AN INVESTIGATION OF SQUISH GENERATED TURBULENCE IN. I.C. ENGINES

Ву

CECILIA DIANNE CAMERON

B.A.Sc., The University of British Columbia, 1981 B.Sc., The University of British Columbia, 1977

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

in

THE FACULTY OF GRADUATE STUDIES

Department of Mechanical Engineering

We accept this thesis as conforming to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA
October 1985

© CECILIA DIANNE CAMERON, 1985

In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Department of MEChanical Engineering

The University of British Columbia 1956 Main Mall Vancouver, Canada V6T 1Y3

Date OCTOBER 11, 1985

ABSTRACT

Experiments were performed with a single cylinder C.F.R. engine to provide data for the evaluation of the squish designs. Several reference squish chambers were manufactured for the C.F.R. engine. Flow field data was obtained via hot wire anemometer measurements taken in the cylinder during motored operation of the engine. Pressure data recorded while the engine was operated on natural gas yielded mass burn rate information.

Mass burn rate analysis of cylinder pressure data shows the squish design to have greatest impact on the main combustion period (2% to 85% mass burned). A comparison of the reference squish design in these experiments to the disc chamber shows a 32% reduction in the combustion duration and a 30% increase in peak pressure occuring 5 crank angle degrees earlier. The squish-jet design provided the additional effect of a reduction in the ignition delay time (spark to 2% mass burned). The squish-jet design resulted in a reduction of the ignition delay time by 3 crank angle degrees and in a 4% increase in peak pressure occuring 3 crank angle degrees earlier compared to the reference squish chamber. The total combustion duration was 5% less with the squish-jet design.

TABLE OF CONTENTS

			Page
ABST	ACT .		ii
LIST	OF TA	ABLES	vi
LIST	OF FI	GURES	vii
NOMEN	CLATU	JRE	x
ACKNO	WLEDO	GEMENT	xii
1.	INTRO	DDUCTION	1
	1.1	General Discussion	1
	1.2	The Turbulent Flow Field in an Engine	2
	1.3	Objectives and Scope of Work	6
2.	LITER	RATURE REVIEW	7
	2.1	Introduction	7
	2.2	Turbulence Measurements in Engines	7
	2.3	Combustion Experiments in Engines	11
3.	THE S	SQUISH COMBUSTION CHAMBER	13
	3.1	Introduction	13
	3.2	Squish Velocity Calculations	13
	3.3	The Squish Chamber Experiments	16
4.	APPAI	RATUS AND INSTRUMENTATION	17
	4.1	Introduction	17
	4.2	Engine and Test Bed	17
	4.3	Squish Piston Inserts	18
	4.4	Air Supply	19
	4.5	Gas Supply	19
	4.6	Instrumentation	19
	4.7	Data Acquisition System	21
5.	EXPE	RIMENTAL METHOD	23
	5.1 5.2	Introduction	23 23
		-	24
		5.2.1 Hot Wire Preparation	25
		5.2.3 Flow Measurement Locations	26
	5.3	Combustion Tests	26
6.	DATA	ANALYSIS	27
	6.1	Introduction	27
	6.2	Pressure Signal Processing	27
	6.3	Anemometer Signal Processing	27
	6.4	Flow Field Data	32

TABLE OF CONTENTS (Continued)

				Page
		6.4.1	Ensemble Averaged Mean Velocity and Turbulence Intensity	. 33
		6.4.2	Cycle by Cycle Time Averaged Means and RMS Velocity	. 35
		6.4.3	Time Scale Analysis	
	6.5	Combust	tion Data	. 39
7.	DISC	USSION (OF RESULTS	40
	7.1 7.2		ction	
		7.2.1 7.2.2 7.2.3	Ensemble Averaging vs. Time Averaging	42
		7.2.4	Comparison of Geometries	
	7.3	Combust	tion Results	48`
8.	CONC	LUSIONS	AND RECOMMENDATIONS	51
BIBL	IOGRA	РНҮ	• • • • • • • • • • • • • • • • • • • •	53
APPE	NDIX	A - CALI	IBRATION CURVES	. 56
APPE	NDIX	в - нот	WIRE ANEMOMETER CALIBRATION	. 59
	1. 2. 3. 4.	Calibra Analyti	g and Preparation	59 60
APPE	NDIX	C - DATA	A ACQUISITION PROGRAMS	67
	1. 2.	Data Ad Transfe	equisition from C.F.R. (CDAQ)er of Digital Data to MTS (BYTRD)	67 72
APPE	NDIX	D - HOT	WIRE ANEMOMETER DATA PROCESSING PROGRAMS	. 75
	2. 3. 4.	(ANEM) Cycle h Nonstan	taneous Velocity Evaluation and Ensemble Averaging by Cycle Time Averaged Mean and RMS Velocity (TRAP) tionary Analysis (NOTIME)	83 91
APPE	NDIX	E - COM	BUSTION DATA PROCESSING	. 104
	1. 2. 3.	Data (H Geometi	re Evaluation and Ensemble Averaging from Digital PENH) ric Analysis of Spherical Flame Front (DFLAME) g Rate Analysis (MASBRN)	. 108
APPE	NDIX	F - PROI	PERTIES OF B.C. NATURAL GAS	. 150

LIST OF TABLES

		Page
I.	Engine Specifications	153
II.	Hot Wire Probe and Anemometer Specifications	154

LIST_OF_FIGURES

	·	Page
1.1	The squish combustion chamber	155
3.1	The standard squish chamber	156
3.2	The squish-jet chamber	157
3.3	The effect of clearance height on squish velocity	158
3.4	The effect of the squish-jet design on squish velocity	159
4.1	Schematic of experimental setup and instrumentation	160
4.2	The C.F.R. engine	161
4.3	The squish piston inserts	162
4.4	Photograph of squish piston inserts	163
4.5	Top and side view of C.F.R. combustion chamber	164
4.6	Fitting for hot wire probe	165
4.7	Schematic of data acquisition	166
4.8	Photograph of data acquisition system	167
4.9	Photograph of optical trigger system	168
5.1	Hot wire probe locations	169
5.2	Hot wire probe orientation	170
7.1	Three consecutive instantaneous velocity records	171
7.2	Comparison of time averaged and ensemble averaged mean velocity	172
7.3	Cyclic variation of the mean velocity	173
7.4	Comparison of time and ensemble averaging techniques for the evaluation of turbulence intensity	174
7.5	Turbulence intensity evaluated with Lancaster's nonstationary technique	175

LIST OF FIGURES (Continued)

		Page
7.6	Mean velocity and turbulence intensity for Piston A; h _c = 3.5 mm; probe at cup edge	176
7.7	Mean velocity and turbulence intensity for Piston A; h _c = 1.5 mm; probe at cup edge	177
7.8	Mean velocity and turbulence intensity for Piston A; h _c = 1.5 mm; probe at chamber center	178
7.9	Mean velocity and turbulence intensity for Piston A; $h_c = 1.5$ mm; probe at cup edge; $\theta = 90^{\circ}$	179
7.10	Mean velocity and turbulence intensity for Piston A; $h_c = 1.5$ mm; probe at chamber center; $\theta = 90^{\circ}$	180
7.11	Comparison of mean velocity traces for Piston A; $h_c = 3.5$ and 1.5 mm; probe at cup edge	181
7.12	Comparison of relative turbulence intensities for Piston A; $h_c = 3.5$ and 1.5 mm; probe at cup edge	182
7.13	Mean velocity and turbulence intensity for Piston B; h _c = 3.5 mm; probe at cup edge	183
7.14	Mean velocity and turbulence intensity for Piston B; h _c = 1.5 mm; probe at cup edge	184
7.15	Mean velocity and turbulence intensity for Piston B; h _c = 1.5 mm; probe at chamber center	185
7.16	Mean velocity and turbulence intensity for Piston B; h _c = 1.5 mm; probe inside cup	186
7.17	Comparison of relative turbulence intensities for Piston B; $h_c = 3.5$ and 1.5 mm; probe at cup edge	187
7.18	Comparison of mean velocity traces for Pistons A and B; h _c = 1.5 mm; probe at cup edge	188
7.19	Comparison of relative turbulence intensities for Pistons A and B; $h_c = 1.5$ mm; probe at cup edge	189
7.20	Comparison of the relative probability distributions of small scale turbulence structure for Piston A at the chamber center and at the cup edge	190
7.21	Comparison of relative probability distributions of small scale turbulence structure at the chamber center for Piston A and the flat piston	191

LIST OF FIGURES (Continued)

		rage
7.22	Comparison of relative probability distributions of small scale turbulence structure at the cup edge for Pistons A and B	192
7.23	Comparison of relative probability distributions of small scale turbulence structure at the chamber center for Pistons A and B	193
7.24	Comparison of pressure history for Pistons A and B and the flat piston for a spark timing of 30° BTDC	194
7.25	Comparison of mass fraction burn curves for the flat piston and for Piston A at a spark timing of 30° BTDC	195
7.26	Comparison of mass friction burn curves for Pistons A and B at a spark timing of 30° BTDC	196
7.27	Comparison of mass fraction burn curves for all three pistons at a spark timing of 30° BTDC	197
7.28	Comparison of mass fraction burn curves for Pistons A and B at a spark timing of 25° BTDC	198
		•
A.1	Calibration curve for laminar flow element	57
A.2	Calibration curve for orifice metre	58
E.1	Flame geometry for a section through a flame above piston bowl (flame section 1)	109
E.2	Flame geometry for a section through a flame in a piston bowl (flame section 2)	110

NOMENCLATURE

```
area, m<sup>2</sup>
A
a,b
           calibration constants for hot wire correlation
          constant pressure specific heat, J/k_{g}^{} K
D
           engine bore, m
d
           wire diameter, m
           depth of bowl in squish piston, m
H
          heat transfer coefficient, W/m<sup>2</sup> K
h
           clearance height, m
h
Ι
           electric current, amps
k
           thermal conductivity, W/m K
L
           integral time scale, s
1
           wire length, m
N
           number of engine cycles
           Nusselt number
Nu
P
           pressure, Pa
R
           resistance, ohms
           resistance of wire at operating condition, ohms
R_{\tau}
           autocorrelation coefficient
S
           distance of piston from TDC, m
T
           temperature, K
           velocity, m/s
U
U(1,θ)
           instantaneous velocity at crank angel \theta in cycle i, m/s
Ū
           mean velocity with respect to time, m/s
Ū(θ)
           true ensemble averaged mean velocity, m/s
```

```
Ū<sub>A</sub>(i)
            average (time) velocity in window \theta for record i, m/s
Ūθ
            U(i) ensemble averaged over N cycles, m/s
            cyclic variation in mean velocity, m/s
u'(θ)
            true ensemble averaged turbulence intensity, m/s
u'(i)
            time averaged turbulence intensity in cycle i, m/s
\mathbf{u}_{\mathsf{A}}^{\mathsf{T}}
            u(i) ensemble averaged over N cycles
            volume, m<sup>3</sup>
V
            temperature coefficient of resistance, ohms/°C
α
            orientation angle
β
            specific heat ratio
Υ
            micro time scale, s
θ
            crank angle
            correlation time, s
τ
            viscosity, N.s/m<sup>2</sup>
```

subscripts

reference condition squish piston bowl В gas g P piston Ref reference condition SA squish piston A squish piston B SB SC squish piston B channel time, s t wire length, m X

ACKNOWLEDGEMENTS

The author would like to acknowledge the guidance and support of Professor Evans during the course of the thesis work. Professors Hill and Hauptmann are also acknowledged for numerous enlightening discussions and contributions. Special thanks go to Mr. Allan Jones for the development and construction of the data acquisition system. John Hoar, John Wiebe, and Bruce Hansen machined the parts required for the experimental apparatus. Phillip Hurren and John Richards helped in the design of the data acquisition system.

1. INTRODUCTION

1.1 General Discussion

The combustion rate in an internal combustion (I.C.) engine plays a key role in engine performance. Fast burning in engines produces a greater resistance to knock which allows operation at higher compression ratios and thus leads to increased engine efficiency. Fast burning also permits the use of leaner air-fuel mixtures [1]. Furthermore, fast combustion rates have been shown to reduce NO_x emissions and the cyclic variation of engine performance [1,2]. Combustion rate is thought to depend primarily upon flame front area, turbulence and the chemical kinetics of the mixture. To increase the combustion rate in engines engineers must address two questions; how to increase the flame front area, and how to increase the propagation rate of the flame front into the unburned region. Combustion chamber geometry and turbulence enhancement during the combustion period are the major design variables investigators have focussed on to answer these questions.

The effects of chamber geometry and the flow field are directly linked since chamber configuration does affect turbulence generation. Modern combustion chambers are designed with a large volume to surface area ratio (compact chambers) minimizing contact between the flame and the cylinder walls. With central ignition in these chambers designers achieve a large flame front area and a reduction in heat transfer (due to minimal contact between flame and walls). Both are factors which contribute to an increase in burn rate.

The turbulent flow field in an engine is the more dominant factor in determining the combustion rate. The mechanism responsible for increased

burn rate is still a subject of debate among researchers. The two most widely accepted theories of turbulent combustion in engines are the wrinkled flame front and turbulent entrainment theories.

The wrinkled flame front model, first proposed by Damkohler [3], states that the turbulence distorts (wrinkles) the flame front thereby increasing the area available for molecular transport. Entrainment models have been developed by Tabaczynski [4] and Blizzard and Keck [5]. These models propose that a turbulent entrainment process is responsible for increased flame propagation. It is assumed that laminar burning takes place in cells of size characterized by the Taylor micro-scale and rapid burning takes place along vortex tubes of size characterized by the Kolmogorov scale. The entrainment velocity is assumed to be proportional to the turbulence intensity.

Irrespective of these theories, the link between increased flame speed and turbulence has been firmly established through experiment. The work of Andrews et al. [6] demonstrates that turbulence can be used to increase flame speeds.

1.2 The Turbulent Flow Field in an Engine

The flow field in an engine is primarily governed by the valve events and the piston motion. The shear flow past the intake valve is a major source of turbulence generation prior to the combustion period. After the intake valve closes this turbulence decays rapidly during the compression stroke. In conventional disc chambers very little additional turbulence is generated during the compression stroke as a result of the piston movement. This is the critical period for the combustion process.

Designers have taken two approaches towards the enhancement of

turbulence during compression. Modifications to the inlet port which produce high swirl in the intake jet have proven to increase turbulence levels prior to the combustion period. Also the combustion chamber can be designed so that turbulence is generated on the compression stroke as a result of the piston motion. This type of design is called a squish chamber.

A bowl in piston type of squish chamber design is shown schematically in Figure 1.1. As the piston approaches TDC on the compression stroke a pressure differential between the outside annualar area (squish area) and the inner area drives a radial jet inward. Thus an additional source of turbulence is generated by the strong shear flow in the jet motion during the latter phase of compression.

The flow field quantities of interest in an engine are the mean velocity, turbulence intensity, and the macro and micro scales of turbulence. The mean velocity characterizes the gas motion due to the valve events and the piston travel. The mean velocity is defined to be the time average over a specific interval of the instantaneous velocity. The mean velocity \overline{U} , is:

$$\overline{U} = \frac{1}{T} \int_0^T U dt \qquad (1.1)$$

where U is the instantaneous velocity and T is the time interval. In an engine where the mean velocity is periodic this type of definition can cause problems since the calculated mean will be dependent upon the time interval chosen. This problem is discussed in detail in the data analysis chapter.

The turbulence intensity, u', is the root mean square of the velocity

fluctuations about the mean. If the instantaneous velocity is written as:

$$U = \overline{U} + u \tag{1.2}$$

where u represents the fluctuation from the mean, then the turbulence intensity u', may be expressed as:

$$u' = \left\{\frac{1}{T}\int_{0}^{T} \left[U - \overline{U}\right]^{2} dt\right\}^{1/2}$$
 (1.3)

The scales of length and time describe the structure of the flow field. Length scale measurements are very difficult to obtain since they require measurements at two points simultaneously and correlation of vast amounts of data. Because of this, in engine research time scales are used to characterize the eddy size distribution. The integral scale L_t , is evaluated from the integral of the autocorrelation coefficient of the fluctuating velocity at a single point. The autocorrelation coefficient R_τ , is expressed by:

$$R_{\tau} = \frac{1}{T} \int_{0}^{T} \frac{u(\tau)u(t+\tau)}{\bar{u}^{2}} d\tau$$
 (1.4)

where τ is the correlation time. The integral time scale is then given as:

$$L_{t} = \int_{0}^{T} R_{\tau} d\tau \qquad (1.5)$$

The integral scale characterizes the larger eddies of the flow field and

can be thought of as the mixing time scale.

The Taylor micro scale is also obtained from the autocorrelation coefficient. For small values of the correlation time τ the Taylor series expansion of the autocorrelation function describes a parabola. The microscale is defined to be the point at which this parabola intersects the time correlation (τ) axis: intersects the time correlation axis $(\tau$ axis):

$$\lambda_{t}^{2} = -2 \left(\frac{\partial^{2} R_{\tau}}{\partial \tau^{2}} \right) \Big|_{\tau=0}$$
 (1.6)

The micro scale describes the small scale structure of the flow. In the model proposed by Tennekes [7] in which a turbulence structure can be thought of as consisting of tangled vortex tubes (much like spaghetti) the micro scale can be viewed as the typical time between vortex tubes as they are convected past a stationary observer.

The turbulence intensity is thought to be primarily responsible for the increased flame speed observed for turbulent conditions. This view is supported by the results of Andrews et al. [6] in which a strong correlation between the intensity and turbulent burning velocity is demonstrated. The role of turbulence scale is thought to be important only in the initial stages of combustion. There is little evidence that scale affects the flame speed in a fully developed turbulent flame, although there is some indication that the micro scales are important to the ignition delay process. The ignition delay time is arbitrarily defined here to be the time required to burn two percent of the charge mass. Variation in the ignition delay time is usually considered to be responsible for the cyclic variation observed in cylinder pressure [5].

1.3 Objectives and Scope of Work

The objective of this thesis was to investigate the effects of the squish chamber design on the flow field and combustion process in an I.C. engine. The specific focus of the investigation was the comparison of a reference squish chamber design to a new squish-jet chamber design proposed by Evans [8]. The squish-jet is intended to be an improvement over the conventional design by providing enhanced turbulence production and mixing in the combustion region. It was the purpose of this study to provide experimental data for an initial evaluation of the basic squish-jet design.

A comparison of mass burn rate, combustion duration and pressure history was made for the two chamber designs; as well as flow field charateristics mean velocity and turbulence intensity.

A series of experiments were designed to meet the objectives of the investigation. Several variations of the two squish designs were manufactured for a single cylinder C.F.R. engine. For each design flow field data were obtained with a hot wire anemometer for motored conditions, and pressure data was recorded while the engine was operated on natural gas. The experiments were also conducted for the standard C.F.R. disc chamber design as a basis of comparison.

The data were processed to yield mass burn rate, combustion duration and the turbulence parameters of interest. The designs were then analyzed on a comparative basis.

LITERATURE REVIEW

2.1 Introduction

This chapter reviews the literature in two areas relevant to the investigation. The first section reviews fundamental turbulence measurements in engines. The second section is concerned with combustion experiments made in engines of different types of geometry, and the correlation of combustion data with turbulence data.

2.2 Turbulence Measurements in Engines

Semenov [9] was one of the pioneers in engine turbulence studies. He investigated the intake and compression process in a C.F.R. engine with a shrouded intake valve and disc combustion chamber. By traversing a hot wire probe across the bore of the chamber he obtained spatial velocity gradients as well as the mean velocity and turbulence intensity. Evidence of large velocity gradients during the intake process confirmed the jet nature of the incoming flow. In comparison velocity gradients near TDC on the compression stroke were insignificant. He also found very little spatial variation of the turbulence intensity near TDC.

Semenov observed a strong correlation between the turbulence intensity during compression and the velocity gradient during intake. From this he concluded the shear flow through the intake valve was the primary source for turbulence during the compression stroke. Increased engine speed resulted in increased mean velocity and turbulence intensity; however, compression ratio increases yielded relatively small decreases in the two quantities.

Dent and Salama [10] were among the first investigators to measure turbulent time scales in engines. A fast Fourier Transform analyzer was used to obtain the correlation coefficient and spectral density function. The macro and micro time scales were computed from the correlation coefficient.

The measurements were performed in two engines of different geometry; a disc chamber design, and a wedge (squish) design. In the disc chamber they found a general decrease in the mean velocity and turbulence intensity during the compression stroke. In the squish chamber however, they found an increase in the mean velocity during compression, although a corresponding increase in the turbulence intensity was not observed.

The micro time scale was found to be virtually independent of geometry and the mean velocity during compression. Calculated values of the micro length scale ranged from 0.2 to 0.6 mm. The macro length scales were three to four times larger than this.

Lancaster [11] studied the effects of engine speed, volumetric efficiency, and compression ratio on the flow field of an engine. The tests were performed in a C.F.R. engine with a disc chamber and two intake configurations; shrouded valve (swirl), and a standard valve. A hot wire anemometer probe was used to obtain measurements of mean velocity, turbulence intensity, and turbulence time scales.

Regardless of intake configuration, Lancaster found increased engine speed resulted in increased mean velocity and turbulence intensity.

Throttling or decreased volumetric efficiency yielded similar trends.

However, the values near TDC attained with the standard valve were approximately half of those achieved with the shrouded valve. This was attributed to the high swirl velocity generated by the shrouded valve. The micro

time scale decreased with increased engine speed but was otherwise independent of operating conditions. The micro-time scale ranged from 0.05 to 0.25 milliseconds. Compression ratio had a relatively insignificant effect on mean velocity and turbulence intensity. The spectral distribution of the turbulent energy near TDC was also studied for the shrouded valve configuration. Most of the energy was contained in frequencies below 1 kHz.

Lancaster used single point measurements with a triaxial probe. Close agreement between the intensities measured by the three sensors near TDC led him to conclude that the turbulence was isotropic.

Witze [12] did a similar set of measurements in an engine with a squish combustion chamber. His major conclusions were that the mean velocity and turbulence intensity are proportional to engine speed, and that the time scale is inversely proportional to the engine speed. He also measured the spatial variation of the turbulence intensity near TDC and concluded the structure was not homogeneous.

Witze's results for the mean velocity and turbulence intensity show an increase of both quantities during the compression stroke. The increase can be attributed to the bulk gas motion caused by the squish chamber. However, Witze argued that this is not the production of new turbulence; but simply a magnification of the intake turbulence due to compression.

James and Lucas [13] studied flow conditions within several frequency ranges. They used both a squish chamber and a disc chamber in their investigation. They found most of the turbulence energy was in the frequency range below 700 Hz. They reported that the major effect of the squish chamber was the enhancement of the magnitude of the fluctuating velocities in the frequency range below 1600 Hz. Higher frequency

fluctuations appeared to be unaffected by combustion chamber geometry.

They also found that the effectiveness of the squish chamber was a strong inverse function of the squish or clearance height.

Haghgooie et al. [14] took a somewhat different approach than other investigators by using uncalibrated hot wire signals to determine micro time scales in an engine. Their work was based on the assumption that there is a definable small scale structure of the turbulence in an engine similar to that postulated by Tennekes [7]. They analyzed the anemometer data to obtain the statistical distribution of the peak to peak time separation. They then interpreted the most probable time of this distribution as the characteristic time of the small scale structure. This time scale was in the range of 0.1 to 0.25 milliseconds. They reported a shift to higher frequencies as engine speed increased.

In summary then, fundamental turbulence measurements in engines established the following:

- i) shear flow past the intake valve is a major source of turbulence,
- ii) turbulence intensity and mean velocity are proportional to engine speed,
- iii) turbulence length and time scales are inversely proportional to engine speed,
- iv) turbulence micro time scales are on the order of tenths of milliseconds,
- v) turbulence micro length scales are on the order of tenths of millimeters,
- vi) turbulence is isotropic near TDC compression however it is not homogeneous, and
- vii) turbulence energy is concentrated in the low frequencies, below 1000

2.3 Combustion Experiments in Engines

Studies in which turbulence and combustion data are correlated for engines of different geometry are rare. Lancaster et al. [15] correlated turbulence and combustion data for a disc chamber with and without "swirl". A modified Kreiger-Borman [16] heat release model was used to obtain the turbulent flame speed from cylinder pressure history. To separate thermal effects from those of turbulence the turbulent flame speed was normalized by the laminar flame speed. Operating conditions were identical to those for which turbulence measurements were obtained [11]. Turbulence intensity was varied by using shrouded and standard intake valves, as well as by changing engine speed.

Lancaster et al. concluded that the normalized flame speed was a linear function of turbulence intensity. The effect of turbulence scale on flame speed was found to be insignificant. However these tests were conducted for a limited range of turbulent micro scale, 1 to 2 mm.

Nagayama et al. [17] examined the effect of swirl and squish geometries on combustion duration. No flow measurements were taken in these experiments. They had four chamber configurations; disc, swirl, squish, and squish plus swirl. They found that squish and swirl both reduced combustion duration and that furthermore, they had distinctly separate effects on the combustion interval. Swirl was effective in the initial stage of combustion; whereas, squish was most effective during the main stage of combustion. The two effects were additive and thus the combination squish plus swirl chamber yielded the best results.

More recently investigators have used engine simulation models to predict the effect of chamber geometry on combustion duration [18-21]. In general these models predict that squish type chambers give better

performance than disc chambers. In addition, the importance of central spark plug location is established by these models.

Although there is an abundance of engine performance data for a variety of chamber designs available in the literature [2,15,18,19,21-25], very few attempts have been made to isolate the effects which result in one design's superiority over another. Thus progress towards defining the criteria for optimal chamber design has been slow.

3. THE SQUISH COMBUSTION CHAMBER

3.1 Introduction

An illustration of the conventional bowl in piston squish design is shown in Figure 1.1. Although the chamber shown is in the piston it is also possible to achieve the same effect with a flat piston and a recessed chamber in the head.

The squish design is intended to provide an additional source of turbulence on the compression stroke. In Figure 3.1 a schematic of the squish process is shown. As the piston approaches TDC (compression) the relative compression in volume V_1 in the figure is higher than that in volume V_2 . Thus, there is a 'squish' velocity, U_{SA} , as air moves from V across the boundary A_3 into V_2 .

In this investigation a variation of the squish design, the squish-jet design proposed by Evans [8] will be studied as well. A schematic of this design is illustrated in Figure 3.2. The concept here is similar to that discussed above except that the channels (see Figure 3.2) provide an additional route for the squished air. The desired results are an increase in the relative turbulence intensity and enhanced mixture turbulence at the center of the chamber where the jets collide. Several embodiments of this design have been described by Evans [8].

In Figure 3.1 the conventional squish design is labelled Piston A and the squish-jet design in Figure 3.2 is labelled Piston B. This convention will be used throughout the thesis.

3.2 Squish Velocity Calculations

In this section a very simplified model will be used to predict the squish velocity during the final stage of the compression stroke for each of the two designs.

To predict the squish velocity for the conventional design the basic assumption is that the density is uniform throughout the chamber. The squish velocity is calculated for the piston movement over one crank angle degree. From mass conservation the following equation can be written,

$$\frac{U_{P}^{A_{2}}}{V_{2}} + \frac{U_{SA}^{A_{3}}}{V_{2}} = \frac{U_{P}^{A_{1}}}{V_{1}} - \frac{U_{SA}^{A_{3}}}{V_{1}}$$
(3.1)

The quantities U_p , U_{SA} , A_1 , A_2 , A_3 , V_1 , and V_2 are defined in Figure 3.1. Equation (3.1) can then be solved for the squish velocity U_{SA} ,

$$U_{SA} = \frac{U_{P}}{A_{3}} \{ (A_{1}V_{2} - A_{2}V_{1})/(V_{1} + V_{2}) \}$$
 (3.2)

From Equation (3.2) it can be seen that squish velocity is proportional to the piston speed (or engine speed) and that it is inversely proportional to area A_3 . The area A_3 is a function of the bowl diameter D_B , the clearance height h_c , and the distance of the piston from TDC, S.

The prediction of the squish velocity for the squish-jet design is similar to that above except that now there is an additional route for the gas. The design is Piston B in Figure 3.2. Equation (3.1) is rewritten as:

$$\frac{U_{P}^{A_{2}}}{V_{2}} + \frac{U_{SB}^{A_{3}}}{V_{2}} + \frac{U_{SC}^{A_{4}}}{V_{2}} = \frac{U_{P}^{A_{1}}}{V_{1}} - \frac{U_{SB}^{A_{3}}}{V_{1}} - \frac{U_{SC}^{A_{4}}}{V_{1}}$$
(3.3)

In this equation U_{SB} is the squish velocity normal to the area A_3 and U_{SC} is the squish velocity (hereafter called squish-jet velocity) normal to A_4 . The other terms in the equation are defined in Figure 3.2. An additional equation is required to solve for the new velocity term U_{SC} . This

is obtained by treating the problem with a parallel pipe flow method. The assumption is that the pressure drop of the flow across the boundary A_3 is equal to that of the flow through the channels and across the boundary A_4 . The pressure drop will be a function of the hydraulic radius and the velocity head. Simultaneous solution of the equations for conservation of mass and head loss yields expressions for the squish velocity U_{SB} , and the squish-jet velocity U_{SC} . The squish velocity U_{SB} is:

$$U_{SB} = \frac{U_{P} \{A_{2} - (A_{1} + A_{2})[A_{2}(h_{c} + S)]/(V_{1} + V_{2})\}}{A_{3} + [2D_{R}(S + h_{c})/(D_{H}(D_{R} + S + h_{c})]^{1/2}}$$
(3.4)

and the squish-jet velocity $\mathbf{U}_{\mathbf{SC}}$ is:

$$U_{SC} = \frac{U_{SB}}{\{2D_{R}(S + h_{c})/D_{H}(D_{R} + S + h_{c})\}^{1/2}}$$
(3.5)

It can be seen from both Equations (3.2) and (3.4) that the squish velocity across the piston face (U_{SA} and U_{SB}) will be a strong function of the clearance height. In Figure 3.3, the squish velocity calculated from Equation (3.2) is shown for two clearance heights, 3.5 and 1.5 mm. The geometric parameters for the C.F.R. engine were used in the calculations. From the graph it can be seen that the squish velocity reaches a maximum at approximately 10° BTDC and decays rapidly to zero at TDC. It is clear from this figure that clearance height is very important. The peak mean velocity calculated for a clearance height of 1.5 mm is almost twice that for a clearance height of 3.5 mm. In Figure 3.4 the effect of adding the squish-jet channels is shown. The squish velocity across the face of the

piston is reduced by about 30%. The squish-jet velocity is consistently lower than $U_{\rm SR}$ except near the peak which occurs at approximately 10° BTDC.

3.3 The Squish Chamber Experiments

The method of predicting squish velocities outlined above was very simplified and not intended to yield quantitative results. Rather it was employed as an aid in designing the experiments.

As a result of the calculations it was decided to vary the clearance height and observe the effect. Three heights were selected 1.5, 2.5, and 3.5 mm. Both chamber designs were tested at these heights. The clearance height of 1.5 mm was the minimum that could be attained due to the clearance between the valves and the piston.

The piston wall thickness and the placement of the channels for Piston B were the constraints governing the selection of bowl diameter. A bowl diameter of 1.5 inches resulted in a 78% squish area expressed here as a percent and is defined to be the ratio of the area A_1 (see Figure 3.1) to the total area $(A_1 + A_2)$.

Because it was desirable to compare both flow and combustion data from case to case the compression ratio was kept constant. The bowl depth was varied to accommodate the various clearance heights.

Hot wire anemometer measurements were made at the edge of the bowl and at the center of the chamber for each configuration. In addition, for Piston B a measurement was made with the probe inside the bowl opposite a channel at TDC.

In summary, the experiments were designed to observe the effects of clearance height, and squish-jet channels on the flow field and combustion process. Tests were also conducted with a disc chamber operating at the same compression ratio as a standard for comparison.

4. APPARATUS AND INSTRUMENTATION

4.1 Introduction

This investigation required test results operating with several combustion chamber designs. To facilitate changes of configuration for each test, a C.F.R. engine with a flat head was used in conjunction with a squish piston design. Thus a change in combustion geometry required only a change of pistons. The engine was then instrumented to obtain pressure and flow field information. The instrumentation and engine are described in detail in the following sections.

4.2 Engine and Test Bed

A schematic of the experimental apparatus is shown in Figure 4.1 The engine used for the tests was a single cylinder C.F.R. coupled to a synchronous reluctance type motor by twin v-belts. Specifications for the engine are presented in Table I. The C.F.R. cylinder and head is cast in one piece which has an adjustable height above the TDC postion of the piston to allow for variable compression ratio.

For these experiments the following changes were necessary to the basic C.F.R. configuration:

- i) the pulley set was replaced to obtain a higher operating speed than the standard 900 RPM. The speed achieved was 1140 RPM,
- ii) the shrouded intake valve was replaced by a standard intake valve to reduce the effects of inlet swirl,
- iii) the gasoline carburetor was removed and replaced with a venturi element so that the engine could be operated with natural gas, and

iv) the C.F.R. ignition system was replaced with a capacitive discharge ignition circuit.

The synchronous motor was used to start the engine, to maintain constant speed, and to absorb the power developed by the engine when fired. The engine and motor are shown in Figure 4.2.

4.3 Squish Piston Inserts

Seven pistons were required for the tests. Rather than manufacture a piston for each test, the original C.F.R. piston was bored through the crown and the inside wall threaded. Threaded inserts were then manufactured for each experiment.

The piston material was cast iron so steel was used in the production of the inserts. Three basic designs were manufactured; the basic squish design (Piston A), the squish-jet design (Piston B), and the flat disc chamber design. The design drawings of these piston inserts are in Figure 4.3 and a photograph is in Figure 4.4. In Figure 4.3 case 1 corresponds to a clearance height of 1.5 mm; case 2 corresponds to a clearance height 3.5 mm.

The two squish designs were altered to accommodate the three clearance heights used. The bowl diameter was held constant at 1.5 inches. Because the bottom of the insert had to clear the top of the oil ring the maximum depth of the bowl that could be achieved was 1.4 inches. This maximum depth was used for the test of minimum clearance height (1.5 mm). The bowl depth was decreased for the other tests so that a constant compression ratio was maintained throughout the experiments. The center line of the access port for the hot wire anemometer probe was 9 mm below the head. Because of this and the small clearance heights used a slot was milled in the inserts to accommodate the probe.

4.4 Air Supply

The intake air for the engine was drawn into a 2.5 inch pipe through an orifice plate and into a surge tank. The air was then filtered as it left the surge tank and passed into the venturi. The intake air was not throttled at anytime.

4.5 Gas Supply

The natural gas used as fuel was supplied from the building mains at a pressure of 5 psig to a pressure regulator where the pressure was reduced to 3 inches of water above atmospheric pressure. From the regulator the gas flowed first through a laminar flow element then through a control valve which was used to adjust the air/fuel ratio. From the control valve the gas flowed through 1/2 inch tubing to the venturi.

4.6 Instrumentation

A schematic of the instrumentation layout is shown in Figure 4.1.

Pressure measurements were made for combustion and motored operation. The location of the transducer for each of the operational modes is shown in Figure 4.5. The pressure transducer installed in the cylinder was a Kistler 609C piezo electric transducer mounted in a steel sleeve. The transducer was recessed 2 mm to eliminate thermal shock effects as recommended by Benson [26]. The transducer signal was transmitted via low noise cable to a Kistler 5004 charge amplifier. The amplified signal was sent to an analogue to digital converter which was interfaced to an I.B.M. personal computer. The digitized pressure signals for 120 engine cycles were then stored on floppy discs.

The air flowrate was monitored with an orifice plate mounted on top of

the surge tank. The pressure drop across the plate was measured on an inclined manometer. Volumetric flowrate was calculated from the calibration curve for the orifice plate. The orifice plate was calibrated against a Meriam Laminar Flow Element Model 50MW-1.5. The calibration curves for both instruments are in Appendix A.

The natural gas flowrate was metered with a Meriam Laminar Flow Element Model 50MW-1.5 positioned in the gas line between the pressure regulator and control valve. The pressure drop was recorded on an inclined manometer. Volumetric flowrate was determined from the calibration supplied by the manufacturer with appropriate correction factors applied for the effects of natural gas viscosity (see Appendix F).

