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ABSTRACT 

The a p p l i c a b i l i t y of queueing theory as an operations 

research tool for modelling sawmills is described. The model 

selected i s a two-stage tandem queue with two stations in the 

second stage. Each of the stations has general service times 

and f i n i t e buffer storage capacities which create the 

p o s s i b i l i t y of blocking pieces coming out of the f i r s t stage. A 

three-variable service time d i s t r i b u t i o n is proposed to model 

sawmill machinery processing the pieces. This d i s t r i b u t i o n 

creates the potential to functionally describe the sawmilling 

process, in contrast to the t r a d i t i o n a l method of using 

empirical d i s t r i b u t i o n s gathered at an existing sawmill. 

The l i t e r a t u r e in tandem queues reveals the lack of work 

done and the degree of d i f f i c u l t y in this f i e l d of study. 

A n a l y t i c a l solutions do not exist for the queue system studied. 

Numerical approximation techniques were not used to model the 

queue system, but they have good potential for being u t i l i z e d . 

A simulation study was performed on the queue system. A 

computer program was written with the intention of obtaining 

results anticipated in a mathematical analysis. Two separate 

queue d i s c i p l i n e s were studied: saturated and unsaturated 

f i r s t - s t a g e queues. The unsaturated queue investigated the 

dependency of system performance on the a r r i v a l rates. It also 

examined the operation of the queue under d i f f e r e n t second-stage 

a r r i v a l i n t e n s i t i e s . The saturated queue analysis focused on 

the phenomenon of piece blocking in the f i r s t stage. 



Some conclusions could be made from the simulation study 

with regards to design procedures for a sawmill. The study 

showed that in certain cases, improvement to system production 

by increasing a second-stage machine rate can be comparable to 

increasing the headrig rate. In addition, two stations in the 

second stage can complicate the analysis s i g n i f i c a n t l y . The 

simulation study also examined the p o s s i b i l i t y of u t i l i z i n g 

tandem queue analysis to provide solutions for optimum 

second-stage buffer capacities. 

The f e a s i b i l i t y of modelling sawmills by tandem queues 

exis t s , but the designer must choose the appropriate a n a l y t i c a l 

method to use. Numerical approximation techniques would l i k e l y 

prove to be the most successful method. Machine service times 

should also be studied in a sawmill to establish the s t a t i s t i c a l 

nature of the sawmilling process. This w i l l improve the 

solutions provided by queueing theory analysis. 
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INTRODUCTION 

1.1 Queueing Theory and Sawmill Design 

Management decisions in the sawmill industry can often 

involve a l o t of f i n a n c i a l resources - p a r t i c u l a r l y in the 

design stages of the sawmill. A p i v o t a l question that one 

encounters in a design project for a modern sawmill i s , "What i s 

the optimal sawmill design"? Not only is the designer concerned 

about constructing the best producing sawmill, but his senior 

company management are devoted to obtaining the best m i l l for 

the money available. 

Almost a l l facets of a sawmill operation involve the 

uninterrupted processing of discrete pieces. The important 

l o c a l design c h a r a c t e r i s t i c s for a processing station are that 

an adequate input of pieces are a v a i l a b l e , and that a smooth, 

uninterrupted output ensues. Simply restated, a machine center 

should be neither "starved" for incoming pieces, nor blocked or 

constrained on the output side. A good discussion of 

considerations for sawmill design is given by W i l l i s t o n . 3 3 

Queueing theory lends i t s e l f well to a quantitative 

solution of the previously stated design problems. Designers 

have applied t h i s operations research (O.R.) technique to 

provide some of the answers to sawmill design problems. To 

date, most solutions to these queueing problems have involved 

discrete time-event simulation. Solutions by simulation have 
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evolved quickly since many good simulation languages are readily 

available, and apply well to sawmill design. The engineer can 

f i r s t analyze the sawmill layout by computer to determine the 

adequacy of the design. The advantages of sawmill simulation 

have been well described by Aune. 2 - 1 3 

Simulation however does have several disadvantages. 

Primarily, i t does not provide an optimum solution to the 

design. The designer must compare the simulation results of a 

par t i c u l a r design to alternative design simulation runs. He 

must vary the input parameters, to arrive at a best solution 

amongst a l l the t r i a l s . He must then make an empirical decision 

as to whether the design layout is suitable. This design method 

can be expensive, tedious and even a waste of time. 

Sawmills are high-productivity i n d u s t r i a l systems. The 

trend of higher machine processing speeds has not achieved i t s 

plateau. However, the problems associated with high speed 

equipment becomes apparent when one evaluates a sawmill system 

in i t s entirety. 

Modern small-log sawmills allow l i t t l e room for mistakes. 

An operating error of only a few seconds, with a modern machine 

running at 1.60 meters/sec. (5.33 ft./sec.) w i l l cause logs on a 

conveyor to travel large distances. Even minor machine or 

personnel i n e f f i c i e n c i e s can result in a serious reduction in 

piece throughput. Bottlenecks and blocking of up-stream 

processors are the product of these i n e f f i c i e n c i e s . Therefore 

i t i s important to be able to predict potential problems in the 

m i l l design before the sawmill i s b u i l t . 
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Interest of sawmill designers has consequently focused upon 

an a l y t i c a l solutions to these queueing problems. For example, a 

computer program has been written by Carino and Bowyer 1 0 to take 

into account many sawmill design layouts, using queueing theory 

to provide the a n a l y t i c a l solutions. They also incorporated the 

direct search method algorithm (a nonlinear program) to arrive 

at the optimum solutions for various design parameters to the 

queue system. 

1.2 Tandem Queues and the Model 

The sawmill designer is generally concerned with tandem 

queues. In a tandem queue, the output of the f i r s t queueing 

stage provides input d i r e c t l y into a second stage. Tandem 

queueing theory is r e l a t i v e l y new, with the bulk of the 

l i t e r a t u r e s t a r t i n g in the mid-70's. Some of the simpler tandem 

queue d i s c i p l i n e s can be solved mathematically. However, they 

often are of no use in modelling the system because of the 

si m p l i s t i c assumptions used to describe the tandem queue. 

Unfortunately, increased complexity of the tandem queue 

configuration often creates l i m i t s to the tractable solution. 

The problem can become mathematically d i f f i c u l t to solve. 

Sometimes the more general or useful problems have only be 

solved by numerical approximation. 

The purpose of t h i s study is to examine the potential use 
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of queueing theory to solve one aspect of a sawmill design 

layout, which could prove useful to the sawmilling industry. 

The tandem queue system considered (refer to Fig. 1) represents 

one of the small-log sawmill layouts discussed by Aune and 

Lefebvre. 1 This particular sawmill layout also represents a 

queue system that had not been analyzed by Carino and Bowyer. 8" 9 

Source: Aune and Lefebvre, 1 p 15. 
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The sawmilling system in Figure 1 depicts a headrig " 1 " 

with a cant edger " 2 " d i r e c t l y downstream, and an off-stream 

reman edger " 3 " handling the slabs. There i s a queue (of 

sawlogs in this case) before the headrig. The logs are 

processed, with the output (of cants) d i r e c t l y becoming the 

input into the cant edger. A proportion of the headrig output 

is in the form of slabs, which are redirected to a reman edger. 

There are queues before both edgers, and each have the 

p o s s i b i l i t y of blocking the headrig output should either of the 

edger buffer zones become f i l l e d . In queueing theory parlance, 

we have a two-stage tandem system. The f i r s t stage is a single 

station and consists of a single storage buffer and a single 

server. The second stage consists of two stations, and each 

station has a single storage buffer and server (refer to Fig. 

2 ) . A brief explanation of queueing theory i s given in section 

1 . 3 and of queueing theory notation in section 1 . 5 . 

The merits of examining t h i s s p e c i f i c queue system are 

multi f o l d : 

1 . This queue system is very common in small-log sawmills. 

2 . The queueing analysis may be solved by using some of the 

recently introduced methods of obtaining tandem queue solutions. 

3 . The sawmill layout may continue to be used in future sawmill 

designs. 



F i g . 2. Schematic Representation of Queue System 

Machine 3 

v Queue /P/1 . v Queue /P/1 . 

Machine 1 Machine 2 

STAGE 1 STAGE 2 
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1.3 A Brief Explanation of Queueing Theory 

Queueing theory i s the mathematical study of "queues" or 

waiting l i n e s . There are three aspects that are c h a r a c t e r i s t i c 

of a queue system. They are the a r r i v a l process, the waiting 

line (and i t s " d i s c i p l i n e " ) , and the service d i s t r i b u t i o n . Each 

of these points w i l l be b r i e f l y touched upon. 

The customers arrive to be serviced. The a r r i v a l process 

into the queue i s generally a random process and usually 

exhibits some s t a t i s t i c a l d i s t r i b u t i o n . The customers can come 

from either an i n f i n i t e or a f i n i t e population source. An 

i n f i n i t e assumption makes the mathematical analysis simpler and 

is often used for a large population source. The queueing 

analysis i s usually concerned with the d i s t r i b u t i o n of the 

i n t e r a r r i v a l time. The time in t e r v a l between each a r r i v a l i s a 

random variable and usually conforms to a s p e c i f i c s t a t i s t i c a l 

d i s t r i b u t i o n . 

The queue contains customers waiting to be serviced. The 

queue can have a f i n i t e or i n f i n i t e capacity. A f i n i t e capacity 

can result in customers being refused entry into the l i n e . It 

also means a more complicated analysis of the queue. 

The waiting l i n e i s characterized by a d i s c i p l i n e that the 

customer exhibits. Customers can present p e c u l a r i t i e s such as 

balking or waiting in l i n e for a certain time and then leaving. 

A l l of the queue i r r e g u l a r i t i e s have to be written into the 

analysis i f accurate modelling i s desired. 
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The waiting customer i s then serviced. A service mechanism 

consists of one or more service f a c i l i t i e s , each of which 

contains one or more service channels, c a l l e d servers. Servers 

can be p a r a l l e l or in series (tandem) with each other. The time 

elapsed from the commencement to completion of service i s c a l l e d 

the service time. The service time i s usually a random variable 

and follows a s p e c i f i c s t a t i s t i c a l d i s t r i b u t i o n . For queueing 

analysis, the service-time p r o b a b i l i t y d i s t r i b u t i o n for each 

server must be s p e c i f i e d . To complicate the analysis, the 

service rate can be dependent upon the amount of customers in 

the queue or by possibly some other influencing factors. 

In a sawmill, the machine centers and their associated 

conveyor equipment are regarded as servers. The customers are 

the logs, cants, boards, etc., that are to be processed by the 

machines. These pieces queue up before the machines in storage 

buffers or transfer chains. Therefore almost any aspect of a 

sawmilling environment can be modelled by queueing theory. 

Figure 3 depicts a simple queue mechanism. 
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Served customers 

LOGS 

(Customers) 

i 

i 

STORAGE FACILITY 

(Queue) 
C C C C C C C 

C 
C 
C 
C 

Queueing system 

MACHINE 
5 CENTER 
•S (Service 
5 facility) 

Served customers 

F i g . 3. A Simple Queue Mechanism 

Source: H i l l i e r and Lieberman, 1 9 p 404. 

1.4 The Appeal of Analytical Models 

Gershwin and Berman's 1 6 analysis of a tandem queue 

highlights many of the exciting p o s s i b i l i t i e s for mathematical 

solutions to tandem queuing problems. Their paper explores in 

d e t a i l the operating characteristics of two unreliable machines 

in tandem with random processing times and f i n i t e storages 

before each machine (refer to Fig. 4). 
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\ M A C H I N E 2 

1 

F i g . 4. Tandem Queue Studied by Gershwin and Berman 

Source: Gershwin and Berman, 1 6 p 1 . 

Gershwin and Berman provide an extensive l i t e r a t u r e review 

on the topic of tandem queues. In addition, their results show 

that i f a tandem system can be mathematically modelled, many 

system features of interest to the designer can be examined. 

Quantitative decisions can be made on design problems such as 

buffer sizes, machine production rates and machine r e l i a b i l i t y . 

Some of their results are shown in Figures 5 and 6. 

I 1 tO 100 IOOO 

F i g . 5. Effect of machine speed on production rate and average 
in-process inventory. 

Source: Gershwin and Berman, 1 6 p 8. 
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Figure 5 shows what effect varying machine 1 and 2 

operating speeds has on system production and in-process 

inventory. The abscissa parameters " M I " and "M2" represent 

machine 1 and 2 operating speeds respectively. The bracketed 

number in superscript indicates the graph number. The l e f t 

ordinate i s system production "p" and the right is in-process 

inventory "n" for the f i n i t e storage buffer between the two 

machines. 

Graphs 1 and 2 display the e f f e c t of varying the speed of 

machine 1 and 2 respectively, on the system c h a r a c t e r i s t i c s 

production and in-process inventory. The curves represent 

non-linear functional relationships between the parameters. 

Results of a simulation study of t h i s system would not reveal a 

continuous l i n e . Instead, a simulation study can only generate 

discrete data points. A regression l i n e can then be drawn 

through the points to show the functional relationship. This is 

what was done for the simulation studies in chapters 3 and 4. 

Figure 6 shows the e f f e c t of varying the storage size "N" 

on p and fi. Once again, non-linear functions are exhibited. 

These graphs imply that i f a system can be modelled 

a n a l y t i c a l l y , various system c h a r a c t e r i s t i c s can be quickly 

determined for d i f f e r e n t operating ranges. Optimum or 

"threshold" solutions can also be predicted beyond which further 

improvements in the system may not substantially increase the 

desirable returns from an operating c h a r a c t e r i s t i c . This 

mathematical analysis could a s s i s t the sawmill designer 

immensely. 
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T 1 I 1 

2 -

0 . i i 1 1 1 1 J I I l 0 

0 2 4 6 8 10 12 14 16 IS 2ff 
M 

F i g . 6 • Effect of storage size on production rate and average in-process 
process inventory. 

Source: Gershwin and Berman, 1 6 p 9. 

In addition, queue systems exhibit a c l a s s i c operations 

research dilemma. An increase in the number, or the competency 

of the server generally increases c a p i t a l or operating costs. 

However a service mechanism that i s over - u t i l i z e d can result in 

d i s s a t i s f i e d customers, excessive waiting l i n e s , system 

bottlenecks, etc., which also burdens management with operating 

costs. A c o n f l i c t exists and an optimimum trade-off can be 

an a l y t i c a l l y determined for the system. Arriving at optimum 

cost solutions is one of the most desirable results from 

queueing theory. 



Figure 7 describes how optimum cost solutions are 

determined. The expected cost of service E(SC) increases with 

increasing level of service. The level of service can be 

defined as the rate, quality or number of servers found at a 

queueing station. Conversely, the expected cost of waiting 

E(WC) decreases with an increase in the level of service. If 

the two graphs are summed, the to t a l expected cost E(TC) is 

obtained. This curve represents a concave function, with the 

lowest point (the lowest cost) being the optimum cost solution. 

a £(7T) = E(SC) + E(WC) 

Cost of waiting 
^ E(WQ 

Cost of service 
£ ( S Q 

Solution 

Level of service 

F i g . 7. Queueing Theory and Optimum Cost Decisions 

Source: H i l l i e r and Lieberman, 1 9 p 465. 
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1.5 Queueing Theory Notation 

There i s a shorthand notation commonly used to describe a 

queue system. Listed below i s a brief outline of the notation. 

The symbols and notation used in the thesis are summarized in 

Appendix A. 

M = a "Memoryless" or Exponential d i s t r i b u t i o n 

G = a General s t a t i s t i c a l d i s t r i b u t i o n 

GI = General Independent d i s t r i b u t i o n (usually used to describe 

an a r r i v a l process) 

E = a k-Erlang d i s t r i b u t i o n 
k 

D = a "Degenerate" (constant) d i s t r i b u t i o n 

N = the f i n i t e number of customers allowed in a waiting l i n e 

(queue capacity) 

c = the number of p a r a l l e l servers in a queue mechanism 
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These symbols are used to describe the queue system and are 

written in the form: 

i n t e r a r r i v a l d i s t . / s e r v i c e dist./no. of servers/queue capacity 

The following examples i l l u s t r a t e how queue systems are 

described: 

M/M/1 is an exponential i n t e r a r r i v a l process/exponential service 

time/with one server 

Gl/D/c/N i s a general independent i n t e r a r r i v a l 

process/degenerate service times/c servers/a queue capacity of N 

customers 

M/G/l->/G/2 are two queues in tandem. The f i r s t queue has 

exponential i n t e r a r r i v a l time/general service time/one server. 

The output process from the f i r s t queue provides the input 

process to the second-stage tandem queue. The second queue also 

has a general service d i s t r i b u t i o n with two servers. Figure 2 

is a diagram of a tandem queue with c h a r a c t e r i s t i c s indicated by 

this same form of notation. The servers have Erlang service 

time d i s t r i b u t i o n s in the diagram. 

We can now focus on the description and the approach to the 

solution of t h i s queue d i s c i p l i n e . 
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THE QUEUE DISCIPLINE 

2.1 The Assumptions of the Queue System 

The f i r s t c r u c i a l step in a queueing analysis is to 

establish certain assumptions about the system. As more 

i n t r i c a t e descriptions of a system are included in the analysis, 

the more d i f f i c u l t i t becomes to mathematically solve the 

system. However, i f the assumptions are too s i m p l i s t i c , the 

system cannot be modelled r e a l i s t i c a l l y . 

This chapter l i s t s the assumptions used in t h i s queueing 

analysis and the rationale for the selection. The intent i s to 

obtain tractable solutions and s t i l l have the potential for 

modelling a sawmill sytem. The analyst must examine the 

operation of the system and incorporate the important 

c h a r a c t e r i s t i c s into his model. He must also be aware of the 

l i m i t s of a n a l y t i c a l methods available in queueing theory. 
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2.2 The A r r i v a l Process 

Two cases are considered for the sawlog input, representing 

two common situations in a sawmill. These cases represent two 

important d i s t i n c t i o n s in the method of analysis for the tandem 

queue studied. 

