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ABSTRACT 
The properties of a crossed grating of square pyramids 

and a crossed grating with hemispherical cavities to 
eliminate specular reflection from a conducting surface are 
studied experimentally. Measurements were made in the 
microwave range of 35 GHz. The best performance is that 
99.94% of the power of a TM-polarized incident wave can be 
scattered into a single spectral order by a pyramidal 
crossed grating, while for TE polarization the reduction in 
specular reflection can be as high as 98%. Anti-reflection 
properties of a crossed grating with hemispherical cavities 
near normal incidence are also observed. Comparison between 
the behavior of triangular and pyramidal gratings of the 
same profile is made. Effects of the profile parameters are 
investigated. Basically the experimental results agree with 
the theoretical predictions. This investigation provides a 
set of experimental data to assist further numerical study. 
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Chapter 1 

INTRODUCTION 

D u r i n g the p a s t f i f t e e n y e a r s t h e st u d y of d i f f r a c t i o n 

g r a t i n g s has made g r e a t p r o g r e s s . R i g o r o u s e l e c t r o m a g n e t i c 

t h e o r i e s [20] have been d e v e l o p e d t o e x p l a i n the b e h a v i o r of 

s i n g l y - p e r i o d i c , or c l a s s i c a l g r a t i n g s w i t h a p e r i o d i n the 

range of t h e i n c i d e n t w a v e l e n g t h , and they seem c a p a b l e of 

d e a l i n g w i t h a l l s t r u c t u r e s of p r a c t i c a l i m p o r t a n c e . 

In. t h e l a s t decade i n t e r e s t has grown i n the p r o p e r t i e s 

of d o u b l y - p e r i o d i c g r a t i n g s , o r c r o s s e d g r a t i n g s , which have 

r e g u l a r t w o - d i m e n s i o n a l s t r u c t u r e ( p y r a m i d s , b i s i n u s o i d a l 

bumps, h e m i s p h e r i c a l c a v i t i e s , e t c . ) d i s t r i b u t e d 

p e r i o d i c a l l y on a p l a n e . In a s e r i e s of r e c e n t p u b l i c a t i o n s , 

i t has been shown t h a t such s t r u c t u r e s have g r e a t p o t e n t i a l 

i n u s e f u l a p p l c a t i o n s , p a r t i c u l a r l y i n c o n n e c t i o n w i t h 

s e l e c t i v e a b s o r p t i o n of s o l a r r a d i a t i o n [ 5 , 1 9 , 2 4 ] , 

n o n - a b s o r p t i v e r e f l e c t i o n r e d u c t i o n [ 2 4 ] , and microwave 

f i l t e r i n g [ 1 5 ] . Thus, i t i s v e r y i m p o r t a n t t o have a c c u r a t e 

t h e o r e t i c a l models of c r o s s e d g r a t i n g b e h a v i o r and t o 

c o n f i r m t h e s e models w i t h c a r e f u l e x p e r i m e n t a l measurements. 

T h e o r e t i c a l s t u d i e s of t h e d i f f r a c t i o n by c r o s s e d 

g r a t i n g s are. s t i l l d e v e l o p i n g . T h e i r commencement had t o 

w a i t u n t i l t he study of c l a s s i c a l g r a t i n g s reached a 

h i g h l y - d e v e l o p e d s t a g e . However, t h e p r o g r e s s has been slow, 

w h i c h i s due m a i n l y t o the f a c t t h a t i n g o i n g from c l a s s i c a l 

t o c r o s s e d g r a t i n g s , t h e s i z e of t h e a s s o c i a t e d n u m e r i c a l 

problem i s more than squared, and so r i g o r o u s t e c h n i q u e s 
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v a l u a b l e f o r t h e former become, when g e n e r a l i z e d , 

i m p r a c t i c a b l e f o r t h e l a t t e r ( g i v e n the c a p a b i l i t i e s of 

p r e s e n t c o m p u t e r s ) . For example, such t e c h n i q u e s would 

r e q u i r e the i n v e r s i o n of complex m a t r i c e s h a v i n g more than a 

m i l l i o n e l e m e n t s f 2 0 ] . 