Air movement within the cylinder during motored operation was measured with a hot wire anemometer probe. The probe used was a TSI Model 1226 which is designed for high temperature environments. The sensor, Platinum-Iridium wire of 6.3 micrometer diameter, was mounted on the support needles by spot welding. The probe was installed in the side port of the cylinder through an airtight fitting. The fitting is shown in Figure 4.6. The access port for the probe is shown in Figure 4.5. A Disa Model 50D anemometer bridge unit, operated in the constant temperature mode, was used in conjunction with the probe. The specifications for the probe and the anemometer are listed in Table II.

The anemometer voltage signal was sent to a Hewlett Packard Model 3968A tape recorder where it was recorded on analogue tape. This was necessary because high resolution was required for the hot wire data. A sample rate of every 0.2 crank angle degrees was selected. However the data acquisition system could not perform analogue to digital conversions this fast, so the anemometer signal was first recorded on tape and then

played back to the data acquisition system at a slower speed. This procedure is described in more detail in the following section. The anemometer signal was recorded on two channels; one with a passband of 70 to 64,000 Hz, and the other with a passband of DC to 5,000 Hz. The data stored on the channel with the broad passband was processed to obtain frequency distribution information. The data recorded in the narrow band was used to obtain mean velocity and turbulence intensity information.

4.7 Data Acquisition System

The basic data acqusition system consisted of an optical crank angle trigger, a trigger and clock circuit, an analogue to digital converter, and an I.B.M. PC. In addition, for turbulence measurements a Hewlett Packard Model 3968A tape recorder was used for data acquisiton. A schematic of the system is shown in Figure 4.7. A photograph of the system is shown in Figure 4.8.

Optical pickups mounted on a slotted wheel coupled to the engine crankshaft provided pulses every two crank angle degrees and at BDC. The optical pickup system is shown in Figure 4.9. These pulses were fed to the trigger and clock circuit simultaneously with the pressure and the signal being sampled. The two degree signal was passed through a phase lock loop which multiplied the frequency by ten. The BDC input pulse and pressure signal were used to start the A/D process. The analogue pressure signal was input to a comparator whose output was sent to a flip flop. The output of the flip flop and the BDC pulse were fed to a NOR gate. The flip flop went low when a preset pressure threshold was reached at the start of compression and thus when the next BDC pulse arrived at the NOR gate a trigger pulse was sent out. This pulse served two functions; it signaled the computer to initiate data acquisition, and it enabled an AND gate which

allowed the 0.2 degree pulses to flow to a counter. If a slower sample rate was desired (0.4, 1.0, and 2.0 degrees), this could be set at the counter and the frequency of the pulses reduced by 2, 5, or 10. The output of this counter was then fed to a clock counter where pulses were counted until 16,000 pulses had been detected. After this threshold was reached the clock counter shut off the pulses until the whole process was started again. For each pulse leaving the clock counter the signal of interest was sampled and an analogue to digital conversion performed. When 16,000 points were collected the data was transferred to a floppy disc for further processing off-line.

The analogue-to-digital converter had an upper frequency limit of 27 kHz. The pressure signal from combustion experiments was sampled every degree and posed no problem. High resolution was required, however, for the hot wire data and hence a sample rate of every 0.2 degrees was selected. At a speed of 1140 rpm the 0.2 degree pulses arrive at the clock counter at a frequency of 34.2 kHz. To overcome this problem a tape recorder was used to record the two degree and BDC pulses, pressure, and anemometer signals at a tape speed of 15 inches per second. The signals were then played back to the trigger and clock circuit at a speed of 7.5 inches per second. Thus the clock counter saw pulses with a frequency of 17.1 kHz but because the anemometer signal was "stretched" the same amount as the original 2 degree pulses the effective sample rate was 34.2 kHz as desired.

Data acquisition was performed with the aid of the program CDAQ which was loaded into the I.B.M. microcomputer. This program was interactive and allowed the user to issue commands to the analogue-to-digital conversion system. This program is described in Appendix C.

5. EXPERIMENTAL METHOD

5.1 Introduction

The goal of the experiments was to provide combustion and turbulence data for the combustion chambers under study. For each combustion chamber geometry two types of experiments were performed; combustion tests in which the pressure trace was recorded, and motored tests in which the air movements were monitored.

All of the tests were conducted at a constant engine speed of 1140 rpm, a compression ratio of 11.3, and with a wide open throttle. The combustion tests were performed with a stoichiometric air-fuel ratio.

5.2 Motored Engine Tests

These tests yielded flow field data for each of the configurations. The quantities of primary interest were the mean velocity and turbulence intensity for several locations in the chamber: at the edge of the bowl (i.e. a measurement of squish velocity as it left the squish region); at the center of the chamber. For configurations with channels (Piston B) the probe was positioned so that it would be directly opposite a channel exit at TDC in an attempt to measure the jet entering the bowl via the channels. These positions are shown schematically in Figure 5.1.

The majority of these tests were performed with the wire axis oriented perpendicular to the cylinder axis (parallel to the piston face). This position is shown in Figure 5.2 as $\alpha = 0$. This orientation was selected since the radial (or squish) velocity was of primary interest. However, in one set of tests the sensor was rotated 90° (see Figure 5.2) to obtain an indication of the tangential velocity.

5.2.1 Hot Wire Preparation

Wire breakage was a frequent occurrence during the course of the experiments and thus it became necessary to establish a routine procedure for repair and calibration. Sensors were repaired by spot welding Platinum-Iridium wire onto the support needles. The welding was done with the aid of a microscope and a Disa welding unit. Each wire was inspected to ensure that the weld was of acceptable quality and that the wire was free of any dirt or defects.

The sensor was calibrated in a wind tunnel against a pitot tube. The operating temperature of the wire was 600°C. The probe was calibrated for air speeds of 0.5 to 20 meters per second. From the velocity obtained from the pitot tube a Reynolds number was formed based on the wire diameter and the ambient conditions. From the corresponding anemometer voltage a Nusselt number was calculated based on the free stream gas properties. The method used to determine the Nusselt number from the anemometer voltage is that proposed by Witze [27]. This involves solving the one-dimensional heat balance equation for the hot wire (neglecting radiation) to obtain an expression for the mean wire temperature in which the heat transfer coefficient is the only unknown. The heat transfer coefficient is determined through iteration and the Nusselt number formed. This technique is discussed more fully in the following chapter and in Appendix B. From the calibration data set a correlation of the form

$$Nu = a + b Re^{n}$$
 (5.1)

was found using a non-linear curve fitting procedure [27].

After calibration the probe was placed into the three-piece fitting shown in Figure 4.6. This assembly was then positioned in a measurement test rig. There the probe orientation was set (0° or 90°) with spirit levels and by lining up sight lines on the probe and test rig. In addition the length of the probe to extend into the chamber was set. The pressure fitting was then tightened to secure the probe position within the fitting.

5.2.2 Routine Experimental Procedure

At the start of each experiment the one-piece cylinder head and cylinder were lifted off the engine block and the appropriate piston inserted. After careful cleaning of all parts the head was replaced. To adjust the clearance height the flywheel was rotated until the piston was at TDC. A plug gauge was inserted between the head and the piston crown in the top access port shown in Figure 4.5 and the cylinder was cranked up (via a worm gear) to the proper position. A dial micrometer mounted between the stationary crankcase and the cylinder was set to a reference point. The cylinder was then clamped into position, the flywheel rotated beyond TDC and the plug gauge removed. The pressure transducer was then installed.

Next the valve rocker arm linkage was lifted over the cylinder and the pushrods removed to allow for insertion of the probe. The threaded portion of the probe fitting assembly (part A in Figure 4.6) was first tightened into the side access port. The remainder of the assembly with probe tightened into position was pressed into the threaded sleeve. The fitting was then rotated in the sleeve until the probe was properly oriented. This was done by lining up sight lines on the fitting and on the engine. Finally a nut was threaded onto the sleeve to secure the entire assembly.

The pushrods were replaced, the rocker arm linkage brought down into position, tightened, and the valve clearances set. The engine was started and allowed to come to speed before data acquisition was initiated.

5.2.3 Flow Measurement Locations

For each of the squish chambers tested the probe was positioned 10 mm from the bowl edge for one set of measurements, and then at the chamber center for another set. In addition, measurements were taken in the bowl for the squish-jet chamber. For the disc chamber one measurement was made at the center of the chamber. These positions are shown in Figure 5.1 and labelled R1, R2 nd R3, respectively.

For each of the clearance heights tested the probe was positioned so that the sensor was 2 mm below the chamber head. These positions are also shown in Figure 5.1 and labelled Z1, Z2, and Z3, respectively.

5.3 Combustion Tests

These combution tests provided the pressure history of the combustion process for each of the configurations. Combustion tests were performed after the motored tests as the configuration was already in place. For these tests the hot wire probe was removed from the side port and the pressure transducer mounted. The spark plug was installed in the top access port. These positions are shown in Figure 4.5. After the instrumentation was in place the valve clearance and TDC clearance height were checked.

The engine was started with the motor. Once speed was achieved the ignition was switched on and the gas flow started. The air-fuel mixture was maintained at the stoichiometric point by adjusting the gas control valve. Spark timing was varied from 20 to 40 degrees BTDC in 5 degree increments. For each setting 120 cycles of data was collected.

6. DATA ANALYSIS

6.1 Introduction

The techniques employed for data reduction and analysis are described in this chapter. Two types of signals were processed, hot-wire anemometer and pressure data. The first part of this chapter briefly describes the method of processing the analogue signals to obtain meaningful data. The second part describes in detail the methods used to interpret this data.

6.2 Pressure Signal Processing

The raw digital data was first ensemble—averaged over 120 engine cycles. The digital data was then transformed to pressures with the appropriate conversion factor. This conversion factor was a function of the system gain and the charge amplifier setting. The pressures obtained from this conversion were relative pressures and had to be shifted by the appropriate value to obtain the absolute cylinder pressure. The method of Lancaster et al. [29] was used to determined the reference condition. This involves assuming that the pressure in the cylinder at BDC after intake is equal to the average intake manifold pressure. The intake manifold pressure was estimated by subtracting the measured losses through the intake system from the ambient pressure. After the absolute cylinder pressures were evaluated the pressure trace was smoothed using cubic spline interpolation.

6.3 Anemometer Signal Processing

The hot wire anemometer registers the change in resistance (electrical) which results from the heat transfer from the sensor due to the

cooling effect of the flow. Because the heat transfer process is a function of the driving temperature differential and fluid properties such as viscosity, density, and conductivity the sensor response is highly sensitive to changes in temperature and pressure in the flow. Ideally a probe should be calibrated over the range of temperatures and pressures encountered in the engine cylinder. However, this time-consuming procedure is not practical in light of the frequent occurrence of wire breakage. Thus it becomes necessary to rely on analytical models to correct for variations from the calibrated conditions.

The two most widely used models of heat transfer from a hot-wire are those of Collis and Williams [30] and Davies and Fisher [31]. Both models are modifications to the theory developed by King [32], known as King's Law which gives the Nusselt number as a function of the Reynolds number:

$$Nu = a + b Re^{1/2}$$
 (6.1)

where a and b are determined by calibration. Collis and Williams [30] developed a heat transfer correlation in which convection was the only significant form of heat transfer considered. They were able to justify this by using wires with a length to diameter ratio greater than 2000. In the work of Davies and Fisher conduction to the wire supports was considered to be significant. Their theory involves solving the one dimensional heat balance equation along the wire to obtain an expression for the mean wire temperature in which the heat transfer coefficient is the only unknown. The heat transfer coefficient is determined through iteration.

In this study neither of these universal correlations was used; however, an approach similar to that of Davies and Fisher as proposed by Witze [27] was taken. In this method the one-dimensional energy equation for the wire is solved to obtain an expression for the temperature distribution along the wire. This temperature distribution is integrated along the wire to yield a mean wire temperature:

$$T_{M} = \frac{2(T_{p}^{-C_{1}})}{\sqrt{C_{2}} \ell} \tanh \left[\sqrt{C_{2}} \ell/2\right] + C_{1}$$
 (6.2)

where

$$c_1 = \frac{hT_g + I^2R_0(1 - \alpha_0T_0)/(\pi d\ell)}{h - I^2R_0\alpha_0/(\pi d\ell)}$$
(6.3)

and

$$C_2 = 4[h - I^2R_0\alpha_0/(\pi d\ell)]/k_wd$$
 (6.4)

where h is the heat transfer coefficient, T_p is the sensor support temperature, T_g is the gas temperaure, k_w is the mean thermal conductivity of the wire, R_0 is the resistance of the wire at the reference temperature T_0 , α_0 is the temperature coefficient of resistance for the wire, and I is the current through the wire.

The mean wire temperature can be calculated from the probe resistance and the wire temperature coefficient of resistance. All other quantities except the heat transfer coefficient h are known. The heat transfer coefficient is determined from iteration. Thus for a given flow condition the heat transfer coefficient can be determined from the measured probe current, and a Nusselt number formed. Then a Reynolds number may be found from Equation (5.1). The fluid velocity is then determined from the Reynolds number.

There are several important points to make about this procedure.

First in the correlation both the Reynolds number and the Nusselt number are based on the free stream gas temperature. In an extensive study in which hot wire anemometer results were compared to LDV results Witze [27] found that this choice of reference temperature gave the best agreement between the two results.

The support temperature T_p in Equation (6.2) was taken as room temperature and invariant. The support needles are much larger than the wire and are not appreciably heated by the electric current. Their temperature can be assumed to follow the instantaneous gas temperature somewhat. However, unless a direct measurement of the needle temperature is made, as Lancaster [10] did, there is no straight forward method to estimate the temperature. Again using LDV results as a standard for comparison Witze found that the choice of invarient room temperature for the supports gave adequate results.

Determination of the gas temperature in the cylinder is very important to the results. In this study the air temperature was calculated from:

$$(T_g)_i = (T_g)_{i-1} (P_i/P_{i-1}) \frac{\gamma-1}{\gamma}$$
 (6.5)

where γ is the temperature dependent specific heat ratio evaluated at $(T_g)_{i=1}$.

The initial reference condition was taken at the point of intake valve closing, where the pressure and temperature were taken as ambient conditions. The temperature dependent specific heat ratio was calculated by assuing the air was 21% 0_2 and 79% N_2 . The constant pressure specific heats of N_2 and 0_2 were evaluated from expressions given in Van Wylen and Sontag [33]:

$$(C_p)_{N_2} = 39.060 - 512.790^{-1.5} + 1072.70^{-2} - 820.400^{-3}$$
 (6.6)

and

$$(c_p)_{0_2} = 37.432 + 0.0201020^{1.5} - 178.570^{-1.5} + 236.880^{-2}$$
 (6.6)

where θ = T(kelvin)/100. Witze [27] compared mean velociites obtained using measured and calculated temperatures. His results show that the adiabatic computation gives good results during the compression process but tends to perform poorly beyond approximately 50 degrees after TDC. Since the region of interest in this study was the combustion period (from 60 degrees before TDC to 40 degrees after TDC) the adiabatic calculation was deemed adequate for temperature evaluation.

The thermal conductivity and viscosity of the air were calculated from the expressions used by Collis and Williams [30]:

$$\frac{K_{g}}{K_{Ref}} = \left(\frac{T_{g}}{T_{Ref}}\right)^{0.80} \tag{6.8}$$

and

$$\frac{\mu_{g}}{\mu_{Ref}} = (\frac{T_{g}}{T_{Ref}})^{0.76}$$
 (6.9)

Details of the calculation procedure for the determination of the instantaneous velocity from the anemometer are presented in Appendix B.

From the foregoing discussion it can be seen that there are many sources for uncertainties in the evaluation of the instantaneous velocity from the anemometer signal. The main uncertainties are: wire physical properties such as uniformity of diameter, sensing length, and temperature coefficient of resistance; imperfections of the weld at the supports; and fouling of the wire during measurement. Uncertainty in the experimental

value of pressure, the reference temperature, the computed gas temperature, and the selected sensor support temperature lead to uncertainty in the heat transfer coefficient and thus the computed velocity. For these experiments the uncertainty in the reference temperature is estimated to be 5% and in the reference pressure 5%. Sensitivity analysis shows this leads to uncertainty on the order of 35% in the calculated instantaneous velocity. In addition to uncertainty arising from the analytical procedure the effects of probe interference and the probe's insensitivity to flow direction also contribute to error in the interpreted results. In light of the high uncertainty associated with hot wire measurements caution should be exercised when they are interpreted, especially when absolute magnitudes of mean velocity or turbulence intensity are to be applied to empirical models. However, hot wire measurements do provide a qualitative indication of the flow field in an engine and are valuable in studies such as this one where evaluation is based on a relative comparison rather than the absolute magnitudes of the flow field characteristics.

6.4 Flow Field Data

Interpretation of hot wire measurements in engines poses several dilemmas. Because of the complex nature of the flow field generated by the valve events and piston motion the directional characteristics are difficult to determine since the sensor cannot distinguish between forward and reverse flow conditions. Although analytical models can be used to predict the sensor response to conditions different from the calibration, there are many assumptions and variables involved in the computation of the instantaneous velocity, and thus many sources of error exist.

The major obstacle to data interpretation and processing arises from the periodic and thus nonstationary nature of the flow field in the engine. Because of this, most investigators have resorted to ensemble averaging techniques. There are two problems with this approach. The first is that

the fundamental equations which define turbulence characteristics use time averages. For most stationary processes time averages of the statistical properties are equal to ensemble averages. These are called ergodic processes. Since many turbulent flows may be considered as stationary and ergodic the substitution of ensemble averages for time averages poses no problem. However the flow field in an engine is unsteady and non-stationary. This means that the time averaged mean will be dependent upon the length of the averaging interval and furthermore ensemble averages will not equal time averages. The second objection to ensemble averaging is that not only is the "mean" velocity periodic but there is also a cycle to cycle variation in the mean velocity itself. This cyclic variation in the mean velocity is included in the computed turbulence intensity when ensemble averaging is used.

Time averaging methods also present difficulties. The main problem arises in the selection of a window size for averaging. The calculated mean velocity will be highly dependent upon the length of the averaging interval. Ideally the window size should be as small as possible since the mean velocity can change quite rapidly. If the window size is made too large then information is lost. The same problem arises in calculation of the turbulence intensity; if the window size is too small then low frequency turbulence data is lost. Thus a compromise must be made.

In this investigation both techniques (time and ensemble averaging) were employed to interpret the data and the results were compared.

6.4.1 Ensemble Averaged Mean and RMS Velocity

An ensemble average is performed on a series of records each consisting of a sequence of equally spaced samples in time. If the instantaneous velocity is written as $U(i,\theta)$ where i denotes the engine cycle (record) and θ the crank position (time) within the cycle then the ensemble averaged mean velocity for the position θ obtained from an ensemble of N cycles is:

$$\bar{\mathbf{U}}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \mathbf{U}(i,\theta)$$
 (6.10)

The turbulence intensity is defined as the rms of the velocity fluctuations about the mean and is:

$$u'(\theta) = \left\{\frac{1}{N} \sum_{i=1}^{N} (U(i,\theta) - \overline{U}(\theta))^2\right\}^{1/2}$$
 (6.11)

There are several variations on this method. Rask [34] compared two methods; a window ensemble and a smoothed ensemble. In the window ensemble a crank angle interval was selected and data points within averaged to obtain a single point. The window averages were then ensembled as described above. In the smoothed ensemble a curve was fitted to the window averages for each cycle using cubic spline interpolation. The smoothed curves were then ensembled to obtain mean and rms velocities. He also performed a cycle by cycle analysis on the smoothed mean velocity curves. This involved evaluating the rms velocity from the smoothed curves for each cycle. The respective mean and rms velocity curves were then ensembled. He found that the turbulence intensity obtained by a cycle by cycle analysis was lower than that obtained from the other methods. This confirmed the fact that conventional ensemble averaging includes the cyclic variation of the mean flow in computed intensity.

In this study conventional ensemble averaging was compared to a cycle by cycle time averaging technique. The ensemble averaging was taken over 100 engine cycles. Each cycle consisted of samples for every 1/5 of a

crank angle degree. The mean velocity was obtained from Equation (6.10) and the turbulence intensity in Equation (6.11) was obtained by:

$$u'(\theta) = \{\frac{1}{N} \sum_{i=1}^{N} U^{2}(i,\theta) - \overline{U}^{2}(\theta)\}^{1/2}$$
 (6.12)

Details of the calculation and the computer program used are in Appendix D.

6.4.2 Cycle by Cycle Time Averaged Mean and RMS Velocity

Two approaches for evaluating the mean and rms velocities on a cycle by cycle time averaged basis were studied. The majority of data was processed with a method similar to that of Catania and Mittica [35]. This technique is similar to the cycle-by-cycle smoothed ensemble proposed by Rask [34] except that time averages were performed in the windows rather than arithmetic averages. In their study Catania and Mittica evaluated a mean velocity curve for each cycle. This was done by finding the time average of the instantaneous velocity for specific time intervals (crank angles) within the engine cycle. The average values, taken at the center of the window, were then used with cubic spline interpolation to generate a smoothed mean velocity curve. The turbulence intensity was then obtained in a similar fashion from the instantaneous velocity and smoothed mean velocity for each cycle. The mean and rms velocity curves for each cycle were then ensembled.

They investigated the effect of different averaging intervals on computed mean and rms velocities. They found that window sizes ranging from 4 to 12 crank angle degrees had no significant effect on the mean velocity. For turbulence intensity calculations they varied the windows

from 1 to 20 crank angle degrees. They found that for intervals less than 8° the intensity values decreased. Between 8° and 20° however, there was relatively little difference. This interval (8° to 20°) corresponded to a time interval of between 0.83 and 2.08 milliseconds which corresponds to the range of macro time scales that can be expected in an engine. The fact that the turbulence intensity decreased for averaging intervals less than 8° indicates that low frequency turbulence information was being lost.

In the present study the same type of technique was employed. The mean velocity within specified time intervals for each cycle i was calculated by:

$$\overline{U}_{\theta}(i) = \frac{1}{\Delta} \int_{0}^{\Delta} U(i,\theta) d\theta \qquad (6.13)$$

Window sizes ranging from 2 to 8 crank angle degrees were examined. Since these window sizes had relatively little effect on the resulting mean velocity curve a 4 degree window was selected for computational ease. Mean velocity curves were then obtained using cubic spline interpolation [28] between the evaluated points for each cycle. The turbulence was then computed for each cycle by:

$$\mathbf{u}_{\theta}^{\bullet}(\mathbf{i}) = \frac{1}{\Delta} \int_{0}^{\Delta} \left\{ \left[\mathbf{U}(\mathbf{i}, \theta) - \overline{\mathbf{U}}_{\theta}(\mathbf{i}) \right]^{2} d\theta \right\}^{1/2}$$
 (6.14)

where the averaging window θ was 12 crank angle degrees. Window sizes ranging from 2 to 14 degrees were studied. There was a decrease in the turbulence intensity for windows smaller than 6 crank angle degrees, however there was relatively little difference for windows larger than this. Based on these results, an averaging interval of 12° was used throughout for evaluating the turbulence intensity from Equation (6.14).

The mean velocity and turbulence intensity curves were then ensembled over 40 cycles to obtain one representative curve for each of the two properties, the ensemble averaged mean velocity:

$$\bar{\mathbf{U}}_{\theta} = \frac{1}{40} \sum_{i=1}^{40} \bar{\mathbf{U}}_{\theta}(i) \tag{6.15}$$

and the ensemble averaged turbulence intensity without the cyclic variation of the mean velocity:

$$\mathbf{u}_{\theta}^{*} = \left\{ \frac{1}{40} \sum_{i=1}^{40} \left[\frac{1}{\Delta} \int_{0}^{\Delta} \left(\mathbf{U}(i,\theta) - \overline{\mathbf{U}}_{\theta}(i) \right)^{2} d\theta \right] \right\}^{1/2}$$
 (6.16)

The cyclic dispersion of the mean velocity was determined from the difference between the ensembled mean velocity of Equation (6.15) and the individual mean velocity curves for each cycle:

$$\mathbf{U}_{RMS} = \{ \frac{1}{40} \sum_{i=1}^{40} \left[\overline{\mathbf{U}}_{\theta}(i) - \overline{\mathbf{U}}_{\theta} \right]^2 \}^{1/2}$$
 (6.17)

Also the nonstationary analysis proposed by Lancaster [10] was studied for comparative purposes. Lancaster redefined the instantaneous velocity to be the sum of a stationary mean velocity $\overline{U}(i)$, a time varying mean velocity $\overline{U}(\theta)$, and a turbulent fluctuation $u(i,\theta)$:

$$U(i,\theta) = \overline{U}(i) + \overline{U}(\theta) + u(i,\theta)$$
 (6.18)

In the present study the mean velocity obtained from ensemble averaging was first evaluated. Then the stationary mean velocity $\overline{U}(i)$ was calculated from:

$$\overline{\overline{U}}(i) = \frac{1}{\Delta} \int_{0}^{\Delta} [U(i,\theta) - \overline{U}(\theta)] d\theta \qquad (6.19)$$

for each engine cycle (record). The window size θ was varied from 40 to 100 crank angle degrees about TDC. The intensity was then computed from:

$$\mathbf{u'(i)} = \left\{\frac{1}{\Delta} \int_{0}^{\Delta} \left[\mathbf{U(i,\theta)} - \overline{\mathbf{U}(\theta)} - \overline{\mathbf{U}(i)}\right]^{2} d\theta\right\}^{1/2}$$
 (6.20)

The intensity records were then ensembled.

Details of the calculation and the computer program used are in Appendix D.

6.4.3 Time Scale Analysis

An analysis similar to that of Haghgooie et al. [13] was performed on uncalibrated hot wire anemometer signals to obtain relative probability distributions of the peak-to-peak time separation. This analysis depends on the assumption of a definable small scale structure of turbulence in an engine similar to that proposed by Tennekes [7].

The technique involves the determination of an amplitude threshold for peak discrimination. This is obtained by operating the probe in quiescent ambient air. The problem with this technique is that the "noise" level sampled in quiescent air will be a turbulence signal resulting from natural convection. This "noise" will be insigificant in forced convection flow. Thus by setting a discrimination level for peak identification some of the high frequency turbulence information is lost. After the amplitude threshold is set the signal is sampled and a relative probability distribution is formed for the peak-to-peak time separation. Haghgooie et al. [13] concluded that the most probable frequency obtained in this fashion appears to be related to the small scale structure of the turbulence.

Based on the assumption that there is a definable small scale structure of turbulence in an engine similar to that proposed by Tennekes and that the method of Haghgooie et al. can be used to detect differences in the turbulent frequency distribution in engines a peak-to-peak time separation analysis was performed on the anemometer data obtained for the chambers studied. The noise amplitude threshold was obtained by evaluating the probability distribution from data collected while operating he probe

in quiescent ambient air. The relative distribution of the peak-to-peak time separation was then formed. It was found that this distribution was relatively insensitive to variations of up to 30% in the amplitude threshold. This could mean that high frequency turbulence data was lost. A window of 60° around TDC compression was used in the evaluation of the relative probability distribution. Details of the procedure and a listing of the computer program are in Appendix D.

6.5 Combustion Data

The pressure recorded during combustion tests was processed to yield mass burn rate curves for the configurations under study. The raw digital data was processed as detailed earlier in the chapter. The computer program used to process the data was developed by Jones [36]. The thermodynamic model in the program is based on the two zone approach and is similar to that of Keck [37] and Lavoie et al. [38]. The basic assumptions are that a thin spherical flame front separates the charge into two zones; the unburned region containing the reactants, and the burned region containing the products. Properties are assumed to be spatially uniform throughout each region. Furthermore both products and reactants have varying specific heats and obey the equation of state for an ideal gas. The unburned gas is assumed to be isentropically compressed due to the expansion of the burned region. The heat transfer is calculated using the Annand [39] equation. Six dissociation reactions are accounted for.

With the assumptions above and the application of the first law and conservation of mass an iterative procedure is followed from which the mass fraction burned is obtained at each crank angle degree. Minor changes to the program were necessary to accommodate the C.F.R. combustion chamber geometries. A complete discussion of these changes and a program listing is in Appendix E. A detailed discussion of the calculation procedure is given in [36].

7. DISCUSSION OF RESULTS

7.1 Introduction

In this chapter the results obtained from the experiments conducted on the C.F.R. engine are presented and discussed. In the first section results from flow field measurements are presented, while in the second section results from the combustion tests are presented and discussed.

7.2 Flow Field Results

This section is divided into four parts. In part one the different methods of processing the data (discussed in Chapter 6) are examined and compared. In part two results obtained for the standard squish chamber, Piston A, are presented. In the following section results for Piston B the squish chamber with channels are given. The final section deals with a comparison of the geometries investigated.

In the following sections flow velocities are presented plotted against crank angle degrees. The convention used is that 0° is BDC and 180° is TDC compression. Most of the plots are shown from 60 to 220 degrees. This is the portion of the engine cycle important to the combustion process. At 60° the intake generated flow has decayed and in a disc chamber would continue to decrease through TDC. The combustion period ranges from 30° BTDC to approximately 30° ATDC. At 220° the combustion period is finished.

7.2.1 Ensemble Averaging vs. Time Averaging

In this section the averaging techniques discussed in the previous chapter are compared. The results shown in this section were obtained with

the standard squish chamber (Piston A) at a clearance height of 1.5 mm.

Three consecutive instantaneous velocity traces are shown in Figure 7.1.

The basic mean velocity trend is evident and repeatable although there is considerable variation in the individual traces from cycle to cycle.

In Figure 7.2 the mean velocity trace obtained from conventional ensemble averaging techniques (Equation (6.10)) is shown with the mean velocity evaluated from Equation (6.15) using a window of 4 crank angle degrees as the time averaging window. From the figure it is clear that the two techniques yield almost indistinguishable results for the mean velocity trace. The cyclic variation of the mean velocity is shown in Figure 7.3. This curve was formulated from Equation (6.17). The cyclic variation can be seen to be fairly consistent throughout the compression stroke with a slight increase near TDC.

In Figure 7.4 the turbulence intensities obtained from conventional ensemble averaging using Equation (6.12) and from the time averaged window, cycle-by-cycle analysis of Equation (6.16) are shown. The window size used in Equation (6.16) was 12 degrees for the reasons discussed in the previous chapter. It is evident that the ensembled intensity has included in it some of the cyclic variation of the mean velocity. This is shown even more by comparing Figures 7.3 and 7.4.

The turbulence intensity obtained from Equation (6.11) using the non-stationary analysis proposed by Lancaster [10] is shown in Figure 7.5 for averaging windows of 40, 60, 80, and 100 degrees around TDC. Comparison of Figures 7.4 and 7.5 shows that the computed values lie between the ensembled and time averaged results. The problem with this formulation is the assumption that the difference between the ensembled mean and the instantaneous mean is constant during an individual cycle; that is, that

the curves are in phase and simply shifted up or down with respect to one another. However inspection of Figures 7.1 and 7.3 shows that this is not the case.

In the following sections the mean velocity was evaluated using the method described in Chapter 6 from Equation (6.15). A four degree window was used for the averaging interval. Turbulence intensities were computed from Equation (6.16) with an averaging interval of 12 crank angle degrees. The basis for the selection of these windows was discussed in Chapter 6.

7.2.2 Standard Squish Piston (Piston A) Results

In Figure 7.6 the mean velocity and turbulence intensity traces for a clearance height of 3.5 mm are shown. This data was taken at the edge of the bowl. The mean velocity decays steadily as TDC is approached. At approximately 10° BTDC there is a slightly increase in the mean velocity. After the small peak the mean velocity decreases until 10° ATDC. Another peak is then reached at 20° ATDC. A comparison of these results with the calculations in Chapter 3 (see Figure 3.2) shows that although the magnitude of the velocities do not agree the timing of the velocity peaks in Figure 7.6 corresponds to the trend predicted for the squish velocity. The turbulence intensity remains relatively constant throughout.

The effect of squish for a clearance height of 1.5 mm is clearly evident in Figure 7.7. The mean velocity is steady throughout the compression stroke until about 20° BTDC where there is a sharp increase which comes to a peak near TDC and then decays.

The interesting effect here is that the previous case ($h_c = 3.5 \text{ mm}$) showed the effect of squish on both sides of TDC (as the model presented in Chapter 3 predicts); however, in this case ($h_c = 1.5 \text{ mm}$) only one peak

centered approximately around TDC is shown. The results of James [25] showed a similar trend to the previous case ($h_c = 3.5$ mm); that is, squish effects before TDC and reverse squish on the expansion stroke. However he used large clearance heights and did not achieve pronounced squish effects. The results of both Witze [12] and Dent and Salama [10] show only one velocity peak near TDC similar to the trend exhibited in the data for $h_c = 1.5$ mm. The calculations in Chapter 3 predict the trend of two velocity peaks as shown in the data for $h_c = 3.5$ mm. However this model was very simplified and did not account for effects such as momentum and viscosity. It is possible that there is another flow regime at work (such as a piston generated vortex) with the squish; however, without flow visualization it is difficult to determine exactly what is happening.

At 10° BTDC a comparison of Figures 7.6 and 7.7 shows that the mean velocity achieved for a clearance height of 1.5 mm is approximately four times that for the lower clearance height. This is in agreement with the trend predicted by the calculations in Chapter 3 and demonstrates the critical effect of clearance height.

In Figure 7.8 the velocity trace obtained with the probe postioned at the center of the chamber (h_c = 1.5 mm) is shown. Again there is a large velocity peak at TDC. However careful examination of the figure shows that the point at which the mean velocity starts to increase comes approximately 5° later than it did for the measurement taken at the cup edge. This trend is to be expected since the arrival time of the squish-jet should be later as the probe is moved away from the cup edge.

To get an indication of how much swirling motion was present the probe was rotated 90° (see Figure 5.4) so that the probe axis was perpendicular to the piston face. Results obtained at the cup edge and at the chamber

center are shown in Figures 7.9 and 7.10. Both mean velocity and turbulence intensity are slightly higher indicating the presence of a tangential velocity component. However because only single sensor measurements were made it was not possible to resolve this component. The later arrival time of the squish-jet to the center can be seen more clearly from these two figures.

In Figure 7.11 the mean velocity curves obtain at clearance heights of 3.5 and 1.5 mm are compared. Although the two curves are similar in the early part of the compression stroke the effect of the squish can be seen as they begin to deviate from one another at approximately 30° BTDC. Measurements were also made for the clearance height of 2.5 mm. The resulting velocity traces were not that different from the 3.5 mm case and are not presented. From these results it can be seen that the clearance height is important in the observed squish effect as predicted by the calculations in Chapter 3.

A comparison of the relative turbulence intensities for the two heights is shown in Figure 7.12. It is evident that although the magnitudes of the velocity traces vary considerably, the relative quantities show only a maximum increase of about 25% for the clearance height of 1.5 mm during the squish period.

7.2.3 Squish-Jet Combustion Chamber (Piston B) Results

Measurements were made at the same locations and conditions as for Piston A. The mean velocity and turbulence intensity profiles for a clearance height of 3.5 mm are shown in Figure 7.13. In this case it is difficult to detect any effect of squish at all prior to TDC and only a small peak occurs after TDC. However from calculations in Chapter 3 this trend

could be expected if the gas is now using the additional routes provided by the channels.

At the smaller clearance height shown in Figure 7.14 the squish effect can be seen again. In this case the peak effect at TDC is not as pronounced as it was for Piston A although the same general trend for both mean velocity and turbulence intensity is exhibited. Examination of the figure shows that the mean velocity trace is consistently lower for Piston B. The most probable explanation for this is that there was leakage past the piston rings for the previous measurements. All hot wire measurements except those for Piston B at a clearance height of 1.5 mm were obtained before a failure in the C.F.R. engine required that the cylinder be honed out and the piston rings replaced. If there was considerable blow-by past the piston rings then the velocity measurements would be artificially inflated. This could explain the observed differences in the velocity traces before the squish could start affecting the flow.

In Figure 7.15 the mean velocity trace and turbulence intensity traces are shown for Piston B at the center of the chamber ($h_c = 1.5 \text{ mm}$). The interesting effect here is the character of the mean velocity trace after top dead center. After the peak starts to decay the velocity is relatively flat for a few degrees and then there is a small peak. This could be the separate effects of squish, and another flow regime.