In the f i r s t case, debarked logs are fed d i r e c t l y from a 

f u l l log p i t or transfer chain into the headrig, the stage-one 

processing machine. In t h i s case, the f i r s t queue can be 

considered as saturated. There is always a customer available 

for service. A r r i v a l s into this queue consistently keep the 

buffer zone in the f i r s t stage f u l l . Consequently, the 

departure process from the f i r s t station i s independent of the 

a r r i v a l s into the f i r s t stage queue. The service time 

d i s t r i b u t i o n of the leaving customer becomes the i n t e r a r r i v a l 

time d i s t r i b u t i o n into the second-stage queue system. 

In the second case, the a r r i v a l into the f i r s t queue i s a 

random process, depending for example, on the outfeed from the 

barker. Here the queue system i s unsaturated (with the 

assumption that steady-state conditions e x i s t ) . The unsaturated 

queue in the f i r s t stage results in dependent departure times 

from the f i r s t - s t a g e server. The departure times depend upon 

the a r r i v a l process into the f i r s t stage, which represents a 

tandem queue situation that i s more useful in modelling 

sawmills. 

In both cases, the f i r s t - s t a g e a r r i v a l process i s 
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represented by a Poisson d i s t r i b u t i o n that i s stationary and 

homogenous. A tandem queue that i s saturated in the f i r s t stage 

is insensitive to what a r r i v a l d i s t r i b u t i o n i s chosen but for 

si m p l i c i t y , the same d i s t r i b u t i o n i s used. 

Poisson a r r i v a l s w i l l provide exponential d i s t r i b u t i o n 

i n t e r a r r i v a l times into the queue. The Poisson assumption is 

frequently used in queueing analysis because i t allows for 

convenient mathematics. In addition, general l i t e r a t u r e on 

queueing theory support that a Poisson a r r i v a l d i s t r i b u t i o n i s 

in many cases, a r e a l i s t i c assumption. 

There are three basic assumptions to j u s t i f y - the Poisson 

d i s t r i b u t i o n as the a r r i v a l process under investigation: 

(1) The expected time for a Poisson event is constant at u time 

units per event. 

(2) Pr {one event in the time i n t e r v a l x,x+Ax} = Ax • M 

(3) Pr {more than one event occurs in x,x+Ax} = 0(Ax) 

The variable u i s the scale parameter used in the Poisson and 

exponential d i s t r i b u t i o n . 

The above statements are very general and could be v e r i f i e d 

for numerous situations in a sawmill environment. Therefore a 

Poisson a r r i v a l process i s a good a r r i v a l d i s t r i b u t i o n for the 

model. 
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2.3 Additional Assumptions 

(a) The sawlogs entering the queue represent blocked customers 

delayed. This assumes that the sawlogs do not leave the queue 

once they a r r i v e . 

(b) The output process from the f i r s t stage provides the input 

process into the second stage. 

(c) The two second-stage buffer storages before machines 2 and 3 

have f i n i t e capacity. 

(d) Breakdown and repair rates of the machines are not 

considered. 

(e) The queueing system is considered to be an open network. 

Upon completion of the service, the customers leave the system 

immediately. 

(f) The condition of blocking exists when either of the two 

second-stage buffers are f u l l . This results in a shut down of 

the f i r s t - s t a g e machine. 



20 

2.4 Customer Types 

In sawmills, there often i s an increase in the number of 

pieces on the output side of a queue system, compared to the 

input side. In the tandem queue studied, individual logs enter 

the f i r s t stage, but there becomes two types of "customers" in 

the second stage: slabs and cants. Each of these customer types 

enter separate second-stage queues. 

The second-stage a r r i v a l process i s similar for both 

customers. However, the respective machine centers can have 

dif f e r e n t service rates for the two customer types. In 

addition, the two second-stage storage f a c i l i t i e s may have 

di f f e r e n t capacities for the two types of customers. 

In order to apply queueing theory to the system, operating 

parameters are selected to r e f l e c t a sawmill scenario. Often 

the edger processing the cants operates at a speed similar to 

the speed of the headrig, with the buffer capacity being quite 

small. However the slab-processing edger may operate at speeds 

faster than the headrig, and generally has a very large buffer 

capacity. In addition, the slab edger is usually off-stream to 

the headrig. The slabs which are conveyed on the transfer 

chains to the slab edger are often slower than for example, the 

log conveyor speeds for the headrig. 

For ease of analysis, the slabs exiti n g the f i r s t stage 

headrig are considered to be one "customer", even though there 

may be as many as four slabs, as in the case of a "quad" 
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bandmill. It i s assumed that the slabs a r r i v e in one batch to 

the second-stage reman edger. Therefore the calculation of 

piece throughput in the t o t a l system should r e f l e c t the average 

number of pieces found in a batch. 

In the case of the cant-processing edger, only, one cant 

enters the edger at one time, but several boards usually e x i t . 

The c a l c u l a t i o n of piece output must consider the average number 

of boards created from t h e c a n t s . 

The average number of slabs that come from a s p e c i f i c type 

of headrig, with a given log diet, can be determined by existing 

computer programs which determine optimum cutting solutions. 

This i s also applicable for determining the average number of 

boards created by the cant edger. Total system production can 

then be calculated, even though each processor handles 

individual customers. 

2.5 Service Time Distributions 

2.5.1 The D i s t r i b u t i o n Assumption 

In this study, a d i f f i c u l t challenge was the determination 

of service time d i s t r i b u t i o n s for each of the machines. In 

exi s t i n g sawmills, s t a t i s t i c s can be obtained, an inference made 

on the type of d i s t r i b u t i o n and an estimation of the 

d i s t r i b u t i o n parameters performed. For a theoreti c a l sawmill 
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being designed by a n a l y t i c a l methods, t h i s approach i s generally 

not f e a s i b l e . An assumption for the service time d i s t r i b u t i o n 

i s required. 

Simulation studies do not require a d i s t r i b u t i o n 

assumption. F i e l d data can be gathered at the sawmill to obtain 

an empirical d i s t r i b u t i o n . The simulation program can then 

randomly sample from the empirical d i s t r i b u t i o n . 

The service time d i s t r i b u t i o n can be subjective to the 

theoretician in the case of modelling a sawmill. S t a t i s t i c s are 

often available to the designer on the c h a r a c t e r i s t i c s of the 

logs being consumed in the small-log sawmill. Since machine 

service times are d i r e c t l y related to the length of the log, a 

frequency d i s t r i b u t i o n of the log lengths should adequately 

represent the frequency d i s t r i b u t i o n of the processor service 

times. 

It i s not the intent of this study to establish or confirm 

the relationship between machine processing times and the log 

length frequency d i s t r i b u t i o n . The designer should also be 

aware that many other factors come into play in an operating 

environment. These include operator errors, piece-loading 

machine v a r i a b i l i t y , time delays, etc. They a l l contribute to 

the random nature of service (and therefore second-stage 

a r r i v a l s ) . These contributing factors also af f e c t the service 

d i s t r i b u t i o n and can reduce the accuracy of the analysis i f 

ignored. With l i t t l e other information available on machine 

service times, a log-length frequency d i s t r i b u t i o n is a 

reasonable estimate of the log-processing time d i s t i b u t i o n . The 
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t o t a l time i t takes to serve a customer w i l l consider the other 

contributing items mentioned above. These factors are often 

unique to a p a r t i c u l a r machine center. 

2.5.2 The k-Erlang D i s t r i b u t i o n 

The k-Erlang d i s t r i b u t i o n (refer to F i g . 8) has been 

selected to describe the log length d i s t r i b u t i o n . For a f u l l 

description of t h i s d i s t r i b u t i o n , see Appendix D. The reasons 

for i t s selection are: 

-I t i s an extremely f l e x i b l e d i s t r i b u t i o n that has a scale 

parameter "X" and a shape parameter "k". 

-The random variables are always p o s i t i v e . 

-Estimation of the parameters uses established s t a t i s t i c a l 

methods. 

-A k-Erlang random variable r e a l i z a t i o n i s the sum of k 

independent exponential random variables. The result i s that i t 

often allows mathematically tractable solutions for queueing 

problems. This is because a service f a c i l i t y with a k-Erlang 

service time can be considered as being k exponential servers 

working in ser i e s . Good examples of queueing solutions for 
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Erlangian service times are found in Jackson 2 0 or Heyman and 

S o b e l . 1 8 

-The random variables are reasonably easy to generate for 

simulation studies; however i t may require extra computer time. 

The generation of a k-Erlang r e a l i z a t i o n as the sum of "k" 

exponential r e a l i z a t i o n s i s not e f f i c i e n t for large values of k. 



F i g . 8: k-Erlang D is t r ibut ion With Various 

Shape and Scale Parameters 

fKU) 

1.0 -t: 

0.8 A 

0.6 H 

F i g . 8 - B . fK(t) with K = 2 and ;. = §, 1, 2, 5. 

Source: Heyman and S o b e l 1 8 , pp 514- 515. 
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2.5.3 The Total Service Time 

The random variable associated with the t o t a l service time 

can be composed of three separate variables. One i s the random 

time to process the log entering the machine, which w i l l be 

c a l l e d "L". This random variable is f i t with a k-Erlang 

d i s t r i b u t i o n (refer to App. D). The d i s t r i b u t i o n parameters are 

estimated and a Kolmogorov-Smirnov goodness-of-fit test is 

performed (refer to App. E). Data for the log-length frequency 

d i s t r i b u t i o n came from Dobie. 1 3 The goodness-of-fit test was 

accepted in two out of three sets of data obtained from the 

report. 

The second variable "D" is a displacement parameter. There 

is a minimum processing time associated with the minimum log 

length and also the time i t takes for a log to traverse a given 

transfer chain. The parameter D simply represents a constant 

value. 

The t h i r d random variable "S" is the random nature of 

"setting up" the log to be processed. This variable can be a 

result of machine equipment, conveyance of the pieces to the 

stage-two machines and the operator i n e f f i c i e n c i e s . For the 

queueing analysis in t h i s thesis, the description of th i s 

variable can be a highly subjective topic, with no available 

information to make a d i s t r i b u t i o n a l assumption. 

The variable D can be regarded as a displacement parameter 

with the k-Erlang log d i s t r i b u t i o n mentioned above. The 
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log-length frequency d i s t r i b u t i o n i s therefore considered as a 

3-parameter k-Erlang model. This s t a t i s t i c a l model was used for 

the estimation of the log processing time d i s t r i b u t i o n . 

An alternative method of introducing a displaced service 

time i s by adding in series, another k-Erlang server where k->°°. 

As k becomes very large, with X becoming very small (which 

provides a constant k-Erlang mean).; the d i s t r i b u t i o n approaches 

a v e r t i c a l l i n e . The displacement parameter can be introduced 

to wherever the v e r t i c a l l i n e i s required. Jackson 2 0 outlines a 

good p r a c t i c a l solution to a M/G/1 queue with a time-displaced 

Erlang server. 

The random variable S i s unique to the machine and i t s 

associated equipment. An exponential d i s t r i b u t i o n i s assumed in 

th i s study. From my own p r a c t i c a l experience, I feel the 

exponential d i s t r i b u t i o n i s a good assumption for t h i s random 

variable. The values of the d i s t r i b u t i o n scale parameters 

assumed in the simulation study are "educated estimates". The 

headrig and slab edgers generally have long set-up times. 

Conversely, the cant edger has a very short set-up time. 

In summation, there are three variables associated with the 

t o t a l service time "T": 

D + L + S = T (another random variable) 

The above assumptions for a service d i s t r i b u t i o n seem 

reasonable. They allow a tractable analysis of the queue and 

also permit reasonable simulation work. 
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ANALYSIS OF AN UNSATURATED QUEUE 

3 . 1 The T h e o r e t i c a l A n a l y s i s 

A l i t e r a t u r e review was made to determine the a v a i l a b l e 

methods for a n a l y s i s of the s t u d i e d tandem queue. The 

assumptions o u t l i n e d in the p r e v i o u s chapter provided a b a s i s 

for l o c a t i n g the r e l e v e n t papers. In a d d i t i o n , the l i s t e d 

assumptions were what I f e l t , necessary to adequately model a 

sawmill system. A t h e o r e t i c a l a n a l y s i s was not performed 

because the assumptions that were used would r e s u l t in 

a n a l y t i c a l work that was beyound the scope of t h i s study. The 

r e l e v e n t a n a l y t i c a l methods f o r m o d e l l i n g sawmills, that are 

a v a i l a b l e i n queueing theory, i s given i n t h i s s e c t i o n . 

3 . 1 . 1 The Departure Process of a Queue 

The M/G/1~>/G/1 queue which i s not s a t u r a t e d can be used to 

model a wide v a r i e t y of s i t u a t i o n s . U n f o r t u n a t e l y the 

mathematical s o l u t i o n to t h i s problem i s d i f f i c u l t . Judging 

from the l i t e r a t u r e review, there has been a great deal of 

i n t e r e s t i n recent years among a p p l i e d mathematicians to 

research t h i s important a r e a . 

The problem a r i s e s from the departure process of the f i r s t 
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queue. The departure times f o r t h i s queue arrangement i n most 

a p p l i c a b l e s i t u a t i o n s , are non-renewal processes ( r e f e r to App. 

C f o r a d i s c u s s i o n on renewal p r o c e s s e s ) . E a r l y work by Burke 6 

showed that the departure epochs from an M/M/1 queue form a 

Poisson process with a departure r a t e that i s i d e n t i c a l to the 

a r r i v a l r a t e . T h e r e f o r e tandem M/M/1 queues can be analyzed by 

e v a l u a t i n g each queue i n d i v i d u a l l y . 

T h i s case i s not true f o r the M/G/1/N queue. The s p e c i f i c 

c o n d i t i o n s when the queue output i s r e c u r r e n t (a renewal 

process) i s d e t a i l e d by Disney et a l . 1 2 These c o n d i t i o n s e x i s t 

when N=1 and G=D or when N=°° and G=M. The output flow i s 

Poisson only i n the case N=» and G=M. The a p p l i c a b i l i t y of 

a n a l y z i n g the proposed sawmill system i s l i m i t e d i f one i s 

c o n s t r a i n e d by these c o n d i t i o n s . 

Berman and Wescott" have r e c e n t l y o u t l i n e d c e r t a i n 

c o n d i t i o n s f o r the GI/G/c (1<c<°°) queue having a renewal 

departure p r o c e s s . They show that a necessary c o n d i t i o n f o r the 

departure process to be a renewal process i s i f i t s i n t e r v a l 

d i s t r i b u t i o n (the time spent i n the queue system) i s the same as 

that of the a r r i v a l p rocess. 

Approaches f o r e v a l u a t i n g g e n e r a l s e r v i c e time/tandem queue 

problems have l a t e l y been focused on numerical approximations. 

In a d d i t i o n , s i m u l a t i o n s t u d i e s have r e c e n t l y been performed to 

d e f i n e the p r o p e r t i e s and behaviour of the unsaturated queue. 

Shimshak and S p i c h a s 3 2 c a r r i e d out an ex t e n s i v e study of the 

M/E/1->M/1 queue, but the dependency of the departure process on 

the a r r i v a l process i n the f i r s t stage was not c o n s i d e r e d . The 
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a r r i v a l s into the second stage were approximated as a general 

independent d i s t r i b u t i o n . An equation for the numerical 

approximation of the tandem queue was derived. The numerical 

approximation was then compared to the simulation r e s u l t s . 

Their simulation study took into consideration the dependency of 

second-stage a r r i v a l s on the f i r s t - s t a g e a r r i v a l process. 

Several important conclusions were obtained from Shimshak 

and Spichas which can d i r e c t l y a f f e c t the works done by Carino 

and Bowyer. 8 , 9" 1 0 It was shown that the intensity of the 

a r r i v a l rate into the f i r s t queue s i g n i f i c a n t l y a f f e c t s the 

assumption of independent a r r i v a l s . Shimshak and Spichas define 

the f i r s t - s t a g e t r a f f i c intensity "p," as: 

P i = n ' T 

where „ rj = mean a r r i v a l rate into the f i r s t stage 

r = mean service time in the f i r s t stage 

The intensity of the second-stage queue " p 2 " i s : 

P2 = V ' 7 

where y = mean service time in the second stage 

The study results showed that their numerical approximation 

was accurate only at low t r a f f i c intensity for both stages. 
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Accuracy of the tandem queue approximations were especially 

sensitive to high intensity in the second stage. Errors of up 

to 40 percent can be made under the independence assumption, 

with h i g h - t r a f f i c intensity values. 

Another influencing factor to the assumption of independent 

second-stage a r r i v a l s i s the k value used for the k-Erlang 

service d i s t r i b u t i o n in the f i r s t stage. Shimshak and Spichas' 

comparison between numerical approximation and simulation shows 

that a k value greater than five w i l l cause at least a 20 

percent difference between the two methods. 

Therefore a low-variance k-Erlang d i s t r i b u t i o n or 

high-intensity second-stage t r a f f i c can seriously affect the 

numerical approximation r e s u l t s . The assumption of independent 

a r r i v a l s into the second stage becomes no longer v a l i d . A 

dependency exists with the a r r i v a l process and the covariance 

must be considered. 

These conclusions are s i g n i f i c a n t in view of the results of 

Rosenshine and Chandra 2 8 (and subsequently used in Carino and 

Bowyer's computer program). Both pairs of authors used a 

numerical approximation method for evaluating tandem queues with 

general service times. The departure process from the f i r s t 

stage was assumed to be independent of the f i r s t - s t a g e a r r i v a l 

process. Therefore the user of the DSMIN program package must 

be wary of the lim i t a t i o n s of t h i s program, owing to i t s 

s i m p l i f i e d d i s t r i b u t i o n assumptions. 

