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ABSTRACT

Metal—forminé involves the deformation of metals for
the purposes of manufacturing a product. An understanding
of the effect of process variables on metal forming
operations 1is of fundamental importance to the engineer.
However, 1little information is available regarding the
effect of strain hardening and strain rate sensitive
material properties, dynamic loading, surface friction and
specimen dimensions on the way compoﬁents deform during the
forging process.

In this work the plane strain compression of an
initially rectangular specimén between flat, parallel and
rigid platens is selected for investigation as being
representative of a basic die forging operation. This
configuration allows the complete deformation history of
quasi-statically or dynamically deformed specimené to be
recorded photographically and the _effect of process
variables identified. A finite element model is developed
for this case. The code accounts for large strains,
nonlinear material properties, inertia effects and surface
friction on all bqundaries.

The results of dynamic compression tests on plasticine
and quasi-static compression tests on aluminum are compared
to the finite element code predictions. They give good
correspondenCe.bver a large range of strain history.
Further studies conducted with the finite element model

identify many of the fundamental characteristics of the

forging operation.
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It is shown that rigid-perfectly plastic material tends
to deform along 1lines of intense shear and can be
approximated by certain upper bound solutions. The normal
interface stress distribution for this case 1is very
different from the classical friction hills that may
sometimes be assumed. A more normal type of friction hill
stress distribution is obtained with strain hardening and
strain rate sensitive materials. The lines of intense shear
become wider and give more homogeneous deformation for this
case. With dynamic loading inhomogeneous deformation occurs
as the energy of impact is rapidly diffused throughout the
specimen. It is possible that an inverse friction hill
develops on the lower platen and a friction hill on the top

platen.
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1
CHAPTER 1

INTRODUCTION AND LITERATURE SEARCH.

1.1. METAL FORMING.

Metal-forming involves the deformation of metals for
the purpose of manufacturing a product. Avitzur(1,1968) and
Johnson and Mellor (2,1973) outline some of the metal form-
ing processes currently used in industry.

An understanding of the effect of process variables on
metal-forming operations must be considered of fundamental
importance to the engineer in the design and development of
manufacturing processes. For example, one may ask the
following questions. What loads are required to deform the
metal in a particular forming process? How do metal
properties such as strain rate sensitivity and strain
hardening affect the stress and deformation patterns? How
do lubrication conditions on the boundaries of the metal in
contact with the forming surfaces affect the stress
distributions in the metal? What guidelines «can one
establish for effective design in metal-forming processes?

Very little information is available in the literature
regarding the detailed effect of 1inertia, strain rate
sensitivity, and strain hardening on the way components
deform during the forging process and the resulting
stresses and loads involved. This is due partially to the
difficulties involved in measuring strain or stress within
material that is undergoing very 1large, possibly rapid,
distortions. Additionally, determination of the frictional

boundary conditions that exist is extremely difficult.



1.2. SOLUTION TECHNIQUES.

1.2.1. Introduction.

A first step in the analytical treatment of a
metal-forming problem 1is to propose a mathematical model.
The model will wusually involve large deformations,
nonlinear materials, and unknown friction boundary
conditions. In genefal there are no closed form solutions.
Therefore, to solve practical problems,special procedures
are employed to find approximate numerical solutions. Five
practical methods for finding approximate solutions are
limit analysis, the slip 1line field technique, the
visioplasticity technigue, the finite difference technigue,
and the finite element technigue. The first four are
discussed in sections 1.2.2 to 1.2.5 inclusive. In section
1.3 the finite element method is discussed.

1.2.2. Limit Analysis

The Upper Bound and the Lower Bound Theorems of
plasticity allow one to place bounds on forming 1loads 1in
metal forming processes. These theorems are discussed and
proved by Hill(3,1950).

1.2.3. Slip Line Field Technigue.

The slip line field method 1is applicable to plane
strain problems and was introduced in 1923 by Hencky(4).
Basically the method 1involves constructing a mesh of
orthogonal lines along which the shear stress is a maximum.
It 1is assumed that slip can occur only along these lines.
From the limit theorems an upper bound on applied 1loads

will be obtained. Jchnson, Sowerby, and Venter(5,1982)



3
present numerous applications of the slip 1line field
technique.

1.2.4. Visioplasticity.

Thomsen (6,1963) appears to have first introduced the
visioplasticity technique. More recéntly Shabaik (7,1972)
used the technique to study various types of metal forming
processes. C.M.Lee, G.W Vickers, and S.N Dwivedi (8,1983)
also futher extended the method to 1include dynamic
problems.

The visioplasticity method uses the egqguations of
motion to determine the stress field from an experimentally
measured and numerically smoothed velocity field.

1.2.5. The Finite Difference Technigue.

The finite difference technigue is a well known
computer-oriented method of numerically solving partial
differential equations. Shabaik(9,1975) gives an example of
the application of the method to plane strain extrusion.
One of the disadvantages of the finite difference technigue
is that an equally divided mesh 1is required to achieve
optimum accuracy.

1.3. APPLICATION OF THE FINITE ELEMENT METHOD TO THE
SOLUTION OF METAL FORMING PROBLEMS.

1.3.1. Introduction.

The finite element technigue 1is an appropriate
numerical method for solving metal-forming problems.
Irregular meshes can be wused and very complex boundary
conditions can be specified. The method 1is based on the
construction of a velocity field over a small region

(element) of material in terms of a number of generalised
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coordinates. All the ageneralised coordinates from the
elements are then determined to produce a solution. The
resulting problem reduces to a set of simultaneous
equations with the generalised coordinates as unknowns.
Zienkiewicz(10,1977) shows that, subject to quite general
requirements, as the number of elements spanning a region
is increased to  make more generalised coordinates
available, the finite element solution will approach the
exact solution to the mathematical model.

In the following sections the current literature on
the application of the finite element technigue to metal
forming problems 1is reviewed. Section 1.3.2 cites some of
the literature concerned with problems involving large
strain finite element analyses. Section 1.3.3 cites some of
the 1literature concerned with flow problems. Section 1.3.4
cites some of the literature concerned with plane strain
and axisymmetric compression., Section 1.3.5 considers
dynamic compression.

1.3.2. General Finite Element Formulation For Problems
Of Large Strain.

In a large strain incremental approach it is usual to
consider a coordinate system embedded in the material.
Hibbitt(11,1970) gave one of the first treatments in the
context of finite elements. Kitagawa,-Seguchi, and Tomita
(12,1972) gave a similar treatment using the technigues of
differential geometry. Ref. 10 also considers geometrically
noﬁlinear problems. These references all indicate that
additional terms arise relating deformed geometry to

initial geometry. Gotoh and Ishise (13, 1978) formulated
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and applied the 1large strain case to a deep drawing
problem. It was found that the large strain terms made a
significant difference in their application.

1.3.3. Finite Element Applications To Flow Problems.

Zienkiewicz, Jain, and Onate(14,1978) gave a review of
finite element numerical solution methods for studying the
flow of solids. They first reviewed the general formulation
for flow problems and identified two methods of merit: the
V/P formulation with Lagrangian constraint and the penalty
function approach. Several examples were given of
extrusion, rolling, and cup forming.

Zienkiewicz and Godbole(15,1974) used a stream
function representation to solve problems involving large
distortions. Applications such as extrusion and indentation
were treated as those of non-Newtonian flow. The method was
applied to both steady state and transient problems.

Zienkiewicz and Godbole(16,1975) also introduced a
penalty function approach for solving large deformation
problems. They outlined how a standard elasticity program
with a wvalue of Poisson's ratio approaching 1/2 could be
used to solve quasi-static flow problems. Examples of
calculation with an isoparametric element with 2x2 Gauss
integration were given for punch indentation, plane strain

compression of a block, and extrusion.
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1.3.4. Application Of The Finite Element Method To
Plastic Compression.

Lee and Kobayashi(17,1973) applied the finite element
method to the problem of the rigid-plastic axisymmetric
compression of a «cylinder. Friction on the top contact
boundary was treated by applying a specified shear stress 7
both as 7=0.2Y, and as 7=0.3Y,r/R, where Y, is the constant
yield stress, r is the radial coordinate and R is radius of
the top boundary. They studied cylinders of height to
diameter ratio (Hy/Dy) of 0.25, 0.5, and 1.0. They
concluded that for H,/Dy=0.25 and 0.5 there was a friction
hill on the top boundary as predicted by elementary theory.
For the case of Hy/Do=1 they found an inverse friction
hill, This reference also assessed the effect of work
hardening.

Price and Alexander(18,19738) presented a paper on
isothermal forging. Deformed geometries were presented for
axisymmetric cylinders with height to diameter ratios of
/4, 2/3, 1, 3/2, and 4. The calculations were carried out
with the penalty function method. The predicted geometries
were found to conform well with expefiments for a‘ variety
of specimen configurations.

Hartley, Sturgess, and Rowe(19,1973) gave a technigue
of handling surface friction. They introduced a thin 1layer
of friction elements on the top surface of an axisymmetric
specimen to be deformed by a rigid platen. The top nodes
were kept fixed to the rigid platen while the lower nodes
were free to move horizontally. The stiffness of the

friction elements were then modified by a viscous factor.
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They identified the problems that they encountered with the
application of the approach and described their solution.
Good agreement was obtained with the ring test given by
Hawkyard and Johnson(20,1967). A full elastic-plastic
formulation was presented.

Hartley, Sturgess, and Rowe(21,1980) also presented a
following paper 1in which they gave results for the
elastic-plastic compression (up to 40%) of a cylinder with
Ho/Do=1. They confirmed, as did Lee and Kobayashi(17,1973)
that an inverse friction hill occured on the top boundary
for this case for certain values of the friction
coefficient. The 1low values of friction tended to give an
inverse friction hill, High values of friction tended to
make the boundary surface traction more uniform. In the
case of high friction a single large rigidl zone occurred
below the platen with high pressure areas near.the centre
and at the outside edge.

Rooyen and Backofen(22,1960) gave many experimental
results for friction on thin discs. In agreement with the
calculations of Lee and Kobayashi(17,1973) friction hills
were observed in all cases. However, their tests were only
for small Hy/Do. Refs. 17 and 21 agree, however, that for
Ho/Do=1 inverse friction hills can result on the top

boundary.
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1.3.5. Dynamic Compression

Johnson(23,1972) has given an extensive treatment of
dynamic impact for eﬁgineering applications. Of particular
interest to the present work is Hawkyard's energy method
and similar approaches (see Chapter 5 of ref. 23).
Hutchings and O'Brien(24,1981) presented experimental
results for impact of metal prdjectiles against rigid

targets at low velocities (less than 100ms-'). A comparison

was made to the theories of Taylor, Hawkyard, and
Hutchings.
G.R.Johnson(25, 1976, 26, 1877) considered

elastic-plastic 1impact at high velocity. A code was
developed for three dimensional tetrahedral elements. The
type of problems considered were: impact of a nickel
cylinder onto an aluminum plate at 1500ms-', impact of a
nickel sphere onto an aluminum plate at 1500ms-', normal
impact of a nickel truncated cone onto an aluminum variable
thickness plate at 1500ms-', and obligque impact of an
aluminum rod onto a rigid surface at 1000ms-'.

A general review of impact dynamics was presented by
Zukas(27,1980) for materials subjected to intense impulsive
loading.

1.4, PURPOSE AND SCOPE OF THE THESIS.

The objective of this work is to gain some fundamental
insight 1into the general effect that material properties,
boundary friction, and inertia have on the way forging
specimens deform. Of interest also 1is the stress
distributions, strain distributions, and 1loads involved.

With this in mind a simple type of die forging cperation
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was selected; namely, the plane strain compression of an
initially rectangular specimen between flat, parallel, and
rigid platens. The process is depicted in Fig. 4.2.4.

The reason for the selection of this case is that the
complete deformation history can be recorded
photographically by observing the distortion of the mesh on
the specimen through the glass plates. The effect of the
process variables can thus be readily recorded.

Plasticine was selected as the test material. This has
been used extensively for metal fbrming studies and is
known to give a reasonable assessment of the deformations
that occur in metal forming. 1Its main advantage in the
present study is that the loads involved for specimens of a
size suitable for observation are not excessively large. It
is, however, a strain rate sensitive material which has to
be accounted for in any numerical modelling.

