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Abstract

A flow model for a Joukowsky airfoil with an inclined
spoiler or split flap is constructed based on the early work
by Parkinson and Jandali. No restriction is imposed on the
airfoil camber, the inclination and length of the spoiler or
split flap, and the angle of incidence. The flow is assumed to
be steady, two-dimensional, 1inviscid and incompressible. A
sequence of conformal transformations is developed to deform
the contour of the airfoil and the spoiler (split flap) onto
the circumference of the unit circle over which the flow
problem is solved. The partially separated flow region behind
these bluff bodies 1is simulated by superimposing suitable
singularities in the transform plane. The trailing edge, the
tip of the . spoiler (flap) are made critical points in the
mappings so that Kutta conditions are satisfied there. ‘The
pressures at these critical points are matched to the pressure
inside the wake, the oniy empirical inpﬁt to the model. Some
studies of an additional boundary condition for solving the
flow problem were carried out with considerable success. The
chordwise pressure distributions and the overall 1lift force
variations are compared with experiments. Good agreement 1in
general 1is achieved. The model can be extended readily to
airfoils of arbitrary profile with the application of the

Theodorsen transformation.
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1. INTRODUCTION

Theoretical as well as experimental investigations of
bluff body'aerodynamics, especially partially separated flows
associated with airfoils equipped with spoilers, have been
conducted in the Department of Mechanical.Engineering at the
University of British Columbia for some years. The motivation
behind this study is that spoilers have been widely wused on
aircraft wings as a device for 1landing and maneuvering
purposes. They decrease the lift by reducing circulation, and
also function as airbrakes to increase strongly the drag, thus
reducing considerably the speed and generating a steeper glide
angle. They can also serve for roll control if deflected

asymmetrically.

The counterpart of a spoiler, a split flap, has been
studied recently for one of its features of producing high
lift at 1lower angles of incidence. With the split flap
deployed, the maximum lift coefficient would be increased so
that the take-off distance of an aircraft may be shortened if
the 1ift—to—arag rétio is kept sufficiently high. Although
multi-slotted flaps are used in aircraft wings in recent years
for various reasons, a somewhat unexpected result [1] has been
observed that when based on the extended chord at a Reynolds
number (Re) 6 x 1b‘ or higher, the maximum attainable C is

L
nearly the same for split, slotted, and double-slotted flaps.



In other words, for producing the lift force, the split flap
may be just as efficient as other types of flap. Both spoilers
and split flaps have been employed, for instance, on the B-52
stratofortress and other recent operational airplanes, and
they continue to play an important role in the design of

airplanes.

In practice, wing flaps and spoilers as used on wings,
are three dimensional devices, limited in span and sometimes
rake~-like in shape, wusually interrupted by the fuselage and
interfered with by nacelles and propeller slipstreams.
However, the two dimensional aerodynamic characteristics are
the basis from which more complicated configurations can be
understood. The simple two dimensional wake singularity model
for bluff body flows developed by Parkinson and Jandali [2,3]
provides the basic information for the flow associated with
airfoil normal spoilers. 1In addition, its reliablity,
mathematical elegance and flexibility allow the model to be
used for accurate prediction of the loading on any
airfoil-shaped profile equipped with a spoiler or split flap.
Costly and tedious wind tunnel tests for pressure distribution

and lift variation may then be reduced to a certain extent.

A split flap is formed by deploying the rear portion of
the lower surface of the airfoil about the forward edge of the
flap. Theréfore, the lengfh of the flap 1is equal to the
distance between its hinge and the trailing edge. Whereas for

a spoiler, it is located on the upper surface and wusually



positioned somewhere between the mid-chord and the trailing
edge, 1in order to achieve the desired performance. Its height
often extends from 5 to 10 % of the chord. In practice, the
angle of deflection, &, for both devices ranges from 0° to
60°, although no such restriction is imposed on & 1in the
present theory. Fig. 1 from [4] shows experimentally how CL
varies with a, angle of incidence, as § is increased from 0°
to 60° for the NACA 23012 profile fitted with a split flap of
20 % chord. It is clear from Fig.1 that deflecting the split
flap is equivalent to altering the effective camber of the
airfoil, or more precisely, to decreasing the angle of zero
lift, but without considerably distorting the 1lift curve
slope. The opposite effect takes pléce if a spoiler is
erected. Deploying the split flap or spoiler provides the
simplest method of accomplfshing .the desirable lift
coefficient through the temporary alteration of the airfoil

geometry.
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2. HISTORICAL SURVEY

An early theoretical study of potential flow around an
airfoil with a split flap and circulation control by suction,
was conducted by Whitehead, Cheers and Mandl [5] at NAE. The
combination of the airfoil and the split flap is idealized by
a straight-line configuration with suction produced by a sink
located on the upper surface of the flap in order to simulate
the effect of the separated wake. The effects from the leading
edge separation bubble, the finite thickness of the airfoil
and the wind tunnel constraint tend to widen the discrepancy
between the experimental and theoretical lift variation over a
range of angles of incidence. Besides, no information

concerning the loading over the airfoil is available.

Woods [6] dealt with a similar problem in the form of a
linear perturbation free streamline potential theory. As
pointed out in Parkinson [7], Woods' theory 1is awkward to
apply because it requires two empirical details of the
separated flow, and does not account for girfoil thickness,
which may be a significant contribution. A comparsion between
the theoretical pressure distributions by Woods and Parkinson

& Jandali can be found in reference [8].

The present work follows closely Jandali's [3] approach

but has been .extended‘ to deal with arbitrarily inclined



spoilers or split flaps. The flow is élso assumed to be
inviscid but the theory 1is exact 1in the sense that no
linearization technique is applied. That is, the airfoil is of
finite thickness and camber. Therefore, the resulting pressure
loading over the airfoil does not possess a leading edge
singularity. The only empirical input is the pressure inside
t;; wake behind the spoiler or split flap because there is not

any theory to predict its wvalues at various geometrical

configurations.



3. THEORY

The work described herein concerns only the Joukowsky
airfoil family. However, it can be readily extended to other
airfoil shapes by applying the Theodorsen transformation to
the physical plane where the airfoil 1is 1located. 1In fact,
Jandali [3] accomplished this extension to a Clark-Y airfoil

with a normal spoiler and achieved satisfactory results.

The present theory deals with the kinematics as well as
the dynamics of the fluid flow around an airfoil with an
inclined spoiler or split flap. It is assumed that the flow is
everywhere steady, two dimensional, inviscid and
incompressible except in the region where a broad wake, caused
by flow separation, is located (Figs. 2a,b). Therefore, the
potential flow theory with the technique of conformal
transformation can be used to deal with the kinematics. The
dynamical input is through the prescribed boundary conditions
with an empirical parameter, which is the constant pressure in
the wake behind the spoiler or split flap. Shear layers
emanating from the points of separation (i.e. the trailing
edge, and the tipiof the spoiler or split flap) are modelled

as separating streamlines of initially constant pressure.

Before separation takes place, it 1is reasonable to

assume, partly as a matter of observation and partly from
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mathematical analysis, that the viscous boundary layer is thin
over an airfoil surface. Therefore, the flow can be treated as
irrotational and Bernoulli's principle 1is applicable to
calculate the pressure variation along a streamline of

interest, which is the airfoil profile as considered here.

However, inserting a spoiler or split flap will
definitely slow down the fluid particles approaching it, and
thus alter the thickness of the boundary layer ahead of this
obstacle. In fact, in the case of an 1inclined spoiler, the
strong adverse pressure gradient over the upper surface and
near the 1leading edge of the airfoil enhances this
deceleration of fluid flow so that an early flow separation,
including some backward flow, takes place upstream of the
spoiler. This separation of flow followed by reattachment over
the spoiler surface, forms a closed bubble of circﬁlatory air
at a fairly constant pressure. Fig.3 is a flow visualization
of the bubble taken in a smoke tunnel at low Reynolds number.
As the Reynolds number is increased, stronger flow outside the
boundary layer resists the backward flow from starting further
upstream of the spoiler, and thus causes the size of the
bubble to diminish. On the other hand, the occurrence of the
bubble is 1less pronounced in front of the split flap because
the pressure gradient is in general less prominent over the
lower surface. Therefore, the separation bubble is ﬁmaller and
the theoretical prediction of the pressure near it is
reasonably good. Nevertheless, since viscous effects dominate

in this region, the potential flow theory presented here is,



Fig. 3

Separation Bubble in front of Spoiler (Jandali,

Unpublished Data)
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in general, expected to predict less satisfactory results.
Evidence is found in both Jandali [3] and the present work. No
attempt has been made in the theory to model the presence of

the bubble in either case.