In Figure 7.16 the velocity and intensity traces for the measurement taken inside the cup are shown. This was an attempt to get an idea of the jet velocity leaving the channel as it entered the bowl. Unfortunately geometric constraints would only permit the probe to be aligned with the channel centerline right at TDC. Although calculations in Chapter 3 indicate the velocity of the channel jet should be zero at TDC it was hoped

that the probe would detect the final part of the jet as the top of the channel passed the probe. As can be seen from Figure 7.15 the jet was not detected at all. However this is most probably due to the inability to position the probe properly rather than the lack of a jet velocity.

In Figure 7.17 the relative turbulence intensities for the clearance heights of 3.5 and 1.5 mm are shown. The maximum difference between the two is approximately 10 percentage points, on the same order as the difference between relative intensities for Piston A at the same height.

7.2.4 Comparison of Geometries

In this section a comparison between the two geometries is made. two mean velocity traces ($h_c = 1.5 \text{ mm}$) are compared in Figure 7.18. As was mentioned earlier it is believed that the mean velocity trace of Piston A is artificially inflated due to leakage past the piston rings. There is no other explanation for the difference between the two curves between 60 and 140 degrees. The points to notice from this figure are that the trends are basically similar; the mean velocity begins to increase about 20° BTDC, the peak occurs near TDC, and about 20° ATDC there is a slight secondary peak. In Figure 7.19 the relative intensities are compared for the probe located at the cup edge ($h_2 = 1.5$ mm). The relative intensity of Piston B is consistently higher than for Piston A. The maximum difference between the two is 11 percentage points; that is, Piston B shows a 29% improvement. However it is difficult to say how much of this is due to increased turbulence generation by Piston B design. This is because although flow induced by leakage past the rings would create a higher mean velocity it might not generate new turbulence. Thus the relative intensity for Piston A might be artificially low. However a comparison of Figures 7.12 and 7.17 shows that even at the clearance height of 3.5 mm the relative turbulence

intensity was higher from Piston design B. In this case the relative turbulence intensities of the two designs were approximately equal until 30° BTDC through 20° ATDC. In this region the maximum difference between the two curves was approximately 6 percentage points. This trend indicates that the squish-jet piston design is more effective at generating turbulence during the compression stroke (or squish period). This would be important to combustion since it is the level of turbulence and not the mean velocity that enhances combustion.

The relative probability distributions of the peak-to-peak time separation are shown in Figures 7.20 to 7.23. These measurements were performed for the clearance heights of 1.5 mm and for the disc chamber for comparison. The distributions presented are for a crank angle window of 60° around TDC. The distributions were obtained using the peak to peak time separation technique described in Chapter 6.

In Figure 7.20 the distributions for Piston A at the bowl edge and at the chamber center are shown. From the graph it can be seen that there is a slight broadening of the distribution towards the center of the chamber. In Figure 7.21 the distribution for the flat piston is compared to that of Piston A at the center of the chamber. From this graph it is evident that there is some clustering of frequency bands for the flat piston chamber. In general the relative probability for Piston A is higher in the high frequency range than it is for the flat piston; however the differences are minor.

In Figure 7.22 the distributions of Pistons A and B are compared for the probe position at the cup edge. Although the most probable frequency for the two designs is the same, approximately 1 millisecond, the distribution for B shows less skew to the left (higher frequencies) than that of

Piston A. In Figure 7.23 the distributions for the two designs are shown for the center probe location. Here there has been a definite shift in Piston B's distribution to the right and lower frequencies; whereas for Piston A, although there has been some broadening of the distribution, the most probable time has not changed.

Although there are differences in the distributions they are minor and the results indicate that the squish chamber has a small effect on the turbulent frequency distribution in the chamber. However in view of the limitations of the analytical method the reults are somewhat inconclusive since it is possible that high frequency information was lost.

7.3 Combustion Results

In this section results from the combustion tests are presented. pressure traces for each of the pistons A and B as well as the flat piston were analyzed for mass fraction burned history. The final mass fraction burned for the tests was about 93%. There are a number of reasons 100% burned was not achieved; blow by could not be adequately accounted for in the calculations, combustion may have been incomplete, and there could have been an error in the heat transfer calculations. The uncertainty in the initial reference pressure is estimated to be 5%. However this gives an insignificant percentage error (<.1%) in peak pressure. The major source of uncertainty in the mass burn rate analysis arises in the evaluation of the initial energy of the charge in the cylinder. The uncertainty in the initial energy is a function of uncertainty in pressure, temperature, and charge mass. The uncertainty in the charge mass arises from measurement of air and fuel rates, and estimation of the residual fraction. The total uncertainty in the mass is estimated to be 5%. This leads to an uncertainty of 15% in the mass fraction burned.

In Figure 7.24 the pressure histories for Pistons A and B ($h_c = 1.5$ mm) and the flat piston are shown for a spark timing of 30° BTDC. The maximum cylinder pressure of 63.3 Bar was achieved with Piston B at 8° ATDC. The maximum pressure obtained with Piston A was 61.1 Bar at a crank position of 11° ATDC. The flat piston yielded the poorest results with a maximum pressure of 46.0 Bar occuring 16° ATDC. In Figure 7.25 the mass fraction burned curves for the flat piston and Piston A are shown (spark timing 30° BTDC). It can be seen that the basic squish design appears to have very little effect on the ignition delay time. The ignition delay time here is defined to be the time taken to burn 2% of the charge mass. The effect of squish is seen in the main stage of combustion, defined here to be the period for 2 to 85% mass burned. The burn time for the flat piston was 38 crank angle degrees whereas for Piston A this time was reduced by 26% to 28 crank angle degrees. These results are in agreement with Nagayama et al. [17] who found that squish increased burning rate in the main combustion stage and resulted in higher maximum pressures. Figure 7.26 the mass fraction burned curves are compared for Pistons A and The spark timing was again in both cases 30° BTDC. It can be seen from this figure that the main effect of the squish jet channels is a reduction in the ignition delay time. The ignition delay time is 3° less for Piston B; a 17% reduction. However the main stage of combustion does not appear to have been affected. The burn time for both designs is approximately 28 crank angle degrees. In Figure 7.27 the three curves are plotted together and the separate effects of faster burn rate during the main combustion period due to the squish, and reduced ignition delay due to the channels can be clearly seen. The total combustion duration is defined here to be the time from spark to 85% mass burned. The total combustion durations for the flat piston and Pistons A and B were 58, 44 and 42 crank angle degrees respectively.

In Figure 7.28 the mass fraction burned curves for the two squish designs are compared for a spark timing of 25° BTDC. Again the only real effect appears to be a reduction in ignition delay time in the case of Piston B. However the effect is not as pronounced in this case. This is to be expected since ignition delay effects will be enhanced for earlier spark timing (as in the 30° BTDC case) since the initial pressure and temperature of the mixture is lower. In this case (25° BTDC) there is only 2° difference in the ignition delay period for the two designs.

8. CONCLUSIONS AND RECOMMENDATIONS

The objective of this thesis was to investigate the effects of the squish chamber design on the combustion process and flow field of an I.C. engine and particularly to compare the reference squish design to the squish-jet design [8]. A number of conclusions may be drawn on the basis of the experimental data.

Cylinder pressure data shows the squish design to be effective in increasing the mass burn rate during the main combusion period. For a spark timing of 30° BTDC the combustion duration for the disc chamber was 58° compared to 45° for Piston A at $h_c = 1.5$ mm. The peak pressure achieved with Piston A was 30% higher and occurred 5° earlier.

Comparisons of cylinder pressure data for Pistons A and B show the squish-jet chamber design to give superior performance. For a spark timing of 30° BTDC the maximum pressure attained with Piston B was 4% higher and occurred 3° earlier. The major effect of the squish-jet chamber design was the reduction in ignition delay time by 3° for a 17% improvement. The main stage of combustion does not appear to have been affected. The combustion duration for Piston B was 42°; 3° less than for Piston A.

Although the uncertainty in the computed flow field parameters is high, because the experiments were performed from case to case with conditions as identical as possible some of the uncertainty is systematic. From the flow field data it appears that the clearance height has a significant effect on the mean velocity. The mean velocity computed for Piston B was less than that for Piston A for identical clearance heights. The peak-to-peak time separation analysis results indicated no significant difference in the turbulence frequency distributions for the two designs.

Further work is recommended for the combustion experiments in this study it was not possible to vary the operating conditions nor to obtain adequate performance data. Pressure history was the only obtainable data. Therefore, it is recommended that extensive performance tests be carried out with the two squish chamber designs. Also in this study the engine used had a side point ignition. It is recommended that further experiments be performed in an engine with a central ignition to study the full benefit of the mixing in the combustion chamber due to the squish-jet channels.

Further flow field experiments are also recommended. Flow visualization would be valuable. Measurement of length scales in the squish-jet chamber could provide valuable insight into the link between ignition delay and small scale turbulence structure.

BIBLIOGRAPHY

- 1. MATTAVI, J.N., "The Attributes of Fast Burning Rates in Engines", SAE 800920, 1980.
- 2. MAYO, J., "The Effect of Engine Design Parameters on Combustion Rate in Spark-Ignited Engines", SAE 750355, 1975.
- 3. DAMKOHLER, G., "The Effects of Turbulence on the Flame Velocities in Gas Mixtures", NACA TM 1112, 1947.
- 4. TABACZYNSKI, R.J., FERGUSON, C.R. and RADNAKRISHNAN, K., "A Turbulent Entrainment Model for Spark Ignition Engine Combustion", SAE 770, 1975.
- 5. BLIZARD, N.C. and KECK, J.C., "Experimental and Theoretical Investigation of Turbulent Burning Model for Internal Combustion Engines", SAE 740191, 1974.
- 6. ANDREWS, G.E., BRADLEY, D. and LWAKABAMBA, S.B., "Turbulence and Turbulent Flame Propagation A Critical Appraisal", Combustion and Flame, Vol. 24, pp. 285-304, 1975.
- 7. TENNEKES, H., "Simple Model for the Small-Scale Structure of Turbulence", Physics of Fluids, Vol. 11, No. 3, 1968.
- 8. EVANS, R.L., Patent Applications.
- 9. SEMENOV, E.S., "Studies of Turbulent Gas Flow in Piston Engines", Otedelenie Technicheskikh Navk, No. 8, 1958 (English Translation: NASA Technical Translation, F97).
- 10. DENT, J.C. and SALAMA, N.S., "The Measurement of the Turbulence Characteristics in an Internal Combustion Engine Cylinder", SAE 750886, 1975.
- 11. LANCASTER, D.R., "Effects of Engine Variables on Turbulence in a Spark-Ignition Engine", SAE 760159, 1975.
- 12. WITZE, P.O., "Measurements of the Spatial Distribution and Engine Speed Dependence of Turbulent Air Motion in an I.C. Engine", SAE 770220, 1977.
- 13. JAMES, E.H. and LUCAS, G.G., "Turbulent Flow in Spark Ignition Engine Combustion Chambers", SAE 750885, 1975.
- 14. HAGHGOOIE, M., KENT, J.C. and TABACZYNSKI, R.J., "Turbulent Time Scale Measurements in a Spark-Ignition Engine Using Hot Wire Anemometry and Fast Response Ion Probes", Symposium on Flows in I.C. Engines, ASME WAM, 1982.

- 15. LANCASTER, D.R., KRIEGER, R.B., SORENSON, S.C. and HULL, W.L., "Effects of Turbulence on Spark-Ignition Engine Combustion", SAE 760160, 1976.
- 16. KRIEGER, R.B. and BORMAN, G.L., "The Computation of Apparent Heat Release for Internal Combustion Engines", ASCE 66-WA/DGP-4, 1966.
- 17. NAGAYAMA, I., ARAKI, Y. and IOKA, Y., "Effects of Swirl and Squish on S.I. Engine Combustion and Emission", SAE 770217, 1977.
- 18. LUCAS, G.G. and BRUNT, M.F., "The Effect of Combustion Chamber Shape on the Rate of Combustion in a Spark Ignition Engine", SAE 820165, 1982.
- 19. DAVIS, G.C., TABACZYNSKI, R.J. and BELAIRE, R.C., "The Effect of Intake Valve Lift on Turbulence Intensity and Burnrate in S.I. Engines-Model Versus Experiment", SAE 240030, 1984.
- 20. POULOS, S.G. and HEYWOOD, J.B., "The Effect of Geometry on Spark-Ignition Engine Combustion", SAE 830334, 1983.
- 21. WITZE, P.O., MARTIN, J.K. and BORGNAKKE, C., "Measurements and Predictions of the Precombustion Fluid Motion and Combustion Rates in a Spark Ignition Engine", SAE 831697, 1983.
- 22. GROFF, E.G. and MATEKUNAS, F.A., "The Nature of Turbulent Flame Propagation in a Homogeneous Spark-Ignited Engine", SAE 800133, 1980.
- 23. BRANDL, F., REVERENCIC, I., CARTELLIERI, W. and DERT, J.C., "Turbulent Air Flow in the Combustion Bowl of a D.I. Diesel Engine and its Effect on Engine Performance", SAE 790040, 1979.
- 24. CHARBONGSAI, S., KADOTA, T. and HENEIN, N.A., "The Burning Velocity in a C.F.R. Engine with Different Turbulent Flow Fields Generated by Intake Valve", SAE 800860, 1980.
- 25. JAMES, E.H., "Investigations of Combustion in 'Squish' Chamber Spark Ignition Engines", ASME 84-DGP-10, 1984.
- 26. BENSON, R.S. and PICK, R., "Recent Advances in Internal Combustion Instrumentation with Particular Reference to High Speed Data Acquisition and Automated Test Bed", SAE 740695, 1974.
- 27. WITZE, P.O., "A Critical Comparison of Hot-Wire Anemometry and Laser Doppler Velocimetry for I.C. Engine Applications", SAE 800132, 1980.
- 28. MOORE, C., "UBC Curve, Curve Fitting Routines", Computing Centre, University of British Columbia, 1984.
- 29. LANCASTER, D.R., KRIEGER, R.B. and LIENESCH, J.H., "Measurement and Analysis of Engine Pressure Data", SAE 750026, 1975.

- 30. COLLIS, D.C. and WILLIAMS, M.J., "Two Dimensional Convection From Heated Wires at Low Reynold's Numbers", Journal of Fluid Mechanics, Vol. 6, 1959, pp. 357-384.
- 31. DAVIES, P.O.A.L. and FISHER, M.J., "Heat Transfer From Electrically Heated Cylinders", Proc. Roy. Soc. A., Vol. 280, 1964, pp.
- 32. KING, L.V., "On Convection of Heat From Small Cylinders in a Stream of Fluid in Determination of the Convective Constants of Small Platinum Wires with Application to Hot Wire Anemometry", Proc. Roy. Soc., Vol. 214A, No. 14, 1974.
- 33. VAN WYLEN, G.J. and SONNTAG, R.E., "Fundamentals of Classical Thermodynamics", John Wiley & Sons, 1978.
- 34. RASK, R.B., "Comparison of Window, Smoothed-Ensemble, and Cycle-by-Cycle Data Reduction Techniques for Laser Doppler Anemometer Measurements of In-Cylinder Velocity", Symposium on Fluid Mechanics of Combustion Systems, ASME FED, Spring Meeting, 1981.
- 35. CATANIA, A.E. and MITTICA, A., "A Contribution to the Definition and Measurement of Turbulence in a Reciprocating I.C. Engine", ASME 85-DGP-12, 1985.
- 36. JONES, A.L., "The Performance of a Turbocharged Spark-Ignition Engine Fuelled with Natural Gas and Gasoline", M.A.Sc. Thesis, University of British Columbia, 1985.
- 37. KECK, J.C., "Turbulent Flame Structure and Speed in Spark Ignition Engines", Nineteenth Symposium {International} on Combustion, The Combustion Institute, 1982, p. 1451-1466.
- 38. LAVOIE, G., HEYWOOD, J.B. and KECK, J.C., "Experimental and Theoretical Study of Nitric Oxide Formation in Internal Combustion Engines", Combustion, Science & Technology 1, 313, 1970.
- 39. ANNAND, W.J.D., "Heat Transfer in the Cylinders of Reciprocating Internal Combustion Engines", Proc. I. Mech. E., Vol. 177, No. 36, 1963.
- 40. VINES, R.F., "The Platinum Metals and Their Alloys", The International Nickel Company, Inc., New York, New York, 1941.
- 41. NICOL, T., "Integration (Quadrature) Routines", Computing Centre, University of British Columbia, 1982.

APPENDIX A - CALIBRATION CURVES

In this appendix the calibration curves for the Meriam laminar flow element, used to monitor natural gas flow, and the orifice plate used to monitor air intake flow to the C.F.R., are presented. The calibration for the laminar flow element was supplied by the manufacturer. The laminar flow element was used to calibrate the orifice plate.

Figure A.1. Calibration curve for laminar flow element.

Figure A.2. Calibration curve for orific metre.

APPENDIX B - HOT WIRE CALIBRATION PROCEDURE

In this appendix the preparation and calibration of hot wire probes for measurement of air movement within the C.F.R. cylinder are described.

1. Welding and Preparation

Wire breakage was a frequent occurence during the course of experiments and thus it became necessary to establish a routine repair procedure.

Platinum Iridium wire (diameter = 6.3 micrometers) obtained from TSI Incorporated was spot welded onto the support needles. The welding was performed with the aid of a microscope and a Disa welding unit model 55Al2. Each welded wire was inspected visually for any defects or contamination after welding.

The resistance of the sensor was measured by placing it into the anemometer bridge circuit and adjusting the variable load resistance until
bridge balance was achieved. The resistance of the cable and the internal
resistance of the probe were accounted for in this procedure. The internal
resistance of the probe varied from weld to weld but was generally between
0.58 and 0.80 ohms. Some sensors were found to have a high weld resistance
after repair. These wires were maintained at a high overheat ratio until
the resistance dropped and stabilized. If the weld resistance remained
high the wires were discarded.

2. Calibration

The probes were calibrated in an open wind tunnel with a pitot tube at ambient conditions for air speeds ranging from 0.5 to 20 m/s. The wire was operated at a temperature of 600°C. The operating temperature of 600°C ws

selected because Vines [40] has reported that above this temperature platinum-iridium wire undergoes a phase transformation and thus its resistance characteristics are altered. The operating resistance of the wire was determined from:

$$R_{0P} = R_0 + R_0 \alpha_0 (T_{0P} - T_0)$$
 (A.1)

where α_0 , R_0 , T_0 were supplied by the manufacturer.

From the pitot tube data a Reynolds number was formed based on the wire diameter and the ambient air conditions. From the corresponding anemometer voltage a Nusselt number was calculated again based on the air conditions. From the calibration data a correlation was formed. The analytical method is described in the next section.

3. Analytical Procedure for Correlation

The hot wire anemometer registers the change in resistance (electrical) which results from the heat transfer from the sensor. Heat is transferred by radiation, buoyant convection, forced convection by the flow, and conduction along the wire to the supports. The radiation portion is small and can be neglected. Also for all applications except those involving very small velocities buoyancy may be neglected. Thus forced convection induced by the flow and conduction to the supports are the main modes of heat transfer.

Because the convection heat transfer process is a function of the driving temperature differential and fluid properties such as viscosity, density, and conductivity the sensor response is sensitive to changes in temperature and pressure in the flow. Ideally a probe should be calibrated

over the range of temperatures and pressures encountered in the engine cylinder. However this is not a practical solution in light of the frequent occurence of wire breakage. Thus it becomes necessary to rely on analytical models to correct for variations from the calibrated conditions.

Most of the universal calibrations developed are modifications to the theory of King [32] and express the Nusselt number as a function of the Reynolds number in the form:

$$Nu = a + b Re^{h}$$
 (A.2)

where a, b, and n are determined from calibration. The Nusselt number is also a function of the Prandtl number; however, since the Prandtl number is almost constant in air (about 0.7) it is not considered explicitly in the correlation.

In this study an approach similar to that of Davies and Fisher as proposed by Witze [27] was taken. In this method the one dimensional energy equation for the wire is solved to obtain an expression for the temperature distribution along the wire. This temperature distribution is integrated along the wire to yield a mean wire temperature:

$$T_{M} = \frac{2(T_{p}^{-C_{1}})}{\sqrt{C_{2}} \ell} \tanh \left[\sqrt{C_{2}} \ell/2\right] + C_{1}$$
 (A.3)

where

$$c_{1} = \frac{hT_{g} + I^{2}R_{0}(1 - \alpha_{0}T_{0})/(\pi d\ell)}{h - I^{2}R_{0}\alpha_{0}/(\pi d\ell)}$$
(A.4)

and

$$C_2 = 4[h - I^2R_0\alpha_0/(\pi d\ell)]/k_Ud$$
 (A.5)

where h is the heat transfer coefficient, T_p is the sensor support temperature, T_g is the gas temperature, t_g is the mean thermal conductivity of the wire, t_g is the resistance of the wire at the reference temperature t_g , t_g is the temperature coefficient of resistance for the wire, and I is the current through the wire. Since the mean wire temperature is fixed at t_g the only unknown in the above equations is h, the heat transfer coefficient. Iteration can be used to find h. The Nusselt number is then formed.

4. Hot Wire Calibration Computer Program HWCAL

This program uses the data obtained to fit a correlation of the form of Equation (A.2). The program uses a nonlinear least squares method [28] to fit the data.

Inputs to the program are the ambient conditions temperature and pressure, operating resistance of the wire, and the calibration data pressure differential and anemometer bridge voltage.

The data is processed within the subroutine ANEM to obtain Nusselt number, as described in the previous section, and Reynolds numbers from the pitot tube data. The arrays of Reynold and Nusselt numbers are then passed to the curve fitting program NL2SOL from the U.B.C. curve fitting library [20]. The outputs of the program are the calibration constants a,b,n and the residuals.

A program listing and flow chart follows.

DEFINITION OF PROGRAM SYMBOLS

A Constant

ALFAO Temperature coefficient of wire resistance

B Constant

C2 Constant C2 in Equation A.5

D Diameter of wire

EV Anemometer bridge voltage corresponding to flow measurement

H Heat transfer coefficient

IV Working array of curve fit routine

KG Thermal conductivity of gas

KW Thermal conductivity of wire

L Length of wire

NV Nusselt number

P Coefficient array

RE Reynolds number

RHO Density of gas

RO Ice point resistance of wire

RW Operating resistance of wire

V Pressure differential corresponding to pitot tube measurement

VISC Kinematic viscosity of gas

HWCAL FLOWCHART CALL SUBROUTINE ANEM


```
HWCAL at 10:25:13 on JUN 27, 1985 for CCid=CILL Page
                 IMPLICIT REAL+8 (A-H, 0-Z)
 1
                DIMENSION P(3), IV(65), V(350)
 2
 3
                EXTERNAL CALCR, CALCJ
                COMMON X(20), Y(20)
 3.5
 4
                M=3
 5
                CALL ANEM(N)
                P(1)=0.25D0
 8
 9
                 P(2)=0.25D0
10
                P(3)=0.45D0
                 FIND (7'1000)
10.5
                DO 88 JJ=1,N
.11
11.5
                 READ(7.89) \times (JJ), Y(JJ)
                 FORMAT(2F20.2)
11.7
        89
11.8
       88
                 CONTINUE
12
                 IV(1)=0
                CALL NL2SOL(N,M,P,CALCR,CALCJ,IV,V,IPARM,RPARM,FPARM)
17
                WRITE(6,300) IV(1)
FORMAT(' RETURN CODE = ',12)
18
19
        300
20
                 WRITE(6,301) (P(I),I=1,3),V(10)
                 FORMAT( ' SOLUTION: ', 1P3G16.8/
21
        301
                         ' SUM OF SQUARES/2 =',1PG16.8)
22
31
                 STOP
                 END
32
                 SUBROUTINE CALCR(N,M,P,NF,R,IPARM,RPARM,FPARM)
33
                 IMPLICIT REAL*8(A-H,O-Z)
34
35
                DIMENSION P(M), R(N)
                 COMMON X(20), Y(20)
36
37
                 DO 100 I=1,N
                 R(I) = P(1) + P(2) * X(I) * * P(3) - Y(I)
38
40
        100
                 CONTINUE
                 RETURN
43
44
                 END
45
                 SUBROUTINE CALCU(N,M,P,NF,D,IPARM,RPARM,FPARM)
46
                 IMPLICIT REAL*8(A-H, D-Z)
                DIMENSION P(M), D(N, M)
47
47.2
                COMMON X(20), Y(20)
47.7
                DO 100 I=1,N
47.8
                D(I,1)=1.D0
                D(I,2)=X(I)**P(3)
47.9
47.95
                 D(1,3)=P(2)*(X(1)**P(3))*DLOG(X(1))
47.97
        100
                 CONTINUE
48
                 RETURN
49
                 END
                 SUBROUTINE ANEM(NDAT)
50
                 REAL*8 KW,KG,L,D,RO,ALFAO,TO,TG,RW,TW,A,B,HI,C2,E,H
51
                 REAL*8 RE(18), NU(18), EV(18), V(18), VO
52
53
                KW=18.DO
54
                KG=0.0251D0
55
                 L=1.5E-03
                D=6.30E-06
56
57
                 ALFA0=0.0009
                 TO=293.15
58
                WRITE(6,1).
FORMAT(' AMBIENT TEMPERATURE = ?')
59
60
                 CALL FREAD ('GUSER', 'R:', TO)
61
                WRITE(6,2)
FORMAT(' GAS TEMPERATURE = ?')
62
63
        2
                 CALL FREAD('GUSER', 'R:', TG)
64
```

```
HWCAL at 10:25:13 on JUN 27, 1985 for CCid=CILL Page
65
                 WRITE(6.3)
                 FORMAT(' AMBIENT RESISTENCE OF WIRE = ?')
66
                 CALL FREAD('GUSER', 'R:', RAMB)
67
68
                WRITE(6,4)
                 FORMAT(' OPERATING RESISTANCE OF WIRE = ?')
69
                 CALL FREAD('GUSER', 'R:', RW)
70
71
                 WRITE(6.5)
                 FORMAT(' NUMBER OF DATA POINTS = ?')
72
        5
73
                 CALL FREAD('GUSER','I:',NDAT)
                 DO 999 J=1,NDAT
74
                 WRITE(6.6)
FORMAT(' PRESSURE DIFFERENTIAL = ?')
75
76
        6
77
                 CALL FREAD('GUSER', 'R:', V(J))
                 WRITE(6,7)
78
79
                 FORMAT(' ANEMOMETER VOLTAGE = ?')
                 CALL FREAD('GUSER', 'R:', EV(J))
80
81
        999
                 CONTINUE
                 WRITE(6,8)
82
                 FORMAT('ICE POINT RESISTANCE OF WIRE ? ')
83
                 CALL FREAD('GUSER','R:',RO)
TW=(RW-RO)/(ALFAO*RO)
84
85
86
                 TG=TG+273.15
86.5
                 RA=RAMB
                 TO=TO+273.15
87
                 TL=T0-273.15
87.5
                 RT=RW+50.214
88
                 TW=TW+273.15
89
90
                 ALFA0=0.0009
                 DO 10 J=1, NDAT
91
92
                 NCOUNT = O
93
                 V(J) = DSQRT(2.0 + V(J)/1.144)
                 A=EV(J)**2*(1.-ALFAO*(273.15))/(3.141593*D*L*RT**2)*RC
94
                 B=EV(J)**2*ALFAO/(3.141593*D*L*RT**2)*RO
95
                 HI=EV(J)**2/(KG*(RT**2)*3.141593*D*L*(TW-TG))*RW
96
97
        22
               C2=4*(HI-B)/(KW*D)
                 NCOUNT=NCOUNT+1
98
                 IF (NCDUNT .GT. 100) GD TO 100
99
                 E=DTANH(DSQRT(C2)*L/2)/(DSQRT(C2)*L)
100
                                    B*(TW-2*TD*E))/(TW-TG+2*(TG-TD)*E)
101
                 H=(A*(1.-2*E)+
                 TOL=
                          DABS((H-HI)/HI)
102
                 HI=H
103
104
                 IF
                        (TOL
                                .GT.
                                        0.001)
                                                  GO
                                                        Τū
                                                              22
                 NU(J)=H*D/KG
105
                            V(J)*D/15.7E-06
106
                 RE(J)=
               CONTINUE
111
        10
               DO 102 J=1, NDAT
111.2
               WRITE(7, 101) RE(J), NU(J)
111.5
               FORMAT(2F20.2)
        101
111.7
               CONTINUE
111.8
        102
               GO TO 98
112
113
        100
               WRITE(6,99)
               FORMAT(' ', 'ERROR, TOO MANY ITERATIONS N=100!')
114
        99
               CONTINUE
115
        98
116
                 RETURN
117
                 END
```

APPENDIX C - DATA ACQUISITION PROGRAMS

In this appendix the computer programs used for data acquisition are presented. The first program CDAQ, was used to collect data directly from the experiments. The second program BYTRD was used to transfer the digital data from floppy discs to the MTS system.

1. Data Acquisition from C.F.R. CDAQ

This program was used to acquire pressure and anemometer data from the C.F.R. engine. The program CDAQ was loaded into the I.B.M. microcomputer which was interfaced with an anamogue to digital conversion board. The program CDAQ was linked with PCLAB software [41] so that commands for analogue to digital conversions could be issued from the terminal.

CDAQ is an interactive program which allows the user to select sample rate, gain, and amount of data to be taken. The user may also view stored data digitally or graphically.

CDAQ acquires data in blocks of 32K bytes. Each analogue data point is converted to a half word (2 byte) integer. Thus each block contains 16K data points. Once data acquisition is initiated CDAQ allows 16K analogue to digital conversions to occur. Each data point is stored in a 16K array. Once a block is complete CDAQ transfers the block to a file on a diskette. If more than one block was requested CDAQ then goes back for more.

A flow chart and the program listing follows.

CDAQ FLOWCHART


```
10 'CFRDAD.BAS
                     This program acquires pressure or an emmometer data from the C.F.R. engine.
30 '
40 PRINT "THIS PROGRAM ACQUIRES CYLINDER PRESSURE OR HOT WIRE ANEMOMETER"
50 PRINT "DATA FROM THE CFR ENGINE AND STORES THE VALUES ON DISK."
60 PRINT
70
80 TIMEOUT% = 20
90 CALL SET.TIMEOUT(TIMEOUT%)
100 1
110 FORT. SELECT% = 2
120 CALL ENABLE.FDR.OUTPUT(FORT.SELECT%)
                                                    'Enable both output ports
130
140 NCHAN%=0
148 PRINT
149 INPUT: "INPUT DESIRED GAIN (1,2,4, DR B)"; BAIN%
150 TIMING. SOURCE% = 3
190 START. CHAN% = NCHAN%
200 END. CHAN% = NCHAN%
210
220 CALL SETUP.ADC (TIMING.SOURCE%, START.CHAN%, END.CHAN%, GAIN%)
230
240 DEFINT V,X,Y,N,I,M,Z
250 DIM DUMMYX (14000) , ANALOG. DATAX (16100)
260 INC%=0
270 PRINT
280 INPUT; "TAKE NEW DATA (1) OR VIEW DATA IN RAMDRIVE (2) "; 0%
290 RATE=1
300 IF 0%=1 60T0 320
310 IF 0%=2 60T0 1110
320 FRINT
330 PRINT "TO SET THE SAMPLE RATE, ADJUST THE THUMBWHEEL SWITCHES ON THE FRONT" 340 PRINT "DF THE CIRCUIT BDX TO: 01, 02, 05, DR 10, CORRESPONDING TO SAMPLING" 350 PRINT "AT EVERY 0.2, 0.4, 1, DR 2 DEGKEES CRANK ANGLE RESPECTIVELY, ALSO," 360 PRINT "INFUT THE RATE SELECTED (0.2, 0.4, 1.0 DR 2.0)"
370 INPUT; RATE
380 PRINT
390 INPUT; "HOW MANY BLOCKS OF DATA DO YOU WANT (MAX. 10) ": NBLOCK
400 PRINT
410 PRINT
                            'Sets the number data points taken in each block 'Sets the delay time for data acquisition
420 N = 16000
430 K%=RATE*4300
440 NUMBER. OF . ELEMENTS% = N
                             'Sets the number of bytes of memory for data
450 M=N*2
460
470 INPUT; "PRESS RETURN KEY TO START "; A$
480 PRINT
490 PRINT "DATA BEING ACQUIRED...... "
500 PRINT
510 INCX=INCX+1
                               'Counts number of blocks of data acquired
 520
 525 FRINT "FLIP TOGGLE ON"
 526 PRINT
 530 'The following section sends the number of data points to be taken per
 540 'block to the circuit boards. Only this number of clock pulses will be
550 'allowed through to the data acquisition board.
570 D.MASK% = &HB000
580 D.VALUE% = &H0
                             'Mask all the lines except 15 (load line)
                            'Set load line low
590 CALL OUTFUT. DIGITAL. VALUE (PORT. SELECT%, D. MASK%, D. VALUE%)
 600
 610 D.MASK% = &H7FFF
                             'Mask line number 15
                             'Set the other lines to the number of samples
 620 D. VALUE% = N+2
```

```
430 CALL DUTPUT. DIGITAL. VALUE (PORT. SELECTX, D. MASKX, D. VALUEX)
640
450 FOR I = 1 TO 80
                          'Delay for sufficient load time
650 NEXT 1
670
                          'Mask every line except 15
680 D. MASK% = &HB000
690 D.VALUE% = %HB000 'Set line 15 high (load line)
700 CALL DUTPUT.DIGITAL.VALUE(PORT.SELECT%, D.MASK%, D.VALUE%)
710
720 'Start data acquisition....
730 '
740 CALL CONTINUOUS.ADC.DMA(NUMBER.OF.ELEMENTS%, ANALDG.DATA%(1))
750 CALL TEST.ADC.DMA(COUNT.REM%)
760 IF COUNT.REM%>50 GOTO 750
770
7B0 '
790 CALL STOP. ADC. DMA
800 FRINT "COUNT.REM = ", COUNT.REM%
BIO NEG%=-INC%
B20 A$=STR# (NEG%)
830 B$="C:DATA."+A$
840
850 Z=0
860 Z=VARFTR(ANALDG.DATA%(1)) 'Finds the memory location of start of array
870 BSAVE B#,Z,M
                                    'Saves the 16k data block to Ramdrive C:
BBO
885 PRINT
886 PRINT "FLIP TOGGLE OFF"
900 IF INC% < NBLOCK GOTO 510
910 PRINT
920 PRINT "<<<<<< DATA ACQUISITION COMPLETE >>>>>>
930 PRINT
940 INPUT; "DD YDU WANT TO VIEW THE DATA (Y/N) "; ANS$
950 IF ANS¢="Y" THEN 1110
960 IF ANS¢="Y" THEN 1110
970 PRINT
980 PRINT "DATA RESIDES IN RAMDRIVE C: AND CAN NOW BE TRANSFERED TO DISK B:"
990 PRINT
1000 INPUT; "DD YDU WANT TO STORE THE DATA "; ANS$
1010 IF ANS$="Y" BDTD 1070
1020 IF ANS$="Y" BDTD 1070
1030 FRINT
1040 INPUT; "DO YOU WISH TO TAKE MORE DATA? "; ANS$ 1050 IF ANS$="Y" GOTO 260
1060 IF ANS$="Y" GOTD 260
1070 END
1080
1090
1100
1110 FRINT
1120 INPUT; "WHICH DATA BLOCK DO YOU WISH TO VIEW ": NVIEW%
1130 PRINT
1140 INPUT; "INPUT N TO VIEW CYCLES 1,1+N,1+2N ETC"; V%
1150 PRINT
1160
1170 S%=1
1180 NEG=-NVIEW%
1190 A$=STR$(NEG)
1200 B$="C: DATA. "+A$
1210 PRINT 8$
1220 Z=VARPTR (ANALDG. DATA% (1))
1230 BLOAD B$,Z
1235 S%=S%-1
1240 INPUT; "DO YOU WISH TO LIST THE DATA "; ANS$
1250 IF ANS$="N" GOTO 1340
```

```
1270 L1=540/RATE-50
1280 L2=540/RATE+50
1290 PPC%=720/RATE
1300 FOR I = L1 TO L2
1310 PRINT I,ANALOG.DATA%(I+8%*PFC%)
1320 NEXT I
1330 INPUT; U%
1340 KEY DFF
1350 SCREEN 2,,0,0
1360 LINE (100,90)-(460,90)
 1370 LINE (100,1)-(460,1)
 1380 LINE (100,180)-(460,180)
 1390 LINE
                   (100,1)-(100,180)
 1400 LINE (460,1)-(460,180)
1410 LINE (100,45)-(105,45)
1420 LINE (460,45)-(455,45)
1420 LINE (460,45)-(455,45)
1430 LINE (460,135)-(455,135)
1440 LINE (100,135)-(105,135)
1450 LINE (280,180)-(280,176)
1460 LOCATE 12,7,0 :PRINT "0.00";
1470 LOCATE 1,7,0 :PRINT "10.0";
1480 LOCATE 23,6,0 :PRINT " 5.0";
1490 LOCATE 23,6,0 :PRINT "-10.0";
1500 LOCATE 23,6,0 :PRINT "-5.0";
1510 LOCATE 25,40,0 :PRINT "DEGREES C.A.";
1520 LOCATE 9,1,0 :PRINT "VDLTS";
1530 LOCATE 1,20,0 :PRINT " ENGINE PRESSURE TRACE ";
1540 LOCATE 24,13,0 :PRINT "0";
1550 LOCATE 24,35,0 :PRINT "360";
1560 LOCATE 24,57,0 :PRINT "720";
 1570 LDCATE 1,1,0
 1580 FOR X = 100 TO 460
 1590 Y = 180 - ANALOG. DATA%(((X-99)*2/RATE)+(5%*FP0%))/23
 1600 PSET (X,Y)
 1609 NEXT X
 1610 INPUT; ST$
 1611 SCREEN O
  1612 S%=S%+V%+1
 1615 IF 5%<=(22*RATE) GDTO 1235
 1640
 1650 INFUT; "DO YOU WANT TO VIEW ANDTHER BLOCK? "; ANS$ 1660 IF ANS$="Y" GOTD 1110 1670 IF ANS$="y" THEN 1110 ELSE 960
  1680 '
  1690 'PROGRAM END.
```

4.