With the experimental results as a basis for
comparison, a finite element model was developed. To do the
calculations a finite element code was prepared to model
plane strain plastic compression. The code which will be
referred to as FELEM-RH has surface friction routines for
both static énd dynamic conditions and plotting routines
for graph plots and pictorial displays. The code was
intended to be compact 1in nature although generally
applicable to a range of bulk metal - forming problems. 1In
the work the results of dynamic compression tests on
plasticine and the quasi-static compression of aluminum are
compared with code predictions. These initial comparisons

are then followed by a systematic study of the effect of
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strain rate sensitivity, strain hardening, and inertia on
specimens of various dimensions.

The results of the study indicate that all the
variables mentioned have significant effect on the resulting
deformation and stress patterns. The applicability of
approximate upper bound models to many of the cases are
discussed.

The chapter contents are summarized below. Chapter 2
presents some simplified solutions for plane strain
compression. Chapter 3 presents a review of the formulation
of thé finite elemenﬁ equations. Chapter 4 presents some
experimental work for the plane strain deformation of
plasticine for comparison with numerical solutions. Chapter
5 presents the results of calculations done with the code.
Both static and dynamic cases were considefed and comparison
with experimental results made. In éddition, comparison of
guasi-static solutions found for a rigid-plastic material
were compared with slip line field solutions and velocity
discontinuity patterns. Chapter 6 presents an overall

summary and conclusion of the study.
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CHAPTER 2

APPROXIMATE MODELS,

Approximate closed form solutions are used widely in
metal forming problems. A summary of these approximate
solutions 1is given by Bishop(28,1958). In this reference
solutions for plane strain compression are summarised. 1In
this work the main interest in these approximate solutions
is for comparison purposes with the finite element code
predictions and for determining their applicability over a
variety of conditions.

The following sections of this chapter present
approximate solutions for the plane strain compression of a
rigid-perfectly plastic material betweén flat and parallel
platens. In section 2.1 the solution for homogenecus plane
strain deformation is given. While this soclution ig simple
and exact, it is only of limited use in practice. It will
only occur in the absence of platen friction. In section
2.2 it is assumed, however, that an homogeneous velocity
field still exists even with friction. The solution can
then be easily found but it 1is approximatate since an
assumed displacement field is used. In section 2.3 velocity
discontinuity patterns are presented and used to find upper
bound solutions. |

2.1. HOMOGENEOUS PLANE DEFORMATION,
2.1.1 Introduction.

For the case where platen friction and glass-plate fric-
tion is zero homogeneous deformation results and the free
boundaries of the specimen remain straicht and parallel.

Fig. 2.1.1.1 depicts the process.
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The solution for this case 1is well Xknown -- the
velocity field is linear and the stresses are constant.

2.1.2 The Velocity and Stress Fields.

The equation of continuity is
v":," - O (2-102.1)

where U, ([ =/,2) are the velocity components in plane

strain referred to the fixed rectangular cartesian axes Xy
x, as shown in Fig. 2.1.1.1. The repeated index implies

summation and the comma denotes partial differentiation with
respect to xi

For the homogeneous deformation of a rectangular block

the velocity components satisfying eguation 2.1.2.1 are

U = . X, (2.1.2.2)
L

V: = Yo, x, (2.1.2.3)
L

where Vo is velocity of the platens relative to the centre
of the specimen and 2L is the current specimen height.
The Cauchy stresses cij referred to the fixed

rectangular coordinate axis X, is

vy = ° ° (2.1.2.4)

(o] - U-P
where q; is the uniform platen pressure. For a perfectly
plastic material 2} will be eqdal to the yield stress, Y, of
the material. In general the yield stress Y will be a
function of the effective strain e and the effective

deformation rate D. The definition of the effective strain
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is given as

<

2z / b dt (2.1.2.5)

o
where ) = /(2(3) ,Z)f'/‘o; (2.1.2.6)
Dy =(/73)( Vey + V. L ) (2.1.2.7)

In the present case the effective strain is given by

& =(%/3)|In (L/Lo)l (2.1.2.8)

where 2LO is the initial specimen height.
A general form (3) for Y which can be adapted to the
specific cases is
oD if D<D,
(2.1.2.9)

(1+¢,8) [¥,+c,(B-D,)*] if D>D,

— -7
where Do=(1+C1e) Yo/o( (2.1.2.9)
= is a large number chosen to approximate rigid-plastic

behavior. Y, is the static annealed yield stress. c¢,, c,,

c;, and are constants.

2.2 HOMOGENEOUS PLANE DEFORMATION WITH FRICTION

Homogeneous deformation as discussed in Section 2.1
cannot occur if there is friction on the boundaries. An
approximate result given by Hill (3) can Dbe obtained,
however, by asguming homogeneous deformation as far as the
velscity field is concerned but including a shear stress on
the boundaries for the stress calculation. This model is

illustrated in Fig. 2.2.1.
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A force balance on the differential element with

Lo = (X, y) gives

(8 G xx/dx)=7/L (2.2.1)

where t© is the boundary shear stress, andoxxthe horizontal
stress which is independent of specimen height y . If

Coulomb friction is assumed then

Y=-78,, (2.2.2)
where g, is the y component of stress and 7 is the
coefficient of friction. The negative sign is introduced
since Gy is considered positive yhen tensile. The yield
condition for a rate —insensitive non-strain hardening

isotropic material is
© =Y, (2.2.3)

where

T =J(3/2) (52, +s2,) (2.2.4)
The Levy-Von Mises flow rule can be used to show that

6,,=P (2.2.5)

where Gzz is the stress in the direction normal to the plane

of deformation. This requires that

P=(1/2)(Gxx+6ﬁ) (2.2.6)

The result 2.2.6 can be used with equations 2.2.4, 2.2.3 and

the fact that 6&:sxx+p and €§y=5y7*P to write the yield
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condition in the form
|G xx™ Gyyl=2K (2.2.7)
where K=Y0A/3i K is the yield shear stress. Eguation 2.2.7
implies that (dGxx/dx)=(dGyy/dx) since K 1is constant.
Equation 2.2.1 can thus be written, with 7’ replaced from
equation 2.2.2
A Gyy/dx=-7BCyy/L (2.2.8)

This can now be integrated as

% X
(86yy/G yy)=-(7/L) | dx (2.2.9)
X=wW W

The integration can be carried out using the fact that Gyy
at x=W (on the boundary) is -2K. Since K is required to be
positive the negative sign indicates a compressive stress.

The integration is carried out as
X
ln(G\,y)Iw =(7/L) (W-x)

Thus 1n[Gyy/(-2K)1=(7/L)[W-x]
or ny=-2K[exp{(7/L)(W-x)}] (2.2.10)
Equation 2.2.10 indicates a friction hill type of
distribution; that 1is, the magnitude of G&Gyy increases
towards the centre of the specimen.
The result can be written in non-dimensional form as
[- 6yy/(2K) ]=exp[D4/L] (2.2.11)

where A 1is the distance inwards from the right boundary of
the specimen. A simple non dimensional diagramatic
representation of a friction hill distribution is given in

Fig. 2.2.2. There is an exponential increase in Gyy towards
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the centre of the specimen,

From the derivation a qualititative observation can be
made. During compression Gxx must always 1increase towards
the centre. If the average Gxx over a vertical plane in the
material such as AD in Fig. 2.2.1 is used, then even for
inhomogeneous deformation the average ©Gxx must increase
accofding to eguation 2.2.11.

2.3. VELOCITY DISCONTINUITY PATTERNS.

Ref. 2 describes the method by which wvelocity
discontinuity patterns and associated hodographs can be
constructed. For convenience a brief description of the
method is presented here.

In the model considered in section 2.2 Gxxand Gyy were
principal stresses., Under these conditions, the lines of
maximﬁh shear stress occur at 45° to the x axis 1in Fig.
2.2.,1. A wvelocity discontinuity pattern is constructed by
assuming that the block of material being compressed is
formed of rigid blocks of material defined by boundaries
yhich are the 45° lines of maximum shear stress. The blocks
are considered to slide over each other with a shear stress
K acting between the blocks. The power dissipation at these
sliding interfaces thus represents the internal power which
can be equated to the power of the external loads to obtain
an estimate of the forming load required. |

Thus for a block with H/D=1, a velocity discontinuity
pattern and hodograph can be constructed as shown in Fig.
2.3.1. The rigid blocks ABC and EBF in Fig. 2.3.1 move
vertically with unit velocity. The blocks FBC and AEB move

herizontally. Slip thus occurs, for example, between blocks
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ABC and CBF along BC. The hodograph is constructed by first
drawing an arrow V,2 to represent the vertical velocity of
block ABC. An arrow V,3 1is then drawn to represent the
horizontal velocity of block CBF. Vz3=J3-on the hodograph
is the relative velocity between the two blocks ABC and
CBF.

It is next assumed that the traction due to the
friction between the blocks is K, the yield stress of the
material in shear. For a block of unit thickness the total
power dissipation in BC 1is thus JEK times the length BC
which is JEZ 2K is thus the total power dissipation in BC,
and 8K 1is the total power dissipation in all the velocity
discontinuities. Let Eyybe the normal tractions on AC and
EF. The external power associated with compressing the
block is 4&y. Since this must equal the internal power
dissipation 8K, thenG,=2K is the estimated traction on AC
and EF

2.3.1. A Velocity Discontinuity Pattern For H/D22

For integral values of H/D22, the block in Fig. 2.3.1
can be wused to build up a velocity discontinuity pattern.
For H/D=2, for example, the pattern shown in Fig. 2.3.1.1
could be wused. It is clear that EF has zero velocity here
and hence the power dissipation in AEFC is only one half of
that in Fig. 2.3.1. Since block EHIF has egual power
dissipation to block AEFC however, the total powver
dissipation in the block AHIC in Fig. 2.3.1.1 is the same
as it was in block AEFC in Fig. 2.3.1.Gyw=2K is thus still
the compressive surface traction on the platen faces.

For non integral vezlues of H/D22, the situation
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becomes slightly more complex. Fig. 2.3.1.2 shows one
possible velocity discontinuity pattern for H/D=3.35.
Basically this is constructed by first drawing the pattern
for H/D=4 and then reducing the height by allowing thé
lines to overlap in a way that 1is obvious from Fig.
2.3.1.2. The hodograph shows that the relative velocities
between all the blocks is J374. The total power dissipation
along BE and BG, for example, is 2JEKJ§/4)K or K. The total
power dissipation in AOIE 1is thus 2K, and for the whole
block JKLE is BK. Since the same internal power as found
previously holds, the same forming load is obtained.

2.3.2. A Velocity Discontinuity Pattern For 1SH/D<2

Fig. 2.3.2.1 shows a proposed velocity discontinuity
pattern and hodograph for this case. Using the same
procedure as previously, Gy,=2K 1s again obtained for the
compressive stress.

2.3.3. A Velocity Discontinuity Pattern For H/DS!

A velocity discontinuity pattern and hodograph for
H/D<1 is shown 1in Fig. 2.3.3.1. In this particular case
H/D=0.516 was chosen for illustration. Again Gy=2K 1is

obtained for the compressive stress.
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CHAPTER_ 3

THE FINITE ELEMENT FORMULATION.

3.1. INTRODUCTION

The Finite Element  Method (FEM) 1is now well
established as a powerful numerical technigue for solving
problems in solid mechanics with complex boundary
conditions. One purpose of this work 1is to develop a
specialised efficient code capable of being easily adapted
to modelling the complex problems that occur 1in metal
forming applications. These applications involve very large
plastic deformations and very complex friction boundary
conditions. These factors must be considered in conjuction
with strain hardening and strain rate sensitivity of the
material. In addition, dynamic effects must be taken into
account for rapid metal forming applications. The
formulation of the code is based on existing methods of
analysis. Tomita and Sowerby(29) have applied the
formulation to metal forming problems. A brief outline of
the finite element theory is given in this chapter as the
rationale for the selection of the approach. Specialised
procedures formulated by the author will be discussed in
full but standard ones will only be discussed briefly.

3.2. FORMULATION OF THE FINITE ELEMENT EQUATIONS.

A review of continuum mechanics is given by Mase(30).
However, for completeness and future reference relevant
equations of continuum mechanics that are to be solved are
given here. It is recalled that the rectangular cartesian

coordinates, X and Cauchy stresses, G&j’ are used.
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The equation of motion governing mechanical behaviour
is

6ii,i-PU;=o0 (3.2.1)

and the continuity equation for an incompressible material
is

=0 (3.2.2)

-t
-
ol

It is recalled that the components of deformation rate are
given by

~D33=(1/2)(viﬁ +v ) (3.2.3

J,i

and the effective deformation rate is given by

D=J(2/3)D;JD;J (3.2.4)
The effective plastic strain is

*
?ﬁybdt (3.2.5)

©

and the yield function to be specified for each material is
given by
Y=Y(€,D) (3.2.6)

The definition of a generalized viscosity is given by
Y =(2y)/(3D) (3.2.7)

and the Levy-Von Mises flow rule by

S$13=YPi4 (3.2.8)
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In the above equations GU is the Cauchy Stress Tensor,r
the mass density, vy the velocity, and Sij the deviatoric
Cauchy stress tensor.