3.1 Kinematics

Solving the flow problem of any bluff body section
directly in the physical plane is not always easy. More often,
the degree of complexity of the geometry can be substantially
reduced if the method of conformal transformation is utilized.
Parkinson and Jandali [2] successfully found the mappings for
a number of bluff body shapes. In Jandali [3], conformal maps
were used to deform the contour of an airfoil with a normal
spoiler onto the circumference of a unit circle over which the

flow problem was solved.

For an airfoil with an inclined spoiler or split flap,
the use of conformal mapping 1is inevitable because of the
non-trivial geometry involved. Jandali's method is used here

but the sequence of mappings is more intricate.

3.1.1 Conformal Transformations for an Inclined Spoiler

A circle of radius R centered at t, (-e,u) in the t-plane
(Fig. 4b) will become a Joukowsky airfoil in the z-plane (Fig.

4a) when given the well-known Joukowsky transformation :
z =t + 1/t ee. (1)

The camber and the thickness of the derived airfoil are



(a) (b)

At

Fig. 4 Complex Transform Planes (Spoiler)
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related to the 1location of t,. The magnitude of R can be

calculated by the formula

R=yv (1 + €)% + p2 oo (1a)

An inclined spoiler which is represented by the fence BCD
in the 2z-plane 1is mapped from a straight line segment BCD
emanating from pointlB in the t-plane. The inclination § (<
90°), which 1is the measure of the angle of intersection
between BC and the tangent line at B, stays constant under the
forementioned conformal transformation. 1In other words, the
spoiler in the physical plane z is also making the same angle
§ with the surface of the airfoil. However, since (1) is not a
linear transformation, the spoiler BCD becomes a slightly
curved segment which 1is not 1inappropriate for practical
spoiler heights. Nevertheless, it should be noted that the
spoiler (split flap) tip deflection angles will be from 0.5°
to 1.0° less than the root values of & used throughout the
thesis. The chordwise 1location e and the height % of the
spoiler in the z-plane are related to the angular variable 6,,
height h and inclination & in the t-plane. Table 1 provides

some values of e/c, 6,, 6, % and B used in the calculations.

A counter-clockwise rotation through v combines with

translation of A to produce the transformation

(t - A) e? eee (2)

n
n

where ¥

/2 - Gq - 8 ees  (2a)

. and ‘ A=ty +*+ Rcos § e1(0°+6) .. (2b)



Table 1: Spoiler

e/c

.90 32.25°

70 67.25°

50 86.25°
#/)c = 5%, 6§ =45°, n = 1.5
e/c h 4 [l
.90 .2013 5.9817 6.9252
.70 .1284 9,4638 10.4268
.50 .1183 10.2855 11.2513
B/c =10 %, & = 30°, n = 1%
e/c h ¥ 7
.90 .4832 2.3162 2.0201
.70 .2616 4.3887 3.2539
.50 .2366 4.8730 3.5380
¥/c = 10 %, 5 = 60°, n = 1%
e/c 1 ¥ ]
.90 .4329 2.1979 4.8253
.70 .2668 3.6177 7.3304
.50 .2418 4.0015 8.0026
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This mapping results in bringing the line segment BCD in the
t-plane onto the horizontal axis 1in the s-plane. And the

circle is centered at s = -R cos & i, Fig 4c.
With the Karman-Trefftz transformation
s = i R sin & cot (w/2) ' . (3)

the contour in the s-plane becomes a degenerate polygon in the
w-plane as shown 1in Fig. 4d4. The two circular arcs DEAG and
GFB become two infinite vertical lines to the 1left and the
right of the origin of the w-plane, respectively, whereas the
straight line segment BCD is a vertical ray starting from the
point = h i. The flow outside the airfoil in the z-plane is
mapped onto the interior of the polygon'boénded by GBDG. w = 0

corresponds to 2z = =, Table 2 summarizes the co-ordinates of

the points of interest in the t, s and w-planes.

Note that n=2¢(1 - &/n) ee. - (3a)
and h=1n [ 2 51“h5 * B .e.  (3Db)

where 1 £ n £ 2.

The interior of the polygon is mapped onto the upper half
plane of A (Fig. 4e) by the Schwarz-Christoffel transformation

— =k A(AN+n)"(AN-2+n)" ... (4)

which can be integrated to

o=-22n) +in-3 e )+ 200 G - 1
oo (5)
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Table 2

Co-ordinates of points B, C, D, E, A, G, F in different planes for séoilers.

Point t-plane s-piane w-plane

6o

B te + R e R sin 6 nw/2 + i= or + fe
i@o | -iy X

C to + R e + h e R sin § + h h i
iBo

D to + R e R sin & (2-N)n/2 + i~ or + e

iy iy

E 1 (1 - ANe - 2 cot ' [(A - e /(R sin 6)]
1(0e+6)

A to ~ R e -(R + R cos §)i -(2-n)n/2
i(@o+ 26)

G to + R e -R sin § ng/2 - i~ or =(2-n)n/2 - i~
1(00+6) .

F to + R e (R - R cos §)i nn/2

L1
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The scale factor k and the integration constant are evaluated

by setting
w=nhi for A=0
w = n% + 1= for A= -n-
w= i for A= -n*

, as shown in appendix E.

Let A_ = T + i7 correspond to w
given by

e2h= [(Z'P 1)2 + (E)Z]n/z [(_'E_ - 1)2+(i)2](2_n)/2
n n 2-n 2-n

7(2-n) =.n tan"(f§;) + (2-n) tan“(ijgzg)/ .

When n=1 or & = 90°, (6) & (7) can be simplified to

2h

T=0 and = (e =1).

0 or z = «, Then ¥ and 7% are

(6)

(7)

For 1 < n < 2, ¥ and 7 have to be found numerically. See Table

1 for a summary of values of ¥, %, n and h.

The transformation (8), which 1is a combination of

shifting and scaling,

A=7FT + 73X

(8)

ensures that X = i is equivalent to z = =, see Fig. 4f. Here,

7 is taken to be non-zero.

/

Finally, a bilinear transformation and a rotation,
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_ _iao i+x
S = € (i_x) LK N 2 (9)
map the flow on the upper half plane of X to the exterior of
the wunit circle in the §-plane. Angle a,, which is defined by
(13),is chosen so that the wuniform flow at infinity is

parallel to the real axis in the §{-plane, Fig. 4g.

After a sequence of 6 mappings, the contour of the
airfoil with the spoiler becomes the perimeter of the unit
circle, Fig.4g. The distribution of points B, C, D, E, etc.,

can be obtained once the formula for a, is established.

. . . . dz .
The combined transformation derivative —— can be obtained

as
by the chain rule : /
dz _ dz dt ds dw A\ aX
d¢t = dt ds dw A\ dX d¢
and reduces to
dz  t?-1 -iy, ._ sin § ) Al 7(i-X)2? ia,
as - gz ¢ [FIRT = ey 21

R (10)

(10) has essentially two simple zeros and two simple
poles in the region corresponding to the flow field and the
airfoil boundary :

a) simple zero at the trailing edge E, t = 1,
'b) simple zero at the tip of the spoiler C, A = 0,
c) simple pole at the spoiler base B, A = -n, and

d) simple pole at the spoiler base D, A = 2-n.
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The points at which g% has simple zeros are called the
critical points. Because of the doubling of the angles at
critical points, the stagnation streamlines leaving E and C in
the ¢-plane become the tangential separation streamlines at
the corresponding points in the z-plane. The points at which
gi has simple zeros will be stagnation points in the z-plane.
Only point B is of interest because point D is within the wake

in which the flow is ignored.

However, the point G on the airfoil surface,
T . . . P
w = -(2—n)5 - ie or n% - i , and the point at infinity, X =
i, are not simple zeros of (10) but removable singularities.

The proofs are given in appendices A and B, respectively.
/

Let Ue '® and V be the velocities of the flow at infinity

in the z and {-planes. They are related through

ye 1@ — v(&y| ce. (1D
dz

Z=0

From equations (11) and (B4,appendix B), one can deduce that

2_ |QZ_|
v l'ag!_
_ Rsin & //’[(z+n>2 + %21[(¥-2+n)? + 2] (12)
7 (T2 + 72)
And qo=§+a+'y+91"92-93 ee e (13)
where 6, = tan"(%)- cee (13a)
6, = tan“(—ﬂ—) (13b)

Ten
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and 6; = tan- ' (z=—2—)

T-2n ces (13c)

The angular positions of the simple zeros in the §{-plane

<

are given by

GC =7 - 2 tan"(%) - ap e (14)
eE = - cos“[(1—Xé)/(1+X§)] - ao . (15)

The equations used to determine the point E in the X plane, XE

, are given in appendix C.