S e v e r a l d i f f e r e n t f o r m a l i s m s have been proposed f o r the 

d i f f r a c t i o n of e l e c t r o m a g n e t i c r a d i a t i o n by c r o s s e d 

g r a t i n g s . The e a r l i e r f o r m a l i s m s ( f o r example th o s e of Chen 

[3] f o r t h e case of a c o n d u c t i n g s c r e e n p e r f o r a t e d 

p e r i o d i c a l l y w i t h e i t h e r c i r c u l a r or r e c t a n g u l a r h o l e s ) r e l y 

upon th e a v a i l a b i l i t y of a complete s e t of modal f u n c t i o n s 

which can be s u p e r p o s e d t o s p e c i f y t h e f i e l d i n the a p e r t u r e 

r e g i o n . These modal f u n c t i o n s must s a t i s f y t h e wave e q u a t i o n 

and the boundary c o n d i t i o n s on the a p e r t u r e w a l l s , and a r e 

o n l y known a n a l y t i c a l l y f o r a s m a l l number of p e r f e c t l y 

c o n d u c t i n g g e o m e t r i e s [ 2 0 ] . R e c e n t l y Toro and D e l e u i l 

[21,22] implemented a r i g o r o u s modal t h e o r y f o r the s t u d y of 

e l e c t r o m a g n e t i c d i f f r a c t i o n from a p e r f e c t l y c o n d u c t i n g 

c r o s s e d g r a t i n g w i t h h e m i s p h e r i c a l c a v i t i e s . The t h e o r e t i c a l 

s t u d y was r e a l i z e d f o r any i n c i d e n c e and d i r e c t i o n of 

p o l a r i z a t i o n , but the f i r s t n u m e r i c a l r e s u l t s were o n l y f o r 

the s i m p l e r case of normal i n c i d e n c e . 

W i r g i n ' s f o r m a l i s m [25] i s a l s o r e s t r i c t e d t o the c a s e 

of a p e r f e c t l y - c o n d u c t i n g c r o s s e d g r a t i n g . T h i s e x t r e m e l y 

s i m p l e method i s based on an a p p r o x i m a t i o n t h a t t h e 

d i f f r a c t e d f i e l d above the s u r f a c e can be e x p r e s s e d as t h e 

R a y l e i g h p l a n e wave e x p a n s i o n . Hence, i t can o n l y be a p p l i e d 
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to very shallowly-grooved (h/d, groove depth over period of 
grating, in the range of 0.1) conducting surfaces. A few 
numerical results were obtained by this method for a 
perfectly conducting crossed grating of a sinusoidal profile 
with h/d=0.14 under normal incidence. 

Maystre and Neviere [17], as well as Vincent [23] 
worked out differential formalisms valid for crossed 
gratings whose surface conductivity i s not very high and 
whose depth is not very large compared with the wavelength. 
They obtained a few numerical results for a pyramidal 
grating with f i n i t e conductivity and h/d=0.25. 

Derrick et a l . [5,19] elaborated a formalism which is 
quite different from others. They used a coordinate 
transformation technique which flattens the crossed grating 
profile, combined with an iterative method for resolution of 
the very large system of complex equations expressing the 
boundary and outgoing wave conditions for the diffraction 
problem of crossed gratings. They presented in [19] some 
numerical results for the sinusoidally-grooved crossed 
gratings and a few examples for pyramidal crossed gratings 
with fin i t e conductivity. In a private communication [16], 
they gave some calculated curves for pyramidal crossed 
gratings with infi n i t e conductivity. 

Among a l l existing formalisms, the last one is the most 
versatile and powerful, since i t can work throughout the 
whole range of values of surface conductivity, including 
infi n i t e conductivity. Much work had been devoted to this 
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f o r m a l i s m i n o r d e r t o ext e n d i t s range of a p p l i c a b i l i t y . 

R e c e n t l y i t was r e p o r t e d [19] t h a t a p r a c t i c a l l i m i t had 

been re a c h e d : the t h e o r y c o u l d not be extended t o deeper 

c r o s s e d g r a t i n g s i n which h/d i s g r e a t e r than one, and 

f u r t h e r s i g n i f i c a n t p r o g r e s s r e q u i r e d a c o m p l e t e l y new 

method. 

In c omparison w i t h t h e o r e t i c a l i n v e s t i g a t i o n s , 

e x p e r i m e n t a l r e s e a r c h on the d i f f r a c t i o n by c r o s s e d g r a t i n g s 

has been v e r y l i m i t e d . W i l s o n and H u t l e y [24] i n v e s t i g a t e d 

e x p e r i m e n t a l l y t h e o p t i c a l p r o p e r t i e s of a r t i f i c i a l 'moth 

eye' a n t i r e f l e c t i o n s u r f a c e s which can be r e g a r d e d as some 

k i n d of i r r e g u l a r s i n u s o i d a l l y - g r o o v e d c r o s s e d g r a t i n g s . 