The covariance structure of the M/E/1 queue departure 

process has been studied. J e n k i n s 2 1 determined the joint 
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d i s t r i b u t i o n between departing customers from a stationary queue 

system (no transient conditions) with k-Erlang service times. 

His results gave a description of the co r r e l a t i o n between 

t r a f f i c intensity and the dependence of the departure process. 

Jenkins worked with the f i r s t two moments of the k-Erlang 

d i s t r i b u t i o n and did not provide results for the case of a 

general d i s t r i b u t i o n . Jenkins also v e r i f i e d Burke's work by 

showing that exponential service times (a k-Erlang d i s t r i b u t i o n 

with k=l) result in an independent departure process. 

K i n g 2 3 studied the departure process of an M/G/1 queue. 

His results gave an expression for the covariance structure of 

the departure process from any M/G/1 queue. His conclusions on 

the case of renewal departure processes are in agreement with 

Di sney et a l . 1 2 
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3.1.2 Tandem Queues with Correlated Service Times 

An important assumption in the queueing analysis assumes 

independence of the a r r i v a l and service d i s t r i b u t i o n s . As 

mentioned previously, t h i s study considers the service 

d i s t r i b u t i o n to be dependent upon the log-length frequency 

d i s t r i b u t i o n . The second-stage i n t e r a r r i v a l d i s t r i b u t i o n (for 

both tandem queue cases studied), i s similar to the f i r s t - s t a g e 

service d i s t r i b u t i o n . Therefore a corr e l a t i o n exists between 

the second-stage i n t e r a r r i v a l d i s t r i b u t i o n and the second-stage 

service d i s t r i b u t i o n . 

As a re s u l t , the second-stage service and i n t e r a r r i v a l 

d i s t r i b u t i o n s are not independent. A major assumption used in 

queueing analysis i s violated, where i t is assumed the service 

and a r r i v a l d i s t r i b u t i o n s are independent of each other. The 

mathematical analysis of t h i s queue system becomes an 

increasingly d i f f i c u l t task with the further assumption of 

correlated service times. 

Reports on tandem queues with similar service times at each 

stage have been recently appearing in technical journals. 

Boxma5 began the investigation of tandem queues with i d e n t i c a l 

general service times at each st a t i o n . He obtained asymptotic 

and numerical results for the sojourn times (time spent in a 

queue system) and the actual and v i r t u a l waiting times at the 

second stage. This i s a M/G/1~>/G/1 queue with highly 

correlated service times. 
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Boxma's results are relevant because he encounters a 

problem that is similar to this sawmill analysis. Because his 

study was in message-communicating switching networks, Boxma's 

ef f o r t s were directed at finding solutions to some tandem queue 

c h a r a c t e r i s t i c s that were d i f f e r e n t to the interests of a 

sawmill designer. Nonetheless, his results on sojourn time can 

be used for determining production of tandem queue systems, as 

envisioned in t h i s present study. -In addition, Boxma's results 

could be applicable to both the unsaturated and saturated cases 

discussed in t h i s report. The approach of modelling sawmills by 

numerical methods may be possible, even with the existence of 

highly correlated service times. 

Boxma concluded that the means and variances of the sojourn 

time in the second stage are smaller when the f i r s t stage is 

under heavy t r a f f i c , compared to an ordinary M/G/1 system with 

the same t r a f f i c intensity and service time d i s t r i b u t i o n . This 

is an interesting conclusion for computer network applications. 

Pinedo and W o l f f 2 7 made a comparison between tandem queues 

with dependent (correlated) and independent service times. The 

queue system investigated was a M/M/1->M/1 queue. A simulation 

study was made for the case of correlated service times where 

both servers had equal service times. The simulation results 

were then compared with a queueing analysis that had an 

independent service time assumption. 

Pinedo and Wolff showed that correlated service times 

affect the determination of waiting times in a queue system. 

They att r i b u t e the waiting time discrepency between dependent 
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and independent service times by a "length biasing e f f e c t " . 

This i s where i t i s more l i k e l y that the customer with a long 

stage-one service time w i l l have in addition, a long stage-two 

service time. T r a f f i c intensity also influences the waiting 

time of the simulation-studied queue. In addition, the results 

of Pinedo and Wolff were in agreement to Boxma's method of 

determining waiting times for correlated-service-time tandem 

queues. 



36 

3.2 Simulation Analysis of the Queue System 

The simulation part of t h i s chapter models the queue system 

with the assumptions outlined in chapter 2. This simulation 

study provides solutions of the queue system in a similar 

fashion to what one would expect a n a l y t i c a l solutions would 

provide. This section also investigates some of the important 

sawmill design c h a r a c t e r i s t i c s one would look for, to be 

provided by a queueing analysis. 

3.2.1 The Queue Assumptions for the Simulation Study 

As was shown in Figure 2, the model i s a simple two-stage 

tandem queue. The f i r s t stage has a single server and a f i n i t e 

storage buffer. The second stage has two stations, each with a 

f i n i t e buffer and server. The following queue d i s c i p l i n e s for 

this simulation model are considered: 

(a) The piece (sawlog) input rate into the f i r s t stage is 

represented by a Poisson d i s t r i b u t i o n which i s stationary and 

homogenous. This w i l l provide an exponential d i s t r i b u t i o n for 

the i n t e r a r r i v a l time into the f i r s t queue. 

(b) To ensure the queue in the f i r s t stage remains unsaturated, 

the t r a f f i c intensity i s always less than one. This implies the 



37 

mean service time is less than the mean i n t e r a r r i v a l time. 

(c) The sawlogs upon entering the f i r s t stage do not leave the 

queue. 

(d) The machine processor at each station serves the customer 

according to the s t a t i s t i c a l d i s t r i b u t i o n described in section 

3.2.2. 

(e) If either buffer in the second stage is f u l l , the machine in 

the f i r s t stage shuts down. The f i r s t stage becomes blocked. 

(f) If the buffer in the f i r s t stage i s f u l l , the generation of 

piece a r r i v a l s stops u n t i l some unused buffer capacity is 

restored. This ensures that an i n f i n i t e queue w i l l not exist at 

the f i r s t stage. Thus a "safety" switch i s provided for the 

simulation model to ensure that the a l l o t t e d memory for the 

program is not used up. 

(g) Two new pieces are created at the f i r s t - s t a g e machine. One 

piece always continues on d i r e c t l y to machine 2 (the cant edger) 

in the second stage. The other piece is directed to machine 3 

(the slab edger) in stage two. There i s usually more than one 

piece created by the headrig and directed toward machine 3 in 

real l i f e . However, i t can be assumed that these pieces arrive 

at the slab edger as one batch. 
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(h) The time to convey a piece to the second-stage f a c i l i t y i s 

not considered, except in the "set-up" exponential random 

variable of the service d i s t r i b u t i o n . 

(i) The boards do not leave the second stage without passing 

through a machine station. 

(j) The length of a log is generated from a k-Erlang 

d i s t r i b u t i o n . The log length (and therefore the service 

processing time) remains unchanged through the entire process. 

However, the set-up time of a piece at the three machines are 

d i f f e r e n t and therefore are i n d i v i d u a l l y generated from an 

exponential d i s t r i b u t i o n . 

(k) Upon exiting the second stage, the pieces leave the system. 
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3.2.2 The Service Time Random Variable 
*> 

In accordance with a r e a l - l i f e s i tuation, the processing 

time of a p a r t i c u l a r log is used for a l l three machines. The 

same k-Erlang random variable i s used for the piece in each 

machine 

The set-up time i s a random variable independent of the 

customer. Each machine i s provided with i t s own exponential 

set-up time d i s t r i b u t i o n and respective scale parameter. The 

psuedo-random number generator used to sample from the 

exponential d i s t r i b u t i o n employs a d i f f e r e n t "seed" than the 

k-Erlang d i s t r i b u t i o n . In addition, the simulation model uses 

an t i t h e t i c variates (refer to App. B) to reduce the variance of 

the simulation estimates. 

In the simulation study, k-Erlang random variables are 

generated. The random variable i s derived from a log-length 

frequency d i s t r i b u t i o n . Refer to section 2.5.3 for a review of 

the service time d i s t r i b u t i o n . The generation of k-Erlang 

random variables for simulation i s outlined by Bury. 7 

The exponential random number is generated in the 

simulation model from the following equation: 

X = w ("log (1-u )) (1) 
i i 

where u = the i ' t h random number sampled 
from the uniform d i s t r i b u t i o n . 
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n = the mean of the exponential d i s t r i b u t i o n 

The simulation program generates a pseudo-random number 

sequence of uniform random variables. S c h r i b e r 3 1 d e t a i l s how 

th i s i s done for the simulation model. 

A k-Erlang r e a l i z a t i o n is the sum of "k" exponential random 

variables: 

Once the k-Erlang random variable i s realized, the 

processing time i s then calculated. If the feed speed of the 

machine is "s", the processing time L i s : 

The variable "m" i s the minimum length log allowed in the 

sawmill. Therefore the displacement time D i s : 

X 
E 

k 
Z X 

i = 1 i 

L = X /s 
E 

(a random variable) 

D = m/s 

Authentic values are assigned to the above variables for 

realism to the simulation model. For instance, assume the 

following values: 
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m = 2.5 meters (8 f t . ) 

X = 3 meters ( 1 0 f t . ) 
E 

s = 1.0 meters/sec. (3.1 ft./sec.) 

Then D + L = (2.5 + 3)/1.0 

= 5.5 seconds 

The other random variable associated with the t o t a l service 

time i s the set-up time. As mentioned previously, the 

assumption taken is that set-up time is exponentially 

di s t r i b u t e d and independent of the log length. It i s a variable 

dependent upon the type of machine processing the log. 

Exponential random variables are generated as outlined in 

equation (1) of this section. Suppose the mean set-up time "/i" 

is 3 seconds. If an exponential r e a l i z a t i o n of the mean i s 

made, we can now calculate the t o t a l service time "T" for this 

log. It i s the sum of the mean set-up time and the processing 

time: 

T = D + L + S 

= 2.5 + 3.0 + 3.0 

= 8.8 seconds 
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3.3 D i s c u s s i o n of the S i m u l a t i o n Model 

The s i m u l a t i o n model was w r i t t e n i n the General Purpose 

S i m u l a t i o n System (GPSS) language. T h i s language i s extremely 

f l e x i b l e and has a short l e a r n i n g time. The computing center at 

UBC has a GPSS-H compiler, which i s the most up to date v e r s i o n . 

It a llows f o r improved i n t e r a c t i o n amongst other c o m p i l e r s , the 

programmer and f i l e s or d e v i c e s over the e a r l i e r v e r s i o n , 

GPSS-V. There i s a l s o an improvement i n c o n t r o l l i n g or 

r e i t e r a t i n g runs. F i n a l l y , the compiler i s about f i v e times 

f a s t e r than the p r e v i o u s v e r s i o n ; t h e r e f o r e the s i m u l a t i o n c o s t s 

are markedly reduced. I t i s a new language that should 

s e r i o u s l y be c o n s i d e r e d by the person i n t e r e s t e d i n s i m u l a t i n g 

queue systems. 

The s e l e c t i o n of values f o r the o p e r a t i n g parameters i n the 

s t u d i e d queue system i s s u b j e c t i v e , so the s i m u l a t i o n program 

w r i t t e n allowed c o n s i d e r a b l e f l e x i b i l i t y . The approach taken 

was to f i r s t e s t a b l i s h what c h a r a c t e r i s t i c s of the queue system 

would be of i n t e r e s t f o r the mathematical a n a l y s i s . Important 

c h a r a c t e r i s t i c s to the sawmill design engineer were a l s o 

c o n s i d e r e d . Once these were e s t a b l i s h e d , values f o r the 

parameters were chosen to best r e f l e c t the a c t u a l system 

o p e r a t i o n . R e a l i s t i c o p e r a t i n g values found i n a sawmill were 

of primary importance i n a s s i g n i n g numbers to the parameters. 

The s i m u l a t i o n of an unsaturated queue was p r i m a r i l y 

intended to e x h i b i t the dependency of the second-stage queue 
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process on the a r r i v a l rate in the f i r s t stage. For a l i s t i n g 

of the simulation program and a l l the parameters selected, one 

should refer to the appropriate Appendix (F-H) associated with 

the simulation runs that w i l l be discussed in the following 

sections. 

3.3.1 Production vs. I n t e r a r r i v a l Time 

The intention of the f i r s t simulation run was to observe 

the dependency of system production on the f i r s t - s t a g e a r r i v a l 

rate. System production i s the t o t a l number of pieces to have 

been through either second-stage machine in an hour. The 

program is described in Appendix F and computer-generated graphs 

were drawn to make more e f f e c t i v e use of the simulation results 

(refer to f i g . 9). 

The f i r s t - s t a g e intensity "p," i s always less than one. 

This ensures that the f i r s t stage queue remains unsaturated. 

The a r r i v i n g logs may fi n d no queue, or even machine 1 not busy. 

Therefore the departure time from the f i r s t stage i s not only 

the service time, but can include part of the f i r s t - s t a g e 

i n t e r a r r i v a l time as well. One can consider the investigation 

in t h i s section as examining the ef f e c t of headrig i d l e time on 

system production. 

The assignment of values to the multitude of system 

variables i s a subjective task. An example of how t h i s was done 
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is shown below so the reader can f a m i l i a r i z e himself with the 

equations and variables (refer to secton 3.2.2 for a description 

of the service time d i s t r i b u t i o n . For the simulation runs in 

subsequent sections, one can simply refer to the proper Appendix 

for the parameters and the respective values used in the 

computer program. 

(a) Machine 1 Total Service Time 

Let machine 1 operate at a feed speed s, of 1.0 m/sec. 

machine 1 mean set-up time be 2 seconds 

mean log length be 2.8 meters 

minimum log length be 2.5 meters 

Then T, = 2.50 m + 2.80 m + 2.0 sec 
1.0 m/sec. 

= 7.3 seconds 

To ensure that p,<1, the stage-one a r r i v a l rate must be 

greater than 7.3 seconds. Therefore l e t the f i r s t - s t a g e 

i n t e r a r r i v a l time vary from 7.5 to 17.0 seconds in the 

simulation run and examine the r e s u l t s . 
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(b) Machine 2 T o t a l S e r v i c e Time 

A h i g h stage-two i n t e n s i t y i m p l i e s slow second-stage machines 

Let machine 2 operate at a feed speed s 2 of 0.8 m/sec. 

machine 2 mean set-up time Mi be 2 seconds. 

Then T 2 = 5.30/s 2 + u2 with s 2=0.8 and M 2=2.0 

= 9.6 seconds 

(which i s s l i g h t l y slower than machine 1) 

(c) Machine 3 T o t a l S e r v i c e Time 

Let machine 3 operate at a feed speed s 3 of 0.6 m/sec. 

machine 3 mean set-up time M 3 be 2 seconds. 

Then T 3 = 5.30/s 3 + ju3 with s 3 = 0.6 and ju3 = 2.0 

= 10.8 seconds 

Machine 3 ( s l a b edger) t o t a l s e r v i c e time i s slower than 

machine 2 (cant edger), but has a l a r g e r storage c a p a c i t y . T h i s 

r e f l e c t s a t y p i c a l sawmill o p e r a t i n g l a y o u t . A l l the system 

o p e r a t i n g parameters of i n t e r e s t now have assi g n e d v a l u e s . A 

s i m u l a t i o n run can be performed to determine how p r o d u c t i o n i s 

a f f e c t e d . Twenty s i m u l a t i o n runs were performed, v a r y i n g the 

mean i n t e r a r r i v a l times from 7.5 to 17.0 seconds, i n steps of 
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0.5 seconds. 

The f i r s t moments of the service and a r r i v a l d i s t r i b u t i o n s 

were used to determine the values for the parameters. The 

example shown above i s for a medium-intensity second-stage 

a r r i v a l rate ( P 2 ) . High and low second-stage i n t e n s i t i e s were 

also studied in this section. The parameter .values used for 

these other two simulation runs are found in Appendix F. A l l 

three cases were graphed in Figure 9. 

To obtain steady-state conditions, the model i s run for an 

equivalent r e a l - l i f e time of about 8 minutes and then a l l the 

s t a t i s t i c s are reset. It i s assumed that the effect of i n t i t i a l 

conditions, where there are no logs in the system at the st a r t , 

have disappeared by then. The model i s then run for another 60 

minutes and the s t a t i s t i c s are subsequently gathered. 

The duration of a simulation run d i r e c t l y a f f e c t s the 

accuracy of what one is attempting to estimate. Complicated 

procedures exist for determining the required duration to 

provide an estimate at a given confidence l e v e l . This study 

however did not approach this topic. Instead, a subjective 

approach was made and judging by the resu l t s , the goal of 

obtaining good s t a t i s t i c s were met. For each case, a regression 

curve was drawn through the points. The variation about the 

regression l i n e was small, implying that the simulation runs 

were long enough duration. This curve should represent the 

functional relationship that exists between the parameters 

graphed. 

As shown in Figure 9, there appears to be a direct 
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relationship between production and the f i r s t - s t a g e i n t e r a r r i v a l 

time. Every second data point was omitted on the graph for 

c l a r i t y . As expected, d i f f e r e n t second-stage i n t e n s i t i e s a f f e c t 

the t o t a l system production. A low intensity (high stage-two 

machine speeds) provides greater output than the other two 

higher-intensity cases, especially at short i n t e r a r r i v a l times. 

It i s interesting to observe that the three curves converge at a 

common i n t e r a r r i v a l time of 17 seconds.- This is because the 

queue system production becomes increasingly dependent upon the 

longer i n t e r a r r i v a l times rather than the machine rates. 