Equations (14) and (15) should reduce to the
corresponding ones given in Jandali [3] when 6 = 90° and n = 1
since both Jandali's and the current mapping sequences deform
the airfoil contour onto the circumference of the unit circle.

The details of the derivation are given in appendix D.

3.1.2 Conformal Transformation for Inclined Split Flaps

The mappings for an inclined split flap are similar to
those for an inclined spoiler. Figs. 5 a-g depict the sequence

involved. The equations of Transformations are :

z =t + 1/t cee (16)
s = (t - A) e_i'y .o (17)
s = iR sin & cot (%) .o (18)

nw . i A A
w = > + ih > {n ln(n 1) + (2-n) ln(z_n + 1}

ces (19)
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A=-T+7X coe (20)
—iao i+x
§ = (;:?) e (21)
where A =1ty + Rcos $ e—1(6°+6)
Y = % = 90 -6

and equations (3a), (3b), (6), (7) apply with A= -Z+i7. Also

dz _ t?-1 iy ;. sin § 2 W - A 71(i-X)? ia,
ac -z & iR esct QTG e T 2 3(22)

a, = % +a- v+ 6, -6, -6; ... (23)

where 6, = m - tan"(%) cee (23a)
/
- ST
6, = ™ - tan 1(¥+n) | BEEE (23b)
- A .
and €; = tan 1(Z-Z+n) cee (23c)

The angular positions of the simple zeros in the §{-plane

are given by

GC - + 2 tan"(%) - a, .o (24)

%k

cos-1[(1-x§>/(14Xé)] - a4y ... (25)

where XE is defined in appendix C. Values of e/c, 6,, &, R, ¥

and 7 are given in"Table 3. Table 4 gives the 1locations of

points B, C, D, E, A, G and F.
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Table 3: Split Flap

e/c = .80, 6, = 51.25°

& h ¥ 7
10° .7647 0.6769  0.3865
30° 7146 1.5339 © 1.5341
45° .6842 1.6851 2.5233
60° 6591 1.4212 4.3691
e/c = .70, 6, = 63.75°

5 " . | ’g /. ~
10° .9861 0.5139 0.3461
30° .9459 1.1403 1.2768
45° .9257 1.2278 2.0250
60° .9056 1.0208  2.6849




Table 4

Co-ordinates of points B, C, D, E, A, G, F in different planes for split flaps.
Point t-plane s-plane w-plane
-i@o¢ .
B to + R e R sin § -ng/2 + i= or + e
-i60 iy ,
C te + R e + he R sin 6§ + h hoi
_190 L
D to + R e R sin 6 (2-n)w/2 + i~ or + e
- i . 11
E 1 (1 - Ae 2 cot-* [(A - 1)e /(R sin §)]
-i(80+6)
A to - R e (R + R cos 6)1 (2-n)n/2
-i(@0+ 26)
G te + R e -R sin 6 -nw/2 - i~ or (2-n)w/2 - i~
-i(60+6)
F to + R e -(R.- R cos §)1i -nn/2

8¢
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3.2 Dynamics

In the physical plane =z the uniform flow, when
approaching the airfoil, separates from the trailing edge and
the tip of the spoiler or split flap. A highly turbulent broad
wake, situated behind the spoiler or split flap and bounded by
the separating shear layers emanating from the points of
separation, 1is formed and found, experimentally, to bé nearly
at constant pressure. Owing to the complexity of the wake
dynamics, including the formation of Karmdn vortex streets,
and to the insufficient wunderstanding of the interaction
between the wake and the shear layers, no theories are
available to correctly predict the pressure inside the wake. A
good review of the work done in this field can be found in
Chang [9]. As a result, this base pressure is treated as a
_constant value and provided empirically, as done in [2,3]. It
is expressed in a dimensionless form,

Cp, = (P " p.)/(560%)
where pb is the pressure inside the wake,

and P_ is the upstream undisturbed pressure.

The flow exterior to the airfoil is transformed to that
outside of the unit circle in the §-plane. It is modelled by
superimposing on fﬁé”basic flow past the transform circle,
suitable singularities inside the appropriate region to
simulate the wake and its effects on the outer £flow. The

semi-infinite wake thus created is enclosed by two
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non-intersecting streamlines, see Fig. 28 of [3], which, when
viewed from the physical plane, is assumed to represent the
approximate shapes of the separated sheaf layers or the
time-averaged boundaries of the wake bubble. These source
singularities, however, have to be located on the
circumference, in the wake region, to satisfy the separation

pressure boundary conditions.

3.2.1 Mathematical Flow Model

Figs. 6a,b depict the representation of the required
singularities in the §-plane. They must lie within arc EC. 1If
the case of a spoiler is considered, then Fig. 6a shows that
point C will represent the spoiler tip /and point E, the
trailing edge. For the case of a split flap, point E becomes
the trailing edge and point C is the tip of the flap, as shown

in Fig. 6b.

The basic flow past a circle is the usual combination of
the uniform flow at zero incidence with respect to the real
axis, and a doubiét of suitable strength at the origin. Since
an airfoil is a lifting body of nén-zero circulation around
it, a vortex located at the origin 1is needed. In order to
simulate flow separation at points E and C, either one or two
sources are added on the arc EC. Both possibilitieslhave been

explored and will be referred to as i1-source and 2-source

models respectively.
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(a)

(b)

Fig. 6 Locations of Singularities
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From Milne-Thomson's Circle Theorem, with a source placed
outside a solid circular boundary, an image source and a sink
are required inside the boundary so that the circular shape of
the streamline is preserved. 1In the limiting case when the
added source is on the perimeter, the image source will move
to the same location as the added source, and the sink will
still be at the origin. It 1is the reason why two double
sources on arc EC and a double sink at the origin are shown in

Figs. 6a,b for the 2-source model.

The complex potential for the 2-source model in the

$-plane is

F($)=V(S+ls)+%ln$+ /

20 5 -850+ Ban -5, -

0, * 9z) In ¢

> e (26)
. (st
The complex velocity, W(§) = ag becomes
1 il 1
HES) = v 1= %)+ on 3
Q1 1, Q2 v (0, *+0Qp) 1 ee. (27)
T §-8, LA S 2‘” §

V is defined in equation (12). Q,, Q., I, §, and §, are
strengths of the sources and circulation, and the angular
positions of the sources, respectively. Since the sources are

on the surface, one can write

§ = eie' §y = eie,' §2 = eiez
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Equétion (27) can then be simplified to

_'e -
W(g) e ! 6-6
VSﬁ = 3 [-4 sin 6 - 2 v + q, cot( ) + q, cot(—E—l)]
ces (28)
- T .
where Ar = v 9z = vy T T 2qv
The complex velocity in the z-plane is
W(z) = W(S)/(-) eee . (29)

The gquantities q,, g2, v, 6, and 6§, will be determined through
suitable boundary conditions. For the 1-source model, only q,,
v+ and &, will be of non-zero values. The number of unknowns

then reduces from 5 to 3.

3.2.2 Boundary Conditions

There are totally 5 unknowns for the 2-source model so
that we have to seek the same number of independent boundary

conditions.

In the sequence of transformations, sharp edges such as
points E and C are made critical points at which %% = 0.
According to the equation (29), W(z) at these points will be
infinite if W(%) 1is non-zero, a case considered to be
unrealistic, since the pressure will also be infinite. As a
result, the first two boundary conditions will correspond to
setting W(¢{) = 0 at these points 1in the §{-plane. These

conditions are usually referred to as Kutta conditions, and

are equivalent to having the flow leave the trailing edge and
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the tip of the spoiler or split flap tangentially. Therefore,

we arrive at

q; cot(ﬁééi) + Q. cot(ﬁééz) - 4sin 6§ - 2 y=0

at 6 6 co (30)

E

at 6 6 .es (31)

c

The pressure at the points of separation will be - matched

to that of the wake through Bernoulli's equation

2 2
§+M—§—)l—=2‘§+p—2 ce. (32)

Therefore, two additional boundary conditions are evolved

/

PE - Po wiz)
C, =TT, =1 IFelrec
and

PC - Po wW(z)
C = ——7— = 1 - I_—Iz = C

W
However, the limiting values of |—i§l

| at E and C must be
obtained by using 1'Hdpital's rule since W(z) 1is in an

indeterminate form, see appendices F & G for details.