2. Conversion of Digital Data to MTS (BYTRD)

This program was used to convert integer data from CDAQ into a form which could be read by the MTS system. This was necessary because the IBM microcomputer stored half word integers with the low order byte first, high order byte second and MTS uses the opposite order. The program reads the integer data as logical variables, in array form. The array indexes are interchanged and then the logical array is read into an integer array. BYTRD also strips off the seven byte label placed before each block of data by CDAQ.

A flow chart and program listing follow.

BYTRD FLOWCHART


```
Listing of BYTRD at 17:46:06 on JUN 26, 1985 for CCid=CILL Page
                    LOGICAL*1 PC(64), MTS(64), SAVB, SAVE
     1
     2
                    INTEGER LNUM, NLINE
     3
                    INTEGER*2 LEN,DAT(32)
                    EQUIVALENCE(DAT, MTS)
     4
     5
                    LEN=2
     5.5
                    JJ=1
                    CALL READ(PC, LEN, O, LNUM, 5)
     6
     7
            10
                    DO 1 J=8,62,2
                    K=J-7
     8
     9
                    MTS(K)=PC(J+1)
                    MTS(K+1)=PC(J)
    10
    11
                    CONTINUE
    11.5
                    NFLG=1
    12
                    SAVE=PC(64)
    13
                    WRITE(7,99) (DAT(K), K=1,28)
    13.5
                    IF (JJ.GT. 1 ) GO TO 11
                    WRITE(6,100)
FORMAT(' ','HOW MANY LINES ARE IN YOUR FILE ?')
    14
    15
            100
                    CALL FREAD ('GUSER', 'I:', NLINE)
    16
            11
                    1+66=66
    18
    19
                    NREC=JJ*1000
    20
                    FIND(7'NREC)
                    CALL READ(PC, LEN, O, LNUM, 5)
    21
    21.5
                    NFLG=NFLG + 1
                    IF (NFLG .EQ. 503) GD TO 10
    21.7
                    MTS(1)=PC(1)
    22
                    MTS(2)=SAVE
    23
    24
                    DO 2 K=3,63,2
    25
                    MTS(K)=PC(K)
    26
                    MTS(K+1)=PC(K-1)
                    CONTINUE
    27
            2
    28
                    SAVE=PC(64)
                    WRITE(7,99) (DAT(K),K=1,32)
FORMAT('',3215)
IF (JJ .LE. NLINE) GO TO 11
    29
    29.5
            99
    30
                    STOP
    31
```

END

32

1. Instantaneous Velocity Evaluation and Ensemble Averaging (ANEM)

In this section the program used to process the digitized anemometer signal to obtain an instantaneous velocity is described. All anemometer data for which velocity was required was processed with this program.

Included in this program is the ensemble technique described in Chapter 6.4.1. The outputs of this program are the instantaneous velocity every 1/5 of a crank angle degree for 40 or more engine cycles, the ensemble averaged mean velocity, and the ensemble averaged turbulence intensity.

The inputs to this program are the digitized anemometer voltage; the calibration constants a,b, and n for the hot wire correlation (Equation (5.1)), and the ensemble averaged pressure trace. The pressure trace contains data points for every crank angle degree in the engine cycle. At each point the temperature of the cylinder air is calculated assuming an adiabatic process (Equation (6.5)); the thermal conductivity is calculated from Equation (6.8), and the kinematic viscosity is calculated from Equation (6.9). The reference condition was taken at the point of intake valve closing, where the pressure and temperature were taken as the ambient condition.

The anemometer data is first converted back to a voltage using the appropriate system gain and offset. Then the heat transfer coefficient from Equations 6.2, 6.3, and 6.4 is solved for using the iteration technique described in Appendix B. Once the heat transfer coefficient has been determined the Nusselt number may be formed and from the correlation (Equation (5.12) the velocity may be solved for.

The instantaneous velocity obtained for each point is stored for later

processing by other programs. In addition as the program runs through the data a cumulative sum of the instantaneous velocity as well as the square of the instantaneous velocity is kept. After all the data has been processed the ensemble average mean velocity and turbulence intensity is obtained from Equation 6.10 and 6.12 respectively.

A flow chart and a program listing follow.

Definition of Program Symbols (ANEM)

AA Intercept for Nu-Re Correlation

ALFAO Temperature Coefficient of Resistance for Wire

BB Slope for Nu-Re Correlation

CEV Anemometer Voltage Obtained from Digital Data

D Wire Diameter

EV Digitized Anemometer Voltage

H Heat Transfer Coefficient

KG Thermal Conductivity of Gas

KW Thermal Conductivity of Wire

LN Wire Length

NBLK Number of 32K Byte Data Blocks

NEW Kinematic Viscosity of Gas

NEXP Exponent for Nu-Re Correlation

NU Nusselt Number

P Pressure

PPC Data Points Per Engine Cycle

RAMB Ambient Resistance of Wire

RATE Data Acquisition Rate

RE Reynolds Number

RO Ice Point Resistance of Wire

RW Operating Resistance of Wire

TG Temperature of Gas

TO Ambient Temperature

VENS Ensemble Averaged Mean Velocity

UPRIME Ensemble Averaged RMS Velocity

UTOT Instantaneous Velocity


```
ANEM at 10:53:37 on JUN 27, 1985 for CC1d=CILL Page
                         KW, LN, D, RO, ALFAO, TO, TG(720), RW, TW, A, B, HI, C2, E, H
                REAL
 2
                REAL
                         RE, NU, P(720), KG(720), NEW(720), NEXP, AA, BB, RATE, TEMP
 2.5
                         X(1801),Y1(1801),Y2(1801)
                REAL
 3
                         UTOT(3600), UENS(1801), VO, NEV, CEV, U2(1801), UPRIME(1801)
                INTEGER EV(22,3600), PPC, NCYC, NBLK, ULIM, NREC, IND, DD(3600)
 4
 5
                KW=18.
 7
                LN=1.5E-03
 8
                D=6.3E-06
                ALFA0=9.0E-04
9
10
                DO 11 J=1,1801
                UENS(J)=O.
10.5
10.7
                UTOT(J)=O.
10.75
                U2(J)=0.
                UPRIME(J)=0.
10.77
                CONTINUE
10.8
        11
                WRITE(6,1)
FORMAT(' AMBIENT TEMPERATURE = ?')
11
12
        1
13
                CALL FREAD('GUSER', 'R:', TO)
                WRITE(6,2)
14
15
        2
                FORMAT(' AMBIENT RESISTENCE OF WIRE = ?')
                CALL FREAD('GUSER', 'R:', RAMB)
16
17
               WRITE(6,3)
                FORMAT(' OPERATING RESISTANCE OF WIRE = ?')
18
       3
                CALL FREAD('GUSER', 'R:', RW)
19
                WRITE(6.4)
FORMAT(' ICE POINT RESISTANCE OF WIRE = ?')
20
21
                CALL FREAD('GUSER'. 'R:'.RO)
22
                WRITE(6,5)
23
24
       5
                FORMAT(' INTERCEPT FOR NU-RE CORRELATION = ?')
25
                CALL FREAD('GUSER', 'R:', AA)
                WRITE(6,6)
FORMAT(' SLOPE FOR NU-RE CORRELATION = ?')
26
27
       6
28
                CALL FREAD('GUSER', 'R:',BB)
29
                WRITE(6,7)
                FORMAT(' EXPONENT FOR NU-RE CORRELATION = ?')
30
       7
31
                CALL FREAD ('GUSER', 'R:', NEXP)
                WRITE(6,8)
32
                FORMAT(' WHAT WAS THE DATA ACQUISITION RATE ?')
33
                CALL FREAD('GUSER', 'R:', RATE)
34
35
                WRITE(6,9)
36
                FORMAT( ' HOW MANY BLOCKS OF DATA WERE TAKEN ?')
37
                CALL FREAD('GUSER','I:',NBLK)
38
                DO 10 J=1,720
                READ(4, 100) Z,P(J),TG(J),KG(J).NEW(J)
39
40
        10
                CONTINUE
41
                FORMAT(' ',F8.2,2X,F12.2,2X,F12.2,2X,F12.8,2X,F14.10)
        100
                PPC=720/RATE
42
43
                NCYC=22*RATE
44
                ULIM=713/RATE
47
                TW=600. + 273.15
48
                TO=TO+273.15
48.5
        C READ IN THE DIGITIZED HOT WIRE DATA
49
                DO 50 J=1.NBLK
                WRITE(6,987) J
49.5
        987
                FORMAT(' ', 14)
49.7
                NREC=(502+(J-1)+1)+1000
50
51
                FIND(5'NREC)
                READ(5,200) (EV(1,N),N=35,PPC),((EV(M,N),N=1,PPC),M=2,NCYC),
52
```

```
170
        ANEM at 10:53:37 on JUN 27, 1985 for CCid=CILL Page
              1 (EV(1,N),N=1,34)
FORMAT('',3215)
52.2
53
        200
53.8
                 RT=RW+50.214
53.95
                 NCT=O
54
                 DO 40 K=1,NCYC
55
                 DO 30 L=1800.PPC
56
                 IND=L*RATE
56.7
                 NCT=NCT+1
57
                 NCOUNT = O
        C CONVERT THE DIGITIZED DATA TO A VOLTAGE
57.5
58
                 CEV=0.004883*EV(K,L) - 10.
59
                 NEV=CEV
59.5
        C BEGIN ITERATION FOR HEAT TRANSFER COEFFICIENT
60
                 A=NEV**2*(1.-ALFAO*(273.15))/(3.141593*D*LN*RT**2)*RO
61
                 B=NEV**2*ALFAO/(3.141593*D*LN*RT**2)*RO
62
                 HI=NEV**2/(KG(IND)*3.141593*D*LN*(TW-TG(IND))*RT**2)*RW
                 C2=4*(HI-B)/(KW+D)
63
        20
64
                 NCOUNT = NCOUNT + 1
65
                 IF (NCDUNT .GT. 100) GD TD 70
                 E=TANH(SQRT(C2)*LN/2)/(SQRT(C2)*LN)
66
                 H=(A*(1.-2*E)+B*(TW-2*TO*E))/(TW-TG(IND)+(TG(IND)-TO)*2*E)
67
                 TOL=
68
                          ABS((H-HI)/HI)
69
                 HI=H
                                          .001) GD TD 20
70
                 1F
                        (TOL
                                  .GT.
        C ITERATION COMPLETE EVALUATE NUSSELT NUMBER
70.5
71
                 NU=H*D/KG(IND)
                 IF (NU-AA .LT. O.) GO TO 21
RE=((NU-AA)/BB)**(1/NEXP)
71.5
72
72.5
        C CALCULATE INSTANTANEOUS VELOCITY
73
        22
                 UTOT(L)=RE*NEW(IND)/D
73.5
                 INC=L-1799
74
                 UENS(INC)=UENS(INC)+UTOT(L)
74.5
                 U2(INC)=U2(INC)+UTOT(L)++2
75
        30
                 CONTINUE
                 WRITE(7,31) (UTOT(M),M=1800,3600)
FORMAT(' ',10F7.2)
76
77
        31
78
        40
                 CONTINUE
79
        50
                 CONTINUE
79.5
        C DO ENSEMBLE AVERAGING
80
                 DD 60 J=1.1801
                 UENS(J)=UENS(J)/(NCYC*NBLK)
81
81.5
                 U2(J)=U2(J)/(NCYC*NBLK)
                 CONTINUE
        60
82
83
                 GD TO 80
                 WRITE(6,400)
FORMAT(' ','ERROR, TOD MANY ITERATIONS N=1001')
        70
84
85
        400
86
        80
                 CONTINUE
                 WRITE(8,500)
86.2
86.3
        C CALCULATE ENSEMBLED INTENSITY
86.5
                 DO 90 K=1,1801
                 UPRIME(K)=SQRT(U2(K)-UENS(K)**2)
86.7
86.77
                 CA=359.8+ K*RATE
                 WRITE(8,600)CA,UENS(K),UPRIME(K)
FORMAT('','CA',5X,'UBAR',3X,'UPRIME')
FORMAT('',F5.1,3X,F6.2,3X,F6.2)
86.8
86.9
        500
86.95
       600
86.955 C PLOT OUT THE RESULTS
86.96
                 X(K)=K/1801.
86.965
                 Y1(K) = UENS(K)/5. *2.
```

```
ANEM at 10:53:37 on JUN 27, 1985 for CCid=CILL Page
```

```
Y2(K)=UPRIME(K)/5. *2.
IF (Y1(K) .GT. 20.)Y1(K)=20.
IF (Y2(K) .GT. 20.)Y2(K)=20.
36.967
86.968
86.969
86.97
                      CONTINUE
                      CALL AXPLOT('CA DEGREES;',0.,20.,0.,1.)
CALL AXPLOT('ENSEMBLES;',90.,20.,0.,1.)
86.98
86.99
                      CALL LINE(X,Y1,1801,1)
86.995
                      CALL LINE(X, Y2, 1801, 1)
86.997
86.998
                      CALL PLOTND
87
                      STOP
                      END
88
```

2. Cycle by Cycle Time Averaged Mean and RMS Velocity (TRAP)

This program was used to obtain the mean velocity and turbulence intensity from the instantaneous velocity records processed with program ANEM.

The program begins by reading in the instantaneous velocity U(i,v) obtained every 1/5 of a crank angle degree over 40 engine cycles. For each velocity U(i,v), the area under the curve, A(i,v), is calculated for a grid size of 1/5 of a crank angle degree using the trapezoidal approximation:

$$A(i,v) = U(i,v) + U(i,v+1)/2/5$$
 (D.1)

The mean velocity is calculated by constructing a 4 degree averaging interval. This is accomplished by summing the individual areas calculated above in blocks of 20 and averaging:

$$\bar{U}_{\theta}(i) = \sum_{\theta=10}^{\nu+10} A(i,\nu)/4$$
 (D.2)

The average is taken as the mid-point of each interval. The resulting curve is the mean velocity $\overline{U}_{A}(i)$ for the engine cycle being processed.

Next the turbulence intensity is computed. First cubic spline interpolation is used to generate points along the mean velocity record at every crank angle degree. The velocity fluctuation \mathbf{u}_{θ} is then calculated as the difference between the mean velocity and the instantaneous velocity at each point:

$$u_{\theta} = U(i,\theta) - \overline{U}_{\theta}(i)$$
 (D.3)

The average of u_{θ}^2 was then calculated using a 12 degree averaging window in the same manner as described for the mean velocity evaluation.

This procedure was performed for each of the 40 engine cycles evaluated. The ensemble averaged mean velocity was then obtained from:

$$\bar{\mathbf{U}}_{\theta} = \frac{1}{40} \sum_{i=1}^{40} \bar{\mathbf{U}}_{\theta}(i) \tag{D.4}$$

and the ensemble averaged turbulence intensity from:

$$\mathbf{u}_{\theta}^{\prime} = \left\{ \frac{1}{40} \sum_{i=1}^{40} \left[\frac{1}{\theta} \int_{0}^{\theta} \left(\mathbf{U}(i,\theta) - \overline{\mathbf{U}}_{\theta}(i) \right)^{2} d\theta \right] \right\}^{1/2}$$
 (D.5)

The cyclic dispersion was also evaluated in this program from:

$$U_{RMS} = \{\frac{1}{40} \sum_{i=1}^{40} \left[\overline{U}_{\theta}(i) - \overline{U}_{\theta} \right]^2 \}^{1/2}$$
 (D.6)

A program listing and flow chart follow.

Definition of Program Symbols (TRAP)

A	Trapezoidal Area Under Instantaneous Velocity
AT	Sum of Areas in Averaging Interval for Mean Velocity
AT12	Sum of Areas in Averaging Interval for Intensity
P	Tension Array for Interpolation
SI	Working Array of Interpolation Routine
s	Interpolated Valves Returned
S1	First Derivative at End Points
S2	Second Derivative at End Points
Т	Crank Angle Degrees for Which Interpolated Velocity Valves are
	Required
U	Instantaneous Velocity
UE	Ensemble Averaged Mean Velocity
UP12	Turbulence Intensity Values
UPE12	Ensemble Averaged RMS Velocity
URMS	Cyclic Variation in Mean Velocity
UT	Interpolated Mean Velocity Values

FLOWCHART FOR PROGRAM TRAP


```
TRAP at 10:53:05 on JUN 27, 1985 for CCid=CILL Page
                REAL UT(357,40),UE(357),U(1801,40),A(1800),AT(180)
                REAL X(200), Y(200), P(1400), SI(2), S(357), Z1, Z2, URMS(357)
 2
 3
                REAL UP12(36,40)
 4
                REAL UPE 12 (36)
 5
                REAL AT12(90)
 6
                REAL S1(357), S2(357), T(357)
 7
                DO 13 J=1,357
 8
                URMS(J)=0.
 9
                UE(J)=0.
        13
10
                DO 11 J=1,357
                DO 12 K=1,40
11
12
                UT(J.K)=0.
13
       12
                CONTINUE
14
       11
                CONTINUE
       C READ IN THE INSTANTANEOUS VELOCITY FOR 40 CYCLES
15
                DO 10 IJK=1,40
16
17
                READ(5,1) (U(J,IJK),J=1,1801)
                FORMAT(' ', 10F7.2)
18
19
                DO 2 J=1.90
                AT(J)=0.
20
21
                AT(J+90)=0.
22
                AT2(J)=0.
23
                AT4(J)=0.
                AT8(J)=0.
24
25
                AT12(J)=0.
26
                CONTINUE
27
       C EVALUATE TRAPAZDIDAL AREAS UNDER VELOCITY TRACE
                DO 23 J=1,1800
28
                A(J)=(U(J,IJK)+U(J+1,IJK))/2/5.
29
30
       23
                CONTINUE
31
32
       ·C
          USE A 4 DEGREE INTERVAL FOR MEAN VELOCITY
           ADD UP THE AREAS FOR WINDOW OF 4 DEGREES
33
34
                DO 4 J=1,90
                 DO 3 K=1,20
35
36
                  L=(J-1)+20+ K
37
                  AT(J)=AT(J)+A(L)
38
                 CONTINUE
       C TAKE THE AVERAGE IN EACH INTERVAL
39
40
                Y(J)=AT(J)/4.
41
                CONTINUE
       4
42
                SI(1)=-1
43
                SI(2)=1
44
                DG 40 J=1,1400
45
       40
                P(J)=0.
46
                DO 41 J=1,357
47
       41
                T(J)=361. + FLOAT(J)
48
                DO 42 J=1,180
49
                X(J)=358.+J*4.
       C FIT A CUBIC SPLINE TO THE POINTS
50
51
                CALL SMOOTH(X,Y,P,90,SI,1,&99)
52
       C GENERATE INTERPOLATION POINTS BETWEEN AVERAGES
53
                CALL SMTH(T,S,S1,S2,357,&99)
       C ADJUST TENSION
54
55
                CALL SMOOTH(X,Y,P,90,SI,0,&99)
                CALL SMTH(T,S,S1,S2,357,899)
56
57
                DO 43 J=1,357
58
       43
                UT(J,IJK)=S(J)
```

```
TRAP at 10:53:05 on JUN 27, 1985 for CC1d=CILL Page
59
                  CONTINUE
         10
 60
         C CALC ENSEMBLED CURVE FROM INDIVIDUAL TRACES
                  DO 20 J=1,357
61
62
                   DO 19 K≈1,38
63
                   UE(J)=UE(J)+UT(J,K)
64
         19
                   CONTINUE
65
                  UE(J)=UE(J)/38.
66
         20
                  CONTINUE
        WRITE(6,300)
300 FORMAT(' ','FINISHED MEAN VELOCITY')
C CALCULATE CYCLIC VARIATION IN MEAN
67
68
69
70
                  DD 800 J=1,357
71
                  DO 801 K=1,38
 72
                  URMS(J)=URMS(J)+(UT(J,K)-UE(J))**2
73
         801
                  CONTINUE
 74
                  URMS(J)=SQRT(URMS(J)/38.)
75
         800
                  CONTINUE
                  WRITE(6,802)
FORMAT(' ','CYCLIC VARIATION COMPLETE')
 76
77
         802
 78
         C CALCULATE INTENSITY NOW USE A WINDOW OF 12 DEGREES
                  DO 1000 IJK=1.40
79
80
                  IND=1
                  KIND=0
81
                  DO 100 J=11,1799
 82
                  KIND=KIND+1
 83
                  IF (KIND .EQ. 6 ) IND=IND+1
IF (KIND .EQ. 6 )KIND=1
 84
85
86
                  Z1=
                       U(J,IJK)- UT(IND,IJK)
                  Z2=U(J+1,IJK) -UT(IND,IJK)
87
88
                  A(J)=(Z1**2 + Z2**2)/2./5.
         100
89
                  CONTINUE
         C 12 DEG WINDOW
90
91
                  DD 401 J=1,30
                  DO 402 K=1,60
92
93
                  L=(J-1)*60 +K +11
94
                  AT12(J)=AT12(J)+A(L)
95
         402
                  CONTINUE
96
                  UP12(J,IJK)=(AT12(J)/12.)
97
                  AT12(J)=0.
98
         401
                  CONTINUE
99
         1000
                  CONTINUE
100
                  WRITE(6,502)
                  FORMAT(' ', 'INTENSITY CALCS DONE')
         502
101
102
                  DD 405 J=1.30
103
         405
                  UPE12(J)=0.
104
                  DD 407 J=1,30
105
                  DO 406 IJK=1,40
106
         406
                  UPE12(J)=UPE12(J)+UP12(J,IJK)
107
                  UPE 12(J) = SQRT(UPE 12(J)/40.)
108
         407
                  CONTINUE
                  WRITE(6,503)
FORMAT(' '.'ENSEMBLE AVERAGING COMPLETE')
109
110
         503
111
                  DO 21 J=1,357
                  X(J)=361. + FLOAT(J)
112
113
                  WRITE(7,22) X(J),UE(J)
114
         21
                  CONTINUE
115
                  DO 28 J=1,357
                  WRITE(8,22) X(J), URMS(J)
116
```

.uā c	TRAP at	10:53:05 on JUN 27, 1985 for CCid=CILL Page	3
117	28	CONTINUE	
118		DO 410 J=1,30	
119		X(J)=370. +(J-1)*12.	
120		WRITE(7,22) X(J),UPE12(J)	
121	410	CONTINUE	
122	22	FORMAT(' ',2F20.2)	
123	99	STOP1	
124		END	

3. Nonstationary Analysis (NOTIME)

This program evaluates the turbulence intensity obtained from the type of nonstationary analysis proposed by Lancaster [10]. In this analysis the turbulent fluctuation $u(i,\theta)$ is defined to be the difference between a stationary mean velocity $\overline{U}(i)$, a time varying mean velocity $\overline{U}(\theta)$, and the instantaneous velocity $U(i,\theta)$:

$$u(i,\theta) = U(i,\theta) - \overline{U}(i) - \overline{U}(\theta)$$
 (D.7)

In this program the instantaneous velocity and ensemble averaged mean velocity from the program ANEM are inputs.

For each engine cycle the stationary mean is calculated from Equation 6.19 using the trapezoidal rule to evaluate the integral. The averaging window was varied from 40 to 100 degrees about TOC. The average turbulence intensity is evaluated for 12 degree intervals from Equation 6.20. The intensity records were then ensembled to give an ensemble averaged turbulence intensity.

A program listing and flow chart follow.

Definition of Program Symbols (NOTIME)

A	Trapezoidal Areas
UE	Ensemble Averaged Mean Velocity
UI	Instantaneous Velocity
UP40	RMS Velocity for Averaging Window of 40°
UP60	RMS Velocity for Averaging Window of 60°
UP80	RMS Velocity for Averaging Window of 80°
UP100	RMS Velocity for Averaging Window of 100°
UT40	Stationary Velocity for Averaging Window of 40°
UT60	Stationary Velocity for Averaging Window of 60°
UT80	Stationary Velocity for Averaging Window of 80°
UT100	Stationary Velocity for Averaging Window of 100°

FLOWCHART FOR PROGRAM NOTIME

```
INPUTS
UE(500), UI(1800, 40)
AREA CALCULATION
J=0,IJK=0
IJK=IJK+1◆
 J=J+1 ←
 Pl=UI(J,IJK)-UE(J)
 P2=UI(J+1,IJK)-UE(J+1)
 A(J) = (P1+P2)/2/5
 J < 500 -
STATIONARY MEAN VELOCITY
J=0
J=J+1 🕶
UT(IJK)=UT(IJK)+A(J) NO
J < 500 -
UT(IJK)=UT(IJK)/WINDOW
UB=UB+UT(IJK)
CYCLIC VARIATION OF MEAN VELOCITY
RMS=RMS+UT(IJK)**2
                        NO
IJK < 40
UB=UB/40
RMS = SQRT(RMS/40)
INTENSITY CALCULATION
IJK=0
IJK=IJK+1 ◆
CALL INTENS (UI, UE, UT, 1, UP, IJK)
                                   NO
IJK ≼ 40
J=0
J=J+1 🕶
UP(J) = SQRT(UP(J)/40)
J < 500/WINDOW −
WRITE RESULTS
UP(J), J=1,500/WINDOW
           STOP
```

```
NOTIME at 10:53:49 on JUN 27, 1985 for CC1d=CILL Page
                REAL UE(500), UI(1801,40), UT40(40), UT60(40), UT80(40), X(20)
 1
 2
                REAL UT100(40).A(500),UP40(40),UP60(40),UP80(40),UP100(40)
 2.5
       C THIS PROGRAM CALCULATES THE STATIONARY MEAN VELOCITY IN A GIVEN
       C WINDOW FROM THE ENSEMBLED MEAN VELOCITY AND THE INSTANEOUA VELOCITY
 2.7
       C BY THE METHOD OF LANCASTER. THE TURBULENCE INTENSITY IS THEN
 2.8
       C CALCULATED FROM THE DIFFERENCE OF THE INSTANTANEOUS VELOCITY
 2.9
 2.95
       C AND THE TWO MEANS, ENSEMBLED AND STATIONARY
 3
                DO 1 J=1,40
 4
                UT40(J)=0.
 5
                UT60(J)=0.
 6
                UT80(J)=0.
 7
                UT100(J)=0.
 7.5
                UP40(J)=0.
 7.7
                UP60(J)=0.
 7.8
                UP80(J)=0.
 7.9
                UP100(J)=0.
 8
                CONTINUE
 9
                U40B=0.
10
                U60B=0.
11
                UBOB=O.
12
                U100B=0.
13
                RMS40=0.
14
                RMS60=0.
15
                RMS80=0.
16
                RMS 100=0.
17
                DO 3 J=1,500
17.5
       C READ IN THE ENSEMBLED MEAN
                READ(5,2) D.UE(J)
18
19
       2
                FORMAT(' ',F5.1,3X,F10.2)
                CONTINUE
20
       3
       C READ IN 40 CYCLES OF THE INSTANTANEOUS MEAN
20.5
                DO 100 IJK=1.40
21
                READ(4,4) (UI(J,IJK),J=1,1801)
FORMAT('',10F7.2)
22
23
23.5
       C EVALUATE THE INTEGRAL BT THE TRAPAZOIDAL METHOD
                DO 5 J=1,499
24
25
                P1=UI(J+649, IJK)-UE(J)
26
                P2=UI(J+650, IJK)-UE(J+1)
                A(J)=(P1+P2)/2./5.
27
28
                CONTINUE
       C CALCULATE THE STATIONARY MEAN VELOCITY
28.5
                DO 6 J=1,499
29
30
                UT100(IJK)=UT100(IJK)+A(J)
                IF ((J.LT.50) .OR. (J .GE. 450)) GO TO 6
31
                UT80(IJK)=UT80(IJK) + A(J)
32
33
                IF ((J .LT.100) .OR. (J .GE.400)) GO TO 6
                UTGO(IJK)=UTGO(IJK) + A(J)
34
                IF ((J.LT.150) .OR. (J .GE. 350)) GO TO 6
35
                UT40(IJK)=UT40(IJK) + A(J)
36
37
                CONTINUE
37.5
                UT40(IJK)=UT40(IJK)/40.
37.7
                UT60(IJK)=UT60(IJK)/60.
37.8
                UT80(IJK)=UT80(IJK)/80.
37.9
                UT100(IJK)=UT100(IJK)/100.
38
                U40B=U40B+UT40(IJK)
39
                U60B=U60B+UT60(IJK)
                USOB=USOB+UTSO(IJK)
40
41
                U100B=U100B+UT100(IJK)
```

2

```
NOTIME at 10:53:49 on JUN 27, 1985 for CC1d=CILL Page
41.5
       C EVALUATE THE CYCLIC VARIATION OF THE MEAN VELOCITY
42
                RMS40=RMS40 + UT40(IJK)**2
43
                RMS60=RMS60 + UT60(IJK)**2
                RMS80=RMS80 + UT80(IJK)**2
44
45
                RMS100=RMS100 + UT100(IJK)**2
46
        100
                CONTINUE
47
                U40B=U40B/40.
48
                U60B=U60B/40.
                U80B=U80B/40.
49
50
                U100B=U100B/40.
                RMS40=SQRT(RMS40/40.)
51
52
                RMS60=SQRT(RMS60/40.)
53
                RMS80=SQRT(RMS80/40.)
54
                RMS 100=SQRT (RMS 100/40.)
       DO 200 IJK=1,40 C EVALUATE THE INTENSITY
55
55.5
56
                CALL INTENS(UI, UE, UT40, 1, UP40, IJK)
57
                CALL INTENS(UI, UE, UT60, 2, UP60, IJK)
                CALL INTENS(UI, UE, UTBO, 3, UPBO, IJK)
58
59
                CALL INTENS(UI, UE, UT 100, 4, UP 100, IJK)
60
       200
                CONTINUE
61
                DD 300 J=1,20
                UP100(J)=SORT(UP100(J)/40.)
62
                IF (J .GT. 16) GO TO 300
63
                UP80(J)=SQRT(UP80(J)/40.)
64
                IF (J .GT. 12) GO TO 300
65
                UP60(J)=SQRT(UP60(J)/40.)
66
                IF (J .GT. 8) GO TO 300
67
                UP40(J) = SQRT(UP40(J)/40.)
68
       300
69
                CONTINUE
70
                WRITE(7,400) U40B, U60B, U80B, U100B
71
       400
                FORMAT(' ',4F10.2)
72
                WRITE(7,400) RMS40,RMS60,RMS80,RMS100
73
                DO 500 J=1,8
                X(J)=522.5+(J-1)*5. -360.
74
75
                WRITE(7,600) X(J),UP40(J)
76
       500
                CONTINUE
77
                DO 501 J=1,12
78
                X(J)=512.5+(J-1)*5. - 360.
79
                WRITE(7,600) X(J),UP60(J)
80
       501
                CONTINUE
                DO 502 J=1,16
81
                X(J)=502.5+(J-1)*5. -360.
81.5
81.7
                WRITE(7,600) X(J), UP80(J)
81.8
       502
                CONTINUE
81.9
                DD 503 J=1,20
81.95
                X(J)=492.5+(J-1)*5. -360.
81.97
                WRITE(7,600) X(J), UP100(J)
81.98
       503
                CONTINUE
                FORMAT(' ',2F20.2)
81.99
       600
82
                STOP
83
                END
83.5
       C THIS SUBROUTINE EVALUATES THE INTENSITY
                SUBROUTINE INTENS(UI, UE, UT, IFLG, UP, IJK)
84
85
                REAL UI(1801,40),UE(500),UT(100),UP(100),A(500)
86
                INTEGER IFLG, LOW, HI, IJK
```

TEMP=O.

NP = (IFLG - 1) * 20 + 40

87

88

```
NOTIME at 10:53:49 on JUN 27, 1985 for CCid=CILL Page
                 LOW=(4-IFLG)*50 +1
89
90
                 HI=(LOW)+NP*5 -2
                 DO 1 J=LOW, HI
91
91.5
                 K=J+649
                 P1=UI(K,IJK)-UE(J)-UT(IJK)
92
93
                 P2=UI(K+1,IJK)-UE(J+1)-UT(IJK)
                 A(J)=(P1**2 +P2**2)/2./5.
94
       . 1
                 CONTINUE
95
                 NP1=NP/5
96
                 DD 3 J=1,NP1
97
                 DO 2 K=1,25
L=LOW + (J-1)*25 + K -1
98
99
                  TEMP=TEMP+A(L)
100
101
                  CONTINUE
102
                 UP(J)=(TEMP/5.) + UP(J)
103
                   TEMP=O.
104
        3
                 CONTINUE
105
                 RETURN
106
                 END
```

4. Time Scale Analysis (PEAK)

This program was used to obtain turbulence time scale information from unprocessed anemometer signals. The basic procedure is to scan the signal for peaks. The time separation between peaks is recorded and a relative probability distribution is constructed for this variable. An amplitude threshold is input to the program as a criteria for defining a peak. This amplitude threshold was determined by operating the hot wire probe in quiescent ambient air and forming a distribution of the noise amplitude for this condition. The mean of this distribution was selected as the amplitude threshold.

The program starts by looking at the first two data points. If the second point is less than the first the program begins to search for a valley; otherwise it scans for a peak. The procedure for scanning for a peak or a valley are similar and only one will be described here. The reader should refer to the following flow chart for complete detail.

The data is read to the program in array. The program keeps track of the index and as long as the following data point is greater than or equal to the present one the index is increased by one. When a peak is found the index is saved until the next peak is found. There are many tests to check for the peak validity and the reader is referred to the flow chart for a clear description of these.

Once two peaks have been found with indexes i and j respectively, the difference between the two indexes gives the time separation. This is because the sample rate was set for every 1/5 of a crank angle degree. Thus the time separation t is obtained from:

$$t = \frac{(j-1)}{5} \frac{1}{RPM}$$
 (D.8)

Because the time separation between peaks can only occur in multiples of 1/5 of a crank angle degree the program can easily keep track of the occurences of a given time separation. The array PDF keeps track of the number of occurences of a specific separation; for example, Pdf(1) keeps track of the number of occurences of m/5 of a crank angle degree separation between peaks. The relative probability distribution of the time between peaks can then be easily determined.

A program listing and flow chart follow.

