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Abstract

A method of robot manipulator control is proposed whereby
algorithms are used to learn sum of polynomials representations
of manipulator dynamics and kinematics relationships. The
learned relationships are utilized to contrel the manipulator
using the technique of Resolved Acceleration Control. Such
learning is achieved without recourse to analysis of the
manipulator; hence the name Self-Learned Control.

Rates of convergence of several learning algorithms are
compared when learning estimates of various non-linear, multi-
variate functions. Interference Minimization is found to be
superior to the Gradient Method, Learning Identification and the
Klett Cerebellar Model. Simplification of the implementation of
Interference Minimization is described. A wvariant, Pointwise
Interference Minimization, 1is introduced that is suitable for
certain applications.

Self-Learned Control with path specification in Cartesian
coordinates is demonstrated for a simulated two link
manipulator. It is shown that sum of polynomials representations
of the inverse dynamics, inverse kinematics and direct position
kinematics relationships are adequate to achieve control
comparable to that achieved using their analytical coﬁnterparts
and can be learned without analysis of the manipulator.

Further research is outlined to achieve automatic
adaptation to tool mass, implementation of sum of polynomials

estimators and enhancement of the Klett Cerebellar Model.
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1 INTRODUCTION

There is currently much interest in adaptive control in the
fiela of robotics. Largely, this is due to the desire to avoid
analysis of the dynamics and kinematics of robot manipulators.
The goal of this thesis is to examine a family of learning
algorithms and demonstrate their ability to learn the non-
linear, multi-variate functions describing the dynamics and
kinematics of a robot manipulator. Furthermore, it 1is intended
to show that this learning can be done without recourse to
analysis of the dynamics or kinematics of the manipulator.

The starting point for this work was the Cerebellar Model
- proposed by Klett [26]. The learning machine proposed by Klett
represents an extension of previous cerebellar models such as
those proposed' by Albus [1,2] and Marr [31] and draws upon
earlier work on perceptrons, and other learning machines
[42,49]. The cerebellum is involved in maintaining posture and
coofdinating motor activities of the body [1,26,38]; 1i.e.
manipulator control. Thus it 1is reasonable to consider
application of the Klett Cerebellar Model in learned manipulator
control.

Currently, most industrial robot manipulators are based on
individual joint servo control. Path specifications in a task
oriented coordinate system such as Cartesian coordinates must be
transformed into path specifications in terms of successive
joint positions, a time consuming task. Individual joint servo

control typically neglects coupling dynamic effects and thus



performance is limited.

Manipulator control techniques have been proposed that make
use of the complete analytical dynamics of a manipulator; an
example 1is Resolved Acceleration Control as proposed by Luh et
al [30)]. The disadvantage of such techniques 1is that they
;equire analysis of the dynamics and kinematics of each
manipulator to be so controlled. This is often a difficult task.
Furthermore, the parameters vused in the formulation of the
dynamics such as link lengths, masses, centers of gravity and
moments of inertia may be difficult to obtain by anyone other
than the manufacturer of the manipulator.

Adaptive techniques have been proposed to avoid the
necessity of manipulator analysis and measurement of manipulator
parameters [29]. One such technique is.the Adaptive Linear
Controller proposed by Koivo and Guo [27]. A ldcally valid model
of the manipulator dynamics is estimated on-line, based on
recent observations of applied torques and resulting manipulator
motion. Performance 1is quite good and the method does not
require a priori analysis of the manipulator or measurement of
manipulator parameters., Unfortunately, many mathematical
operations are necessary for the on-line operations.
Intuitively, the Adaptive Linear Controller would seem to be
inefficient because although it is continually adapting, 1i.e.
learning, it 1is continually forgetting as well. The locally
valid model 1is changed as the manipulator moves from place to
place by 'incorporating information from new observations and

forgetting information from o0ld observations. Thus upon



~repeating a path, the Adaptive Linear Controller does not
benefit from the previous experience.

Self-Learned. Control as proposed in this thesis differs
from previous adaptive methods in that a globally valid model of
the manipulator dynamics and kinematics is 1learned. In this
respect it 1is somewhat similar to the Cerebellar Model
Articulation Controller proposed by Albus[1,2]. Due to the use
of continuous functions as the basis of our learned functional
estimates, however, our method requires far fewer weighting
coefficients than the method proposed by Albus and no special
encoding of input variables. Once the dynamics and kinematics
have been learned to a degree adequate for control purposes, no
further learning need take place. This assumes, of course, that
the manipulator dynamics and kinematics are not changing.

Interference Miﬁimization, the principle learning algorithm
used in this thesis, was derived by Klett as an intermediate
step in the derivation of his Cerebellar Model [26]. Chapter 2
examines the convergence rates of Interference Minimization and
related learning algorithms such as tke Grédient Method [36,57]
and Learning Identification [12,39,50]. A method of reducing
the number of calculations required to implement Interference
Minimization is introduced. Also  introduced are Pointwise
counterparts of several of these algorithms that have utility in
certain applications.

In chapter 3 the aforementioned learning algorithms are
applied to achieve Self-Learned control of a simulated two 1link

manipulator. Section 3.1 discusses Resolved Acceleration Control



using path specification in Cartesian coordinates and section
3.2 provides the analytical dynamics and analytical Kkinematics
of the twd link manipulator. Sections 3.3 and 3.4 outline how
the two 1link manipulator was simulated and how standard test
path épecifications were generated. In section 3.5 the
analytical dynamics and analytical kinematics of the two 1link
manipulator are used in a simulation of a realistic
implementation of Resolved Acceleration Control tha; we call
Standard Analytical Control. This establishes a performance
benchmark for subseguent comparison with Self-Learned control.
In sections 3.6 and 3.7 it is shown that the Cartesian inverse
dynamics and direct position kinematics of the two link
manipulator can bé representea adequately as sums of polynomials
over a workspace consisting of a sizablev portion of the
manipulator’s reach. Furthermore, it is shown to be possible to
Pre-Learn these sum of polynomials representations wusing the
analytical Cartesian inverse dynamics and analytical direct
position kinematics as a guide. Finally, in sections 3.8 and 3.9
it 1is shown that these representations can be Self-Learned
without recourse to the analytical dynamics or analytical
kinematics. 1In control using the Self-Learned Cartesian inverse
dynamics as shown in section 3.8, a vision system is assumed to
observe the manipulator and provide error correcting feedback
information. Section 3.9 shows that qtilization of thé Self-
Learned direct position kinematics permits replacement of the
vision system once learning is complete.

The contributions of this thesis are summarized in chapter



4 and chapter 5 offers several detailed suggestions for areas of
future research. First, there is the need to apply Self—Learning
to a real manipulator having more than 2 degrees of freedom and
to extend Self-Learning to allow the Cartesian inverse dynamics
to be adjusted automatically to compensate for the attachment to
the manipulatof of a tool of any mass within a given range.
Secondly, investigation is warranted into the implementation of
the required sum of polynomials estimators. Finaily, propoéed
-modifications of the Klett Cerebellar Model may increase 1its

plausibility.



2 INTERFERENCE MINIMIZATION AND RELATED LEARNING ALGORITHMS

2.1 LEARNED FUNCTIONAL ESTIMATION USING SUMS OF POLYNOMIALS

In adaptive control, it is often necessary to learn to
estimate unknown functional relationships through a learning
technique. In this thesis we study techniques wheréby functional
estimation is learned | based on a sum of polynomials
representation. One such technique is the Gradient Method used
by Widrow et al [57] for adaptive filtering. Another technique
is the method of Learning Identification that was formulated for
linear systems by Nagumo and Noda [39]. Learning Identification
was extended to non-linear systems by Roy and Sherman [50].
These and related methods have been investigated by other
authors such as Klett [26], Eweda and 0Odile [14], Bitmead and
Anderson [8], Chan and Babu [10,1f], Johnson [25] and Billings
[7). These techniques have been used to estimate a function of
time sémples of a continuous signal [39,50,57]. They can also be
generalized to estimate functions of arbitrary variables
[26,10,11). We are interested in the learning of non-linear
functions of several variables for application in manipulator
control.

This thesis describes an improved learning algorithm of
which the previously mentioned algorithms are simplifications.
They thus form a family of learning algorithms. The convergence
rates of the various algorithms -are compared and factors
simplifying the implementation of the. improved learning

algorithm are discussed.



2.2 AN IMPROVED LEARNING ALGORITHM - INTERFERENCE MINIMIZATION

This thesis 1is concerned with algorithms that learn to
estimate a function as a sum of polynomials, specifically the
Kolmogorov-Gabor [18,50] polynomials. The estimate of a function
is formed as a weighted sum‘of polynomial terms,

- —~T—
£ =z wkpk(z) = W p (2.1)

k

The basis polynomial terms are the set,

v
{p,(Z2)} = { m z.%i } (2.2)
i=0 '
where,
v
Ze, =s , e, an integer (2.3)
i=0 :
zg = 1 (2.4)
For example, if s=2 and v=2 then the polynomial terms are,
= _ 2 2
pp(2)} = L 1, 2z, 25, 2,7, 2,7, 2,2, } (2.5)

The space spanned by this set is given by v, the number of input
variables, and s, the system order. The number of terms, m, 1in
such a polynomial is given by,

(s+v)!

ms=s ———— (2.6)

slv!
An estimate formed in this manner can mimic multivariate, non-
linear functions. Learning takes place by iteratively adjusting
the weight vector at a series of training points wuntil the
estimate corresponds to the target function throughout the
space.

An improved learning algorithm can be derived as follows:

At each training point the weights are adjusted to eliminate the



error in the estimate while ﬁinimizing the change 1in the
estimate at other points in the space. We call the algorithm,
Interference Minimization. This strategy can be enforced By
minimizing the function,

c = J (AWIB)2 8S + a(AW P - Af) (2.7)

S
using the Lagrange multiplier technique, where S is the domain
of the input variables, Aw is the change in the Qeight vector
and Af is the error in the estimation. The error in the estimate
is given by,
Af = f - f (2.8)

where % is the target function. Setting the partial derivatives
of ¢ with respect to Avw and a to zero and solving yields the

weight adjustment formula,

-1

AfP 'p
AW = —e—— (2.9)
I e
PP p
where,
P =f BB’ &S | (2.10)
S

The matrix P is real, symmetric and positive definite and thus
the inverse, P | exists.

Interference Minimization was derived by Klett [26] as an
intermediate step in the derivation of his Cerebellar Model and
can be genefalized to allow use of other basis sets. In this
work we consider in depth the specific case where K-G
polynomials form the basis set. This elicits comparison 'with

other previously described learning algorithms based on K-G

polynomials and permits simplification of the implementation of



Interference Minimization as is shown in section 2.6.

2.3 RELATIONSHIP TO SIMILAR LEARNING ALGORITHMS

Several 1learning aigorithms previously described in the
literature can be considered to be simplifications of
Interference Minimization. In (2.9) it can be seen that the
matrix p~! does not change the magnitude of the weight
adjustment vector Aw, it only changes the direction. If the
matrix P ' is deleted from the weight adjustment formula, the
estimation error at a training point 1is still eliminated,
however, ‘the effect of the adjustment at other points in the
space is not minimized. This sub-optimal learning algorithm is
Learning Identification, which was formulated by Nagumo and Noda
[39] using first order polynomials, and by Roy and Sherman [50]
using‘K—G polynomials,

Afp _
AV = (2.11)

=

PP

In (2.11) the denominator serves as a scaling variable that
adjusts the step size. When changing the weights, the error in
the estimate is exactly eliminated regardless of the location of
the training point. If the denominator is replaced by a positive
constant, then the direction of the weight adjustment vector is
not changed; one still moves towards a new weight set that
eliminates the estimation error at the training point. The
adjustment formula becomes,

Aw = uAfp | (2.12)

This algorithm 1is known as the Gradient Method and has been



discussed by authors such as Widrow et al [57] and Eweda and
‘Odile [14]. The gain factor u must be chosen such that
adjustments are not so large as to cause divergence at any
training points within the space. This can be ensured by

choosing u such that,
. —T—-
u < 2 min{1/(p'P)} (2.13)
S

This algorithm 1is even less optimal than (2.11) since many
iterations are required at most training points in the space
just to eliminate the estimation error at the training point.

Two variants of.Interference Minimization follow if one
selects basis functions such that P ' is equal to the 1identity
matrix. One method is to form the estimate as,

g (2.14)

f = WQp = W'g
where, .
0 =15 5B" 651712 = p(p)” /2 (2.15)
S

The matrix Q is real, symmetric and positive definite. The terms
of the vector g are a set of orthonormal polynomials. With such
a basis vector, the matrix P becomes,

P() = [ GgT 65 = § oppTot 68 = p /2pp" /2 . 1 (2.16)
S

wn

The weight adjustment formula now becomes,

>
Q|

£

—

AV = (2.17)

3
o]

q
This method is equivalent to Interference Minimization as given
previously in (2.9); the weight adjustment eliminates the

estimation error at the training point while minimizing the



change in the estimate at other points in the space. It really
only represents a sihplification of the weight adjustment
formula at the expense of a more complex estimation formula
involving orthonormal polynomials. We call this method,
Orthogonal Interference Minimization.

As in (2.11), the denominator in (2.17) serves as a scaling
variable that adjusts the step size, and can be replaced with a
positive constant;

Av = uAfqg (2.18)

To avoid divergence at any training point within the space, one
must choose u such that,

us<2min{1/(3@} . (2.19)

S

Despite its similarity to the Gradient Method, this algorithm is
superior due to the use of orthonprmal polynomial terms in q. As.
with the Gradient Method, several iterations are required at a
point if one is to eliminate the estimation error, however, each
adjustment causes a minimal change in the estimate at other
points in the space, thus speeding convergence. We call this
algorithm the Cerebellar Model as it was originally proposed by
Klett [26] as a model of learning in the mammalian cerebellum.

Discrete counterparts of several of the algorithms can be
derived as follows: At each training point the weights are
adjusted to eliminate error in the estimate at the point while
minimizing the change in the estimate at previous training
points, rather than minimizing the change in the estimate at all

other points ip the space as was done for (2;7). The Lagrange

11



multiplier technigue can be used to obtain a weight adjustment
formhia identical to that of Interference Minimization, except
that in place of the P matrix there is a matrix D which is used
at the nth training point;

n-1

1/n.205i§iT = [(n-1)p__, + BB, 1/n (2.20)
i=

=
]

=
1]
-

(2.21)

We call this algorithm, Pointwise Interference Minimization. As
with Interference Minimization, two variants can be implemented
in which polynomial terms in the basis vector are made
orthogonal using the matrix,

g =p /2 (2.22)
We call these variants, Pointwise Orthogonal Interference

Minimization and the Pointwise Cerebellar Model. The various

algorithms are summarized in table 2.1,

12



METHOD NAME ESTIMATE WEIGHT ADJUSTMENT NOTES

1 Gradient Method £=%1D Aw=ubfp
| P
2  Learning f=w'p Aws=
Identification PP
T N3 I T
3 Interference f=w'Dp AW:———:T— P= [ pp dsS
Minimization PP P S
Afg -
4 Orthogonal f=WT§ Aw=—no q=Qp, Q=P 1/2
Interference g'q
Minimization
5§  Cerebellar Model £=%1g AV=ubAfg §=0p
L _ Afnn"'ﬁ n-1
6 Pointwise f=wTp AW = ————— Dn=1/n Z p.p,;’
Interference pTDn—15 i=0 '
Minimization
. . ~T~ _ Afg = -1/2
7 Pointwise Orthog. f=w'q Aw= q=Enp, En—Dn
Interference 'g'qg
Minimization
'8  Pointwise f=W1g AW=uAfg §=E_p
Cerebellar Model
Table 2.1 Summary of learning.algorithms

2.4 CHOICE OF TEST CONDITIONS FOR COMPARISON OF ALGORITHMS

In comparing the various learning algorithms, a convenient
first stép is to normalize all input variables. Comparison under
such conditions allows one to see characteristics that are
fundamental properties of the algorithms rather than just
anomalies occurring due to particular combinations of input
variable ranges. In practice, input variables are normally

confined to a finite range of values and thus there is not a

13



o

loss of generality in normalizing all input variables. 1In order
to allow positive and negative Quantities to be represented, all
inputs were normalized such that,

-1z, < | (2.23)

Comparisons were made for various combinations of system
order, s, and number of input variables, v. 1In all cases the
function whose estimate was to be learned was chosen to be
the K-G polynomial corresponding to s and v with all
coefficients set to 1. For example, in the case s=2 and v=2, the
function whose estimate was to be learned was,

X 2 2

fF =1+ z, + z, + z, + z, + z,z,

We have found that relative rates of convergence when estimating

(2.24)

these functions are representative of results when estimating
functions described by K-G polynomials with coefficients
randomly generated from a uniform distribution between -1 and 1.
Figure 2.1 compares, fér each of the learning algorithms, the
results of five trials where the coefficients of the K-G target
function were all 1°s with the results of five trials where the
coefficients were randomly chosen. All of the trials shown are
for s=3 and v=3, but several other cases showed similar results.

The stopping rule for the various learning sequences was as
follows: when the error, Af, at a training point was found to be
less éhan 0.01 at 100 successive training points then it was
assumed ﬁhat the error was less than 0.01 throughout the space
and convergence was deemed to have occurred at the first of the
100 such training points. 100 points has proven to be an

adequate test for convergence in the cases considered. Several

14



CASE s=3 v=3

METHOD 1
METHOD 2
B T i 5
g METHOD 3
™ e ———¢—2 METHOD 6
=
&
e
g
é o RANDOM COEF'S
® ALL 1°'S
8
"3.00 2.00 .00 4.00 ' 8.00 .00 7.00 .00
TRIAL NUMBER
Figure 2.1 -Convergence rates when target function is a

polynomial with randomly chosen coefficients versus convergence
rates when target function is a polynomial with 1°s as

coefficients, for case s=3 and v=3
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trials were duplicated wusing a similar stopping rule where
acceptance was required at more than 100 'successive training
points. Convergence occurred after the same number of points as
before. The training points were successively chosen from
uniform distributions of the input variables and one weight
adjuétment was performed at each point.

For those learning algorithms that require specification of
the step size factor u, u was chosen to be as large as allowable
without causing divergence to be\possible. For Method 1, the
Gradient Method, the conaition for non-divergence given in
(2.13) was satisfied by choosing,

g = 2/m . (2.25)
For Method 5, the Cerebellar Model, such an explicit formula
for ﬁ was not obtained; for each combination of s and v, a
corresponding G was obtained through simulétions where,

9 = 2 min{1/(§'3@)} = 2 min{1/(3T0T0B)} (2.26)

S S
In all cases ﬁ was obtained by considering - 2000 randomly
generated input variable vectors {z1,..,zv}. The G factors so
obtained are tabulated in table 2.2. It was verified in several
cases that such a choice of u is near optimal for Method 5.
Figure 2.2 shows the number of steps required for convergence as
a function of u for the cases, s=1 and v=3, s=3 and v=3, s=3
and v=1t. The choice of u given by (2.26) was near optimal in all
cases except for s=3 and v=3. It was noted for this and other
cases with a large number of terms, m, that it was typically

possible to speed convergence by increasing u slightly from that
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Figure 2.2 Convergence rates for Method 5, the Cerebellar
:Model, as a function of u for the cases s=1 and v=3, s=3 and

v=3, and s=3 and v=1
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given by (2.26). This entails a degree of risk as with such a
choice of wu the algorithm was divergent at some points in the
- space. Thus if occasional groups of several successive training
points were in divergent regions of the space, the total
algorithm would diverge. This was confirmed by several trials
involving 10 or more adjustments per training point in which use
of a u greater than that specified by (2.26) would 1lead to
divergence. Thus it seems reasonable to consider ﬁ as given by

(2.26) to be the best choice when using Method 5, the Cerebellar

Model.

s

y 6 .082 .022 =--- =-== =mo= emm —mo oo
€ 5 112 036 .015 -m-= == e —mem e
m 4 161 064 .038 =-o=  mmm=  —mmm cmom —oee
o 3 .251  .131 .093 .109 .147 -=-=-- ~——== —==-
d& 2 .455 .333 .327 .448 .676 1.08 1.68 3.00
r 1.0 1.18 1.64 2.69 4.65 8.31 14.7 27.7

’ 2 3 8 5 6 7 8

Number of Variables

%*
Table 2.2 Step size factors, u, for Method 5, the Cerebellar

Model

2.5 COMPARISON OF THE LEARNING ALGORITHMS

Comparisons were made of all of the learning algorithms in

table 2.1 except methods 4, 7 and B. Methods 4 and 7 are

18



equivalent to methods 3 and 6, respectively, and converge in the
same number of steps. Method 8 was included in table 2.1 for
completeness only; in actual application, method 8 appears to
require too much computation to be practical. The choice.of u
to ensure non-divergence depends on E. which 1is changing as
learning takes place. Thus the optimal u cannot be calculated
beforehand for method 8.

Figures 2.3 through 2.8 show the number of steps required
for the various learning algorithms to converge. The number of
input variables, v, ranged from 1 to 8 and the system order; s,
ranged from 1 to 6 in the cases investigated. The data represent
the results for single trials except for the first order cases
where the results represent the average of three trials.

Figure 2.9 shows the reduction of estimation error, Af, as
a function of the number of iterations for fhe case s=3 and v=3
using the various 1learning algorithms. The graph shows the
magnitude of Af, averaged over intervals of 100 training
iterations. )

For cases having a low system ofder there is not much
difference between most of the various algofithms; the
differences become pronounced only when higher order systems are
considered. Method 1, the Gradient Method, 1is consistently the
poorest algorithm. Method 3, Interference Minimization, is
consistently much better than the Gradient Method; for 3rd, 4th,
5th and 6th order systems the factor of improvement is
approximately 9, 20, 24 and 28, respectively. Method 2, Learning

Identification, is similar in performance to the Gradient Method
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FIRST ORDER CASES
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METHOD 1
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Figufe 2.3 Convgrgence rates for various methods when s=1
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SECOND ORDER CASES
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Figure 2.4 Convergence rates for various methods when s=2
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THIRD ORDER CASES
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Figqure 2.5 Convergence rates for various methods when s=3

22



FOURTH ORDER CASES

METHOD 6
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Figure 2.6 Convergence rates for various methods when s=4
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FIFTH ORDER CASES
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Figure 2.7 Convergence rates for various methods when s=5
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SIXTH ORDER CASES
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Figure 2.8 Convergence rates for various methods when s=6
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Figure 2.9 Reduction of estimation error, Af, as a function of
the number of training points for the case s=3 and v=3 using the
various methods (estimation error averaged over each 100

iteration interval)
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in cases where the_system order, s, is largef than the number of
input wvariables, v, however, Learning Identification is much
better when v>s, approaching Method 3 in performance. Method 5,
the Cerebellar Model, 1is' intermediate in performance to the
Gradient Method and 1Interference Minimization, much like
Learning 1Identification; except that when s>v the Cerebellum
Model 1is better than Learning Identification. Method 6,
Pointwise 1Interference Minimization, 1is consistently the best
method; for cases where v=1 the Pointwise Interference
Minimiz;tion is similar to Interference Minimization and  for
cases where v>1 it is better by a factor of approximately 2,
even when s=1,

The choice of which algorithm to use ‘depends on the
coﬁplexity of implementation as .well‘ as the achievable
performance. Method 3, Interference Minimization, offers
performance second only to Method 6; Pointwise Interference
Minimization. As will be shown in section 2.6, the complexity of
Interference Minimization is not as great as it might seem, thus
simplifying implementation. Pointwise Interference Minimization,
however, entails much more computation than the other algorithms
as the matrix D must be updated and inverted yielding D' at
éach trainingh point. Pointwise Interference Minimization is
better than Interference Minimization by only a factor of 2 and
thus typically does not warrant consideration. Thefe are,
however, certain situations in which the use of Pointwise
Interference Minimization 1is appropriate. This 1is shown in

section 2.7.
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2.6 IMPLEMENTATION CONSIDERATIONS FOR INTERFERENCE MINIMIZATION

Interference Minimization achieves its improved performance
over the Gradient Method and Léarning Identification at the
expense of a more complex algorithm. The increase in complexity,
however, 1is not as great.as it appears at first. If the input

variables are normalized as in (2.23), then the matrix P ' in

"1 has a special form that allows its

(2.9) becomes sparse. P
sparseness to be easily utilized to speed up the computations
required in Interference Minimization.