3.2.3 l-source Models

There are two distinct 1-source models, depending on the
choice of the boundary conditions. These models are obtained
by setting either gq, or g, to zero. To be consistent, g, is
eliminated for the following discussion. The unknowns are then

q:, 6, and 7.
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The first model corresponds to satisfying the Kutta
condition both at the critical-points E and C, and to matching
the pressure at point E to that of the wake. The other model
is obtained in exactly the same way but with the pressure at
C, 1instead of E, equal to that of the wake. Mathematically,
they can be written as

first 1-source model:

W(g) =0 at § = SE and SC
and

C =C_

Ppb PE

second 1-source model:

w(tg) =0 at § = SE and SC /
and

C =C .

These models are, however, considered to be unrealistic
because, in general, the pressure at E is not the same as that
at C in each model. This discontinuity of pressure |is
undesirable since experimental results do not support this
phenomenon. Nevertheless, these models are simple in the sense
that only a single empirical input, the base pressure, is
required. It will be seen later 6n that these models play a
significant role in constructing a Sth boundary condition for

the 2-source model.
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3.2.4 Additional Boundary Conditions

Contriving a'5th boundary condition, which is admissible
both physically and mathematically, 1is not a trivial task.
More often, more empirical information may be involved, as
seen in Jandali's discussion [3]. However, as shown in [10],
the criterion of streamlines possessing finite curvature at
separation proves to successfully model the flow around a
circular cylinder at Re = 2(10)€¢. Consequently, the empirical

specification of the angle of separation is eliminated.

" This criterion sounds promising for surfaces of
continuous curvature, such as the portion near the trailing
edge of an airfoil. As indicated by Woods[6], it also leads to
the consequence of finite pressure gradient at separation.’
Although the experimental support of this criterion is not
obvious for spoilers, there 1is a fair amount of data which
substantiétes this idea even though they are concerned with

airfoils other than the Joukowsky family.

The mathematical equation, which describes the «criterion

of finite pressure gradient, is

£ £7 - £ £5 =0 . oo (35)
where £, o= (WS £, = |§§1E ... (36a,b)
-
and () = 38 -

The derivation of (35) and the further simplification of
(36a,b) can be found in appendices F and G. Note that the

non-dimensional circulation unknown, v, does not appear in
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(35) since only the derivatives of £, are involved.

Another plauéible boundary condition can be set up to
approximate the circulation across the wake. Let I' be the
total circulation around the contour C enclosing the airfoil
with a spoiler or a split flap, see Fig. 7. This contour is
then shrunk on to the boundary of the airfoil and ‘split into
two parts : one running from the tip of the spoiler (the
trailing edge) to the trailing edge (the tip of the flap)
including the portion exposed to the wake, and the other one
going around the left-over portion, Fig. 8. Since the total
head is substantially reduced there, experiments show that the
time-averaged velocity in the wake 1is near zero. 1If the

/
circulation in the wake is defined as (in the z-plane)

vake =w£ke v - ds e (37)
then, since |v| is small, to the 1St approximation,

wake =0

Since <circulation 1is invariant under transformations,
equation (37) in the §-plane can be rewritten as

= [ |w(§)} a6 =0 ces (38)

rwake wake

where W(§) 1is given by (28). After carrying out the

integration, the general expression is

[4cos 6 - 2 vy § + 2 g, 1n |sin A,| + 2 g, 1n |sin A2|]g1 =0
: 2

where A4, = (2:§4)
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Fig. 7 cCirculation around Airfoil
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Az = (_0:.6_2.)

6, = 6¢ 6. = 6g for spoilers,

i

6, = 6 6, 6c for split flaps.

Finally, another boundary condition based on the last one
is developed because it gives the best result when compared

with experiments. Instead of equating rwake to zero, it is

changed to a number, which depends upon the solution of the

two 1-source models. Let Fw and Fw be the wvalues of the

2
circulation across the wake obtained by the two 1-source

1

models by (37). Then

vake - ( I‘w1 + sz)/z con (39)

/

‘e h e . .
is the modified 5t boundary condition, where Fw is defined

ake
in (38).

Equation (39) seems artificial and not physically obvious
5ecause it 1involves the two unrealistic 1-source models.
However, its validity surfaces in the light of an example, the
flow around a circular cylinder. Because of the geometric
symmetry, the sources' strengths must be identical and their
locations are at 6 = *§,, when the wake source model is used
to deal with this problem [2]. Therefore, the corresponding
"1-source" models will be no different from the 2-source model
since the pressures at the points of separation are
automatically matched in all cases. Conseqguently, the
solutions of the unknowns are the same and so are the values

of T , T and rwa Equation (39) then reduces to an

LK W, ke.



41

identity. In - other words, no ambiguous and additional
restriction is imposed on the model. In fact, the similar
deduction holds for flows around any symmetrical bodies at
zero incidence. Of course, the above argument shows that
equation (39) is only a necessary condition for bodies around
which T = rwetted = rwake = 0, Similar deductions, however,
cannot be reached for bodies of arbitrary shapes at non-zero
incidence. For asymmetric bodies such as the one considered in
this work, the non-zero right-hand side of (39) is used to

account for the circulation across the wake, which 1is not

necessarily zero in general.
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3.2.5 Method of Solution and Calculation

The 3 unknowns associated with each of the 1-source
models, q;, &, and v, are determined by solving equations
(30), (31) and one of (33) and (34), depending upon which
model is considered. These eguations can be simplified to one
involving &, alone because y can be eliminated between (30)
and (31), and gq, appears only linearly in all equations.
However, the reduced single eguation must be solved
numerically because of 1its complex form. Several computer
subroutines are available in the computer System at UBC. The
most robust one, NDINVT, which is written to locate a root of
N non-linear simultaneous equations by using the generalized
secant method, is invoked to solve for 61./An initial estimate
of the unknown, which must be provided by the user, can be of

any number chosen between the values of 9E and 6 where the

C r
source is assumed to lie. If the iterative process does not
lead to convergence after 30 iterations, a different choice of

the initial estimate should be considered.

Multiple roots within the specified domain are not likely
"and have been checked either by using another subroutine to
search for multiple roots or by sketching the curve
representing this single equation. Although a solution is not
guaranteed, experience shows that it does exist and can be
found without much difficulty. After &, is obtained, g, can be
computed by substituting &, into eguation (33) or (34), again

depending upon which model is used. v is then calculated by
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¢

substituting g, and &, into (30) or (31).

The solutions from i1-source models are essential because
they serve as good estimates of the unknowns and provide the
right hand side of equation (39) for the 2-source model which

is considered to be more interesting and realistic.

For the case of the 2-source model, equations (30), (31),
(33), (34) and one of (35),‘ (38) and (39) are wused to
‘determine the 5 unknowns q,, 6,, Q,, 6, and y. Again, since v,
g,, 9. appear iinearly in this set of equations, it is
possible to eliminate them and arrive at 2 equations involving
6; and 6,. Further simplification, however, 1is impossible
because these two equations are rather complicated. Therefore,

NDINVT is used to solve for &, and &, numerically.

Nevertheless, both 6, and &, appear in the argumenfs of
the transcendental functions like cosecant (csc), cotangent
(cot), and their products whose periodicities and
singularities often prevent the iterative process from
converging. Also, solutions do not always exist if (35) or
(38) is used as the Sth equation unless the experimental base
pressure is altered. The above procedure also does not help in

giving any clue to the existence of the solutions.

Consequently, a different strategy towards locating the
solutions is devised and described herein. Even though they do
not constitute a complete set of equations uniquely

determining the 5 unknowns, (30), (31), (33) and (34) are the
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fundamental equations in the model in the sense that any set
of acceptable solutions must satisfy them. n sets of
"solutions" of q,, 6,;, g, and vy, however, can be obtained by
solving these equations numerically by NDINVT if the position

of g, is set to

_ + (ec' 65)1
82 = b n+1 ’

where GE < GC is assumed here.

These n sets of "solutions" are then substituted into

. . th . .
whichever is chosen as the 5 equation in order to evaluate
the residue, which is exactly zero if the corresponding set of

. . g . . . h
solutions satisfies all 5 equations. If the 1th and the 1+1t

sets of solutions cause a change of sign gf the residue, then

the existence of a set of solutions 1is guaranteed. More
accurate values of this set of solutions can be found
numerically by solving all 5 equations using NDINVT with the

.th ... th
1 or 1i+1

set of solutions as the initial guesses. Very
often, only a few iterations are required before convergence
is arrived at because the initial estimates are reasonably
close to the roots. The possibility of the existence of
multiple roots within arc EC has to be investigated by using
different initial estimates of q,, &é;, v and g, at each
prescribed value of 6, mainly because no computer routines are
available for detecting multiple roots of n (n>1) non-linear
simultaneous equations. If the residue does not change sign

for different values of 8, and no multiple roots exist, then

it can be concluded that no solutions can satisfy these 5
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equations. This is what is often encountered when (35) or (38)

is used as the 5th boundary condition.