A low stage-two intensity culminates to a point at large 

i n t e r a r r i v a l times, where further improvements may not increase 

production (at least in a linear fashion). In thi s instance, 

the second-stage machines would be "starved" for pieces and the 

storages empty. This implies that i f expensive machines of high 

capacity were i n s t a l l e d in the second stage, system production 

may not be improved. 

This section shows that i f a mathematical model were made 

of the system, desirable information for designing a sawmill 

could be obtained. In addition, d i f f e r e n t f i r s t - s t a g e 

i n t e r a r r i v a l times af f e c t production a great deal. The amount 

of production i s also dependent upon the second-stage intensity, 

as shown by the three d i f f e r e n t slopes in Figure 9. 

The li n e a r relationship for the high-intensity case implies 

that for the range of i n t e r a r r i v a l time values studied, the 

system dependency on the a r r i v a l rate is straight forward. The 

medium and low intensity curves exhibit properties of a 
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n o n - l i n e a r f u n c t i o n . A f u r t h e r i n v e s t i g a t i o n to the 

p o s s i b i l i t i e s of why these r e l a t i o n s h i p s were found i s given i n 

the next s e c t i o n . 



FIG. 9 - PRODUCTION VS. INTERARRIVAL TIME 
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3.3.2 Other System Measures Affected by I n t e r a r r i v a l Time 

Two other system measures studied here in the unsaturated 

queue analysis are the average number of pieces in the machine-3 

storage f a c i l i t y and the percentage of time stage one i s 

blocked. This simulation run describes the medium stage-two 

intensity case (refer to App. F). The percentage of time stage 

one is blocked "B" , comes from the equation: 

B = (e - $)/e x 100 

where e = average time at machine 1 

$ = average machine 1 service time 

The mathematical analysis of th i s queue system can be 

d i f f i c u l t i f blocking i s taken into consideration. The 

complication exists when both second-stage stations provide the 

p o s s i b i l i t y of f i r s t - s t a g e blocking. The simulation run 

performed in th i s section i n t e n t i o n a l l y allowed for independent 

blocking to occur. There was only one storage f a c i l i t y that 

contributed to the blocking. 

The machine 3 storage capacity was assigned to 50 pieces. 

The parameter values chosen for t h i s simulation run ensured that 

the average piece content before machine 3 was at the most, 

about half the storage capacity (refer to Fi g . 10). Machine 2 
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was t h e r e f o r e r e s p o n s i b l e f o r the b l o c k i n g . Refer to Appendix F 

f o r the parameter values used i n the s i m u l a t i o n program. 

B l o c k i n g was an important system c h a r a c t e r s t i c to 

i n v e s t i g a t e . For the medium-intensity case, there i s no 

f i r s t - s t a g e b l o c k i n g at an i n t e r a r r i v a l time of g r e a t e r than 

11.0 seconds ( r e f e r to F i g u r e 11). F i g u r e 9 shows that the 

medium stage-two i n t e n s i t y graph becomes n o n - l i n e a r with no 

stage-one b l o c k i n g . The p r o d u c t i o n of the system becomes 

dependent only upon the i n t e r a r r i v a l times and i n a f u n c t i o n of 

higher order than one. 

The high second-stage i n t e n s i t y case ( r e f e r to F i g . 9) 

p o r t r a y s a l i n e a r f u n c t i o n i n the range of i n t e r a r r i v a l times 

i n v e s t i g a t e d . The data in Appendix F shows that b l o c k i n g 

occurred throughout t h i s range of i n t e r a r r i v a l times. The low 

second-stage i n t e n s i t y case e x h i b i t s a s l i g h t n o n - l i n e a r graph. 

The data in Appendix F shows that no b l o c k i n g o c c u r r e d through 

the range of i n t e r a r r i v a l times. Therefore the n o n - l i n e a r graph 

i s a r e s u l t of the a r r i v a l process only. 

P r e d i c t i o n of average queue content before second-stage 

machinery c o u l d be complicated i f b l o c k i n g i s c o n s i d e r e d . 

F i g u r e 10 shows a curve of average piece content at the b u f f e r 

before machine 3 as a f u n c t i o n of i n t e r a r r i v a l times ( f o r the 

medium-intensity c a s e ) . There was a marked decrease i n the 

average p i e c e content as f i r s t - s t a g e b l o c k i n g (provided by 

machine 2) decreased. With the cant edger b l o c k i n g the h e a d r i g , 

determining the proper s i z e f o r the storage c a p a c i t y before the 

s l a b edger i s d i f f i c u l t . A sawmill where b l o c k i n g occurs 
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( i n t e n t i o n a l l y or not) can r e s u l t i n many c o m p l i c a t i o n s 

downstream of the blocked machine. 

If both storage f a c i l i t i e s c o n t r i b u t e to b l o c k i n g , a 

covar i a n c e must be taken i n t o account. A c o r r e l a t i o n would 

e x i s t between the two second-stage b u f f e r s , with e i t h e r of them 

having the p r o b a b i l i t y of b l o c k i n g the f i r s t stage. The 

mathematical determination of b l o c k i n g i n stage one i s 

s t r a i g h t - f o r w a r d i f only one second-stage storage f a c i l i t y has 

to be c o n s i d e r e d . The percentage of time stage one i s blocked 

i s then equal to the percentage of time the storage f a c i l i t y i n 

the second stage i s f u l l . T h i s can g e n e r a l l y be so l v e d with 

a n a l y t i c a l methods. 



FIG. 10 - AVERAGE CONTENTS IN STORAGE 3 VS. INTERARRIVAL TIME 
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FIG. 11 - % TIME STAGE ONE IS BLOCKED VS. INTERARRIVAL TIME 
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ANALYSIS OF A SATURATED QUEUE 

4.1 The Theoretical Analysis 

Analysis of the queue system could be done with present 

numerical approximation methods i f the queue in the f i r s t stage 

were to be considered as saturated. The departure process from 

the f i r s t stage becomes independent of i t s a r r i v a l process. 

Interest is then focused only on the second stage. If the 

second-stage a r r i v a l process is assumed to be independent of the 

second-stage service process, the queue system can be described 

as a GI/G/1/N queue. A good discussion on this queue analysis 

is found in Neuts. 2 4 

Neuts discusses the problem of blocking in a tandem queue 

with a f i n i t e buffer in the second stage and he provides a 

comprehensive l i s t of references on this subject. He also 

provides solutions to some of the queue systems that exhibit 

blocking. He explains the numerical method of matrix geometric 

programming to model a queue system. This method is used for 

so-called quasi b i r t h and death processes and uses a computer 

algorithm for their analysis. 

With two f i n i t e - b u f f e r stations in the second stage, there 

is the pr o b a b i l i t y that either of them can block the f i r s t 

stage. Blocking i s studied in the section of saturated queue 

analysis because i t i s a second-stage phenomenon. Since the 

f i r s t stage i s saturated, the a r r i v a l process can be disregarded 
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and blocking can be studied more e f f e c t i v e l y . 

4.2 Simulation of an Saturated Queue 

The simulation of a saturated queue u t i l i z e s a computer 

program similar to the case of a unsaturated queue. A l l the 

assumptions outlined in chapter 3 are also used in this 

analysis. A major difference between the saturated and 

unsaturated case is that the f i r s t - s t a g e t r a f f i c intensity p, is 

greater than one in the saturated case. As a r e s u l t , the 

f i r s t - s t a g e buffer i s always f u l l of waiting customers. If 

there was not a limited-capacity f i r s t - s t a g e buffer, an i n f i n i t e 

queue would r e s u l t . A f i r s t - s t a g e i n t e r a r r i v a l time of 1.0 

second was used in the simulation runs. 

With a saturated f i r s t - s t a g e queue f a c i l i t y , the a r r i v a l 

process into the second stage is dependent on only the service 

d i s t r i b u t i o n in the f i r s t stage. The purpose of analyzing the 

saturated queue i s to study the second-stage c h a r a c t e r i s t i c s 

more e f f e c t i v e l y , which i s possible since the f i r s t - s t a g e 

i n t e r a r r i v a l times are no longer considered. 

The c a l c u l a t i o n of the parameter values used for the 

simulation run were similar to the example given in section 

3.2.2. Once again, the intention was to examine operating 

characterstics of the queue system and not to become too 

involved in assigning values to the parameters. The simulation 
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programs in this section are presented in Appendices G and H. 

4.2.1 Production of System as a Function of Machine Rates 

Simulation of a saturated queue can more e f f e c t i v e l y 

examine the eff e c t of individual machine processing rates. 

Therefore, the intention of the f i r s t simulation run was to 

observe the effect each machine has on system production. This 

is important for sawmill design because i t may provide 

information on which machine to give special consideration to, 

with regards to t o t a l production. 

Figure 12 displays the eff e c t of machine rates on system 

production. Each of the three machines was independently varied 

to produce separate curves. Selection of the base values for 

the three machines reflected operating rates anticipated in a 

sawmill. Refer to Appendix G for a l l the machine operating 

rates used in the simulation run. Machines 1 and 2 would be 

expected to have similar rates, with machine 2 (cant edger) 

being s l i g h t l y faster in order to " p u l l away" the pieces from 

the headrig. Machine 2 also has a small storage capacity. 

Machine 3 (slab edger) has a longer service time than the other 

two machines. The long service time r e f l e c t s the slow transfer 

of slabs to machine 3. In addition, machine 3 has a large 

storage capacity. For c l a r i t y of reading the three graphs, they 

were provided with d i f f e r e n t maximum production values. 
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The intention of. varying the rate of machine 1 was to 

investigate the importance of the headrig. The early steep 

slope indicates the large effect on production the f i r s t stage 

has. The decline in the slope i s a result of blocking in the 

second stage. As the headrig becomes faster, bottlenecks 

downstream decrease the system production. 

The influence of the cant edger on improvement to 

production i s not as great. At slow service rates, production 

is decreased because of blocking, which i s not shown in Figure 

1 2 (refer to App. G for t h i s s t a t i s t i c ) . As the speed of the 

cant edger increases, system production increases. The t o t a l 

system production gradually approaches a l i m i t as the cant edger 

speed i s increased. With the cant edger becoming faster than 

the headrig, the average piece content before machine 2 

decreases. The decrease in blocking and the subsequent decrease 

in average piece content of the small-capacity storage result in 

the production l i m i t . 

F i n a l l y , varying the rate of machine 3 can have a large 

influence on production. The parameter values were selected for 

this simulation run to encompass a f u l l machine 3 buffer that 

has a large storage capacity. The shape of the curve (refer to 

Fi g . 1 2 ) representing the slab edger shows that system 

production can be improved as e f f e c t i v e l y as increasing the 

service rate of the headrig. 

The improvement in system production came from decreasing 

the time of blocking and then decreasing the average piece 

content in the large-capacity storage of the slab edger (refer 
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to App. G). The decrease in the curve slope at high machine 3 

speeds was a result of the slab edger becoming "starved" for 

pieces. The s i m i l a r i t y between the curves for machine 1 and 3 

imply that the influence of the slab edger, under certain 

conditions, can be as i n f l u e n t i a l in system production as the 

headrig. 



FIG. 12 - PRODUCTION VS MACHINE RATES 
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4.2.2 The Effect of Blocking on Second-Stage Queues 

Another question addressed in the simulation study was what 

effe c t blocking provided by one second-stage station has on the 

other station average piece content? The intention of this 

simulation run i s to examine the effect two second-stage 

stations have between each other (their c o r r e l a t i o n ) . The 

simulation program is found in Appendix H. 

The rate of machine 2 was selected to provide the necessary 

blocking of the f i r s t stage. The parameter values were chosen 

to i n i t i a l l y have the average piece content of machine 3 to be 

empty. Refer to Appendix H for the parameter values used in the 

simulation run. Machine 2 speed was increased (to decrease 

blocking) and the effect on the average piece content behind 

machine 3 was observed. Figure 13 displays f i r s t - s t a g e blocking 

and Figure 14 displays machine-3 average piece content, as 

functions of machine 2 operating speed. 

As expected, blocking by the cant edger in the second stage 

af f e c t s the average queue contents of the slab edger. As 

blocking decreases to zero, the average piece content of the 

slab edger increases, approaching a l i m i t (refer to F i g . 14). 

The parameter values chosen in th i s simulation run int e n t i o n a l l y 

display how large an influence blocking provided by one 

second-stage station can have on the other station. 

The occurence of blocking in a sawmill system can make the 

design of a second-stage storage f a c i l i t y d i f f i c u l t . One can 
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approach this problem (and the results in this section are only 

an example) by designing the slab-edger storage capacity to 

accomodate the worst case. This is where i t i s assumed that 

there is no blocking done by the cant edger. 

The general intention in designing a sawmill is to avoid 

the event of blocking and attempt to predict operating 

conditions so that i t w i l l not take place. On the other hand, 

i f blocking i s to be permitted by the cant edger, i t i s possible 

to save space (and money) by designing a smaller storage 

f a c i l i t y behind the slab edger. Blocking can p o t e n t i a l l y 

influence the average piece content in a second-stage buffer a 

great deal. The designer must be aware of this and i f he wishes 

to allow blocking to occur in the system, he should attempt to 

understand a l l the ramifications. 



FIG. 13 - % TIME STAGE ONE IS BLOCKED VS. MACHINE 2 RATE 
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4.2.3 System Production Affected by Second-Stage 

Storage Capacity 

The objective of t h i s simulation run was to determine i f an 

optimum size can exist for a second-stage storage f a c i l i t y . The 

designer could save c a p i t a l by i n s t a l l i n g the smallest 

second-stage storage f a c i l i t y possible, while at the same time 

retaining t o t a l system production. This simulation run was in 

part, attempting to duplicate Gershwin and Berman's 1 6 result 

(refer to F i g . 6). 

In this simulation run, we take the previous results in 

section 4.2.2 one step further by saying that the designer w i l l 

i n t e ntionally allow blocking to occur. A common situation could 

be where the cant-edger storage f a c i l i t y i s constrained for 

space. This is often the case because cants are usually stored 

in f a c i l i t i e s l o n g i t u d i n a l l y (ends facing the machines). In 

addition, the operating speed of the cant edger i s generally as 

fast as the headrig. Therefore, the storage f a c i l i t y can 

rapidly f i l l to capacity. 

The machine rates are kept at constant values (refer to 

App. H). This may represent the s i t u a t i o n where the machines 

may already have been selected for the sawmill. The machine 2 

storage capacity was varied from 1 to 20 pieces. The selected 

machine rates provide an average piece content of about 14 

pieces in the cant edger storage f a c i l i t y . The average piece 

content before the slab edger i s small enough to ensure no 
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f i r s t - s t a g e blocking. However, there are always enough pieces 

before machine 3 to keep the slab edger busy. 

The results of the simulation run are shown in Figure 15. 

The curve shows that there i s only marginal improvement to 

system production at a storage capacity of larger than 5 pieces. 

Why would a storage f a c i l i t y of greater than 5 pieces not 

improve system production, i f the average piece content before 

th i s cant edger would be 14 pieces i f i t had an i n f i n i t e 

capac ity? 

Two other simulation runs were performed (but were not 

graphed) to answer this question. The rate of the cant edger 

was varied. One simulation run had an average piece content of 

about 17 pieces, the other 7 pieces. The data from these 

simulation runs reveal the same c h a r a c t e r i s t i c , where system 

production i s not reduced s i g n i f i c a n t l y by decreasing the 

cant-edger storage capacity. Production i s reduced only in the 

range of 6 - 10 percent, depending upon the a r r i v a l intensity 

into the cant edger. In addition, t h i s decrease in production 

is with respect to the worst situation - a storage capacity of 1 

piece. Production however, was s i g n i f i c a n t l y changed by the 

difference in machine-2 operating speed. 

Figure 15 duplicates the results found by Gershwin and 

Berman (as shown in F i g . 6). However, the conclusions made from 

this simulation run indicate that system production i s not 

highly dependent upon storage capacity. The rates of the 

second-stage machines can influence t o t a l system production at a 

greater magnitude. 



FIG. 15 - PRODUCTION VS. MACHINE-2 STORAGE CAPACITY 
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SUMMARY AND CONCLUSIONS 

The d i f f i c u l t y of modelling a system increases with the 

amount of d e t a i l the designer adopts to describe his model. The 

assumptions specified in t h i s study for analyzing a queue system 

describe what is commonly found in a sawmill. Even though these 

assumptions are descriptive of what occurs in a sawmilling 

process, they are d i f f i c u l t to employ in an a n a l y t i c a l model, 

thereby precluding a rigorous mathematical analysis. 

The advantages of mathematically modelling queue systems 

make i t desirable to pursue the modelling of sawmills by 

a n a l y t i c a l techniques. Research into the f i e l d of departure 

processes from the M/G/1 queue has shown that these processes 

cannot be mathematically described except for a few r e s t r i c t i v e 

cases. If more general solutions were available, the modelling 

of a sawmill system would be possible. Research into this area 

is c e r t a i n l y warranted, but i t would be d i f f i c u l t to guarantee 

that applicable solutions could be obtained. 

For the unsaturated case, the investigated sawmill system 

could not be modelled mathematically because of the assumptions 

used in t h i s study. A simplifying assumption of exponential 

service times might improve the potential for mathematical 

modelling. Exponential service times would result in a 

recurrent departure process, and there has been extensive work 

done in t h i s f i e l d of queueing theory. The usefulness of 

modelling sawmills with t h i s service d i s t r i b u t i o n i s unknown. 
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The errors introduced by using t h i s d i s t r i b u t i o n a l assumption 

could be investigated. If the errors were tolerable, this would 

be a reasonable method for approaching the sawmill system 

analysis. 