Consider the elements of the matrix P. The element Pij is
given by the integral,

Piy = P (Bp, @) 8 (2.27)

From the definition of p,(Z) given in (2.2), (2.3) and (2.4) we

have,

., te .
z, i k") sz, . .82, (2.28)

v
P. . I
ij -

1 1
= foof
-1 =1 k=0
If it occurs that (eik+ejk)mod2=1 for any variable, z,, then
Pij=0' At legst half of the elements Pij are zero and for v>>s
the vast majority of the elements Pij are zero. An examination
of the nonzero elements in P reveals a significant pattern. 1If
the polynomials in the set {pk(E)} are ordered appropriately,
the special banded nature of P will become apparent. The matrix
has a "kite" form in which all the nonzero elements appear as a
series of smaller sfmmetrical‘matrices along the diagonal.
Operations with P can thus be done as smaller tasks performed on

1

the individual smaller matrices. This means that P ' and Q have
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the same "kite" form as P. As an example, figure 2.10 shows the

format of P! and {pk(E)} for the case s=3 and v=3,.

1
—h

,{pk(i)} P
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!
|
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I
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Figure 2.10 Pattern of zero and non-zero elements of matrix P!

for the case s=3 and v=3 (+ = positive, - = negative, 0 = zero)

An empirical method of describing the form of P

has been
found. Consider a system of order s, having v input variables.
. The number of terms in {pk(E)} and hence the size of P is,
(v+s)!
m(v,s) = —m— (2.29)
vis!
It 1is wuseful to define the value of‘this function when the

arguments are zero or negative;

n

m(v,-s) 0 (2.30)

>

m(-v,s)

1
[}

m(0,s) m(s,0) 1 (2.31)
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for v,s positive. The size and multiplicity of the smaller
matrices forming P~! can then be obtained from the terms of the
identity,
s\2+1
m(v,s) = z r;d; (2.32)

i=1

where \ represents integer division and where,

r. m(v-s-1+2i ,8+2-2i) (2.33)

]

d;

m(v,i-1) (2.34)

In the matrix P—l, the number of different sizes of submatrices
along the diagonal corresponds to the number of terms 1in the
summation of (2.32). There are s\2+1 unique submatrix sizes.
The size of each is given by the factor di and the number of
occurrences pf each is given by the factor r;. The total number
of nonzero elements in P ' is,

s\2+1

nz(v,s) = z r.d.
i=1 !

2 (2.35)

For. a system of order s, nz(v,s) 1is much smaller than m(v,s)2
for v>>s, growing in size as v is increased in manner more like
that of m(v,s). This is shown for the case s=3 in figure 2.11.
The matrix P"' thus becomes almost diagonal in form for wv>>s.
Normalization of the input variables as in (2.23) thus
significantly reduces the number of multiplications required

when implementing Interference Minimization.
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THIRD ORDER CASES
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Figure 2.11 Total number of elements, number of non-zero

elements and order of matrix P! for cases where s=3

31



2.7 APPLICATIONS WHERE POINTWISE INTERFERENCE MINIMIZATION IS

APPROPRIATE

In the derivation of Interference Minimization, the error
at a training point was eliminated while minimizing the change
in the estimate at other points in the space. An equal weighting
was assumed for these other points. A more general approach is
to allow a non-uniform weighting [26]. This would be appropriate
when accuracy is more critical at certain regions of the space
than others. With this more general approach equation (2.7)
becomes,

c = § h(s)(awp)>2

5S + a(dW'p - Af) (2.36)
S ,
where h(S) 1is a strictly positive weighting function. The
optimum weight adjustment formula remains as before except that
the definition of the matrix P becomes,

P=[ h(S)PB® &S (2.37)
S

One application that demands non-uniform weighting is when
the input variables have a non-uniform probability distribution
and one wishes to improve the estimate most rapidly in the
regions of the space that are most probable. _It is then
appropriate to use the probability distribution of the input
variables as h(S). If h(S) is an even function of the input
variables forming S then P is sparse as described previously.

If the distribution h(S) is not known beforehand then it is
appropriate to wuse Pointwise Interference Minimization as it
effectively learns h(S). 1In the limit, the matrix D  converges

to be a scaler multiple of the corresponding matrix P. For

32



example, if the input variables are normalized as in (2.23)
then,
D_ = P/2 (2.38)

Pointwise Interference Minimization combines the learning of P

with the learning of the estimate.

2.8 SUMMARY

A family of learning algorithms has been introduced and
their convergence characteristics compared. The method of
Interference Minimization has been found to be superior to
either the Gradient Method or Learning Identification. Further,
normalization of the input variables simplifies the
implementation of Interference Minimization.

Pointwise Interference Minimization has been found to be
the best algorithm on the basis of rapid convergence, however,
the improvement over Interference Minimization is small and
would not seem to justify the significant increase in algorithm
complexity. One situation where it may be appropriate to use
Pointwise Interference:Minimization is when one wishes to have
most rapid convergence in those regions of the input wvariable
space that are most probable and the probability distribution,
h(s), is unknown. Pointwise Interference Minimization

effectively learns this distribution.

33



3 SELF-LEARNED CONTROL OF A TWO LINK MANIPULATOR

One of the principle contentions of this thesis.  is that
learning algorithms can be used to achieve self-learned control
of a manipulator. It had been hypothesized that weighted sums
of polynomial terms could model the multi-variate, non-linear
functions that describe the dynamics and kinematics of a
manipulator, and that Interference Minimization or related
methods could be wused to learn the weighting coefficients,
without recourse to analysis of the manipulator, and thus learn

the functions necessary to achieve control.

3.1 RESOLVED ACCELERATION CONTROL WITH CARTESIAN PATH

SPECIFICATION

Given that one has the ability to learn the multi-variate,
non-linear functions describing a manipulator, it 1is then
necessary to utilize this capability with a suitable control
technique. A family of suitable methods [20,29,30])] are those
called variously, Inverse Plant, Inverse System, Inverse Problem
, etc. One example of these methods that has been applied to
manipulator control is Resolved Acceleration Control as
described by Luh et al [30]. It is within this control framework
that we propose to apply learning algorithms to learn
manipulator control.

In general, the dynamics of a manipulator can be described
by a group of functional rélationships that we call the direct

dynamics;
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¢ = dir.dyn(7,3,a) (3.1)
where,

= fdst (3.2)

G- fad st | (3.3)

@ is a vector of generalized joint angles and 7 is a vector of
generalized torques or forces, as apprdpriate, that are applied
to the joints. Application of torque 7 when the manipulator is
in position d and moving with velocity é will result in
acceleration é. The exact form of the functions comprising the
direct dynamics relationships are dependent on the manipulator
configuration as to type and number of links, and the 1link
lengths, 1link masses and mass distributions, joint friction and
gravity.

The manipulator can be controlled wusing its inverse
dynamics which are described by a group of functional

relationships that we call the inverse dynamics;

T = inv.dyn(é,é,a)- (3.4)
where, '
d = sa(t) (3.5)
ot
a = dalt) (3.6)
ot

To échieve acceleration é when moving at velocity é and 1in
position a, torque 7 must be applied. é and é can be obtained be
differentiafing the path specification, a(t). 1In general it is
not easy to obtain these relationships, espécially for complex
manipulators having several degrees of freedom.

If these relationships are known exactly, it would appear
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to be possible to control a manipulator by open 1loop control.
Given that one starts with the ihitially desired position equal
to the actual position, then given the desired path Ed(t) one
can calculate torgue 7(t) wusing the . inverse dynamics
relationships, apply 7(t) to the manipulator and cause the
manipulator to move such that a(t) équals Ed(t). This 1is
expressed mathematically as a definition of the direct and

inverse dynamics, namely,

a(t) = dir.dyn(inv.dyn(ay,dq,34),3,@) = aq(t)  (3.7)
given that,

alty) = a4(ty) (3.8)
and,

a(ty) = d4(t,) | (3.9)

In practice such a control technique is poor due to finite
precision in calculations, imprecise knowledge of parameters in
the inverse dynamics relationships suéh as joint masses, joint
lengths, etc. and noise-like disturbances of the manipulator by
the environment. Even with a very accurate approximation of the
inverse dynamics relationshipg and minimal environmental
disturbances, tracking errors will tend to accumulate and cause
further tracking errors when using open loop control,

Good control can be achieved by using feedback to adjust
applied torgues to correct for position and velocity errors;

7 = inv.dyn(ag+k, (34-3)+k,(34-3),5,3) (3.10)
Application of such torques results in manipulator motion as
féllows,

G = dir.dyn(inv.dyn(Gg+k, (34-@)+k,(G4-8),&,d),E,d)(3.11)
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‘which by the definition of the direct and inverse dynamics

yields,
d = Ggtk (3D +k(Gg-@) (3.12)
0= (G4-a)+k, (@4-a)+k, (3 -3) (3.13)
Defining the position error as, '
Ea = Ed - a : o (3.14)

results in a second order, linear, homogeneous differential
equation with constant coefficients describing the change in
position error with time,

0 =8, + k;E, + k8, (3.15)
For stability, or equivalently to have Ea decrease with time,
one must choose k1>0, and for a critically damped response one
must choose k12=4k2.

This technique for manipulator control has already been
demonstrated by Luh et al [30] for a complex manipulator whose
dynamics were known analytically. One of the main goals of this
work is to determine whether this control technique can be
successfully applied when the inverse dynamics relationships are
learned without recourse to analysis of the dynamics of a
manipulator.

In resolved acceleration control as put forward by Luh et
al, the path specification is in'joint coordinates. Typically,
it would be more desirable tovspecify the manipulator path in
another coordinate system which isbmore suitable for the task at
hand. For example, one may desire to specify the path of. the

manipulator end point in Cartesian coordinates, rather than

specify the path of the manipulator joints in joint coordinates.
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Manipulator end point control in Cartesian coordinates can
be achieved using the inverse kinematics of the manipulator in
conjunction with the inverse dynamics of the manipulatof. The
inverse kinematics are described by a group of functional

relationships as follows:

d = pos.inv.kin(X) - (3.16)
a = vel.inv.kin(X,a) (3.17)
a = acc.inv.kin(X,q,a) (3.18)

Given the vectors X, ; and % describing the manipulator end
point position, velocity and acceleration in Cartesian
coordinates, one can obtain the vectors a, é and é describing
the manipulator joint positions, velocities and accelerations.

Typically, the combination of joint angles that will place
the manipulator end point at a given Cartesian position is not
unique. It is thus necessary to apply constraints to permit the
inverse kinematics to be described by functional relationships.
For example, a revolute joint may be constrained to revolve
‘through less than =n radians. Such constraints often physically
exist because of the manner in which manipulators are
constructed; revolute joints often are restricted to less than a
full circle of rotation.

For manipulators havihg more than thfee degrees of freedom,
one typically wants to control more than just the end point of
the manipulator. For example, with a six degree 'of freedom
manipulator, one can specify the end point path and the
orientation of the last link which is typicélly tﬁought of as

the hand or tool. 1In this case, the constraints describing the
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orientation of the hand, which are necessary to permit the
inversé kinematics to be described by functional relationships,
can be viewed as part of the path specification rather than as
constraints.

The inverse kinematics and the inverse dynamics can be
combined to form a group of functional relationships that we

'call the Cartesian inverse dynamics;

T = cart.inv.dyn(%,i,i) (3.19)
where,
X = 8x(t) (3.20)
5t
X = 8x(t) (3.21)
ot

s

Similarly, the direct kinematics and the direct dynamics can be
combined to form a group of functional relationships that we

call the Cartesian direct dyhamics;

X = cart.dir.dyn(7,%,%) » (3.22)
where,

%=X 6t | | (3.23)

=% ot ’ (3.24)

The direct kinematics of the manipulator are described by a

group of functional relationships as follows,

X = pos.dir.kin(a) (3.25)
X = vel.dir.kin(a,a) (3.26)
X = acc.dir.kin(d,q,a) (3.27)

Given the vectors a, a and a describing the manipulator joint
positions, velocities and accelerations, one can obtain the

vectors X, X and X describing the manipulator end point
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position, velocity and acceleration,
In a manner analagous to that described previously, one can
control the manipulator using the Cartesian inverse dynamics

along with feedback to correct position and velocity errors;

T = cart.inv.dyn(id+k1(id-§)+k2(§d—i),§,§) (3.28)
X= cart.dir.dyn(cart.inv.dyn(§d+k1(id—§)+k2(§d-§),i,i),i,i)
(3.29)
X = x§+kl(xd—x?+k?(xd—x) (3.30)
0 = (xd—x)+k1(xd-x)+k2(xd-x) (3.31)
Defining the Cartesian position error as,
e, = Xg3 - X (3.32) -~

one can choose k1 and k2 as before to achieve stability and
critical damping of Cartesian position errors.

The Cartesian inverse dynamics relationships are more
complex than the inverse arm relationships due to the inclusion
of a coordinate transformation through use of the inverse
kinematics. Such would be the case if one.wanted to use this
approach in conjunction with other coordinate sysfems, such as
cylindrical or spherical, that might be more convenient given
the task at hand. The key point is that control is desired with
- respect to a coordinate system that may not be the most natural
one for describing manipulator dynamics. A second major goal of
the ' work 1is thus - to determine whether 1learned resolved
acceleration control can be successfully applied wusing path
specification in a task oriented coordinate system such as
Cartesian coordinates.

When applying resolved acceleration control using
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Cartesian coordinate§ for end point path specification, it is
necessary to observe the end point Cartesian position in order
to wuse feedback to correct position and velocity errors.
Ideally, one could use a vision system to measure the end point
path. Equivalently, one can measure joint positions, velocities
and accelerations and use the direct kinematic relationships to
determine the manipulator end point path. The direct kinematics
can be determined by a general technique [44,46] and they are
much simpler to derive than the inverse kinematics. Their
evaluation requires nothing more £han multiplication and
summation of sine and cosine terms. Nevertheless, such a method
requires manipulator analysis and time consuming, manipulator-
specific calculations.

With 1Interference Minimization it should be possible to
learn the functional relationships that describe the direct
kinematics. This would allow Cartesian path control . of
manipulator without the use of a vision system and without
resort to analysis and calculation of the direct kinematics. The
manipulator end point could then be obtained from simple joint

path measurements.

3.2 A TWO LINK MANIPULATOR

In order to test the feasibility of learned control of a
manipulator, a simple two link manipulator was chosen as a test
vehicle. The structure of the two 1link manipulator and

associated coordinate reference frames are shown in figure 3.1.



Figure 3.1 A two link manipulator

Such a simple manipulator was chosen for two basic reasons:
First, its dynamics and kinematics are known in analytical form.
This permits the arm to be simulated on a computer, with all the
advantages that simulation brings; no time consuming hardware
development, exact specification of parameters, accurate
observation of all variables, and no physical damage when
mistakes are made. Also, control performance when wusing the
analytical dynamics and kinematics can serve as benchmarks
‘against which one can compare control performances when using
.learnéd dynamics and kinematics. Secohdly, as the manipulator
Qas to be simulated, it had to be simple to avoid requiring

inordinate amounts of computer time for accurate simulation of
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" numerous movements. In spite of the simplicity of the two link
manipulator, its kinematics and dynamics are described by highly
non-linear, multi-variate functions as 1is typical of more
complex manipulators. We expect that results using the two link
manipulator will be representative of possible results using
more complex manipulators.
The direct kinematics of the two link manipulator can be
obtained by using basic trigonometry to calculate the Cartesian
position of the end'point as a function of the joint angles.
These functions are then differentiated to yield the Cartesian
velocity and acceleration of the end point in terms of joint
angles, angular velocities and angular accelerations. The direct

kinematics are as follows:

x, = 1l,sin(a,) + l,sin(a,*a,) ‘ (3.33)
x, = -l,cos(a,) - l,cos(a,*a,) (3.34)
%k, = 1l,cos(a,)a, *+ l,cos(a,+a,)(d,+d,) (3.35)
x, = 1l,sin(e,)a, + l,sin(a,*a,)(a,+a,) (3.36)
¥, = 1l,cos(a,l)a, + 1,cos(a,*a,) (@, +d,)

- 1,sin(e,)a,? - 1,sinla,+a,) (a,+a,)%  (3.37)

%, = 1,sin(e,)d, + l,sin(a,+a,) (4, +d,)

+ l1cos(a1)d12 + lzcos(a1+a2)(d1+d2)2 (3.38)

To obtain the inverse kinematics of the two - link
manipulator it is necessary to apply a constraint to make
functional relationships possible. 1In the following we restrict
| a, to be between 0 and 7 radians. The inverse kinematics can
‘then be written as, ‘
= arccos((x12 +x,2-17°2- 122)/21112) (3.39)

as 2 1
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a, = arctan(x,,-x,) - arctan(lzsin(az),l1 + lzcos(az))
(3.40)

d1 = (lzsin(a1+a2)5{1 - lzcos(a1+a2)i2)/l1lzsin(az)
(3.41)

a, = [(-1151n(a1)x1 + l,cos(a1)ﬁz)/l1lzs1n(a2)] ~ d1
(3.42)

i, = (1,sinla,+a,)¥, - lcosla +a,)i, + 1 1,cos(ayla,”

2, .2 .
+ l2 (a1+a2) )/111251n(a2) (3.43)
2. 2

&2 [(-l]sin(q1)i1 + l1cos(a1)ii2 - 11 a,

- 1,1,c08(a,) (a,+a,) ) /1 1 sin(a,)] - &, (3.44)

Note that arctan function has two arguments and is thus assumed
to yield a value between -7 and m. Since it is the sines and
cosines of a, and a, that are used in subsequent calculations,

it is useful to use the following formulas,

coslay) = (x,2 + x,2 - 1.2 - 1.%)/21.1, (3.45)
sin(a,) = (1 - cos(a,)?)'/?2 (3.46)
cos(a1) = [x1llsin(a2) - x2(11+12cos(a2))]/(x12+x22)
(3.47)
sin(a1) = (1 - COS(a1)2)1/2 (3.48)

The derivation of the direct and inverse kinematics is shown in
appeﬁdix A.

- The inverse dynamics of the ﬁwo link manipulator can be
obtained using Lagrangian mechanics [37,46]. The Lagrangian L is
defined as the difference between the kinetic energy K and the
potential energy P of the'system,

L=K-P (3.49)

The inverse dynamics equations are obtained as,
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7. =58 |3L |- 3L (3.50)
5t| 9a,

where a; are the coordinates in which the kinetic and potential
energy are expressed, di are the corresponding velocities, and
7, the corresponding forces or torgques. T, is either a force or
a torque, depending upon vwhether a; is a linear or angular
coordinate. These forces, torgues and coordinates are referred
to as generalized forces, torques and coordinates.

Application of Lagrangian mechanics to a two link

manipulator having link lengths 11 and 12, link masses m and

i
m,, and oriented as shown in figure 3.1 with respect to g, the

gravitational field, yields the following inverse dynamics,

Ty = dyg8y Y dypay d111d12 * d122d22

+d,,,0,8, + d,,,a,a, *d, (3.51)
Ty = dyydy * dyyly + dyy 6,7+ dypsdy

+ d212d1a2 + d221d2a1 + d2 (3.52)

where,

4, = (m]+m2)l12 + m2122 + 2m211%2cos(a2) (3.53)
d,, =m1,% + m1 1,cos(a,) (3.54)
d,,, =0 (3.55)
digp = —m211lzsin(a2) (3.56)
d,q5 = —m211125in(a2) (3.57)
d121 =.—m211125in(a2) : (3.58)
a, = (m1+m2)gl1sin(a1) + nglzsin(a1+a2) (3.59)
dzi = mzlé2 +m,1,1,cos(a,) (3.60)
dy, = myl,? (3.61)
d21] = m211lzsin(a2) (3.62)
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222 = 0 (3.63)
212 =0 (3.64)
221 = 0 | (3.65)

a o 0, o
I

5 = nglzsin(a1+a2) (3.66)

The derivation of the inverse dynamics is shown in appendix B
and follows the approach used by Paul [46]. Note, however, that
the results differ slightly from tﬁose given by Paul as there is
an arithmetic erfor in the his derivation. Note also thaf this
derivation neglects frictional forces. This is not necessarily a
simplification, though, from a control point of view. Friction
would tend to damp any oscillations that occur whereas with no
friction, oscillations must be damped out by the control system.

The direct dynamics can be obtained through algebraic

manipulation of the inverse dynamics and are as follows,

&1 = [d12('r2 - 92) + d22(g1 - 11)]/d0 (3.67)
| @y = [dy(ry = gy) +d (g, - 7,)1/4, (3.68)
where,
dO = d12d21 - d11d22 ' (3.69)
_ 2 .2 . .
9y = dy434y7 * dy55a," * dyypa0a, * 45400, + 4y (3.70)
2 .2 . .
92 d211 *dpg08p" * dpyp84ay * dyyqazay + dy (3.71)

It is the direct dynamics in conjunction with the integral
eguations,
a=1[a st (3.72)
=103 6t ‘ (3.73)
that allows simulation of the manipulator on a computer
utilizing numerical integration routines.

To achieve 1learned resolved acceleration control 1in a
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Cartesian reference frame it is necessary to learn the inverse
dynamics and the inverse kinematics. To replace a vision system
or 1its equivalent for feedback purposes, it is necessary to
learn the direct kinematics. It can be seen that even ‘for a
simple two link manipulator the functional relationships to be

learned are multi-variate and highly non-linear.

3.3 SIMULATION OF THE MANIPULATOR

Testing of various control systems was carried out using a
simulation of the two link manipulator. The simulation was
performed on a-~ VAX-11/750 computer using ACSL (advanced
continuous simulation language). ACSL permits the simulation of
continuous time systems, such.as the manipulator, as well as
siﬁulation of discrete time systems, such as the digital
computing devices tﬁat would be used to implement a manipulator
control system [58]. A schematic diagram of the simulation is
shown in figure 3.2.

' The various blocks in figure 3.2 can be thought of as
separate physical entities. Derivative blocks represent
conﬁinuous time systems; systems whose states change
continuously, whereas discrete blocks represent discrete time -

systems; systems whose states change at discrete points in time.