Definition of Program Symbols (PEAK)

AMP Signal Amplitude Array

D Digital Anemometer Data Array

DAT Working Array of Digital Data

KCNT Keeps Track of Number of Peaks

NOISE Noise Amplitude Threshold

PDF Keeps Track of Number of Occurences of Specific Peak Time

Separation

PK Index of Peak

PICIND Array of Peak Indexes

RDF Real Probability Distribution Function of Peak Time Separation

VALE Valley Value

VALE2 Valley Value

INPUTS DAT(40,300), NOISE INITIALIZE ALL ARRRAYS READ IN THE INTEGER DATA INITIALIZE ALL COUNTERS INITIALIZE ALL FLAGS NCYC = NCYC + 1J = 1KCNT=0 PKIND(J) = 0, J=1, 200DAT(NCYC, 2) < DAT(NCYC, 1)? -SEARCH FOR A PEAK FLG=1 DAT(NCYC,J+1) > DAT(NCYC,J)? NO DAT(NCYC,J) \neq DAT(NCYC,J+1) ? PK=J DAT (NCYC, J) - VALE ≤ NOISE? DAT(NCYC,J) > VALE ? -KCNT = KCNT + 1PKIND (KCNT) = PK JP=J SEARCH FOR A VALLEY FLG = 0◆DAT(NCYC,J+1) < DAT(NCYC,J)? NO J = J + 1NO $DAT(NCYC,J) \neq DAT(NCYC,J+1)$? NO $DAT(NCYC,J+1) \gg DAT(NCYC,J)$ VALE2=DAT(NCYC,J) TEST=DAT (NCYC, JP) TEST - VALE2 > NOISE? NO VALE VALE 2

FLOWCHART FOR PROGRAM PEAK


```
1 00 PEAK at 17:47:25 on JUN 26, 1985 for CCid=CILL Page
 1
              INTEGER DAT(4,300), VALE, VALE2, NOISE, PKIND(200)
 2
              INTEGER PK, FLG, PDF (200), D(4, 3600), AMP (30)
       C THIS PROGRAM COUNTS THE TIME SEPARATION BETWEEN PEAKS AND
 2.02
 2.03
       C FORMS A RELATIVE PROBABILITY DISTRIBUTION OF THIS QUANTITY
 2.05
              REAL RDF(200)
 2.1
              DO 103 K=1,200
 2.15
              RDF(K)=O.
 2.2
              PKIND(K)=0
 2.3
              PDF(K)=0
 2.4
       103
              CONTINUE
             DG 98 MM=1,20
 2.5
 2.7
              NREC=((MM-1)*502 + 1)*1000
              FIND(5'NREC)
 2.8
 3
              READ(5, 100)(D(1,M),M=35,3600),((D(M,N),N=1,3600),M=2,4)
              FORMAT(' ',3215)
 4
       100
 5
              KCNT=O
              NDISE=7
 6
 7
              PK≈0
              JP≈0
 8
              JINT=0
 9
10
              VALE=0
              VALE2=0
11
              DO 99 K=1,30
12
13
              AMP(K)=0
       99
14
              CONTINUE
              DO 102 K=1.4
15
              DO 101 L=1,300
16
17
              M=L + 2549
             DAT(K,L)=D(K,M)
18
19
       101
              CONTINUE
20
       102
              CONTINUE
25
              DO 30 NCYC=1,4
              J=1
26
              KCNT=0
27
              DO 104 K=1,200
28
29
              PKIND(K)=0
30
       104
              CONTINUE
              IF (DAT(NCYC,2) .GT. DAT(NCYC,1)) GO TO 4
31
32
              GO TO 9
33
       2
              GD TO 4
              IF (J .LE. 300) GO TO 1
34
       3
              GO TO 18
35
36
       4
              FLG=1
37
       C
38
       С
          SEARCH FOR A PEAK
       С
39
              IF (J .GE. 300) GO TO 18
40
41
       5
              IF (DAT(NCYC, J+1) .LE. DAT(NCYC, J)) GO TO 6
42
              J=J+1
43
              GO TO 5
              IF (DAT(NCYC,J) .EQ. DAT(NCYC,J+1)) GO TO 15
44
       6
45
              IF ((DAT(NCYC, J)-VALE) .GT. NOISE) GO TO 8
46
47
       7
              IF (DAT(NCYC, J).LE. VALE) GO TO 9
              KCNT= KCNT +
48
       8
              PKIND(KCNT)=PK
49
              IAMP=DAT(NCYC, J)-VALE
50
51
              IF (IAMP .GT. 30) IAMP=30
```

```
PEAK at 17:47:25 on JUN 26, 1985 for CCid=CILL Page
52
               AMP(IAMP)=AMP(IAMP)+1
               JP≠J
 53
 54
               GO TO 3
 55
        9
               FLG=0
 56
        C
        C
           SEARCH FOR A VALLEY
 57
58
        C
 59
               IF (J .GE. 300) GD TD 18
               IF (DAT(NCYC, J+1) .GE. DAT(NCYC, J)) GO TO 11
 60
         10
 61
               J=J+1
62
               GD TO 10
 63
               IF (DAT(NCYC,J) .EQ. DAT(NCYC,J+1)) GO TO 15
               IF (DAT(NCYC, J+1) .LT. DAT(NCYC, J)) GO TO 10
 64
         12
 65
               VALE2=DAT(NCYC,J)
               TEST=DAT(NCYC, JP)
66
 67
               IF (JP .EQ. 0)TEST=10000
               IF ((TEST -VALE2) .LE. NOISE) GO TO 13
 68
69
               VALE=VALE2
70
               GD TD 2
71
         13
               IF (DAT(NCYC,J) .LT. DAT(NCYC,JP)) GO TO 14
72
               KCNT=KCNT-1
73
               GO TO 4
74
         14
               J=J+1
 75
               GO TO 10
76
        15
               U=TMIL
 77
               IF (J .GE. 300) GD TO 18
78
        16
               IF (DAT(NCYC, J+1) .NE. DAT(NCYC, J)) GO TO 17
79
               J=J+1
80
               GD TO 16
               IF (FLG.EQ.O)GO TO 12
81
       - 17
82
               PK=JINT +(J-JINT)/2
83
               GO TO 7
84
        18
               CONTINUE
               DO 20 K=1,300
85
86
               INDEX=PKIND(K+1)-PKIND(K)
87
               IF (INDEX .LE. 0) GO TO 21
88
               PDF(INDEX) = PDF(INDEX) + 1
        20
89
               CONTINUE
90
        21
               CONTINUE
91
        30
               CONTINUE
91.5
        98
               CONTINUE
92
               KSUM=0
93
               DO 23 K=1,200
               KSUM=KSUM + PDF(K)
94
               WRITE(6,22) K,PDF(K),KSUM
95
        С
               FORMAT(' ',3110)
96
        C22
97
        23
               CONTINUE
101.5
               DO 26 L=1,200
101.7
               RDF(L)=FLOAT(PDF(L))/FLOAT(KSUM)
101.8
               X=L/5.*(60./(1140.*360.))*1000000.
               WRITE(7,27) X,RDF(L)
FORMAT('',F10.2,2X,F10.3)
101.9
101.95
        27
               CONTINUE
101.97
        26
102
               STOP
103
               END
```

APPENDIX E - COMBUSTION DATA PROCESSING

1. Pressure Evaluation and Ensemble Averaging from Digital Data (PENH)

This program was used to read in the digitized pressure data, ensemble average it, convert the integers to a pressure in bars, and then save the data in a file for later use.

A program listing and flow chart follow.

Definition of Program Symbols (PENH)

I Integer Array Used to Ensemble Digital Pressure Data

KG Thermal Conductivity of Air

NV Kinematic Viscosity of Air

P Digital Pressure Data

PE Pressure Converted to Bars

RHO Density of Air

TG Temperature of Air

V Voltage Obtained From Digital Data

FLOWCHART FOR PROGRAM PENH


```
ing of PENH at 10:53:24 on JUN 27, 1985 for CCid=CILL Page
 1
       C*
 2
       C*
 3
       C*
            THIS PROGRAM ENSEMBLES THE DIGITAL DATA FROM THE PRESSURE
 4
 5
       C*
            TRACE. 5-10 GRABS OF 32 K CHUNKS ARE MADE. THIS CORRESPONDS
            APPROX 22.75 CYCLES PER GRAB.
 6
       C*
            THE INTEGERS ARE READ INTO A MATRIX, 22 CYCLES AT A TIME AND
 9
       C*
            ARE THEN ENSEMBLED THEY ARE THEN CONVERTED TO PRESSURE DATA
10
       C*
       C*
            AMBIENT CONDITIONS ARE ASSUMED TO EXIST IN THE CYLINDER FOR
11
12
       C*
            THE BDC CRANK POSITION
       C*
15
16
               INTEGER P(21,720),D(720),I(720)
17
18
               REAL PE(720), TG(720), U(720), KG(720), RHO(720), NU(720)
               REAL TO, KO, PO, UO
19
22
               PQ=101300
24
               DO 101 J=1,720
25
               I(J)=0
       101
               CONTINUE
26
27
       C READ IN THE DATA
28
               DO 1 J=1.5
               NREC=( 502*(J-1) + 1)*1000
29
               FIND(5'NREC)
30
               READ(5,99) K
31
               READ(5,99)(D(L),L=1,685),((P(M,N),N=1,720),M=1,21)
32
               FORMAT(' ',3215)
33
       99
33.5
       C ENSEMBLE AVERAGE THE DATA
              DO 2 M=1,21
34
35
              DO 3 N=1,720
               I(N) = I(N) + P(M,N)
36
       3
37
               CONTINUE
38
              CONTINUE
       2
39
              NCNT=J
40
               CONTINUE
              DO 4 J=1,720
41
               I(J)=I(J)/(NCNT*21)
42
42.5
       4
               CONTINUE
43
       C
            THE DATA HAS NOW BEEN READ IN DIGITAL FORM AND ENSEMBLED
44
       C
45
       C
            FOR DIGITIZATION, -10 TO +10 VOLTS CORRESPONDS TO 0 TO 4096
46
       C
            CONVERT INTEGERS BACK INTO A VOLTAGE
47
       C
            V=(-10 + 0.004883 * I)
            FOR PRESSURE TRANSDUCER, 10 BAR PER VOLT, REF PRESSURE IS AT BDC
48
       C
48.5
       C
            AND CORRESPONDS TO THE INTAKE MAINIFOLD PRESSURE
50
       C
50.5
              DO 10 U=1,720
              V=(.004883*I(J) - 10.)
51
              PE(J)= (V+0.42185 )*10.-
52
53
              PB=PE(J)
54
       C
55
       С
            CONVERT TO PASCALS
       C
56
57
              PE(J) = (PE(J) * 102.642) * 1000.
       10
61
              CONTINUE
62
              DO 5 J=1,180
63
              K = 360 + (J-1)*2
               WRITE(7.6) PE(K)
65
       5
               CONTINUE
66
       6
               FORMAT(' ',F12.4)
67
               STOP
68
               END
```

2. Geometric Analysis of a Spherical Flame Front (DFLAME)

This program was written to produce the flame front geometry figures required by the program MASBRN. The required information was the volume, surface area, and wetted perimeter area for a spherical flame front of radius r in an engine cylinder with the CFR squish geometry under study.

The geometry is shown schematically in Figure E.1. The combustion chamber is a cylinder of radius RC and variable height H. The spark is on the side. The flame is assumed to expand spherically into the chamber from the spark location.

First the equations to solve for a geometry without squish will be developed. Then the procedure to incorporate squish in the calculation will be outlined.

From Figure E.1 it can be seen that the volume of the flame $\mathbf{V}_{\mathbf{F}}$ may be expressed as:

$$V_F = \int_0^h [Area of flame section] dz$$
 (E.2)

where the area of the flame section AFS1 is given by:

AFS1 =
$$R^2\alpha + Rc^2 (\beta - \sin\beta)$$
 (E.3)

and the flame front area AFF1 is:

$$AFF1 = 2R_F \int_0^H \alpha dz \qquad (E.4)$$

Similarly the area of the wetted perimeter AWPl is expressed by:

Figure E.1 Flame geometry for a section through a flame above the piston bowl (Flame Section 1).

Figure E.2 Flame geometry for a section through a flame in the piston bowl (Flame Section 2).

,

$$AWP1 = 2RC \int_{0}^{H} \beta dz + AFS1(z=0) + AFS1(z=H)$$
 (E.5)

If the flame radius is small enough that the flame does not contact the bowl then the above equations are sufficient. However when the flame enters the bowl the geometry of the flame section shown in Figure E.2, AFS2 becomes important. The area AFS2 is given by:

$$AFS2 = \gamma R^2 + \delta RB^2 - R^2 \sin \gamma - RB^2 \sin \delta \qquad (E.6)$$

The expressions for the volume, flame front area, and wetted perimeter are similar to those given previously except that the lower limit of integration is now H and the upper limit H+D (D is the bowl depth).

The program DFLAME generates a table of volumes and areas for combinations of flame radius and cylinder height. All calculations are done in two parts. The first for a cylinder without a squish bowl and the second adds in the effect of the squish bowl if required. The integration is performed with the aid of UBC DCADRE [41].

A program listing and flow chart follow.

Definition of Program Symbols (DFLAME)

AFLAM1 Area of Flame Front 1

AFLAM2 Area of Flame Front 2

AFND Nondimensional Area of Flame Front

AFS1 Area Function for Section 1

AFS2 Area Function for Section 2

ALF Function for Angle Alfa

APND Nondimensional Area of Wetted Perimeter

AWP1 Area of Wetted Perimeter, Section 1

AWP2 Area of Wetted Perimeter, Section 2

BET Function for Angle Beta

D Depth of Piston Bowl

DEL Function for Angle Delta

ERRAF Error in Flame Area

ERRAP Error in Wetted Perimeter Area

ERRV Error in Volume

GAM Function for Angle Gamma

H Piston Distance from Head

HND Nondimensional H

HUl Upper Integration Limit for Section 1

HU2 Upper Integration Limit for Section 2

RB Radius of Piston Bowl

RC Radius of Cylinder

RF Radius of Flame

RND Nondimensional Radius

VOLF Volume of Flame

VND Nondimensional Flame Volume

FLOWCHART FOR PROGRAM DFLAME

INITIALIZE ALL VARIABLES TO ZERO

```
K=0
     K=K+1 ←
     CA=(K-1)*PI/180.
     CALC PISTON HEIGHT
     B=ARCSIN(R/S * SIN(CA))
     H=S + R - S*COS(B) - R*COS(CA) + HC
     HND(K) = H/HC
     START FLAME GEOMETRY CALC
     J=0
     J=J+1 <del>←</del>
     SET FLAME RADIUS
     RF=J*0.08125/2
     RND(J) = RF/RC
     VOLUME CALC
     HU1=RF
     HU1> H ?
     HUl=H
     VOLF1=DCADRE (AFS1,0,HU1,DEPS,DREL,ERROR)
     -HUl > H ?
     -HUl≠RF?
   NO
     HU2=RF
   ★RF > H+D?
     HU2=H+D
    ◆VOLF2=DCADRE (AFS2,H,HU2,DEPS,DREL,ERROR)
    ►VOLF=VOLF1+VOLF2
     VOLF1=0
     VOLF2=0
     VND(J) = VOLF/(PI*(RC**2 *H + RB**2 *D))
     AREA OF FLAME FRONT CALC
     AFLAM1=DCADRE (ALF, 0, HU1, DEPS, DREL, ERROR)
     -HU2 > H
NO
     AFLAM2=DCADRE (GAM, H, HU2, DEPS, DREL, ERROR)
     AFLAME=(AFLAM1+AFLAM2)*2*RF
     AFLAM1=0
     AFLAM2=0
     AFND(J) = AFLAME/(2*PI*RC**2)
```

```
WETTED PERIMETER CALC
   AWP=(DCADRE(BET, 0, HU1, DEPS, DREL, ERROR))*2*RC
NO AWP1=AWP+AFS1(0.0)
   HU2 >> H ?
   AWP2=DCADRE (DEL, H, HU2, DEPS, DREL, ERROR) *2*RB
NO AWP2=AWP2+AFS1(H)-AFS2(H)
   -HU2 = HT?
   AWP2=AWP_22 + AFS2(HT)
  \RightarrowAPND(J) = (AWP1 + AWP2)/(2*PI(RC*H + RB*D + RC**2)
   AWP1=0
   AWP2=0
   HU1=0
   HU2=0
\frac{NO}{} VND(J) < 1 ?
                    NO
   J > 1000 ?
   WRITE RESULTS TO FILE
   WRITE RND(J), VND(J), AFND(J), APND(J): J=1, N
                      NO
   K > 45
```

STOP

```
FUNCTION AFS1(Z)

R=SQRT(RF**2 - Z**2)

ALFA=ARCOS(R/(2*RC))

BETA=ARCOS((2*RC**2-R**2)/(2*RC**2))

BETA < PI/2 ?

AFS1=R**2*ALFA + RC**2(BETA-SIN(BETA))

AFS1= R**2 (ALFA-SIN(ALFA) + BETA*RC**2

+(R*COS(GAMMA) - RC)*R*SIN(ALFA)

RETURN
```

```
FUNCTION AFS2(Z)

R=SQRT(RF**2 - Z**2)

GAMMA=ARCOS(R/(2*RB))

DELTA=ARCOS((2*RB**¶-R**2)/(2*RB**2))

DELTA < PI/2 ?

AFS2=R**2*GAMMA + RB**2*DELTA - R**2*SIN(GAMMA)

- RB**2*SIN(DELTA)

AFS2=R**2*(GAMMA-SIN(GAMMA)) + DELTA*RB**2

+ (R*COS(GAMMA)-RC)*R*SIN(GAMMA)

RETURN
```

FUNCTION ALF(Z)

R=SQRT(RF**2 - Z**2) ALF= ARCOS(R/(2*RC)) RETURN

FUNCTION GAM(Z)

R=SQRT(RF**2-Z**2) GAM=ARCOS(R/(2*RB)) RETURN

FUNCTION DEL(Z)

R=SQRT(RF**2-Z**2)
DEL=ARCOS((2*RB**2 - R**2)/(2*RB**2))
RETURN

FUNCTION BET(Z)

R=SQRT(RF**2 - Z**2) BET= ARCOS((2*RC**2 - R**2)/(2*RC**2)) RETURN

```
ing of DFLAME at 17:47:41 on JUN 26, 1985 for CCid=CILL Page
               IMPLICIT REAL*8(A-H,O-Z,$)
 2
               EXTERNAL AFS1.AFS2.ALF.GAM.BET.DEL
               REAL*B RND(100), VND(100), AFND(100), APND(100), HND(100)
 3
 3.5
               REAL*8 ERRV(100), ERRAF(100), ERRAP(100)
            HU1 IS THE UPPER LIMIT OF INTEGRATION FOR SECTION 1
       С
 4
 5
            HU2 IS THE UPPER LIMIT OF INTEGRATION FOR SECTION 2
       C
            RND IS THE NONDIMENSIONAL RADIUS; RF/RC
 6
       C
 7
            VND IS THE NONDIMENSIONAL VOLUME; VOLF/VC
            AFND IS THE NONDIMENSIONAL FLAME FRONT AREA; AFLAME/AC
 8
       C
 9
            APNO IS THE NONDIMENSIONAL WET PERIMETER AREA; AWP/(AC + AB)
            S IS THE CONNECTING ROD LENGTH
10
       C
11
       C
            H IS S+HC, (HC IS THE CLEARANCE HEIGHT)
            RF IS THE FLAME RADIUS
       C
12
13
       C
            RC IS THE CYLINDER RADIUS
14
       С
            RB IS THE BOWL RADIUS
15
       Ç
             VOLF IS THE VOLUME ENCLOSED BY THE SPHERICAL FLAME FRONT
            D IS THE DEPTH OF THE BOWL
16
17
               COMMON RF, RC, RB
18
               PI=3.141593
18.1
               VOLF2=0.0
               AWP=0.0
18.2
               AWP1=0.0
18.3
               AWP2=0.0
18.4
               AFLAM1=0.0
18.5
               AFLAM2=0.0
18.6
19
               S=10.0
20
               R=2.25
21
               DD 2000 K=1,45
22
               CA=(K-1)*PI/180.0
23
               B=DARSIN(R/S* DSIN(CA))
24
               H= S + R - S*DCOS(B) - R*DCOS(CA)
               DEPS=0.0
25
25.5
               DREL = 0.00000001
26
               D=1.337
27
               RC=3.25/2
               RB=0.83
28
               HC=.059
29
30
                H=H+HC
31
                HU2≈0.
32
               HT=H+D
35
               RF = .00
36
               HND(K)=H/HC
37
               WRITE(6,20) HND(K)
               FORMAT('1',' DIMINSIONLESS HEIGHT OF PISTON H/RC = ',F8.5)
38
       20
               DD 1000 J=1,100
39
39.5
               DEPS=1.00E-11
42
               N≠J
43
               RF=J*.08125/2.
44
               RND(J)=RF/RC
45
            FIRST CALC THE VOLUME OF THE FLAME. THE CALC IS DONE IN
           TWO PARTS. PART ONE ASSUMES A DISC CHAMBER OF HEIGHT H
46
       C
           PART TWO BRINGS IN THE EXTRA VOLUME OF BOWLS OR DEPRESSIONS
47
48
       C
            IN THE CYLINDER HEAD OR PISTON
49
               HU1=RF
            THE UPPER LIMIT OF INTEGRATION IS SET TO THE FLAME RADIUS
50
51
               IF (HU1 .GT. H) HU1=H
               VOLF1=DCADRE(AFS1,O.DO,HU1,DEPS,DREL,ERROR)
52
               ERRV(J)=ERROR
52.2
```

```
ing of DFLAME at 17:47:41 on JUN 26. 1985 for CCid=CILL Page
53
               IF (HU1 .LT. H) GO TO 98
54
               IF (HU1 .EQ. RF) GO TO 98
55
            THIS MEANS THE SPHERE DOES NOT INTERSECT THE PISTON & THEREFORE
       C
56
            NO FURTHER VOLUME CALC IS REQUIRED.
57
               HU2=RF
               IF (RF .GT. H+D)HU2=H+D
58
               VOLF2=DCADRE(AFS2, H, HU2, DEPS, DREL, ERROR)
59
59.2
               ERRV(J)=ERRV(J)+ERROR
               VOLF=VOLF1 + VOLF2
60
       98
60.5
               ERRV(J)=100.000-(VOLF - ERRV(J))/VOLF *100.
61
               VOLF1=Q.
62
               VOLF2=0.
               VND(J)=VOLF/(3.14*(RC**2*H + RB**2*D))
63
64
           NOW CALCULATE AREA OF FLAME FRONT
            THE CALCULATION IS SIMILAR TO THE VOLUME CALC
65
               AFLAM1=DCADRE(ALF,O.,HU1,DEPS,DREL,ERROR)
66
66.5
               ERRAF(J)=ERROR
67
               IF (HU2 .LT. H) GO TO 99
               AFLAM2=DCADRE(GAM, H, HU2, DEPS, DREL, ERROR)
68
68.5
               ERRAF(J)=ERRAF(J)+ERROR
69
       99
               AFLAME=(AFLAM1 + AFLAM2)*2*RF
               IF ((AFLAM1+AFLAM2).LE. O.O)GO TO 33
69.2
69.5
               ERRAF(J) = 100. -((AFLAM1+AFLAM2)-ERRAF(J))/(AFLAM1+AFLAM2)*100.
69.7
               GO TO 34
€9.8
        33
               ERRAF(J)=100.00- ERRAF(J)+100.0
70
               AFLAM1=0.
       34
71
               AFLAM2=0.
               AFND(J)=AFLAME/(2*3.14*RC**2)
72
           NOW CALCULATE AREA OF WETTED PERIMETER
73
74
               AWP=(DCADRE(BET,O.,HU1,DEPS,DREL,ERROR))*2*RC
75
75.2
               AWP1=AWP+AFS1(O.DO)
75.5
               ERRAP(J)=ERROR
76
               IF (HU2 .LT. H)G0 T0 100
77
               AWP2=(DCADRE(DEL,H,HU2,DEPS,DREL,ERROR))*2*RB
77.2
               AWP=AWP+AWP2
77.5
               ERRAP(J)=ERRAP(J)+ERROR
78
               AWP2=AWP2+ AFS1(H)-AFS2(H)
79
               IF (HU2 .EQ. HT) AWP2=AWP2+AFS2(HT)
               APND(J)=(AWP1 + AWP2)/(2*3.14*(RC*H + RB*D +RC**2))
        100
80
80.5
               ERRAP(J) = 100.00 - (AWP-ERRAP(J))/(AWP) + 100.
               AWP=0.0
80.7
               AWP1=0.
81
               AWP2=0.
82
83
               HU1=0.
84
               HU2=0.
85
               IF (VND(J).GE. 1.) GO TO 2
        1000
               CONTINUE
86
87
                CONTINUE
        2
88
                WRITE(6,3) N
FORMAT('-','N = ',13)
89
        3
               WRITE(6,30)
FORMAT('-',4X,'RF/RC',9X,'VF/VT',9X,'ERROR%',7X,'AFF/AFT',
90
91
       30
             1 8X, 'ERROR%', 7X, 'AWP/APT', 8X, 'ERROR%')
91.5
               DO 10 J=1,N
92
               WRITE(6,1) RND(J), VND(J), ERRV(J), AFND(J), ERRAF(J), APND(J),
93
93.5
             1 ERRAP(J)
94
               FORMAT('0',2(F12.10,2X),F12.9,2X,2(F12.10,2X,F12.9,2X))
        1
```

```
ing of DFLAME at 17:47:41 on JUN 26, 1985 for CCid=CILL Page
 95
        10
                  CONTINUE
                 CONTINUE
        2000
 96
 97
                STOP
                END
 98
 99
                 DOUBLE PRECISION FUNCTION AFS1(Z)
                IMPLICIT REAL+8(A-H.O-Z.$)
100
                COMMON RF.RC.RB
101
101.5
                PI=3.141593
102
                R=DSQRT(RF**2 - Z**2)
                IF (R .GT. 2*RC)R=2*RC
103
104
                ALFA=DARCOS(R/(2*RC))
                BETA=DARCOS((2*RC**2 - R**2)/(2*RC**2))
105
106
                IF(BETA .GT. PI/2) GO TO 1
                AFS1=R**2 * ALFA +RC**2*(BETA-DSIN(BETA))
107
108
                GO TO 2
                 AFS1=R**2*(ALFA-DSIN(ALFA)) + BETA*RC**2 +
109
         1
110
              1 (R*DCOS(GAMMA)- RC)*R*DSIN(ALFA)
                CONTINUE
110.5
        2
                RETURN
111
112
                END
113
                 DOUBLE PRECISION FUNCTION AFS2(Z)
                IMPLICIT REAL*8(A-H,0-Z,$)
114
115
                COMMON RF,RC,RB
115.5
                PI=3.141593
116
                 DIFF= RF**2-Z**2
                R=DSQRT(RF**2 - Z**2)
120
121
                IF (R .GT. 2*RB) R=2*RB
                GAMMA=DARCOS(R/(2*RB))
122
123
                DELTA=DARCOS((2*RB**2-R**2)/(2*RB**2))
                IF (DELTA .GT. PI/2) GO TO 1
124
125
                AFS2=R**2*GAMMA +RB**2*DELTA - R**2*DSIN(GAMMA) -
125.2
              1 RB**2*DSIN(DELTA)
126
               RETURN
               AFS2=R**2*(GAMMA-DSIN(GAMMA)) + DELTA*RB**2
129
              1 + (R*DCOS(GAMMA)-RC)*R*DSIN(GAMMA)
130
131
               RETURN
132
                END
                 DOUBLE PRECISION FUNCTION ALF(Z)
133
                IMPLICIT REAL*8(A-H,O-Z,$)
134
135
                COMMON RF,RC,RB
                R=DSQRT(RF**2-Z**2)
136
137
                IF (R .GT. 2*RC)R=2*RC
                ALF=DARCOS(R/(2*RC))
138
139
                RETURN
140
                FND
                 DOUBLE PRECISION FUNCTION GAM(Z)
141
                IMPLICIT REAL+8(A-H.O-Z.$)
142
                COMMON RF,RC,RB
143
144
                R=DSQRT(RF**2-Z**2)
145
                IF (R .GT. 2*RB)R=2*RB
                GAM=DARCOS(R/(2*RB))
146
147
                RETURN
148
                END
                 DOUBLE PRECISION FUNCTION DEL(Z)
149
150
                IMPLICIT REAL*8(A-H, 0-Z,$)
151
                COMMON RF,RC,RB
152
                R=DSQRT(RF**2 - Z**2)
                IF (R .GT. 2*RB)R=2*RB
153
```

```
ing of DFLAME at 17:47:41 on JUN 26, 1985 for CCid=CILL Page
                 DEL=DARCOS((2*RB**2 - R**2)/(2*RB**2))
154
                 RETURN
155
                 END
156
                  DOUBLE PRECISION FUNCTION BET(Z)
157
                 IMPLICIT REAL*8(A-H, 0-Z,$)
158
                 COMMON RF,RC,RB
159
                 R=DSQRT(RF**2-Z**2)
IF (R .GT. 2*RC)R=2*RC
BET=DARCOS((2*RC**2 - R**2)/(2*RC**2))
160
161
162
163
                 RETURN
                 END
164
```