In cerain cases, numerical approximation methods derived 

from queueing theory can be applied to model the investigated 

sawmill layout. Boxma's research (tandem queues with highly 

correlated service times) has provided solutions that can 

po t e n t i a l l y be useful for sawmill modelling. I believe the 

assumtion of correlated service times i s representative of the 

sawmilling process. Boxma considered an i n f i n i t e storage 

capacity between machine centers, which i s a simplifying 

assumption that can l i m i t the use of the a n a l y t i c a l model. In 

addition, Neuts' solutions can be applied to the saturated queue 

case, i f correlated service times are disregarded. 

The service time d i s t r i b u t i o n of machines found in a 

sawmill should be investigated further. A good d i s t r i b u t i o n 

should adequately describe how the material i s processed. The 

service time d i s t r i b u t i o n used in t h i s study i s f l e x i b l e and is 

a good representation of the sawmilling process. It can 

consider many of the influencing factors that a f f e c t sawmill 

systems. These factors include: the size and quality of logs, 

the e f f e c t of log lengths on processing times, conveyor speeds, 

machine processing rates and operator i n e f f i c i e n c i e s . 

The service d i s t r i b u t i o n suggested in th i s study is capable 

of being used for queueing analysis. It also enables the 

modeller to use functional equations to describe service times, 
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rather than empirical d i s t r i b u t i o n s , which are presently used. 

This can be advantageous for modelling sawmills by both queueing 

theory and simulation, methods. F i e l d research to confirm the 

service d i s t r i b u t i o n suggested in t h i s study should be done. 

This report discusses some of the possible applications for 

sawmill designers using queueing theory. The extensive problems 

which could be encountered by a n a l y t i c a l methods were shown by 

the simulation analysis. Simulation provided a great deal of 

insight into the sawmill system and enabled the study of 

important operating c h a r a c t e r i s t i c s . 

Queueing theory is incapable of providing some important 

solutions of interest to the sawmill designer. Production 

s t a t i s t i c s on the wide variety of board dimensions, species or 

grades made in a sawmill can only be determined by simulation 

methods. This simulation study attempted to duplicate results 

to what one would find from queueing theory. Consequently, the 

simulation work only considered one customer "type". Valuable 

information can s t i l l be obtained with t h i s simplifying 

assumption. Sawmill operating c h a r a c t e r i s t i c s such as buffer 

capacity, bottlenecks and blocking are generally not dependent 

on customer types. Simplistic production estimates could also 

be determined. 

This simulation study provided information for sawmill 

design procedures on i t s own merit. The study showed that the 

relationship between production and the a r r i v a l rate into this 

simple queue system can be linear i f blocking occurs (in the 

range of operating values studied). If i n t e r a r r i v a l times are 
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very large, a s l i g h t non-linear relationship exists with respect 

to production i f there i s absolutely no blocking. There is only 

a minor dependency of i n t e r a r r i v a l times on system production. 

Therefore, in many applicable situations, system production 

estimates could be very e a s i l y calculated. 

Although blocking i s d i f f i c u l t to incorporate in an 

a n a l y t i c a l model, i t should not be disregarded. With two 

stations in the second stage of the studied queue system, the 

determination of f i r s t - s t a g e blocking time can be d i f f i c u l t . 

The analysis could be s i m p l i f i e d i f independent blocking, 

contributed by only one second-stage station, i s considered. 

Blocking provided by one second-stage station can have a 

large effect on the average queue content of the other station. 

Therefore, i t is desirable to predict the occurrence of 

blocking, i f the designer i s attempting to determine the 

capacity of a second-stage buffer. The assumption of an 

i n f i n i t e second-stage storage capacity would allow the modeller 

to determine average queue contents in the storages without 

blocking. This would be a desirable procedure for s i z i n g the 

storage to the worst case. 

System production can be affected i f any one of the three 

machines contribute to f i r s t - s t a g e blocking. Production of the 

studied sawmill appears to be most sensitive to the machine 

speed of the headrig. Production improvement by increasing the 

headrig speed approaches a l i m i t as blocking by either of the 

two second-stage stations increases. 

The simulation study reveals that another possible method 
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of increasing production i s to decrease the average queue 

content of a second-stage storage; p a r t i c u l a r l y i f the storage 

is large, as in the case of the slab edger. This could be a 

non-conventional method to get more production from a sawmill, 

since most sawmill designers focus on the importance of the 

headrig as the primary production machine. The l i m i t to 

production improvement by increasing the speed of the slab edger 

occurs when the average piece storage content i s zero. 

A designer can int e n t i o n a l l y allow some second-stage 

blocking to occur, by decreasing the storage capacity of a 

second-stage machine. This might be necessary i f saving space 

in the second stage is an important consideration. The 

simulation study showed that system production can be quite 

insensitive to the second-stage storage capacity. System 

production is not substantially reduced by u t i l i z i n g very small 

storages in the second stage, which I consider as a 

non-intuitive result. Further investigation into optimum 

second-stage storage capacity should be done. If an a n a l y t i c a l 

approach i s undesirable, a simulation study could be done to 

research this unusual c h a r a c t e r i s t i c . 

In summation, this thesis outlines some of the problems 

encountered in attempting to model a sawmill by queueing theory. 

It also shows some of the disadvantages of simulation for 

analyzing a sawmill system. It is desirable to have queueing 

theory as another tool available to the sawmill designer. The 

most important aspect of queueing theory analysis i s to know 

when, where and how to use i t ( l i k e using any other 0. R. 



73 

technique). This i s p a r t i c u l a r l y important with user-friendly 

software packages that are beginning to appear on the market. 

Unless the designer understands the theory behind these 

programs, serious errors or interpretation may be made from the 

computer output. 
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Notation and Symbols 

Page 

U\ Exponential d i s t r i b u t i o n scale parameter 11 
representing machine 1 operating speed 

M2 Exponential d i s t r i b u t i o n scale parameter 11 
representing machine 2 operating speed 

p Queue system production 11 

n Average in-process inventory behind 11 
a queue station 

E(SC) Expected cost of service 13 

E(WC) Expected cost of waiting 13 

E(TC) Expected t o t a l cost 13 

M "Memoryless" or exponential d i s t r i b u t i o n 14 

G General d i s t r i b u t i o n 14 

GI General independent d i s t r i b u t i o n 14 

E k-Erlang d i s t r i b u t i o n 14 
k 

D "Degenerate" (constant) d i s t r i b u t i o n 14 

N F i n i t e number of customers allowed in a 14 
waiting l i n e (queue capacity) 

c Number of p a r a l l e l servers in a queue mechanism 14 

X k-Erlang d i s t r i b u t i o n scale parameter 23 

k k-Erlang d i s t r i b u t i o n shape parameter 23 

L Random number representing the time to 25 
process a log 

D Displacement parameter (a constant) 25 

S Random number representing the set-up time 25 
at a machine to process a log 
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Page 

T Random number representing the t o t a l service 26 
time to process a log 

17 Mean a r r i v a l rate into the f i r s t stage 29 

7 Mean service time in the f i r s t stage 30 

7 Mean service time in the second stage 30 

p. T r a f f i c intensity in the f i r s t stage 30 

p 2 T r a f f i c intensity in the second stage 30 

X The i ' t h Exponential d i s t r i b u t i o n random 37 
i number r e a l i z a t i o n 

u The i ' t h Uniform d i s t r i b u t i o n random 37 
i number r e a l i z a t i o n 

s- Speed of a machine processor 38 

m Minimum length of a log permitted in the sawmill 38 

T, Total service time of machine 1 42 

T 2 Total service time of machine 2 43 

T 3 Total service time of machine 3 43 

s. Feed speed of machine 1 43 

s 2 Feed speed of machine 2 43 

s 3 Feed speed of machine 3 43 

Mi Mean set-up time of machine 1 43 

M 2 Mean set-up time of machine 2 43 

M 3 Mean set-up time of machine 3 43 

B Percentage of time stage 1 i s blocked 47 

e Average time at machine one 47 

$ Average machine 1 service time 47 
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Antithetic Variates 

A n t i t h e t i c variables i s a variance reducing technique used 

in simulation. It i s used for reducing the variance of two 

random variable (outputs) X and Y. Antithetic variates are 

based on on the equation: 

VAR(X+Y) = VAR X + VAR Y + 2 COV (X,Y) 

The purpose of a n t i t h e t i c variables is to induce a negative 

correlation between X and Y (have the covariance of X and Y 

become negative). This w i l l result i n : 

VAR (X+Y) < VAR X + VAR Y 

There i s no direct control in simulation over the output of 

the random variable. However, simulation does have the control 

of the input random variables that are generated. Therefore, 

the approach for a n t i t h e t i c variables i s to induce negatively 

correlated input random variables and hope that the ensuing 

output random variables have a negative c o r e l l a t i o n . Henriksen 

and C r a i n 1 7 states that the resulting negative c o r r e l a t i o n in 

output random variables i s usually substantially less than the 

negative c o r r e l a t i o n induced in input random variables because 

the s t a t i s t i c a l models act as " f i l t e r s " . 
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A n t i t h e t i c variates are induced by the sampling of the 

uniform d i s t r i b u t i o n . Numbers are sampled from (0,1) and a 

negative correlated number is then used. For example: 

sampled random number = 0.300 

an t i t h e t i c random number = 1-0.300 = 0.700 

Antithetic random variables result in better point 

estimates of the simulation r e s u l t s , for the same number of 

samples. 
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Renewal Process 

Renewal theory forms the foundation for analysis of queues. 

The theory is based on counting processes. A counting process 

for which times between successive events are independent and 

id e n t i c a l l y distributed with an arbitrary d i s t r i b u t i o n is 

defined as a renewal process. 

5, 5 , 

F i g . 16. The Renewal Process 

Source: Ross, 9 p 227. 

Let (N(t), t>0} be a counting process and l e t Xn denote the 

time between the (n- l ) s t and the nth event of the process, n£1. 

If the sequence of nonnegative random variables {X,,X2,...} are 

independent and i d e n t i c a l l y distributed, then the counting 

process is a renewal process. For a renewal process having 

i n t e r a r r i v a l times X,,X2  

N 
Let S 0 = 0 S = L X for n>1 

n i = 1 i 

Then N(t) = max { n: S St} 
n 
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Therefore N(t) is the number of renewals that have occurred by 

time t. For further reference to renewal theory and related 

processes, see R o s s 2 9 ^ 3 0 , P a r z e n 2 6 , K a r l i n and T a y l o r 2 2 or Heyman 

and S o b e l 1 8 . 
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k-Erlang D i s t r i b u t i o n 

A random variable X i s said to by a 3-parameter gamma model 

i f the pro b a b i l i t y density function i s of the form: 

(k-1 ) 
f (x;0,X,k)= 1 .(x-0) exp {-(x-0)/X) 
E XfTkT TxT 

where B= location parameter 

X= scale parameter 

r ( « ) = gamma function 

k = shape parameter 

The k-Erlang d i s t r i b u t i o n i s a gamma d i s t r i b u t i o n with 

integer values for the shape parameter. The k-Erlang 

d i s t r i b u t i o n i s an extremely f l e x i b l e d i s t r i b u t i o n that 

accomodates a wide variety of shapes. Figure 8 - A shows the 

k-Erlang d i s t r i b u t i o n with a constant scale parameter X and 

dif f e r e n t values for the shape parameter k. Figure 8-B shows 

the k-Erlang d i s t r i b u t i o n with a constant value for k and 

diff e r e n t values for X. 

The 3-parameter k-Erlang d i s t r i b u t i o n possesses the 

following properties: 

E ( X ) = 6 + X-k 

V A R ( X ) = X 2 - k 
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Mode = 6 + X-(k-1) 

The maximum l i k e l i h o o d estimators for the gamma 

di s t r i b u t i o n are: 

X-R = x 

n 
where x = (1/n )• £ Y 

n=1 i 
Y = a gamma random variable r e a l i z a t i o n 

i 

If the geometric mean is defined as: 

n 1 /n 
G = n Y 

i = 1 i 

and g = In (x/G) 

Bury 7 states that a highly accurate approximation of R can 

then be made from the following equations: 

with 
R = (0.5001 + 0.l649g - 0.0544g 2)g" 1 

0 < g < 0.577 
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or K = (17.80 + 11.97g + g 2) - 1 

•(8.99 + 9.060g + 0.977g 2)g-' 

with 0.577 < g < 17 

In simulation, a k-Erlang r e a l i z a t i o n i s the sum of k 

exponential d i s t i b u t i o n r e a l i z a t i o n s : 

k 
Pr[X >t] = Z Pr[X >t] 

E i=l i 

Where X = a k-Erlang r e a l i z a t i o n 
E 

X = an exponential r e a l i z a t i o n 
i 

Thus, a uniform random number u i s converted into an 

exponential random number, and the sum of k such values gives a 

single r e a l i z a t i o n of a k-Erlang variable: 

k 
X = M - Z (-In ( 1 - u )) 
E i = 1 i 
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APPENDIX E 

ESTIMATION OF k-ERLANG PARAMETERS 
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Estimation of the k-Erlang Parameters 

The data used to estimate a 3-parameter k-Erlang 

d i s t r i b u t i o n came from Dobie. 1 3 The page containing the data 

from Dobie's report is included in t h i s Appendix. One can refer 

to the data for the numbers that were used in the estimation of 

the parameters. The equations used to estimate the parameter 

values are found in Appendix D. 

(1) Estimate the k-Erlang parameters for chipper headrig - m i l l 

"A" 

Minimum log length is 8 f t . Therfore 6 w i l l have to be 

subtracted from a l l log-length frequency values. This i s 

because i t i s desirable to include the 2 f t . between the 8 and 

10 f t . frequency class as contributing to the processing time. 

This w i l l reduce the 3-parameter k-Erlang d i s t r i b u t i o n to a 

2-parameter d i s t r i b t u i o n . From the data, we obtain the 

following values: 

x = 9.44 = X-k 

n 1/n 
G = n x 

i = 1 i 

_ 2 5 ' 7 5 . 4 2 ' 7 5 . 6 b ' 7 5 ' 8 1 5 ' 7 5 ' 1 0 2 O ' 7 5 « 1 2 1 i , ' 7 5 ' 1 4 1 1 ' 7 5 
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G = 8.629 

g(R) = In (x/G) = In (9.44/8.629) 

= 0.0898 

R = (0.5001 + 0.l649g - 0.0544g 2)g" 1 for 0<g<0.577 

R = 5.72 X = 1.65 

These are estimates for the gamma model. The k-Erlang 

d i s t r i b u t i o n uses only integer values for k therefore l e t : 

R = 6 X = 1.6 

Thus our 3-parameter k-Erlang function takes the form: 

(5) 
f (x;6,1.6,6) = 1 . (x-6) exp {-(X-6)/1.6} 
E 1.6T(6) (1.6) 

The above equation i s used for case (1) in the 

Kolmogorov-Smirnov test 

(2) Estimation of k-Erlang parameters for a scrag headrig - m i l l 

"G" 

Minimum log length i s 10 f t . , therefore subtract 8 from a l l data 

values to obtain a 2-parameter k-Erlang model. 

X = 8.87 



95 

G = 8.31 

g(R) = 0.0652 

R = 7.82 X = 1.13 

Integer values of k are required, therfore l e t : 

R = 8 X = 1 .1 

The k-Erlang d i s t r i b u t i o n has the parameters: 

(7) 
f (x;8,1.1,8) = 1 .(x-8) exp {-(x-8)/1.l} 
E 1.ir(8) (1.1) 

(3) Estimation of k-Erlang parmaters for a log gang headrig 

m i l l " J " 

Minimum log length is 10 f t . , therefore subtract 8 from a l l data 
values to obtain a 2-parameter k-Erlang model. 

X = 8.10 

G = 7.54 

g (R) = 0.0709 

R = 7.21 X = 1.12 

Integer values of k are required, therfore l e t : 

R = 7 X = 1 . 1 

The k-Erlang d i s t r i b u t i o n has the parameters: 
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(6) 
f (x;8,1.1,7) = 1 . (x-8) exp {-(x-8)/1.U 
E 1.1T(7) (1.1) 
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Nov 3/83 Rob Zwick 

Chipper Heading "A" 

KOLMOGOROFF TEST 

(1) (2) (3) 
Class Observed Observed 

Value Frequency 

i x i n i 

(4) 
Cumulative 
Frequency 

n i 

(5) 
Sample 
Distri­
bution 
(4) 

(6) 
Erlang 
c.d.f. 

F
E -

(x;8,1.6,6) 

(7) 
Absolute 
Deviation 
K 5)-(7)l 

1 8 5 5 0.0067 0.0092 0.0025 
2 10 2 7 0.0933 0.1088 0.0155 
3 12 8 15 0.2000 0.3225 .0.1225 
4 14 15 30 0.4000 0.5595 Fails-K).1595 
5 16 20 50 0.6667 0.7470 0.0803 
6 18 14 64 0.8533 0.8679 0.0146 
7 20 11 75 1.0000 0.9340 0.0660 

Test f a i l s at a = 0.10 C/fn" = 0.14087 

Scrags "G" 
(x;10,l.l,8) 

1 10 1 1 ' 0.00099 0.0006 0.0093 
2 12 5 6 0.0594 0.0733 0.0139 
3 14 25 31 0.3069 0.3062 0.0007 
4 16 30 61 0.6040 0.5940 0.0100 
5 18 18 79 0.7822 0.8022 0.0200 
6 20 11 90 0.8911 0.9162 0.0251 
7 22 2 92 0.9109 0.9681 0.0572 
8 24 9 101 1.0000 0.9891 0.0109 

Test passes at a = 0.10 C//TT- 0.1214 

Log Gangs "J" 
(x;10,1.1,7) 

1 10 2 2 0.0238 0.0104 0.0134 
2 12 9 11 0.1310 0.1559 0.0249 
3 14 17 28 0.3333 0.4469 0.1136 
4 16 31 59 0.7024 0.7119 0.0095 
5 18 13 72 0.8571 0.8781 0.0210 
6 20 7 79 0.9405 0.9536 0.0131 
7 22 2 81 0.9643 0.9845 0.0202 
8 24 3 84 1.0000 0.9945 0.0059 

Test passes at a =0.10 C/Jn = 0.133 
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— DISTRIBUTION OF LOG LENGTHS IN STUDY SAMPLES. 