They found t h a t m e t a l moth eyes can s e l e c t i v e l y a b s o r b 

v i s i b l e r a d i a t i o n and r e j e c t • i n f r a r e d r e - e m i s s i o n and t h i s 

made them p r o m i s i n g s e l e c t i v e s o l a r a b s o r b e r s . Because of 

the d i f f i c u l t y of measuring a c c u r a t e l y the shape of the 

s t r u c t u r e ( n o t i n g the s p a c i n g of l e s s than 1 am), they d i d 

not g i v e a comparison of t h e o r y and e x p e r i m e n t . 

B l i e k and D e l e u i l [1] undertook an e x t e n s i v e 

e x p e r i m e n t a l s t u d y on c l a s s i c a l g r a t i n g s i n the microwave 

range, and they a l s o began an i n v e s t i g a t i o n of two k i n d s of 

c r o s s e d g r a t i n g s , a c o n d u c t i n g g r i d w i t h c i r c u l a r h o l e s and 

a c o n d u c t i n g p y r a m i d a l g r a t i n g . T h e i r e x p e r i m e n t a l s e t u p was 

v e r y p o w e r f u l f o r d i f f r a c t i o n measurements which were made 

w i t h l e s s than 3% r e l a t i v e e r r o r . U n f o r t u n a t e l y they were 

not a b l e t o complete t h e i n v e s t i g a t i o n due t o t h e l o s s of 

the e x p e r i m e n t a l f a c i l i t y . 
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Here i s g i v e n an e x p e r i m e n t a l i n v e s t i g a t i o n of a m e t a l 

c r o s s e d g r a t i n g w i t h square pyramids and a m e t a l c r o s s e d 

g r a t i n g w i t h h e m i s p h e r i c a l c a v i t i e s i n the microwave r e g i o n . 

The r e a s o n s t h a t we chose t h e s e two k i n d s of c r o s s e d 

g r a t i n g s a r e as f o l l o w s : 

These two s t r u c t u r e s a r e e x p e c t e d t o be e f f i c i e n t s o l a r 

a b s o r b i n g s u r f a c e s [ 1 9 , 2 0 ] . 

N u m e r i c a l a n a l y s i s i s s t i l l i m p o s s i b l e f o r a 

d e e p l y - g r o o v e d p y r a m i d a l c r o s s e d g r a t i n g . E x p e r i m e n t a l 

i n v e s t i g a t i o n of i t would be v e r y u s e f u l . 

The b e h a v i o r of a t r i a n g u l a r groove g r a t i n g , w h i c h i s 

the s i n g l y - p e r i o d i c e q u i v a l e n t of the c o r r e s p o n d i n g 

p y r a m i d a l c r o s s e d g r a t i n g , i s well-known [ 9 ] , T h i s 

p r o v i d e s the o p p o r t u n i t y f o r a comparison between the 

b e h a v i o r of t r i a n g u l a r and p y r a m i d a l g r a t i n g s of the 

same p r o f i l e . 

A modal t h e o r y [22] was r e c e n t l y d e v e l o p e d f o r a c r o s s e d 

g r a t i n g w i t h h e m i s p h e r i c a l c a v i t i e s . E x p e r i m e n t a l 

v e r i f i c a t i o n of i t would be v a l u a b l e . 

The reason t h a t the deep p y r a m i d a l groove g r a t i n g 

cannot be a n a l y z e d r i g o r o u s l y i s t h a t ,on one hand, the 

c o o r d i n a t e t r a n s f o r m a t i o n method can o n l y a n a l y z e c r o s s e d 

g r a t i n g s which i s not v e r y deep (h/d l e s s than o n e ) ; on the 

o t h e r hand, a r i g o r o u s modal e x p a n s i o n f o r the f i e l d s 

between the pyramids cannot be w r i t t e n . The s i d e s of the 

pyramids do not c o n s t i t u t e a s e t of o r t h o g o n a l s u r f a c e s , and 

a s p h e r i c a l c o o r d i n a t e system does not f i t t h e b o u n d a r i e s of 
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the pyramids as i t does the s u r f a c e s of a hemisphere. 