3. Burning Rate Analysis (MASBRN)

The program used to perform the mass burn rate analysis was developed by Jones [36] and a complete description and flow chart may be found. Only alterations concerned with the CFR cylinder geometry were made. These occur in statements defining cylinder volume. The other change was in the way the flame front geometry is evaluated. The old geometry was calculated based on a cylindrical chamber with a hemispherical head. The program DFLAME was used to produce a table of values which MASBRN reads in when required. No other changes were made.

```
MASBRN at 17:46:21 on JUN 26, 1985 for CCid=CILL Page
                 THIS PROGRAM CALCULATES MASS BURNING RATE AND
                FLAME SPEED FROM MEASURED PRESSURE DATA TAKEN
 2
       С
           ===
 3
                FROM THE CFR ENGINE.
       С
 4
       C
 5
              IMPLICIT REAL*8(A-H.O-Z)
              REAL*8 MPV,K,L,M,N,NO,N2,NO2,NCH,KK,NUM,NUM1,NMIX,MOLFL,
 6
 7
             -NM.NM1.NNM1.NNM2.NN2.NNO2.MEP.LENG.MTOT.MWMIX.MFX1.NNCH.
             -MFX2, MW(14), MMFX2, NRN2, NRES, NRO2, NRCO2, NRH20, NNFUEL
 8
             - . MF (5.200) . IGNDEL . MWBMIX
 9
       С
10
              COMMON /AREA1/ NCH,ND2,K,L,M,N,KFUEL
COMMON /AREA2/ MOLFL,NMIX,HF1,NNO2,NN2,NNFUEL,KOM
11
12
              COMMON /AREAS/ AREAB, HTEXP, MPV, HTFCN, TWALL, VISC, THCOND
13
              COMMON /AREA4/ NDISS, IPRINT
14
15
       С
              DIMENSION X(10), PP(5,200), VV(5,200), VV2(5,200), VVX(20),
16
             -DH(20), CPG(20), PP2(5,200), DI(5,200), TIM(5,200), XX(5,200)
17
             -CCA(10),DL(5,200),ZZ(5,200),DC(5,200),YY(5,200),PDUT(180),
18
             -UUU(10),CC(10),PDAT(5,200),CB(5,200),TB(5,200),
19
20
             -FS(5,200),RB(5,200)
21
       C
22
              INTEGER IPRES(5,200), NREP, NMODE
23
       C
            STATEMENT FUNCTION USED THROUGHOUT PROGRAM TO CALCULATE CYLINDER
24
       С
            VOLUME (DVOL) AT A GIVEN CRANK ANGLE (DALFA). VOLUME OBTAINED MUST
25
            BE ADDED TO THE CLEARANCE VOLUME TO GIVE TOTAL CYLINDER VOLUME
26
27
              DVOL(DALFA)=3.14159*((BORE/2.)**2.)*((STROK/2.)*(1.-DCOS(DALFA*
29
             -O.0174532))+LENG*(1.-DSQRT(1.-(DSIN(DALFA*O.0174532)*DSIN(DALFA
30
             -*0.0174532)*((STROK/2./LENG)**2.)))))
31
              PI=3.14159
31.5
              NUMBR = 1
32
              IPRINT=0
33
              JFLG=0
33.5
34
              IGRAPH=0
35
              DO 222 IL=1.NUMBR
       C
36
37
       С
       C
            READ TYPE OF FUEL (11=CH4, 12=C8H18, 13=C3H8);
38
            TEMP. (T1)(K) AT START OF COMBUSTION;
39
        С
            ENGINE SPEED (RPM); COMPRESSION RATIO (COMPR); REL. AIR/FUEL RATIO, LAMBDA (AF); SPARK ADVANCE (SPKAD)(DEG. B.T.D.C.);
       C
40
41
            HEAT TRANSFER MULTIPLIER (HTFCN):
42
       C
            HEAT TRANSFER EXPONENT (HTEXP);
43
        C
            RESIDUAL GAS FRACTION (%),(F); PERCENTAGE CONSTITUENTS IN
44
       Ç
            RES. FRACTION (PRO2, PRCO2, PRH20, PRN2);
45
       C
       C
            WHETHER FULL DISSOCIATION (NDISS=0), OR PARTIAL (NDISS=1);
46
            CRANK ANGLE ITERATION INCREMENT (PDCA); CYL. WALL TEMP. (TWALL);
       С
47
48
            THERE IS AN OPTION TO ENTER DATA IN THE INTERACTIVE MODE OR
       С
49
50
        С
            CONVENTIONALLY THRU A DATA FILE
        C
51
52
              WRITE(6,1)
              FORMAT(' '.'DO YOU WANT TO READ THE DATA FILE (O) OR ENTER DATA
53
54
             1INTERACTIVELY (1) ?')
55
              CALL FREAD('GUSER', 'I:', NMODE)
55.5
              IF (NMODE .EQ. 1) GO TO 3
56
```

```
: AMSBRN at 17:46:21 on JUN 26, 1985 for CC1d=CILL Page
57
              READ(5,47) KFUEL, T1, SPEED, COMPR, AF, SPKAD, HTFCN, HTEXP
58
              FORMAT(13,2F7.1,3F6.2,F6.3,F5.2)
              READ(5,46) F,PRO2,PRCO2,PRH20,PRN2,NDISS,PDCA,TWALL
59
              FORMAT(5F7.3, I3, F6.2, F7.1)
60
              READ(5,2) PINLET, AIRFLO, IGNDEL, SCONST, IPRNTS, PAMB
61
62
              READ(5.22) CUPD.CUPH.HC
63
          22
             FORMAT(3FB.3)
64
              FORMAT(F6.1,3F6.2,13,F6.2)
64.5
              JFLG=1
              WRITE(6,5)
FORMAT(' ','DO YOU WANT TO CHANGE ANY OF THE INPUTS 1=Y,0=N ?')
64.7
64.8
        5
64.9
              CALL FREAD ('GUSER', 'I:', NREP)
              IF ( NREP .EQ. O)GO TO 4
65
        3
               CALL INPUTS (JFLG, KFUEL, T1, SPEED, COMPR, AF,
66
              1 SPKAD, HTFCN, HTEXP, F, PRO2, PRH20, PRN2, NDISS, PDCA,
67
             1 TWALL, PINLET, AIRFLO, IGNDEL, SCONST, IPRNTS, PAMB, CUPD, CUPH, HC)
68
               CONTINUE
69
70
71
            READ IN PRESSURE DATA
72
        C
73
              CALL SMOOTH(POUT, SCONST, IPRNTS)
74
        C
75
              DO 658 KJ=1,180
              PDAT(IL,KJ)=POUT(KJ)
76
77
          658 CONTINUE
78
        C
            DETERMINE FUEL PROPERTIES: MOL. WEIGHT, LOW HEAT VAL.,
79
            ENTHAL. OF FORMATION
80
        C
81
        C
82
              IF(KFUEL.GT.11) GOTO 10
83
              CN=1.0
84
              HM=4.0
              MW(11)=16.04
85
86
              QVS=50050.0
87
              HF1=-74873.0
88
              WRITE(9,45) CN,HM
          45 FORMAT(1H , 'FUEL TYPE: - METHANE C ',F3.1,' H ',F3.1/)
89
90
              GOTO 30
        C
91
92
          10
              IF(KFUEL.GT.12) GOTO 20
93
              CN=8.0
94
              HM=18.0
95
              MW(12)=114.14
96
              QVS=43500.0
97
              HF1=-208447.0
              WRITE(9,43) CN,HM
98
              FORMAT(1H , 'FUEL TYPE: - OCTANE C ',F3.1,' H ',F4.1/)
99
100
              GDTO 30
101
              IF(KFUEL.GT.13) STOP
102
          20
103
              CN=3.0
              HM=8.0
104
105
              MW(13)=44.097
              QVS=46353.0
106
107
              HF1 = -103847.0
108
               WRITE(9,44) CN,HM
              FORMAT(1H , 'FUEL TYPE: - PROPANE C ',F3.1,' H ',F3.1/)
109
        C
110
```

```
MASBRN at 17:46:21 on JUN 26, 1985 for CCId=CILL Page
111
        C' ENGINE PARAMETERS
112
113
          30
              CONTINUE
114
               STROK=4.5*.0254
               BORE=3.25*.0254
115
116
               LENG=10.0*.0254
117
              HTCLRV=HC
118
            CLEARANCE HEIGHT IS SET FOR EACH GEOMETRY
119
               CLRV=HTCLRV*3.141593*(BDRE**2)/4.0 +CUPD**2/4.*PI*CUPH+0.0000027
120
        C
            GAS CONSTANT (KJ/KMOL K)
121
        C
122
        С
123
               RMOL=8.31434
124
               JJEO
125
        C
126
        C
127
        C
            CALC STOICH A/F RATIO(STAFR) AND AIR/FUEL RATIO(AFR)
        C
128
129
               STAFR=((CN+HM/4.)*32.+3.762*(CN+HM/4.)*28.01)/((CN*12)+HM)
               AFR=STAFR*AF
130
131
            CALCULATE VOLUMETRIC EFFICIENCY FROM AIR MASS FLOW(g/sec),
132
133
            INLET TEMP(K) AND PRES(kpa), RPM, AND DENSITY FACTOR
        C
134
            FOR GASEOUS FUELS
135
        C
            VOLEFF=AIRFLOW/(P/RT)*FACTOR*SPEED*(SWEPT VOL./2)
            FACTOR=DENSITY CORRECTION FOR FUEL VAPOUR IN CHARGE
136
137
        C
            PINLET=PAMB-PLOSS(LOSS THRU VENTURI ELEMENT)
137.5
              PLOSS=1.8
138
              FACTOR=1
139
              IF(KFUEL.EQ.12) GOTO 700
140
              FACTOR=1.0+(1.0/AFR)+(29.0/(MW(KFUEL)))
141
        С
142
        C
            INLET PRES REDUCED BY PLOSS
143
        C
144
          700 VOLEFF=45.858*FACTOR*AIRFLO*T1/(SPEED*(PINLET-PLOSS))
144.5
145
            CONVERT PRESSURE DATA IN BAR TO KPA, AND CORRECT DATA FOR
146
        C
147
        C
            VOL. EFF.
148
        C
149
              P1=VOLEFF*(PINLET-PLOSS)
150
              PVEFF=(101.3)-P1
151
              WRITE(9,701) P1, VOLEFF, FACTOR, PVEFF
152
          701 FORMAT(1H , 'P1, VOLEFF, FACTOR, PVEFF ', 4F10.3/)
153
              DO 267 I=1,180
154
              PDAT(IL,I)=PDAT(IL,I)/1000.-PVEFF
155
          267 CONTINUE
156
        C
157
        C
        C
            CALC. NUMBER OF KMOLS OF REACTANTS AND PRODUCTS BEFORE AND AFTER
158
        C
159
            COMBUSTION RELATIVE TO ONE KMOL OF FUEL
            (NOT INCLUDING DISSOCIATION). NCH=HYDROCARBON
160
        С
161
        C
            NO2=AVAILABLE OXYGEN, N=NITROGEN, K=CO2, L=H2O, M=UNBURNT OXYGEN
162
              NCH=1
163
164
              NO2=(CN+HM/4)*AF
              N=3.762*(CN+HM/4)*AF
165
166
              K=CN
```

```
MASBRN at 17:46:21 on JUN 26. 1985 for CCtd=CILL Page
 167
               L=HM/2
               M = (CN + HM/4) + (AF-1)
 168
 169
         C
 170
               WRITE(9,655) NCH,NO2,N,K,L,M
 171
           655 FORMAT(1H ,'NCH,NO2,N,K,L,M=',6F9.5/)
         C
 172
             CALC. TOTAL NUMBER OF KMOLS OF REACTANTS...
 173
         C
 174
               SUMNS=NCH+NO2+N
 175
         C CALC. NO. OF KMOLS OF RESIDUAL GAS GIVEN THE VOLUME FRACTION OF
 176
         C RESIDUAL GASES 'F' ...
               NRES=(F/(1-F))*SUMNS
 177
 178
         C CALC. NO. OF KMOLS IN CYLINDER PER KMOL OF FUEL...
 179
               NMIX=SUMNS+NRES
 180
               SUMNS=NMIX
 181
         C CALC. NO OF KMOLS OF EACH RESIDUAL GAS...
 182
               NR02=PR02*NRES/100.0
               NRCD2=PRCD2*NRES/100.0
 183
 184
               NRH20=PRH20*NRES/100.0
               NRN2=PRN2*NRES/100.0
 185
 186
         C CALC. NEW VALUES FOR THE TOTAL NO. OF KMOLS OF N2. 02. CO2.& H2O...
187
               N=N+NRN2
 188
               NO2=NO2+NRO2
 189
               K=K+NRCD2
 190
               L=L+NRH20
               M=M+NRO2
 191
 192
               WRITE(9.655) NCH.NO2.N.K.L.M
 193
         C
             CALC. ENERGY OF REACTANTS AT INLET TEMP: 5=02, 6=N2, 11=CH4
 194
             12=C8H18, 13=C3H8, 1=C02, 3=H20,... (IN KJ/KMOL OF FUEL)
 195
 196
               DH(1)=((3.096*T1+0.00273*(T1**2)-7.885E-07*(T1**3)
              1+8.66E-11*(T1**4))-1+45.0)*RMOL
 197
               DH(3)=((3.743*T1+5.656E-O4*(T1**2)+4.952E-O8*(T1**3)
 198
              1-1.818E-11*(T1**4))-1167.0)*RMOL
 199
               DH(5)=((3.253*T1+6.524E-04*(T1**2)-1.495E-07*(T1**3)
200
              1+1.539E-11*(T1**4))-1024.0)*RMOL
201
               DH(6)=((3.344*T1+2.943E-O4*(T1**2)+1.953E-O9*(T1**3)
202
203
              1-6.575E-12*(T1**4))-1023.0)*RMOL
               DH(11)=((1.935*T1+4.965E-03*(T1**2.)-1.244E-06*(T1**3.)
204
205
              1+1.625E-10*(T1**4.)-8.586E-15*(T1**5.))-985.9)*RMOL
               DH(12)=((-0.72*T1+4.643E-02*(T1**2.)-1.684E-05*(T1**3.)
206
              1+2.67E-09*(T1**4.))-3484.0)*RMOL
207
208
               DH(13)=((1.137*T1+1.455E-O2*(T1*+2.)-2.959E-O6*(T1*+3.)
209
              1)-1552.9)*RMOL
210
               UUU(1)=-3.93522E05
211
               UUU(3) = -2.41827EO5
             CALC. TOTAL ENERGY OF MIXTURE (KJ/KMOL FUEL)
212
         C
               ERCT=(NCH*(HF1+DH(KFUEL)-RMOL*T1)+NO2*(DH(5)-RMOL*T1)
213
214
              -+N*(DH(6)-RMOL*T1)+NRCO2*(UUU(1)+DH(1)-RMOL*T1)+NRH2O*
              -(UUU(3)+DH(3)-RMOL*T1))
215
216
             CALC. SWEPT VOL. (CYLV), CLEARANCE VOL. (CLRV), TOTAL VOL. (V1),
217
             VOLUME CORRESPONDING TO GIVEN SPARK ADVANCE (DVDLM)...
218
               CYLV=3.1415926*((BORE/2.)**2.)*STROK
219
220
               V1=CYLV + CLRV
221
               VTOTAL =V1
222
               MPV=SPEED+STROK/30.0
             SUBT. SPK ADV. ANGLE FROM 360'AND ADD IGNITION DELAY...
         C
223
224
               ANG=(360.0-SPKAD+IGNDEL)
```

```
MASBRN at 17:46:21 on JUN 26, 1985 for CCid=CILL Page
225
             INITIALISE CRANK ANGLE COUNTER AT B.D.C. & SET TIME TO ZERO
226
               DLF 1= 180.0
227
               TIME=0.0
228
             CALC. VOLUME IN CYLINDER AT SPARK TIME (USED LATER)
               DVOLM=(CLRV+DVOL(ANG))
229
230
               TIME=0.0
        C TOTAL NO. OF MOLS IN CYL. =NO. OF MOLS OF FUEL*(1+4.76(CN+HM/4).AF)
231
232
         C WHERE (1+4.76(CN+HM/4).AF)=NMIX.
         C I.E.
                NTOT=MOLFL*NMIX
233
        C BUT P1.V1=NTOT.RMOL.T1
                                     OR NTOT=P1.V1/RMOL.T1 = MOLFL.NMIX
234
        C THEREFORE NO. OF MOLS OF FUEL IN CYL. * P1.V1/NMIX.RMOL.T1 .....
235
236
               MOLFL=(P1*V1)/(NMIX*RMOL*T1)
         C
             ENERGY OF CYLINDER CONTENTS IN KJ .....
237
238
               ENGY 1 = ERCT * MOLFL
239
             CALC. STOICH. A/F RATIO (STAFR), AIR/FUEL RATIO (AFR), PERCENTAGE
240
             OXYGEN (NNO2), NITROGEN (NN2) AND FUEL (NNCH) IN MIXTURE...
241
               STAFR=((CN+HM/4.)*32.+3.762*(CN+HM/4.)*28.01)/((CN*12)+HM)
242
               AFR=STAFR*AF
243
               NND2=(NO2/NMIX)*100.
244
               NN2=(N/NMIX)*100.
245
               NNCH= 100 . - (NNO2+NN2)
246
               NNFUEL=NNCH
247
            GIVEN MOLECULAR WEIGHTS OF FUELS, CALC. MOLECULAR WEIGHT OF
248
            MIXTURE (MWMIX); TOTAL MASS OF MIXTURE (MTOT); AND SPECIFIC
249
            VOLUME OF MIXTURE . . .
250
               MWMIX=(NNO2*32.0/100.)+(NN2*28.0/100.)+(NNCH*MW(KFUEL)/100.)
251
               MTOT=(PDAT(IL,1)*V1*MWMIX)/(T1*RMOL)
252
               VTOT1=V1
               VSU1=VTOT1/MTOT
253
254
               ETOT1=ERCT/MWMIX/NMIX -
255
256
               WRITE(9,735) MPV, TWALL, HTFCN, HTEXP
257
           735 FORMAT(1H , 'MPV, TWALL, HTFCN, HTEXP ', 4E12.4/)
258
259
               WRITE(9,734) ERCT, ENGY1, NMIX, MWMIX, MOLFL, MTOT
260
           734 FORMAT(1H , 'ERCT, EG1, NMIX, MWMX, MOLFL, MTOT; ', 6E12.4//)
261
262
               WRITE(9,652) SPEED, SPKAD
           652 FORMAT(1H , 'SPEED (RPM) = ',F7.1.
263
              -7X.'SPARK ADVANCE (DEG. BTDC) =',F7.2,3X/)
264
265
               WRITE(9,813) AFR, STAFR, AF, COMPR
          813 FORMAT(1H , 15HAIR/FUEL RATIO=, F6.2, 3X, 18HSTOICH. A/F RATIO=,
266
              -F6.2,3X,7HLAMBDA=,F6.2,3X,12HCOMP. RATIO=,F5.1/)
267
268
               WRITE(9,31)
            31 FORMAT(1H ,1X,'STEP',1X,'VOL',3X,'PRESS',3X,'TU',5X,'TB',5X -,'MFX',4X,'VFRBNT',2X,'CBVEL',3X,'TBVEL',3X,'FLMSPD',2X,
269
270
              -'FSR',3X,'RADF',2X,'AREAF',3X,'C.A.',3X,'ENERGY'/)
271
272
               DO 106 KI=1,10
273
               X(KI)=0.0
274
           106 CONTINUE
275
               NI = 1
276
               V1=V1*(1E+06)
               WRITE(9,893) NI, V1, PDAT(IL, NI), T1, (X(I), I=1,9),
277
278
              -DLF 1, ENGY 1
279
           893 FORMAT(1H ,I3,1X,F6.1,3F7.1,F9.4,F7.2,2F8.3,F7.2,F7.2,F7.3,
280
              -F7.2,F7.1,F9.5)
281
               TU1=T1
282
               V1=V1/(1E+06)
```

```
ASBRN at 17:46:21 on JUN 26, 1985 for CCId=CILL Page
283
              T2=T1
284
              PP2(IL,1)=PDAT(IL,1)
285
              VV2(IL.1)=V1
286
              TIM(IL, 1)=TIME
287
              MF(IL,1)=0.0
              CB(IL,1)=0.0
288
289
              TB(IL,1)=0.0
290
              FS(IL,1)=0.0
291
              RB(IL,1)=0.0
292
              JJJ=1
293
              NUT=0
294
              DCA=PDCA
295
              NDCA=(360./DCA)
296
              ADCA=0.0
297
        C
298
            START COMPRESSION STROKE
299
        С
300
            THIS SECTION CALCULATES ADIABATIC PRESSURE RISE AT EACH CRANK
301
        C
302
        C
            ANGLE INTERVAL AND COMPARES THE RESULT WITH THE CORRESPONDING
303
        C
            MEASURED PRESSURE VALUE TO DETERMINE IF COMBUSTION HAS STARTED.
304
        Ç
305
              DO 40 NI=2.NDCA
306
        C
            CALC. VOLUME DIVISION (DIV) FOR GIVEN C.A. DIVISION (DCA)
307
        C
308
              DIV=DVOL(DLF1)-DVOL(DLF1+DCA)
309
        С
            CALC. NEW VOLUME IN CYLINDER & RESET C.A. COUNTER TO NEW VALUE
310
              V2=V1-DIV
              DLF1=DLF1+DCA
311
312
              DTIME=DCA/(6.0*SPEED)
313
              DIST=(DVOL(DLF1))/(3.14159*((BORE/2.)**2))
314
        C
            CALC. NEW MIXTURE TEMPERATURE USING P.V = R.T
315
316
              T2=(MWMIX*PDAT(IL,NI)*V2)/(MTOT*RMOL)
317
              CALL COMP(T2.ENGY2.NRC02.NRH20)
318
319
        c.
            IF NEW C.A. < SPK. ADV., CONTINUE WITH COMP. STROKE CALCS.
              IF(DLF1.GT.ANG) GOTO 610
320
            IF NEW C.A. > SPK. ADV., CALCULATE ADIABATIC PRESSURE RISE AND COMPARE RESULT WITH MEASURED VALUE..
321
        С
322
        С
323
        С
324
        C
              IF(IPRINT.EQ.O) GOTO 393
325
              CALL GAM(T2,T1,GAMU)
              PISEN=((V1/V2)**GAMU)*PDAT(IL,(NI-1))
326
              WRITE(9,257) PDAT(IL,NI),PISEN.T2,GAMU
327
        C 257 FORMAT(1H , 'PDAT, PISEN, T2, GAMU ', 4F10.3)
328
329
        C
        C-----
330
331
        С
              IF(IDELP.EQ.2) GOTO 217
              DELP1=(PDAT(IL.NI)-PISEN)
332
        С
333
        С
              IDELP=2
334
        C
              GOTO 51
335
        C
        C217 DELP2=(PDAT(IL,NI)-PISEN)
336
              IF((DELP2-DELP1).GT.PTHRES) GOTO 610
337
        С
338
        C--
339
        C
            CALC. CURRENT TIME; AND PRESS. AT GIVEN VOL. & TEMP.
340
```

```
MASBRN at 17:46:21 on JUN 26, 1985 for CCid=CILL Page
          393 TIME=(DLF1-180.)/(6.0*SPEED)
341
            RECORD PERMANENT VALUES OF PRESS., VOL., TIME, VOL. DIV, AND
342
            C.A. DIV, AT END OF EACH C.A. STEP...
343
              PP2(IL,NI)=PDAT(IL,NI)
344
              VV2(IL,NI)=V2
345
              TIM(IL,NI)=TIME
346
              DI(IL,(NI-1))=DABS(DIV)
DC(IL,(NI-1))=DCA
347
348
              MF(IL,NI)=0.0
349
350
              CB(IL,NI)=0.0
351
              TB(IL,NI)=0.0
              FS(IL,NI)=0.0
352
              RB(IL,NI)=0.0
353
              DELP1=DELP2
        C
354
355
              KTDC=0
356
              T1=T2
357
              V1=V2
            ADJUST MAGNITUDE OF VOLUME FOR WRITE STATEMENT...
358
        C
359
              V2=V2*(1E+O6)
360
361
              WRITE(9,893) NI, V2, PDAT(IL, NI), T2, (X(I), I=1,9),
362
             -DLF1, ENGY2
363
364
          650 V2=V2/(1E+O6)
365
           40 CONTINUE
366
          610 TU1=T1
              VSU1=V1/MTOT
367
            CALCULATE ENERGY OF MIXTURE JUST BEFORE START OF COMBUSTION
368
        C
369
370
              CALL COMP(T1, ENGY1, NRCO2, NRH2O)
371
              KZZ=2
372
           START OF PROGRESSIVE BURNING
373
        С
374
        Ç
           *************
375
        С
376
            ITERATION CONTROLS AND INITIALISATION
377
              NG=0
378
              KOM=O
379
              NED=1
              ひひひ= 1
380
381
              NDC=1
              IDTM=1
382
383
              IMX=1
384
              MFX1=0.0
385
              NNN≃1
386
              IVOL=1
387
              KTDC=0
388
              SUMXS=NMIX
              TB2=1900.0
389
389.5
              MWBMIX=MWMIX
              THCOND=0.1
390
391
              VISC=0.5E-04
392
              VSB2=0.5
393
              DQSUM=0.0
394
              PDVSUM=0.0
395
              ESPARK=ENGY 1
396
        C
        C -----
397
```

```
MASBRN at 17:46:21 on JUN 26, 1985 for CCid=CILL Page
398
                    DD 333 LMN=1.50
399
        C
400
        С
401
        C1500LC. TIME TAKEN FOR PISTON TO TRAVEL THROUGH 'DCA' DEGREES C.A.
402
403
            IF FIRST TIME THROUGH FROM COMPRESSION STROKE. SKIP VOLUME
        C
404
            CALCULATIONS...
405
        C
406
               IF(KZZ, EQ. 2) GOTO 727
407
               NT = NT + 1
408
           508 DTIME=DCA/(6.0*SPEED)
409
           UPDATE TIME AND CRANK ANGLE COUNTER...
410
               TIME = TIME + DTIME
411
               DLF1=DLF1+DCA
           CALC. DISTANCE FROM PISTON TOP TO T.D.C....
412
               DIST=DVOL(DLF1)/(3.14159*((BORE/2.)**2))
413
414
            CALC. CHANGE IN VOLUME DUE TO PISTON MOTION...
415
               DIV=DVOL(DLf1-DCA)-DVOL(DLf1)
416
        C
            CALC. NEW TOTAL VOLUME....
417
               V2=V1-DIV
418
           727 VTOT1=V2
        C
                   WRITE(9,461) DTIME, TIME, DLF1, DIST, DIV, V2
419
420
        C 461
                   FORMAT(1H , 'DTIME, TIME, DLF1, DIST, DIV, V2=', 6E11.4)
           UPDATE ITERATION COUNTER AND FIND NO. OF ITERATION AT T.D.C.
421
        C
422
               IF(KTDC.GT.O) GOTO 350
423
               IF(DLF1.GE.360.0) KTDC=NI
424
        C
425
        С
            START BURNING...
426
        C
427
        C
428
           350 IF(NG.EQ.O) AREAB=0.0
        C
429
430
               PDT1=PDAT(IL,(NI-1))
               PDT2=PDAT(IL,NI)
431
432
               CALL ENUFLS(PDT2,PDT1,TU1,VSU1,MWMIX,TU2,VSU2,
433
              -EU2, TBVEL, AF, T2, NRCO2, NRH2O)
434
               HTCDEF=(THCOND/BORE)*((MPV*BORE/(VSB2*VISC))**HTEXP)/1000.0
435
               DQ=HTCOEF *AREAB* (TB2-TWALL) *HTFCN*DTIME
               IF (DCA .GT. 60.) WRITE(G,7777) AREAB,DQ,DCA FDRMAT(' ',3F20.10)
435.5
435.7
436
               NG = 1
437
               PDV=((PDAT(IL,NI)+PDAT(IL,(NI-1)))/2.)*DIV
438
               ENGY2=ENGY1+PDV-DQ
439
               PDVSUM=PDVSUM+PDV
440
               DOSUM=DOSUM+DO
441
               TRT=(MWBMIX*PDAT(IL,NI)*V2)/(MTOT*RMOL)
442
        C----
443
               IF(IPRINT.EQ.O) GOTO 971
               WRITE(9,737) ENGY2, ENGY1, PDV, DQ, HTCOEF, TRT
444
445
         737 FORMAT(1H , 'E2, E1, PDV, DQ, HTCOEF ', 5E12.4, F8.1)
446
        C----
447
         971 ETOT1=ENGY2/MTOT
               CALL TEMP(PDT2, TB2, NNN, CC, MFX2, MTOT, EU2, VSU2,
448
449
              -VTOT1, ETOT1, VSB2, MWBMIX)
450
        C
               IF(MFX2.LT.O.5) GOTO 394
451
452
               IF(MFX2.GT.O.98) GOTO 312
453
               IF((MFX2-MFX1).GT.O.O1) GDTO 394
```

```
MASBRN at 17:46:21 on JUN 26, 1985 for CCid=CILL Page
                                                                       9
454
           312 KZZ=2
455
               GOTO 365
           394 CALL CALFLS(MFX1,MFX2,VSB2,MTOT,DTIME,VSU2,CBVEL,VSU1,
456
457
              -AREAF1, VOLB2, IVOL, VOLB1, AREAF2, RB1, RB2, DLF1, DIST)
458
               KOM=O
459
        C
           970 VOLU2=VTOT1-VOLB2
460
               FLMSPD=(RB2-RB1)/(DTIME)
461
               VFRBNT=(VOLB2/VTOT1) * 100.0
462
463
               FSR=CBVEL/TBVEL
464
               V=VTOT1*(1E+06)
               PRB2=RB2*100.0
465
466
               PAREAF = AREAF 2 * 10000.0
467
468
               WRITE(9,893) NI, V, PDAT(IL, NI), TU2, TB2, MFX2, VFRBNT, CBVEL,
469
              -TBVEL, FLMSPD, FSR, PRB2, PAREAF, DLF1, ENGY2
470
471
               PP2(IL,NI)=PDAT(IL,NI)
472
               TIM(IL,NI)=TIME
473
               VV2(IL,NI)=V2
474
               DI(IL,(NI-1))=DABS(DIV)
475
               DC(IL,(NI-1))=DCA
476
               MF(IL,NI)=MFX2
477
               CB(IL,NI)=CBVEL
478
               TB(IL,NI)=TBVEL
479
               FS(IL,NI)=FLMSPD
480
               RB(IL,NI)=PRB2
481
        C
482
               VOLB1=VOLB2
               AREAF1=AREAF2
483
484
               RB1=RB2
485
               TU1=TU2
486
               MFX1=MFX2
               VSU1=VSU2
487
488
               V1=V2
489
               T1=T2
490
               ENGY 1=ENGY 2
491
               K77=1
492
               IVOL=2
493
          333 CONTINUE
494
        С
495
           365 T1=MFX2*TB2+(1-MFX2)*TU2
496
               ECEND=ENGY2
               WRITE(9,266) MWBMIX, PDAT(IL, NI), V2, MTOT, RMOL
497
        C. 266 FORMAT(1H ,5E12.4/)
498
499
               TRT=(MWBMIX*PDAT(IL,NI)*V2)/(MTOT*RMOL)
               CALL ENERGY(TRT, PDAT(IL, NI), EPROD, SUMXS, NNN, CC, X, EB2, VSB2,
500
501
              -GAMMA, MWBMIX)
502
               TENGY = EPROD * MOLFL
               TDQ=(ESPARK-TENGY)-PDVSUM
503
               WRITE(9,265) ESPARK, ECEND, TENGY, PDVSUM, DQSUM, TDQ, T1, TRT
504
               FORMAT(1H , 'ESPK, ECND, TENG, PDVS, DQS, T1, TRT ', 6F10.6, 2F7.1/)
505
          265
506
               DO 249 KKI=1,10
507
          249
               X(KKI)=0.0
508
               NUT=0
               JJJ=1
509
510
               NNN=1
               IF(KZZ.EQ.2) GOTO 396
511
```

```
MASBRN at 17:46:21 on JUN 26, 1985 for CCid=CILL Page
512
513
           START EXPANSION STROKE
        C
514
        C
            ************
515
        C
516
          310 DIV=DVOL(DLF1+DCA)-DVOL(DLF1)
517
               V2=V1+DIV
518
               IF(V2.LT.497.0E-06) GOTO 851
519
              DLF1=DLF1+DCA
520
               IF(DLF1.GE.538) JJJ=2
               TIME=(DLF1-180.0)/(6.0*SPEED)
521
522
              NI = NI + 1
              GDTO 718
523
524
          851 DLF1=DLF1+DCA
525
              DIST=DVOL(DLF1)/(3.14159*((BDRE/2.)**2))
526
              DTIME=DCA/(6.0*SPEED)
527
               TIME=(DLF1-180.0)/(6.0*SPEED)
528
              NI=NI+1
529
              NUT=NUT+1
530
               IF(NUT.GT.80) STOP
531
          396 ATOT=3.14159*(2.*BORE**2/4 +(HC+DIST)*BORE + CUPD*CUPH)
533
               CALL EXP(PDAT(IL,(NI-1)),V1,T1,PDAT(IL,NI),V2,T2,NNN,CC,
534
              -SUMXS, ENGY1, ENGY2, ATOT, DTIME, MTOT, MWBMIX)
535
          718 ENGY1=ENGY2
536
               T1=T2
               V1=V2
537
538
              PP2(IL,NI)=PDAT(IL,NI)
539
               VV2(IL.NI)=V2
540
               TIM(IL,NI)=TIME
541
              DI(IL.(NI-1))=DABS(DIV)
542
              DC(IL,(NI-1))=DCA
543
              MF(IL,NI)=MFX2
544
              CB(IL,NI) = 0.0
545
              TB(IL,NI)=0.0
546
              FS(IL,NI)=0.0
              RB(IL.NI)=0.0
547
548
              V4=V2
549
              T4=T1
550
              V4=V4*(1E+06)
551
        C 285 IF(JJJ.EQ.2) GOTO 277
              IF(NUT.GT.2) GDTD 817
552
553
554
          277 WRITE(9,893) NI,V4,PDAT(IL,NI),X(1),T4,MFX2,VFRBNT,(X(I),I=1,6),
555
             -DLF1, ENGY2
556
        C-----
557
         817 IF (JJJ.EQ.1) GOTO 310
558
        С
              WRITE(9,818) (CC(I), I=1,8)
559
         B18 FORMAT(1H , '%CO2=',F7.3,' %CO=',F7.3,' %H2O=',F7.3,' %H2O=',F7.3,' %H2O=',F7.3,' %H2O=',F7.3,' %NO=',F7.3,' %OH=',F7.3,' %OH=',F7.3,')
560
561
562
        C
563
        C
564
        C
           THIS SECTION CALCULATES INTEGRAL OF PDV (PDV), MEAN EFFECTIVE
           PRESSURE (MEP), POWER AND THERMAL EFFICIENCY.
        C
565
566
        C
           С
567
          304 PDV=0.0
568
              SUMDI=0.0
569
              AREA1=0.0
570
```

```
t : . or MASBRN at 17:46:21 on JUN 26, 1985 for CCid=CILL Page
571.
              AREA3=0.0
              MTDC=KTDC-1
572
              DO 300 J=1,MTDC
573
574
          300 AREA1=AREA1+(PP2(IL,J)+PP2(IL,(J+1)))*DI(IL,J)/2.0
575
              NTDC=KTDC+1
576
              NID=NI-1
              DO 302 J=NTDC.NID
577
          302 AREA3=AREA3+(PP2(IL,J)+PP2(IL,(J+1)))*DI(IL,J)/2.0
578
              DO 303 J=1,MTDC
579
580
          303 SUMDI=SUMDI+DI(IL,J)
581
              VA1=CYLV-SUMDI
              VA2=DI(IL,KTDC)-VA1
582
              PPTDC=PP2(IL,KTDC)+((VA1/DI(IL,KTDC))*(PP2(IL,NTDC)-
583
584
             -PP2(IL.KTDC)))
585
              AREA2=(PPTDC+PP2(IL,KTDC))*VA1/2.0
              AREA4=(PPTDC+PP2(IL,NTDC))*VA2/2.0
586
587
              IF(IPRINT.EQ.O) GOTO 269
              WRITE(9,486) AREA1, AREA2, AREA3, AREA4, VA1, VA2, PPTDC, PDV
588
589
          486 FORMAT(1H ,'A1,A2,A3,A4,VA1,VA2,PTDC,PDV',8E12.4/)
590
          269 PDV=(AREA3+AREA4)-(AREA1+AREA2)
591
              MEP=PDV/(CYLV*100.0)
              POWER=(PDV*SPEED/120.)
592
593
              EFF=(PDV+100.)/(MOLFL+QVS+(12.+CN+HM))
594
595
              WRITE(9,301) POWER, MEP, EFF
         301 FORMAT(10X,6HPOWER=,F8.3,5X,9HI.M.E.P.=,F7.3,5X,11HEFFICIENCY=,
596
597
            -F10.5///)
        C-----
                            _____
598
          WRITE VALUES OF PRESSURE, MASS FRACTION BURNT, CALC. BURNING VELOCITY, LAMINAR BURNING VELOCITY, AND FLAME SPEED FOR USE
599
        С
600
        C
           BY THE PLOTTING PROGRAM 'DP2' ....
601
        C
602
        C
603
              IJUMP 1=0
              IJUMP2=0
604
605
              I JUMP3=0
606
              IJUMP4=1
607
              NUMM= 1
              ISPK=IDINT(SPKAD)
608
609
              IF(IL.GT.1) GOTO 799
              WRITE(9.933) NUMBR, IJUMP1, IJUMP2, IJUMP3, IJUMP4
610
611
        C933
              FORMAT(513)
612
         799
              WRITE(9,934) NUMM, SPEED, ISPK, KFUEL
         934
613
              FORMAT(14,F8.1,14,13)
614
              DO 928 JK=1,180
              WRITE(9,929) PP2(IL,JK),MF(IL,JK),CB(IL,JK),TB(IL,JK),FS(IL,JK)
615
616
              -,RB(IL,JK)
         929 FORMAT(6F10.4)
617
618
         928 CONTINUE
619
        C
620
        C-
621
        C
622
         222 CONTINUE
623
        C
624
        625
        C
626
        C
           THIS SECTION GENERATES A P-V DIAGRAM AND A
627
        C
628
           PRESSURE-CRANK ANGLE DIAGRAM.
```

```
. MASBRN at 17:46:21 on JUN 26, 1985 for CCid=CILL Page
                                                                         12
629
            630
         C
631
                IF(IGRAPH.EQ.O) GOTO 599
632
           387 DO 605 IL=1, NUMBR
633
                DLF=180.0
634
                ZZ(IL,1)=2.0
635
                DO 605 J=1,NID
                VV(IL,J)=VV2(IL,J)*1000.
636
637
                PP(IL,J)=PP2(IL,J)/100.
638
                DLF=DLF+DC(IL,J)
639
                DL(IL,(J+1))=DLF
640
                XX(IL,J)=(5.*VV(IL,J))+2.0
         C
641
                YY(IL.J)=(PP(IL.J)/20.)+2.0
642
                ZZ(IL,(J+1))=((DL(IL,(J+1))-180.0)/60.0)+2.0
643
           605 CONTINUE
644
         C-
                CALL AXIS(2.,2.,'VOLUME (L)',-10,5.,0.,0.,0.2)
CALL AXIS(2.,2.,'PRESSURE (BAR)',14,5.,90.,0.,20.)
645
         C
646
         C
647
                DO 607 IL=1, NUMBR
         C
648
         C
                DO 607 I=1,NID
           607 CALL SYMBOL(XX(IL,I),YY(IL,I),O.05,IL,O.,-1)
649
         С
                CALL LINE(XX(1,I),YY(1,I),NID,1)
650
         C
651
652
                CALL PLOT(10.,0.,-3)
                CALL AXIS(2.,2.,'CRANK ANGLE',-11,6.0.0.,180.,60.)
CALL AXIS(2.,2.,'PRESSURE (BAR)',14,5.,90.,0.,20.)
653
654
655
                DO 415 IL=1.NUMBR
656
                DO 415 I=1,NID
657
           415 CALL SYMBOL(ZZ(IL,I),YY(IL,I),O.05,IL,O.,-2)
658
                CALL LINE(ZZ(1,I),YY(1,I),84,1)
659
                CALL PLOTND
           599 STOP
660
661
                END
         C
662
663
664
665
         C
            SUBROUTINE TEMP
                                CALCULATES TEMP. OF BURNT GAS AND MASS FRACTION
666
         C
              .............
                                BURNED.
667
         C
                SUBROUTINE TEMP(P1,TB2,NNN,CC,MFX,MTOT,EU2,VSU2,VTOT1,ETOT,VSB2,
668
669
               -MWBMIX)
670
         С
671
                COMMON /AREA1/ NCH, NO2, K, L, M, N, KFUEL
               COMMON /AREA2/ MOLFL,NMIX,HF1,NNO2,NN2,NNFUEL,KOM COMMON /AREA4/ NDISS,IPRINT
672
673
674
         C
                REAL+8 XF.DX.EPS.Y1,Y2,Y3,XX2,YY2,
675
               -X1,X2,X3,X30LD,P1,P2,P3,CC(10),X(10),K,L,M,N,GAMMA,MFX,MTDT
676
               -,EU2,VSU2,VTOT1,VSB2,EB2,TB2,ETOT,VTOTC,NMIX,MFXE,MFXV
677
678
               - , EPROD , SUMXS , NCH , NO2 , MOLFL , HF 1 , NNO2 , NN2 , NNFUEL , GA , MWBMIX
679
         C
               NNN=1
680
681
                KOM=KOM+1
682
                IF(KOM.GT.10) GOTO 93
683
                NUT=0
684
                JDX = 1
685
                IDX=1
686
                X1 = 1900.0
```