Log length Chipper hoadrigt Scrags Log gangs 
( « . ) A B C D E F G H 1 J K 

(No. of logs) 
8 5 6 

10 2 3 2 1 2 
12 8 24 9 9 5 3 6 9 5 
14 15 11 3 21 12 4 25 8 5 17 10 
16 20 24 13 68 106 55 30 47 56 31 22 
18 14 10 19 14 15 18 2 12 13 18 
20 11 12 40 36 13 11 8 7 21 
22 4 31 5 2 6 2 6 
24 9 11 3 9 
26 1 

Number of legs 75 61 106 116 184 102 101 60 105 84 91 
Average 
length (ft.) 16 18 20 15 16 16 16 16 18 16 18 

Source: D o b i e , 1 3 p 33. 



APPENDIX F 

PRODUCTION VS. INTERARRIVAL TIME 

AND 

OTHER SYSTEM MEASURES VS. INTERARRIVAL 

(INCL. SIMULATION PROGRAM AND DATA) 



SIMULATE 

* THIS PROGRAM VARIES THE INTERARRIVAL TIME 
* OF LOGS ENTERING THE QUEUE SYSTEM 
* 
* FUNCTION DEFINITIONS 
* 
* THIS IS AN EXPONENTIAL DISTRIBUTION FUNCTION 
* WHICH WILL BE USED FOR THE K-ERLANG DISTRIBTUION 
* 

5 FUNCTION RN1.C24 

, 0 / . 1, . 104/ .2 , . 2 2 2 / . 3 . . 3 5 5 / . 4 , . 5 0 9 / . 5 , . 6 9 / . 6 , .9 15/ .7 , 1 . 2 / . 7 5 , 1 . 3 8 
. 8 . 1 . 6 / . 8 4 , 1 . 8 3 / . 8 8 . 2 . 1 2 / . 9 , 2 . 3 / . 9 2 . 2 . 5 2 / . 9 4 , 2 . 8 1 / . 9 5 , 2 . 9 9 / . 9 6 , 3 . 2 
. 9 7 , 3 . 5 / . 9 8 . 3 . 9 / . 9 9 . 4 . 6 / . 9 9 5 . 5 . 3 / . 9 9 8 . 6 . 2 / . 9 9 9 , 7 / . 9 9 9 8 , 8 
* 
* THIS IS A SEPARATE EXPONENTIAL DISTRIBUTION FUNCTION 
* FOR THE SET-UP TIMES OF EACH MACHINE. IT HAS A DIFFERENT 
* "SEED" THAN THE ABOVE EXPONENTIAL DISTRIBUTION 
* 

6 FUNCTION RN2.C24 

, 0 / . 1 , . 1 0 4 / . 2 . . 2 2 2 / . 3 , . 3 5 5 / 4 . . 5 0 9 / 5 , . 6 9 / . 6 , . 9 1 5 / . 7 , 1 . 2 / . 7 5 , 1 . 3 8 
. 8 , 1 . G / . 8 4 , 1 . 8 3 / . 88, 2 . 12/ . 9 , 2 . 3/ . 92 , 2 . 52/. 94 , 2 . 8 1 / . 95, 2 . 99/ . 96 , 3 . 2 
. 97 , 3 . 5/ . 98 , 3 . 9/ . 99 , 4 . 6/ . 995 , 5 . 3 / . 998 . 6 . 2 / . 999 , 7/ . 9998 , 8 
# 
» THIS STATEMENT IDENTIFIES THE EXTERNAL SUBROUTINE THAT 
* STORES X-Y VALUES OF R1 VS. P INTO A FILE ACCESSIBLE FOR 
* THE TELLAGRAF GRAPHING SOFTWARE PACKAGE 

EXTERNAL &DATA 
* 

* STORAGE CAPACITY DEFINITIONS 

STORAGE SSSMACH1,100/SSSMACH2;10/SSSMACH3,50 

REALLOCATE COM,100000 

DECLARE ALL AMPERVARIABLES USED IN THE PROGRAM 

SRATE1,&RATE2,SRATE3,&SET1.6SET2.6SET3.8SCALE,&M.SK 
&BL0CK,&P1(2O),SAC3(2O).&B1(2O),&ARR(2O) 
SI ,S J 

RATE OF MACHINE 1 
RATE OF MACHINE 2 
RATE OF MACHINE 3 
SETUP MEAN TIME FOR MACHINE 1 
SETUP MEAN TIME FOR MACHINE 2 
SETUP MEAN TIME FOR MACHINE 3 
MEAN VALUE OF EXPONENTIAL DIST. FOR GENERATION OF 
ERLANG RANDOM VARIABLES 
K VALUE FOR ERLANG DISTRIBUTION 
MINIMUM LOG LENGTH 

» MODEL SEGMENT 1 

CNTL GENERATE 750,FN5 GENERATE INTERARRIVALS OF 750 TIME UNITS 

REAL 
REAL 
INTEGER 

&RATE1 
SRATE2 -
SRATE3 -
6SET1 
&SET2 
&SET3 
SSCALE -

&K 
SM 

h 
o 
o 



GATE SNF 
ENTER 
SEIZE 
GATE SNF 
GATE SNF 
SEIZE 
LEAVE 

SMACHt 
SMACH1 
MACH1 
SMACH2 
SMACH3 
AVE 
SMACHI 

IF STORAGE SMACHI IS FULL, BLOCK ARRIVALS 
ENTER STORAGE SMACH1 
SEIZE MACH1 FACILITY 
IF STORAGE MACH2 IS FULL, DO NOT LEAVE STORAGE SMACH1 
IF STORAGE MACH3 IS FULL, DO NOT LEAVE STORAGE SMACH1 
STATISTICS FOR NO BLOCK SERVICE TIME 

THIS ROUTINE CREATES ERLANG RANDOM NUMBERS WITH A K VALUE OF 7. 
THESE RANDOM VARIABLES ARE THEN ASSIGNED TO PARAMETER 1 
TO GIVE THE MACHINES 1,2 OR 3 THEIR RESPECTIVE PROCESSING TIMES. 
THE AMPERVARIABLES &R1. &R2 AND &R3 GIVES THE MACHINES THEIR 
RESPECTIVE PROCESSING RATES. WHICH CAN BE VARIED BY EXTERNAL 
CONTROL CARDS. 

ONE ASSIGN 
ASSIGN 
ASSIGN 
TEST GE 

ERL1 FVARIABLE 
ERL2 FVARIABLE 
ERL3 FVARIABLE 
TOT1 FVARIABLE 
TOT2 FVARIABLE 
TOT3 FVARIABLE 

ADVANCE 
RELEASE 
RELEASE 
SPLIT 
ENTER 
SEIZE 
LEAVE 
ADVANCE 
RELEASE 
QUEUE 
DEPART 

BYBY TERMINATE 
MACH3 ENTER 

SEIZE 
LEAVE 
ADVANCE 
RELEASE 
QUEUE 
DEPART 
TRANSFER 

* 

4,&SCALE, 
1+.P4 
5+, 1 
P5,&K,0NE 
(&M+P1J/&RATE1 
(&M+P1)/&RATE2 
(&M+P1)/&RATE3 
&SET1*FN6+V$ERL1 
&SET2*FN6+V$ERL2 
&SET3*FN6+V$ERL3 
V$T0T1 
MACH1 

ASSIGN AN EXPONENTIAL RANDOM NUMBER TO PARAMETER 4 
ADD THE EXPONENTIAL VALUE TO PARAMETER 1 

ASSIGN THE RATE OF MACH1 TO THE EXPONENTIAL VARIABLE 
ASSIGN THE RATE OF MACH2 TO THE EXPONENTIAL VARIABLE 
ASSIGN THE RATE OF MACH3 TO THE EXPONENTIAL VARIABLE 

AVE 
1,MACH3 
SMACH2 
MACH2 
SMACH2 
VSTOT2 
MACH2 
PROD 
PROD 

SMACH3 
MACH3 
SMACH3 
V$TOT3 
MACH3 
PROD 
PROD 
.BYBY 

MODEL SEGMENT 2 

GENERATE 10000 
TERMINATE 1 

PROCESS THE PIECE AT TOTAL SERVICE TIMEFOR MACHINE ONE 
LEAVE MACH1 (INCLUDES BLOCKING) 
GATHER STATS ON NO BLOCKING 
SPLIT THE PIECE INTO TWO: ONE GOES TO MACH2. THE OTHER TO MACH3 
ENTER STORAGE FOR MACH2 
SEIZE MACH2 FACILITY 
LEAVE THE MACH2 STORAGE 
PROCESS THE PIECE AT TOTAL SERVICE TIME FOR MACHINE TWO 
LEAVE MACH2 
COUNT TOTAL PRODUCTION THROUGHPUT OF SYSTEM 
GATHER STATISTIC FOR PRODUCTION OF SYSTEM 

ENTER THE STORAGE FOR MACH3 
SEIZE FACILITY MACH3 
LEAVE THE STORAGE MACH3 
PROCESS THE PIECE AT TOTAL SERVICE TIME FOR MACHINE THREE 
LEAVE MACH3 
COUNT TOTAL PRODUCTION THROUGHPUT OF SYSTEM 
GATHER STATISTICS FOR SYSTEM PRODUCTION 

CONTROL CARDS 

LET 
LET 
LET 
LET 
LET 

&M=2S0 
SK = 7 
&SCALE=40 
&SET1=200 
&SET2=200 

SET MINIMUM LOG LENGTH TO 0 .25 METERS 
SET K VALUE TO 7 
SET ERLANG SCALE PARAMETER TO .40 SECONDS 
MEAN SET-UP TIME FOR MACHINE 1 IS 2 SECONDS 
MEAN SET-UP TIME FOR MACHINE 2 IS 2 SECONDS 

H 
o 
h 



LET 8SET3=200 MEAN SET-UP TIME FOR MACHINE 3 IS 2 SECONDS 
UNLIST CSECHO 

SET THE RATES OF THE MACHINES FOR THE MEDIUM INTENSITY CASE 

THE MACHINE RATES FOR THE LOW INTENSITY CASE ARE : 

MACHINE 2 = 1.20 METERS PER SEC. AND MACHINE 3 = 1.00 METERS PER SEC. 

THE MACHINE RATES FOR THE HIGH INTENSITY CASE ARE : 
MACHINE 2 = O.SO METERS PER SEC. AND MACHINE 3 = 0 .40 METERS PER SEC. 

LET &RATE1=1.00 RATE 
LET 8RATE2=0.80 RATE 
LET 8RATE3=0.60 RATE 
LET 8J=750 
DO 81=1,20 
START 5.NP 
RESET 
RMULT 1,2 
START 18.NP 
RMULT - 1 . - 2 
START 18,NP 
LET 8P1(&I)=QC$PR0D 
LET 8AC3(8I)=SA$SMACH3 
LET &BL0CK*(FTSMACH1 -FTSAVE)/FT$MACH1* 100 
LET &B1(6I)=8BL0CK 
LET &ARR(&I)=&J 
LET &J=&J+50 

CNTL GENERATE &J .S 
CLEAR 
ENDDO 
CALL 8DATA(8P1(1),8AC3(1),&B1(1),SARR( 1)) 
END 

OF MACHINE 1 IS 1.0 METERS PER SEC. 
OF MACHINE 2 IS 0 .80 METERS PER SEC. 
OF MACHINE 3 IS O.GO METERS PER SEC. 

H 
O 



651 
657 
662 
654 
664 
663 
649 
626 
598 
584 
562 
549 
530 
514 
496 
480 
464 
452 
436 
425 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 

3 
8 
3 
0 
2 
3 
8 
9 
4 

2 
9 
0 
4 
2 

9 
6 
5 

25 
23 
17 
15 
1 1 

7 
3 

M 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

6 
7 
8 
7 
5 
5 
6 
7 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

o 

750 
800 
850 
900 
950 

1000 
1050 
1 100 
1 150 
1200 
1250 
1300 
1350 
1400 
1450 
1500 
1550 
1600 
1650 
1700 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

THIS DATA IS FOR THE MEDIUM STAGE-TWO INTENSITY CASE 
WITH MACHINE 2 = 0 .80 METERS PER SECOND 
AND MACHINE 3 = 0 . 6 0 METERS PER SECOND 
COLUMN 1 IS SYSTEM PRODUCTION (IN PIECES PER HOUR) 
COLUMN 2 IS AVERAGE PIECE CONTENT IN STORAGE 3 (IN PIECES) 
COLUMN 3 IS % TIME STAGE ONE IS BLOCKED 
COLUMN 4 IS INTERARRIVAL TIME (IN HUNDREDTH SECONDS) 

H 
O 



923 .0 3 .2 0 .0 750.0 
874 .0 2 8 0 .0 800.0 
840 .0 1 . , 4 0 .0 850.0 
802 .0 1 . 5 0 .0 900.0 
756 .0 0. 4 0. 0 950.0 
721 .0 0. 3 0. .0 1000.0 
685 .0 0. 2 0 .0 1050.0 
654 .0 0. 2 -0 .0 1100.0 
626 .0 0. 4 0 0 1150.0 
601 .0 0. 1 0. 0 1200.0 
577 .0 0 . 2 0. 0 1250.0 
552 .0 0 . 2 0. 0 1300.0 
534 .0 0 . 1 0. 0 1350.0 
514 .0 0. 2 0. 0 1400.0 
496 .0 0. 1 0. 0 1450.0 
480 .0 0. 2 0. 0 1500.0 
464 .0 0. 1 0. 0 1550.0 
451 .0 0. 1 0. 0 1600.0 
436. .0 0 . 1 0 . 0 1650.0 
424 .0 0 . 1 0 . 0 1700.0 

THIS DATA IS FOR THE LOW STAGE• 
WITH MACHINE 2 = 1.20 METERS Pi 
AND MACHINE 
COLUMN 1 IS 
COLUMN 2 IS 
COLUMN 3 IS 
COLUMN 4 IS 

INTENSITY CASE 

3 = 1.00 METERS PER SECOND 
SYSTEM PRODUCTION (IN PIECES PER HOUR) 
AVERAGE PIECE CONTENT IN STORAGE 3 (IN PIECES) 
% TIME STAGE ONE IS BLOCKED 
INTERARRIVAL TIME (IN HUNDREDTH SECONDS) 



478 .0 46 .5 45 .3 750 .0 
484 .0 47 .0 44 .6 800 .0 
478 .0 46 .4 45 .5 850 .0 
4B2 .0 47 .3 44 . 1 900 .0 
479 .0 46 .5 44 .2 950 .0 
480 .0 45 .7 39 .5 1000 .0 
'485 .0 44 .0 35 .9 1050 .0 
482 .0 41 .7 3-1 .7 1 100 .0 
479 .0 38 . 3 29 .5 1 150 .0 
478 .0 35. . 1 26 .6 1200 .0 
474. .0 30. . 1 27 .0 1250 .0 
474 .0 26. .5 24 .8 1300. .0 
473 .0 21 . .5 16 .4 1350. .0 
474. .0 16. .7 4 . ,5 1400. .0 
464 . 0 12 . 4 0. 0 1450. .0 
453. .0 10. 3 0. .0 1500. .0 
442 . 0 8. 7 0. .0 1550. .0 
429. 0 8. 2 0. 0 1600. 0 
417 . 0 7 . 3 0. 0 1650. 0 
408. 0 6. 0 0. 0 1700. 0 

THIS DATA IS FOR THE HIGH STAGE 
WITH MACHINE 2 = 0 .60 METERS PEI 

•TWO INTENSITY CASE 
! SECOND 

AND MACHINE 3 = 0 .40 METERS PER SECOND 
COLUMN 1 IS SYSTEM PRODUCTION (IN PIECES PER HOUR) 
COLUMN 2 IS AVERAGE PIECE CONTENT IN STORAGE 3 (IN PIECES) 
COLUMN 3 IS % TIME STAGE ONE IS BLOCKED 
COLUMN 4 IS INTERARRIVAL TIME (IN HUNDREDTH SECONDS) 
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APPENDIX G 

PRODUCTION OF 

(INCL. 

SYSTEM AS FUNCTION OF MACHINE RATES 

SIMULATION PROGRAM AND DATA) 



SIMULATE 

THIS PROGRAM VARIES THE THREE MACHINE RATES AND PRODUCTION 
OF THE SYSTEM IS SUBSEQUENTLY OBSERVED 

FUNCTION DEFINITIONS 

THIS IS AN EXPONENTIAL DISTRIBTUION FUNCTION WHICH WILL BE 
USED TO OBTAIN A K-ERLANG DISTRIBUTION FUNCTION 

5 FUNCTION RN1.C24 

, 0 / . 1 , . 1 0 4 / . 2 , . 2 2 2 / . 3 . . 3 5 5 / . 4 . . 5 0 9 / . 5 , . 6 9 / . 6 , . 9 1 5 / . 7 , 1 . 2 / . 7 5 . 1 . 3 8 
. 8 , 1 .6/ . 84 , 1 . 83/ .88 , 2 . 12/ . 9 , 2 . 3/ . 92 , 2 . 52/ . 94 , 2 . 8 1/ . 95 , 2 . 99/ . 96 , 3 . 2 
. 9 7 , 3 . 5 / . 9 8 , 3 . 9 / . 9 9 , 4 . 6 / . 9 9 5 , 5 . 3 / . 9 9 8 , 6 . 2 / . 9 9 9 , 7 / . 9 9 9 8 , 8 
* 
* THIS IS A SEPARATE EXPONENTIAL DISTRIBUTION FUNCTION FOR 
* THE SET-UP TIMES OF THE MACHINES. IT HAS A DIFFFERENT 
* "SEED" THAN THE ABOVE EXPONENTIAL DISTRIBUTION. 