The finite element method transforms the equations
3.2.1 and 3.2.2 to a system of algebraic equations. The
equivalent principles of virtual power given below are used

for this purpose. The equation thus derived is

&t-.smf\—gf(ra G\ AV - SG;S {015 \V=p 3:2-%
A v v

vi,i §Pdv=0 (3.2.10)
v
where ti is surface traction per unit area A, Gi

denotes the derivative of v with respect to time, V is
volume . 5\& denotes arbitrary variations of the
velocity components Ui which are subject to the constraint
given in 3.2.10. The arbitrary variation in pressure, &P,
and deformation rate components éDij can be expressed in
terms of 6\& using eguation 3.2.3. The components of
surface traction ti are obtained from the Cauchy stress
components V\g/ by f4'=(7'{/' {I/ where nj are the components of
the outward unit normal to the surface.

2 is now expanded with respect to a set of discrete

nodal values v,. referred toaset of basis functions T¢(x1)

L 4

Vo= T,(x',)vm, (3.2.11)

where summation over the nodes Q is implied.! T;(x;) is the

basis function of the global coordinates X for global node

1 The summation rule on repeated indices will be assumed
throughout this chapter and future chapters unless
otherwise stated.
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Q and satisfies the condition 'fe(xi)=l when x; are the
coordinates for node Q. At all other nodes the value of
this function is zero. The function varies continuously
between nodes and is chosen to give only local support to
the velocity field.

Similarly, the hydrostatic pressure is an independent
variable in a rigid-plastic formulatioﬁ. Let a different
set of nodes L be defined for pressure, and let PL be the
pressure at the L'th pressure node. These pressures can be

expanded with respect to a set of basis functions, VL as

follows

P=Y._P_ (3.2.12)

If the ex?ansions 3.2.11 and 3.2.12 are substituted
into egquations 3.2.9 and 3.2.10 respectively,- and
consideration is given of the fact that the variations gvi
and §P are arbitrary, the required finite element equations
result. These equations are listed below. In these
equations QR and ST represent single indices denoting,
respectively, the global variable number of the R'th degree
of freedom at global node Q and the T'th degree of freedom
at global node S. L denotes global variable number of the
single degree of freedom pressure, at pressure nodes. The
summation rule on repegted indices in a product term also
holds.

(M gggr) (Var)+(C gper) (Var)+(Ggq ) (P )=(Fgy) (3.2.13)

(G gr ) (Ver)=0 (3.2.14)
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(M_m_#gﬂj[(r)(‘/’s)(fq)]av (3.2.15)
v

(C£B§I)= [(Y)(BIKQR)(BlssT)]dV (3.2.16)
'}
(Gop )= |1 ( Ty ) (FL) 1AV (3.2.17)
Y
(81 =1/ [P, 9§+ (Fsr 1) §o] (3.2.18)
(v)=(To) (Vgg) (3.2.19)
(D13)=(3135T)(V21) (3.2.20)
Here GST'YEI' and Fé_ represent the acceleration,

velocity, and external force components in the T'th degree

of freedom at node S. P_ is the hydrostatic pressure at the
'

L'th pressure node. (Mjm

) (Cogeq)sr @nd (Ggg) are the

ST
mass, stiffness, and constraint matrices, respectively,

which will subsequently be denoted [M], [C], and [G].
Similarly, (GEL)’ (Vﬁl), and (P_) are the acceleration,
velocity, and pressure matrices, respectively, which will
subsequently be denoted by {G}, {v}, and {P}. SRTis the
Kronecker Delta (§qr=1 if R=T and §-=0 if R#T). A comma
denotes differentiation with respect to the global

coordinates x;. In order to solve egquations 3.2.13 and

3.2.14 the acceleration must be related to the velocity. In
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order for this to be done a finite difference integration
formulae must be adopted. Let
(V) =[ (1-p) {V}+§{V}, Jat+{v} (3.2.21)
where {V}, and {G}‘ are the global velocity and
acceleration vectors at time t+At and the vectors without a
subscript "1" are those at time t. g is a constant that can
be chosen for optimum accuracy.
1f equation 3.2.21 is substitufed into eqguation 3.2.13
and then the eguations 3.2.13 and 3.2.14 are written in

matrix form the result can be expressed as

(€1 161 7}ivy {F}
- - (3.2.22)
[c) [0] J[{P}, {0}

where {F}={F}+b_ [M]{V}+b [M]{V] (3.2.23)
and [Cl=[Cl+bg[M] (3.3.24)
bo=1/0(2) (At)] (3.2.25)
b,=(1-g)/8 (3.2.26)
For this case

nJ

n [C] [G]

[A] = - (3.2.27)
(G) [0]

is symmetric.
The system 3.2.22 can now be written
[X1{¥}=1{8) (3.2.28)
where {Y}"=[{v}",{0}7] .
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3.3. DISCUSSION OF ELEMENT SELECTION.

The global matrix [%ﬁ in equation 3.2.28 is built
conveniently by joining the nodal points by lines so as to
form elements of the material. The regquired matrices can
then be formed for each element in turn and assembled into
the global matrix.

The standard four node isoparametric Qgquadrilateral
element was chosen for the application in this work
(ref. 10). This element was selected since it 1is the
simplest finite element that can deform under plane strain
conditions with constant volume. The basis functions to be
" listed below are bi-linear for the velocity field and unity
for the pressures (or the mean normal stresses). The
pressures will thus be constant for each element and hence
discontinuous between elements.

The eiement matrices for the four node guadrilateral
are formed conveniently by mapping a distorted

quadrilateral to a unit sqQuare as depicted on the ?onowina

Pa%e.
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Illustration of the mapping to s', s?
coordinates of a 4 node guadrilateral
element

The basis functions are written in the s, and s, coordinate

system as

@,=(1-5,-5,+s,5,)/4 (3.3.1)
Bo=(1+s, -5,-5,5,)/4 (3.3.2)
Fa=(1+5,+5,+5,5,)/4 (3.3.3)
B.=(1-5,+s,-5,5,)/4 (3.3.4)

The mapping function from the local s; coordinates to the
global x4 coordinates is defined as
;= (s, ,8,)Xq; (3.3.5)

‘where Xq; is ﬁhe I'th coordinate of node Q and x; 1is the
I'th coordinate of any other point in the material. All
element integrations can then be carried out over sy
coordinates instead of x; on using the Jacobian of the
transformation 3.3.5. The integrations are carried out
using Gaussian integration which involves a sum of values

over selected points in the element.
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3.4. SPECIFICATION OF GEOMETRY.

The figure below 1illustrates how the nodal point
numbering and coordinate data 1is wused to specify the

material geometry.

1% 'S
23 \4 13
° 24 _ . =
z . 2s 9=4 s,
20 | —(\2 4=
;. 21 22 242~ =§
e — s L 5 b \
- g \9 W\ b
. . 3 q=1 g=2
1 = - *
2. 3
\
FIG. 3.4.1

Illustration of nodal point numbering
for elements.

The connectivity data consists of an array Ceq which gives
the global node number of the g'th local node in element e.
For element 6 for example, C(6,1)=11, c(6,2)=6, C(6,3)=5,
C(6,4)=12, and C(6,5)=22. The pressure node, for the linear
guadrilateral element (local element node number 5) 1is
always assumed to be at the centre of the element.

The coordinate data can be spgcified in the array as
Xy which gives the I'th coordinate at the global node Q.
Thus Xgy with Q=Ceq would give the I'th coordinate of the
g'th local node (Q'th global node) in element e.

The coordinate and connectivity data is thus
sufficient to define the region over which the solution is

reguired.
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3.5. MATERIAL CONSTITUTIVE BEHAVIOR.

Equation 3.2.8 relates deviatoric stress to
deformation rate with a coefficient ~of wviscosity. All
guantities are defined except the functional relation of
the yield stress indicated 1in -eguation 3.2.6. The
functional relation to be assumed is specified below. The
flow rule - and other definitions are re-stated for

completeness.

S;J==)’Dii (3.5.1)
Y =(2Y)/(3D) (3.5.2)
Y=(1+c,€)¥ [¥,+c,(D-Do)3] if T>D, (3.5.3)
Y=«D if D<D, (3.5.4)
where 5;=(1+c|3)7Y°/a; (3.5.5)

Here ¢ , Y, ¢ c., are constants for the material. o< is an

L’
initial constant slope on the Y against D curve to prevent
Y/D from becoming infinite as D—0.

Graphically the assumed constitutive behaviour is as

illustated in Fig. 3.5.1 on the following page,
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FIG. 3.5.1 _
Illustration of the constitutive
behavior assumed.

The static yield stress for material that has an effective
strain e is Yo(1+c{€fy. I1f c,#0 strain hardening will thus
occur. The'yieid stress may also be strain rate sensitive.
In this case it is assumed that the annealed yield stress
increases by CL(EJEQ)Ca. The suggested combined effectsof
strain rate sensitivity and strain hardening was not used
in any of the «calculations. Only the separate cases of
strain hardening with no strain rate ‘sensitivity (c,=0) or
strain rate sensitivity with no strain hardening (c,=0)were
assumed.

It was established that equation 3.5.3 was sufficient
to account for the variation of the yield stress of aluminum
with strain hardening and also the yield stress of
plasticine with strain rate sensitivity. These materials
were used in this work to compare the computer code

predictions with experimental results.



38

3.6. ELEMENT ASSEMBLY

The process of element assembly can be indicated as
follows. 1If A§r§$Y§i=B;i represents the algebraic
equations for a single element only and  Agrey Yg4=Bgr that

for the total structure, then

Aﬁ.ﬂ=ZA§r§1 (3.6.1)
e
and Blt:EB:}. (3.6.2)
e

where Q=Ceq and S=Ces.'

On referring to egquation 3.2.22 it can be seen that
[A] contains elements of [C] and [G]. In the computer code
it 1is important to be able to selectively assemble [C] or
[G). For example, on iterating with respect to material
viscosity, only [C] changes from one iteration to the next.
[6G] and [G]T are independent of viscosity and only change
when the material is incrementally strained. Thus only [C]
needs to be updated on an iteration. If inertia is not
being considered then the update for wviscosity change is

easily done since [M]=0 and [C])=[C] from equation 3.2.24.

'Here Agrst, which is an element of [A], can be considered
an influence coefficient between the QOr'th and St'th global
solution variables. Qr refers to the r'th solution variable
at global node Q and St to the t'th solution wvariable at
global node S. Similarly, at the element level, ASce:
which is an element of [A]®, can be considered an influence
coefficient between the gr'th and st'th element solution
variables. _Qr refers to the r'th solution variable at
element node g and st to the t'th solution wvariable at
element node S. In the present formulation there are 2
velocity components at velocity nodes and one pressure at
pressure nodes.
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I1f inertia is being considered, however, it is useful to be
able to take advantage of the fact that [M] is independent
of wviscosity and does not have to be recalculated on
iterations.

The usual procedure followed in the code for assembly
is as follows. On the first iteration of an increment
(wvhich occurs on the first run or just after the material
has been incrementally strained) assemble, for each
element, [C]e, [G]e, (M]S, and [F]®. Then form [%ﬁ?’ from
equation 3.2.24 and {?}e from equation 3.2.23. Then form
the total element matrices [%ﬁeand {%ﬁe and assemble into
the global matrices to give [%ﬁ and [%ﬁ. While assembling
the element matrices also form [M] as a separate global
matrix. On the remaining iterations after the first on an
increment assemble only [c]® into [A]. After this assembly
add b, [M] into the [C] submatrix of [A] to form [Xﬁ.

The procedure outlined above avoids a reformulation of
[M] and {g} which do not change when viscosity only is
updated after an iteration on an increment. They only
change when the material is incrementally strained.

3.7. BOUNDARY CONDITIONS.,

Much of the material 1in this section has been
specially formulated for this work. Reasonably full details

will thus be given.
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3.7.1. Specified Velocity and Mean Normal Stress

As a result of the discretisation process, the
continuum problem governed by the equations of motion and
continuity has been replaced by a discrete problem governed
by a system of algebraic equations of the form.