6, and &, are interchangeable in the above scheme of
searching for roots since no particular conditions are imposed
to distinguish one from the other. However, because there is
no obvious method of determining the upper and lower bounds of
gi, g or ¥, using any one of them to function as 8§, or &, is
out of the question. Also, if §,(8,;) 1is specified, the
equations are much more easy to solve since only §,(68;)

appears non-linearly.

Once the solutions for the above unknowns are obtained,

the pressure on the airfoil surface can be/calculated by

Cp = 1 - |W(§)/(dz/4%)|?

dz

where W(¢) is defined by (28) and ac

is given by either (10)
or (22).

If Cpl and Cpu are designated as the lower and upper
surface pressure coefficients respectively, then integrating
(Cp1 - Cpu ) with respect to the non-diménsional quantity
(x'/c), where x' is in the direction of the flow at infinity

and c is thé chord length of the airfoil, the overall 1lift

coefficient is given by
C, = (c -C Yda(x'/c)
S p pu /

According to Fig. 9, only part of the pressure inside the

wake contributes to the lift since the pressure is assumed to



Fig. 9 C. Contribution from the Wake (Split Flap)
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be the same on the portion of the airfoil and the flap both
exposed to the wake. In other words,

x;
(C - C ) dx' =0

C! = 1)
L X! pa pf
C

1
c

since Cpa = . The same result holds for spoilers.

pf

In the calculations, t, is (-0.085,0.05). The pressure
coefficient 1is evaluated at 98 points on the airfoil surface
and 10 points on the spoiler or split flap facing the upstream
flow. The pressure in the wake is assumed constant and equal
to that from experiments. A computer subroutine, QINT4P, is
used to integrate the Cp values because this is the only
available program for integration of a set of unequally spaced

/

data points. The method is that for each interval, X, to X:4q

, a cubic interpolation. polynomial based on the four distinct

points x S <

i-17 ¥4 141 2

the portion where Cp is constant, this program 1is not used

and X, is integrated. However, over
because meaningless results are obtained in trying to fit a
straight line with a cubic spline. This part of CL is set to

Cpr', where Ax' is the length of the portion.
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4. EXPERIMENTS

There are two purposes in performing experiments in this
work. The first is to measure the base pressure value inside
the wake behind the spoiler or split flap because it is the
reqﬁired empirical 1input to the theory described 1in the
previous sections. The second is to make comparisons between
the theoretical and experimental pressure 1loading and the
overall 1lift force on the airfoil at different angles of
attack and for the various configurations involved.

/
Two series of experiments were carried out : one

involving the airfoil and spoilers, and the other with the
airfoil and split flaps. They were conducted in the small low
speed aeronautical wind tunnel in the Department of Mechanical
Engineering at the University of British Columbia. It has a
test section of 27 inch height and 36 inch width. The tunnel
possesses good flow uniformity and a turbulence level of less
than 0.1 percent over its speed range. The Joukowsky airfoil
of 27 inch span, 12.08 inch chord, 11 % thickness and 2.4%
camber, is the same one used by Jandali. It was mounted
vertically and spanned the test section, with small clearances
at the ceiling and the floor. The airfoil was attached to a
six component pyramidal balance situated beneath the test
section of the tunnel, at the quarter chord position. 2 force

and 1 moment components were measured over a wide range of
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angles of attack.

The airfoil was originally designed for Jandali's
experiments on normal upper surface spoilers. The detailed
description of it can be found in his thesis [3].
Nevertheless, there is a point worth noting. Since the
Joukowsky profile was structurally weak near the cusped
trailing edge, the upper surface in this portion was thickened
to give an approximately constant thickness of 1/8 1inch. The
whole profile is shown in Fig. 9 in [3]. This modified portion
does not influence the pressure measurements for the upper
surface spoiler experiments because it is completely embedded
in the wake and has no effect on the outer flow. However,
uncertainty in pressure measurements ﬁ;y result from clean
airfoil experiments and those with the lower surface split
flap deflected. In fact, Fig. 10 in Jandali's thesis provides
some evidence. It would be preferable for "the split flap
experiments to have this modified portion located on the lower
surface of the airfoil so that it is exposed to the wake. The
information of the pressure variation along this portion of
the upper surface is crucial to the criterion of the finite

pfessure gradient at separation discussed in 3.2.4.

During the course of experiments, end plates were used
for suppofting thésépoiler or split flap but they do not touch
either the roof or the floor. These plates were designed to
allow the spoiler or split flap to be located at various

positions and angles of inclination. The spoilers of height 5%
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and 10% chord could be mounted at distances of 50%, 70%, and
90% chord positions from the leading edge of the airfoil.lThe
5% chord spoiler can only make an inclination of 45° whereas
the 10% one is allowed to deflect at 30° and 60°Awith respect
to the local upper surface of the airfoil. The two split flaps
used have 1lengths of 20% and 30% chord. Their locations,
measured from the trailing edge, are exactly egqual to their
lengths. The angles of inclination are 10°, 30°, 45°, and 60°.
The small gap between the spoiler or flap and the airfoil
surface is unvented by sealing it with masking tapes in the
wake. “

Owing to the smail sizes of spoilers used, pressure
measurements were made only on the Qetteé surface of each
fiap. They were measured by taping pressure taps over the
surface so that the tubes were exposed to the outer flow. The
pressures on the surface of the airfoil, including the portion
within the wake, however, were measured by using the built-in
pressure taps inside the Joukowsky airfoil. All pressure taps
were connected to a 48 port scanivalve, a manually scanning
pressure transducer. A Setra 237 differential pressure
transducer, a HP 6204B D.C. power supply, a Solartron JM 1860
time domain analyser and a Fluke 8000A digital multimeter were
used for data recording. Because of the limitation in time, no

data acquisition system controlled by a microprocessor was set

up .
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Besides supporting the airfoil, the balance was used to
measure not only the lift, but the drag and pitching moment,
which were needed for the wind tunnel wall corrections. The
wake blockage term €, = l(S)C , as suggested by Jandali, was
employed for giving a better collapse for the data. ¢ 1is the
airfoil chord length and H 1is the effective test section
width, defined as the ratio of the tunnel cross-sectional area

to its height. CD is defined as the difference between the

drag coefficients with and without the spoiler or flap

deflected. The corrected CL is given by

[ aCL'r
= 1 - - - - + —
L = S, [ 2 e-0]- Cp, * 4 CM:/4T S

cos (40)
/

where blockage factor e = €g V€L

and soild blockage factor € is as defined in [13],

72 ¢y,
48(H) !

= quarter chord moment.
Moy

The formula for correcting the pressure coefficient Cp is

1 - Cp _ CL
1-¢  C
pT LT

where ( )T denotes a value measured 1in the tunnel. The
corrected Cp values are then integrated to give CL by using
the computer subroutine QINT4P described in the previous
section, This reduced CL instead of the one calculated from
the balance data will be compared to the theoretical

prediction. The test Reynolds number is 3(10)%.
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It is just a matter of interest to mention that when the
spoiler was located at 50% or 70% chord position when running
the experiments, the airfoil was buffeting appreciably. This
phenomenon is a result of having a large' portion of the
airfoil surface exposed to the wake. The corresponding
pressure measurements should not be influenced to a great

extent.
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5. RESULTS AND COMPARISONS

To ensure that all pressure taps on the airfoil were
functioning properly, an experiment on the <clean airfoil
without end plates. was performed. The results closely agree
with those obtained by Jandali, which can be found in [3] and
will ﬁot be repeated here. By examining Fig. 10 in [3], it is
clear that there 1is a 1little discrepancy between the
theoretical and experimental pressure distributions at the
leading edge at the same angle of attack. Similariy,
deviations of the theoretical and expe;ipental results are
observed in the variation of lift with the angle of incidence
in Fig. 11 in [3]. All these are explained by Jandali in terms

of the presence of the boundary layer vorticity.