47



8y

Z°c aanbtg

weiboad uotrjzernurs zoierndruew 3O weabetp yoo1d

axact

g

i
.2_. - . ‘_E_//’,*AA
x x x
prdict "_.4 position d S -
;". :'o‘?ocny io is - .;.'.
. L prediction - z::f';"""' - /1 - _ -
x "o s l"e difrer- “1| 1asrning
od - entiation machine 2
I *s0 *1e)
delay ;sa
\ ;se ;0
i' aree * a
or- tsion
(n) DISCRETE —1 entiation ystem  [*
BLOCK *e
. CALC
0 vision
path spect- | "9 i 5 : bl
#ication ® % tytical a ' snalyticel *
» x ans ca L]
3 ! learning dirent direet
i, , sachtne dynamtcs 2 | kinematics | =
DERIVATIVE - v
BLOC X [
"”G:." — V{ . "v*™ | DERIVATIVE BLOCK
gy ARM
closed .
frome . oo | f motren
i'. _'. o kinematics ay dynamics 5
= ;',' o] cotiect =5 - -
Yo 2 statistics [ %y x teach v @ tesch B
- :.—. ‘—'d- -—fpd learning TN -4 learning g
¥ o St “—;d 5 machine 1 . machine 2
e Ty -
DISCRETE DISCRETE DISCRETE
BLOCK BLOCK BLOCK
SAMPLE LEARN 1 LEARN2




DERIVATIVE BLOCK ARM

Derivative block .ARM represents the two link manipulator.
Given a statement of the direct dynamics in differential form,

é = dir.dyn(?,é,a) (3.74)
the 1integration algorithms of ACSL advance the states of the
‘system, é and a, as,
a=/a bt ‘ (3.75)

1) é ot (3.76)

el
]

Of the various integration algorithms available in ACSL, the
Adams—Moulton variable stepsize, variable order algorithm Awas
chosen. The relative error introduced at eaéh integration step
was restricted to be less than 1.0E-6 times the maximum value of
tﬁe state up to that point in the simulation and the absolute
error introduced at each integration step was restricted to be
less than 1.0E-6. Since the order of magnitude of the states is
about 1 and FORTRAN single precision real variables are used by
ACSL for storage, these error bounds are near the limit of what
is achievable. Other fixed stepsize, fixed order integration
algorithms available in ACSL, such as Euler, 2nd order Runge-
Kutta, and 4th order Runge-Kutta, typically required more CPU
time to achieve comparable error bounds. The Gear’s Stiff
variable stepsize, variable order algorithm was not considered
as it 1is only appropriate for certéin difficult integration
problems, which 1is not the case here [58). ACSL ensures that
states and derivatives in derivative blocks are up to date at
the times when any other blocks are being executed. Thus the

simulated two link manipulator appears as a continuous system to
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the rest of the simulation.
DERIVATIVE BLOCK PTHGEN

Derivative block PTHGEN contains code to compute the
current path specification, id’ ;d and id" given the curreht
" time, t. No integration is performed by PTHGEN as a dynamic
system with states is not being modelled here. A derivative
block is used in this manner simply to ensure that the path
specification 1is current whenever another block is being
executed without having to‘duplicate the code in each block that
uses the path specification. Paths can be either 1linear or
circular as described in section 3.4.
DERIVATIVE BLOCK CALC

Discrete block CALC performs the comgutations required to
control the manipulator. Inputs are the specification of the

.

desired Cartesian path, id' X3 and ﬁd’ and the view of the
resulting joint path, a, a and G. The output is the torque 7
that is applied to the manipulator. Since CALC is a discrete
block, it is executed as discrete intervals in time as fixed by

t

calc’

The output torque is thus updated at intervals of toalc

and held constant otherwise. The time required to perform the
computations of the CALC block would determine the lower bound
on téalc in an actual implementation of the control system with
a real manipulator.

The many subparts of discrete block CALC allow various
types of control to be performed. Control can be open loop,
using only the desired Cartesian path specification or closed

loop, using the view of the resulting joint path for error

50



correcting feedback. Logical variable CLOSED determines whether
control is open or closed loop. Since path specification is in
Cartesian coordinates, feedback information must also be 1in
Cartesian -coordinates. An approximate Cartesian view of the
resulting path can be determined from the resulting joint path
by wusing a model of wvision system or by wusing a learned
equivalent of the vision system based on Learning Machine 2.
Selection is made according to 1logical wvariable  VISION.
Alternatively, the exact resulting Cartesian path can be
obtained wusing the analytical direct kinematics if logical
variable EXACT 1is true. Due to calculation delay in a real
application, control using feedback cannot make use of current
observations of the resulting path but rather only observations
from. at least time t

previous. A delay of t in the

calc calc

observations of the resulting path is implemented when 1logical
variable DELAY .is true. Given that there 1is a delay 1in
observations, one can attempt to predict what the current
observations would be. Such predictiog is done whenever logical
variable PRDICT is true. Position and velocity prediction is
done using either the desired velocity and acceleration or the
observed velocity and acceleration depending on the state of
logical variable USEOBS. Finally, one can calculate the torque
to apply to the manipulator by using the analytical Cartesian
inverse dynamics, consisting of the analytical inverse
kinematics and the analytical inverse dynamics, or by using a
learned equivalent of the Cartesian inverse dynamics, Learning

Machine 1. The method of calculation is selected by 1logical
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variable INVARM, Learning Machine 1 being selected when INVARM
is false. |
DISCRETE BLOCKS LEARN1 AND LEARN2

| Discrete blocks LEARN1 and LEARN2 contain code that trains
Learning Machines f and 2, respectively, using observations of

the system. These blocks are executed at intervals of t and

lrni
tinp When enabled by logical variable$ LRNINV and LRNVIS,
respectively.
DISCRETE BLOCK SAMPLE

Discrete block SAMPLE contains code to collect statistical
information about the performance of the control system. It is

executed at intervals of t t was set to be 0.01 sec for

samp® ~“samp
all simulations. Information compiled includes root mean square

path error,

XERMS = (mean{(xi—xdi)2})1/2 (3.77)
VKERMS = (mean{(x, -3y, )%})'/2 | (3.78)
AXERMS = (mean{(ii-idi)z})1/2 (3.79)
root mean sduare path estimation error, |
EXERMS = (mean{(xi-xei)z})1/2 (3.80)
EVERMS = (mean{(ﬂi-kei)z})1/2 (3.81)
EAERMS = (mean{(,-%_,)°}'/? © (3.82)
root meah square learned path estimatiqn error,
LXERMS = (mean{(x,-x,,,)°}"/? (3.83)
LVERMS = (mean{(ii-ilei)z})1/2 (3.84)
- LAERMS = (mean{(ii-ilei)z})1/2 (3.85)

root mean square torque estimation error,

TERMS = (mean{(Tdi-rli)z})1/2 (3.86)
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and maximum applied torque,
TROMAX = max{abs(r,)]} (3.87)

Also compiled are statistics about how often and how far the
resulting path motion is out of bounds, as bounds on allowable
motion are imposed by <certain of the control techniques
considered. |

" More detailed descriptions of certain aspects of the
simuiation are included in following sections when such aspects
of the simulation are central to the particular control

technique being studied.

3.4 PATH SPECIFICATION

Before going on to discuss methods of controlling the
maﬁipulator it is necessary to describe how path specifications
are generated. Two types of paths are used to test control of
the manipulator; linear paths and circular paths.

LJNEAk PATHS
Linear paths simply‘consist of linear motion between two

points given by the coordinates <x,

in1%in2> and <Xeiqr¥pip>e The

path consists of five phases of motion. No motion occurs until

time t,, then there is a phase of constant acceleration, a a

max’

phase of constant velocity, \ a phase of constant

max’

decelaration, a and finally a period of no motion, again of

max’
duration tye I1f the initial and final points are close together

then v is not reached. This occurs when,

max ‘
)2 21172 2,50 (3.88)

[(x (xfiz_xinZ max max

£i1 *int

In this case there is no phase of constant, non-zero velocity,
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rather there is simply accelerétion until halfway along the path
and then deceleration until stopped.

Four standard linear paths wete used for test purposes. The
data defining these four standard paths is given in table 3.1. A
plot of line 1 in Cartesian coordinates is shown in figure 3.3.

Figure 3.4 shows line 1 in joint coordinates.

PATH X.

in1 in2 X£i1 Xf£i2 Vmax max t0

line 1 0.45 -1.45 -0.45 -0.55 0.80 0.80 0.50
line 2 0.45 -0.55 -0.45 -1.45 0.80 0.80 0.50
line 3 . -0.45 -1.00 0.45 -1.00 0.80 0.80 b.50
line 4 O.OOV -1.45 0.00 -0.55 0.80 0.80 0.50

Table 3.1 Data defining standard linear paths

CIRCULAR PATHS

Circular paths are centered about the origin of the work
space .located at coordinates <Ko qrX o> = <0,-1>. <Motion can be
clockwise or counterclockwise.4 The initial position is given‘by

the specified radius, p, and the specified starting angle, 6, as

nfpllows,
Xing = ¥gq ¥ pcos(6) ' (3.89)
Xinp = ¥op * psin(8) (3.90)
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Motion proceeds along a circular arc for the fraction of a
complete revolution specified by B. Along the tangent, the same
five phases of motion occur as with linear paths, except that
vtng and atng replace Vnax and Aoy’ respectively. The maximum

tangential velocities and accelerations must be constrained,

however, such that the vector sum of tangential and radial

acceleration never exceeds 3nax This 1is accomplished by
choosing,
. 1/2
vtng = min {Vmax'(p7amax) } | (3.91)
_ 2 _ 4,2.1/2
8tng = (amax Ving /p°) (3.92)

where v is a factor that specifies the portion of 8nax that is
to be allocated to centripetal acceleration during the constant
tangential velocity phase of motion.

Two circular paths were used for test purposes. The data
defining these two standard paths is given in table 3.2. A plot
of circle 1 in Cartesian coordinates is shown in figure 3.5.
Figure 3.6 shows circle 1 in joint coordinates and figure 3.7

shows a plan view of circle 1.

PATH p 6 B 04 Vimax 8max t0

circle 1 0.40 0.00 1.00 0.75 0.90 0.90 1.00 cw
circle 2 - 0.40 3.14 1.00 0.75 0.90 0.50 1.00 ccw

Table 3.2 Data defining standard circular paths

57



e e e
= g L=
8 8 8
K] K] o]
8 8 8
K] K] -]
(8] (4] R
=17;] gt 26
- o o
8 g g
o o o
8 8 . 8
001 00D 2 et 000 00'1°  0S°0- 00°1- 0S°1-
Z+»J3S/HW Hmuxco J3S/W (2)XNa W (2)X0a
00°1 00°0 00°1- 00°1 00°0 00°1- 0S°0 8..o 05°0-
Z»«J3AS/KW (1) XYd J3S/W (1)Xnd W (NXad

Figure 3.5 Standard path circle 1 in Cartesian coordinates

58



$1°E

$1°€E

(o]
g
8
=
8
W
o
8n
- o
8
TN
8
1 o
000 1°€-
Z=+J35/0ud (2)ud
‘€ 000 v1°E-

Z=+J3315/0ud (1)6d

o
S
8
Kl
8
K]
]
8n
lqu
18
"N
8
) Q
VI'E 000 1°g-
J3S/09%d HNHDD
¥I'E 00°0 bl g-

J3S/0ud (TIna

o
S
8
o
8
K-
o
8n
'
8
"N
8
) [=]
89°€ 250
Dcm (2JH1d
50 S0°1- 29°2-
aud (T)H1A

Figure 3.6 Standard path circle 1 in joint coordinates

59



-0.70 -0.50

DX(2) M
-0.90

-1.10

©-1.30

0.50 -0.30 -0.10 0.10 0.30 0.50
DX(1) M

r1.50

Figure 3.7 View of standard path circle 1

(ticks mark intervals of 0.2 sec)

60



3.5 MANIPULATOR CONTROL USING THE ANALYTICAL INVERSE DYNAMICS

AND ANALYTICAL INVERSE KINEMATICS

Manipulator control using the analytical inverse dynamics
and analytical inverse kinematics, which are together called the
analytical Cartesian inverse dynamics, warrants investigation as
it forms a benchmark against which to compare manipulator
control using a learned sum of polynomials representation of the
Cartesian inverse dynamics.

‘3.5.1 IDEAL_OPEN LOOP CONTROL

Before moving on to more realistic control scenarios, it is
instructive to simulate ideal open 1loop control of the
.manipulator. The meaning of open loop control is clear, however,
ideal - requires explanation. By ideal, we mean that the
analytical inverse kinematics and analytical inverse dynamics
are used to compute the torques required to achieve a given
path. It also means that the torque is updated so frequently
that it is effectively calculated continuously. To test ideal
open loop control, two simulations were carried out with

CLOSED=.FALSE.,, INVARM=.TRUE. and t =0.0001 sec. Since the

calc '
duration of motion for the paths was several seconds, such a

small t assures that torque 1is effectively calculated

calc
continuously. Table 3.3 shows the path error that occurred for
the paths, 1line 1 and circle i, and figure 3.8 shows the
resulting path in Cartesian coordinafes for the simulation of
line 1. The errors'thaf occur are minimal for both‘paths and the

resulting path for line 1 is indistinguishable from the desired

path,'which is shown in figure 3.3. The errors can be attributed
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to finite precision in the calculation of the analytical inverse
kinematics and analytical inverse dynamics, 1inaccuracy in the
simulation .of the manipulator, finite precision 1in the
calculation of the analytical direct kinematics, and the fact
that torque is not updated continﬁously, albeit that torque is

updated very frequently.

PATH XERMS VXZERMS AXERMS

line 1 2.54E-5 3.05E-5 1.05E-¢4
circle 1 2.10E-5 3.22E-5 7.78E-5

Table 3.3 Path error using ideal open loop control

While such 1ideal opeh loop control is not a realistic
control strategy, it serves to test two aspects of the
simulation program. First, it confirms that path specification
is being performed correctly. The desired acceleration and
velocity are indeed the derivatives of the desired velocity and
position, respectively. Secondly, it confirms that the inverse
kinematics and inverse dynamics are indeed the inverse of the
direct dynamics and direct kinematics used. While this does not
mean that the kinematics and dynamics are necessarily correct,
it does make it very probable that, given that the analytical
kinematics and analytical dynamics have been derived correctly,
errors’ have not been introduced in the implementation of the

simulation. If either of these assertions were not true, it
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would be highly unlikely that the resulting path would duplicate
the desired path so closely when using open loop control.

In addition, ideal open loop control allows one to examine
the torques that must be applied to the manipulator to drive it
through a specified path. Figure 3.9 shows the torque, as
function of time, that is required to drive the manipulator

through standard path, line 1,
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Figure 3.9 Torque profile for line 1
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3(5.2 IDEAL CLOSED LOOP CONTROL

The position and velocity tracking errors that occur when
using 1ideal open loop control can be reduced by using error
correcting feedback resulting in ideal closed loop control.
Ideal <closed loop control assumes exéct measurement of.the the
resulting Cartesian path and continuous updating of the applied
torque. To test ideal closed loop control, two simulations were
carried out with CLOSED=.TRUE., INVARM=.TRUE., EXACT=.TRUE.,

PRDICT=.FALSE., DELAY=.FALSE., k,=16, k,=64 and t =0.0001

2
sec. The resulting path errors are shown in table 3.4 and are

calc

reduced from those occurring with ideal open loop control. 1In
fact, any further reduction of path error is limited- by the
precision of calculations in the simulation.

The error correcting action of closed 1loop control is
illustrated by a simulation in which the maﬁipulator is
perturbed from the desired position of <Xgqr¥g0> = <0,-1> at
time t=0.2 sec and is restored to the desired position by error
correcting feédback. Such a simulation is shown in figure 3.10.
In theory it would seem that one could achieve critical damping
of such poﬁition and velocity errors with as short a time
constant as desired simply by increasing k1 and k2 while

maintaining the condition k12=4k2. In practice this cannot be

done as ideal closed loop control cannot be achieved.

65



8 : 8
d4 d4
; ; g
=] =] o
8 3 3
et Lo LS de Lo
(88 ] Q Q
= = =7
== FOp— O
jf dbe
8 ; ;
O =] K=]
8 . 8 8
. ¢ o I Ying to T e +c
00°T 00°0 00°T- 00°1 00°0 - 0S°0- 00°%- 05°1-
Z«=J3S/W (Z)XY umm\z ANHXD W (2)X
00°1 00°0 00°1- 00°T 00°1- 05°0 00°'0 05°0-
Z»=J3S/W (T)XY umm\z (T)IXN : W ()X

closed loop

ideal

of

action

correcting

Figure 3.10 Error

control

66



PATH XERMS VXERMS AXERMS .

line 1 2.37E-6 6.34E-6 1.46E-4

circle 1 1.56E~-6 4,.97E-6 1.01E~4
Table 3.4 Path error using ideal closed loop control

3.5.3 REALIZABLE CLOSED LOOP CONTROL - STANDARD ANALYTICAL
CONTROL

In a practical implementation of closed 1loop control,
various constraints necessitate deviation from ideality. These
" contraints typically have their roots in technological
limitations on the speed at which calCulations can be performed.
CALCULATION DELAY

A certain amount of time passes between the observation of
-the manipulator position, and the calculation of the torque to
apply to the manipulator to correct position and velocity errors
while tracking a path specification. There is thus a delay
between observation of manipulator motion and error correcting
action. Such a delay 1is implemented in the simulation when
logicall variable DELAY is true as follows,

X (t) = x__(t-t

o se calc) (3.93)

Unless one uses parallel processing or pipelined processing, the
applied torque will be quantized in time by this same
calculation interval. To keep computer cost to a minimum, it is
desirable to permit this calculation delay to be as 1large as

possible ' without resulting in poor control. We have chosen
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t =0.01 sec as a reasonable compromise.

calc
INEXACT VISION

Exact measurement of the.manipulator path for use in error
correcting feedback 1is an unrealistic assumption. A more
realistic assumption, althoﬁgh still rather optimistic, is that
the vision system estimates only position, iv’ SO accurately as
to be considered equai to the exact position, X. Velocity and
acceleration would then be obtained by simple differentiation of

the observed position as a function of time. We thus model the

vision system as follows,

ie(t) = iv(t) = Xx(t) ‘ (3.94)
ie(t) = [?e(t) - ?e( Calc)]/tcalc (3.95)
ie(t) = [ie(t) - ie(t calc)]/tcalc (3.96)

Note that in addition to the previously mentioned delay of

t there are adaitional effective delays of t

/2 for

calc’ calc

velocity observations and t for acceleration observations.

calc
PREDICTION

It 1is possible to reduce the effect of feedback delay by
using prediction. Since one knows the desired velocity and
acceleration when the observations are made, one can use this
information to predict what the observed position and velocity

should be at time t later. These predictions can then be

calc

used in the calculation of the torgue to apply at time tealc

later. To this end, we make use of position and velocity
prediction as fdllows,

Z (1) + xd(t)t ()t q. /2 (3.97)

. =
calc X3 calc

ol
N

= x (t) + x (t)t (3.98)

calc

68



Note that it is also possible to use the observed velocity and
acceleration for prediction purposes, rather than the desired
. vélocity and acceleration. Such use of observations, however,
~was found to have certain disadvantages and was not adopted.
FEEDBACK GAIN

The feedback gains, k1 and k2, cannot be made arbitrarily
large in practice. A choice of k1=16 and k2=64 was found to
result in good error correction with a hinimal tendency‘to cause
instability given our choice of parameters for standard
analytical control; closed loop control using the analytical
inverse kinematics, analytical inverse dynamics and realistic
constraints.
STANDARD ANALYTICAL CONTROL

Standard analytical control is simulated by setting
CLOSED=,TRUE., INVARM=,TRUE. , EXACT=,FALSE,, VISION=,TRUE,
DELAY=.TRUE., PRDICT=.TRUE., USEOBS=.FALSE., k1=16, k2=64 and

t =0.01 sec. To test standard analytical control, simulations

calc
were done of the six standard paths. The resulting path errors
are shown in table 3.5. Figure 3.11 shows the resulting path in
Cartesian coordinates for the simulation of line 1. Position and
velocity ’tracking' is very good but there is a slight
overshooting of steps in acceleration. Tracking is significantly
poorer, though, than that which appeared possible using ideal
open loop or ideal closed loop control. The performance of
standard analytical control shown here forms a benchmark for the

evaluation of learned control. One should hope to achieve

similar results with learned control, but should not expect to
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exceed the performance of standard analytical control.

70

PATH XERMS VXERMS AXERMS
line 1 5.99E-4 2.29E-3 9.54E-2
line 2 7.09E-4 2.44E-3 9.58E-2
line 3 6.75E-4 2.45E-3 19.92E-2

line 4 6.32E-4 2.42E-3 9.87E-2 -
circle 1 6.53E-4 1.50E-3 4.73E-2
circle 2 6.18E-4 1.48E-3 4,.73E-2

Table 3.5 Path error using standard analytical control
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3.5.4 CHOICE OF PARAMETERS DEFINING STANDARD ANALYTICAL CONTROL

The parameters wused in standard analytical contrél were
chosen so as to achieve good control with the constraint that
the system be realizable. The appropriateness of the chosen
parameters can be demonstrated by simulations using standard
analytical control except that 1individual parameters are
varied.
CALCULATION DELAY

Calculation delay is unavoidable in a real implementation,
It was chosen to be as large as possible without resulting in
poor control, as this permits implementation with 1lower cost
computing hardware. Figures 3.12, 3.13 and 3.14 show simulations
=0.04 . sec and

of 1line 1 for the cases t =0.02 sec, t

calc calc

t =0.04 -sec, respectively. The path error for these

calc

simulations is shown in table 3.6. It can be seen that as tcalc
is increased from 0.01 sec, the standard value, the control

becomes progressively poorer. For the case t =0.02 sec,

calc
position and velocity tracking is qguite good, however, there is
a noticeable oscillation in the acceleration of the manipulator.
This could cause excessive vibration of the links of an actual
manipulator, an effect that is not modelled here. It is assumed
that the torque must be updated at a reasonably high rate to
avoid resonance with the vibrational modes of manipulator links,

otherwise manipulators would have to be specially constructed to

damp vibrations.
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INEXACT VISION

Accurate measurement of manipulator motion is necessarf for
feedback to be wuseful in improving control. Errors in
measurement translate directly into fracking errors. It is thus
necessary to invest in a very accurate vision system, or its
equivalent wusing the analytical direct kinematics, if good
~control is to be achieved. It does seem reasonable, though, that
only. Cartesian position needs to be measured accurately.
Cartesian velocity and acceleration, if required, can be
adeguately obtained by differentiating the position. Figure 3.15
shows a simulation of line 1 in which exact vision is used for
feedback purposes by setting EXACT=.TRUE. The resulting path
error 1is shown in tgble 3.6. It can be seen that control with
exact vision is not significantly better than with our model of
a vision system where velocity and acceleration measurements are
obtained by differentiating accurate measurements_of position.
PREDICTION

Prediction has been used in standard analytical control.
The benefits of prediction are shown by a simulation in which no
prediction was used. The resulting path is shown in figure 3.16
and the path error is listéd in table 3.6. Lack of prediction
results in more pronounced overshooting of steps in acceleration
and a significant increase in path error as compared to results
using prediction. For the two 1link manipulator, prgdiction
requires only 6 multiplications and 6 additions. Prediction was
thus adoptéd for use in standard analytical control as it

reguires a minimal amount  of additional computation and
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significantly improves tracking.

In standard analytical control, prediction is = implemented
using the desired velocity and acceleration. It is also possible
to use the observed velocity and acceleration for this purpose.
Figure 3.17 shows a simulation of line 1 with USEOBS=.TRUE. The
resulting path error is shown in table 3.6. Tracking 1is no
better than with prediction using the desired velocity and
acceleration specifiéation. When control is marginal such that
the resulting velocity and acceleration éiffer somewhat from the
desired velocity and acceleration, it might. be more beneficial
to use the observed velocity and acceleration for-prediction. We
seebprediction, however, as a way of improving control that is
already adequate, not as a way of making inadequate control
become adequate. Also, observation of acceleration 1is not
otherwise .required, except when learning, as will be shown
later. Observation of acceleration is thus an additional
computational expense with little benefit. Hence we adopted
prediction wusing the desired velocfty and acceleration for use
in standard analytical control.