[A){Y}={B} (3.7.1.1)
Before insertion of any boundary conditions the matrix [A]
will be singular. Sufficient boundary conditions must be
supplied to define the problem; in particular, all rigid
body motions must be removed. Several different types of
boundary conditions will be outlined in subsequent
sections,

Let {Y}" be written [{Y}F,{Y}:] such that {Y}Tcontains
unknown velocities and pressures and {Yf{contains specified
velocities and pressures. The sub-system

[a), {¥}, ={B} -[a],{Y}, (3.7.1.2)

represents the system of equations that is to be solved

for non specified variables. The solution {¥}, will
automatically reflect the requirement of the specified
nodal variables. The solution {Y}, found subject to the
specified {Y}, will not in general satisfy the remaining
part of the system 3.7.1.1 namely

[(al, (¥}, ={B},-[a] (¥}, (3.7.1.3)
The residuals for each eguation in 3.7.1.3 can be
interpreted as the reaction (a force for velocity or flow
rate for pressure) fhat is required to give the specified
variable to which the equation refers.

From a computational standpoint it may be convenient

to solve for these reactions directly. This can be. done by
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writing the system 3.7.1.1 in the form

[a] (0] {v} {B} -[A] _{Yv}
" oo ‘ ‘et (3.7.1.4)
(al,, =11 | |tr} {8}, ~{a},, (¥},

Thus only a transformation on the matrix [A] and 1load
vector {B} 1is required in order that the solution of the
transformed system yield reactions in place of sbecified
variables. If required, the symmetry of [A] can be
preserved by setting [A],, to zero and replacing {R} by {X}
say. After solution when {Y} . and {X} have been calculated,
{R} can be found from

{R}=[a],, {¥} +{x} (3.7.1.5)

In practice {t may be more convenient to adopt the
approach discussed above for solving for the reactions
directly rather than solving the . sub-system 3.7.1.2
separately. This situation occurs since only a permuted
form of [A] 1is stored 1inside the computer and also
advantage must be taken of the banded structure of the
matrix,

3.7.2., Surface tractions.

To account for surface traction, equivalent nodal
forces must be formed by an integration over the sides of
the elements. The results are then added into the 1locad
vector {%3 in equation 3.2.22. Should adjacent elements
have surface traction or the same element have surface
traction on more than one side, then this addition process
will finally result 1in the complete 1load vectors for

surface traction being formed.
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3.7.3. Platen Friction

In the system of eqguations 3.7.1.2 1 a subscript 1

variables anéd 2 known variables.
[a],, {¥} ={B}, -[A],, {¥}, (3.7.3.1)

could be solved as a separate system and is interpreted as
the solution for {Y} subject to the applied force vectors
{B} and additionally -[A],, {Y},. The latter force vector
can be interpreted as the external forces that must be
applied to make the variable {Y} consistent with the
applied constraints. The residuals

{R}=[A],, {¥}, +[a),, {¥},-{B}, (3.7.3.2)
are the generalised forces that are reguired to achieve the
constraints.

Coulomb friction essentially relates the normal stress
between two surfaces, FN’ to the shear stress, 7/ , that
results due to sliding contact by a coefficient of friction
according to the following relationship

7=7F\ (3.7.3.3)
1f now motion of a boundary 1is specified 1in the normal
direction then a normal reaction results. The coefficient
of friction times the reaction will then be a 1load vector
that should constrain the sliding motion of the surface.

Let node W be one of the nodes where friction is to be
supplied. Let 2 be the degree of freedom in which velocity
is to be specified and hence the direction of the normal
reaction. The Figure below summarises the notation for the

application being considered.
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FIG. 3.7.3.1
Illustration of the compression in
plane strain of a block of material
between two platens.

Specification of v, will give a normal force on the
top face BC of the specimen. The eguation of motion of node
W in the second degree of freedom occurs in the system
3.7.3.2 while the eguation that governs motion in the first
degree of freedom at W will occur in the system 3.7.3.1.
Now R is a vertical reaction force that results when the
velocity v, is specified. The <coefficient of friction,
denoted by 79, times this reaction must be added into the
load vector of the equation that governs motion of node W
in the horizontal direction. This constraint on sliding is
conveniently applied by putting —7P into the diagonal of
[0] in equation 3.7.1.4 in the row for the horizontal
degree of freedom at node W.

During the course of a solution, after every iteration
on every increment, the status of all platen f;iction nodes

is examined. On the first iteration of the first 1increment
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in the code all surface nodes under the platens are made to
stick to the surface by imposing velocity constraints. From
the horizontal reactions that result the direction that
nodes want to move in can be determined. Depending upon the
magnitude of the vertical reaction a node is either left
stuck to the surface or allowed to slide. Sliding is .
allowed if the estimate of the frictional force that would
hold 1i1f the node were releaéed is less in magnitude than
the sticking reaction force. It is then assumed that the
node could slide with the friction force acting in the
direction opposite to that of motien along the surface. bn
iterations after the first, 1if a node 1is found to be
sliding in the same direction as the friction force, it is
constrained to a stick condition.

The code 1includes routines that allow a completely
arbitrary boundary movement. Node§ can stick to the
platens, slide along the platens, or move away from the
platens. Nodes already free are automatically restrained if
they again reach the platens.

Until now boundary friction has been discussed with
the assumption that the <coefficients of friction at the
platen friction nodes are known. If this is not the case it
is then of interest to be able to predict the coefficients
of friction based upon information about boundary
velocities in the sliding direction. What we have «called
the Master-Slave Node Method 1is one approach and is
discussed. Before doing this it should perhaps be stated
that the prescription of boundary velocities all along a

surface where friction acts would not in general be
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satisfactory. This procedure effectively totally constrains
the boundary and forces it to move in a way that may not be
consistent,. For exzmple, with the assumed constitutive
behaviour it is much better to minimise the boundary
constraints and predict the observgd motion. A second
approach might be to solve the problem several times with
different coefficients of friction and then to predict the
best one by interpolation. This technique wduld, however,
require solving the problem several times. The Master-Slave
Node Method overcomes both these difficulties.

The method first requires the choice of a boundary
node where friction acts. The success of the method is
dependent upon the sliding wvelocity of the node being
sensitive to friction conditions along the whole platen
boundary. In the present application this node occurs at
the top right hand corner of the specimen and is

illustrated in the following figure on the next bage.
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FIG. 3.7.3.2
IJllustration of the top right hand
guadrant of a specimen with the slave
friction nodes and the master friction
node shown.

The basic idea of the method is to impose the measured x'
component of velocity at the master node and then to adjust
the coefficients of friction at the friction nodes until
the ratio of the tangential to the normal reactions at the
master node becomes equal to the coefficient of friction at
the slave nodes. The calculation will now be briefly
outlined.

Let F be the sum of the tangéntial friction forces of
the sliding slave nodes along a platen and let R be the
tangential reaction of the master node. A coefficient of
friction ,7, is calculated from'7=(F+R)/(R5+Rn) where R is
the total vertical (or normal) reaction of the slave nodes

and Ry, 1s the vertical reaction of the master node.
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Corrections to 7 are made on the basis of the ratio for
sliding nodes of the total tangential force to the total
normal force. It was found numerically that |R/R |

approached 7 on iterations.

3.7.4. Glass Friction.

During  the solution of the system of equations 3.2.22
the nodal pressures are obtained as basic solution
vériables. This pressure 1is the mean normal stress and ,
for plane strain conditions, is the pressure distribution
that the glass plates enforce on the material. The
assumption of Coulomb friction allows a shear stress to be
calculated from this normal pressure. An integration over
the face of each element in contact with the glass plates
then allows a' set of consistent nodal forces to be
calculated from the principle of virtual power. These nodal
forces will be referred to the velocity nodes and will be
related directly by matrices to be derived to pressures at
pressure nodes. This latter fact will allow the load terms
to be added to the equations on the left side rather than
the right by a transformation on the global matrix that
involves subtracting terms off the constraint matrix [G] in
eguation 3.2.22. As this approach is entirely unique to
this work full details will now be presented.

Fig. 3.7.4.1 depicts ‘material deforming 1in plane

strain between glass plates.
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FIG. 3.7.4.1
Illustration of material defcrming in

plane strain between glass plates.

The small area AA is contained within a finite element

e and 1is sliding between the glass plates in a direction

given by the unit vectoru,. The glass friction, which acts

on both sides of the element, must be in the direction—ui.

On taking into account that the pressure, P, exerted by the

glass plates is negative when compressive one can deduce

that the net glass friction force AF, acting on the

material ABCD with area AA in contact with the front and

back plates is
AFi=-27%PuiAA (3.7.4.1)
where 73 is the coefficient of friction for the material
being compressed for sliding along the glass plates.
If jv,is an arbitrary virtual variation of wvelocity
for the differential element the virtual power involved
will be 2(73PuiAA)Svi- If this differential power is

integrated over the finite element the virtual power, Sﬁe;
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associated with the element is obtained as

§We=2 (7gPu gv)ar®  (3.7.4.2)
AC
where the integration is taken over one face of the finite
element in contact with the glass. The series expansions
v, =Totr9; and 1. P_ for velocity and pressure as given in
equations 3.2.11 and 3.2.12 can be substituted into 3.7.4.2

to give

Gwe=12 (’75u‘.7°9%)dAe]PLS-V¢R (3.7.4.3)
Ae_

where u. is the unit vector in the direction of the particle
i

velocity vy -

The glass friction acting over the element e is thus
equivalant tb a generalised force vector Fg} such that
Qﬁe=F¢ngQr, where SVQ¢ is a virtual nodal force velocity
vector. Thus

Far =12|(7quc T, thaa®1p (3.7.4.4)
AS
where FS} is the r'th component of generalised force at
node Q. This can be written in matrix notation as
{F}®=[x1%{p}* (3.7.4.5)
On assembling the force vector in 3.7.4.5 into the

equation 3.2.22 one obtains the system
[ [61-1x) 7[iv}, {F}
< = (3.2.22)
(1" f[o0] {P}, {0}

Thus a transformation on the matrix [A] 1in equation

3.2.28 1is reqguired to account for glass friction once the
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equivalent element load vectors have been calculated.
Additional constraints are required if both. sticking
and sliding frictionare to be accounted for. Let videnote
nodal velocity, Finodal force due to sliding friction, and
Ri nodal reaction calculated for a stick condition. The

following criteria were found to be satisfactory.

A). 1If the node is sliding calculate viFf If viFfO, apply a
velocity restraint of zero to simulate a stick condition.
Otherwise continue to allow the node to slide. In the case
of nodes in contact with the platens this «criterion is
not used. In this case the glass friction force is added
onto the platen friction force and then the decision on
recapture to a stick condition made by the platen friction
routines as outlined in gection 3.7.3.

If an external boundary condition exists at the nodes,
such as the downward velocity of the top platen, then the
boundary condition is maintained regardless of the glass
friction since it is then implicitly assumed that the
required external force to maintain the velocity constraint

is always being applied.

B). In the case of a node that is stuck to the glass plates
the angle 4 between Ri and Fi is calculated from
‘_COS'1[RHE/(\RJ\€J)]. If § is between 90° and 270° it is
assumed that the node would move in the direction of the
velocity if released. In this case it is thus constrained
to zero velocity. If the angle B is less than 80°, it is

allowed to slide provided also that \Fﬂ<\3ﬂcos(9). This
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latter check 1is to estimate whether the reaction force in
the direction of Fiis less than the magnitude of F,. Again

platen friction nodes are dealt with by platen friction

routines with the glass friction force taken into account.

An additional consideration that arises in the treatment of
glass friction is the case where an element has all of its
velocity nodes «constrained to a stick condition. In this
case the element pressure (which is constant for the four
node qguadrilateral) becomes indeterminate. This situation
occurs beacause the continuity equation is satisfied
automatically and the incompressibility constraint cannot
be invoked by determining the element pressure.
Computationally, application of the method described in
section 3.7.1 for transforming the matrix [A] to «constrain
boundary condition velocities for the element would lead to
a line of zeros in the matrix making it singular. In this
case the element pressure previously calculated for the
element 1is applied as a boundary condition. The procedure
outlined in section 3.7.1 then leads to a flow rate being
determined as a reaction. For a stick condition, the

flow rate would be determined as zero thus satisfying
continuity. The advantage of this procedure is ;hat the

singularity is easily removed in the calculation.
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3.8. NONLINEAR GEOMETRY.

A piecewise constant incremental approach was adopted
for taking 1into account the geometry change of the finite
element meshes due to strain, The velocity field was
calculated keeping the finite element mesh fixed and then
the velocities were multiplied by a time increment to give
a new distorted mesh. The velocities would then be
.re-calculated and the process repeated.