6 FUNCTION RN2.C24 

, 0 / . 1 . . 1 0 4 / . 2 , . 2 2 2 / . 3 , . 3 5 5 / . 4 , . 5 0 9 / . 5 . . 6 9 / . 6 , . 9 1 5 / . 7 , 1 . 2 / . 7 5 , 1 . 3 8 
. 8 , 1 . 6 / . 8 4 , 1 . 8 3 / . 8 8 , 2 . 1 2 / . 9 , 2 . 3 / . 9 2 , 2 . 5 2 / . 9 4 , 2 . 8 1 / . 9 5 . 2 . 9 9 / . 9 6 . 3 . 2 
. 97 , 3 . 5/ . 98 , 3 . 9/ . 99 , 4 . 6/ . 995 , 5 . 3 / . 998 , 6 . 2 / . 999, 7/ . 9998 , 8 

THIS STATEMENT IDENTIFIES THE EXTERNAL SUBROUTINE THAT 
STORES X-Y VALUES OF R1 VS. P INTO A FILE ACCESSIBLE FOR 
THE TELLAGRAF GRAPHING SOFTWARE PACKAGE 

EXTERNAL &DATA 

STORAGE CAPACITY DEFINITIONS 

STORAGE SSSMACH1.100/SSSMACH2,10/S$SMACH3,50 

REALLOCATE COM,100000 

DECLARE ALL AMPERVARIABLES USED IN THE PROGRAM 

REAL &RATE1,SRATE2,&RATE3,SSET1,&SET2,&SET3,&SCALE.&M,SK 
REAL 6.BLOCK.&RK20) ,&R2(20),6R3(20) ,&P1(20) ,&P2(20) ,&P3(: 
INTEGER 61 

&RATE1 - RATE OF MACHINE 1 
&RATE2 - RATE OF MACHINE 2 
SRATE3 - RATE OF MACHINE 3 
SSET1 - SETUP MEAN TIME FOR MACHINE 1 
&SET2 - SETUP MEAN TIME FOR MACHINE 2 
&SET3 - SETUP MEAN TIME FOR MACHINE 3 
&SCALE - MEAN VALUE OF EXPONENTIAL DIST. FOR GENERATION OF 

ERLANG RANDOM VARIABLES 
&K K VALUE FOR ERLANG DISTRIBUTION 
&M - MINIMUM LOG LENGTH 

MODEL SEGMENT 1 

),SB 1(20) ,SB2(20) .8B3(20) 

H 
O 



GENERATE 100,FN5 GENERATE INTERARRIVALS OF 100 TIME UNITS 
GATE SNF SMACH1 IF STORAGE SMACH1 IS FULL, BLOCK ARRIVALS 
ENTER SMACH1 ENTER STORAGE SMACH1 
SEIZE MACH1 SEIZE MACH1 FACILITY 
GATE SNF SMACH2 IF STORAGE MACH2 IS FULL, DO NOT LEAVE STORAGE SMACH1 
GATE SNF SMACH3 IF STORAGE MACH3 IS FULL, DO NOT LEAVE STORAGE SMACHI 
SEIZE AVE STATISTICS FOR NO BLOCK SERVICE TIME 
LEAVE SMACH1 

THIS ROUTINE CREATES ERLANG RANDOM NUMBERS WITH A K VALUE OF 7. 
THESE RANDOM VARIABLES ARE THEN ASSIGNED TO PARAMETER 1 TO GIVE 
THE MACHINES 1,2 AND 3 THEIR RESPECTIVE PROCESSING TIMES. 
THE AMPERVARIABLES &R1, SR2 AND 8R3 GIVES THE MACHINES THEIR 
RESPECTIVE PROCESSING RATES, WHICH CAN BE VARIED BY EXTERNAL 
CONTROL CARDS. 

ONE ASSIGN 4,&SCALE,5 ASSIGN AN EXPONENTIAL RANDOM NUMBER TO PARAMETER 4 
ASSIGN 1+.P4 ADD THE EXPONENTIAL VALUE TO PARAMETER 1 
ASSIGN 5+, 1 
TEST GE P5.8K.0NE 

ERL1 FVARIABLE (8M+P1)/8RATE1 ASSIGN THE RATE OF MACH1 TO THE EXPONENTIAL VARIABLE 
ERL2 FVARIABLE (SM+P1)/8RATE2 ASSIGN THE RATE OF MACH2 TO THE EXPONENTIAL VARIABLE 
ERL3 FVARIABLE (6M+P1J/8RATE3 ASSIGN THE RATE OF MACH3 TO THE EXPONENTIAL VARIABLE 
T0T1 FVARIABLE SSET1*FN6+V.$ERL1 
T0T2 FVARIABLE SSET2*FN6+V$ERL2 
T0T3 FVARIABLE 8SET3*FNG+V$ERL3 

ADVANCE V$T0T1 PROCESS THE PIECE AT TOTAL SERVICE TIMEFOR MACHINE ONE 
RELEASE MACH1 LEAVE MACH1 (INCLUDES BLOCKING) 
RELEASE AVE GATHER STATS ON NO BLOCKING 
SPLIT 1,MACH3 SPLIT THE PIECE INTO TWO: ONE GOES TO MACH2. THE OTHER TO 
ENTER SMACH2 ENTER STORAGE FOR MACH2 
SEIZE MACH2 SEIZE MACH2 FACILITY 
LEAVE SMACH2 LEAVE THE MACH2 STORAGE 
ADVANCE V$T0T2 PROCESS THE PIECE AT TOTAL SERVICE TIME FOR MACHINE TWO 
RELEASE MACH2 LEAVE MACH2 
OUEUE PROD COUNT TOTAL PRODUCTION THROUGHPUT OF SYSTEM 
DEPART PROD GATHER STATISTIC FOR PRODUCTION OF SYSTEM 

BYBY TERMINATE 
MACH3 ENTER SMACH3 ENTER THE STORAGE FOR MACH3 

SEIZE MACH3 SEIZE FACILITY MACH3 
LEAVE SMACH3 LEAVE THE STORAGE MACH3 
ADVANCE VST0T3 PROCESS THE PIECE AT TOTAL SERVICE TIME FOR MACHINE THREE 
RELEASE MACH3 LEAVE MACH3 
OUEUE PROD COUNT TOTAL PRODUCTION THROUGHPUT OF SYSTEM 
DEPART PROD GATHER STATISTICS FOR SYSTEM PRODUCTION 
TRANSFER , BYBY 

MODEL SEGMENT 2 

GENERATE 10000 
TERMINATE 1 

CONTROL CARDS 

LET 
LET 
LET 
LET 

8M=250 
&K = 7 
SSCALE=40 
SSET1=300 

THE MINIMUM LOG LENGTH IS 0 .25 METERS 
K-ERLANG K VALUE IS 7 
K-ERLANG SCALE PARAMETER IS 0 .40 SECONDS 
SET-UP TIME FOR MACHINE 1 IS 3 SECONDS 

H 
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LET SSET2=300 SET-UP TIME FOR MACHINE 2 IS 3 SECONDS 
LET &SET3=300 SET-UP TIME FOR MACHINE 3 IS 3 SECONDS 
UNLIST CSECHO 

IN THE FIRST SIMULATON RUN, VARY THE RATE OF MACHINE 1. THE 
BASE VALUES FOR THE OTHER TWO MACHINES ARE: 
MACHINE 2 RATE = 1.20 METERS PER SEC. 
MACHINE 3 RATE = 0 .80 METERS PER SEC. 
THE RATE OF MACHINE 1 IS VARIED FROM 0 .50 TO 1.50 METERS PER SECOND 

LET &RATE1=0.50 
LET &RATE2=1.20 
LET 8RATE3=0.80 
DO 81=1,20 
START 5,NP 
RESET 
RMULT 1 .2 
START 18.NP 
RMULT - 1 , - 2 
START 18,NP 
LET &R1(8I)=&RATE1 
LET 6P1(6I)=QC$PR0D 
LET 8BL0CK=( FT$MACH 1 -FTSAVE )/FT$MACH1 * 100 
LET 8B1(&I)=8BL0CK 
LET 8RATE1=8RATE1+0.05 
CLEAR 
ENDDO 

IN THE SECOND SIMULATION RUN, VARY THE RATE OF MACHINE 2 
THE BASE VALUES FOR THE OTHER TWO MACHINES ARE: 
MACHINE 1 » 1.10 METERS PER SEC. 
MACHINE 3 = 0 . 9 0 METERS PER SEC. 
VARY THE RATE OF MACHINE 2 FROM 0 .70 TO 1.70 METERS PER SECOND 

LET 8RATE1=1 . 10 
LET SRATE2=0.70 
LET 8RATE3=0.90 
DO 81=1,20 
START 5.NP 
RESET 
RMULT 1.2 
START 18.NP 
RMULT - 1 , - 2 
START 18,NP 
LET 8R2(8I)=8RATE2 
LET &P2(8I)=OC$PROD 
LET 8BL0CK=(FTSMACH1-FTSAVE)/FT$MACH1* 100 
LET 8B2(8I)=8BL0CK 
LET SRATE2=SRATE2+0.05 
CLEAR 
ENDDO 

IN THIS SIMULATION RUN, VARY THE RATE OF MACHINE 3 
THE BASE VALUES FOR THE OTHER TWO MACHINES ARE: 
MACHINE 1 RATE = 1.00 METERS PER SEC. 
MACHINE 2 RATE = 1.20 METERS PER SEC. 
VARY THE RATE OF MACHINE 3 FROM 0 .30 TO 1.30 METERS PER SECOND 

LET 8RATE1=1.00 
LET 8RATE2=1.20 



LET &RATE3=0.30 
DO S I " 1 . 2 0 
START S.NP 
RESET 
RMULT 1,2 
START 18,NP 
RMULT - 1 , - 2 
START 18,NP 
LET 6R3(&I)=SRATE3 
LET &P3(&I)=OC$PROD 
LET « B L O C K = ( F T $ M A C H 1 - F T $ A V E ) / F T $ M A C H 1 * 100 
LET &B3I&I)=&BLOCK 
LET &RATE3=SRATE3+0.05 
CLEAR 
ENOOO 
CALL &0ATA(UR1( 1 ),&R2( 1).SR3( 1 ) ,&P1( 1),&P2( 1 ) ,&P3( D . S B K 1 ),&B2( 1 ) ,&B3( 1)) 
END 

I—1 
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0 .500 0 .700 0 300 490 .0 64 1 .0 336 .0 0. .0 23 .9 56 .0 
0 .550 0 .750 0. .350 532 .0 662 .0 399 .0 0 .0 22 .4 47 . 1 
0 .600 0 .800 0. 400 571 .0 686 .0 435 .0 0. .0 21 .6 43 .6 
0 .650 0. .850 0. .450 605 .0 732 .0 482 .0 0. .0 15 .6 36 .3 
0. .700 0. .900 0. .500 646 .0 754 .0 534 .0 0. .0 11 . 3 27 .6 
0 . 750 0. .950 0. 550 661 .0 769 .0 553 .0 0. 0 8 .2 28 .6 
0 .800 1 . .000 0. 600 696 .0 780 .0 592 .0 0. 0 5 .0 23 .3 
0 .850 1 . .050 0. 650 707 .0 795 .0 620 .0 0. 0 3 .8 20 .7 
0. .900 1 . 100 0. 700 721 .0 787 .0 652 .0 0. 0 2 . 3 14 . 4 
0. .950 1 . 150 0. 750 735 .0 788 .0 696 .0 1. 4 4 . 3 9. .6 
1. .000 1 . 200 0. 800 723 .0 788 .0 733 .0 6. 5 4 . 1 2 .5 
1, 050 1 . 250 0. 850 728. .0 783 .0 754 .0 8. 6 5 .7 0. .0 
1. . 100 1 . 300 0. 900 729 .0 763 .0 777 .0 1 1 . 6 7 . 6 0. 0 
1. . 150 1 . 350 0. 950 740. .0 792 .0 793 .0 10. 3 3. .5 0. 0 
1. 200 1 . 400 1 . 000 713. .0 785 .0 804 .0 19. 0 3. 8 0. 0 
1. 250 1 . 450 1 . 050 725. .0 796 .0 815 .0 19. 2 4 . 4 0. 0 
1. 300 1 . 500 1 . 100 728. .0 795 .0 812 .0 20. 2 2 . 6 0. 0 
1. 350 1 . 550 1 . 150 715. 0 803 .0 810 .0 24. 6 0. .2 0. 0 
1. 400 1 . 600 1 . 200 738. 0 788 .0 819 .0 21 . 1 4 . 8 0. 0 
1. 450 1 . 650 1 . 250 715. .0 792 .0 814. .0 28. 4 3. .4 0. 0 
COLUMN 1 IS RATE OF MACHINE 1 VARIED (IN METERS PER SECOND) 
COLUMN 2 IS RATE OF MACHINE 2 VARIED (IN METERS PER SECONO) 
COLUMN 3 IS RATE OF MACHINE 3 VARIED (IN METERS PER SECOND) 
COLUMN 4 IS SYSTEM PRODUCTION FROM MACHINE 1 VARIED (IN PIECES PER HOUR) 
COLUMN 5 IS SYSTEM PRODUCTION FROM MACHINE 2 VARIED (IN PIECES PER HOUR) 
COLUMN 6 IS SYSTEM PRODUCTION FROM MACHINE 3 VARIED (IN PIECES PER HOUR) 
COLUMN 7 IS "/. BLOCKED TIME FROM FIRST RUN 
COLUMN 8 IS % BLOCKED TIME FROM SECOND RUN 
COLUMN 9 IS % BLOCKED TIME FROM THIRD RUN 

H 
H 
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APPENDIX H 

THE EFFECT OF BLOCKING ON SECOND-STAGE QUEUES 

AND 

SYSTEM MEASURES AFFECTED BY SECOND-STAGE STORAGE CAPACITY 

(INCL. SIMULATION PROGRAM AND DATA) 



SIMULATE 

THE FIRST SIMULATION RUN OF THIS PROGRAM VARIES THE RATE OF 
MACHINE 2 TO VARY FIRST-STAGE BLOCKING. THE SECOND SIMULATION 
RUN VARIES THE SIZE OF MACHINE 2 STORAGE FACILITY 

FUNCTION DEFINITIONS 

THIS IS AN EXPONENTIAL DISTRIBUTION FUNCTION WHICH WILL BE 
USED TO OBTAIN A K-ERLANG DISTRIBUTION FUNCTION 

5 FUNCTION RN1.C24 

, 0 / . 1 . . 1 0 4 / . 2 , . 2 2 2 / . 3 , . 3 5 5 / . 4 , . 5 0 9 / . 5 , . 6 9 / . 6 , . 9 1 5 / . 7 . 1 . 2 / . 7 5 . 1 . 3 8 
. 8 . 1 . 6 / . 84, 1 . 8 3 / . 88, 2. 12/. 9, 2 . 3/ . 92 , 2 . 52/. 9.4 . 2 . 8 1/. 95 , 2 . 99/ . 96 , 3 . 2 
. 9 7 , 3 . 5 / . 9 8 , 3 . 9 / . 9 9 , 4 . 6 / . 9 9 5 , 5 . 3 / . 9 9 8 . 6 . 2 / . 9 9 9 , 7 / . 9 9 9 8 . 8 

* THIS IS A SEPARATE EXPONENTIAL DISTRIBUTION FUNCTION FOR 
* THE THREE MACHINE SET-UP TIMES. IT HAS A DIFFERENT "SEED" 
» THAN THE ABOVE EXPONENTIAL DISTRIBUTION 
* 

6 FUNCTION RN2.C24 

.0/.1,.104/.2,.222/.3..355/.4..509/.5,.69/.6,.915/.7.1.2/.75,1.38 

. 8 , 1 . 6 / . 8 4 . 1 . 8 3 / 8 8 . 2 . 1 2 / . 9 , 2 . 3 / . 9 2 , 2 . 5 2 / . 9 4 , 2 . 8 1 / . 9 5 , 2 . 9 9 / . 9 6 . 3 . 2 

. 9 7 . 3 . 5 / . 9 8 , 3 . 9 / . 9 9 , 4 . 6 / . 9 9 5 , 5 . 3 / . 9 9 8 , 6 . 2 / . 9 9 9 , 7 / . 9 9 9 8 , 8 

THIS STATEMENT IDENTIFIES THE EXTERNAL SUBROUTINE THAT 
STORES X-Y VALUES OF R1 VS. P INTO A FILE ACCESSIBLE FOR 
THE TELLAGRAF GRAPHING SOFTWARE PACKAGE 

EXTERNAL SDATA 

STORAGE CAPACITY DEFINITIONS 

STORAGE S$SMACH1,100/S$SMACH3,50/SSSMACH2,10 

REALLOCATE COM,100000 

DECLARE ALL AMPERVARIABLES USED IN THE PROGRAM 

REAL URATE 1.6RATE2,8RATE3.8SET1,SSET2,8SET3,SSCALE,&M,8K 
REAL SBL0CK.&R2(20) ,8P1(20) .8P1B(20) ,8S2(20) ,8B1(20) .8AC3B(20) ,&AC3(20) ,8AC2B(20) 
INTEGER 81,&J 

&RATE1 - RATE OF MACHINE 1 
8RATE2 - RATE OF MACHINE 2 
8RATE3 - RATE OF MACHINE 3 ( 
SSET1 - SETUP MEAN TIME FOR MACHINE 1 
8SET2 - SETUP MEAN TIME FOR MACHINE 2 
8SET3 - SETUP MEAN TIME FOR MACHINE 3 
SSCALE - MEAN VALUE OF EXPONENTIAL DIST. FOR GENERATION OF 

ERLANG RANDOM VARIABLES 
8K - K VALUE FOR ERLANG DISTRIBUTION 
8M - MINIMUM LOG LENGTH 

MODEL SEGMENT 1 



GENERATE 
GATE SNF 
ENTER 
SEIZE 
GATE SNF 
GATE SNF 
SEIZE 
LEAVE 

100,FN5 
SMACH1 
SMACH1 
MACH1 
SMACH2 
SMACH3 
AVE 
SMACH1 

GENERATE INTERARRIVALS OF 
IF STORAGE SMACH1 IS FULL 
ENTER STORAGE SMACH1 
SEIZE MACH1 FACILITY 
IF STORAGE MACH2 IS FULL, 
IF STORAGE MACH3 IS FULL, 

100 TIME UNITS 
BLOCK ARRIVALS 

DO NOT LEAVE STORAGE SMACH1 
DO NOT LEAVE STORAGE SMACH1 

STATISTICS FOR NO BLOCK SERVICE TIME 

THIS ROUTINE CREATES ERLANG RANDOM NUMBERS WITH A K VALUE OF 7. 
THESE RANDOM VARIABLES ARE THEN ASSIGNED TO PARAMETERS 1 
TO GIVE THE MACHINES 1,2 AND 3 THEIR RESPECTIVE PROCESSING TIMES. 
THE AMPERVARIABLES &R1, &R2 AND &R3 GIVES THE MACHINES THEIR 
RESPECTIVE PROCESSING RATES, WHICH CAN BE VARIED BY EXTERNAL 
CONTROL CARDS. 