The measurements of base pressure in the wake exhibit
some interesting trends when plotted against §, at different
values of a for split flap cases in Figs. 10a,b. Although

there 1is no existing theory for predicting C it is

pb’
plausible to consider an empirical formula of the following

form

cpb = A+ B &+ C 82 +D 83 e (41)

where A, B, C, and D are functipns of a, flap 1length, and

other parameters. Of course, more measurements in various

geometric configurations must be performed in order to find



pb

R 10 300 45 60 90
o |
o\
-44 o o) oL
. o\ \O\O/ o) 8
C
pb
Il Y\O o/____._-——o 4
) \g o/——o . 0’
\O / -4
-gl
(a) 20°% ¢ Fle
-;2 1; ! % :
o)
—4T O\ .
. o (o) o 8
(o]
~6[ \°§//8’ _°
o —_\
- \_.—0—\0 °
| o -4
-—.&_
(b) 30°% ¢ Flap
Fig. C_, Variations of 20% & 30% c Split Flaps




55

out the coefficients of (41). However, a formula for Cpb would
be valuable to the theory described above. Tam Doo [11]
conducted some thorough experimental investigations on Cpb for
both vented and unvented normal spoilers on 2D and 3D wings.
Interesting results can be found in his thesis. The purpose of
this work, however, 1is not on the study of the variation of

the base pressure. Consequently, no further work was carried

out.

For the sake of .simplicity, the theoretical Cp
distributions corresponding to the 1-source models were
calculated once the experimental C values were available.

pb

For split flaps, it is found in general that the experimental
/
Cp distribution over the upper surface of the airfoil 1lies

within the two theoretical curves. More precisely, the

1-source model with Cpb = Cp at the trailing edge (T.E.)

overestimates the Cp distribution, and the model with Cpb = C

at the tip of the flap (T.F.) wunderestimates it. Over the

lower surface, however, the prediction corresponding to Cpb =

Cp T.F fits well to experiments, whereas the other

theoretical curve shows a backward shift of the frontal
stagna£ion point so that a discrepancy results. Fig. 11 1is a
typical result as described above. The theoretical Cp (Cpb =
Cp T.E. ) near the.lg;ding edge is finite, about -8.0, too
large to be shown in the diagram. Although each of these
models fails to match the pressure at the trailing edge to
that of the tip of the flap, they provide the aerodynamicist

with a fair estimate of the overall pressure distribution.
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Very similar results were obtained for spoilers so that the
above description 1is applicable except that the flap is

replaced by the spoiler.

In order to improve the agreement between the theory and
experiments, the criterion of finite curvature of the
separating streamlines or that of the finite pressure gradient
at separation for split flaps was investigated. It is found in
general that to have it satisfied, one of the sources in the
2-source model must lié outside the simulated wake 1if the
experimental C is applied. This is not desirable because

pb
when evaluating the pressure along the airfoil surface, a

singular behavior of Cp would be obta}ned at the location
where the source is situated. In order to force the source to
locate in the wake region, the input base pressure needs to be
altered. Very often, it is more positive than the empirical
value. For instance, for the case of the 20% chord split flap
deflected at 30° at an angle of attack of 4°, the required Cpb
is -.10 compared to -.54 from the experiment. Since there is
no method of predicting this modified value except by trial
and error, the study of this criterion was not pursued further
evén though the corresponding pressure distribution along the
rest of the airfoil surface is not far from the experimental
result as depicted in Fig. 12. Similar results have been found
for spoilers, which seeﬁs understandable since not sufficient

experimental data support the behavior of finite pressure

gradient at separation.
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The boundary condition of =zero circulétion across the
wake was then explored. Overall agreement on the chordwise
pressure distribution 1is improved as can be seen in Fig. 12.
Besides, for a good number of cases, the experimental Cpb is
accepted by this Sth boundary condition in the sense that both
sources are lying within the wake. Near the trailing edge, the
pressure gradient 1is rather steep when compared with that
obtained by applying the finite pressure gradient condition.

The. pressure near the leading edge is overestimated by the

theory, a similar result resembling that of the clean airfoil.

The problem of accepting the experimental Cpb values

comes up again as the angle of deflection increases. For
/
example, Fig. 13 shows the case of the 20 % chord flap at 6 =

60°, a = 0°. To have Fw = 0 satisfied, the experimental C

ake pb
must be <changed from -.67 to -.78. The resulting Cp is not
accurate on both upper and 1lower surfaces. Besides, the
pressure at the tip of the flap is matched abruptly to that at
the trailing edge. It suggests that equation (38) should be

used with reservation,

Considerable improvement 1is achieved if the boundary
condition (39) 1is utilized. The experimental Cpb can be used
without alteration and the abrupt jump of the Cp no longer
prevails. Although the 1leading edge Cp value is slightly
overestimated by the theory, as shown in Fig. 13, the overall
agreement between the theory and experiments is remarkable. As

a consequence, equation (39) is chosen over the others as the
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boundary condition to determine the Cp and CL values for both

~split flaps and spoilers.

Fig. 14 shows the variation of Cp at 6§ = 10°, 30° and 60°
at a = 4° for the 20 % chord flap. The integrated CL is
compared with experiments and shown in Fig. 15, Figs. 16 and
17 are the Cp and CL variations for the 30 % chord flap,

respectively.

Figs. 18-20 show the Cp distributions for the spoiler
cases. The spoiler is located at e/c = 50 %, 70 % and 90 %
chord distances from the leading edge. The spoiler height is 5
% chord, the angle of deflection is 45° and the angles of
attack are 6° and 12°. The corresponding/C_ curves are shown

L
in Figs. 21-23.

The Cp distributions on the airfoil with 10 % chord
spoiler are depicted in Figs. 24-26 at § = 30° and 60° and at
a = 6°, Figs. 27-29 show the Cp distributions at a = 12°.
Figs. 30-32 are the lift coefficients of the airfoil when the

spoiler is located at 50 %, 70 % and 90 % chord positions.

The theory predicts the base of the spoiler as a
stagnation point. Therefore, the corresponding Cp value is
1.0. However, experiments show that flow separation takes
place to form a separation bubble before the fluid'particles
reach this location. The presence of the bubble is not so
clear in front of the split flap but rather obvious upstream

of the spoiler. As a result, difference between theoretical
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and experimental Cp values in this neighbourhood is

inevitable.

Only within a small positive range of a do the
experimental CL curves behave 1linearly for split flaps, as
shown in Figs. 15 and 17. This is probably due to the early
flow separation taking place near the leading edge at higher
angles of 1incidence. Therefore, the overall circulation
generated 1is reduced and so is the 1lift force. On the other

hand, the non-linearity of the CL curves for spoilers is the

consequence of the separation bubble explained above.

In géneral, the agreement between theory and experiments
is the best for spoiler cases, fair for the clean airfoil and
acceptable for split flaps. This may be due to the fact that
the 1inviscid flow assumption overestimates the circulation
around a clean airfoil. Erecting the spoiler, which helps
reduce the overall circulation, therefore, produces better
agreement. To the contrary, deflecting the split £flap, which
assists in enhancing the corresponding circulation, widens the

already existed discrepancy in the clean airfoil case.



82

6. CONCLUSIONS AND RECOMMENDATIONS

A sequence of conformal transforhations has been found
useful for deforming the contour of an airfoil with an
inclined spoiler or split flap onto the perimeter of the unit
circle over which the flow problem is solved. The wake source
model originally developed by Parkinson and Jandali was
applied to deal with the current partially separated flow

situation.

The 1-source models provide a first approximation of the
/
Cp distribution in the sense that the experimental C

distribution usually lies within the theoretical curves.

For the 2-source model, the <criterion of the finite
curvature of the separating streamlines or that of the finite
pressure gradient at separation requires a modification of the
experimental Cpb values. However, since the airfoil used in
experiments has an artificially thickened trailing edge
exposed to the outer flow for the case of split flaps, the
modified section may have some influence on the measurements
in the neighbourhood. Therefore, further work should be
considered before the validity of the criterion can be
pin-pointed.

The boundary condition, Fwake = 0, must be used with

caution because the problem of accepting the C comes up when

pb
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the angle of deflection 6 increases. Investigations show that
the range in which this criterion works well is 0 < & < 45°
with the spoiler or split flap located no less than 80 % chord

distance from the leading edge.

The modified version of rwake = 0, equation (39), works
vell for most cases even though its physical significance is
not obvious. This condition allows the use of the empirical
Cpb with the two sources located within the simulated wake
region. Although the pressure near the leading edge is often
overestimated by the théory, the overall predicted Cp

distribution is remarkably close to the experimental results.

Upstream of the spoiler where the separation bubble is
located, the discrepancy of the Cp distributions from the
theory and the experiments Qtill prevails as obtained
previously by Jandali ([3]. This region in which viscous
effects dominate can only be coped with if some mechanism of
dissipation is introduced in the model. Further work should be
interesting and challenging. To the contrary, the effect due
to the bubble is not a pronounced one for the case of split
flaps because the pressure gradient upstream of it 1is 1less

prominent.