The time increment was automatically controlled by the
program. The user specifies the maximum strain he will
tolerate. The program will then automatically choose the
time increment 'to keep the strain at the specified
tolerance.

The piecewise constant geometry approach neglects
certain terms that would occur in a piecewise linear
approach. During mesh distortion, for example, the
principal stress vectors rotate and change 1in magnitude.
Incrementall stresses thus result that, in the piecewise
constant approach, were not taken into account in the
virtual power eqguation. Since these incremental stresses do
contribute to the power the size of the strain increment
must be small enough to make these incremental stresses

negligible.
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CHAPTER 4

THE EXPERIMENTAL STUDY.

4.1. INTRODUCTION.

In the experimental work a study was undertaken of the
rapid plane strain compression of a rectangular block of
plasticine between flat, parallel, and rigid platens.
Specimens of wvarious height to diameter ratios (H/D) were
used and different compression speeds selected. Specimen
deformed profiles were examined from high speed photographs
taken at wide range, and détailed boundary motion was
examined from high speed photographs taken at close range.

The experimental results obtained are used as a basis
of comparison with the results of calculations obtained
with the finite element code discussed in chapter 3.

The details of the experimental work are outlined in
the following sections. In Section 4.2 the eqguipment used
is discussed. 1In Section 4.3 an outline of the test
procedure is discussed. In Section 4.4 the procedure
followed to calibrate effective stress to effective strain
rate for plasticine is discussed. Finally, in Section 4.5,
the experimental results are presented and general
observations made regarding the deformation patterns.

4.2. EQUIPMENT.

A photograph of the Dynamic Impact Press (DIP) is
given in Fig., 4.2.1.(a), and a schematic drawing of the DIP
is shown in fig. 4.2.1(b). This press was designed and
built by the author's advisor Professor G.W.Vickers. It
consists of a large motor driven wheel attached to a

Whitworth quick return mechanism, The main purpose of the
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drive wheel was to drive a cam along the cam guides. At
each end of the cam guides were placed optical sensors ,
0S1 and 0S2, which enabled a seguence of electronically
controlled events to occur during a test.

Prior to initiation of the test cycle the cam just
freely moved up and down the cam guides as the drive wheel
rotated. When the test sequence was initiated, 0S! was
activated. When O0S1 detected the cam the solenoid was
energised. When the cam next reached the top of the cam
guides, the solenoid mechanism engaged and the <cycloidal
cam was pulled down through the cam followers. This in turn
caused the upper platen to move down with constant velocity
onto the specimen. When the cam, which was now attached to
the cycloidal cam, again reached the top of the cam guides
the cycloidal cam was released.

‘In order to photograph specimens under dynamic
conditions, high speed photography at about 2000 frames per
second (FPS) was required. The high speed camera used was a
Hycam rotating prism type which wused  16émm film and was
capable of operating at 10,000 FPS. The camera was designed
to pull the film through a film gate at high speed with the

image reflected onto the film by a rotating prism.

Of importance to this work was the capability of
synchronizing the camera start pulse to the compression of
plasticine by the platen. Fig. 4.2.2 shows a schematic

diagram of the logic of the electronic circuit designed for
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this purpose.' When the system was enabled by pressing a
button (P/B) a preset camera start delay was initiated when
the cam reached 0S2 in Fig. 4.2.1(b). The time taken for
the cam to move between OS1 and 0S2 was the time base for
this delay. When ‘the cam reached O0S1 the solenoid was
activated to enable the cam to engage the cycloidal cam.
Th; segquence then previously described proceeded. The
camera started after the preset time delay and stopped when
the end of film was detected. After the 1impact, the
solenoid was released when a mechanical micro switch (MS)
was reached by the cam. This action allowed the cam to
disengage when it next reached the solenoid.

The preset time delay for the camera was set manually
using the Synchronization Control shown in Fig. 4.2.2. The
indicator flashed when the two pulses from OS1 and 0S2
indicated that the camera advance setting was correct.

Fig. 4.2.3 shows a schematic drawing of the specimen
holder. This arrangement was designed by the author with
the objective of enabling a wide field of view for the
camera lens with impact at maximum speed onto the specimen.
Adjacent to the specimen holder is shown a graph of upper
platen velocity against displacement. The curve shoys that
over most of the displacement path the wvelocity was
constant.

Fig. 4.2.4. illustrates the experimental arrangement

that was used for compressing specimens in plane strain.

' Courtesy of John Richards, Electronics Technician,

University of B.C.
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The front view shows a plasticine specimen in position. The
specimens were typically 3 inches high, 1.5 inches wide,
and 1.375 inches thick. Squares of 1/8 in. were also drawn on
the surfaces to enable the movement of points to be
followed. Scales were mounted on the glass plates in front
of the specimens and also on the upper platen. These scales
enabled velocities and distances to be determined on the
photographs.

The side view in Fig. 4.2.4 shows the specimen between
the glass plétes. The platen shown deformed the specimen by
passing between the glass plates.

Also shown in Fig. 4.2.4 are velocity and displacement
transducers. The displacement transducer is essentially a
linear variable differential transformer with a 6V DC power
supply to a solid state oscillator. The velocity transducer
oberated by magnetic induction and this required no power
supply. The outer casing is magnetised and the self-induced
voltage was proportional to the velocity of the inside coil
through the magnetic field.

A DMS 510 Digital Memoryscope with a single channel
could be connected to the displacement transducer, velocity
tranducer, or load cell for direct recording and subsequent
plotting.

Fig. 4.2.4 also illustrates a typical 1lighting
arrangement used with the camera in position. A high
intensity 1light was required for the film speeds used. The
camera had a tele-photo lens attached which enabled very
close examination of the specimens during deformation.

Fig. 4.2.5 shows some characteristics of the high
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speed camera obtained from an examination of timing marks
on the film. 100 ft of film was able to travel through the
camera in about 1.5s. Since only 26ms was typically
required for the traversal of ﬁhe upper platen from the
highest to the lowest position, there was adequate time for
the specimen deformation to be captured on only a few feet
of film. During specimen compression the film speed would
usually be abou£ 2300 FPS.

In Fig. 4.2.6 is shown calibration curves obtained for
displacement and velocity transducers. It was confirmed
that the manufacturers specifications on linearity were met
over the region tested. Fig. 4.2.7 shows a calibration
curve for the load cell. The 1loading in this case was
carried out on a Tinius Olsen Mechanical Load Testing
Machine capable of loading accurately to 60,000 pounds.
From the series of detailed calibration curveé constructed
the load cell was found to be accurately linear to the
maximum specified loading value of 25000 pounds.

4.3. TEST PROCEDURE,

4,3,1, Introduction.

The test procedure involved a). Preparation of
specimens, b). Photographing the specimens being deformed
and developing the film, and <c¢). Viewing the film and

digitising the results.



58

4,3.2. Preparation Of Speciméns.

Plasticine specimens were prepared by first cutting
them to shape with a thin strand of wire. The grid lines
were marked on the plasticine with a Staedtler Lumocolor
pen. As the ink flows from the tip of this pen by venturi
action minimal pressure was required between the tip and
the surface. The ink was absorbed into the plasticine. It
was found that the grid patterns were qQuite resistaﬁt to
shearing stresses from the glass plates provided no
lubrication was applied to the plasticine specimen.
Lubrication with light o0il tended to absorb a thin layer of
plasticine with the result that the grid pattérns were
destroyed with only a small amount of movement.

4.3.3. Photographing The Specimens And Developing The
Film,

In carrying out the tests a systematic procedure was
essential since a considerable amount of preparatory work
could easily be lost. The following steps were
systematically followed during testing. Fairly specific

details are given for completeness.

1. The impact press drive motor and electronic control
system were connected to the main power supply.

2. The Bridge Amplifier Meter (BAM) was balanced. The BAM
was a Wheatstoﬁe Bridge attached to the strain gages
in the load cell. A final balance was carried out when
the BAM had reached a steady state thermal condition.

3. The plasticine specimen was next placed in the impact

press specimen holder with the glass plates in
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position. If regquired, the lower platen was lubricated
before putting the specimen in position.

With the floodlights on for as short a time as
possible, the camera was focused with a detachable
focusing prism and the aperture set after measuring-
the 1light intensity with a lightmeter. The focusing
prism was then inserted directly in the film gate
position and the 1image that would reach the film
observed. Any positioning adjustments were then made.
The camera was next loaded with the film. 100ft rolls
of Eastman 4-X Negative Film 7224 were used. This is
1émm film prepared specially for high speed cameras.
The camera supply voltage was set (usually to 75V),
and the film timing light generator was turned on
usuially at 1000 pulses ﬁer second (PPS). The timing marks
placed on the film by thé pulse generator allowed the
film speed to be determined.

The BAM balance was next re-checked, and the digital
storage scope made ready for accepting the pulse from
the load cell during impact. The scope was adjusted to
self trigger at an early point on the load pulse and a
sweep time of 10ms per scope division was used.

The impact press drive motor was next started to give
a specimen impact speed of usually im/s. The
synchronization timer for the camera advance was then
set.

The camera supply variac was next tufned on. This was
not done previously to avoid having the camera start

early because of an extraneous pulse during the
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starting procedure.
10. Finally the floodlights were turned on and the scope
| rechecked to ensure that no extraneous pulse had
caused it to trigger early.  The automatic
photographing sequence previously described was then
enabled.
11. On completion of the test, a hard copy of the load
trace captured by the storage scope was obtained by
~attaching an X-Y recorder (model WX4400, Watanabe
Instruments Corp). A photograph of the scope screen
would also usually be taken as an additional record.
12. Finally, the f{film was removed from the camera and
developed in a developing tank (Nikor Film Processing
Machine) wusing Kodak D-76 developer (6 minutes at
70°F), a Glacial Acetic Acid stop bath (1 minute), and
Kodak Rapid Fixer (10 minutes). This processing_ was

followed by 30 minutes of washing in running water.

4,3.4, Viewing The Film And Digitising The Results.

After the film was developed it was examined using a
16mm Athena Model 224 projector. This projector could
display single frames and be pulsed at an arbitrary rate in
either direction. The images were projected directly onto
drawing paper at a reasonable size and the grid patterns
sketched directly over the images. From various vertical
and horizontal scales attached to the specimen holder on
the impact press, the scale factor for each drawing could
be found . It was established that there was no significant

optical distortion in the projected frames. It was also
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established that the heat from the projector lamp when left
on a stationary frame for longer than would be required in
sketching produced no detectable movement of the image.

After sketching the specimen grid patterns for a
series of frames (usually corresponding to equal time
intervals) and establishing the scale for each frame, the
coordinates of the points on the surface defined by the
intersection of grid lines were found with the use of a
digitising machine supported by the UBC Computing Centre.
The coordinates of the points for a series of grid patterns
could then be used to plot, for example, a series of path
lines or a velocity field.

4.4. CALIBRATION OF PLASTICINE.

Aku, Slater, and Johnson(31) found that plasticine is
very strain rate sensitive but essentially not strain
hardening. While ref. 31 gave several calibration curves
for plasticine, it was decided to do, as part of this work,
a calibration of effective stress to effective deformation
rate for the plasticine to be used in the experimental
tests.

Axisymmetric cylinders of plasticine were wused for
calibration purposes. The mainobjectivewas to deform
cylinders of various diameters but of the same height so as
to obtain a range of loads for the same deformation rates.

Fig. 4.4.1 shows two examples of the plasticine
cylinders wused with the final results of the deformation
shown for interest. Fins were moulded on the sides of one
of the specimens to enable the boundary to be clearly

defined on the high speed photographs. Radial 1lines drawn
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on the tops of the cylinders was an indication that the
deformation was reasonably axisymmetric over the whole
compression.

The series of photographs shown 1in Fig., 4.4.2 are
examples of the compression of the plasticine cylinders.
The film tiﬁing marks and the scales attached to the load
cell enabled platen velocities to be determined. The
photographs in fig. 4.4;2 show that the boundary remained
guite straight during the deformation. The heights shown on
the photographs were determined from the scale factor as
were also the diameters. A check on volume constancy was
carried out by calculating the diameters of the specimens
assuming wuniform compression. The results are shown in
brackets above the measured diameters in Fig. 4.4.2,
Comparison of the ﬁredicted and measured diameters show
reasonable agreement,

A typical displacement against time curve for the
upper platen 1is shown in Fig. 4.4.3. A series of marks
along the curve show the positions that were used for
calibration, The zero point on the time axis was chosen as
the position of maximum velocity which occured at
approximately the centre position between the limits of
displacement. The velocity at any point is the
instantaneous slope of the curve which varies slightly over
the region of deformation, The piecewise linear
approximationsA-B, B-C, C-D, and D-E were used to estimate
the velocities for the various photographs.