FEEDBACK GAfN

With the departures from ideality present in realizable,
closed loop control, it is not possible to arbitrarily increase
the feedback gains, k1 and k2' to achieve ever better control.
Because of these departures from ideality, the non-linearities
of the manipulator and vision system are only approximately
cancelled by the analytical inverse dynamics and analytical

inverse kinematics. Thus the characterization of the control

79



00"

00"

(]
% 2
K

0
T SEC

|
]

0.80

ﬁ.
1

1
A LN

*0.00

co.o. 00°1
35/W (2)XY

1
[ALN

00°0 00°-
dS/W (TIXY

8 8
; 8
Kyl Ky
< e
i Fod
o ]
80 an
lluT 1InTl
2 g
K] K]
. 8 | 8
U [ ] U T . o
00°1 00°0 00°1- 0S°0- 00°1- 0S°1-
J3S/W (21 XN W (2)X
00°T 00°0 00°1- 0S°0 00°0 05°0-
J3S/W (T)XN KN (TIX

Figure 3.17 Standard analytical control of line 1,

except that

USEOBS=.TRUE.

80



system by a second order, linear, homogeneous differential
equation with constant coefficients as in (3.31) is only
approximately true. We found that k1=16 and k2=64 gave about the
best control 1in combination with the othef chosen parameters
‘defining standard analytical control. Figure 3.18 shows a
simuiation of line 1 with k1=64 and k2=1024. The control system
.is clearly becoming oscillatory as the feedback gains are
increased. Figure 3.19 shows a simulation of line 1 where the
feedback: gains are reduced to k1=4 and k2=4. Now the <control
system 1is not oscillatory but the path error is increased from
that of standard analytical control due to the slower correction
of velocity and position errors. The effect of departure from
the constraint that k12=4k2 is shown in figures 3.20 and 3.21
where 1line 1 is simulated with feedback gains of k1=8, k2=128
and k1=32, k2=32, respectively. The path errors for these
simulations with various feedback gains are listed in table 3.6.
It can be seen that k1=16 and k2=64 are reasonable choices for
use in standard analytical control.

Standard analytical control h;s been established by
reasonably choosing the parameters necessary to implement a
realizable, closed 1loop control system for the two 1link
manipulator. Standard analytical control thus serves as a

reasonable benchmark against which to compare learned control.
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k1=32 and k2=32
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PATH XERMS VXERMS AXERMS NOTES

line 5.99E-4 2.29E-3 9,.54E-2 Standard

llng 1.12E-3 4,53E-3 1.20E-1 tcalc = 0.02 sec

line 1.62E-3 9,.70E-3 2.06E-1 tcalc = 0.03 sec

line 2.87E-3 3.71E-2 6.45E~1 tcalc = 0.04 sec

line 2.60E-4 1.64E-3 9.02E-~2 Exact Vision

line 4 ,57E-3 7.06E-3 1.12E~1 No Prediction

line 6.60E-4 2.05E-3 9.66E-2 Use Observations

line 1.55E-4 6.57E-3 4,.38E~-1 k1 = 64, k2 = 1024

line 2.44E-3 3.06E-3, B.74E-2 k1 = 4, k2 = 4

line 2.47E-4 2.64E-3  9.35E-2 k, =8, k, =128

line 1.36E-3 2.92E-3 - 1,09E-1 k1 = 32, k2 = 32
Table 3.6 Path error using standard analytical control, except

for noted variations
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3.6 ADEQUACY OF A SUM OF POLYNOMIALS REPRESENTATION OF THE

INVERSE DYNAMICS AND INVERSE KINEMATICS

A principal goal of this work is to learn a sum of
polynomials representation of the inverse dynamics and inverse
kinematics of the two link manipulator without recourse to
apalysis of the manipulator. Before considering how such
learning 1is to be performed,‘ it is instructive to consider
whether the inverse dynamics and inverse kinematics can even be
adequately represented by a sum of polynomials for the purposes
of control.
| 3.6.1 DERIVATION OF A SUM OF .POLYNOMIALS REPRESENTATION OF THE
INVERSE DYNAMICS

"Although the inverse dynamics are quite complex, it |is
straightforward té derive a sum of polynomials representation
that closely approxfmates the analytical inverse dynamics.

The analytical inverse dynamics are given by equations
(3.51) through (3.66). To derive a sum of polynomials equivalent
it is necessary to consider a two link manipulator with specific

parameters. To this end we have chosen a two link manipulator as

follows,
m, = 1 Kg ‘ (3.99)
m, = 1 Kg (3.100)
1, = 1m ' o (3.101)
I=1m . , (3.102)

The standard gravitational acceleration has been assumed;
g = 9.81 m/sec2 (3.103)

For these choices of parameters, the coefficients in the
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analytical inverse dynamics are, neglecting units, as follows,

d;, =3+ 2cos(a,) (3.104)
d,, =1 + cos(a,) : (3.105)
d111 =0 (3.106)
d,,, = =~ sin(a,) : (3.107)
d,,, = -~ sin(a,) (3.108)
d,,, = - sinla,) | (3.109)
d1 = 19.62sin(a1) + 9.81sin(a1+a2) ' (3.110)
and, |
d,, =1+ cos(a,) (3.111)
d,, =1 i (3.112)
dyyq = sin(a;) _ (3.113)
dpypy = O | | (3.114)
dyyp, = 0 (3.115)
dypy = O (3.116)
d, = 9.81sin(a,+a,) (3.117)

With these coefficients the analytical inverse dynamics are,

T 3&1 + 2cos(a2)&1 + &2 + cos(az)&2
. .2 ) ..
51n(a2)a2 . 251n(a2)a1a2

+ 19.6251n(a1) + 9.81sin(a1+a ) (3.118)

2

ay

+ sin(a,)a,” + 9.81sin(a,*a,) (3.119)

7, + cos(az)a1 + 4,

The sine and cosine terms can be approximated over the range

m<a; <® using their equivalent 'series representations,

truncated to 4th order and lower terms,
2 4
cos(az) > a, /2 + a, /24 (3.120)
. - _ 3 :
51n(a2) = a, a, /6 | . (3.121)
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3/6 (3.122)

It
Q

]
e

sin(a1)

+ta, - a13/6 - a, a2/2 - a a22/2 - a23/6

51n(a1+a2) = q :

(3.123)

Substituting these approximations for the sine and cosine terms

h

and keeping the resulting terms of 4" order or lower yields a

sum of polynomials representation for the inverse dynamics,

3 _ 2 _ 2
+ 9.81a2 4.91a1 a, 4.91a1a2

2 . 2.

T, = 29.40.1 - 4.91a1

3

1

- 1.64a,” - 2a2d1d2 - azdz + 54, - a,%a,

+ 24, - 0.5a,%4, (3.124)
T, = 9.81a1 - 1.64a13 + 9.81a2 - 4.91a12a2 - 4.91a1a22

- 1.68a,> + aya,” + 28, - 0.50,%, + &, (3.125)

th order

Demonstration of the accuracy achievable with such a 4
sum of polynomials representation is done in the following
sections.
3.6.2 PRE-LEARNING OF THE INVERSE DYNAMICS

Having derived a sum of polynomials representation of the
inverse dynamics, it seemed natural to determine whether this
representation could be learned using the analytical inverse
dynamics as a guide. We call this pre-learning as the sum of
polynomials representation is learned off-line, before being
used in any control scheme. This was done using a program
analagous to that wused 1in chapter 2 to investigate the
convergence rates of the various learning algorithms except that
the target functions used were the two functions that make up
the inverse dynamics. Pre-learning was carried out using Method
and % =

*
2, Learning Identification, for the cases, f{ = T Ty

The number of input variables was v = 6 and the system order was
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s = 4. The input variables were,

z, = a, (3.126)
z, = a, (3.127)
zZ3 = a, (3.128)
z, = a, , (3.129)
25‘=_ﬁ1 ° (3.130)
zg = 4, (3.131)

Training points were randomly generated uniformly over the
space, -1 < z, < 1, and 20,000 iterations . were performed.

Torques 7 and T, were learned as sums of polynomials of the

1
input variables, z;.

Figure 3.22 shows the reduction of Af1 and Af2 -as a
function of the number of training iterations. The graphs show
the. magnitudes of Af1 and Afz, averaged over intervals of 100
training iteratioqs. It can be seen that the average error in
estimating the target functions (in this case the torques T, and
72) has dropped to about 0.05 N.m. Note that the estimates of
the torgues do not improve after about 5000 iterations. This
implies that better accuracy cannot be achieved without
increasing, s, the system order.

Table 3.7 and 3.8 shows the coefficients derived previously
and shown 1in equations (3.124) and (3.125) along with their
counterparts that were pre-learned. Clearly, as learning
proceeds, the coefficients are converging to values close .to
those obtained by derivation. One should not expect an exact

h

correspondence as the best st order approximation of the

analytical' inverse dynamics is not likely to be exactly that
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Figure 3.22 Reduction of estimation error during pre-learning
of the inverse dynamics (estimation error averaged over each 100

iteration interval)
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obtained by truncating thé series representations of the sine
and cosiné terms, as done here. Furthermore, Learning
Identification does not guite converge to the best 4th order
approximation as it is limifed by the constraint that learning
eliminates estimation error at the last training point. There

should be, however, a close correspondence between the derived

and pre-learned coefficients.

POLYNOMIAL DERIVED PRE-LEARNED
TERM COEFFICIENT COEFFICIENT
z, 29.4 29.3
z > - -4.91 ~4.47
z, | 9.81 9.67
22212 -4.91 -4.24
22221 -4.91 -4.23
z,° -1.64 ~1.33
2,232, -2.00 -1.81
z,%z, -1.00 ' ~0.92
zg 5.00 5.00
z52,° -1.00 -0.91
zg 2.00 1.99
zg2,° ~0.50 -0.51
others 0.00 <0.06

Table 3.7 Coefficients for a sum of polynomials representation

of the inverse dynamics function for torque obtained by

1
derivation and by pre-learning
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POLYNOMIAL DERIVED PRE-LEARNED
TERM COEFFICIENT COEFFICIENT
z, 9.81 9.69
2> ~1.64 -1.36
22-‘ 9.81 9.71
22212 -4.,91 -4.24
z, z, -4.91 -4.22
223 -1.64 -1.41
2,2, 1.00 0.90
zg 2,00 2.00
25222 -0.50 -0.44
Zg 1.00 0.99
others 0.00 <0.05

Table 3.8 Coefficients for a sum of polynomials representation
of the inverse dynamics function for torque Ty obtained by

derivation and by pre-learning

3.6.3 ATTEMPTED DERIVATION OF A SUM OF POLYNOMIALS
REPRESENTATION OF THE CARTESIAN INVERSE DYNAMICS

To achieve our goal of 1learned control with path
specification in Cartesian coordinates, it is necessary to learn
the  Cartesian inverse dynamics. Thus it 1is instructive to
attempt to derive a sum of polynomials representation of the
inverse'kinematics of the two link manipulator, which together
with the inverse dynamics form the Cartesian inverse dynamics of

the manipulator as given in (3.19). It was found that an
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adequate sum of polYnomials representation of the Cartesién
inverse dynamics could only be achieved over a portion at a time
of the space over which the manipulator is capable of moving.

The inverse kinematics of the two 1link manipulator are
given by equations (3.39) through (3.44). Since it is the sines
or cosines of the angular positions, rather than the angles
themselves, that are required for substitution into the inverse
dynamics, it 1is useful to consider equations (3.44) through
(3.48) rather than the inverse kinematics functions for angular
position.

Given the link lengths chésen previously, the formulas for

“the sines and cosines of angular position become,

cos(ay) = x,2/2 + x,°/2 - 1 (3.132)
sinfa,) = (1 - cosZ(a,)) /% (3.133)
cos(a,) = x1sin(a2)/(x12+x22) = x,/2 (3.134)
sin(a,) = (1 - cos?(a;))'/? (3.135)

The first two functions given here, (3.132) and (3.133), can be
well represented by a sum of polynomials over the whole space
within the manipulator’s reach, except.very close to the origin,
The second two functions, (3.134) and (3.135), appear to not be
representable by a sum of polynomials due to the term (x12+x22)
in the denominator of (3.134).

‘ The inverse kinematics functions for d1, dz, &1 and &2 all
have the term sin(az) appearing in a denominatbr position. This
means that these functions have singularities at the origin and

at the limits of the manipulator”s reach where sin(az) is zero.

The singularities at the origin and at the limits of the
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manipulator’s reach reflect control difficulties that are
inherent with the manipulator. One should not expect to have
goéd control at these points wusing path specification in
Cartesian coordinates. One would normally not . utilize the
manipulator at these problematic points in the space.

The difficulty 1in representing cos(a1) with a sum of
polynomials is more significant. Even neglecting points near the
origin and near the limits of the manipulator’s reach, it does
not appear to be possible to represent function (3.134) as a sum
‘of polynomials over the rest of the manipulator’s reach. It
seems that any sum of polynomials that is good in one quadrant
is bad in the opposite quadrant. Attempts to learn cos(a1) over
“a circular band excluding the origin and the 1limits of the"
manipulator’s reach proved futile. It was thus necessary to
limit learning of the inverse kinematics and hence the Cartesian
inverse dynamics to a portion of the space.

3.6.4 LIMITATION OF A SUM OF POLYNOMIALS REPRESENTATION OF THE
CARTESIAN INVEﬁSE DYNAMICS TO A PORTION OF THE MANIPULATOR’S
SPACE

To permit a sum of polynomials representation of the
Cartesian inverse dynamics, it was necessary to limit learning
to a portion of the manipulator’s space. This is not a great
restriction of the technigue as most real manipulators have
revolute joints that are constrained to within a fraction of a
complete circle of motion. One normally'uses the manipulator in
a restricted region or workspace, typically in front of or below

.the manipulator origin. Further, one can use several different
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sum of polynomials representations of the Cartesian inverse
dynamics, each for' a different portion of the manipulator’s
space.
We restricted our attention to a workspace below the origin
of the two link manipulator, namely the region specified by,
-0.5 < x, < 0.5m (3.136)
-1.5 < X, < -0.5 m (3.137)
Velocity and acceleration were restricted to magnitudes of less

than 1 m/sec and 1 m/secz, respectively. The normalized input

variables for the learning algorithms were thus,

z, = 2x, (3.138)
Z, = 2x, + 2 (3.139)
zZy = X, . (3.140)
z, = %, (3.141)
zg = ¥, (3.142)
zg = ¥, _ (3.143)

Over this portion of the manipulator”s reach it is possible to
represent the Cartesian inverse dynamics as sums of polynomials.
The cosine of a, is already exactly represented as a sum of

polynomials of Cartesian coordinates,

cos(a,) = 2,%/6 + 2,°/6 - 2,/2 - 1/2 (3.144)
The sine of a, is equal to the binomial expansion of the right
hand side of (3.133),
sin(az) =1 - cos(a2)2/2 - cos(a2)4/8 - cos(a2)6/16 cos
(3.145)

A good approximation for sin(az) can be obtained by truncating

the series (3.145) at an appropriate length, substituting in the
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expressioh for cos(az), and then retaining all polynomial terms
of a given maximum order or less, say 4th order. This is rather
difficult to do, however, as a large number of the terms of
(3.145) have significant components of 4P order or lower.

Over the workspace the cosine of a

. is,

cos(ai) = 1/2 - 22/4 + z sin(az)/(z12/2+222/2-222+2)

1
(3.146)
The troublesome polynomial in the denominator of (3.146) can be
replaced with 1its Taylor series equivalent taken about the:
origin of the workspace,

2 2, -1
(z1 /2+zz /2 222+2)

=1/2 + 2,/2 - z,°/8 + 32,°/8
- 3z 2, /12 + 3z 3/12 ve. (3.147)
122 2
The expression for cos(a1) can then be truncated to those terms
of 4th order or lower. Given a sum of polynomials representation
of cos(a1), one can then obtain the sine of a1'using a binomial
expansion of the right hand side of (3.135) , as was done for
sin(a1), .
sin(a,) = 1 - cos(a )2/2 - cos(a )4/8
‘2 2 2
- cos(a2)6/16 cee (3.148)
The factor 1/sin(a2) that appears in the inverse kinematics

functions for a dz, &1 and &2 can be replaced with the Taylor

17
series for the reciprocal of the polynomial approximation for
sin(az), taken about the origin of the workspace.

Accurate representation of these sine, cosine and cosecant
terms can be obtained using the polynomial series shown here,

th

truncated to a certain maximum order, 4 order for example.

Substituting these results into the inverse kinematics
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relationships and subsequently combining the inverse kinematics
with inverse dynamics, one can.obtain an accurate sum of
polynomials expression for the Cartesian inverse dynamics.
Again, only terms of a.certain maximum order or less need be
retained. It is «clearly difficult to perform the algebra
necessary to derive such a sum of polynomials representation of
the Cartesian inverse dynamics. The feasibility of such a
representation can be demonstrated, however, by pre-learning a
sum of polynomials representation of the Cartesian inverse
dynamics.
3.6.5 PRE-LEARNING OF THE CARTESIAN INVERSE DYNAMICS

To demonstrate the adequacy of sum of polynomials
representation of the Cartesian inverse dynamics, such a
representation was pre—léarned using the analytical Cartesian
inverse dynam;cs as a guide. This was done‘ using a program
analagous to that wused in chapter 2 to investigate the
convergence rates of the various learning algorithms except that
the target functions used were the two functions that make up
the Cartesian inverse dynamics. Pre-learning was carried out
using Method 2, Learning Identification, for the cases % =7

1
Toe The number of input variables was v = 6 and the

and % =
system order was s = 4. The input variables were those given in
equations (3.138) through (3.143). Training points were randomly
generated uniformly over the space, -1 < z, < 1, and 20,000
iterations were performed.

Figure 3.23 shows the reduction of Af1 and Af2 as a

function of the number of training iterations performed. The
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Figure 3.23 Reduction of estimation error during pre-learning
of the Cartesian inverse dynamics (estimation error averaged
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graphé show the magnitudes of Af1 and Afz, averaged over
intervals of 100 training iterations. The average error in
estimating the target functions (in this case the torques T, and’
12) has dropped to about 0.6 N.m. It was found that the
Cartesian inverse dynamics, as pre-learned here, were adequate
to achieve control comparéble to that using the analytical
Cartesian inverse dyhamics.
3.6.6 CLOSED LOOP CONTROL USING THE PRE-LEARNED CARTESIAN
INVERSE DYNAMICS

To test the adequacy of the pre-learned Cartesian inverse
dynamics, simulations were carried out in which the pre-learned
Cartesian 1inverse dynamics were substituted for the analytical
invefse in otherwise standard analytical control. Simulation
parameters were set as follows: CLOSED=.TRUE., INVARM=,FALSE.,
EXACT=.FALSE., VISION=.TRUE., DELAY=.TRUE., PRDICT=.TRUE.,

USEOBS=.FALSE., k1=16, k,=64 and t

2 calc=0’01 sec. The pre-learned

coefficients were used in Learning Machine 1 to estimate
torques. No learning took place duriné' the simulations.
'Simulations were carried out for all six standard paths. The
resulting path errors are shown in table 3.9. Mean position
tracking error 1is about 3 mm compared to about 0.5 mm when
using standard analytical control. Velocity and accelaration
tracking errors are similarly increased. Also shown in table 3.9
is the error in estimating the torque and the maximum torque
that 1is applied during each path. The error in the estimating
the torque is typically about 4 percent of the maximum applied

torque. Figure 3.24 shbws a plot of path 1. It is evident that
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control is quite stable as no large glitches are occuring

than some

performance

control, it

polynomials

adeguate to

is

overshooting

not quite as good as with

good

of steps in

enough

achieve good control,.

VXERMS

to demonstrate

acceleration.

standard

that

While

sum

representation of the Cartesian inverse dynamics

other
the
analytical

~of
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PATH XERMS AXERMS TERMS TROMAX
line 1 3.82E-3 7.26E-3 S.94E-2 3.44E-1 8.33
line 2 8.88E-3 2.02E-3 1.36E-1 4.08E-1 9.15
line 3 6.05E-4 2.76E-3 1.01E-1 1.65E-1 14.1
line 4 3.32E-3 6.49E-3 1.01E-1 4.56E-1 6.79
circle 2.46E-3 6.19E-3 - 5.30E-2 3.21E-1 9.62
circle 2.01E-3 6.41E-3 5.56E-2 2.68E-1 13.6

Table 3.9 Path

error

and torgue error using the

Cartesian inverse dynamics in closed loop control

o

pre-learned

3.7 ADEQUACY OF A SUM OF POLYNOMIALS REPRESENTATION OF THE

DIRECT POSITION KINEMATICS

Another

polynomials

link

manipulator.

kinematics,

manipulator

As

without

with

the inverse

recourse

to

dynamics

principal goal of this work is to learn a

analysis

is 1instructive to first consider
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direct position kinematics can be adequately represented by a
sum of polynomials for the purpose of replacing the wvision
system.
3.7.1 DERIVATION OF A SUM OF POLYNOMIALS REPRESENTATION OF THE
DIRECT POSITION KINEMATICS

A sum of p§lynomials representation of the direct position
kinematics can be derived quité easily. Since the direct
kinematics of any manipulator can be obtained in a similar form
by a general te&hnique, it would appear that a sum of
polynomials representation of the direct . kinematics is
achievable for all manipulators.

The énalytical direct position kinematics are given by
equations (3.32) and (3.33). For a two link manipulator with
parameters as given in equations (3.99) through (3.103), the

analytical direct kinematics are as follows,

X, sin(a,) + sin(a, + a,) , (3.149)

x, = —cos(a;) - cos(a, + a,) (3.150)
Since we are concerned with modelling the direct position
kinematics over the workspace in particular, the input variables

a sum of polynomials representation can be chosen as follows,

z, = (a1 + 7/3)/(n/2) (3.151)
z, = (a2 - 2n/3)/(n/2) ' (3.152)
<2,,2,> = <0,0> corresponds to the center of the workspace and

the workspace is enclosed in the region defined by -1 < z, < 1.
With such a normalization of the input variables the direct

position kinematics become,
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>
1}

[sin(nz1/2) - V3cos(nz1/2) + sin(wz1/2)cos(n22/2)
+ cos(wz1/2)sin(n22/2) + V3cos(wz1/2)cos(ﬂ22/2)

- V35in(nz1/2)sin(ﬂzz/2)]/2 (3.153)

]
[
n

[—cos(wz1/2) - /3sin(w21/2) - cos(wz1/2)cos(wzz/2)
+Vsin(wz1/2)sin(nz2/2) + V3sin(wz1/2)cos(nzz/2)
+ V3cos(nz,/2)sin(nz,/2)]/2 7 (3.154)

The sine and cosine terms can be replaced with their series

equivalents, truncated to 4th order or lower terms,
sin(nz /2) = 1z,/2 - =z /48 (3.155)
cos(nz,/2) = 1 - =’z 2/4 + 7z %/384 (3.156)
sin(wzz/Z) = 72 /2 -7 z /48 : (3.157)
cos(mz,/2) = 1 - n°z,%/4 + n*z /384 (3.158)

Substituting these expressions into equations (3.153) and
(3.154), and keeping those terms of 4th order or lower yields a
sum of - polynomials representation of the direct position
kinematics,

X, = ﬂZ1/2 + wzz/4 - V3wzz 22/8 - V3ﬂzz 2/16 - n3z13/48

- n3223/96 - w3z1 2/32 - w3z z, /32 + V37 21322/192
+ V3n4z1zz3/192 + V37 z1222 /128 + /3# z, /768
(3.159)
X, = -1 + /3#22/4 + w z, /8 + n z, /16 - V3n z, 22/32
- V3w z,2, /64 + n22122/8 - V3w z 3/96 -7 214/384
- "421322/192 - #4212222/128 - 1r4z1z2 /192 - w4zz4/768
(3.160)

To test the accuracy of the derived direct position
kinematics, simulations were carried out using standard
analytical control for the six standard paths while using the

-
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velocity and

successive points in time.

acceleration

estimates are

differentiating of the position estimates.