There is an interesting trend of the base pressure for
split flaps when plotied against the angle of deflection, see
(41) and Figs. 10a,b. This trend has not been discussed here
for spoilers only because of the lack of data. However, it

would be preferable to carry out more experiments to construct
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a formula for Cpb for both inclined spoilers and split flaps.

Finally, the theory described above can be readily
extended to deal with any arbitrary thick airfoil profile with
the help of the Theodorsen transformation. By utilizing the
Williams transformétions [12], it would be interesting to

apply the present work to multi-element airfoils.
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Appendix A

Continuity of_|%%|'at G
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. dz, . .
It is shown here that |EE| is finite at the point G on

the airfoil surface.

Using the trigonometric identity and equation (3)
gets
cscz(g) =1 + cotz(g)
- —S 12
'+ T3 sin o ,

(R sin & - s)(R sin & + s)
R2 sin 2§

Near point G, s —> -R sin §, and A\, X —> #=» from Fig.

Therefore, it is adeguate to examine the product

|(s + R sin &)}| .o (A1)

in the equation for |g%|, see (10).
Using (3) to rewrite (s + R sin §), one gets

(s + R sin 8) = R sin & (1 + i cot (%))

I1f w=w + i w , where w and w_ are real, it can be
X y X y
that
cot (¥) - €98 X cosh Y - i sin X sinh ¥ (A2)
2 sin X cosh Y + i cos X sinh Y Tt

, one

4d.

shown
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where X=uw /2, Y = w /2.
X y
With some manipulation,

sinh Y + cosh Y
Vsin? X + sinh? Y e

|1+ 1 cot (D] = (a3)

In order to be precise, let us approach point G from point A

in the w-plane. Therefore, using (5),
o = - Zizmm),

6, = h - 1n ln(% + 1) + (2-n) 1n(5%; -

n

h - 1In A, since A —> o

or, ¥y~ eh/k.
The numerator of (A3) is just ewy/z, whereas its denominator
approaches %e_ey/z

Therefore, (A1) can be written as

near point G since sinh (gY) dominates.

| (s + R sin §)A| oc e“¥n = eh, some finite

value.

Consequently, point G is not a singularity.
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Appendix B

Continuity of |g§| at o

The point at infinity, represented by z = «, t = & X =

’

i, or w, =0, is shown here to be a removable singularity of
dz
ag”’

dz

From equation (10), cscz(g)(i - X)2.

as
. 1 . -
Since csc x —> X as x —> 0, it is easy to see that

dz

i - %
at o 4

)2 “en (B1)
/

Using equation (5), one can examine the nature of the point =z

= o by writing .
i Ae A
w = we = S[{n In(g®+ 1) + (2-n) 1n(z=F - 1)}~

{n ln(% + 1) + (2-n) 1n(3%; - 1)}]

= —%[n ln(:ai 2) + (2-n) ln(%;f%}%)]
= —%[n In(1 + %i:iﬁ) + (2-n) 1In(1 + %;Ea%ﬁ)]
As 0 —> @ —> 0, A\ —> km =¥ + 71,
o —> -ia G2) + (27m) (%‘\-;}2—1‘?5]
or, (50 —> (xw+n;§;:-2+n) . (B2)

From (8), X\ - A= 7(X-1) ceo (B3)
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Combining (10), (B1), (B2) and (B3), it can be shown that

dz _ —(dw*n) (Ae-2+n)R sin & _iy

- ~ * o o (B4)
at . 7 km :
w
where ¢ = 5 + ag - 7
It is easily seen that %% is a complex number of finite

magnitude. Therefore, the proof is completed.

A more simple proof suggested by Prof. Parkinson 1is to

apply 1'HOpital rule to the right hand side of (B1). Since ax

4 dw
. .. z
is finite at z , = must also be so.

o' d¢

QoEoDo
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Appendix c

Locations of the Trailing Edge

The location of the point E 1in the t-plane can be
expressed as
' -1
t =1 or t=to+Re¢ (c1)
M
= .
where ¢ tan (1+e)

and R is defined in (ta). Combining (C1),(2) and (2b), for the

case of an inclined spoiler,

in the s-plane, s R cos(y-¢) + iR [sin(y-¢) - cos §],

E /

in the w-plane, w

T )
2(2 n) + iw

E E

y
1 X? + Y2

where wa = "3 1n {m e (c2)
and X = cos(y-¢) - sin &

Y = sin(y-¢) - cos §

Z = cos{y-¢) + sin &
In the k—plane,'kE is given implicitly by
. =h-+{n1n(XE + 1)+ (2-n) In(=2E - 1)} ... (C3)

Ey 2 n 2-n

Therefore, in the X-plane, XE = (XE- T)/7 cee (ca)

For the case of a split flap, using (C1) and (17)

in the s-plane, s_ = R cos(y+¢) + iR [cos & - sin(¢+7y)],

E



in the w-plane, w_ = %(2—n) + iw

E E

Yy
1 X2 + y?
where wa = -3 1n { 77 1 Y2 }
and X = cos(qy+¢) - sin &
Y = - sin(y+¢) + cos &
Z = cos(y+¢) + sin &

In the A-plane, A_ is given implicitly by

E

o =h-+{n1nE - 1) 4+ (2-n) In(=2E + 1)}
Ey 2 n 2-n

Therefore, in the X-plane, XE = (XE+ T)/7

91

oo (C5)
.. (C6)
ce (€c7)
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Appendix D

Derivation of Equations (4) & (5) from Jandali's Thesis

Jandali's equations (4) & (5) (from his thesis), will be
re-derived 1in this appendix from the general expressions

developed in this thesis for an inclined spoiler.

For a normal spoiler, § = 90° and n=1, (6) and (7)
provide
T = 0 and N = ezh-1 .o (D1)

From (13a, b, c),

6, =32, 6, =tan (%), 6;=tan () =7~ 6,
Also from (2a), v = g - 6, g = - 8,
. L 7
Hence, (13) gives ao = 2 tar- 6o + 2" 6, -(m - 63)
=a-60

From equation (14), the location of point C on the unit circle

is then

0

T
C m 2 (2) Qo

=_90—a

which is exactly the same as equation (4) in Jandali's thesis.

From (3b), one gets

B, 2R
] h



Ry
R,

Jandali [2] defines ¢ , which is equivalent to ¢

Therefore,

eh=(§i—:)= ... (D2)
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R+h

h

From appendix C, for normal spoiler, it is easily derived from

(C1) that

1 - cos (fo+¢)
1 + cos (8,+9¢)

1n [ )]

_ 1
“g, - 2

-ZQY _ 2 cos(8,+¢)

Oor, 1 - e 17cos (676 cen (D3a)
1+ e_sz = 1+cos%90+¢) cen (D3b)
1t is also obvious from (C2) that /
A= 1 e2{wyh) ... (D2)
and XE = XE/E ... (D5)

Using (D1), (D3a,b), (D4) and (D5), and after
manipulation, one gets

-2w -2h

1 - X@ 1 - e Y ~2e¢
1+ X 1+e—2wY

cos (0o+¢) - [1+cos(0°+¢)](§£%)2

cos (6,+¢) {-éﬁ—-} - ('g:-l)2

L}

(£g+1)2 £+1
_ 2 cos(Bo+¢)+(1-k)
= - (1+%) . e (D6)
where k = % ﬁj%l—

Substituting (D6) into (15) and replacing ¢, by

some

00+¢r



Jandali's equation (5) is recovered.
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Appendix E

Derivation of Equation (5)

Equation (5) will be derived by integrating (4).

Integrating (4),

w = % [ n

In (A+n) + (2-n) 1n (A-2+n)] + C «ee (E

where C is the integration constant. Note that both k

can be complex so

k =

where k,,

When
Substitut

nn/2+ei

k1+k2iand C=C1+C2i
k,, C4, C, are real numbers.

A= -n" or -n-¢ as ¢ —> 0, w —> nn/2 + o i
ing into (E1)
(k1+ kzi)[ n 1n (-e) + (2"!'1) ln (_2—6) ] /2 +

Cy +C, 1

(ky+ kzi)[ n 1n (e) + (2-n) 1n (2+€) + nwi/2 +
(2-n)7wi/2 )} /2 + C, + C, i

Taking the real part of both sides

I'l1T=k1[

As € —/>

nr =

n ln e + (2-n) 1ln (2+¢) ] - kz'ﬂ' + 2 C,

0, In €é —> - «, Therefore, k, must be 0.