Fig. 4.4.4 shows the load trace with the positions of

the frames selected for calibration purposes. With the
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velocity of the upper platen known at any point in the
deformation together with the specimen height and load, it
was possible to calculate both the effective stress and
effective deformation rate. The calibration data obtained
is plotted in Fig. 4.4.5.

4,.5. EXPERIMENTAL RESULTS.

4.5.1. Introduction.

The experimental work was done on plasticine to
observe the deformation profiles and measure the platen
loads throughout the straining history. The results
obtained are compared to finite element predictions in
chapter 5.

4.5.2. Experimental Tests.

For all tests, the procedure outlined in Section 4.3
was followed. The tests to be discussed are 1listed below.
Each test will then be considered in detail.

Test 1. Plane strain compression at a platen speed of
4.4m/s of an unlubricated specimen with the
standard dimensions of 3in. high, 1.5in. wide,
and 1.375in. thick between glass plates with the
full specimen in the field of view of the camera.

Test 2. An identical test to 1 but with the camera at
close range to the top platen. This test was
carried out to observe the details of the motion
along the platen boundary.

Test 3. This. test was a repeat of test 2 but with
household o0il as a lubricant for the platens.

Test 4. This test was identical to test 1 but with a
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platen speed of 2m/s.
Fig. 4.5.2.1 summarises the results of test 1. The top of
the specimen deforms the most initially but movement at the
base of the specimen increases as the deformation proceeds.

The results were digitised from enlarged sketches
taken from the projector 1image as discussed in Section
4.3.4. From the digitised results, a computer plot of the
path 1lines was obtained. This ’'plot 1is given in Fig.
4.5.2.2. The lines 3join the instantaneous positions of
selected nodes 1in the material and reveal that the top
surface remained stuck to the upper platen for the first
three photographs used (frames 3, 5, and 6 1in Fig.
4.5.2.1). The remaining two photographs (frames 7 and 8)
reveals that slip did occur at the top right hand corner of
the specimen. This slip is shown alsoc by the behaviouf of
ﬁoint C in Fig. 4.5.2.2. Except for this slight edge slip,
however, a non-slip condition exists.

On Fig, 4.5.2.1 is also shown a 1load trace obtained
for comparison with finite element predictions in chapter
5.

Test 2 was intended to examine the motion of the
plasticine along the unlubricated top platen boundary. Fig.
4.5,2.3 shows the results. At t=-0.4ms the platen is just
above the surface. The remaining series of photographs
shows that no motion takes place along the impact boundary
except for the element at the top right corner as was
observed 1in test 1. éig. 4,5,2.4 is a superimposed drawing
of two specimen grid positions. These were obtained by

projecting the images onto tracing paper as described in
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Section 4.3.4 and then superimposing each of the drawings.
Fig 4.5.2.4 shows the result and confirms accurately fhe
observations made eérlier regarding a full stick condition
except for slip at the top right hand corner of the
specimen.

For test 3 the platen surface was lubricated with
light o©il to give a slip boundary condition. Fig. 4.5.2.5
shows thé photographs obtained and Fig. 4.5.2.6 shows the
superimposed tracing ‘obtained 1in the same way as Fig.
4.5.2.4. A comparison of Fig. 4.5.2.4 and 4.5.2.6 confirms
that the deformation is more homogeneous in the slip case.

In test 4 the specimén'was unlubricated and the platen
velocity was 2m/s instead of 4.4m/s. The deformed profiles
are shown in Fig. 4.5.2.7. At the start of the compression
the deformed profiles were similar to those obtained at
4.4m/s. After significant straining had taken place,
however, some differences were apparent. These differences

will be discussed in chapter 5.
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CHAPTER 5

FINITE ELEMENT MODELLING OF PLANE STRAIN COMPRESSION.

In this chapter the results of numerical modelling of
plane strain compression are presented. For the purposes of
code verification, the cbmputer code predictions were first
compared with experimental results, Once it had been
established that the model was satisfactory, a systematic
series of modelling tests were done. The main purpose of
the tests was to investigate the effects of material
properties, inertia, friction boundary conditions, and
specimen dimensions on the stress and deformation patterns
in the material being compressed 1in plane strain. The
results are then used to make fundamental conclusions about
the effect of the variables in general die-forging
operations.,

The following sections are presented in this chapter.
Section 5.1 presents the results of some initial tests with
the code for the purpose of determining suitable finite
element parameters. Section 5.2 presents the results of
experimental tests on plasticine and compares them to the
finite element results. In addition, a comparison is made
with experimental tests on aluminum. Section 5.3 <considers
some rigid-perfectly plastic results and Section 5.4 some
strain rate sensitive and strain hardening results. Section
5.5 considers the dynamic compression of aluminum at
100m/s. Finally, Section 5.6 considers the stress
distributions for both the rigid-perfectly plastic

guasi-static cases and the dynamic compression of aluminum,
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5.1 DETERMINATION OF THE FINITE ELEMENT PARAMETERS.

5.1.1. Homogeneous Compression.

The program was tested for the case ¢f homogeneous
plane strain deformation as discussed in chapter 2. In this
case the solution is linear and the finite elements are
able to represent the solution exactly. Fig. 5.1.1.1 shows

a velocitv vector plot for this case.

5.1.2. Number Of Elements.

The effect of element size was considered by test
calculations in all applications in this work.

Fig. 5.1.2.1 compares the deformation of a 15 and 50
element idealization of an aluminum block at 44% vertical
strain. The 15 element case 1lacks detail but both
approximations are guite consistent. The comparison shows
that significant detail would be lost if the 15 element
case were used intead of the 50. For this case 50 elements
was taken as an acceptable amount. However it was found
that 144 elements were required to give a satisfactory
comparison with our experimental tests on plasticine.

5.1.3, Determination Of Allowable Strain Increment.

During initial program. testing a preliminary
assessment was made of the maximimum allowable strain
increment. A 15 element idealization of a block of aluminum
was modelled with a linear distribution of horizontal
velocity and a constan£ vertical wvelocity on the top
boundary. The block was deformed to 83% of its initial
height in 1, 2, 4, 8, and 12 incremental steps. In each

case the shear stress on the top boundary was plotted after
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the reqguired number of incremental steps had been taken to
reach the final height. This shear stress 1is plotted 1in
Fig. 5.1.3.1. It was found that the shear stress did not
change significantly bétween 8 and 12 increments. Thus a 2%
incremental strain step gave reasonable accuracy.

5.1.4, Constitutive Relations.

The assumed relation of yield stress to strain
hardening and strain rate sensitivity selected for the
finite element program is given in eguation 3.5.3. In this
work the two real materials that are considered are
aluminum and plasticine. In the constitutive relations used
aluminum is considered strain hardening but not strain rate
sensitive. Plasticine 1is <considered to be strain rate
sensitive but not strain hardening.

The constitutive relation for the strain hardening
case is found from eguation 3.5.3 by setting c,=0 to
indicate no strain rate sensitivity. This then gives

v=(1+c,8)7Y, (5.1.4.1)
where © is given from equation 3,2.5.

Fig. 5.1.4.1 shows curves of © against '@ for aluminum
obtained from various sources. The one used 1is 1indicated
and corresponds to the constants c,=16.436, ¥=0.25 with
Y,=106.18MPa, the static yield stress for annealed
aluminum,

Based upon experimental calibration tests for
plasticine in chapter 3 the relation given below was assumed.

G =4650D (5.1.4.2)
Here - 6 is in Pa and D is in s°'. This relation was used by

the finite element code for the modelling of plesticine and
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is plotted in Fig. 4.4.5.

5.2 EXPERIMENTAL COMPARISONS.

The purpose of the comparison of the finite element
code predictions with 'experiment was to verify that the
numerical model proposed was satisfactory. Once a
satisfactory comparison with experiment had been obtained,
modelling results without experimental comparison could bé
accepted with confidence.

.5.2.1. Comparison Of The Finite Element Model With
Experimental Tests On Plasticine.

The experimental testing technigue for plasticine was
outlined in Chapter 4. Figs. 5.2.1.1 and 5.2.1.2 show the
profile of experimentally deformed plasticine specimens for
a compression speed of 2m/s and 4.4.m/s respectively. The
experimental results for these two speeds show somewhat
different patterns. At 4.4m/s there is less bulging at the
top than for 2m/s.

Finite element calculations were done for the case of
compression at a speed of 4.4m/s with a coefficient of
friction for glass,73, of 0, 0.1, and 0.235. The
coefficient of friction for the platens was taken as 0.2489
for all cases based upon tabulated wvalues. The finite
element model will give similar results at 2m/s and 4.4m/s
as the dynamic effect is shoyn not to be a factor at this
compression speed and the friction law is velocity
independent. Figs. 5.2.1.3(a) and (b), Figs. 5.2.1.4(a) and
(b), and Figs 5.2.1.5(a) and (b) show the results for each
of the cases respectively. Fig. 5.2.1.6 shows a comparison

of the final deformed shapes for plasticine at 2m/s and
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4.,4m/s with the finite element results for 4.4m/s. Based

upon these figures the following conclusions can be drawn.

A). The finite element results with 7%=0.235 predict a
deformation pattern that is a good approximation to the

experimental result for a compression speed of 2m/s.

B). The finite element results with 73 =0.1 are a good
approximation to the experimental results for a compression

speed of 4.4m/s.

C). The final deformed shapes, which involve very large
plastic deformation, agree remarkably well with the

experimental results.

D). Glass friction is an important parameter to include in
the analysis if the correct deformation profiles are to be
obtained. This conclusion was also reached on the basis . of

the total load measured during the experimental tests.

E). A velocity independent friction 1law may not be
appropriate for the glass friction on the plasticine

specimens.

F). Since, with =zero glass friction, the finite element
results predicted a symmetric pattern about EF 1in Fig.
5.2.1.3(a), the effects of inertia on deformed shape are
negligible at a platen speed of 4.4m/s.

Figs. 5.2.1.7(a) and (b) summarise theoretical and
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experimental load comparisons. The experimental and
theoretical loads agree well. In this case the total 1load
on the bottom platen is the sum of the glass friction and
plasticine compression loads since this is the total 1load
that the load cell would measure.

Fig. 5.2.1.7(b) shows a comparison of load on the top
and bottom platens. In this case the 1load on the bottom
platen does not include the load transmitted to the glass
plates by glass friction. Initially inertia makes the loads
lower on the bottom platen than on the top. However, they
converge together after about 10 ms from impact. Also
plotted on this figure is the load curve based upon the
simple model presented in section 2.1 with glass friction
but not inertia included.

After about 80 ms 1inertia effects start to become
important again. The <curves predict that the loads will
again become significantly different on the top and bottom
platens. The oscillations that occur in the curves after
about 70ms are due to folding of material onto the platens.
In reality this folding process is a continuous one but in
the finite element model the boundaries of the element
being used must remain straight. Folding thus occurs in
discrete patches which approximate a continuous movement of
material onto the boundaries.

Figs. 5.2.1.8(a) and 5.2.1.8(b) show  power
distributions against time. The latter graph is plotted as
a log scale but otherwise the results plotted are
identical. Fig. 5.2.1.8(a) shows thaf the 1important povwer

losses are platen 1load, internal dJdeformation power and
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glass friction. Kinetic energy, platen friction, and
surface traction due to atmospheric pressure have
negligibly small power associated with them,

Fig. 5.2.1.8(b) shows more detail regarding small
power losses. The rate of change of kinetic energy of the
material is initially high, drops to a minimum at about 10
ms and then continues to increase. This is consistent with
the conclusions reached earlier regarding the effects of
inertia. Platen friction also follows approximately the
same trend. Initially the material slides along the top
platen rapidly after impact. It then reaches a minimum and
starts to increase again due to more rapid movement along
the top platen and folding of material onto the top and
bottom platens as the specimen height reduces.

5.2.2. Comparison Of The Finite Element Model With
Experimental TestsOn Aluminum.

The data published by Shabaik(7) for gquasi-static
compression of aluminum was used for the experimental tests
to be compared with predictions of the finite element
model. The results for deformed shapes are .shown 1in Fig.
5.2.2.1. Strain hardening was assumed with the constitutive
relation presented in equation 5.1.4.1,

The master-slave node method for platen friction was
assumed in this case with the master node at the top right
of the specimen as indicated in Fig. 5.2.2.1. The
horizontal velocity at the master node was taken from the
experimental values. For this purpose a factor P was
defined as the ratio of the horizontal velocity at the

master node to the velocity that would occur for the free
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boundary if the compression were homogeneous. That 1is, if
V, 1is the horizontal velocity of the master node, and Vy
the velocity of the free boundzry of & specimen of the same
height and volume but deforming homogeneously, then V‘=ﬁVH.
This allowed a suitable smoothing of v, between
experimental points.