13

```
MASBRN at 17:46:21 on JUN 26, 1985 for CCid=CILL Page
687
               XF=4000.0
688
               DX = 100.0
689
               EPS=0.00010
690
            5 CALL ENERGY(X1,P1,EPROD,SUMXS,NNN,CC,X,EB2,VSB2,GA,MWBMIX)
               MFXE=(ETOT-EU2)/(EB2-EU2)
691
               WRITE(9,777) X1,ETOT, VTOT1,P1,EB2,MFXE
692
693
        C 777 FORMAT(1H ,'X1,ETOT, VTOT1, P1, EB2, MFXE', 6E12.4)
               IF(MFXE.GT.O.O) GOTO 10
694
695
               X1=X1+DX
696
               IF(X1.GT.XF) GOTO 91
697
               JDX = 2
698
               GOTO 5
           10 MFXV=(VTOT1/MTOT-VSU2)/(VSB2-VSU2)
699
700
               Y1=MFXV-MFXE
701
               IF(JDX.EQ.1) GOTO 30
               IF (Y1.LT.O.O) GOTO 30
702
703
              DX=-DX/2.
704
               IDX=2
705
           30 X2=X1+DX
               IF(X2.GT.XF) GOTO 91
706
707
           20 CALL ENERGY(X2,P1,EPROD,SUMXS,NNN,CC,X,EB2,VSB2,GA,MWBMIX)
               MFXE=(ETOT-EU2)/(EB2-EU2)
708
709
        C 747 FORMAT(1H ,'X2,MFXE,MFXV,VSB2,VSU2,EB2,EU2;',7E10.3)
               IF(MFXE.GT.O.O) GOTO 15
710
               DX=DX/2.
711
               IDX=2
712
713
               X2=X2-DX
714
               NUT=NUT+1
715
               IF(NUT.GT.30) GOTO 91
716
               GOTO 20
717
           15 IF(IDX.EQ.1) GOTO 16
718
               DX=DX/2.
            16 MFXV=(VTOT1/MTOT-VSU2)/(VSB2-VSU2)
719
720
               Y2=MFXV-MFXE
               WRITE(9,747) X2,MFXE,MFXV,VSB2,VSU2,EB2,EU2
721
        С
722
               IF(Y1*Y2.LE.O.O) GOTO 25
723
               X1=X2
               Y1=Y2
724
               NUT=NUT+1
725
               IF(NUT.GT.60) GOTO 91
726
727
               GOTO 30
           25 IF(Y2.EQ.O.O) GOTO 50
728
               IF(X2.GT.X1) GOTO 35
729
730
               XX2=X2
731
               YY2=Y2
732
              X2=X1
733
               Y2=Y1
               X1=XX2
734
735
               Y1=YY2
           35 IF (MFXE.LT.10.0) GOTO 36
736
737
               DX=DX/10.0
              - X2=X2-DX
738
739
               GOTO 20
           36 X30LD=X2
740
741
           40 X3=(X1*Y2-X2*Y1)/(Y2-Y1)
               NUT=NUT+1
742
743
               IF (NUT.LT.150) GOTO 80
744
           91 IS=2
```

```
MASBRN at 17:46:21 on JUN 26, 1985 for CC1d=CILL Page
                                                                       14
               RETURN
745
            93 WRITE(9,90) KOM
746
747
            90 FORMAT(1H , 'PROGRAM STOP DUE TO TEMP ITERATIONS EXCEEDING', 14)
748
               STOP
749
            80 IF(DABS((X3-X30LD)/X3).LT.EPS) GOTO 60
750
               X3DLD=X3
751
               CALL ENERGY(X3,P1,EPROD,SUMXS,NNN,CC,X,EB2,VSB2,GA,MWBMIX)
752
               MFXE=(ETOT-EU2)/(EB2-EU2)
753
               MFXV=(VTOT1/MTOT-VSU2)/(VSB2-VSU2)
754
               Y3=MFXV-MFXE
               WRITE(9,767) X3,MFXE,MFXV,Y3
755
756
         C 767 FORMAT(1H .'X3, MFXE, MFXV, Y3', 4E12.4)
757
               IF(Y1*Y3.LE.O.) GOTO 45
758
               X1=X3
759
               Y1=Y3
               GDTO 40
760
761
            45 X2=X3
762
               Y2=Y3
763
               GOTO 40
764
            50 TB2=X2
765
               GOTO 70
766
            60 TB2=X3
767
            70 MFX=(MFXE+MFXV)/2.0
768
               IF(IPRINT.EQ.O) GOTO 225
769
770
               WRITE(9,112) TB2, MFXE, MFXV, EB2, VSB2, GA
771
           112 FORMAT(1H , 'TB2, MFXE, MFXV, EB2, VSB2, GA; ', 6E12.4)
772
773
           225 IS=1
774
               RETURN
775
               END
776
                                 TO CALCULATE ENERGY (EPROD) OF BURNT GAS
777
            SUBROUTINE ENERGY
         C
778
                                 AT A GIVEN TEMP. AND PRESS. ( INCLUDES
779
                                 DISSOCIATION ).
         C
780
         C
781
               SUBROUTINE ENERGY(T.P.EPROD.SUMXS.NNN,CC,X.EB2,VSB2,GAMMA,
782
              -MWBMIX)
783
         C
               COMMON /AREA1/ NCH, NO2, K, L, M, N, KFUEL
784
               COMMON /AREA2/ MOLFL,NMIX,HF1,NNO2,NN2,NNFUEL,KOM COMMON /AREA3/ AREAB,HTEXP,MPV,HTFCN,TWALL,VISC,THCOND
785
786
               COMMON /AREA4/ NDISS, IPRINT
787
788
         С
789
               REAL*8 K,L,M,N,X(10),CPG(10),UUU(10),DH(10),KA,KB,KC,KD,
              -KE, KF, NM, P, T, A1, B1, C1, D1, E1, F1, S, SUMXS, TT, A, B, C, D, E, F, RMOL,
790
791
              -A2,B2,C2,D2,E2,F2,RESA,RESA1,RESB,RESB1,RESC,RESC1,RESD.
              -RESD1, RESE, RESE1, RESF, RESF1, KK, CC(10), EPROD, GAMMA, MWBMIX
792
793
              -, MW(10), EB2, VSB2, NMIX, NCH, NO2, MOLFL, HF1, NNO2, NN2, NNFUEL
               -, VCO2, KCO2, VH2O, KH2O, VN2, KN2, VISC, THCOND, AREAB, ATOT, MPV.
794
795
              -HTFCN.TWALL, HTEXP
        С
796
               IF(T.LT.1750.0) GOTO 17
797
               IF(NNN.EQ.2) GOTO 15
798
           INITIAL ESTIMATES OF THE NO. OF MOLES OF SPECIES DISSOCIATED
799
            A:- CD2=CO+0.502; B:- H2O=OH+0.5H2
                                                    C:- H20=H2+0.502
800
            D:- NO2=.5N2+.502;E:- H2=2H
                                                      F:- 02=20
801
               IF(NDISS.EQ.1) GOTO 747
802
```

```
MASBRN at 17:46:21 on JUN 26, 1985 for CCid=CILL Page
803
               A=.7
804
               B=0.1
               C=.5
805
806
               D=0.1
807
               E=0.0
               F=0.00
808
               GOTO 737
809
          747 A=.7
810
              B=0.0
811
812
               C=.5
813
              D=0.0
814
               E=0.0
               F=0.0
815
816
          737 A2=0
817
               B2=0
818
               C2=0
819
               D2=0
820
               E2=0
821
               F2=0
822
              NNN=2
            CALC. OF EQUILIBRIUM CONSTANTS INCLUDING PRESSURE TERM
823
824
           15 KA=DEXP(DLOG(T)**(-7.4721)*(-65549000)+10.53)
825
              1*DSQRT(101.3/P)
826
              KB=DEXP(DLOG(T)**(-7.0457)*(-30372100)+10.1590)
827
              1*DSQRT(101.3/P)
              KC=DEXP(DLOG(T)**(-6.8674)*(-18878550)+8.7095)
828
829
              1*DSQRT(101.3/P)
830
              KD=DEXP(DLOG(T)**(-7.3355)*(-16592550)+1.80127)
831
              KE=DEXP(DLDG(T)**(-6.81208)*(-30743850)+17.8668)
832
              1*(101.3/P)
833
              KF=DEXP(DLOG(T)**(-6.93319)*(-43428280)+19.3067)
834
              1*(101.3/P)
835
              RMOL=8.3143
836
              NUT=0
            CALC. NO. OF MOLES OF SPECIES DISSOCIATED (A TO F)
837
838
         10
              QQ=1
839
              NUT=NUT+1
840
              IF (NUT.LT.200) G0T0 400
841
              WRITE(9,401) NUT
842
          401 FORMAT(1H , 'PROGRAM STOP DUE TO ENERGY ITERATIONS
843
              1EXCEEDING', 14)
844
              STOP
845
          400 IF (KA.LE.1E-10) GOTO 2
846
              S=(A+B+C)/2+E+F+K+L+M+N
847
              A 1 = A
848
              IF ((M+((A+C-D)/2)-F).LE.O.O) GOTO 2
849
              RESA=A/(K-A)+DSQRT((M+((A+C-D)/2)-F)/S)-KA
850
              A=A+.001
851
              IF ((M+((A+C-D)/2)-F).LT.O) A=2*(F-M)+D-C
              RESA1=A/(K-A)*DSQRT((M+((A+C-D)/2)-F)/S)-KA
852
853
              A=A+.001*RESA1/(RESA-RESA1)
              IF (A.GT.K) A=K-0.0011
854
855
                 (A.LT.O) A=1E-12
856
              IF (A.EQ.A1) GOTO 2
857
              IF (DABS((A-A1)/A1).GT.O.O1) GOTO 1
858
              IF (DABS((A-A2)/A1).GT.O.O10) QQ=O
859
              IF(NDISS.EQ.1) GOTO 3
860
              S=(A+B+C)/2+E+F+K+L+M+N
```

```
MASBRN at 17:46:21 on JUN 26, 1985 for CCid=CILL Page
861
               IF (KB.LE.1E-10) GOTO 3
862
               B1=B
863
               IF ((B/2+C-E).LE.O.O) GOTO 3
               RESB=B/(L-B-C) +DSQRT((B/2+C-E)/S)-KB
864
865
               B=B+.001
866
               IF ((B/2+C-E).LT.O) B=2*(E-C)
               RESB1=B/(L-B-C)+DSQRT((B/2+C-E)/S)-KB
867
868
               B=B+.001*RESB1/(RESB-RESB1)
869
               IF (B.GT.(L-C)) B=L-C-.0011
870
               IF (B.LT.O) B=1E-12
871
               IF (B.EQ.B1)GOTO 3
872
               IF (DABS((B-B1)/B1).GT.O.O1) GDTO 2
               IF (DABS((B-B2)/B1).GT.O.010) QQ=0
873
874
               S=(A+B+C)/2+E+F+K+L+M+N
875
               IF (KC.LE.1E-10) GOTO 4
876
               C1=C
877
               IF ((M+((A+C-D)/2)-F).LE.O.O) GOTO 4
               RESC = (B/2+C-E)/(L-B-C)+DSORT((M-F+(A+C-D)/2)/S)-KC
878
879
               C=C+.001
880
               IF ((M+((A+C-D)/2)-F).LT.O) C=2*(F-M)+D-A
               RESC1=(B/2+C-E)/(L-B-C)+DSQRT((M-F+(A+C-D)/2)/S)-KC
881
882
               C=C+.001*RESC1/(RESC-RESC1)
               IF (C.GT.(L-B)) C=L-B-.0011
883
884
               IF (C.LT.O) C=1E-12
885
               IF (C.EQ.C1) GOTO 39
886
               IF (DABS((C-C1)/C1).GT.O.O1) GOTO 3
               IF (DABS((C-C2)/C1).GT.O.010) QQ=0
887
888
         39
               IF(NDISS.EQ.1) GOTO 67
889
               IF (N.LT.O.01) GOTO 5
890
               S=(A+B+C)/2+E+F+K+L+M+N
891
               IF (KD.LE.1E-10) GOTO 5
892
              D1=D
893
               IF (((N-D/2)*(M-F+(A+C-D)/2)).LE.O.O) GOTO 5
               RESD=D/DSQRT((N-D/2.)*(M-F+(A+C-D)/2.))-KD
894
895
               D=D+.001
               IF (((N-D/2)*(M-F+(A+C-D)/2)).LE.O.O) GOTO 5
896
897
               RESD1=D/DSQRT((N-D/2.)*(M-F+(A+C-D)/2.))-KD
898
              D=D+.OO1*RESD1/(RESD-RESD1)
899
               IF (D.GT.(2*N)) D=2*N-.0011
900
              IF (D.LT.O) D=1E-12
901
               IF (D.EQ.D1) GOTO 5
902
              IF (DABS((D-D1)/D1).GT.O.O1) GOTO 4
               IF (DABS((D-D2)/D1).GT.O.010) QQ=0
903
904
              GOTO 413
905
              GO TO 67
907
              E1=E
               IF ((B/2+C-E).LE.O.OO1) E=B/2+C-.OO2
908
              RESE=((2*E)**2)/S/(B/2+C-E)-KE
909
910
              E=E+.001
              RESE1=((2*E)**2)/S/(B/2+C-E)-KE
911
              E=E+.001*RESE1/(RESE-RESE1)
912
913
               IF (E.GT.(C+B/2)) E=B/2+C
              IF(E.LT.O) E=1E-12
914
915
               IF (E.EQ.E1) GOTO 6
              IF (DABS((E-E1)/E1).GT.O.O1) GOTO 5
916
917
               IF (DABS((E-E2)/E1).GT.O.O10) QQ=0
              S=(A+B+C)/2+E+F+K+L+M+N
918
               IF (KF.LE.1E-10) GOTD 67
919
```

```
MASBRN at 17:46:21 on JUN 26, 1985 for CCid=CILL Page
920
              IF ((M-F+(A+C-D)/2).EQ.O) GOTO 67
921
922
              RESF = ((2*F)**2)/S/(M-F+(A+C-D)/2)-KF
923
              F=F+.001
              RESF1=((2*F)**2)/S/(M-F+(A+C-D)/2)-KF
924
925
              F=F+.001*RESF1/(RESF-RESF1)
              IF (F.GT.(M+(A+C-D)/2)) F=M+(A+C-D)/2-.011*F
926
              IF (F.LT.O) F=1E-12
927
928
              1 F
                 (F.EQ.F1) GOTO 67
929
              IF (DABS((F-F1)/F1).GT.O.O1) GOTO 6
              IF (DABS((F-F2)/F1).GT.O.010) QQ=0
930
          413 CONTINUE
931
932
          67
              A2=A
933
              B2=B
              C2=C
934
935
              D2=D
              IF(QQ.EQ.O)GOTO 10
938
939
            CALCULATING CHANGE IN ENTHALPIES FOR SPECIES 1 TO 10 BET. T AND 289K
            CO2=1, CO=2, H2O=3, H2=4, O2=5, N2=6, NO=7, H=10, O=9, OH=8
940
941
              KK=0
942
         17
              TT=T/100
943
              IF (T.GT.3000.0) GOTO 99
944
              DH(1)=((3.096*T+0.00273*(T**2)-7.885E-07*(T**3)
945
             1+8.66E-11*(T**4))-1145.0)*RMOL
              DH(2)=((3.317*T+3.77E-04*(T**2)-3.22E-08*(T**3)
946
947
             1-2.195E-12*(T**4))-1022.0)*RMOL
948
              DH(3)=((3.743*T+5.656E-04*(T**2)+4.952E-08*(T**3)
949
             1-1.818E-11*(T**4))-1167.0)*RMOL
950
              DH(4)=((3.433*T-8.18E-06*(T**2)+9.67E-08*(T**3)
951
             1-1.444E-11*(T**4))-1025.0)*RMOL
952
              DH(5)=((3.253*T+6.524E-04*(T**2)-1.495E-07*(T**3)
             1+1.539E-11*(T**4))-1024.0)*RMOL
953
954
              DH(6)=((3.344*T+2.943E-04*(T**2)+1.953E-09*(T**3)
955
             1-6.575E-12*(T**4))-1023.0)*RMOL
              DH(7)=((3.502*T+2.994E-04*(T**2)-9.59E-09*(T**3)
956
             1-4.904E-12*(T**4))-1070.0)*RMQL
957
              DH(10)=((2.5*T)-745.0)*RMOL
958
              DH(9)=((2.764*T-2.514E-04*(T**2)+1.002E-07*(T**3)
959
             1-1.387E-11*(T**4))-804.0)*RMDL
960
              DH(8)=((81.546*TT-47.48*(TT**1.25)+9.902*(TT**1.75)
961
             1-2.133*(TT**2.))*100-10510)
962
963
              GOTO 91
              DH(1)=((5.208*T+0.00059*(T**2)-5.614E-08*(T**3)
964
             1+2.05E-12*(T**4))-1126.0)*RMOL
965
              DH(2)=((3.531*T+2.73E-04*(T**2)-3.28E-08*(T**3)
966
             1+1.565E-12*(T**4))-1042.0)*RMOL
967
968
              DH(3)=((143.05*TT-146.83*(TT**1.25)+55.17*(TT**1.5)
             1-1.85*(TT**2.))*100-11945.0)
969
              DH(4)=((3.213*T+2.87E-04*(T**2)-2.29E-08*(T**3)
970
             1+7.666E-13*(T**4))-1018.0)*RMOL
971
              DH(5)=((3.551*T+3.203E-04*(T**2)-2.876E-08*(T**3)
972
             1+1.005E-12+(T**4))-1044.0)*RMOL
973
974
              DH(6)=((3.514*T+2.583E-04*(T**2)-2.841E-08*(T**3)
             1+1.242E-12*(T**4))-1043.0)*RMOL
975
              DH(7)=((3.745*T+1.950E-04*(T**2)-1.88E-08*(T**3)
976
977
             1+7.703E-13*(T**4))-1106.0)*RMQL
978
              DH(10)=((2.5*T)-745.0)*RMOL
979
              DH(9)=((2.594*T-3.843E-05*(T**2)+7.514E-09*(T**3)
```

```
iting of MASBRN at 17:46:21 on JUN 26, 1985 for CCId=CILL Page
 980
              1-3.209E-13*(T**4))-809.0)*RMDL
 981
               DH(8)=((81.546*TT-47.48*(TT**1.25)+9.902*(TT**1.75)
              1-2.133*(TT**2.))*100-10560.)
 982
            CALCULATE CP VALUES
 983
 984
           91 CPG(1)=-3.7357+30.529*(TT**(0.5))-4.1034*TT+0.024198*(TT**2)
               CPG(2)=69.145-.70463*(TT**(0.75))-200.77*(TT**(-0.5))
 985
               -+176.76*(TT**(-0.75))
 986
 987
               CPG(3)=143.05-183.54*(TT**(0.25))+82.751*(TT**(0.5))
 988
              --3.69889*TT
 989
               CPG(4)=56.505-702.74+(TT++(-.75))+1165.0/TT-560.7+(TT++(-1.5))
               CPG(5)=37.432+0.020102*(TT**1.5)-178.57*(TT**(-1.5))
 990
              -+236.88*(TT**(-2))
 991
               CPG(6)=39.060-512.79*(TT**(-1.5))+1072.7*(TT**(-2))
 992
 993
              --820.4*(TT**(-3))
               CPG(7)=59.283-1.7096*(TT**0.5)-70.613*(TT**(-0.5))
 994
               -+74.889*(TT**(-1.5))
 995
               CPG(8)=81.546-59.35*(TT**0.25)+17.329*(TT**0.75)-4.266*TT
 996
 997
         C
             NUMBER OF MOLES OF EACH SPECIES AFTER DISSOCIATION
               X(1)=K-A
 998
 999
               X(2)=A
               X(3)=L-B-C
1000
1001
               X(6)=N-D/2
               X(7)=D
1002
               X(4)=C+B/2-E
1003
               X(5)=M-F+(A+C-D)/2
1004
1005
               X(10)=2*E
               X(9)=2*F
1006
1007
               X(8)=B
            CALC. VISCOSITY & THERMAL CONDUCTIVITY OF PRODUCTS...
1008
1009
               VCO2=((0.019*T+24.2)*X(1)*1E-06)/(X(1)+X(3)+X(6))
               KCO2=((0.041*T+36.1)*X(1)*1E-03)/(X(1)+X(3)+X(6))
1010
1011
               VH20=((0.025*T+15.8)*X(3)*1E-06)/(X(1)+X(3)+X(6))
               KH20=((0.130*T-0.60)*X(3)*1E-03)/(X(1)+X(3)+X(6))
1012
1013
               VN2=((0.019*T+24.1)*X(6)*1E-06)/(X(1)*X(3)*X(6))
               KN2=((0.039*T+35.8)*X(6)*1E-03)/(X(1)+X(3)+X(6))
1014
               VISC=VCD2+VH2D+VN2
1015
               THCOND=KCO2+KH2O+KN2
1016
1017
         C
             HFO FOR EACH SPECIES
               UUU(1)=-3.93522E05
1018
1019
               UUU(2) = -1.10529E05
               UUU(3)=-2.41827E05
1020
               UUU(4)=0.00000E00
1021
1022
               UUU(5)=0.00000E00
               UUU(6)=0.00000E00
1023
               UUU(7)=9.05920E04
1024
               UUU(10)=2.17986E05
1025
1026
               UUU(9)=2.49195E05
               UUU(8)=39463.0
1027
             MOLECULAR WEIGHT FOR EACH SPECIES
1028
         C
1029
               MW(1)=44.01
1030
               MW(2)=28.01
               MW(3) = 18.01
1031
               MW(4)=2.02
1032
1033
               MW(5) = 32.00
               MW(6)=28.01
1034
1035
               MW(7)=30.00
               MW(8) = 17.00
1036
               MW(9) = 16.00
1037
```

```
MASBRN at 17:46:21 on JUN 26, 1985 for CCid=CILL Page
                                                                     19
1038
                MW(10)=1.00
1039
             CALC. ENERGY OF PRODUCTS 1 TO 10
1040
                EPROD=O.
1041
                DO 109 I=1,10
1042
                ECOMP=X(I)*(UUU(I)+DH(I)-RMOL*T)
1043
                EPROD=EPROD+ECOMP
1044
          109 CONTINUE
1045
         C CALCULATE SUM OF X VALUES
1046
                SUMXS=0
1047
                DD 231 ILG=1,10
           231 SUMXS=SUMXS+X(ILG)
1048
1049
         C CALC PERC. OF PRODUCTS AND MOLECULAR WEIGHT OF MIXTURE
1050
                MWBMIX=0.0
1051
                DO 232 ILH=1.10
                CC(ILH)=(X(ILH)/SUMXS)*100.
1052
           232 MWBMIX=MWBMIX+(CC(ILH)+MW(ILH)/100.)
1053
                EB2=EPROD/MWBMIX/SUMXS
1054
1055
                VSB2=RMOL*T/(MWBMIX*P)
1056
         C CALC CP
1057
                CP=O
                DO 233 ILF=1,8
1058
1059
           233 CP=CP+(CC(ILF)*CPG(ILF))/100.
1060
                CV=CP-RMOL
1061
                GAMMA=CP/CV
                WRITE(9,889) MWBMIX,EB2,VSB2,GAMMA,NNN,NDISS
1062
         С
1063
         C 889 FORMAT(1H , 'MWBMIX, EB2, VSB2, GAMMA, N, NDS ', 4E12.4, 2I3)
1064
                RETURN
1065
                END
1066
         С
1067
         С
              SUBROUTINE CALFLS THIS IS USED TO OBTAIN THE CALCULATED
1068
         C
                                  BURNING VELOCITY
1069
         С
1070
                SUBROUTINE CALFLS(MFX1,MFX2,VSB2,MTOT,DTIME,VSU2,CBVEL,
1071
               -VSU1, AREA1, VOLB2, IVOL, VOLB1, AREA2, RB1, RB2, DLF1, DIST)
1072
         С
1073
                COMMON /AREA4/ NDISS.IPRINT
                COMMON /AREA3/ AREAB, HTEXP, MPV, HTFCN, TWALL, VISC, THOOND
1074
1075
         С
1076
                INTEGER NREC, CA, NDIM
1077
                REAL RCA1
1078
                REAL*8 RF, DR, EPS, Y1, Y2, Y3, BORE, D, XDOT, ARAVG, AREA,
               -R1,R2,R3,R3OLD.DTIME,RMAX,R,VOLB1,MFX2,AREA1,AREA2,RB1,RB2,
1079
1080
               -FFF,MFX,VSB2,VSU2,MTOT,MFX1,VOLB2,VOLB,CBVEL,VSUAVG,VSU1,RADBMB
               -,DLF1,RFT(100),VFT(100),AFF(100),AWP(100),DIST,AREAB
1081
1082
         C
1083
                IF (IVOL .GE.2) GO TO 546
1084
                RB1=0.DO
1085
                AREA1=0.DO
1086
         546
                RCA1=SNGL(DLF1)
1087
                CA=IFIX(RCA1)
1088
                  IF(CA.LE.360) CA=360-CA
1089
                  IF (CA .GT. 360)CA=CA-360
1090
                CALL BLKRD(CA, RFT, VFT, AFF, AWP, NDIM)
1091
                VOLB2=MTOT*MFX2*VSB2
                CALL GEOM(NDIM, DIST, VOLB2, RFT, VFT, AFF, AWP, RB2, AREA2, AREAB, CA)
1092
1093
                ARAVG=(AREA1+AREA2)/2.
1094
                VSUAVG=(VSU1+VSU2)/2.
1095
                XDOT=(MFX2-MFX1)/DTIME
```

```
MASBRN at 17:46:21 on JUN 26, 1985 for CC1d=CILL Page
1096
                CBVEL=MTOT*XDOT*VSUAVG/ARAVG
                RETURN
1097
1098
                END
1099
         C
1100
         C
            SUBROUTINE ENUFLS THIS CALCULATES THE PROPERTIES OF THE UNBURNT
1101
         C
1102
                                 GAS AT THE GIVEN PRESS. BY FIRST CALCULATING
                                 GAMMA AND THEN ASSUMING ISENTROPIC COMPRESSION
1103
         С
1104
         C
            THE BURNING VELOCITY IS THEN CALCULATED USING THE UNBURNT GAS
            TEMP. AND PRESS. USING PUBLISHED FORMULAE FOR GIVEN FUEL.
1105
         C
1106
         C
1107
                SUBROUTINE ENUFLS (P2.P1.T1.VSU1.MWMIX.TU2.VSU2.EU2.TBVEL.AF.
1108
               -T2, NRC02, NRH20)
1109
         C
1110
                COMMON /AREA1/ NCH, NO2, K, L, M, N, KFUEL
               COMMON /AREA2/ MOLFL, NMIX, HF1, NNO2, NN2, NNFUEL, KOM
1111
               COMMON /AREA4/ NDISS. IPRINT
1112
1113
         C
1114
               REAL*8 P1,T1,NNO2,NN2,NMIX,TU2,VSU2,EU2,TBVEL,TT,NNFUEL,FFF,
1115
               -CPG(14), CP, CV, GAMU, DH(14), ENGY, NO2, N, RMOL, VSU1, POW1, POW2, TT2,
1116
               -MWMIX,PU,TU,PBAR2,P2,HF1,T,T2,POW3,C4,AF,PBAR1,GGAM.B1.B2,B3,
1117
               -NCH,K,L,M,MOLFL,FI,SUO(15),ALPHA(15),BETA(15),NRCO2.NRH2O,UUU(3)
1118
         C
1119
               RMOL=8.31434
1120
               NUT=0
1121
         C
             CALC. GAMMA FOR THE UNBURNT ELEMENTS....
1122
         C
1123
               NNFUEL=100.-(NN02+NN2)
1124
                TT=T1/100.
1125
1126
               CPG(5)*37.432+0.020102*(TT**1.5)-178.57*(TT**(-1.5))
               -+236.88*(TT**(-2))
1127
1128
               CPG(6)=39.060-512.79*(TT**(-1.5))+1072.7*(TT**(-2))
               --820.4*(TT**(~3))
1129
1130
               CPG(11)=-672.87+439.74*(TT**0.25)-24.875*(TT**0.75)+323.88*
               -(TT**(-0.5))
1131
1132
               CPG(13) = -4.042 + 30.46 + TT - 1.571 + (TT + 2.) + 0.03171 + (TT + 3.)
               CPG(12)=8.3143*(-0.72+0.09285*T1-5.05E-05*(T1**2.)+1.068E-08*
1133
1134
               -(T1**3))
                CP=(NND2*CPG(5)+NN2*CPG(6)+NNFUEL*CPG(KFUEL))/100.
1135
                CV=CP-RMOL
1136
                GAMU=CP/CV
1137
         С
1138
                POW1=(GAMU-1.)/GAMU
1139
               POW2=1./GAMU
1140
1141
                TT2=T1*((P2/P1)**POW1)
            20 CALL GAM(TT2,T1,GAMU)
1142
1143
                POW1=(GAMU-1.0)/GAMU
                T2=T1*((P2/P1)**POW1)
1144
                IF(DABS(TT2-T2).LE.1.0) GOTO 10
1145
                NUT=NUT+1
1146
1147
                IF(NUT.GT.20) STOP
                TT2=T2
1148
                GOTO 20
1149
1150
             10 POW2=1.0/GAMU
1151
                TU2=T2
                VSU2=VSU1*((P1/P2)**POW2)
1152
1153
         C
```

```
ting of MASBRN at 17:46:21 on JUN 26, 1985 for CCid=CILL Page
          C CALC. ENTHALPY OF REACTANTS AT GIVEN TEMP.
1154
                DH(1)=((3.096*T2+0.00273*(T2**2)-7.885E-07*(T2**3)
1155
               1+8.66E-11*(T2**4))-1145.0)*RMOL
1156
                DH(3)=((3.743*T2+5.656E-O4*(T2**2)+4.952E-O8*(T2**3)
1157
1158
               1-1.818E-11*(T2**4))-1167.0)*RMOL
                DH(5)=((3.253*T2+6.524E-O4*(T2**2)-1.495E-O7*(T2**3)
1159
1160
               1+1.539E-11*(T2**4))-1024.0)*RMOL
                DH(6)=((3.344*T2+2.943E-O4*(T2**2)+1.953E-O9*(T2**3)
1161
1162
               1-6.575E-12*(T2**4))-1023.0)*RMOL
                DH(11)=((1.935*T2+4.965E-O3*(T2**2.)-1.244E-O6*(T2**3.))
1163
               1+1.625E-10*(T2**4.)-8.586E-15*(T2**5.))-985.9)*RMOL
1164
1165
                DH(12)=((-0.72*T2+4.643E-02*(T2**2.)-1.684E-05*(T2**3.)
               1+2.67E-09*(T2**4.))-3484.0)*RMOL
1166
1167
                DH(13)=((1.137*T2+1.455E-O2*(T2**2.)-2.959E-O6*(T2**3.)
1168
               1)-1552.9)*RMOL
1169
                UUU(1)=-3.93522E05
1170
                UUU(3)=-2.41827E05
          C CALC. TOTAL ENERGY OF MIXTURE (KJ/KMOL FUEL)....
1171
1172
                ENGY=(NCH*(HF1+DH(KFUEL)-RMOL*T2)+NO2*(DH(5)-RMOL*T2)
1173
               -+N*(DH(6)-RMOL*T2)+NRCO2*(UUU(1)+DH(1)-RMOL*T2)+NRH2O*
               -(UUU(3)+DH(3)-RMOL*T2))
1174
1175
          С
              CONVERT TO KJ/KMOL MIXTURE...
1176
                ENGY=ENGY/NMIX
1177
          С
              CONVERT TO KJ/KG MIXTURE...
1178
                EU2=ENGY/MWMIX
1179
             CALC. AVERAGE UNBURNT TEMP. AND PRESS.
          C
1180
                PU=(P1+P2)/2.
1181
                TU=(T1+T2)/2.
1182
          C
1183
          С
             CALCULATE LAMINAR BURNING VELOCITY:
          C
1184
1185
          С
             METGHALCHI & KECK'S EQN.S FOR PROPANE(13). OCTANE(12).
          C
             AND INDOLINE(14).....
1186
1187
                IF(KFUEL.EQ.11) GDTO 501
1188
                FI=1./AF
1189
1190
                IF(FI.GT.O.95) GOTO 87
1191
                DATA SUO(13), SUO(12), SUO(14)/23.20D0, 19.25D0, 19.15D0/
          C
1192
          C
                DATA ALPHA(13), ALPHA(12), ALPHA(14)/2.27DO, 2.36DO, 2.27DO/
                DATA BETA(13).BETA(12).BETA(14)/-0.23D0,-0.22D0,-0.17D0/
1193 .
1194
                GOTO 89
1195
             87 IF(FI.GT.1.05) GOTO 88
                DATA SUD(13), SUD(12), SUD(14)/31.90D0,27.00D0,25.21D0/
1196
1197
                DATA ALPHA(13), ALPHA(12), ALPHA(14)/2.13D0, 2.26D0, 2.19D0/
                DATA BETA(13), BETA(12), BETA(14)/-0.17D0, -0.18D0, -0.13D0/
1198
1199
                GOTO 89
1200
             88 CONTINUE
1201
                DATA SUD(13), SUD(12), SUD(14)/33.80D0,27.63D0,28.14D0/
                DATA ALPHA(13), ALPHA(12), ALPHA(14)/2.06D0, 2.03D0, 2.02D0/
          C
1202
1203
          C
                DATA BETA(13),BETA(12),BETA(14)/-0.17D0,-0.11D0,-0.087D0/
             89 TBVEL=SUO(KFUEL)*((TU/298.)**ALPHA(KFUEL))*
1204
1205
               -((PU/100.)**BETA(KFUEL))
1206
                GOTO 510
1207
          C
1208
         C
             ANDREWS AND BRADLEYS EQUATION FOR METHANE(11)...
1209
          C
1210
          С
                PBAR1=PU/100.
1211
          C
                TBVEL=(10.0+0.000371*(TU**2.)*(PBAR1**(-0.5)))
```

```
MASBRN at 17:46:21 on JUN 26, 1985 for CCId=CILL Page
                                                                      22
 1212
          C
 1213
             RYAN AND LESTZ'S EQN. FOR METHANE(11)...
 1214
          C
 1215
          C 501 B1=9655.5
                 B2=-0.623
 1216
          C
 1217
          C
                 B3=-2144.5/TU
          C
                 TBVEL=B1*((PU/100.)**B2)*DEXP(B3)
 1218
 1219
          C
                 GOTO 510
 1220
          C
 1221
             AGRAWAL AND GUPTAS EQUATION FOR METHANE...
 1222
 1223
            501 PBAR1=PU/100.0
                 C4=-418.0+1287.0/AF-1196.0/(AF**2)+360.0/(AF**3)-15.0*AF*
 1224
 1225
                -DLOG10(PBAR1)
 1226
                 POW3=1.68*DSQRT(AF)
                 IF(AF.GT.1.) GOTO 65
 1227
 1228
                 POW3=1.68/DSQRT(AF)
             65 TBVEL=C4*((TU/300.0)**POW3)
 1229
 1230
          С
 1231
          C
             DIVIDE BY 100 TO CONVERT FROM CM/S TO M/S...
 1232
          C
 1233
            510 TBVEL=TBVEL/100.
          С
 1234
 1235
                 IF(IPRINT.EQ.O) GOTO 225
 1236
                 WRITE(9,100) TBVEL, VSU2, EU2, PU, TU, P2, T2
 1237
 1238
            100 FORMAT(1H , 'TBV, VSU2, EU2, PU, TU, P2, T2 *', 7E12.4)
 1239
          C----
 1240
            225 RETURN
 1241
                 END
1242
          С
. 1243
          C
                              THIS CALCULATES THE AVERAGE RATIO OF SPECIFIC
 1244
          C
             SUBROUTINE GAM
                               HEATS (GAMMA) OF AN UNBURNED GAS MIXTURE
 1245
          С
                               BETWEEN TWO GIVEN TEMPERATURES.
          C
 1246
 1247
          С
                 SUBROUTINE GAM(T2,T1,GAMU)
 1248
 1249
          C
                 COMMON /AREA1/ NCH.NO2,K,L,M.N.KFUEL
COMMON /AREA2/ MOLFL,NMIX,HF1,NNO2,NN2,NNFUEL,KOM
 1250
 1251
          С
 1252
                 REAL*8 T2,T1,NNO2,NN2,NNFUEL,GAMU,TI,CPA(14),A1,A2,R1,R2,S1,S2,
 1253
                -C1,C2,D1,D2,E1,E2,RMOL,CPAV,TT,NCH,NO2,K,L,M,N,MOLFL,NMIX,HF1
 1254
- 1255
             CALC. VALUES OF CP FOR THE COMBUSTIBLE MIXTURE;
 1256
          С
 1257
          С
             5=02, 6=N2, 11=CH4, 12=C8H18, 13=C3H8, 14=INDOLINE...
          С
 1258
 1259
                 RMOL=8.31434
 1260
                 TT=T2/100.
 1261
                 TI=T1/100.0
 1262
          С
                 A1=(37.432*TT+8.041E-03*(TT**2.5)+357.14/DSQRT(TT)-236.88/TT)
 1263
                 A2=(37.432*TI+8.041E-03*(TI**2.5)+357.14/DSQRT(TI)-236.88/TI)
 1264
                 CPA(5)=(NNO2/(T2-T1))*(A1-A2)
 1265
 1266
          C
                 R1=(39.06*TT+1025.58/DSQRT(TT)-1072.7/TT+410.2/(TT**2))
 1267
                 R2=(39.06*TI+1025.58/DSQRT(TI)-1072.7/TI+410.2/(TI**2))
 1268
                 CPA(6)=(NN2/(T2-T1))*(R1-R2)
 1269
```

```
MASBRN at 17:46:21 on JUN 26, 1985 for CCid=CILL Page
                                                                    23
1270
         С
1271
                51=-672.87*TT+351.8*(TT**1.25)-14.214*(TT**1.75)+647.76
1272
               -*DSQRT(TT)
1273
               S2=-672.87*TI+351.8*(TI**1.25)-14.214*(TI**1.75)+647.76
               -*DSQRT(TI)
1274
1275
               CPA(11)=(NNFUEL/(T2-T1))*(S1-S2)
1276
         C
                C1=(-4.042*TT+15.23*(TT**2)-0.5237*(TT**3)+7.9275E-03*(TT**4))
1277
               C2=(-4.042*TI+15.23*(TI**2)-0.5237*(TI**3)+7.9275E-03*(TI**4))
1278
1279
                CPA(13)=(NNFUEL/(T2-T1))*(C1-C2)
1280
         С
                TT=TT*100.
1281
                TI=TI+100.
1282
1283
         С
               D1=RMOL*(-0.72*TT+4.643E-02*(TT**2)-1.684E-05*(TT**3)+2.67E-09*
1284
1285
              -(TT**4))
1286
               D2=RMOL*(-0.72*TI+4.643E-O2*(TI**2)-1.684E-O5*(TI**3)+2.67E-O9*
1287
               -(TI**4))
1288
               CPA(12)=(NNFUEL*0.01/(T2-T1))*(D1-D2)
1289
         C
1290
               E1=RMOL*(-0.72*TT+4.643E-02*(TT**2)-1.684E-05*(TT**3)+2.67E-09*
1291
              -(TT**4))
1292
               E2=RMOL*(-0.72*TI+4.643E-O2*(TI**2)-1.684E-O5*(TI**3)+2.67E-O9*
1293
              -(TI**4))
               CPA(14)=(NNFUEL*0.01/(T2-T1))*(E1-E2)
1294
1295
         Ç
            CALC. CP, GAMMA, AND HENCE PRESSURE(P) AT TEMP. T(J) ASSUMING
1296
         C
1297
            ISENTROPIC COMPRESSION.....
1298
1299
               CPAV=CPA(5)+CPA(6)+CPA(KFUEL)
1300
               GAMU=CPAV/(CPAV-RMOL)
1301
               RETURN
1302
               END
1303
         C
1304
1305
         C
            SUBROUTINE COMP
                              THIS CALCULATES THE SPECIFIC ENERGY OF THE
         C
                              UNBURNED MIXTURE.
1306
1307
         С
1308
               SUBROUTINE COMP(T2, ENGY2, NRCO2, NRH2O)
1309
         C
1310
               COMMON /AREA1/ NCH, NO2, K, L, M, N, KFUEL
1311
               COMMON /AREA2/ MOLFL, NMIX, HF1, NNO2, NN2, NNFUEL, KOM
1312
         C
1313
               REAL*8 P1,V1,T1,P2,V2,T2,NCH,NO2,N,ENGY1,ENGY2,DH(14),RMOL,
1314
              -REM.REM1,TT1,REM2,TT2,HF1,MOLFL,DLF1,K,L,M,NMIX,NNO2,NN2,NNFUEL
1315
              -, UUU(10), T20LD, NRC02, NRH20
1316
         C
1317
               RMOL=8.31434
1318
         C
1319
               DH(1)=((3.096*T2+0.00273*(T2**2)-7.885E-07*(T2**3)
1320
               1+8.66E-11*(T2**4))-1145.0)*RMOL
               DH(3)=((3.743*T2+5.656E-O4*(T2**2)+4.952E-O8*(T2**3)
1321
1322
               1-1.818E-11*(T2**4))-1167.0)*RMOL
               DH(5)=((3.253*T2+6.524E-O4*(T2**2)-1.495E-O7*(T2**3)
1323
1324
              1+1.539E-11*(T2**4))-1024.0)*RMOL
1325
               DH(6)=((3.344*T2+2.943E-O4*(T2**2)+1.953E-O9*(T2**3)
1326
               1-6.575E-12*(T2**4))-1023.0)*RMOL
               DH(11)=((1.935*T2+4.965E-03*(T2**2.)-1.244E-06*(T2**3.)
1327
```

```
23 m. 6
         MASBRN at 17:46:21 on JUN 26, 1985 for CCId=CILL Page
                                                                       24
1328
               1+1.625E-10*(T2**4.)+8.586E-15*(T2**5.))-985.9)*RMOL
                DH(12)=((-0.72*T2+4.643E-02*(T2**2.)-1.684E-05*(T2**3.)
1329
1330
               1+2.67E-09*(T2**4.))-3484.0)*RMOL
                DH(13)=((1.137*T2+1.455E-02*(T2**2.)-2.959E-06*(T2**3.)
1331
1332
               1)-1552.9)*RMOL
                UUU(1)=-3.93522E05
1333
1334
                UUU(3)=-2.41827E05
1335
           CALC. TOTAL ENERGY OF MIXTURE (KJ)....
1336
                ENGY2=MOLFL*(NCH*(HF1+DH(KFUEL)-RMOL*T2)+NO2*(DH(5)-RMOL*T2)
1337
               -+N*(DH(6)-RMOL*T2)+NRCO2*(UUU(1)+DH(1)-RMOL*T2)+NRH2O*
1338
               -(UUU(3)+DH(3)-RMOL*T2))
1339
         C
1340
                RETURN
1341
                END
         C
1342
1343
         C
         C
             SUBROUTINE EXP
1344
                              THIS CALCULATES THE TEMP. AND CONCENTRATION OF
1345
         C
                              THE PRODUCTS OF COMBUSTION DURING THE EXPANSION
1346
         C
                              STROKE.
1347
         C
                SUBROUTINE EXP(P1,V1,T1,P2,V2,T2,NNN,CC,SUMXS,ENGY1,ENGY2,
1348
               -ATOT.DTIME.MTOT.MWBMIX)
1349
         C
1350
                COMMON /AREA1/ NCH, NO2, K, L, M, N, KFUEL
1351
                COMMON /AREA2/ MOLFL, NMIX, HF1, NNO2, NN2, NNFUEL, KOM
1352
                COMMON /AREAS/ AREAB, HTEXP, MPV, HTFCN, TWALL, VISC, THOUND COMMON /AREA4/ NDISS, IPRINT
1353
1354
1355
         С
1356
                REAL*8 P1,V1,T1,P2,V2,T2,SUMXS,K.L.N.M,NMIX,NM1,TT1,P,EPROD,
1357
               -CC(10),X(10),ENGY1,ENGY2,MOLFL,REM1,REM2,TT2,TT3,TT30LD,NNM1,
               -NNM3, REM3, NCH, ND2, HF1, NND2, NN2, NNFUEL, NNM2, EB2, VSB2, BORE
1358
1359
               -, AREAB, ATOT, MPV, HTFCN, TWALL, PDV, DQ, HTCOEF, VISC, THCOND, HTEXP
1360
               -. DOMEAS.DTIME.GAMMA.MWBMIX.MTOT
1361
         C
1362
                BORE=3.25*0.0254
1363
                NUT = O
1364
                NN=0
1365
         C
1366
                T2=(MWBMIX*P2*V2)/(MTOT*8.31434)
         C
1367
1368 .
                CALL ENERGY (T2.P2.EPROD.SUMXS.NNN,CC.X.EB2,VSB2,GAMMA,MWBMIX)
         C
1369
1370
                ENGY2=EPROD*MOLFL
1371
                HTCOEF=(THCOND/BORE)*((MPV*BORE/(VSB2*VISC))**HTEXP)/1000.0
1372
                DQ=HTCOEF*ATOT*(T2-TWALL)*HTFCN*DTIME
                PDV=((P1+P2)/2.0)*(V2-V1)
1373
1374
                DQMEAS=ENGY2-ENGY1+PDV
1375
         C
                PISEN=((V1/V2)**GAMMA)*P1
1376
1377
         C
1378
                IF(IPRINT.EQ.O) GOTO 4
1379
                WRITE(9,409) ENGY1, ENGY2, PDV, DQ, DQMEAS, PISEN
1380
           409 FORMAT(1H . 'ENGY1, ENGY2, PDV, DQ, DQMEAS ', 6E12.4)
1381
         C--
1382
1383
             4
                CONTINUE
         С
1384
1385
                RETURN
```