As with the modelled vision

derived direct position kinematics to estimate the position

obtained by

Table 3.10 shows the

in path estimation for the various standard paths.
Estimates of velocity and acceleration compare well with
obtained using modelled vision system in which position
estimates are exact. Errors in path estimation by the

system are shown in table 3.11.

Figure 3.25 shows the resulting

of standard path <circle 1 using the derived direct
position kinematics. .
PATH LXERMS LVERMS LAERMS
line 1 4,89E-3 7.75E-3 5.25E-2
line 2 3.43E-2 3.64E-2 1.09E-1
line 3 8.69E-4 3.42E-3 4,.82E-2
line 4 1.28E-2 1.65E-2 6.92E-2
circle 1 6.60E-3 1.53E-3 6.08E-2
circle 2 6.58E-3. 1.43E-3 5.70E-2

system,

Table 3.10 Path estimation error using the derived direct

position kinematics
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Figure 3.25 "~ View of circle 1 using the derived direct position
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LAERMS

PATH LXERMS . LVERMS

line 1 0.0 3.01E-3 4.62E-2
line 2 0.0 3.02E-3 4.64E-2
line 3 0.0 3.21E-3 4.80E-2
line 4 0.0 3.20E-3 4.56E-2
circle 1 0.0 2.90E-3 2.56E-2
circle 2 0.0 2.89E-3 2.57E-2

Table 3.11 Path estimation error using the vision system which

has exact position estimation

—

3.7.2 PRE-LEARNING OF THE DIRECT POSITION KINEMATICS

Having derived a sum of polynomials representation of the
direct position kinematics, it was verified that this
representation could be pre-learned using the analytical direct
position kinematics as a guide. This was done using a program
analagous to that used in chapter 2 to investigate thev
convergence rates of the various learning algorithms except that
the target functions usea were the two functions that make up
the direct position kinematics. " Method 2, Learning
The

* *
Identification, was used for the cases, f = x, and f = x

1 2°
number of input variables was v = 6 and the system order was s =
4. The input variables were those given in equations (3.151) and
- (3.152). Training points were randomly generated uniformly over

the space, -1 < z;, < 1, and 30,000 iterations were performed.
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Figure 3.26 shows the reduction of the estimation errors,
Af1 and Afz, as a function of the number of iterations. The
'graphs show the magnitudes of Af] and Afz, averaged over
intervals of 100 traiﬁing iterations. The average error 1in
estimating the target functions (in this case the positions X,
and x2) decreases to about 0.03 m. This represents the best
accuracy achiévable with a 4th order system as further
iterations were not reducing the error.

Table 3.12 lists the pre-learned coefficients alongside the
derived coefficients from equations (3.159) and (3.160). It can
be seeﬁ that the learned coefficients are quite close to those
derived previously. Given the similarity in coefficients, one
would expect that path estimation errors using the pre-learned
direct position kinematics would beAsimilar to those that
occurred previously with the derived direct position kinematics.
Table 3.13 show§ the efrors in path estimation for the wvarious’
standard paths when simulated using standard analytical control

and viewed with the pfe—learned direct position kinematics.

Figure 3.27 shows the resulting view of circle 1.
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POLYNOMIAL X{(1) COEFFICIENTS X(2) COEFFICIENTS

TERM DERIVED PRE-LEARNED  DERIVED  PRE-LEARNED
] © 0.0 0.020 -1.00 -1.02
z, 1.57 1.50 0.0 -0.082
z,2 0.0 0.044 1.23 1.18
z,> -0.646  -0.496 0.0 0.133
z ¢ 0.0 0.056 -0.254  -0.226
2, 0.785 0.730 1.36 1.26
2,2, -2.14 -2.04 -1.23 1.14
22212' ~0.969  -0.668 -1.68 -1.12
z,z,> 0.879 0.613 -0.507  -0.398
z,” -1.07 ~1.02 0.617 0.580
z,%z, -0.969  -0.667 | 0.839 -1.16
z,%z, % 1.32 0.984 -0.761  -0.542
z,° -0.323  -0.221 -0.559  -0.364
z,%z, 0.879 0.632 -0.507  -0.380
z,? 0.220  0.146 -0.127  -0.112

Table 3.12 Coefficients for derived and pre-learned sum of
polynomials representations of the direct position kinematics

functions for positions x., and Xy
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PATH LXERMS LVERMS LAERMS
line 1 3.17E-2 1.59E-2 5.78E-2
line 2 4.49E-2 3.11E-2 7.67E-2
line 3 3.74E-2 2.52E-2 '7.00E-2
line 4 3,27E-2 1.79E-2 5.37E-2
circle 1 3.74E-2 2.18E-2 4.85E-2
circle 2 3.73E=2 2.,40E-2 4.98E-2

Table 3.13 Path estimation error using the pre-learned direct

position kinematics

3.7.3 CLOSED LOOP CONTROL USING THE PRE-LEARNED CARTESIAN
INVERSE DYNAMICS AND PRE-LEARNED DIRECT POSITION KINEMATICS
Simulations verified that closed loop control is possible
using the pre-learned Cartesian inverse dynamics and pre-learned
direct position kinematics. Simulation parameters were set as
CLOSED=.TRUE, ,

INVARM=.FALSE.,

‘follows: EXACT=,.FALSE.,

VISION=,FALSE., DELAY=,TRUE., PRDICT=,TRUE., USEOBS=,FALSE.,
k1=16, k2=64 and tca1c=0.01 sec. All six standard paths were

simulated. The resulting path errors are shown in table 3.14.
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PATH XERMS VXERMS AXERMS
line 1 2,77E-2 2.27E-2 1.78E-1
line 2 4.08E-2 6.13E-2 3.10E-1
line 3 3.66E-2 5.87E-2 3.16E-1
line 4 2.82E-2 2.83E-2 1.87E-1
circle 1 3.52E-2 3.24E-2 1.56E-1
circle 2 3.37E-2 3.19E-2 1.41E-1

Table 3.14 Path error using the pre-learned Cartesian inverse
dynamics and pre-learned direct position kinematics 1in closed

loop control

Tracking is éignificantly worse than that achieQed with the
vision system, however, this 1is to be expected due to the
inaccuracies of the pre-learned direct position kinematics. Path
position errors are of the same order of magnitude as position
estimation errors, as shown previously in table 3.12. The
control system perceives that it is forcing the manipulator to
closely follow the path specification. For example, figure 3.28
shows the resulting path as seen using the pre-learned direct
position kinematics. Standard path circle 1  appears to be
followed closely. Due to the inaccuracies in the pre-learned
direct poéition kinematics, the actual path is somewhat
different, as shown in figure 3.29. The manipulator must move
through a distorted trajectory such that the perceived

trajectory follows the path specification.
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Figure 3.30 shows the resulting path fér the simulation of
line 1. The large accelerations that initially occur are due to
the sudden perceived position error that results when one
switches from the accurate vision system to the less accurate
pre-learned direct position kinematics. This undesirable glitch
can be eliminated by using Interference Minimization or Learning
Identification to perform one iteration of additional 1learning
of the direct position kinematics before switching to use of the
pre-learned direct position kinematics for feedback purposes.
This is invoked by setting logical variable ADJVIS to be true.
Since Interference Minimization and Learning Identification
eliminate estimation error at the training point, this avoids
the sudden perceived position error when subsequently switching
to the pre-learned direct position kinematics. Figure 3.31 shows
a simulation of line 1 using this technigque. Notice how tracking
is improved near the training point but mihimally affected away
from the training point. Similar glitches at the end of a path
where the pre-learned direct position kinematics are used can be
avoided by measuring the final position error with the vision
system and then executing a short corrective path using the
vision system for feedback purposes.

In figures 3.30 and 3.31 there are several other
unexplained glitches in the acéeleration profiles. These occur
- because the learned Cartesian inverse that drives the
manipulator is doing only a nominal job of cancelling the direct
dynamics and the direct kinematics based on the learned direct

position kinematics. It appears that at certain points in path
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space, the mismatch in the inverse and direct components is
causing feedback to become positive, thus briefly reinforcing
errors until such problematic points in path space are left.
Clearly, if the pre-learned direct position kinematics were much
less accurate, control wouid become unstable over large regions
of path space and path specifications could not be followed.
Nevertheless, the simulations show .that coarse control is
possible wusing the pre—learnea Cartesian inverse dynamics and
pre-learned direct position kinematics. Finer control appears to.
require only an improvement in the accuracy of the 1learned

direct position kinematics.
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3.8 SELF-LEARNING OF THE CARTESIAN INVERSE DYNAMICS

Having demonstrated that a sum of polynomials
representation of the Cartesian inverse dynamics is adequate to
achieve good control, it remains only to find a method of
learning the Cartesian inverse dynamics without recourse to
analysis of the manipulator. We have found that this can be done
through observation of applied torgues and corresponding
manipulator motion; hence the name self-learning.

3.8.1 A METHOD FOR SELF-LEARNING OF THE CARTESIAN INVERSE
DYNAMICS
THE METHOD

Given sufficient and varied observations of the manipulator
position, velocity, torques and resulting acceleration, one can
use Interference Minimization or related methods to ~learn the
Cartesian inverse dyhamics. The correspondence between position,
velocity, acceleration and torque imposed by the direct dynamics
and direct kinematics, ie. the manipulator and the vision
system, 1is the same as that imposed by the Cartesian inverse
dynamics; én n-tuple of observations valid for the direct
felationships is also a valid n-tuple for the inverse
relationships.

To 1learn the Cartesian inverse dynamics over a path .space
such as that defined by equations (3.138) through (3.143), two
conditions must be met: First, one must obtain observations
corresponding to all regions of the path space, -1 < z, < 1.
Here the z, are the normalized Cartesian positions, velocities

and accelerations that act as input variables in the sum of
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polynomials representation of the Cartesian inverse dynamics.
Observations corresponding to the infinite number of points in
path space are fortunately not necessary; the generalization
that occurs when using Interference Minimization or related
methods will effectively interpolate between training points.
There must be sufficient and varied‘observations, however, to
allow accurate interpolation over the whole of path space and to
overcome the learning interference that occurs during training.
Secondly, one must constrain manipulator motion to be within ﬁhe
bounds -1 < z; < 1 in order that learning can take place. Such
constraints cannot be imposed wusing the as yet unlearned
Cartesian inverse dynamics and must not require use of the
analytical Cartesian inverse dynamics.

A simple method has been found for restoring manipulator
motion‘ to be within the path space -1 < z, <1 whenever it is
observed that manipulator motion has exceedea the bounds of this
path space. The method meets the above mentioned requirements.

The center of path space is defined by z; equal to zero.
This corresponds to zero velocity and zero acceleration while at
Cartesian position,

<K_yrX o> = <0,-1>m (3.161)
This corresponds to joint position,

<@ e > = <2n/3,-n/3> (3.162)
By simple static analysis of the manipulator, the corresponding

torques are,

T -8.50 N.m (3.163)

c1

T 8.50 Nem (3.164)

c2

121



One can apply uncoupled joint servo control to maintain the

manipulator at joint position <a_,,a or restore the

>
c2
manipulator to this position if disturbed from it. An example of
such uncoupled joint servo control is the following,

T, =T - j1d1 - j2(a1-a ) (3.165)

cl cl

Ty = Tog j1d2 - j2(a2-acz) (3.166)
Since the servoed joint position corresponds to the center of
the Cartesian path space, such simple joint servo control can be
used to return the manipulator within the bounds -1 < z, < 1.
The angular position is easily measured with potentiometers and
the angular velocity can be obtained from these measurements by
Simple differentiation.

Given . a method for constraining the manipulator within the
path space or more correctly returning the manipulator within
the path space when it is obsefved to be out of bounds, it is
only necessary to find a mechanism to cause the manipulator to
move so0 as to explore all the regions of path space. We have
found that this can be done by learning the sum of polynomials
representation of the Cartesian inverse dynamics while using the
same partially learned Cartesian inverse dynamics to drive the
manipulator over a segquence of randomly generated paths that
encompass the regions of path space. 1Initially, when the
self-learned Cartesian inverse dynamics are very poorly known,
the path specifications are not followed and constraining action
is frequently required to restore the manipulator within the
bounds -1 < z; < 1. During such poorly controlled thrashing,

however, learning can take place whenever the manipulator 1is
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within bounds. In fact the manipulator acceleration may
immediately become out of bounds when driven by the as yet
unlearned Cartesian inverse dynamics; learning may initially
only be possible at those instances when the constraining action
has just returned the manipulator within bounds. Later, when the
self-learned Cartesian inverse dynamics become more accurate,
the path specifications are followed more closely. The self-
learned Cartesian inverse dynamics are eventually learned over
the whole of path space if the training paths cover the whole of
path space.

Simulations were performed of 1000 training paths during
which self-learning of the Cartesian inverse dynamics was
carried out. Simulation parameters were set as follows:
CLOSED=.TRUE., INVARM=, FALSE ., EXACT= .FALSE o VISION=,.TRUE.,
DELAY=.TRUE., PRDICT=.TRUE., USEOBS=,FALSE., Kk 1 =4, k,=4, and

2

-t =0.01 sec. The feedback gains were reduced somewhat from

calc
those wused in standard'analytical control as this permitted
stable control to be achiéved earlier in the training process;
higher feedback gains cause better path tracking. when the
Cartesian inverse dynamics have been well learned but create
more instability during earlier stages of training when the
Cartesian inverse dynamics are only partially léarned.

Learning parameters were set as follows: LRNINV=.TRUE.,

=0.01 sec and Af =0.01t Nem. Using the nomenclature of

Yirnt _ min
chapter 2, Method 2, Learning Identification, was the learning
algorithm used. The number of input variables was v = 6 and the

system order was s = 4. The input variables were those given in
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equations (3.138) through (3.143).

Constraining action was invoked whenever the manipulator
was observed to be out of bounds. The gains used 1in the
uncoupled joint servo controi defined in (3.165) and (3.166)"
were,

j1 = 4 , ‘ (3.167) -

j, = 4 (3.168)
In addition the magnitudes of the applied torqueé were
restricted at all tiﬁes to be less than TRQLIM = 24 N-m, This
models the finite drive capability present in real manipulators;
-in practice applied torques are limited by the motors,
hydraulics, or pneumatics used.

At each interval of t learning was conditionally

lrn1’
performed. First, the observed manipulator motion had to be
within the bounds -1 < z; <1 in order that learning could take
place. Then the coefficients of the partially learned sum of
polynomials representation of the Cartesian inverse dynamics
were used off-line to estimate'the torques corresponding to the
observed manipulator motion. 1Initially these coefficients were
all zero. By off-line we mean that these estimated torques are
not applied to the manipulator. Note that this means that self-
learning does not have to be done in real time. In self-learning
of the Cartesian inverse dynamics, the estimation error, Af, is
the difference between the estimated torque and the
corresponding torque that was applied to the manipulatar at the
instant that the motion was observed. If this estimation error

was greater than Afmi for either of the torgues then the sum of

n
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polynomials representation of the Cartesian inverse dynamics
function for the correspondipg torque was adjusted using
Learning Identification,

Note that manipulator motion was assumed to be measured
exactly for the purposes of self-learning. This is not such an
unreasonable assumption as it might seem. Because self-learning
is done off-line without real time contraints, one can devote
more computer time to obtaining accurate estimates of velocity
and acceleration based on changes in observed position., Since
self-learning from a point of no knowledge of . the Caftesian
inverse dynamics 1is a one time event, occurring before . a
manipulator 1is put to work, it is reasonable to assume that
additional computing capability can temporarily be utilized.
Note also that one can base acceleration and velocity estimates
on observations of position, after, as well as before, the point
in time in question. Thus it is reasonable to assume that
observations of manipulator motion for self-learning purposes
can be made much more accurately than observations for use in
closed loop control.

Linear paths were wused for training purposes, The
acceleration specification for each path was chosen uniformly
between the limits,

2

0.1 < a < 0.9 m/sec (3.169)

max
The velocity specifications were chosen uniformly between the

limits,
0.05 < v . < 0.95 m/sec (3.170)
8 nax and Viax could not be chosen too close to zero as the path
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specification would take an inordinate amount of time to be
carried out. The final position of each path was chosen
uniformly from within the region defined by,

0.375 < abs(xfi —xcl) < 0.45 m (3.171)

1

0.375 < abs(x p'e 2) < 0.45 m (3.172)

fi2 “c
Note that the final position of each path is the initial
position of each subsequent path. The wupper limits on
acceleration, velocity, and position serve to avoid path
specifications that are near the bounds of path space and thus
likely to invoke constraining action even when tracking errors
are quite small. figure 3.32 shows the randomness of the choices
of 8max and Vnax for the first 250 training paths. The
restriction that paths begin and end in a'baqd near the edge of
the workspace results in a fairly uniform coverage of positions
within the workspace by the training pathé. Figure 3.33 shows
thé positions of the first 250 training paths.
RESULTS

During the initial stages of self-learning, the manipulator
is frequently out of bounds and thus,learning cannot take place
at every interval of ty.n1- Later, as better control 1is
achieved, the proportion. of opportunities at which 1learning
takes place increases. Finally, as the self-learned Cartesian
inverse dynamics become quite accﬁrate, the propo;tion of
opportunities at which learning takes place decreases since the
estimation error is frequently less than the threshold, Afmin =

0.01 N-m. The proportion of opportunities during each path at

which learning takes place is shown in figure 3.34.
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Figure 3.34 Proportion of 1learning opportunities at which
learning took place during self-learning of the Cartesian

inverse dynamics

As self-learning proceeds, the path specifications are
followed more  and more closely. Figure 3.35 shows the path
errofs that occurred during each of the training paths. Path
errors are clearly being reduced as training takes place. Better
control also means that the manipulator goes out of bounds less
often. Figure 3.36 shows the maximum out of bounds excursions
that occurred during each of the training paths. The (£requency
‘and extent of out of bounds excursions are‘ reduced with

training.
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It 1is acceleration that is most poorly tracked and hence
most frequently out of bounds. In fact, slight overshooting of
steps in acceleration can exceed the bounds on acceleration and
cause constraining action to be invoked which, may then result
in wvelocity and position exceeding their bounds. This occurs
because constraining. action simply returns the manipulator
within bounds without concern as to whére. When constraining
action 1is ceased, the large path tracking error that is likely
to exist may cause a large corrective acceleration which again
takes the manipulator out of bounds. Thus a slight overshooting
of steps in acceleration can lead to an episode of thrashing in
which velocity and position bounds are also exceeded. Many of
the out of bounds excursions that occurred during the latter
stages of training appeared to be of this nature. Constraints on
acceleration are necessary during the initial stages of self-
learning. Once the Cartesian inverse dynamics are well learned,
however, it appears that more reliable control 1is achievable
when no constraints on accéleration are imposed; one then relies
on the limitation of applied torques to limit acceleration.

A better constraining technigque might be to invoke
constraining - action that would initially damp out manipulator
motion. After the manipulator is stopped, joint servoing could
then be used to slowly move the manipulator towards the center
of Cartesian path space, as before. Once the manipulator is
observed to again be within Cartesian path space, the next
training path could be begun, starting from the current

manipulator position. This should avoid the protracted episodes
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of thrashing that occurred using the simplistic cons£raining
technique described previously.

As mentioned previously, self-learning of the Cartesian
inverse dynamics required 1000 training paths. This correéponded

to 2948 seconds (49 minutes) of self-learning. If t were

lrni
‘increased then required self-learning time would also increase.
3.8.2 CLOSED LOOP CONTROL USING THE SELF-LEARNED CARTESIAN
INVERSE DYNAMICS

The coefficients of the self-learned Cartesian inverse
dynamics were saved after 200, 400, 600, 800 and 1000 training
paths. Simulations of closed loép control of all of the six
standard paths were cérried out to test the adequacy of the
.self-learned Cartesian inverse dynamics as learning progressed.
Simulation parameters were set as follows: CLOSED=.TRUE.,

INVARM=,FALSE., .EXACT=.FALSE., VISION=,.TRUE., DELAY=.TRUE.,

PRDICT=.TRUE., USEOBS=.TRUE., k1=16, k,=64 and t

2 ca1c=0.01 sec.

The resulting path errors, averaged over the six standard paths,
are shown in figure 3.37 as a function of the nﬁmber of training
paths wused in self-learning of the Cartesian inverse dynamics.
Figure 3.38 shows the simulation of line 1 using the final self-
learned | Cartesian inverse dynamics. Plots of - the other
simulations of line 1 are shown in appendix C. Figure 3.39 shows
a plot of the simulation of circle 1 using the final self-

learned Cartesian inverse dynamics.
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Torque estimates using the self-learned Cartesian inverse
dynamics were compared to torque calculated with the analytical
Cartesian inverse dynamics. Torgue error, averaged over the six
standard paths are shown in figure 3.40 as a function of the
number of training paths used.

Path errors and torgue error decrease during self-learning
until minimum values are reached. After 1000 training paths it
appears that these errors cannot be reduced further. The
control performance after 1000 training paths thus represents
the limit of what can be achieved with a 4th order, self-learned
sum of polynomials representation of the Cartesian inverse
dynamics.

The resulting path errors for the simulations of the six
standard paths using the Cartesian inverse dynamics self-learned
over 1000 training paths are listed in table 3.15. Also 1listed
in table 3.15 are the torque error and the maximum torgue
applied during each standard path. Performance is only slightly
poorer than with standard analytical’céntroi. Position tracking

errors are typically less than 3 mm.
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Figure 3.40 Average torgue estimation error during closed loop
control of the six standard paths wusing the self-learned
Cartesian inverse dynamics as a function of the number of

training paths used. .
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PATH XERMS VXERMS AXERMS TERMS TROMAX

line 1 1.60E-3 4,02E-3 1.01E-1 1.96E-1 8.27
line 2 2.15E-3 4,75E-3 1.03E-1 2.47E-1 9.4
line 3 1.47E-3 3.90E-3 1.08E-1 1.64E-1 14.0
line 4 1.74E-2 4.09E-2 2.92E-1 3.00E-1 6.64
circle 1 1,16E-3 3.85E-3 5.29E-2 1.52E-1 9.59

circle 2 1.62E-3 3.45E-3 5.26E-2 2.00E-1 13.5

Table 3.15 Path error and torque error using the £final self-

learned Cartesian inverse dynamics in closed loop control

3.9 SELF-LEARNING OF THE DIRECT POSITION KINEMATICS

A sum of polynomials representation of the direct position
kinematics has been pre-learned and found adequate for coarse
cdntrol. It remains only to find a method ofalearging the direct
position kinematics without recourse to analysis of the
manipulator. We have found that this can be done through
observation of manipulator joint positions and the corresponding
manipulator end;point position in Cartesian coordinates as seen
by the vision system.