A good agreement between the finite element model and
the experimentally deformed specimen was obtained. A further
comparison with experiment 1is obtained by examining the
flow line diagrams for each case as shown 1in Figs.
5.2.2.2(a) and (b).

5.3. RIGID PERFECTLY PLASTIC RESULTS.,

In the previous section the model was found to give a
good agreement to -experimental results. It is now possible
to proceed to predict results for which experimental
comparison is not available.

By definition, a rigid-perfectly plastic material is
one with a constant yield stress. As such, the results will
be independent of the rate of strain,

Consideration will now be given to the compression in
plane strain of a block of rigid-perfectly plastic
material. The results of the modelling for this case were
compared to upper bound solutions given in section 2.3.
Section 5.3.1 considers case 1: The compression of a tall
block of height to width ratio (Ho/D.) of 4. Section 5.3.2
considers case 2: the compression of a short block with
H,/D°=0.839. This section also considers rectangular blocks
with H,/D,=0.25 and 0.125 respectively.

For all cases the material 1is assumed to have a



93 .
constant yield stress of Y, =106.18MPa, the value for
annealed aluminum. Strain hardening and strain rate
sensitivity are ignored to isolate the behaviourfor@f=¥o. A
constant coefficient of friction of 0.174 for the platens
was assumed. This was was the average value obtained with
the master-slave node method in section 5.2.2.

5.3.1. Case 1. Hqo/Do=4.

Fig. 5.3.1.1 shows the initial mesh used for this case
and the deformed shapes at various stages of compression.
From an examination of these deformed shapes it was
concluded that the upper bound solution discussed in
section 2.3 was appropriate for describing the pattern of
deformation. This. upper bound velocity discontinuilty
pattern 1is superimposed on the deformed shapes for
comparison.

Figs.5.3.1.2(a) and (b) present velocity distributions
for the finite element solution. For comparison with these
curves Figs 5.3.1.3(a) and (b) were constructed from tﬁe
velocity discontinuity patterns and hodographs in Figs.
2.3.1.2 and 2.3.2.1. Before proceeding to describe how
these curves were constructed some definitions will be
made.

As shown in Fig. 5.3.1.1 an X-Y coordinate system 1is
defined with origin at o, the centre of mass of the
specimen. The Y axis is vertical and the X axis horizontal.
Each line such as 3-3 is referred to as a y grid 1line and
the results are plotted at nodes along these lines. 3-3
refers to the 3'rd y grid line as it is the third from the

left. OA is the first y grid 1line and 1IE the 9'th.
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Similarly, OI is the first X grid line and AE the 9'th,

The hodograph shown in Fig. 2.3.1.2 indicates that the
normalised vertical velocity V,/V, is unity in region ABE,
0.75 in BHFE, 0.5 1in BCH and FGH,0.25 in ICHG, and 0 in
I0C. With these velocities available Fig. 65.3.1.3(a) was
constructed by plotting the wvertical velocity along the
9'th y grid line with symbol "o", along the 5'th with
symbol "©", and along the first with "o".

The intersections of x and y grid lines define the
node points. For each of these node points the wvalue of
~vertical velocity 1is dependent upon the region into which
it falls. Thus for the 5'th y grid 1line 1in Fig. 5.3.1.1
with H/D=2.023, V,/V, 1is zero for the first two nodal
points in the region IOC. The velocity then jumps to 0.25
for the third node which falls.in region ICHG. The velocity
then 1increases to 0.5 for the 4'th node and stays at that
value for the 5'th and 6'th nodes. The velocity then
increases again to 0.75 for the 7'th node which falls in
region EBHF. The 8'th and 9'th nodes fall in region BAE and
hence have a normalised vertical velocity of wunity. These
points are plotted in Fig., 5.3.1.3(a). Fig. 5.3.1.3(b) for
H/D=1.117 was plotted in a similar way.

The comparison of the simple model results in Figs.
5.3.1.3(a) and (b) with the velocities in Figs.5.3.1.2(a)
and (b) for the appropriate case shows some very similar
trends. The finite element results show velocities for all
grid lines but those plotted from the simple model are
sufficient to show a similar. distribution of velocity

spatially for each H/D and a similar trend with
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deformation. It is concluded that the simple model gives a
satisfactory comparison with the finite element results.

The H/D ratios for compariscen in the previous
discussion were selected because the velocity discontinuity
patterns were reasonably well developed for those values.
For each of these cases prior deformation had taken place.
In the present finite element model the only cause for any
variation in the results for the velocity field, provided
the material 1is not strain hardening, is the shape of the
free boundary. It was thus decided to investigate the
effect of the boundary shape on the results.
| Five caées were considered. Undistorted blocks with
H/D ratios of 1.5, 2, 3, and 3.5 were modelled under the
same conditions as previously. A 5'th block of H/D=2.023
was considered in which the mesh was equaliy spaced as for
the others but the boundary was distorted to the shape
found experimentally. This latter case proved a useful
check on any mesh effects which might change the numerical
solution. Distorted mesh effects does not in this case
amcunt to a change in the physical model.

The results are shown in Figs.5.3.1.4 and 5.3.1.5. The
discontinuity patterns are drawn directly onto the
displaced shape plots as previously. The results without
the disﬁorted boundary are quite distinct from the results
with a distorted boundary. They indicate no tendency to the
formation of a concavity in the boundary as in the previous
case.

At H/D=2 the result with the wundeformed boundary is

quite distinct from the one with a deformed boundary at
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H/D=2.023. The case of the regular mesh with a deformed
boundary 1is also shown in Fig. 5.3.1.5 and is in good
agreement with the result in Fig. 5.3.1.2(a).

In conclusion, the modelling has 'shown that the
simplified model assumed only holds when the boundary is
able to distort suitably.

Fig. 5.3.1.6 shows that the «critical H/D value for
concavity formation for the boundary is between H/D=3 and
H/D=3.5. The results suggest that if the specimen 1is too
short formation of a concave boundary cannot occur.

Fig. b5.3.1.7 1is a path line plot depicting the flow
history for the case shown iﬂ Fig. 5.3.1.1. This plot shows
guite clearly the change in the mode of deformation at
H/D=2.023 suggested by the simple model. For example, the
path line ABC corresponds to the path of a point on the
boundary 6f the specimen. A change of curvature in the path
followed by this material point occurs at the spatial point
B when H/D=2.023. This change of curvature is consistent
with the simple models shown 1in Fig. 2.3.1.2 and Fig.
2.3.2.1. When H/D22 the velocity Vy 1in region ICHG (see
Fig. 2.3.1.2) has a finite y component of velocity. 'For
H/D<2, howe?er, Vy in Fig. 2.3.2.1 has no Y component of
velocity. It is thus the development of the region FHG in
Fig. 2.3.2.1 that causes the Y components of velocity to
decrease and the X components to increase. This results 1in
the observed change of curvature of the path lines at

H/D=2,023.
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5.3.2. Case 2. Ho/Do=0.838,

Fig. 5.3.2.1 shows the deformed meshes obtained for
the compression of a block of rigid plastic material of
initial height to width ratio of 0.839. The simple model
velocity discontinuities from Fig. 2.3.3.1 are also shown.
The velocity patterns are plotted in Fig. 5.3.2.2 and are
in good agreement with the predictions of the simple model.

Since for this case the right boundary of the specimen
remains straight, the strain history of the specimen will
not influence the velocity fields. Thus for the purposes
here it will be sufficient to assume that for H/D<1 the
velocity field for an undistorted block can be used for one
that has been strained provided the same volume of material
is being considered in each case and the specimen heights
are the same. In order to avoid wunnecessary computer
calculation, unstrained blocks were next considered with
the purpose of comparing the velocity patterns in each with
the simple model.

Fig. 5.3.2.3 and Fig. 5.3.2.4 show comparisons ©of the
simpie model depicted 1in Fig. 2.3.3.1 with the finite
element results for the case of unstrained blocks of the
appropriate H/D ratio.

Fig. ©5.3.2.3 shows the results for the case H/D=0.25.
The top part of this figure shows both the finite element
mesh wused for the finite element calculations and the
velocity discontinuities of the simple model. Also shown
with the simple model 1is a hodograph and the resulting
velocity vectors within each of the rigid regions. Since

the velocity field must be symmetric about GH in Fig.
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5.3.2.3 these velocity vectors are plotted on the lower
half of the specimen for clarity.

In region edH the simple model predicts zero vy
component of wvelocity while 1in region cde a finite
component of wvelocity equal to the platen velocity is
predicted. The finite element calculations indicate a local
maximum in the Vy in region cde for the intermediate y grid
lines CD and EF. Similarly a local minimum .in the finite
element solution on tbese grid 1lines 1is indicated for
region cbd. It can be concluded from the comparison that
the simple model for this case does give a satisfactory
comparison with the finite element results.

Fig. 5.3.2.4 shows an even more remarkable agreement
of the simple model with the finite element solution. Along
the CD y grid line the local maxima of V from the finite
element results are clearly defined. On the EF y grid 1line
the maxima become less well resolved. This change is also
predicted by the simple model because the GH y grid line is
made up only of the sides of the rigid regions such as cbd
wherein Vy=0. As 1in the previous case the finite element
solution does not predict the rigid region aGb. This rigid
region 1is the crude representation in the simple model for

the actual boundary condition of V =0.

5.3.3. Load Predictions For The Rigid-perfectly
Plastic Case.

Fig. 5.3.3.1 shows a comparison of the finite element
results for the rigid-perfectly plastic case with the
simple models presented in chapter 2. The method of

construction' of this graph will first be described.
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There are two distinct regimes to consider; namely,
H/D>1 and H/D<1. For H/D>t1 finite element calculations were
done both for a straining history from H/D=4 to H/D=1.117
and for unstrained blocks of H/D= 1.5, 2, 3, and 3.5. The
only simple solutions considered for this case were the
homogeneous solution and the wvelocity discontinuity
pattern. Both these simple solutions gave Gy/2K=1, where Gy
is the normal platen traction.

The finite element results for this case are plotted
in Fig. 5.3.3.1. The finite element results for the
undeformed blocks are 1in excellent aggreement with the
simple model results. A value of Gy/2K=1 with negligible
deviation was obtained.

The platen normal tractions for the case of the blocks
being strained, however, showed significant deviation. At
H/D=4 concavity formation for the boundary occurred. For
lower values of H/D, the results from the block being
strained differ from those obtained from an unstrained
block of the same equivalent H/D.

It is clear that the normal platen traction increases
with strain for the case where a concave boundary forms. At
H/D=1.433 the platen traction is a maximum with the value
at H/D=1.117 somevhat less. Fig., 5.3.1.1 shbws that between
H/D=1.433 and H/D=1.117 the element at the top right hand
corner of the specimen (at point E in Fig. 5.3.1.1) has had
one of its sides fold onto the platen.

The reason for the increase of platen traction can now
be explained. 1If a vertical line is drawn cdown from E in

Fig. 5.3.1.1 and the excess material removed from the right
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of this line the platen normal traction would be 2K, With
the excess material included, however, the amount of
material in contact with the platens remains the same but
additional platen traction is required because of the extra
power involved in distorting the additional material.

It 1is also of interest to compare a result guoted in
ref. 28, originally due to Hill, for the case of
compression with overhanging platens. This solution is
plotted in Fig. 5.3.3.1 for comparison. In the case of
overhanging platens D refers to the width of the platens
rather than the specimen width. The comparison shows that
the increase of traction 1is well below that which would
occur for a very wide specimen where the platens would
essentially be indenters. In this respect the comparison is
consistent.

Different considerations apply for the case H/D<1 in
Fig. 5.3.3.1. In this case the effects of platen friction
will become more important than in the case of H/D>!
because of the larger amount of material in contact with
the platens and the increased velocity of sliding that
occurs with wide specimens. The simple model 1in Fig.
2.3.3.1 can be expected to apply only for low values of
friction since the rigid blocks must be able to slide along
the platens. Thus §,=2K will not be a good estimate for
significant values of the coefficient of friction.

Plotted in Fig. 5.3.3.1 are the points corresponding
to an undistorted right boundary corresponding to the cases
shown in Figg,5.3.2.3 and 5.3.2.4. Also plotted 1in Fig.