ONE ASSIGN 4.&SCALE.5 ASSIGN AN EXPONENTIAL RANDOM NUMBER TO PARAMETER 4 
ASSIGN 1+.P4 ADD THE EXPONENTIAL RANDOM NUMBER TO PARAMETER 1 
ASSIGN 5+, 1 
TEST GE P 5 , » K , 0 N E 

ERL 1 FVARIABLE (&M+P1)/SRATE1 ASSIGN THE RATE OF MACH1 TO THE EXPONENTIAL VARIABLE 
ERL2 FVARIABLE (&M+P1)/SRATE2 ASSIGN THE RATE OF MACH2 TO THE EXPONENTIAL VARIABLE 
ERL3 FVARIABLE (&M+P1J/&RATE3 ASSIGN THE RATE OF MACH3 TO THE EXPONENTIAL VARIABLE 
T0T1 FVARIABLE &SET1*FNG+V$ERL1 
T0T2 FVARIABLE &SET2*FN6+V$ERL2 
TOTS FVARIABLE &SET3*FN6+V$ERL3 

ADVANCE V$T0T1 PROCESS THE PIECE AT TOTAL SERVICE TIMEFOR MACHINE ONE 
RELEASE MACH1 LEAVE MACH1 (INCLUDES BLOCKING) 
RELEASE AVE GATHER STATS ON NO BLOCKING 
SPLIT 1,MACH3 SPLIT THE PIECE INTO TWO: ONE GOES TO MACH2, THE OTHER TO 
ENTER SMACH2 ENTER STORAGE FOR MACH2 
SEIZE MACH2 SEIZE MACH2 FACILITY 
LEAVE SMACH2 LEAVE THE MACH2 STORAGE 
ADVANCE V$T0T2 PROCESS THE PIECE AT TOTAL SERVICE TIME FOR MACHINE TWO 
RELEASE MACH2 LEAVE MACH2 
QUEUE PROD COUNT TOTAL PRODUCTION THROUGHPUT OF SYSTEM 
DEPART PROD GATHER STATISTIC FOR PRODUCTION OF SYSTEM 

BYBY TERMINATE 
MACH3 ENTER SMACH3 ENTER THE STORAGE FOR MACH3 

SEIZE MACH3 SEIZE FACILITY MACH3 
LEAVE SMACH3 LEAVE THE STORAGE MACH3 
ADVANCE V$T0T3 PROCESS THE PIECE AT TOTAL SERVICE TIME FOR MACHINE THREE 
RELEASE MACH3 LEAVE MACH3 
QUEUE PROD COUNT TOTAL PRODUCTION THROUGHPUT OF SYSTEM 
DEPART PROD GATHER STATISTICS FOR SYSTEM PRODUCTION 
TRANSFER , BYBY 

MODEL SEGMENT 2 

GENERATE 10000 
TERMINATE 1 

CONTROL CARDS 

LET 
LET 
LET 
LET 

&M=250 
SK = 7 
8SCALEM0 
SSET1=300 

MINIMUM LOG LENGTH IS 0 .25 METERS 
K-ERLANG K VALUE IS 7 
K-ERLANG SCALE PARAMETER IS 0 .40 SECONDS 
SET-UP TIME FOR MACHINE 1 IS 3 SECONDS 

H 



LET 8SET2=300 SET-UP TIME FOR MACHINE 2 IS 3 SECONDS 
LET 8SET3=30O SET-UP TIME FOR MACHINE 3 IS 3 SECONDS 
UNLIST CSECHO 

THE FIRST SIMULATION RUN INTENTIONALLY CREATES FIRST-STAGE 
BLOCKING BY MACHINE 2. THE RATE OF MACHINE 3 ENSURES A 
QUEUE IN STORAGE 3, BUT WILL NOT PROVIDE FIRST-STAGE BLOCKING. 
THE RATE OF *MACHINE 2 IS VARIED. TO VARY THE FIRST-STAGE BLOCKING. 

LET 8RATE1=1.00 
LET 8RATE2=0.40 
LET SRATE3=0.90 
DO &I=1.20 
START 5.NP 
RESET 
RMULT 1 ,2 
START 18, NP 
RMULT - 1 . - 2 
START 18.NP 
LET 8R2(8I)=8RATE2 
LET &P1(8I)=QC$PR0D 
LET 8 B L 0 C K = ( F T $ M A C H 1 - F T $ A V E ) / F T $ M A C H 1 « 1 0 0 
LET 8B1(8I)=8BL0CK 
LET 6AC3(&I)=SA$SMACH3 
LET 6RATE2=8RATE2+0.05 
CLEAR 
ENOOO 

THIS SIMULATION RUN INTENTIONALLY HAS AN AVERAGE STORAGE 2 
PIECE CONTENT OF 14 PIECES. THERE IS NO BLOCKING BY MACHINE 3. 
MACHINE 2 HAD A SPEED OF 0 . 9 METERS PER SECOND. 
THE MACHINE 2 STORAGE CAPACITY IS VARIED FROM 1 TO 20 PIECES. 
TWO MORE SIMULATION RUNS WERE MADE. ONE RUN HAD A MACHINE 2 
RATE OF 0.85 METERS PER SECOND. THIS CREATED AN AVERAGE PIECE 
CONTENT OF 17 BEFORE MACHINE 2. THE OTHER RUN HAD A MACHINE 2 
RATE OF 0.95 METERS PER SECOND. THIS CREATED AN AVERAGE PIECE 
CONTENT OF 7 BEFORE MACHINE 2. 

LET 8RATE1=1.00 METERS PER SECOND 
LET &RATE2=0.95 
LET 8RATE3=1.O0 " * • 
LET 8J=1 
DO 81=1,20 
STORAGE SSSMACH1.100/S$SMACH3.50/SSSMACH2.&J 
START 5,NP 
RESET 
RMULT 1,2 
START 18,NP 
RMULT - 1 , - 2 
START 18,NP 
LET 6P18(81)=QC$PROD 
LET 8AC3B(8I)=SA$SMACH3 
LET 8S2(SI)=8d 
LET SAC2B(8I)=SA$SMACH2 
LET 8d=8J+1 
CLEAR 
ENDDO 
CALL 8DATA(8R2(1) ,SP1(1) ,8B1(1) ,SAC3(1) ,8P1B(1) ,8AC3B(1) ,8S2(1) ,SAC2B( 1 ) ) 
END 



0, .400 410 .0 48 , 1 0. . 1 630 .0 0. . 1 1 .0 0 .2 
0. 450 448 .0 42 6 0. 1 728 .0 0. 5 2 .0 0 . 7 
0 .500 483 .0 40 .0 0. 1 729 .0 0 8 3 .0 1. .3 
0. 550 526 .0 33 .2 0. .3 739 .0 0 6 4 .0 2 .5 
0, .600 568 .0 27 .8 0 4 757 .0 1 .5 5 .0 3 . 3 
0. .650 591 .0 24 .7 0. .3 768 .0 1. .7 6 .0 3 . 7 
0. .700 643 .0 19 . 1 0. 7 765 .0 1. 7 7 .0 4 .5 
0. .750 672 .0 13 .7 0. 8 755 .0 2 . .5 8 .0 6. . 1 
0. .800 699 .0 13 .0 1 . 6 775 .0 2. 4 9 .0 5 .0 
0. .850 723 .0 9 8 2. 7 741 .0 0, 9 10 .0 7 .8 
0 .900 744 .0 9 .0 7. .2 778 .0 5 .2 1 1 .0 5 .4 
0 .950 759 .0 5 .2 13. ,6 761 .0 1 . .5 12 .0 9 . 3 
1. .000 777 .0 1 . 1 19. 8 767 .0 2. .2 13 .0 9 8 
1. .050 777 .0 0 .6 30. 2 753 .0 1 . . 7 14 .0 1 1 . .2 
1, . 100 790 .0 0 .0 24, .0 755 .0 2 . 5 15 .0 12. .3 
1. . 150 779 .0 0 .0 25. 7 752 .0 1 . 7 16 .0 13. .5 
1. .200 773 .0 0 . 1 24 . .4 759 .0 3. 4 17 .0 12 .9 
1 .250 780 .0 0 .0 20 .5 761 .0 3 0 18 .0 15 . 1 
1 . 300 777 .0 0 .0 20. . 1 753 .0 2. . 1 19 .0 16 .3 
1 . 350 766 .0 1 .8 36. . 1 774 .0 1 . .2 20 .0 13 . 7 
FOR THE FIRST SIMULATION RUN: 
COLUMN 1 IS RATE OF MACHINE 2 (IN METERS PER SECOND) 
COLUMN 2 IS SYSTEM PRODUCTION (IN PIECES PER HOUR) 
COLUMN 3 IS % TIME STAGE ONE IS BLOCKED 
COLUMN 4 IS AVERAGE OUEUE CONTENT IN STORAGE 3 (IN PIECES) 
FOR THE SECOND SIMULATION RUN: 
COLUMN 5 IS SYSTEM PRODUCTION (IN PIECES PER HOUR) 
COLUMN 6 IS AVERAGE OUEUE CONTENT IN STORAGE 3 (IN PIECES) 
COLUMN 7 IS CAPACITY OF STORAGE 2 (IN PIECES) 
COLUMN 8 IS AVERAGE OUEUE CONTENT IN STORAGE 2 (IN PIECES) 
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0 .400 410 .0 48 . 1 0. . 1 623 .0 0 .2 1 .0 0 . 2 
0. .450 448 .0 42. .6 0. . 1 703 .0 0. .4 2 .0 0 .8 
0. .500 483 .0 40. .0 0. . 1 705 .0 0. 7 3 .0 1. .7 
0. 550 526 .0 33 2 0. .3 728 .0 0. 9 4 .0 2. .4 
0. .600 568 .0 27, .8 0. .4 724 .0 1 . 1 5 .0 3 6 
0 .650 591 .0 24 . . 7 0. .3 723 .0 0 .7 6 .0 4 , . 3 
0. .700 643 .0 19. . 1 0. .7 731 .0 1 . 0 7 .0 5 ,2 
0. . 750 672 .0 15. .7 0. .8 729 .0 1 . 0 8 .0 6 . 5 
0. 800 699 .0 13. 0 1. 6 725 .0 0. 8 9 .0 ' 7 . 1 
0 .850 723 .0 9 8 2. .7 7 13 .0 0 7 10 .0 8 . 7 
0. .900 744 .0 9 0 7. .2 728 .0 0 8 1 1 .0 8 8 
0. .950 759 .0 5. .2 13. .6 731 .0 1 .0 12 .0 9. .6 
1. .000 777 .0 1 1 19. 8 729 .0 1. 3 13 .0 1 1 , 1 
1. .050 777 .0 0. 6 30. .2 730 .0 0. 9 14 .0 12 , 1 
1. . 100 790 .0 0 .0 24. .0 732 .0 1. 2 15 .0 13 . 2 
1. 150 779 .0 0 .0 25 . 7 734 .0 1. .0 16 .0 14 .0 
1 . 200 773 .0 0 . 1 24. . 4 729 .0 0 8 17 .0 14 . .7 
1, .250 780 .0 0 .0 20. .5 731 .0 0. 6 18 .0 14 . .7 
1. .300 777 .0 0. .0 20. 1 738 .0 '1 . 8 19 .0 16. 6 
1 .350 766 .0 1. 8 36. 1 741 .0 1, 5 20 .0 16 . 6 
THIS DATA IS FOR THE SIMULATION STUDY WHERE THE SECOND RUN HAS 
A MACHINE 2 RATE OF 0 . 6 0 METERS PER SECOND. 
FOR THE FIRST SIMULATION RUN: 
COLUMN 1 IS RATE OF MACHINE 2 (IN METERS PER SECOND) 
COLUMN 2 IS SYSTEM PRODUCTION (IN PIECES PER HOUR) 
COLUMN 3 IS V. TIME STAGE ONE IS BLOCKED 
COLUMN 4 IS AVERAGE OUEUE CONTENT IN STORAGE 3 (IN PIECES) 
FOR THE SECOND SIMULATION RUN: 
COLUMN 5 IS SYSTEM PRODUCTION (IN PIECES PER HOUR) 
COLUMN 6 - IS AVERAGE OUEUE CONTENT IN STORAGE 3 (IN PIECES) 
COLUMN 7 IS CAPACITY OF STORAGE 2 (IN PIECES) 
COLUMN 8 IS AVERAGE OUEUE CONTENT IN STORAGE 2 (IN PIECES) 
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0. .400 4 10 .0 48 . 1 0 . 1 660 .0 0 . 3 1 .0 0 .2 
0. .450 448 .0 42 .6 0 . 1 747 .0 0 . 9 2 .0 0 .6 
0. .500 483 .0 40 .0 0 . 1 758 .0 1 .0 3 .0 1 .0 
0 .550 526 .0 33 .2 0. .3 772 .0 1 .2 4 .0 2 .0 
0. 600 568 .0 27 .8 0, .4 775 .0 3 .0 5 .0 2 . 7 
0. 650 591 .0 24 . 7 0 3 769 .0 0 .9 6 .0 3 . 4 
0. . 700 643 .0 19 . 1 0 . 7 774 .0 2 . 1 7 .0 4 .6 
0 .750 672 .0 15 .7 0. 8 774 .0 1 .8 8 .0 5 .6 
0. .800 699 .0 13 .0 1. .6 783 .0 4 .2 9 .0 5 .0 
0. 850 723 .0 9 .8 2. .7 787 .0 5 . 4 10 .0 7 . .2 
0. 900 744 .0 9 .0 7. 2 785 .0 3 . 9 11 .0 6 . 7 
0. 950 759 .0 5 .2 13. 6 778 .0 4. . 3 12 .0 9. .2 
1. 000 777. .0 1 . . 1 19. 8 785 .0 2 . 1 13 .0 9 5 
1. 050 777 .0 0 .6 30. 2 784 .0 1 . 8 14 .0 10. 6 
1. 100 790 .0 0 .0 24 . 0 789 .0 5 .0 15 .0 10 . 1 
1. 150 779 .0 0 .0 25 7 788 .0 3 0 16 .0 8 7 
1. 200 773. .0 0. . 1 24. 4 778 .0 1 . .4 17 .0 7. 3 
1. 250 780. .0 0 .0 20. 5 775 .0 1 . 8 18 . 0 6. 8 
1. 300 777 . .0 0 .0 20. 1 774 .0 6 .8 19. 0 14 . 9 
1. 350 766 .0 1 .8 36. 1 786 .0 6. . 4 20 0 13. 8 
THIS DATA IS FOR THE SIMULATION STUDY WHERE THE SECDND RUN HAS 
A MACHINE 2 RATE OF 0 . 9 0 METERS PER SECOND. 
FOR THE FIRST SIMULATION RUN: 
COLUMN 1 IS RATE OF MACHINE 2 (IN METERS PER SECOND) 
COLUMN 2 IS SYSTEM PRODUCTION (IN PIECES PER HOUR) 
COLUMN 3 IS % TIME STAGE ONE IS BLOCKED 
COLUMN 4 IS AVERAGE OUEUE CONTENT IN STORAGE 3 (IN PIECES) 
FOR THE SECOND SIMULATION RUN: 
COLUMN 5 IS SYSTEM PRODUCTION (IN PIECES PER HOUR) 
COLUMN 6 IS AVERAGE QUEUE CONTENT IN STORAGE 3 (IN PIECES) 
COLUMN 7 IS CAPACITY OF STORAGE 2 (IN PIECES) 
COLUMN 8 IS AVERAGE QUEUE CONTENT IN STORAGE 2 (IN PIECES) 
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SUBROUTINE DATA(R2,P1,B1,ACS,P1B,AC3B,S2,AC2B) 
REAL R2(20) .P1(20) .B1(20) ,AC3(20) .P1B(20) .AC3B(20) .S2(20) 

+.AC2B(20) 
INTEGER I 
CALL FTNCMD('ASSIGN 1=DATAS2;') 
DD 30 I ' 1 , 2 0 
WRITE (1,20) R 2 ( I ) , P 1 ( I ) , B 1 ( I ) . A C 3 ( I ) , P 1 B ( I ) , A C 3 B ( I ) , S 2 ( I ) 

+.AC2BII) 
20 FORMAT (' ' . F 5 . 3 . 2 X , 7 ( F 6 . 1,2X) ) 
30 CONTINUE 

RETURN 
END 

H 
H 