- kzﬂ + 2 C1 * o0 (E2

1)

and

)
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When A = -n* or -n+e as € -—-> 0, w —--> o i
Substituting into (E1)

™}

(ky+* ki)[ n 1n (e) + (2-n) 1ln (-2+¢) ] /2 +
C, +C, i

(ky+ kzi)[ n 1n (e) + (2-n) 1n (2¢) + (2-n)wi/2 1/2 +
C, +C, 1

Taking the real part of both sides

0 =2k, [ nlne+ (2-n) In (2-€¢) ] - ky(2-n)w/2 + 4 C,

Since ky = 0,

4 Cy = ky(2-n)n .o (E3)
Substituting (E3) into (E2), / ‘
k, = -2 - and’ C, = -(2-n)=n/2
When A = 0 and w = h i, (E1) becomeg, after equating the

imaginary parts of both sides,
C, =h+nlnn+ (2-n) 1In (2-n)

Substituting k,, k;, C,, C;, into (E1), one obtains equation

(5).
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Appendix F

Derivation of Equation (35)

Equation (35) for finite pressure gradient at separation

is derived here.

The pressure along the airfoil surface can be expressed

most conveniently in terms of

Sy oo (H2) ),
=1 - 15|

If s is measured from the forward stagnation point along
/

the airfoil, see Fig. Fi(a), then

dac k d k d aé
Cp = -2 & = -2 & av
Fral 25 ds|W(z)|E 2 [W(z) |

where 6 is the angular variable in the ¢§{-plane, Fig. Fi1(b),

and k = 1 - Cpb , Some non-zero number.
Since dz = ds ele and d§ = 1 elede,

dz, _ ds

ds deé

because s increases with decreasing 6. Also

4
W(z)] = W I/1SE = £/
Therefore,
ac k4 dz k d  f
aCp, . -k d_ dz, _ ,kd f,
as g v ag "2 g/ lgcle = 25 a9'E, ) /Eelg
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(a)

F1

Transform planes Z and §




dacC
. _ ac, . . .
Since f2|E 0, s IE is finite only if

a f, - -
S E g = 9@ = 0
But g(6) = (£, £} - £, £3)/£3%

Applying 1'HOpital's rule twice to g(#) since both

numerator and denominator are zeros of order 2, then

£, £ - £ £33 = 0 at 6 = 6g

99

the
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Appendix G

Evaluations of f}, f}, f3 & f% at Critical Points
Recall the following definitions:
f1 = lW(S)I and fz = le/dSI

Since both f, and f, are made equal to zero at points E
and C, equations (33) and (34) must be evaluated by

L'Hépital's rule. Therefore, at these critical points,

|w(z)]| = a1 , where ( )' =

8
£1 ae )

This appendix 1is devoted to finding f), £7, f; and f3 at the

critical points E and C for both spoilers and split flaps.

f, is a simple function of 6 alone. It is rather straight

. st nd . .
forward to compute its 1 and 2 derivatives.

£1(6) = —2[4 cos 6 + 4L cscz(ﬁ:—él) + 92 cscz(gl—él)]
2 2 °F 2 2 2
£5(0) = %[4 sin 6 + %4 cscz(ﬁlggl) cot (Qliél) +

gz

> cscz(ﬁ:gﬁz) cot (Q:—él)]

2

On the other hand, £, is a more complicated function
involving more than one variable. Therefore, it is convenient
to reduce it to a function of ¥ and 6 so that its derivatives

can be obtained relatively easily. According to Figs. Gi1(a)



and Gi1(b),
t=to+Rel (G1)
i6

and t = e .o (G2)

It can be shown that, using Fig. G2,

[(t-D)(t+1) ] VA B

Itlz - E . * o 9 (G3)
where A = 2 - 2 cos (F+¢)
B=1+m?2 + 2m cos (%-4)
E=1+ 92 + 29 cos (¥-»)
¢ = tan- ' (=£) A = tan- ' (=) vy = n -tan-'(£)
1+e¢ 1-¢ €
mR = ¢ u? + (1 - €)2
7R = J e? + p? /

and R is given by (1a).:

Substituting (G1) to (17), the following expression results.
s =R [ cos (¥-9) + i { sin (¥-9) + cos § }] .o (G4)

Using (G4) and appendix A, it can be shown that

2
lesc2 ()| =

73 V (3 D@ | ... (G5)

where C(¥) = 1 + sin (%-v-§)

D(F) = 1 + sin (F-vy+35)

101

Substituting (G2) to (21) and making use of (20), it follows

that

X = - tan (Q_:_gg)

= > cee (G6)
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(b)

G! Definitions of ¥ and 6



G2 Definitions of A,

v,

¢,

m,

n and R

€01
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~ 6 _+
- T - % tan (—=20)

and A = > .o (G7)

As a result, for the split flaps,

f, = « L(¥) h(6) . (G8)
where k = R %/(2 sin §)
L(%) = l%%%%l/rc(y) D(%) , as defined in (G3 and G5),
no) = DAL p(p) & gecz (@280, g(e) = - 2
H(6) = n - A and I(6) =n -2 - A
An implicit relation between ¥ and 6 can be found 1in the

following way. Using (A2), equation (18) is simplified to
/

- 1 tan X tanh Y

. . 1
i R sin & [

5= tan X + i tanh Y ] e (69)
Equating the real parts of (G4) and (G%), when point E is
approached,

. sec?X tanh ¥
cos (¥-y) = sin § [tan2x+tanh2Y] ces (G10)
s
where 2X = (2-n) 5
2 =h - { n 1n(d - 1) + (2-n) In(1 + 22y }/2
n 2-n

Therefore, equations (G7)

2 .
g% and gef in deriving £}
day
£ = « [ L'(F) h(e) 3
f3 =

and (G10) can be used to calculate

and fJ since, from (G8),

L(%) h'(6)]

dzv

" @ \J \J ﬂ \J —
k [L ('H)h(e)(de)2 + 2L'(¥)h (e)de + L' (F)h(6) +

dae?



L{(F)h"(8)]
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Note that the terms involving L(¥) can be ignored since at the

point E, ¥ = -¢ and from (G3), L(~¢) = O.

Taking the derivative of (10) with respect to #,

some manipulation,

ag _ __k____
a6 = sin (g-y) F¥) n(6) | cer (G11)

(tan?X-tanh?Y)sech?y
(tan2?X + tanh?y)?

where F(Y) =

sin & sec?X 7
4

and k =

after

Taking the derivative of (G11) again, it can be shown that

/

dazy _ 1 . __F'(¥)h2(e)g, _
362 = =in (9_7){k[F(Y)h (6) 2 ] - cos

-2 tanh Y sech?y
(tan?X + tanh?y)?

where F'(Y) =

ag
(P-y)(de)z}

[ { sech?Y + (tan?X - tanh?y) }

(tan?X + tanh?Y) + 2 sech?Y(tan?X - tanh?vY)]

Making use of (G3), (G5), it can be shown that

_ /B(¥) C(¥) D(¥)

Lt (¥ E(5)
and : at ¥ = -¢
" - JReg ¢ B, ¢ D' _ 2E'
L"(¥) = vBCD { 5e T CE T DE ~ E2 }
where B' = -2 m sin -(F-A)

C' = cos (F-v-35)
D' = cos (F-4+§)

E' = -2 5 sin (¥-»)



and

h'(e)é =
E

where F'
Gl

H‘

I \J

(F*" G+FG" )(HI)'" -FPGG'" ( H 217
-F X

7 F/2

G'

G'

Therefore, f; and £5 at 6 = 8_ can be calculated.

Near

E

+ H-1I—2
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)

point E, for spoilers, f, takes the form similar to

that of (G8) with

except C

D

+
A= -7 tan(g—ggn) /

1 - sin (F+y+65)

1 - sin (F+4-6)

The relation between ¥ and 6 is

cos (¥ + 7)

with 2X

2Y

Therefore
and

£,

where k, F(Y), h(6), kx, L'(6) are the same

above. f3 can be calculated by wusing the

14

E

sec?X tanh Y
tan?X+tanh?y

]

sin 6 [

-{(2-n)

NI

RERE ln(% +1) + (2-n) 1n(5%; - 1}/2

dg k
30 - sin (y+7).F(Y) h(6)

, a8
= k L'(6)h(6) d9|eE

similar

as those defined in

procedure
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outlined above.

By examining equations (10) and (22), it is clear that f,

is zero at point C because A —> 0 there. f} can easily be

| C
calculated and is equal to

. _JtZ - 1| R sin & 2 4 ~2 , 6 _*ag P : TR
file = 7T an(zm 1B 1 W sec? (TR [sinni())

. = 4 . ZQC = . zh

since w, = ih . So | sin (2 ) | sinh (2)

. s
to + R e 160 , g 17

’

For spoilers, tC

but tC to + R e+16° + R e—17 for split flaps.