5.3.3.1 are the points corresponding the distorted boundary
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case which involved straining from H/D=0.833. This latter
case is the one shown in Fig. 5.3.2.1,

All the finite element results involved significant
values of the friction coefficient with the result that the
platen traction ofG;=2K was significantly exceeded. Most of
the finite elgment results are in good agreement with the
slip line field solution given by Hill and plotted in Fig.
5.3.3.1.

It can be concluded that the finite element results
for the rigid-perfectly plastic case gave results that are
consistent wi£h approximate closed form solutions.

5.4. RIGID PLASTIC STRAIN HARDENING AND STRAIN RATE
SENSITIVE RESULTS.

For this case eguation 5.1.4.2 for plasticine was used
to describe the strain rate sensitivity. This relation
implies that there 1is no strain hardening and the
quasi-static yield stress is zero.

Figs. 5.4.1.1 and 5.4.1.2 show the deformation
patterns and velocity fields calculated. These results
parallel those presented in Figs. 5.3.1.1 and 5.3.1.2(a).
For consistency with the results in Fig. 5.3.1.1 the platen
coefficient of friction was taken as 0.174 and the glass
friction was taken as zero.

The results in Fig. 5.4.1.1 sh9w that no concavity
develops in this case and the wvelocity curves in Figqg.
5.4.1.2 show very 1little dispersion. The velocities are
essentially those of the homogeneous solution.

Conceptually the strain rate sensitivity of the

material prevents a concentration of deformation from
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occurring. The velocity discontinuities in Fig. 5.3.1.1 can
be regarded as concentrated 1lines of deformation. The
strain rate sensitivity of the material would make these
lines have a large effective stress. Homogeneous
deformation thus occurs rather than concentrated bands of
deformation.

Calculations were done for other H/D ratios with
results that were consistent with this interpretation.

5.4.1. Strain Hardening Results For H/D>1.

Strain hardening can be expected to have the same
effect as strain rate sensitivity. However, the effect can
be expected to be delayed somewhat because strain is
regquired to increase the yield stress of the material.
Initially the solution will be the same as for the constant
yield stress case but as straining takes ©place the
deformation bands in the material will harden and force
material away from the bands to distortf Thus strain
hardening should lead to homogeneous deformation as does
strain rate sensitivity.

Fig. 5.4.2.1 to 5.4.2.3 show the results for the
strain hardening case and can be compared with 5.3.1.1 to
'5.3.1.2(b) for the constant yield stress case and to
5.4.1.1 and 5.4.1.2 for the strain rate sensitive case. The
results show that, in the st;ain hardening case, a concave
boundary does form as previously. However, strain hardening
prevents it from forming to the same depth.

Fig. 5.4.2.2 for the wvelocity curves when compared
with those in Fig. 5.3.1.2(a) shows the effect of strain

hardening very clearly. Even at H/D=3.327 the dispersion in
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the curves for Y<i12mm 1is reduced 1in Fig. 5.4.2.2 when
compared with that in Fig. 5.3.1.2(a).

For lower values of H/D the effect is more pronounced.
At H/D= 2.023, for example, the curves for the constant
yield stress case show that the y components of velocity
are essentially antisymmetric about a horizontal line drawn
in the specimen at y=10mm if this 1line 1is considered to
have a zero y component of wvelocity. For the strain
hardening case in Fig. 5.4.2.2, however, the y components
of wvelocity indicate that the velocities are closer to the
homogeneous values for y<i0Omm than they are for y>10mm.

Comparison of Fig. 5.4.2.3 for H/D=1.433 with Figqg.
5.3.1.2(b) indicates that in the strain hardening case the
inversion in the curves about a common point no longer
occurs. In the constant yield stress case this inversion
occurs when H/D=1,218., The absence of the 1inversion
in the Vy velocity curves at higher values of H/D in the
strain hardening case than in the constant yield stress
case indicates that the development of the concave boundary
persists in the 1latter case for higher strain levels in
compression.

It is thus concluded that the expected results for the
strain hardening case hold; namely, that straining causes
the concentrated bands of deformation that occur in the
constant yield stress case to harden. This, in turn forces
the spread of deformation and a more uniform energy density
to occur spatially in the material than in the constant

yield stress case.
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5.5. THE DYNAMIC COMPRESSION OF ALUMINUM.

The purpose of this section is to examine the effect
of inertia on the deformation patterns in aluminum., The
calculations were done wusing eguation 5.1.4.1 for the
variation of yield stress with strain hardening. A constant
coefficient of friction of 0.174 was assumed on the platen
boundaries. This was the average value obtained from the
calculations 1in section 5.2.2 1in which the master slave
node method was used.

The top boundary of the specimen was initially given an
acceleration of 10?°m/s? to a speed of 100m/s to
approximate an infinite acceleration. The speed of 100m/s
was maintained until t=37.69ys. The top platen velocity was
then set to zero with the result that the top boundary of
the specimen moved away from the platen. |

Displaced shape plots are presented in Figé. 5.5.1 and
5.5.2. The top of the specimen initially was displaced the
most with the lower part of the specimen not being affected
by the impact. The displaced shape plot in Fig. 5.5.2 for
t=23.91s indicates this time that the bottom part of the
specimen is moving approximately as much as the top.

One effect of inertia is thus to make the material
move nonsymmetrically about the horizontal centre line of
the specimen shown in EF in Fig. 5.5.1. In the absence of
inertia the pattern would be symmetric about this line.

At t=23.91ys the displacement pattern has become
approximately symmetric about EF but the curvature of the y
grid lines is distinct from that observed in Fig. 5.3.2.1

for example. Strain hardening would account to a certain
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extent for the supgession of any deformation bands in the
material but not to the extent observed in Figs. 5.5.1 and
5.5.2. Thus even when the pattern has become symmetric
about EF inertia effects are étill very dominant. At
t=37.69ys in Fig. 5.5.2, for example, the change of
curvature of the y grid lines at GF is consistent with the
formation of deformation bands as acomparison with Fig.
5.3.2.1 indicates. At the top of the specimen, however, the
curvature of the y grid lines is similar to that shown in
the deformed meshes for plasticine presented 1in section
5.2.1. Plasticine has been shown to be strain rate
sensitive which leads to homogeneous deformation.

These observations show that 1initially there is a
transient effect as all parts of the specimen are uneqgually
accelerated from a stationary condition. When this
transient effect is complete inertia is still dominant 1in
causing homogeneous deformation. In the present case being
considered inertia effects are dominant over effects of
material properties and the deformation profiles can be
expected to be essentially independent of the material_
constitutive behavior assumed.

The displaced shape plot for t=45.11ys in Fig. 5.5.2
is for the wunloading case. The fact that significant
movement occurs when the top platen that was initially
deforming the specimen was removed in the <calculation is
indicative of the fact that inertia effects are dominant.
The top of the specimen tends to move in more at the centre
than at the edge. Essentially an unloading wave is moving

into the specimen from the top right corner.
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5.6. STRESS RESULTS.

5.6.1. Stress Results For Rigid-perfectly Plastic
Quasi-static Compression.

In this section the normal stress on the top platen
will be examined on blocks of rigid-perfectly plastic
material for a wide range of H/D. The stresses for the
cases shown in Figs. 5.3.1.4 , 5.3.2.3 and 5.3.2.4 will be
examined. .

Figs. 5.6.1.1 and 5.6.1.2 show the normal platen
stresses for wvarious H/D for unstrained blocks of
rigid-perfectly plastic material. The results show that for
H/D>2 the normal stresses on the platen can be quite
different than the same stress components within the
material. A friction hill does not hold in the case of
H/D>2.

Also shown in Fig. 5.6.1.1 are the stresses for a
specimen with H/D=2.023 with pre-strain to show that the
conclusion is not affected by the boundary shape.

5.6.1.2, however, shows that friction hills do hold
for flat specimens of small H/D. In this case the boundary
stresses do not deviate significantly from the values in
the material away from the platens.

Fig. 5.6.1.3 summarises the platen normal stresses for
various H/D ratios and various material characteristics.
Fig.5.6.1.3(a) shows that for a rigid-perfecly plastic
material a friction hill only occurs when H/D>0.45. For
higher H/D values an inverse friction hill holds.

Fig. 5.6.1.3(b) shows that for the strain hardening

case a friction hill exists at higher values of H/D than
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for the constant yield stress case. Similarly, Fig.
5.6.1.3(c) shows that for the strain rate sensitive case a
friction hill holds at all the H/D values given,

These observations are consistent with the conclusions
reached earlier; namely, that both strain hardening and
strain rate sensitivity lead to homogeneous deformation. As
the effective deformation rate becomes uniform throughout
the material a friction hill will tend to form on the
platens. This follows from the simple solution in section
2.2 which assumes that the stress over a vertical plane in
the material is uniform,

£.6.2. Stress Results For Dynamic Compression.

Figs. 5.6.2.1 and 5.6.2.2 show the stress results-for
dynamic compression of aluminum considered in section 5.5,
The results indicate that a friction hill holds on the top
boundary in all cases but that an inverse friction hill
holds on the 1lower boundary initially. At t=23.1 s,
however, a friction hill also starts tc form on the lower
platen. Inverse friction hill on the lower boundary is a

dynamic effect.
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CHAPTER 6

CONCLUSIONS

The finite element model which was developed for large
plastic plane strain deformation proved to be an invaluable
tool for investigating the fundamental characteristics of
die-forging operations. It dealt successfully with strain
hardening, strain rateé sensitivity. inertia, interface and
end plate friction over a wide range of specimen sizes. = It
is a flexible and compact code which handles the very large
plastic deformation in an efficient way.

The finite element code reproduced exactly the results
for frictionless and hence homogeneous deformation in which
plane sections remain plane. Comparisons of the billet
shape were also made between the finite element model
predictions and experimental results for quasi-static
compression of aluminum and the dynamic compression of
plasticine. There proved to be good comparisons over a
large range of deformation, as shown for some select cases
in Figs. 6.1, 6.2 and 6.3.

Further studies conducted with the finite element model
identified many of the fundamental characteristics of the
plane strain forging operations. The conclusions of the
effect of.specimen height (H) to width (D) ratio, material

properties, friction, and inertia are given below.

1. With rigid perfectly-plastic material and H/D>1

deformation tends to concentrate along 1lines of intense

shear. The mode of deformation is approximated by the upper
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Lound solution given in section 2.3.1. Material tends to
stick on the platen (even with low coefficients of friction)
and to generate normal interface shear stress distributions
clearly different from classical friction hill. 1Indeed the

normal stress distributions were inverse friction hills

with the maximum shear stress occurring not at the centre of
the specimen, but at the outer edges.

A symmetric buckling or boundary concavity occurred
with H/D>3. Boundary shape at the onset of deformation

significantly affects the mode of deformation.

2. With rigid perfectly-plastic material and H/D<l

deformation tends to concentrate along lines of intense
shear. The mode of defcormation is approximated by the upper
bound solution given in section 2.3.3. Material tends to
slip on the work platen and generate friction hill type of

normal interface stress distributions.

3. With strain hardening material the 1lines of

concentrated deformation become wider and give more
homogeneous deformation. With moderate friction the
homogeneous solution given in section 2.2 1s more
appropriate. A friction hill type of normal interface
stress distribution is obtained.

There is also a tendency for a concave profile to
develop for tall specimens, but the development is somewhat
less pronounced than it 1is for rigid perfectly-plastic

material.
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a4, With strain rate sensitive materials the 1lines of

concentrated deformation become wider and give more
homogeneous deformation. The mode of deformation is similar
to the strain hardening case except that the_effect occurs
immediately the material is moving and does not require the
material to be significantly strained as it does in the

strain hardening case.

5. With dynamic loading the inertia effects are initially

dominant and cause 1local inhomogeneous deformation.
However, as the energy of impact is diffused through the
specimen, the deformation 5ecomes homogeneous. An inverse
friction ﬁill can develop on the stationary platen while at

the same time a true friction hill develops on the moving

platen.
6. Platen and glass plate friction are both important in
determining deformation characteristics. Glass plate

friction tends to generate a restraining force so that
material tends to rotate around the 1lower platen. This
results in the deformation becoming less homogeneous.

The influence of platen friction depends upon the H/D
ratio considered. For H/D>1 sticking occurred for quite
low values of the coefficient of friction. For H/D<«l
slipping occured for moderate values of the coefficient of

friction.
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7. Inverse friction hills can develop at large H/D ratios

and low values of strain hardening and strain rate

sensitivity.

8. The energy of deformation is used primarily in plastic
work within the specimen and in overcoming glass plate
friction. Platen friction and surface traction due to

atmospheric pressure require very little energy.
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