M2 T 11/ (r 4r,-6)

a5 = [e{227)T1)/(2r 5-6)

Using these definitions, and carrying out the integration, the first

order condition (4.19), solved for N yields:
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N = -¢/D - W(fioQo+f119:+f 1292+ 13q3+F14,94+F1505)/D

Q(f2000+F2191+f 2202+f 2303+ 24,94+ 255) /D

Z(f30d0+f3191+F 3202f 33G3+f 3,94+ 3505)/D (A4.16)

Po(f5191+f5202+F5303+F 54,4+ 5505)/D

{fe0q0*+f5191+f52q2} /D

where, D = fuoqo+fu101+fu2q2+f 4303+ 4uqutfusas (A4.17)

and the fij are the reduced form parameters to be estimated.
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APPENDIX B

B.1. Data Sources

The raw reservoir data were obtained form publications and computer
tapes prepared by the Energy Resources Conservation Board of Alberta
(ERCB). A modified version® of the General Well Data File provides
detailed information about each o0il well drilled in the province. Each
well is classified by type according to the Lahee system (development
well, servicé well, wildcat etc.) and by status according to a 99—di§it
ERCB code. The date at which the status is reported, the date of drilling
completion, the name, depth and the codes defining the field and reservoir
into which the well was completed are also reported. Also available on
this tape is detailed information about the physical properties (such as
pay thickness and porosity) of the reservoir into which the well was
completed. An additional tape provides annual production and injection
data for all oil pools in the province.2 From the data on this tape,
observations on annual 0il production and annual water, gas and natural
gas liquids injection were drawn.

The data for the pressure variable and the annual change in pressure

variable were obtained from ERCB publication 76-10: Reservoir Performance

Charts: 0il1 Pools. This publication was also used to supplement the data

for pay thickness and porosity as some observations were missing from the
computer tape.
The size of the sample was determined by the number of observations

that were common to all three data sources. For most variables the data

1. The extensive modification, made by Russell Uhler, linked each
observation in the General Well Data File with detailed physical reservoir
data for the reservoir to which the observed well is attached.

2. This tape was also kindly made available to me by Russell Unhler.
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could be used in their raw form as drawn from the tapes or publication.
However, to generate the data for the number of wells by type (according
to the Lahee classification), status and date for each pool required
extensive programming.

Additional data used to estimate the reduced form equation in Model
II for the number of wells were obtained from ERCB publication 78-10:

Reservoir Performance Charts: 0il Pools and ERCB publication 78-18:

Reserves of Crude 0il, Gas, Natural Cas Liquids and Sulfur, Province of

Alberta.

To calculate the relative price of 0il wells series for Model II,
the capital price per oil well was calculated by dividing total industry
expenditures on development well drilling and related surface equipment by
the total number of completions for each year. These data were obtained

from Canadian Petroleum Association Statistical Handbook, 1981 and ERCB

80-17, Alberta 0il and Gas Industry Annual Statistics. The capital price

‘per injection well was calculated in the same way. Total development
expenditures by the Alberta industry by year is taken from the Canadian

Petroleum Association Statistical Handbook. The net change in the stock

of water and gas injection wells by year was calculated from the
"Statement of Service and Capped Gas Wells as at Dec. 31" in ECRB 80-17.
Whenever required, prices were converted to real terms using the price
index for machinery and equipment from: "Price indices for capital
expenditure on plant and equipment by industry (1974): Mines, Quarries
and 0il Wells" which is contained in Statistics Canada 13-568 Occasional,

Fixed Capital Flows and Stocks 1926-1978, pp. 279-280.

In the estimation of the reduced form equation for N in Model II,

the 0il production variable is not the same as the variable used in the



169

1973 cross-section estimation equations. The values for 0il production in
the former, in the units of mS per day, are average daily extraction rates
observed in the years following development and are meant to reflect the
expected rates at the time of development. The source of these data was

ERCB 78-10: Reservoir Performance Charts.

The calculation of 1973 average operating costs per barrel in
Chapter 5, was made by dividing total industry operating expenditures in
1973, available in the CPA Statistical Handbook by total Alberta oil

production, available in ERCB, Alberta 0il and Gas Industry Annual

Statistics.

B.2. List of Pool Names

The following is a 1list which shows the Field Code, Pool Code, Field

Name and Pool Name of each pool used in the 1973 sample.

047 644001 Alexis - Banff A

092 248004 Bantry - Mannville D

144 788001 Black - Keg River A

157 500003 Boundary Lake South - Triassic C
157 500005 " " " - Triassic E
185 244006 Campbell Namao - Namao Blairmore F
212 294004 Chauvin South - Lloydminster D
213 644001 Cherhill - Banff A

259 250008 Countess - Upper Mannville H

269 638004 Crossfield East - Elkton D

273 294001 David - Lloydminster A



320
377
377
377
405
423
425
430
456
457
457
486
486
500
500
500
547
560
560
571
571
604
604
605
615
620
644

176002
176004
176005
176007
248002
758001
744001
250002
310001
322001
322002
300002
320015
250005
250006
250015
250001
250004
250007
276007
276163
300001
642005
696001
778001
720002
778001

Edson - Cardium B
Ferrier - Cardium D
" - Cardium E
" - Cardium G
Garrington - Mannville B
Golden - Slave Point A
Goose River - Beaverhill Lake A
Grand Forks - Upper Mannville B

Hays - Lower Mannville A

Hayter - Dina A

" - Dina B
Hussar - Glauconitic B

" - Basal Mannville O
Jenner - Upper Mannville E

" - Upper Mannville F

" - Upper Mannville 0
Lathom - Upper Mannville A
Little Bow - Upper Mannville D

" " - Upper Mannville G

Lloydminster - Sparky G
" - Sparky D and Gen Pete B
Medicine River - Glauconitic A
no " - Pekisko E

Meekwap - D-2A
Mitsue - Gilwood A
Morinville - D-3B

Nipisi - Gilwood A
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644
644
650
668
682
685
685
685
753
753
753
753
753
753
753
753
753
753
753
753
753
753
753
753
753
753
753

778003
789001
334002
658001
126001
126021
126024
126027
782006
788001
788002
788005
788006
788007
788008
788009
788011
788015
788019
788020
788021
788027
788031
788035
788038
788105
788117

Nipisi - Gilwood C

" - Keg River SS A

Niton - Basal Quartz B

0lds - Wabamun A

Peco - Belly River A

Pembina

" Key Belly River X
" - Belly River AA

Rainbow

" - Keg
" - Keg
" - Keg
" - Keg
" - Keg
" - Keg
" - Keg
" - Keg
" - Keg
" - Keg
" - Keg
" - Keg
" - Keg
" - Keg
" - Keg
" - Keg
" - Keg

" - Keg

Muskeg F

River
River
River
River
River
River
River
River
River
River
River
River
River
River
River
River
River

River

Key Belly River U

AA
EE
II
LL
EEE

QQQ
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754
754
754
754
764
764
764
785
785
785
886
891
891
894
895

788001
788002
788005
788007
758001
758005
976005
176001
176004
176012
696001
638003
642003
346001
248001

Rainbow South - Keg River

" " Keg River

" " Keg River

" " Keg River

o
[1°]
[=%
m
fo7]
=
o+
=
1

Slave Point A

" " Slave Point E

" " Granite Wash E

Ricinus Cardium A

" Cardium D

" Cardium L

Swalwell - D-2 A

Sylvan Lake - Elkton C
" " - Pekisko C
Taber North - Taber A

Taber South Mannville A
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