3.9.1 A METHOD FOR SELF-LEARNING OF THE DIRECT POSITION
KINEMATICS

THE METHOD
Given sufficient and varied observations of the manipulator

position in joint coordinates and manipulator position in
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Cartesian coordinates, one can use Interference Minimization or
related methods to learn the direct position kinematics.

To 1learn the direct position kinematics over the joint
'position space given by equations (3.151) and (3.152), tﬁe same
two conditions must be met as during self-learning of the
Cartesian inverse dynamics: First, one must obtain observations
corresponding to all regions of the position space, -1 < z, < 1.
Here the z;, are the normalized joint positions that act as input
variables in the sum of polynomials representation of the
direct position kinematics. Secondly, one must constrain the
manipulator motion to be within the bounds -1 < z;, <1 in order
that learning can take place.

Since we wish to use the direct position kinematics only
over the workspace, it 1is only necessary that we learn the
direct position kinematics over the work space, not over the
whoie jpint position space given by -1 < z, < 1. Also, since the
workspace 1is within the joint space given by equations (3.151)
and (3.152), constraining manipulator motion within the
workspace as was done during self-learning of the Cartesian
inverse dynamics also serves to constrain the manipulator within
the joint space -1 < z; < 1. It was thus possible to perform
self-learning of the direct position kinematics simultaneously
with the self-learning of the Cartesian inverse dynamics. Note
that, wunlike the self-learned Cartesian inverse dynamics, the
self-learned direct position kinematics were not wused for
control purposes while self-learning was taking place.

Simulations were performed of 4200 training paths during
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which self-learning of the direct position kinematics was
carried out. For the first 1000 training paths self-learning of
the Cartesian inverse dynamics was simultaneously carried out.
~ Thus the simulation parameters were the same as given
previously. Nothing was changed for the simulation of the final
3200 training paths except that self-learning of the Cartesian
inverse dynamics was disabled by setting LRNINV=,FALSE.

| Learning parameters were set as follows: LRNVIS=,TRUE,,

=0.01 sec and Af =0.001 m. ‘Method 3, Interference

tlrn2

Minimization was used. The number of input variables was v = 2

min

and the system order was s = 4. The input variables were those
given in equations (3.151) and (3.152).

' At each interval of tirno’ learning was conditionally
performed. First, the observed manipulator joint positions had
to be within the boundé -1 <z, <1 in order that learning could
take place. Then the coefficients of the partially learned sum
of polynomials representation of the direct position kinematics
were  used off-line to estimate the Cartesian pbsition
corresponding to the observed joint positions. These
coefficients were initially zero. In self-learning of the direct
position kinematics, the estimation error, Af, is the difference
between the estimated Cartesian position and the corresponding
Cartesian position that was observed by the vision system at the
instant that the Jjoint positions were observed. If this

estimation error was greater that Af for either of the

min
Cartesian coordinates then the sum of polynomials representation

of the direct position kinematics function for the corresponding
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Cartesian vcoordinate was adjusted using Interference
Minimization.

The training paths that were wused were the same as
described previously for self-learning of the Cartesian inverse
dynamics.

RESULTS

The proportion of opportunities during each path at which
learning takes ©place is shown in figure 3.41. Unlike during
self-learaing of the Cartesian inverse dynamics, this proportion
remains relatively constant during self-learning of the difect
position kinematics. This reflects the féct that the manipulator
exceeds the bounds on input variables representing normalized
joint positioné for the direct position kinematics, less often
than it exceeds the more extensive bounds on input variables
representing normalized Cartesian end point positions for the
Cartesian inverse dynamics. Also, typical 1learned position
estimation error of less than 0.001 m throughout the workspace

h

could not be achieved with a 4'® order system and thus position

estimat&on error was infrequently less than the threshold,
Afmin = 0.00! m, It is probable that Afmin could have been
increased, to éay 0.0t m, without increasing the number of
training paths necessary to self-learn the direct position
kinematics while reducing the number of 1learning iterations
required. Training at points where Afmin was between 0.001 m and
0.01 m did little to speed convefgence.

The coefficients of the self-learned direct position

kinematics were saved at various points during the learning
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process. Simulations of circle 1 were caréied out using standard
analytiéal control to ensure accurate tracking of the path
specification. The self-learned direct position kinematics were
used to obtain a view of circle 1 for each of the simulations.
Figure 3.42 shows the improvement in the accuracy of path
estimation as a function of the number of training paths used in
self-learning of the direct position kinematics. Figure 3.43
shows the view of circle 1 using the final self-learned direct
position kinematic.. Plots of the view using the self-learned
direct position kinematics for the other simulations of circle 1
are shown in appendix D. It can be seen that'the self-learned
path estimates initially become more accurate with training but
are not improving after 4200 training paths. The performance
after 4200 training paths is thus rep;esentative of the Dbest

th order

accuracy that can be achieved using a self-learned, 4
sum of polynomials representation of the direct position
kinematics. Table 3.16 lists the path estimation errors using

the final self-learned direct position kinematics.
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Figure 3.41 Propdrtion of learning opportunities at which
learning took place during self-learning of the direct position

kinematics
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Figure 3.42 Path estimation errors during self-learning of the

direct position kinematics
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PATH LXERMS LVERMS LAERMS

line ‘1 1.37E-1 1.66E-1 4.17E-1
line 2 9.96E-2 1.13E-1 2.90E-1
line 3 2.75E-2 4.65E-2 1.64E-1
line 4 7.56E-2 7.86E-2 2.52E-1
circle 1 4.97E-2 9.61E-2 3.10E-1
circle 2 " 5.28E-2 9.01E-2 3.02E-1

Table 3.16 Path estimation error using the final self-learned

direct position kinematics

Table 3.17 1lists the coefficients for the final self-
learned sum of polynomials representation of the direct position
kinematics alongside ' the derived coefficients. The
correspondence 1is quite good except for the higher order terms.
The innaccuracy in the higher order terms is notvsurprising as
these terms are most significant near the bounds on z; for the
self~learned direct posipion kinematics; these bounds are
outside the workspéce and thus little self-learning took place
near them. |

Self-learning of the direct position'kinematics required
4200 training paths. This corresponded to 12250 seconds (3 hours

24 minutes) of self-learning.
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POLYNOMIAL X(1) COEFFICIENTS X(2) COEFFICIENTS

TERM DERIVED SELF-LEARNED  DERIVED SELF-LEARNED
1 0.0 -0.009 -1.00 -1.04
z, 1.57 1.67 0.0 -0.006
z,? 0.0 ~0.040 1.23 2.20
z,> ~0.646  -1.77 0.0 0.155
2,4 0.0 0.209 ~0.254  -0.731
z, 0.785 0.787 1.36 1.58
z,2, -2.14 ~2.60 1.23 1.62
2,2 ,° ~0.969  -0.276 -1.68 -0.750
2,2,° 0.879 1.49 ~0.507  -1.41
z,° -1.07 -0.879 0.617 0.277
z,’z, -0.969  -0.051 -0.839  -0.699
z,%z % 1.32 -0.492 ~0.761 -2.05
z,> ~0.323  -0.653 -0.559  -1.54
z,%z, 0.879 1.45 -0.507  -0.633
z,* 0.220 0.982 ~0.127 1.13

Table 3.17 Coefficients

sum of polynomials representations of the direct position

kinematics functions for positions X, and X,
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From. the derivation and pre-learning of the Cartesian
inverse dynamics and direct position kinematics, one would
expect the direct position kinematics to be easier to learn.
Several factors combine, however, to make it moré difficult to
self-learn a sum of polynomials representation of the direct
position kinematics that are adequate for control purposes than
to do likewise for the the Cartesian inverse aynamics. First,
the Cartesian inverse dynamics do not need to be known. very
accurately & to achieve good control,. For feedback error
correction to be reasonably effective it appears to only be
necessary that sign of the differential, ari/aai, be known
accurately‘throughout path space; the magnitude needs only to be
roughly known. Secondly, the direct position kinematics must be
very accurately known. Errors in the self;learned direct
position kinematics translate directly into tracking errors and,
if significant enough, obviate the cancellation of system non-
linearities required for stable resolved acceleration control of
the manipulator. Finally, the training paths are less effective
in providing suitable training points for the self41earning of
the direct position kinematics. When self-learning the Cartesian
inverse dynamics, the training paths result in changes to all of
the six input wvariables being wused. Furthermore, steps in
acceleration occur., This means that training points close
together in time' are often far apart in terms of the space
represented by the six input variables. When self-learning the
direct position kinematics there are only two input variables

and these variables are not changing quickly. Training points
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close together in time are thus close together in terms of the
space represented by the two input variables. Since Interference
Minimization eliminates estimation error exactly at a training
point and the sum of polynomials estimate is continuous, there
will be 1little estimation error at nearby subseguent training
points. Self-learning only takes place when estimation errors
occur and hence it requires more time to self-learn the direct
position kinematics.

It also seems surprising that the self-learned direct
position kinematics are not as accurate as the pre-learned
direct position kinematics. Again, this is due to difference in
the way training points are chosen. 1In self-learning, the final
training points all occur on the final training path which
represents only one region of the space. Thus the self-learned
kinematics are quite accurate in the region of the last training
path at the expense of increased inaccuracy at other points in
the workspace. The random choosing of training points during
pre-learning of the direct position kinematics does not favor
one particular region of the workspa;e and thus results in. a
mean accuracy that is better. It is possible to modify self-
learning so that training points are less frequent and therefore
more distributed over the workspace during the final stages of
self-learning. One can also achieve a similar averaging or
smoothing effect during the final stages of self-learning by
introducing a gain factor of 1less than 1 in the weight
adjustment formula for Interference Minimization such that

estimation errors are only reduced at training points, not
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eliminated. These methods should only be applied during the
final stages of self-learning as théy would reduce the rate of
convergence during the early stages of self—leafning.

To test these methods for averaging or smoothing, an
additioﬁal 400 training paths were simulated during which self-
learning of. the direct position kinematics was carried out.
Simulation and learning parameters were the same as for training
paths 1001 to 4200, except that the learning interval was
changed to tlrn2=o'1 sec. In addition the learning algorithm
adjustment formula was modified from that of normal Interference
Minimization by inclusion of a gain factor of 1/10 as follows,

AfP”'p

T -1=
PP p

Av = 1/10 (3.173)

After completion of this additional smoothing, simulations
were carried out to determine the extent of improvement.
Standard analytical control was used to simulate the six
standard paths and ensure accurate tracking of the path specifi-
cations. The smoothed, final self-learned direct position
kinematics were wused to obtain a view of each standard path.
Table 3.18 lists the path estimation errors for each path using
the smoothed, final self-learned direct position kinematics.
Figure 3.44 shows the corresponding view of circle 1.

Table 3.19 1lists the coefficients for the final self-
learned direct position kinematics_after additional smoothing.
As 1in table 3.17, the-correspondence is quite good except for
higher order terms.

Clearly, the additional self-learning with smoothing has
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say
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PATH ‘LXERMS LVERMS LAERMS
line 1 5.32E-2 7.43E-2 2.73E-1
liﬁe 2 3.08E-2 4,42E-2 1.77E-1
line 3 1.16E-2 2,37E-2 9.48E-2
line 4 2.33E-2 3.37E-2 1.41E-1
circie 1 1.04E-2 3.48E-2 1.47E-1
circle 2 1.17E-2 3.42E-2 1.45E-1

final

Table 3.18 Path estimation error using the smoothed,

self-learned direct position, kinematics
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POLYNOMIAL X(1) COEFFICIENTS X(2) COEFFICIENTS
TERM . DERIVED SELF-LEARNED DERIVED SELF-LEARNED
& SMOOTHED & SMOOTHED
1 0.0 0.009 -1.00 -0.993
z, 1.57 1.64 0.0 -0.015
z, 0.0 -0.186 1.23 111
z,> ~0.646  -1.61 0.0 0.234
z,* 0.0 0.345 -0.254  -0.437
z, 0.785 0.809 1.36 1.39
2,2, ~2.14 -2.34 1.23 1.28
2,2,° -0.969  -0.453 -1.68 -0.799
z,2z,° 0.879 1.36 -0.507  -1.13
z,° -1.07 -1.26 0.617 0.407
z,°z, -0.969  -0.076 -0.839  -0.794
z,%z, 2 1.32 -0.312 -0.761  -1.84
z,> -0.323  -0.568 ~0.559  -1.21
z,%z, 0.879 1.21 -0.507  -0.383
z,* 0.220 1.38 -0.127 1.00

Table 3.19 Coefficients for the derived and smoothed, final
self~learned sum of polynomials representations of the direct

position kinematics functions for positions x, and x,
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3.9.2 CLOSED LOOP CONTROL USING THE SELF—LEARNED CARTESIAN
INVERSE DYNAMICS AND :I‘HE SELF—LEARﬁED DIRECT POSITION KINEMATICS

Simulations verified that closed loop control is péssible
using the self-learned Cartesian inverse dynamics and self-
learned direct position kinematics. We call this blind control.
Simulation parameters were set as follows: CLOSED=,TRUE.,
INVARM=_,FALSE. , EXACT=.FALSE., VISION=,FALSE,, DELAY=,TRUE.,
PRDICT=.TRUE., USEOBS=.FALSE., k.,=8, k,=16 a;nd t

1 2 calc
The standard feedback gains, k1=16 and k2=64, were deemed too

=0.01 sec.

high as they resulted in instability. The best results were
obtained by reducing the feedback gains to the values given
above. All six standard paths were simulated. The resulting path
errors are shown in table 3.20.

Tracking 1is worse than that achieved with the pre-learned
direct kinematics, however, this is to be expected as the final
self-learned direct position kinematics are less accurate than
the pre-learned direct position kinematics. Path errors are of
the same order of magnitude as position estimation errors, as
shown previously in table 3.16. Figure 3.45 shows the resulting
path as seen using the final @ self-learned direct position
kinematics during blind control of circle 1. Control is clearly
marginal as the control system is unable to make the perceived
path follow the path specification that well. The actual path is
shown in figure 3.46 and is somewhat worse than the perceived

path, as expected.
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Figure 3.45 View of circle 1 using the final self-learned
direct position kinematics during closed loop control of circle
1 using the final self-learned Cartesian inverse dynamics and

final self-learned direct position kinematics
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Figure 3.46 View of circle 1 during closed loop control of
circle 1 using the final self-learned Cartesian inverse dynamics

and final self-learned direct position kinematics
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PATH XERMS VXERMS AXERMS
line 1 1.37E-1 1.66E-1 4 ,17E-1
line 2 9.96E-2 1.13E-1 2.90E-1
line 3 2.75E-2 4.65E-2 1.64E-1
line 4 7.56E-2 7.86E-2 2.52E-1
circle 1 4,97E-2 9.61E-2 3.10E-1
circle 2 5.28E-2 9.01E-2 3.02E-1
Table 3.20 Path efror using the final self-learned Cartesian

inverse dynamics

and

final

self-learned

direct

position

kinematics in closed loop control

Additional simulations were carried out using the smoothed,
final self-learned direct positions kinematics in closed 1loop
control. Simulation parameters were not altered. All six
standard paths were simulated. The resulting path errors are
listed in table 3.21.

Tracking is now as good as that achieved with the pre-
learned direct position kinematics. This is to be expected as
the additional averaging has rendered the smoothed, final direct
position kinematics to be as accurate as the pre-leafned direct
position kinematics. Path errors are of the same order of
magnitude as position estimation errors, as given previously in
table 3.18. Figure 3.47 shows the resulting path as seen using
the smoothed, final self-learned difect position kinematics

during blind control of circle 1. Control is much better now
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when

the final

kinematics without smoothing,

self-learned direct

since the control system is

make the perceived path follow the path

specification.

path is shown in figure 3.48 and is somewhat worse

the perceived path, as expected.

AXERMS

PATH XERMS _ VXERMS

line 1 3.83E-2 9.27E-2 4.04E-1
line 2 8.41E-2 1.18E-2 2.34E+0
line 3 1.15E-2 2.71E-2 1.41E-1
line 4 1.85E-2 3.53E-2 1.65E-1
circle 1 1.11E-2 3.86E-2 1.71E-1
circle 2 . 1.40E-2 4.13E-2 1.79E-1

position

Table 3.21 -Path error using the final self-learned Cartesian
inverse dynamics and smoothed, final self-learned direct

position kinematics in closed loop control
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Figure 3.47 View of circle 1 using the smoothed, final self-
learned direct position kinematics during closed loop control of
circle 1 using the final self-learned Cartesian inverse dynamics
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Figure 3.48 View of circle 1 during closed loop control of
circle 1 using the final self-learned Cartesian inverse dynamics

and smoothed, final self-learned direct position kinematics
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Figure 3.49 shows the resulting path during blind control
of line 1. The large accelerations that initially occur are due
to the sudden perceived position error that results when one
switches from the accurate vision system to the less accurate
smoothed, final self-learned direct position kinematics. As was
done before when using the pre-learned‘ direct position
kinematics, this élitch can be eliminated by wutilizing an
initial 1iteration of Learning'Identification or Interference
Minimization Before switching from the vision system to the
smoothed, final self-learned direct position kinematics. Figure
3.50 shows the fesulting path during blind control of 1line 1

where this technigue was enabled by setting ADJVIS=.TRUE.
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These simulations show that coarse control is possibie
using the self-learned Cartesian inverse dynamics and self-
learned direct position kinematics. Finer control appears to
require only an(improvement in the accuracy 6f the self-learned
direct position kinematics. By using averaging or smoothing
techniques during the final stages of self-learning, it |is
possible to improve the accuracy of the self-learned direct
position kinematics to the point that they are equal to or
better than the pre-learned direct position kinematics. Good
control 1is possible using the smoothed, final self-learned
direct position kinematics. Further improvements are likely if
higher order sum of polynomials representations are wused that
can more accurately represent the direct position kinematics
over the workspace. Since there are only.two input wvariables
when estimating the direct poéition kinematics, one can use high
order, sum of polynomials representations without incurring the
computational costs of having a large number of terms in 'the

sums.

3.10 SUMMARY

The concept of self-learned control has been introduced and
its performance demonstrated using a simulated two link
manipulator. This performance has been compared to the control
performance achieved using the analytical dynamics and
kinematics of the two link manipulator. Control using the

analytical dynamics and kinematics has been extensively tested

to ensure that standard analytical control forms a realistic

165



benchmark against which to compare self-learned control.

Self-learning 1is based on the fact that it is possible to
represent the non-linear, multi-variate dynamics and kinematics
relationships of the two link manipualator as weighted sums of
polynomials. Using Interference Minimization or related learning
algorithms, it is possible to learn the weighting coefficients
of the sums of polynomials and thus learn the functional
relationships necessary to achieve control. Furthermore, it is
possible to learn these functional relationships without
recourse to analysis of the manipulator.

The inverse - dynamics of the two manipulator can be well
represented as a sum of polynomials over the whole of the
manipulator’s reach. This would seem to be true in general for
manipulators as their 1inverse dynamics appear in a similar
format [28,46]. The sum of polynomials representation can be
thought of as merely replacing the various sine and cosine terms
by their series equivalents and combining alike terms. This was
demonstrated by derivation of a sum of polynomials
representation by just such a technigue. The sum of polynomials
representation thus yields an efficient computational format for
evaluation of the functional relationships as well as permitting
the learning of these relationships with Interference
Minimization.

The inverse kinematics of the two link manipulator can only
be represented by sums of polynomials over a portion of the
manipulator;s reach at a time. The inverse kinematics of

manipulators in general are difficult to obtain analytically and
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are likely to contain relationships that cannot be represented
by sums of polynomials over the whole of a manipulator’s reach.
Nevertheless we found that the inverse kinematics of the two
link manipulator can be well‘represented as a sum of polynomials
over a workspace consisting of a sizable portion of the
manipulator’s reach. Hence the Cartesian inverse dynamics can be
self-learned over this workspace. The workspace was not
specially chosen; other portions of the manipulator’s reach
could have been used. 1t would be possible to subdivide the
whole manipulator space into portions and self-learn unigue sum
of polynomials representations for each portion. One splitting
technique that may be viable is discussed in chapter 5. Another
solution that may be possible is to use a more general type of
learned functional estimation, perhaps based on representation
consisting of a ratio of two sums of polynomials. It would
appear that self-learning can be achieved for manipulators in
general over a portion of the spéce within their reach and over
the whole of their reach if a splitting technique or other more
general type of learned functional estimation can be used.

The control method within which these self-learned
relationships are applied is resolved acceleration control. The
self-learned inverse dynamics are used to cancel the non-
linearities of the manipulator dynamics yiélding a combined
system which is approximately linear and canbbe controlled using
simple error correcting feedback. |

Self-learned control wusing path specification in Jjoint

coordinates . would appear to be easy to apply in general since
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the inverse dynamics appear in general to be well represented by
a sum of polynomials over the yhole of a manipulator’s reach. In
this work we have implemented self-learned control using path
specification in Cartesian coordinates, which is more convenient
to wuse but more difficult to implement as it requires self-
learning of the Cartesian inverse dynamics which contain the
difficult to iearn, inverse kinematics. Path specification in
Cartesian coordinates also necessitates the use of a vision
system, or its equivalent using the analytical direct position
kinematics, to observe the manipulator position in Cartesian
coordinates for use in error correcting feedback. The vision
system or its equivalent must be very accurate as 1inaccuracies
translate directly into path tracking errors.

The direct position kinematics of the two link manipulator.
can be well represented using sums of polynomials over the whole
of the manipulator’s reach. 'This appears to be possible for
manipulators vin general since their analytical direct position
kinematics consist of sums and products of sine and cosine
terms. The direct position kinematics of the two link
manipulator were self-learned and used in place of the vision
system in closed loop control.

Table 3.22 summarizes the path error, averaged over the six
standard paths, that results when using the various control
schemes. It can be seen that performance using the self-learned
Cartesian invers;adynamics is quite comparable to that achieved
using the analytical Cartesian inverse dynamics. Closed loop

control using the self-learned Cartesian inverse dynamics in
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conjunction with an accurate vision system, or its equivalent,
is a very viable control technique. When the self-learned direct
position kinematics are wused instead of .the vision systen,
performance 1is degraded, reflecting the inaccuracies 1in the
self-learned direct position kinematics. Nevertheless it serves
" to demonstrate the technique. We found that an avéraging or
smoothing technique applied in the final stages of self-learning
significantly' improved the accuracy of the self-learned direct
position kinematics and the resulting control performance. To
achieve better performance only requires that the self-leafned
direct position kinematics be more accurate, as could be
achieved using higher order, sum of polynomials

representations.

169



XERMS VXERMS AXERMS CONTROL SCHEME

6.48E-4 2.10E-3 8.06E-2 Standard Analytical Control

3.52E-3 5.22E-3 9,10E-2 Pre-Learned Cartesian Inverse
Dynamics

4,23E-3 1.01E-2 1.18E-1 Self-Learned Cartesian Inverse
Dynamics

3.37E-2 3.92E-2 2.15E-1 Pre-Learned Cartesian Inverse
Dynamics & Pre-Learned Direct
Position Kinematics

7.37E-2 8.60E-2 2.89E-1 Self-Learned Cartesian Inverse

' Dynamics & Self-Learned Direct

Position Kinematics

2.96E-2 4,11E-2 5.67E-1 Self-Learned Cartesian Inverse

Smoothed Self-
Direct Position

Dynamics &
Learned

" Kinematics

Table 3.22 Summary of path errors using various control shemes
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4 CONTRIBUTIONS OF THIS THESIS

This thesis has shown that Interference Minimization and
related learning algorithmsican be used to learn the non-linear,
multi-variate functions describing the dynamics and kinematics
of a robot manipulator. It has been shown that this learning can
be done without recourse to analysis of the dynamics and
kinematics of the manipulator. This 1is possible through
learning based on observation of applied torques and
corresponding manipulator motion; hence the name self-learning.