**

```
MASBRN at 17:46:21 on JUN 26, 1985 for CCid=CILL Page
1386
                END
          C
1387
             SUBROUTINE SMOOTH THIS READS IN THE ENSEMBLED PRESSURE VALUES
1388
          C
                                 AND SMOOTHS THEM USING MTS LIBRARY ROUTINES
1389
          C
          С
1390
                SUBROUTINE SMOOTH(POUT.SCONST.IPRNTS)
1391
          C
1392
                IMPLICIT REAL*8(A-H,O-W)
1393
          C
1394
                DIMENSION PIN(180), DPDTH(180), TOL(180), ANGLE(180), PD1(180)
1395
                DIMENSION PD2(180), W(2000), XIPIN(200), POUT(180), D2PDTH(180)
1396
1397
          С
1398
          C
                SVAL=5.0
1399
1400
                CONST 1=SCONST
                CONST2=SCONST
1401
1402
                IBEG=60
                IEND=120
1403
1404
             READ IN PRESSURE DATA...
1405
          C
1406
          C
                READ(4,20)(PIN(K),K=1,180)
1407
1408
            20
                FORMAT(F12.4)
          C
1409
                DO 600 IJ=1,190
1410
          C
                WRITE(9,601) IPIN(IJ)
          C
1411
          C
            601 FORMAT(1H , I10)
1412
1413
          С
            600 CONTINUE
1414
          C
1415
                DO 12 IJ=1,180
1416
                ANGLE(IJ)=DFLOAT(IJ)
1417
                CONTINUE
            12
1418
          C
             CALCULATE dP/dTHETA AT EACH DATA POINT ...
          C
1419
1420
          C
1421
           490
                DO 5 J=2,179
                DPDTH(J)=(PIN(J+1)-PIN(J-1))/2.0DO
1422
             5
                DPDTH(1)=0.0
1423
                DPDTH(180)=DPDTH(179)
1424
1425
          C
          C
1426
          C
             CALCULATE d2P/d(THETA) ** 2 AT EACH DATA POINT ...
1427
          C
1428
1429
           491
                DO 6 J=2,179
               D2PDTH(J)=(DPDTH(J+1)-DPDTH(J-1))/2.000
1430
                D2PDTH(1)=0.0
1431
1432
                D2PDTH(180)=D2PDTH(179)
1433
          C
1434
          C
1435
          C
             CALCULATE STANDARD DEVIATION OF THE SLOPE AT EACH CRANK ANGLE
             BASED ON VARIATION OVER RANGE OF 3 DEGREES EITHER SIDE...
          C
1436
1437
            492 DO 15 IT=4,177
1438
1439
                JS=IT-3
1440
                JF=IT+3
                AV=O.O
1441
1442
                DO 16 J=JS,JF
1443
             16 AV=AV+D2PDTH(J)
```

```
. MASBRN at 17:46:21 on JUN 26, 1985 for CCid=CILL Page
                                                                      26
1444
         C
                AV=AV/7.0
1445
1446
         C
1447
                SA=0.0
1448
                DO 17 J=JS,JF
             17 SA=SA+DABS(D2PDTH(J)-AV)**2
1449
                SD=DSQRT(SA/6)
1450
1451
                IF(IT.LT.IBEG.OR.IT.GT.IEND) GOTO 431
1452
                TOL(IT)=SD*CONST2+0.0001
1453
                GDTO 15
1454
            431 TOL(IT)=SD*CONST1+0.0001
1455
             15 CONTINUE
         C
1456
1457
                DO 18 IT=1.3
1458
             18 TOL(IT)=TOL(4)
1459
         C
1460
                DO 19 IT=178,180
1461
             19 TOL(IT)=TOL(177)
1462
         cccccccccccccccccccccccc
1463
         C
                DO 88 IT=1,180
1464
         C
                WRITE(9,87) TOL(IT)
1465
            87 FORMAT(1H ,F12.5)
1466
         C
            B8 CONTINUE
1467
         222222222222222222222222222
1468
1469
         C
             CALL LIBRARY CURVE FITTING ROUTINES...
1470
1471
            493 CALL DSPLFT(ANGLE, PIN, TOL, SVAL, 180, W.&100)
                CALL DSPLN(ANGLE, POUT, PD1, PD2, 180, 8100)
1472
1473
1474
                GOTO 92
1475
            100 WRITE(9,101)
1476
            101 FORMAT(1H , 'ERROR IN CURVE FITTING ROUTINE')
1477
                STOP 1
1478
         C
             92 IF(IPRNTS.EQ.O) GOTO 933
1479
1480
                DO 45 JK=1.180
                WRITE(9,602) PIN(JK), POUT(JK)
1481
1482
            602 FORMAT(1H ,2F12.5)
             45 CONTINUE
1483
1484
            933 RETURN
1485
1486
1487
                 SUBROUTINE BLKRD (CA, RF, VF, AFF, AWP, NDIM)
1488
                 REAL*8 RF(100), VF(100), AFF(100), AWP(100), D1, D2, D3
                 INTEGER NREC, CA, NDIM
1489
                 NREC=4 + CA*82
1490
                 NDIM=79
1491
1492
                 IF (CA .GE. 3) NDIM=80
                 IF (CA .GE. 3)NREC=4+246+(CA-3)*83
IF (CA .GE. 34)NDIM=81
1493
1493.5
                 IF (CA .GE.34)NREC=4+(CA-34)*84 + 246 +2573
1493.7
                 IF(CA .EQ. 45) NDIM=82
1493.8
1493.9
                 IF (CA .EQ. 45)NREC=3663
                 NREC=NREC*1000
1496
1497
                 FIND(7'NREC)
                 DO 2 J=1,NDIM
1498
                 READ(7.1) RF(J), VF(J), D1, AFF(J), D2, AWP(J), D3
1499
```

....

11.

```
MASBRN at 17:46:21 on JUN 26, 1985 for CCid=CILL Page
                  FORMAT(2(F12.10,2X),F12.9,2X,2(F12.10,2X,F12.9,2X))
1500
          2
                  CONTINUE
1501
                  RETURN
1502
1503
                  END
                  SUBROUTINE GEOM(NDIM, H, VOLB, RF, VF, AFF, AWP, RAD, AFRNT, APER, CA)
1504
                  REAL *8 RF(100).VF(100),AFF(100),AWP(100),RAD,AFRNT,APER,VOLB
1505
                  REAL*8 H, VINT, V1, V2, NONDIM
1506
                  INTEGER CA.NDIM
1507
1508
                  J=O
1508.5
                  H=H+0.059
                  V1=0.
1509
                  V2=0.
1509.5
1510
                  J=2
1510.5
                  FIX=3.14*(.041**2*H +.021**2*.0339)
1511
                  IF (VOLB .LE. VF(J)*FIX) GO TO 2
1512
                  ל + ל ≃ ל
1513
                  GO TO 1
                  V1=VF(J-1)*FIX
1514
          2
1514.5
                  V2=VF(J)*FIX
                  VINT=(VOLB-V1)/(V2 -V1)
1515
1516
                  L=J-1
                  RAD=(RF(L) +VINT+(RF(J)-RF(L)))+3.25/2 +0.0254
1519
                  AFRNT=(AFF(L)+VINT*(AFF(J)-AFF(L)))*2*3.141593*1.625**2
1520
                  AFRNT=AFRNT*(.0254**2)
1521
                  NONDIM=2*3.141593*(1.625*H + 0.83*1.337+1.625**2)
1522
                  APER=(AWP(L)+VINT*(AWP(J)-AWP(L)))*NONDIM*O.0254**2
1523
1524
                  RETURN
1525
                  END
                  SUBROUTINE INPUTS (JFLG.KFUEL.T1.SPEED.COMPR.AF.
1526
                1 SPKAD, HTFCN, HTEXP, F, PRO2, PRH20, PRN2, NDISS, PDCA,
1527
1528
                1 TWALL, PINLET, AIRFLO, IGNDEL, SCONST, IPRNTS, PAMB, CUPD, CUPH, HC)
                  IMPLICIT REAL*8(A-H, 0-Z)
1529
                  INTEGER NCODE, JFLG, NAN, NREP
1530
1530.5
                  REAL*8 IGNDEL
1531
                  IF (JFLG .NE. O) GO TO 99
1532
                  WRITE(6,2)
                  FORMAT(' '
1533
          2
                             ,'TYPE OF FUEL: 11=CH4 , 12=C8H18 , 13=C3H8')
                  CALL FREAD('GUSER', 'I:', KFUEL)
1534
1535
                  IF (JFLG .NE. O) GO TO 99
1536
          3
                  WRITE(6,4)
                              ,'TEMPERATURE AT START OF COMBUSTION= ?')
                  FORMAT(' '
1537
                  CALL FREAD ('GUSER', 'R:',T1)
1538
                  IF (UFLG .NE.O) GO TO 99
1539
                  WRITE(6,6)
FORMAT(''
1540
                              'ENGINE SPEED = ?')
1541
          6
                  CALL FREAD ('GUSER', 'R:', RPM)
1542
                  IF (JFLG .NE. O) GO TO 99
1543
1544
                  WRITE(6,8)
                  FORMAT(
1545
                              ,'COMPRESSION RATIO = ?')
          R
                  CALL FREAD('GUSER', 'R:', COMPR)
IF (JFLG.NE. O) GO TO 99
1546
1547
                  WRITE(6,10)
FORMAT(' ','AIR TO FUEL RATIO = ?')
CALL FREAD('GUSER','R:',AF)
1548
          9
1549
          10
1550
                  IF (JFLG .NE. O) GO TO 99
1551
                  WRITE(6,12)
1552
          11
                  FORMAT(' ','SPARK ADVANCE (DEG. BTDC) = ?')
CALL FREAD('GUSER','R:',SPKAD)
1553
          12
1554
```

```
MASBRN at 17:46:21 on JUN 26, 1985 for CCid=CILL Page
                                                                                28
 55
                   IF (JFLG .NE. 0) GO TO 99
 56
          13
                   WRITE(6,14)
                  FORMAT(' ','HEAT TRANSFER MULTIPLIER = ?')
CALL FREAD('GUSER','R:',HTFCN)
 57
          14
 58
 59
                  IF (JFLG .NE. O) GO TO 99
                  WRITE(6,16)
FORMAT(' ','HEAT TRANSFER EXPONENT = ?')
 60
          15
 61
          16
                  CALL FREAD('GUSER', 'R:', HTEXP)
 62
                  IF (JFLG .NE. 0) GD TO 99
 63
 63.5
          57
                  WRITE(6,58)
                  FORMAT(' ', 'RESIDUAL GAS FRACTION = ?')
CALL FREAD('GUSER', 'R:',F)
 63.7
          58
 63.8
                  IF (JFLG .NE. O) GD TD 99
 63.9
 63.95
                  WRITE(6,60)
                  FORMAT(' ', 'RESIDUAL FRACTION CO2 (%)= ?')
 63.97
         60
 63.98
                  CALL FREAD ('GUSER', 'R:', PRCD2)
                  IF (JFLG .NE. O) GD TO 99
 63.99
 64
          17
                  WRITE(6,18)
65
                  FORMAT(' ', 'RESIDUAL FRACTION 02 (%) =?')
          18
                  CALL FREAD ('GUSER', 'R:', PRO2)
-66
                  IF (JFLG .NE. O) GO TO 99
67
                  WRITE(6,20) FORMAT('',
·68
          19
                               , 'RESIDUAL FRACTION H20 (%) = ?')
69
          20
                  CALL FREAD ('GUSER', 'R:', PRH20)
170
                  IF (JFLG .NE. 0) GO TO 99
i71
172
          21
                  WRITE(6,22)
                  FORMAT(' ', 'REDISUAL FRACTION N2 (%) = ?')
i73
          22
                  CALL FREAD('GUSER', 'R:', PRN2)
IF (JFLG .NE. O)GD TO 99
i74
i75
                  WRITE(6,24)
FORMAT('',
i76
         23
                               ,'FULL DISSOCIATION (O), OR PARTIAL ?')
i77
          24
                  CALL FREAD('GUSER','I:',NDISS)
IF (JFLG .NE. O) GO TO 99
578
179
380
         25
                  WRITE(6,26)
                  FORMAT(' ','CRANK ANGLE ITERATION INCREMENT = ?')
CALL FREAD('GUSER','R:',PDCA)
381
          26
582
583
                  IF (JFLG .NE. 0) GO TO 99
584
         27
                  WRITE(6,28)
                  FORMAT(' '.'CYLINDER WALL TEMPERATURE =?')
185
         28
386
                  CALL FREAD ('GUSER', 'R:', TWALL)
                  IF (JFLG .NE. O) GO TO 99
187
188
         29
                  WRITE(6,30)
                  FORMAT(' ','INLET PRESSURE (PASCALS) = ?')
CALL FREAD('GUSER','R:',PINLET)
189
         30
190
                  IF (JFLG .NE. 0) GO TO 99
i9 1
i92
         31
                  WRITE(6,32)
                  FORMAT(' ', 'AIR MASS FLOW RATE (G/S) = ?')
i93
         32
                  CALL FREAD ('GUSER', 'R:', AIRFLO)
i94
                  IF (JFLG .NE. O) GO TO 99
i95
196
         33
                  WRITE(6,34)
                  FORMAT('','IGNITION DELAY TIME (CA DEG) = ?')
CALL FREAD('GUSER','I:',IGNDEL)
IF (JFLG.NE.O) GO TO 99
i97
         34
198
;99
100
         35
                  WRITE(6,36)
                  FORMAT(' ','SMOOTHING ROUTINE CONST, SCONST = ?')
CALL FREAD('GUSER','R:',SCONST)
101
         36
iO2
                  IF (JFLG.NE.O) GO TO 99
:03
304
         37
                  WRITE(6,38)
```

```
MASBRN at 17:46:21 on JUN 26, 1985 for CCid=CILL Page
     38
             FORMAT(' ','DO YOU WANT INTERMEDIATE RESULTS Y=1, N=0?')
             CALL FREAD('GUSER','I:', IPRNTS)
IF (JFLG.NE.O) GO TO 99
             WRITE(6,40)
     39
             FORMAT(' ','AMBIENT PRESSURE (KPA) 7')
CALL FREAD('GUSER','R:',PAMB)
IF (JFLG.NE. O) GO TO 99
     40
             WRITE(6,42)
FORMAT(' ','PISTON CUP DIAMETER (M) ?')
     41
ı
     42
             CALL FREAD('GUSER', 'R:', CUPD)
             IF (JFLG .NE. O) GD TO 99
15
     43
37
             WRITE(6,44)
             FORMAT(' ', 'PISTON CUP DEPTH (M)?')
38
     44
39
             CALL FREAD('GUSER', 'R:', CUPH)
             IF (JFLG .NE. O) GO TO 99
195
             WRITE(6,46)
FORMAT(' ','CLEARANCE HEIGHT (M) ?')
397 45
398 46
             CALL FREAD ('GUSER', 'R:', HC)
399
             WRITE(6,100)
FORMAT(' ','DO YOU WISH TO CHANGE ANY INPUTS (1=YES,0=NO) ?')
     99
     100
             CALL FREAD('GUSER','I:',JFLG)
IF (JFLG.EQ. O) GO TO 104
             WRITE(6,102)
FORMAT(' ','ENTER THE NUMBER CODE OF THE INPUT (1,2,3,..)')
     101
     102
             CALL FREAD('GUSER','I:',NCODE)
GO TO (1.3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,
           137,39,41,43,45,57,59),NCODE
             WRITE(6,103)
FORMAT(' ','DD YOU WANT TO SAVE THIS DATA (0=YES,1=ND) ?')
7
     104
3
     103
             CALL FREAD('GUSER', 'I:', NREP)
35
9
             IF (NREP .EQ. 1 ) RETURN
             CALL OUTPUT(JFLG, KFUEL, T1, RPM, COMPR, AF,
92
94
           1 SPKAD, HTFCN, HTEXP, F, PRCO2, PRO2, PRH20, PRN2, NDISS, PDCA,
96
           1 TWALL, PINLET, AIRFLO, IGNDEL, SCONST, IPRNTS, PAMB, CUPD, CUPH, HC)
             RETURN
             END
             SUBROUTINE OUTPUT(JFLG, KFUEL, T1, RPM, COMPR, AF,
           1 SPKAD, HTFCN, HTEXP, F, PRCO2, PRO2, PRH20, PRN2, NDISS, PDCA,
           1 TWALL, PINLET, AIRFLO, IGNDEL, SCONST, IPRNTS, PAMB, CUPD, CUPH, HC)
5
             IMPLICIT REAL+8(A-H,O-Z)
7
             REAL*8 IGNDEL
            WRITE(8,47) KFUEL, T1, RPM, COMPR, AF, SPKAD, HTFCN, HTEXP
           FORMAT(13,2F7.1,3F6.2,F6.3,F5.2)
            WRITE(8,46) F, PRO2, PRCD2, PRH20, PRN2, NDISS, PDCA, TWALL
           FORMAT(5F7.3,13,F6.2,F7.1)
            WRITE(8,2) PINLET, AIRFLO, IGNDEL, SCONST, IPRNTS, PAMB
            WRITE(8,22) CUPD, CUPH, HC
            FORMAT(3F8.3)
            FORMAT(F6.1,3F6.2,13,F6.2)
            RETURN
            END
```

APPENDIX F - PROPERTIES OF B.C. NATURAL GAS

Composition (Volume %)

Methane	94.00
Ethane	3.30
Propane	1.00
Iso-butane	0.15
N-butane	0.20
Iso-pentane	0.02
N-pentane	0.02
Nitrogen	1.00
Carbon Dioxide	0.30
Hexane	0.01

Water Content: 3 to 1bs/million cubic feet

This composition may be conveniently approximated by the following composition:

	% Volume	Volume Fraction	Molecular Weight	Mass kg/kmol
Methane CH4	94.00	0.940 *	16.040	= 15.078
Ethane C2H6	3.30	0.033 *	30.070	= 0.992
Propane C3H8	1.00	0.010 *	44.097	= 0.441
Butane C4H10	0.40	0.004 *	58.124	= 0.232
Nitrogen	1.00	0.010 *	28.013	= 0.280
Carbon Dioxide	0.30	0.003 *	44.010	= 0.132
				
	100.00	1.000		M = 17.156

It therefore follows that the average molecular weight is 17.156 and the gas constant = $\frac{R}{M} = \frac{8.3143}{17.156} = 0.4846$.

Hence, density = P/(Z*R*T) = 21.1°C at 1 atm (101.3 kPa). Generally, density at 1 atm = $209/T(^{\circ}K)$ kg/m.

Viscosity

The viscosity of the natural gas at 0°C may be obtained from the following:

$$\mu_{\text{mix}} = \frac{\sum y_i * u_i * (M_i)^{1/2}}{\sum y_i * (M_i)^{1/2}} \quad \text{where} \quad y_i = \text{molecule fraction} \\ M_i = \text{molecule weight}$$

given:

 $\begin{array}{lll} \mu_{\rm CH_{4}} & = & 102.6 \ \mbox{micropoise at 0°C.} \\ \mu_{\rm C_{2}H_{6}} & = & 84.8 \ \mbox{micropoise at 0°C.} \\ \mu_{\rm C_{3}H_{3}} & = & 75.0 \ \mbox{micropoise at 0°C.} \\ \mu_{\rm CO_{2}} & = & 139.0 \ \mbox{micropoise at 0°C.} \\ \mu_{\rm N_{2}} & = & 166.0 \ \mbox{micropoise at 0°C.} \end{array}$

Estimating μ as 75.0 for C4H10 as well as C3H8 and including the mole fraction of the former with the latter, the calculation becomes:

	Viscosity	y _i	^m i	(m _i) ^{1/2}	$y_i^*(m_i)^{1/2}$	$y_i^{\mu_i(m_i)^{1/2}}$
CH4	102.6	0.940	16.040	4.005	3.765	386.29
C2H6	84.8	0.033	30.070	5.484	0.181	15.35
C3H8	75.0	0.014	48.105	6.936	0.097	7.28
CO2	139.0	0.003	44.010	6.634	0.020	2.78
N2	166.0	0.010	28.013	5.293	0.053	8.80
						
					4.116	420.50

with the result

$$\mu_{\text{mix}} = \frac{420.5}{4.116} = 102.16 \text{ upoise at 0°C.}$$

The viscosity of natural gas at other temperatures can be obtained from,

$$N.G.\mu = 9.879*T^{3/2}/(T + 163.17)$$

Therefore viscosity of N.G. at $70^{\circ}F$ (21.1°C) = 108.96 µpoise.

Higher and Lower Heating Values

	mass	mass		HHV		
	kg/kmol	(%)		(kJ/kg)		
СН4	15.078	0.879	*	55496	=	48781
С2Н6	0.992	0.058	*	51875	=	3008
С3Н8	0.441	0.026	*	50343	=	1309
C4H10	0.232	0.013	*	49500	=	644
CO2+N2	0.412	0.024	*	0	=	0
						
	17.156	1.000				53742

Therefore the Higher Heating Value of B.C. Natural Gas is 53,742 kJ/kg at 25°C .

The Lower Heating Value is given by,

	mass (%)		LHV		
СН4	0.879	*	50010	=	43959
С2Н6	0.058	*	47484	=	2754
С3Н8	0.026	*	46353	=	1205
C4H10	0.013	*	45714	=	640
CO2+N2	0.024	*	0	=	0
		•			
	1.000				48558

Therefore the Lower Heating Value of B.C. Natural Gas is 48,558 kJ/kg at 25°C .

TABLE I
Engine Specifications

	the state of the s
Engine	C.F.R.
Displacement	611.7 c.c.
Bore	82.55 mm
Stroke	114.30 mm
Compression Ratio	11.3
Con-rod Length	254.00 mm
Intake Valves	Diam. 35 mm Opening Angle 10 A.T.D.C. Closing Angle 34 A.B.D.C.
Exhaust Valve	Diam. Opening Angle 40 B.B.D.C. Closing Angle 15 A.T.D.C.
Spark Plug	Champion W18

TABLE II

Hot Wire Probe and Anemometer Specifications

Probe	TSI Model 1226
Wire Material	Platimum-Iridium
Wire Diameter	6.3 µm
Wire Length	1.25 mm
Wire Temperature Coefficient of Resistance	0.0009 /°C
Anemometer	Disa Model 55M
Top Resistance	50 Ω
Cable Resistance	0.214 Ω

Fig. 1.1 The squish combustion chamber

$$A_{1} = TI/4 (D^{2} - D_{B}^{2})$$

$$A_{2} = TI/4 D_{B}^{2}$$

$$A_{3} = TI D_{B} (h_{c} + S)$$

$$SSQUISH = A_{1}/(A_{1} + A_{2})$$

$$V_{1} = A_{1} (h_{c} + S)$$

$$V_{2} = A_{2} (h_{c} + S + H)$$

Fig. 3.1 The standard squish chamber

$$A_{1} = \pi I/4 (D^{2} - D_{B}^{2})$$

$$A_{2} = \pi I/4 D_{B}^{2}$$

$$A_{3} = \pi I D_{B} (h_{c} + S)$$

$$A_{4} = \pi I/4 d^{2}$$

$$\$SQUISH = A_{1}/(A_{1} + A_{2})$$

$$V_{1} = A_{1} (h_{c} + S)$$

$$V_{2} = A_{2} (h_{c} + S + H)$$

Fig. 3.2 The squish-jet chamber

Fig. 3.3 The effect of clearance height on squish velocity

Fig. 3.4 The effect of the squish-jet design on squish velocity

Fig. 4.1 Schematic of experimental setup and instrumentation

Fig. 4.2 The C.F.R. engine

Piston A, Case 1 A=0.354 B=0.947 C=1.819 Piston B, Case 1 A=0.354 B=0.947 C=1.739 Piston A, Case 2 A=0.354 B=0.931 C=1.500 Piston B, Case 2 A=0.354 B=0.889 C=1.500

Piston A - exclude the 7 holes Case 2 - do not mill recess for valves

Fig. 4.3 The squish piston inserts

Fig. 4.4 Photograph of squish piston inserts

Fig. 4.5 Top and side view of C.F.R. combustion chamber

Fig. 4.6 Fitting for hot wire probe

Fig. 4.7 Schematic of data acquisition

- 1 Charge Amplifier for Pressure Signal
- 2 Anemometer Bridge Unit
- 3 Digital Oscilloscope
- 4 Hewlett Packard Tape Recorder
- 5 I.B.M. Microcomputer
- 6 Data Acquisition Circuitry
- 7 Bandpass Filter

Fig. 4.8 Photograph of data acquisition system

- 1 Slotted Wheel
- 2 Optical Pickup and Trigger Circuitry

Fig. 4.9 Photograph of optical trigger system

All dimensions in millimeters

Fig. 5.1 Hot wire probe locations

Fig. 5.2 Hot wire probe orientation

Fig. 7.1 Three consecutive instantaneous velocity records

Fig. 7.2 Comparison of time averaged and ensemble averaged mean velocity

Fig. 7.3 Cyclic variation of the mean velocity

Fig. 7.4 Comparison of time and ensemble averaging techniques for the evaluation of turbulence intensity

Fig. 7.5 Turbulence intensity evaluated with Lancaster's nonstationary technique

Fig. 7.6 Mean velocity and turbulence intensity for Piston A; $h_{\rm c}$ = 3.5 mm; probe at cup edge

Fig. 7.7 Mean velocity and turbulence intensity for Piston A; $h_{\rm c}$ = 1.5 mm; probe at cup edge

Fig. 7.8 Mean velocity and turbulence intensity for Piston A; h_c = 1.5 mm; probe at chamber center

Fig. 7.9 Mean velocity and turbulence intensity for Piston A; h_c = 1.5 mm; probe at cup edge; θ = 90°

Fig. 7.10 Mean velocity and turbulence intensity for Piston A; h_{c} = 1.5 mm; probe at chamber center; θ = 900

Fig. 7.11 Comparison of mean velocity traces for Piston A; $h_{_{\hbox{\scriptsize C}}}$ = 3.5 and 1.5 mm; probe at cup edge

Fig. 7.12 Comparison of relative turbulence intensities for Piston A; $h_{\rm C}$ = 3.5 and 1.5 mm; probe at cup edge

Fig. 7.13 Mean velocity and turbulence intensity for Piston B; h_c = 3.5 mm; probe at cup edge

Fig. 7.14 Mean velocity and turbulence intensity for Piston B; $h_{\rm c}$ = 1.5 mm; probe at cup edge

Fig. 7.15 Mean velocity and turbulence intensity for Piston B; h_{c} = 1.5 mm; probe at chamber center

Fig. 7.16 Mean velocity and turbulence intensity for Piston B; h_c = 1.5 mm; probe inside cup

Fig. 7.17 Comparison of relative turbulence intensities for Piston B; h_c = 3.5 and 1.5 mm; probe at cup edge

Fig. 7.28 Comparison of mass fraction burn curves for Pistons A and B at a spark timing of 25° BTDC

Fig. 7.19 Comparison of relative turbulence intensities for Pistons A and B; h_c = 1.5 mm; probe at cup edge

Fig. 7.20 Comparison of the relative probability distributions of small scale turbulence structure for Piston A at the chamber center and at the cup edge

Fig. 7.21 Comparison of relative probability distributions of small scale turbulence structure at the chamber center for Piston A and the flat piston

Fig. 7.22 Comparison of relative probability distributions of small scale turbulence structure at the cup edge for Pistons A and B

Fig. 7.23 Comparison of relative probability distributions of small scale turbulence structure at the chamber center for Pistons A and B

Fig. 7.24 Comparison of pressure history for Pistons A and B and the flat piston for a spark timing of 30° BTDC

Fig. 7.25 Comparison of mass fraction burn curves for the flat piston and for Piston A at a spark timing of 30° BTDC

Fig. 7.26 Comparison of mass friction burn curves for Pistons A and B at a spark timing of 30° BTDC

Fig. 7.27 Comparison of mass fraction burn curves for all three pistons at a spark timing of 30° BTDC

Fig. 7.28 Comparison of mass fraction burn curves for Pistons A and B at a spark timing of 25° BTDC