A family of learning algorithms has been studied. It has
been shown that the Gradient Method and Learning 1Identification
are simplifications of Interference Minimization, the principal
learning algorithm used in this thesis. The convergence rates of
Interference Minimization énd these related learning algorithms
have been compared for sum of polynomials estimates of various
orders, having various numbers of input variables. A method has
been documented for reducing the number of calculations required
when implementing Interference Minimiiation;. A new variant of
Interference Minimization called Pointwise Interference
Minimization has been introduced and compared with the other
learning algorithms. Applications where Pointwise Interference
Minimization is appropriate have been described.

The concept of self-learning has been introduced and its
viability demonstrated using a simulated two link manipulator.
It has been shown .that the functional relationships forming the

inverse dynamics, the inverse kinematics (which together form
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the Cartesian inverse dynamics) and the direct position
kinematics of the two 1link manipulator can be adequately

h order sums of polynomials. This can be done

répresented by 4t
over all of the two link manipulator’s reach or a portion
thereof sufficient to be considered a useful workspace. Self-
learning of the Cartesian inverse dynamics permits resolved
accelefation control to be applied using path specificationg
conveniently given in Cartesian coordinates. Pérfo:mance using
the self-learned Cartesian inverse dynamics wiﬁh only a 4th
order representation has been found to be almost as good as
performance using the analytical Cartesian inverse dynamics.

The Cartesian inverse dynamics can be learned by wutilizing
training points consisting of n-tuples of applied torques and
resulting end point Cartesian positions, velocities and
accelerations as 1imposed by the direct dynamics of the
manipulator and observed using a vision system. The direct
position kinematics can be learned by utilizing'training points
consisting of n-tuples of measured joint positions and
corresponding end point Cartesian positions observed wusing a
vision system. A simple technigue has been demonstrated that
permits the manipulator end point motion to be constrained
within a desired range of Cartesian positions, velocities, and
accelerations during the early stageslof self-learning when the
Cartesian 1inverse dynamics are not known well enough to control
the manipulator. It has been shown that the vision system used

during self-learning can be replaced with the final self-learned

direct position kinematics during subsequent use of the
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manipulator,

While self-learned control has only been demonstrated for a
simulated two link manipulator, evidence has been presented that
would lead one to believe that self-learned control is a general
approach that can be applied to manipulators having more degrees
of freedom using path specification in a coordinate system that
is convenient for the tasks to be carried out.

Detailed suggestions for future research are presented (in
the followihg chapter, chapter 5) covering such topics as
further investigation of self-learned control (especially
automatic adaptation for an unknown -~tool mass), _ hardware
implementation of the required sum of polynomials estimators,
and modification of the Klett Cerebellar Model (the major

inspiration for this thesis) to increase its plausibility.
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5 SUGGESTIONS FOR FUTURE RESEARCH

The éharacterizatiqn of a family of learning algorithms and
formulation and demonstration of self-learned control of the two
link manipulator wutilizing these learning algorithms 1is the
principal contribution of this thesis, however, perhaps just as
important are certain proposals related to this work that may

form the basis for future research.

5.1 FURTHER INVESTIGATION OF SELF-LEARNED CONTROL

5.1.1 CONTROL OF A MORE COMPLEX MANIPULATOR

From the outset it was hoped that bself-learned control
would prove a viable control scheme for complex industrial
manipulators having up to 6 degrees of freedom. The two 1link
manipulator was merely a preliminary\test vehicle. We believe
that no simplifying assumptions have been made that would
prohibit the extension of self-learned cont;ol - to a real
manipulator having up to 6 degrees of freedom. The 1logical
next step would be to attempt to apply self-learned control to a
real manipulator with more than 2 degrees of freedom.

Many of the aspects of self-learning need to be studied
further. It was apparent that many parameters had an efféct on
the rate of self-learning. One might experiment by changing
feedback gains during self-learning as the optimum feedback gaih
in terms of minimizing out of bounds excursions, ie.
instability, while minimizing path tracking error, changes as

self-learning progresses. It is also apparent that the choice of
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training paths, frequency of 1learning iterations, and
forcefulness of <constraining action have an effect on the
learning rate. As discussed in section 3.9.1, the constraining
technique used in these simulations was very simplistic and
improved techniques were proposed. Investigation is warranted
into changing parameters of the constraining technique used here
or development of better techniques in order to minimize such
quantities as maximum out of bounds excursions, risk of out of
bounds excursions that might damage a real manipulator, etc.vFor
example the constraining technique used here was found to 1limit
out of bounds excursions quite well but there may be situations
where large unacceptable out of bounds excursions occur during
self-learning using this constraining technique; it has not been
proven otherwise. It is also apparent that averaging techniques
as discussed in section 3.9.1 can improve the mean estimation
accuracy achievable with a given order sum of polynomials
representation, It may also be possible to wuse learning
algorithms based on estimation wusing functions other than
polynomials. The costs to apply when evaluating the numerous
possibilities 1in terms of required computing capability, self-
learning time, control performance, and adequacy of constraining
action, etc. will become more apparent upon application to a
real manipulator.
5.1.2 ADAPTATION TO TOOL MASS

The initial intent of this thesis was to demonstrate- self-
learning of the inverse dynamics or the more difficult Cartesian

inverse dynamics. A vision system was to be used for feedback
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purposes. It soon became apparent that self-learning could be
applied 1in other areas, for example to learn to estimate the
direct position kinematics and thus replace the vision systenm,
or free it for use in specific areas of the workspace where
high resolution is required to achieve fine path tracking.
Ancther area that invites the application of self-learning is in
adaptation of control according to the tool mass.

Consider again the two link manipulator. One can imagine
that the second link mass consists of the mass of the final link
and the mass of the tool that the manipulator is holding,

My = Mink ¥ ™ool | (5.1)

The link masses along with other manipulator parameters such as
link lengths, etc. were considered to be constants in functions
forming the Cartesian inverse dynamics. One can also think of
Mmool 25 another input wvariable 1in the Cartesian inverse
dynamics,

7 = cart.inv.dyn(X,X,X,m ) (5.2)

tool

Given that m is specified, one should be able to self-learn

tool
the Cartesian inverse dynamics for a range of tool masses. A
good technique might be to initially fix the input variable,
My o0l and attach a tool of the corresponding mass to the
manipulator while self-learning the Cartesian inverse dynamics.
Once good con£rol is achievéd, one could then begin to vafy the
mass of the attached tool and correspondingly the variable D ool
and thus self-learn the Cartesian inverse dynamics for a range
of tool masses. To adjust the Cartesian inverse dynamics to be

appropriate for the mass of the tool in use,  one need only know
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M ool and apply it as an input variable of the final self-
.learned Cartesian inverse dynamics.

A logical next step is to ask whether the tool mass can be
determined simply by observing manipulator motion and applied
torques. If one could discern Mmool based on observations of
manipulator motion and applied torgues then control of the
manipulator could be adjusted appropriately when a tool of
unknown mass is attached, a very desirable capability.

Consider the inverse dynamics of the two link manipulator
as given 1in -equations (3.51) through (3.66). One could
substitute equation (5.1) into the inverse dynamics

relationships and solve for yielding a functional

Mt o0l
relationship that we will call the tool dynamics,
Mmoo] = tool;dyn(?,é,é,a) (5.3)

A preliminary look suggests that this function will probably not
be representable over the whole of the manipulator’s reach using
a sum of polynomials. It is likely, however, that it can be so
represented over a portion of the manipulator’s reach, such as
the workspace that .was chosen so th;t the Cartesian inverse
dynamics were representable. If so, then the tool dynamics could

be self-learned.

The process» of generalization of self-learning need not
stop ﬁere. Clearly, self-learning of the tool dynamics is gquite
analogous to force feedback. One merely substitutes an unknown
applied force for the unknown applied tool mass. With an applied

force one needs to estimate its direction as well as magnitude

and hence one must learn several functional relationships.
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Conceptually, though, the techniqgue would be similar.

A wealth of possible applications for self-learning are
apparent. These examples are from the field of manipulator
control; applications may well exist in other fields, anywhere
that learning of non-linear, multi-variate functional
relationships is required. The viability of the self-learning in
these applications, however, remains to be demonstrated. In some
cases self~learning may theoretically be applicabie but
difficult to implement because of the number of calculations
required when dealing with many input variables.. In other cases
the functions to be estimated may ohly be representable as sums
of polynomials over narrow portions of their domains' making
self-learning difficult to apply with.the 1learning algorithms

given here.

5.2 IMPLEMENTATION OF SUM OF POLYNOMIALS ESTIMATORS

A principal reason for investigating self-learned control
using sum of polynomials representations is the regularity of
the resulting computational structure. The three learning
algorithms, Interference Minimization, Learning Identification
and the Gradient Method are all based on the same sum of
polynomials estimator,

f=wp (5.4)

In a control application it is the evaluation of the estimate
that is the time critical task. Learning of the weighting

-coefficients can take place off-line wutilizing a method

appropriate for the computing capability available and the rate
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of 1learning desired; forvexample, interference Minimization
converges much faster than the Gradient Method but uses a more
complex, and thus time consuming weight adjustment formula. Due
to the regularity of the sum of polynomials estimator and its
applicability to problems of various sizes, investigation is
warranted into the implementation of sum of polynomials
estimators using specially developed hardware. Preliminary work
has been done for implementation wusing digital computing
hardware and stochastic computing hardware,. More work is
required to demonstrate the viability of these approaches.
5.2.1 DIGITAL COMPUTER IMPLEMENTATION

In a digital computer implementation, the rate 1limiting:
factor is the number of multiplications required to evaluate the
sum of polynomials. Fortunately, evaluation of the sum of
polynomials does not‘ regquire as many multiplications as one
might assume.

Recall that, for a system of.order s having v input

variables, the polynomial terms are the set,

-

v
{p ()} = { M z,°%% } (5.5)
i=0
where,
v
Le, =s, e, an integer (5.6)
i=0 '
zg = 1 (5.7)

The input variables and the constant 1 form the first v+1 terms.
Each of the remaining higher order terms can be formed as the

product of two lower order terms. The total number of terms is,
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(s+v)!
ms —— (5.8)
vis!
Table 5.1 shows the number of terms for systems of various
orders, s, and having various numbers of input variables, v. The
number of mutiplications required to form the polynomial terms
ism - (v+1).

In a manipulator control application the same polynomial
terms will typically be used in the -estimation of several
functions. In modelling the Cartesian inverse dynamics of a
manipulator with r degrees of freedom, the number of input
variables will be v = 3r, corresponding to an acceleration,
velocity and position for each degree of freedom. There will be
r functions fdrming the Cartesian inverse dynamics. For such a
manipulator, one pass requiring m-v-1 multiplications is
necessary to form the polynomial terms and r passes requiring m
multiplications and additions each are necessary to accumulate
the weighted sum of these terms to complete the estimates of the
r functions. For estimates of order s for each of the functions
forming the Cartesian 1inverse dynamics, the number of
multiplications required is thus,

(r+1)(s+3r)!

cid(r,s) = - (3r+1) | (5.9)
s!(3r)!

In modelling the direct position kinematics of a manipulator
having r degrees of freedom, the number of input variables will‘
be v=r, corresponding to the position for each degree of freedom.
There will be r functions forming the direct position kinematics.

For estimates of order s for each of the functions forming the
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direct position kinematics, the number of multiplications 1is

thus,
(r+1)(s+r)!
dpk(r,s) = - (r+1) (5.10)
silr!
System Order
1 2 3 4 5 6
N
u 1 2 3 4 5 6 7
m 2 3 6 10 15 21 28
b 3 4 10 20 35 56 84
e 4 5 15 35 70 126 210
r 5 6 21 56 126 252 462
6 7 28 84 210 462 924
o) 7 8 36 120 330 792 1716
f 8 9 45 165 495 1287 3003
9 10 55 220 715 2002 5005
\Y/ 10 1 66 286 1001 3003 8008
a 11 12 78 364 1365 4368 12376
r 12 13 91 455 1820 6188 18564
i 13 14 105 560 2380 8568 27132
a 14 15 120 680 3060 11628 38760
b 15 16 136 816 3876 15504 54264
1 16 17 153 969 4845 20349 74613
e 17 18 171 1140 5985 26334 100947
s 18 19

180 1330 7315 33649 134596

Table 5.1 Number of terms, m, for sytems of various orders, s,

and various numbers of input variables, v

Table 5.2 summarizes the number of multiplications required
to evéluate the estimates of the Cartesian inverse dynamics for
 estimators of various orders, s, and having input wvariables
corresponding to various numbers of degrees of freedom, r.
Likewise, table 5.3 summarizes the number of multiplications

required to evaluate the estimates of the direct position
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R

kinematics.

Sytem Order

1 , 2 3 4 5 6
D F
e r 1 4 16 36 66 108 164
goe 2 14 77 245 623 1379 2765
r f e 3 30 210 870 2850 7998 20010
e d 4 52 442 2262 9087 30927 92807
e o 5 80 800 4880 23240 93008 325568
s m 6 114 1311 9291 51186 235524 942153

Table 5.2 Multiplications required for estimates of various
orders of the Cartesian inverse dynamics for manipulators having

various degrees of freedom

System Order

1 2 3 4 5 6
D F
e r 1 4 6 8 10 12 14
goe 2 9 18 30 - 45 63 84
r fe 3 16 40 80 . 140 224 336
e da 4 25 75 175 350 630 1050
e o) 5 36 126 336 756 1512 2772
s m 6 49 196 588 1470 3234 6468

Figure 5.3 Multiplications required for estimates of wvarious
orders of the direct position kinematics for manipulators having
various degrees of freedom

For a 4th order model of a 2 degree of freedom manipulator

" such as the two 1link manipulator studied  here, 623

multiplications are required. Assuming that tcalc=0.01 sec, this

corresponds to 16 wusec per multiplication. If self-learned
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control can be extended to a 6 degree of freedom manipulator,
51186 multiplications would be required. For tcalc=0.01 sec,
this corresponds to 195 nsec per multiplication, quite a high
rate, but nevertheless achievéble Qith current technology,
especially if only fixed point operations are necessary.
Evaluation of the direct position kinematics estimates reguires
far fewer‘multiplications and thus‘is easier to achieve.

The basic components of a digital computer implementation
of a general purpose sum of polynomials estimator are a
multiplier, an accumulator, a sequence controller to perform
fetching of operands and storage of results, and memory. All
portions of this system would be designed for very high speed
operation; if only low speed operation were required, é standard
general purpose computer could be used. This dedicaied system
would be supervised by a general purpose computer. Learning,
which is a less time critical, but more algorithmically complex
task, 1is assumed to be performed using one’s chosen 1learning
algorithm utilizing the supervising computer.

Figure 5.1 shows a block diagram of the proposed digital
computing hardware. The digital sum of polynomials estimator
would have two modes of operation. In the first mode, the set of
K-G polynomial terms is generated. To begin this operation, the
supervising computer places the initial terms, consisting of the
constant 1 and the v input variables, into the two operand
memories. It is assumed that the supervising computer has access
to the operand memories and pointer memories as well registers

within the sequence controller and accumulator. The higher order
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Figure 5.1 Block diagram of digital computer implementation of

a sum of polynomials estimator
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terms in the set of polynomials are formed in turn as products
of 1lower order terms and appended to the set of polynomials in
the two operand memories. Selection of appropriate pairs of
lower order polynomial terms 1is performed by the pointer
memories. The special pattern of addresses stored in the pointer
memories is fixed for a system of given order, s, and having a
specific number of input variables, v. These addresses can be
generated once by the supervising computer and placed 1in the
pointer memories. During operation, the sequence controller
indexes through the pointer memories with eaéily generéted
sequential addresses. The set of polynomial terms is duplicated
in each ‘of the operand memories so that both of the required
lower order polynomial term operands can be fetched at the same
time. The higher order result is assumed to be written back into
both operand memories simultaneously.

In the second mode of operation, - each estimate is formed
as a weighted sum of polynomial terms. The two operand memories
are now addressed sequentially, directly by the Sequence
controller. Operands read from operand memory 1 consist of the
polynomial terms while those read from operand memory 2 consist
of the corresponding weighting coefficients for the function to
be estimated. Their products are summed in the accumulator and
read from the accumulator by the supervising computer at the
completion of each pass. Several such passes are made using a
different weight set each time until estimates have been
evaluated for all r functions. Note that the number of words of

.memory required using this approach is,
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(r+4)(s+2r)!

mem(r,s) = —-—==-=—==--- (5.11)

A key factor in determining the viability of this approach
for very high speed operation is the precision required in the
computations. In our simulations of self-learned control,
approximately 7 decimal digits of precision were used. Our self-
learned estimates of the Cartesian inverse dynamics, however,
were only accurate representations of the analytical functions
to aboﬁt 2 or 3 decimal digits and yet were adequate for
control purposes. Input variables are normalized between -1 and
1, and the weighting coefficients could also be normalized. It
would thus appear that fixed point binary operations with a
precision of perhaps 8 to 10 binary digits would be sufficient
for control purposes. Such fixed point operations should be
achievable at the rate required using current technology.‘ 1f
higher precision or floating point representation were found to
be necessary, it would be much more difficult to implement the
digital sum of polynomials estimator.

5.2.2 STOCHASTIC COMPUTER IMPLEMENTATION

It may also be possible to implement a sum of polynomials
estimator using stochastic computing techniques. The stochastic
computer [19,48] is distinct form either the analog or digital
computer as numbers are represented by the probability of
occurrence of a 1 in the bit sequences on the data 1lines
permitting multiplication to be performed by a single gate.

For example, consider a situation in which the numbers A

and B, which are between 0 and'M, are represented as the

186



probabilities of the occurence of a 1 on their respective data

lines,
Prob(A=1) = A/M _ ' (5.12)
Prob(B=1) = B/M (5.13)

If these signals are fed into an AND gate then its. output, C,
will be a 1 whenever both inputs are 1°s. The probability of the
output being a 1 is,

Prob(C=1) = Prob(A=1 and B=1) (5.14)
If the probabilities on the input lines A énd B are independent
then, ‘

Prob(C=1) = Prob(A=1)-Prob(B=1) (5.15)
and the number represented on the output line is the normalized
product of A and B,

C = AB/MZ (5.16)
This 1is a unipolar form of representation. A bipolar form of
representation is also possible which permits signed
multiplication using a single EXCLUSIVE OR gate [19]. Normalized
summation can also be performed with similarly simple circuitry.

Adequately random input signals for a stochastic computer
can be formed using a pseudorandom sequence generator and
suitable 1logic circuitry [19]). This is done by repeatedly
comparing an N bit binary representation of the input signal
with an N bit binary random number obtained from a pseudorandom
sequence generator. The successive results of comparison form a
Bernoulli sequence whose probability of a 1 corresponds to the
input signal.

We have shown that adequately random input signals can also
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be obtained by randomization of pulse-rate-encoded signals using
jitter stages [23].

Simple hardware and parallel operation make stochastic
multiplication and summatién a potential parallel processing
technique. Its simpli;ity makes 1is attractive for VLSI
implementation. A principal drawback, however, is that
multiplications and summations may be very slow.

Consider the example given in figure 5.2, Products are
formed of two pairs of inputs and these products are then
summed (more correctly averaged). Assuming that the
probabilities of a 1 at all inputs are independent, the
probability of a 1 at the output G is,

Prob(G=1)

[Prob(A=1)-Prob(B=1) + Prob(D=1)-Prob(E=1)]/2
(5.17)
This structure could be extended to implement a sum of
polynomials estimator. To make use of the result at the output
it is necessary to estimate this probability by estimating the
mean proportion of 1°s thét occur at the output. For example, if
N samples are taken of the output and O of these samples are
1”s, an estimate of the probability of the output being a 1 is,
 MEAN = O/N ‘ (5.18)
Since the output is a Bernoulli sequence; the standard deviation
in this estimate of the probability is,
SDEV = [Prob(G=1)(1—Prob(G=1))/N]1/2 ' (5.19)
To halve the standard deviation in one’s estimate of the output
probability one must quadruple thernumber of observations of_the‘

output. Thus while stochastic computing may be comparatively
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fast for low accuracy computations involving many ﬁnput
variables, it becomes very slow if high accuracy computations
are required.

As discussed in section 5.2.1, it appears that the accuracy
of estimates required to achieve adequate control is not very
great. Thus stochastic computer ihplementation of a sum of
polynomials estimator may be feasibie. Note thaﬁ, as when using
fixed point arithmetig in a digital computer, narrow range
restrictions are imposed on all variables at all points within a

stochastic computer. Further investigation 1is required to

determine the feasibility of such an approach.

C
B .
INPUTS ARE INDEPENDENT ’ | G
BERNOULLI SEQUENCES ED
D
F
E X

PSEUDORANDOM

Figure 5.2 Stochastic computer circuit for summing the products

of two pairs of input variables
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5.3 MODIFICATION OF THE KLETT CEREBELLAR MODEL

The starting point for this work was the Klett Cerebellar
Model. During the course of this research, several insights have
occurred about ways of modifying the Cerebellar Model to make it
more plausible as a model of the mammalian cerebellum.

5.3.1 THE KLETT CEREBELLAR MODEL

Klett [26] models the mammalian cerebellum as a sum of
polynomials estimator using orthogonal polynomials. Figure 5.3
shows a block'diagram of the cerebellar system. The Cerebellar
Model includes only those neural pathways that are highlighted.

These are the principal pathways.
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Figure 5.3 Block diagram of cerebellar system
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A block diagram of the Cerebellar Model is shown in figure
5.4. Purkinje cells are excited by the parallel fibers of -the
granule cells and inhibited by the basket and stellate cells
which are also excited by pafallel fibers. The net effect would
be equivalent if Purkinje cells could be excited or inhibited by
the parallel fibers thus eliminating the need for basket and
stellate cells. Purkinje cells and their associated basket Aand
stellate cells are thus modelled as weighted summation points
having either positive or negative weighting coefficients,

f =Z w

= WG ' (5.20)
k -

Kk

It is through modification of these weighting coefficients by
corrective climbing fiber activity that learning is assumed to
take place,

AW = ubf§ (5.21)
Note that such 1learning is performed based on only 1locally

available information in each Purkinje cell.
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Figure 5.4 Block diagram of the Klett Cerebellar Model
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Granule cells are excited by the Mossy fibers. The Granule
cells are ﬁodelled as forming the product of the wvariables
represented by Mossy fiber activity. This prodﬁct is summed with
the negative, inhibitory Golgi Cell activity and the result
output as Parallel fiber activity. The Golgi cells are
themselves excited by pérallel fiber activity. The Granule cell
- Golgi cell network is modelled as a negtive feedback network,

g =p - Gq _ (5.22)

Steady state Parallel fiber activity is thus,
1

-—

d = (I+6) 'P = Qp (5.23)

If the Parallel fiber - Golgi cell synaptic weights represented
by the matrix G are chosen appropriately then the the matrix @
becomes an orthogonalization matrix. This results in improved
learning performance as shown previously in chapter 2. Such
orthogonalization results if,

Q0=1J §§T 55]"/2 (5.24)
S

This requires that G be chosen as,

G =1[f Fp §s11/2 - 1 (5.25)
S R .

In the Klétt Cerebellar Model, these special Parallel fiber -
Golgi cell synaptic weights are assumed, not learned.

There is evidenceb that multiplication and summation
:equired here can be performed by neurons and neural networks
[26]. It is certainly'possible to perform multiplication or
summation of pulse-rate-encoded variables with simple digital
logic gates that are. analogous to neurons using stochastic

computing techniques [19,48].
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5.3.2 LEARNED ORTHOGONALI ZATION

A principal criticism of the Klett Cerebellar Model is that
it assumes the special synaptic weights in the Granule cell -
Golgi cell network. This makes the Cerebellar Model rather
implausible as it would require an enormous amount of
~information to genetically specify these weights.‘

To counter this argument we have found that
orthogonalization. is not neccesary to permit learning to take
place. Without orthogonalization, the Cerebellar Model becomes
equivalent to the Gradient Method outlined in chapter 2. The
Gradient Method is a less optimal learning algorithm in terms of
convergence rates. Nevertheless, it is capable of 1learning
accu;ate sum of polynomials estimates, given enough training.

Furthermore, we have found that it is possible to learn the
orthogonalization matrix Q in a manner that could conceivably be
performed in the cerebellum. The learning can be done using
information that is locaily available in the Granule cells and
Golgi cells. |

Figure ©5.5a shows a schematic of the Granule cell - Golgi
cell network showing those locations where amplification could
occur, Figure 5.5b shows the same schematic but with
amplifications lumped as much as possible. With this model the

Parallel fiber activity is given by,

q;, = a,(b,p, —jiigijqj) (5.26)

Note that an individual Granule cell is assumed to not synapse

with those Golgi cells that it is being inhibited by.
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vHie

Figure 5.5 Schematic of Granule cell - Golgi cell network
a) showing those locations where amplification could occur

b) showing lumped amplifications
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Expressiné this in matrix form yields,

q = A(Bp - GqQ)° _ - (5.27)
A and B are diagonal matrices and G is anti-diagonéi (ie. the
diagonal elements are zero). Solving for d in terms of p yields,

g = (1+aG6)”"

ABD . (5.28)
To ensure that g is an orthonormal basis set, the Pointwise

Cerebellar Model discussed in chapter 2 is used. We thus desire

that,
i=Ep (5.29)
where,
g =p /2 (5.30)
n n )
n-1_ _ o
D = 1/n L B;P; (5.31)
i=0
Therefore we must ensure that,
-1 _ _n ~1/2
(I+AnGn) AB =E =D (5.32)
or equivalently,
-1, -1 _ 1/2°
B A (I+AnGn) = D (5.33)

An adjustment scheme has been found that meets these

requirements while wusing only locally available information.

After the nth adjustment, the elements of the matrices Gn, A

n
and Bn are as follows;

n-1
) 1/n 2 p,.q,. ' (5.34
gm_/ / k=0pqukj )
anij = 0 4 (5.35)
bnij = 0 ‘ (5.36)
for i#j, and,
=0 (5.37)

9nij
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n-1 iy -
(5.38)

qnij ~ [1/nkfopkiqkj]
bnij = 1 (5.39)
for i=j. Note that we are assuming that the gains bnij are

fixed, not learned. In matrix notation the Golgi feedback matrix
is thus as follows,

n-1_ _ o .
G, = 1/nk§0pqu - A (5.40)
It can be confirmed that such a choice of gains results in the
desired matrices by showing that equation (5.33) is satisfied.
First we can remove the matrix Bn—1 from equation (5.33) as it
is equal to the identity matrix.

1

- -1 _ -1 .
B, A, (I+AnGn) = A (I+AnGn) (5.41)

Then this result can be simplified.

-1 -1 nclo_op -1
A (1+AnGn) = A + [1/nk§0pqu ] - A (5.42)
. n-t_ _ o
A (I+AnGn) = 1/nk§0pqu (5.43)
Substituting in equation (5.28) yields,
-1 nTi o -1, T
A (I+A G ) = 1/nk§0pkpk [(1+A G ) ‘A ] . (5.44)

Let us assume that the matrices A and G, converge such that
they appear as constants (to the degree of precision that we are
concerned with) aftef a finite number of adjustments. If we
consider equation (5.44) as n-=, we can assume that the matrices
A and Gn have fixed values for all terms of the summation

n
without introducing significant error into the sum. The matrices
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in the summation of (5.44) can thus be factored out.
-1 nloonp -1, T

a, (1+aG.) = [ 1/nk§0pkpk 10(1+a_G_) 'a_] (5.45)
Rearrangement then yields,

a '(+ac)ia  V(1+a 61T = 1/ "'5.5,T (5.46)

® «Co’ LBy Coo = nk_opkpk :

The matrix A_ is symmetrical. It is not obvious that the matrix
(1+A_G_) is also symmetrical. Let us assume that (I+A_G_) is

symmetrical. Then the transpose in the left hand side of (5.46)

can be removed yielding,

-1 2 n-1 T
[a (r + AG )1 =1/nZ Pp,p (5.47)
® oo k¥ k
k=0
Thus in the limit we have,
a1 +a6_)1% = p_ (5.48)
-1 , /2 L -1/2
a_ (1 +AG_) =D, = E_ (5.49)

Recalling from chapter.2 that E_ equals a scaler multiple of Q,
it is apparent that the result is as desired.

We have not actually been able to prove that this
adjustment scheme will work as we had to assume convergence of
the matrices A and G, and we had to assume that (1+A_G_) was
symhetrical. I1f these assumptions are true, then it is possible
to learn orthogonalization.

In the cerebellum it does not appear to be possible to
perform the adjustments of the gains as shown in equations
(5.34) through (5.39). A more plausible hypothesis is that the
gains are adjusted by exponential averaging where,

g;; (k) = (1=e)g, (k=1) + ep, (K)q; (k) (5.50)

197



for i#j, and,

aij(k) = (1-e)aij(k-1) + epi(k)q;(k) (5.51)
for i=j, and the other adjustment relationships are as before. ¢
is a small positive gain factor. These adjustments might occur
continually but with such a small gain factor, e, that
adaptation ié slow, resulting in behavior analogous to .a low
pass filter. These adjustments might also be triggered to occur
when learning is taking place at the Purkinje cells as indicated
by Climbing fiber activity.

Through simulation we have found that this proposed method
for learned orthogonalization will work with either true
averaging or exponential averaging, Succesive values of the
iﬁput variables z; used to generate the polynomial terms in P
were chosen randomly. It has also been found to work regardless
of whether the polynomial terms in p are strictly positive or
not. It thus may prove a useful method of orthogonalizing
signais, quite apart from its validity as a model of part of the
cerebellum. - |

Sevefal problems remain in defending this scheme as a
cerebellar model. First, wusing such learned orthogonalization,
the resulting vector, g, is not strictly positive. Signals
carried on the parallel fibers of the cerebellum are unipolar in
nature, albeit that they may effectively represent positive and
negative values over a finite range through offset by a positive
bias. A more plausible orthogonalization scheme would be one
thaf ensures that g - (1,...,1) is orthogonal. Secondly, it is

not clear that all Golgi cells synapse with mossy fibers such
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that each Golgi cell has access to the signal p; upon which
adjustment of Golgi feedback gains are based in this model.

A more plausible model in terms of having gain adjustments
being based on locally accessible signals is oné where the gains °

are adjusted as follows,

n-1
.. =1/n L . "~ (5.52
gnlj / k=0qkj ( )
anij =0 (5.53)
bnij = 0 (5.54)
for i#j, and,
gnij =0 (5.55)
n-1 .
3n;j = [1/nk§0qkj] (5.56)
n-1 .
by = 11/n 2 py;] (5.57)

Now the gains are assuredly adjusted on the basis of 1locally
available information. This method cannot be proven to work,
however, precisely because the q; are not strictly positfve. It
has been found not to work in simulations, for the same reason.
If a method can be found for offsetting q to ensure that the q;
are strictly positive, a variant of these methods may then be a
functional and plausible model for learning orthogonalization in
the cerebellum.
5.3.3 INPUT VARIABLE SPLITTING

In order to self-learn the Cartesian inverse dynamics of
the two 1link manipulator, we had to resﬁrict ourselves to a

portion of the manipulator’s reach. -This was necessary because
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certain functional relationships in the inverse kinematics of
the two link manipulator could not be represented as a sum of
polynomials over the whole of the manipulator’s reach. This
represents a limitation imposed by the use of K-G polynomials as
a basis set.

As mentioned in chapter 3, one could use several unique
sum of polynomiais ‘representations for each portion of the
manipulator”s reach. One would thus be modelling the functional
relationships over the whole space as piecewise linear,
quadratic, or quartic, etc., according to the order of the sum
of polyndmials representations used in each region. Clearly a
more dgeneral «class of fun;tions can be modelled in this way.
It may be possible that one could use a method that we call
input variable splitting to achieve the same end.

By input variable splitting, we mean that a single input
variable from a control-point of view, 1is encoded on several
input variables from the poinf of view of the sum of polynomials
estimator. It is best illustrated by an example.

Consider a sum of polynomials rebresentation for the
function,

f = sin(272) | | (5.58)
over the range,

-1 <z < 1 - (5.59)
Clearly a fifth order sum of 'polynomials representation is
required to achieve a minimal likeness of %. An example of such

a representation is,

3 5

sin(2mz) = 5.7z - 28.4z° + 22.7z (5.60)
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which was obtained by noting that even power terms were not
needed and then choosing the coefficients of the odd power terms
such that a match is achieved at z equal to 1/4, 1/2, and 1.

Now assume that the information of variable z is split
among 4 input variables as follows,

z; = max{-1, min{1, 4z + 5 - 2i}} (5.61)

Note that over most of the range of z, the variables z, are

saturated at either -1 or 1. It is only over specific portions
of the space that each Z; varies., It is possible to represent

sin{(27z) as a sum of polynomials in z,, namely,

. 2 2 2. _2
sin(27z) = z,” + z, z;° + 2,

Figure 5.6 shows the variables, z;, as functions of z.

(5.62)

Figure 5.7 shows a plot of sin(27z) along with the two sum of
polynomials representations. It can be seen that the
representation Qsing input variéble splitting is much better.

It remains to be determined whether Interference
Minimization or related learning algorithms can be made to wbrk
when input variables are split in this manner. Efforts to
develop such methods of learning piecéwise non-linear estimates
of functions are warranted as it could overcome the ‘limitations
we have encountered wusing estimates based on sumé of K-G
polynomials. It might make it possible to learn the Cartesian
inverse dynamics over the whole of the two link manipulator’s
reach, and likewise in other situations where functions are not
well represented as sums of polynoials over the region of

interest.
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Figure 5.6

Figure 5.7
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Example of input variable splitting
8

‘n'-

2 2 2 2
F= - Z(1) +2(2 -2(3) + z(4)

F=SIN (2nZ)
g
3 5
g F= 5,72 - 28.4Z + 22.72
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Representations of sin(27z)
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With regards to the Cerebellar Model, it is unlikely that
input variables are split in the previously described fashion. A
more plausible scenario is outlined in the following.

Consider an input variable to the cerebellum from a control
point of view. One such variable could be a joint angle, say at
thé elbow. The position of the jéint can be effectively encoded
by signals representing the tension or extension in the wvarious
muscles acting upon the joint. Since there are numerous muscles
and they are generally paired into opponents, it is reasonable
to assume that some signals would decrease and others would
increase as the joint rofated from its minimum to maximum
angular displacement. Also it is reasonable to assume that some
signals would change from low levels to saturated high 1levels
over narrow ranges of joint movement while others would change
similarly over large ranges of jbint movement .

Figure 5.8 shows a simple example where the joint angle, is
encoded on several different input variables. I1f these variables.
are taken two at a time and multiplied together, the products
form functions such as those shown in figure §5.9. Note how
these products resemble spline functions. Some are narrow and
some are rather wide. Consider now a more realisﬁic
physiological scenario 1in which a parameter such as a joint
angle is encoded on the signals coming from perhaps thousands of
muscle fiber sensors. If these signals are taken randomly, four
or five at a time as they are in the Mossy Fiber - Granule Cell
network in the cerebellum, and multiplied together, the set of

basis functions that result probably contains many spline-like
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functions. This hypothesis remains to be tested, however.

As pointed out by Klett [26], spline functions have
desirable properties in terms of m}nimiéing learning
interference. Spline functions can be used to form estimates of
a more general class of functions than K-G polynomials. Many
such spline functions méy be required in order to effectively
span the domain of the functions to be estimated, however, many
such splines could be generated in the cerebellum. Incorporation
of spline functions into a modified Klett Cerebellar Model would
- render the model more‘similar to the previous model proposed by
Albus[1]. The modified Klett Model would retain the advantage
of requiring many fewer weighting coefficients than the Albus
Model, because of 1its wuse of continuous variableé versus
essentially binary variables in the Albus Model. Use of spline
functions would free the Kleft Model from its previous
disadvantage . of only being applicable for estimating functions
that are Qell represented by polynomials; it would gain the
generality of the Albus Model in terms of functions that can be
learned. Finally, the Albus Model is based on the implausable
assumption that each discernable point in its input space 1is
encoded by a set of maximally active input variables. The
modified Klett Model, 1in contrast, would be based on a pattern
of sensory data encoding that is more consistent with

physiological evidence.
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Figure 5.8 Encoding of joint angle by input variable splitting
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APPENDIX A

ANALYTICAL KINEMATICS OF THE TWO LINK MANIPULATOR

THE TWO LINK MANIPULATOR

THE DIRECT KINEMATICS

From the figure the direct position kinematics can be

G
immediately obtained,
x, = lisin(ai) R4 1251n(a'+a2)
x, = -l,cos(a;) - 12cos(a1+a2)
Differentiation of these relationships yields the direct

velocity kinematics,

_ _ .
i1 : 11cos(a1) *'lzcos(a1+a2) ' lzcos(a1+a2) a,
Lig. L-l1sin(a1) + 1zsin(a1+a2) ' lzsin(a1+a2) a,
which can be rearranged as,
- - -
X, ) llcos(ai) , 12cos(a1+a2) a,
L%%. {}1sin(a1) , lzsin(a1+a2) @ *d,
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and represented as,

d1
% T 1. +a
2 1 2

The direct velocity kinematics can be differentiated to yield

the direct acceleration kinematics,

- T r
& i 11cos(a1) , lzcos(a1+a2) d,
%, .}151n(a1) , lzsln(a1+a21 _a1+d2
B . . 1 T. 2
. —11s1n(a1) , -lzs1n(a1+a2) a,
.. 02
Blcos(a1) , lzcos(a1+a2)_J h(a1+a2)
which can be represented as,
% & a2
ey T * M, b
i, d,+d, (a,+a,)2

THE INVERSE KINEMATICS

Referring again to the figure, the cosine rule can be

applied to yield,
2

2 . 2
-1,%-1, )/(-1,1,)

cos(n-az) = (A i

and thus,
_ 2_, 2_, 2
cos(a,) = (A"-1,%-1, )/1112
By the rule of Pythagoras we have that,
2 2 2

and thus,

2

_ 2 2, 2
cos(az) = (x1 +x, 1 l2 )/1112
_or equivalently,
_ 2,.72_,2_, 2
a, = arccos((x1 +X, 11 12 )/1112)
which is the inverse position kinematics function for a,.

The inverse position kinematics function for a, can be

212



obtained by noting that,

tan(¢) = (1,sin(a,))/(1,+1,cos(a,))
and,

tan(w5 = x,/(-x,)
Since,

a, =y - ¢
this means that,

a, = arctan(x1,—x2) - arctan(1251n(a2),l1+12cos(a2))
Note that the arctan function used here has two arguments and is
thus assumed to yield a result in the range -7 to =.

An alternative representation of the inverse position
kinematics for a, can be obtained by noting that,

cos(a1) = cos(y-¢) = cos(y)cos(¢) + sin(y)sin(¢)

By inspection of the figure we have,

cos(¥) = -x,/A

and,
sin(y) = x,/n -

Application of the cosine rule yields,
cos(¢) = (a%+r,2-1,%)/21.2

Application of the sine rule yields,
sin(¢)/12 = sin(m-a,)/A = sin(a,)/A
and hence,
sin(¢) = lzs1n(a2)/k
Substituting these expressions into our previous expression for

cos(a1) yields,

2 2 2 2 . 2
cos(a1) = —xz(k +1, -12 )/211k + x11251n(a2)/k

Subsitituting in the previous expression for A2 and combining
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terms that are equal to cos(az) yields,
= : - 2 2
cos(a,) = [x,1,sin(a,) x,(1,+1,cos(a,)) ]/ (x,"+x, )

another form of the inverse kinematics function of a,.

From the‘direct velocity kinematics we have,
X a
1=M 1
Vo la,+a
2 1 72
which can be rearranged to yield the inverse velocity kinematics

X

as,
[ 7] .
a _ X
1 . 1
&, +a ! X
|1 T2 . 2
or equivalently,
a, i 1 1251n(a1+a2) , -lzcos(a1+a2)- X,
L?1+a% 111251n(a2) -l1s1n(a1) , l1cos(a1) X,
From the direct acceleration kinematics we have,
F i a2
.1 = M, 1 + M, 1 )
}2 a,+d, (a1+a2)2

which can be rearranged to yield the inverse acceleration

kinematics as,

.. ] .. , . 2
a ' _ X _ a
T T DR B T S D
| f1+a% X, (a1+a2)2
or equivalently,
&1 N 1 lzsin(a1+a2) ’ -lzcos(a1+a2) i,
f1+&2 : 1112$in(a2) I:1151n(a1) , 11cos(a1) X,
- 5 2 . 2
) 1 . 1112cos(a2) , 1, a,
. 2 ' . . 2
111251n(az) 1, , }112cos(a2) (a1+a2)
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APPENDIX B

ANALYTICAL DYNAMICS OF THE TWO LINK MANIPULATOR

INVERSE DYNAMICS

The Lagrangian [46,37) is defined as the difference between
the kinetic energy of a system, K, and the potential energy of a
system, P,

L=K-P

The inverse dynamics equations are obtained as,
r; =& (oL |- 2L
&t aai aai

The derivation of the inverse dynamics equations begins by

noting that the kinetic energy of mass m, is,
2 2. 2

K, = 1/2 mv,® = 1/2 m1?1 a, '
wvhich 1is equal to 0 when not moving. The potential energy of
mass m, is,

P, = -m,gh = -m1gl1cos(a1)
wvhich is equal to 0 when x2=0, ie. at the height of the origin.

The kinetic energy of mass m, is,

2

2 2V2

The square of the velocity of mass m, can be obtained from the

K, = 1/2 m
direct velocity kinematics equations given in appendix A by
noting that,

vyt = X%, X,

and hence,
2 2 2,. 2.4: 2 .. 2 . g s

v, 1 f 12 (a1 +2a,a,+a, ) + 21112a1(a1+az)cos(a2)

Thus the kinetic energy of mass m, is,

2.
= 11 a
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- 2.
Kz = 1/2 mzl1 a,

2 2. .2 . . .2
+ 1/2 m212 (a1 +2a1a2+a2 )

.20, .
+ mzlllzcos(az)(a1 +a1a2)
The potential energy of mass m, is,

P, = m,gh = -m2911cos(a1) - nglzcos(a1+a2)
Combining terms yields the Lagrangian of the two link

manipulator,

- 5 2. 2 2, 2. 4. - ... 2
L = 1/2 (m1+m2)_l1 a, + 1/2 m212 (a1 +2a,65%a, )

.20, .

+ m21112cos(a2)(a1 +a1a2) + (m1+m2)gl1cos(a1)
+ nglzcos(a1+az) |

Various derivatives of the Lagrangian need to be obtained

and combined to yield the inverse dynamics function for torque

T The derivatives are,

2. 2. 2.
a, + m212 a, + m212 a,

+ 2m21112cos(a2)é1 + mzlllzcos(az)é2
2

) 2 .
6/6t(aL/aa1) = [(m'+m2)11 + m212 + 2m21112cos(az)]al

1.
aL/aa1 = (m1+m2)11

2 .
+ [my1,% + m21112cos(a2)]a2
. .. . .2
- 2m2111251n(a2)a1a2 m2111251n(a2)a2
oL/3a, = -(m1+m2)gl1sin(a1) - nglzsin(a1+a2)
Combining these derivatives yields the inverse dynamics equation

for torque Tye

. . . 2 . 2
Ty =.Q,,8, + 4,58, *+ d,,,8," *+ 4,550,
+ 4,846, * dy5,a58, * 4,
where,

d e (m,+m.)1 2, m,l 2.4 2m1.1 cos(a,)

11 1 7271 2°2 27172 2

e

d12 = m212 + m21112cos(a2)
dygq =0
d122 e -m211125in(a2)

B
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d112 = -m211lzsin(a2)
d

121 —m211lzs1n(a2)

d, (m1+m2)gllsin(a1) + nglzsin(a1+a2)

Similarly, various derivatives of the Lagrangian need to be
obtained and combined to yield the inverse dynamics function for
torque 7,. The derivatives are,

aL/ad2 = mzlzzd1 +m2122d2 + m21112cos(a2)¢'11

8/8t(3L/3a,) = [my1,% + my1 1,cos(a,)lid,

+ m2122&2 - m211lzsin(a2)d1d2
aL/aa2 = - m211lzsin(a2)d12 - m211lzsin(a2)d1d2
- nglzsin(a1+a2) -
Combining these derivatives yields the inverse dynamics equation

for torque Tor

Ty = dgydy * dyply * dy06,° ¢ 8ys06y°

* 451818, * 8y3,85a, * dy
where,

dy, = my1,° +m,1 1,cos(a,)

dy, = myl,? |

dyyq = m211125in(a2)

dppp = 0

dp12 = 0

dppy = 0

d, = nglzsin(a1+a2)

This derivation of the inverse dynamics follows the approach
used by Paul [46]. Note, however, that the results differ
slightly from those given by Paul as there is an arithmetic

error in his derivation.
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APPENDIX C

CLOSED LOOP CONTROL OF LINE 1

USING THE SELF-LEARNED CARTESIAN INVERSE DYNAMICS

AFTER 200, 400, 600, 800 AND 1000

TRAINING PATHS
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APPENDIX D

'VIEW OF CIRCLE 1

USING THE SELF-LEARNED DIRECT 'POSITION KINEMATICS

AFTER 200, 400, 600, 800, 1000, 1400, 1800,

2200, 2600, 3000, 3400, 3800, 4200, AND 4600

TRAINING PATHS
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view of circle 1 using the self-learned direct position

kinematics after 200 training paths
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Vview of circle 1 using the self-learned direct position
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View of circle 1 using the self-learned direct position

kinematics aftér 1400 training paths
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View of circle 1 using the self-learned direct position

kinematics after 1800 training paths
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view of circle 1 using the self-learned direct position

kinematics after 2200 training paths
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kinematics after 2600 training paths

233



r1.80

0.80 -0.48 -0,

6 0.16 0.48 0.80
LEX(1)

M

| o S8

Vview of circle 1 using the self-learned direct position

kinematics after 3000 training paths

234



.52

-0
1

-0.84

-1,16
)

LEX(2) M

-1.48

1.80

©0.80 -0.48 t)s 0.16 0.48 0.80

View of circle 1 using the self-learned direct position

kinematics after 3400 training paths

235



0.52

-0.64

-1,16
\

LEX(2) M-

-1.48

? 0.16 0.48 0.80

View of circle 1 using the self-learned direct position

kinematics after 3800 training paths

236



-0.20

-0.52

-0.84

-1.16

LEX(2) M

Vview of circle 1 using the self-learned direct position
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