E x p e r i m e n t a l s t u d y i n the microwave r e g i o n has an 

i m p o r t a n t advantage i n t h a t a l l g r a t i n g d i m e n s i o n s a r e l a r g e 

enough t o be m i l l e d a c c u r a t e l y and thus a v a l i d comparison 

between t h e o r y and experiment i s p o s s i b l e . 

W i t h measurements made i n t h e range of 35 GHz, J u l l , 

Ebbeson, Heath, B e a u l i e u and Hui have s u c e s s f u l l y compared 

t h e i r t h e o r e t i c a l r e s u l t s c o n c e r n i n g t h r e e t y p e s of s i n g l y 

p e r i o d i c c o n d u c t i n g g r a t i n g s : comb g r a t i n g [ 1 0 ] , r e c t a n g u l a r 

g r a t i n g [8,11] and t r i a n g u l a r g r a t i n g [ 9 ] . They a t t e m p t e d t o 

f i n d a p e r f e c t l y b l a z e d g r a t i n g which c o m p l e t e l y c o n v e r t s 

s p e c u l a r r e f l e c t i o n from a c o n d u c t i n g s u r f a c e t o 

b a c k s c a t t e r , and they showed n u m e r i c a l l y and e x p e r i m e n t a l l y 

t h a t t h i s b l a z e e f f e c t can be a c h i e v e d by a r e c t a n g u l a r 

g r a t i n g o r a t r i a n g u l a r g r a t i n g w i t h a d e q u a t e l y chosen 

d i m e n s i o n s . They a l s o proposed a p p l i c a t i o n s t o m u l t i p a t h 

i n t e r f e r e n c e r e d u c t i o n and r a d a r t a r g e t d e s i g n . 

The e x p e r i m e n t a l study of c r o s s e d g r a t i n g s g i v e n here 

r e p r e s e n t s a n a t u r a l e x t e n s i o n of the p r e v i o u s work on the 

b l a z e e f f e c t of some c l a s s i c a l g r a t i n g s . C r o s s e d r e f l e c t i o n 

g r a t i n g s w i t h square symmetry a r e a l s o i n t e r e s t i n g 

p o s s i b i l i t i e s f o r the s u p p r e s s i o n of s p e c u l a r r e f l e c t i o n 

from c o n d u c t i n g s u r f a c e s when the d i r e c t i o n of i n c i d e n c e i s 

a r b i t r a r y . The o b j e c t i v e s of t h i s e x p e r i m e n t a l study a r e : 

t o e x p l o i t the p o s s i b i l i t y of a p y r a m i d a l r e f l e c t i o n 

g r a t i n g t o s c a t t e r a l l i n c i d e n t energy i n t o a s i n g l e 

s p e c t r a l o r d e r , 
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t o i n v e s t i g a t e e x p e r i m e n t a l l y the p r e d i c t e d c a p a b i l i t y 

of a c r o s s e d g r a t i n g w i t h h e m i s p h e r i c a l c a v i t i e s t o 

e l i m i n a t e s p e c u l a r r e f l e c t i o n around normal i n c i d e n c e , 

t o s t u d y the r e l a t i o n between the b e h a v i o r of 

s i n g l y - p e r i o d i c and i t s c o r r e s p o n d i n g d o u b l y - p e r i o d i c 

g r a t i n g s , 

t o o b s e r v e the e f f e c t s of p r o f i l e p a r a m e t e r s , i n c i d e n t 

a n g l e s , p e r i o d of g r a t i n g and i n c i d e n t w a v e l e n g t h on t h e 

r e f l e c t i o n b e h a v i o r of t h e s e g r a t i n g s , 

t o compare the measured r e s u l t s w i t h a few n u m e r i c a l 

p r e d i c t i o n s , 

t o p r o v i d e a s e t of e x p e r i m e n t a l d a t a f o r d e e p l y - g r o o v e d 

p y r a m i d a l g r a t i n g s and o b t a i n some b e h a v i o r c u r v e s of 

c r o s s e d g r a t i n g w i t h h e m i s p h e r i c a l c a v i t i e s under 

non-normal i n c i d e n c e , which w i l l a s s i s t f u r t h e r 

n u m e r i c a l i n v e s t i g a t i o n s . 

In c h a p t e r 2, t h r o u g h a d e r i v a t i o n of t h e R a y l e i g h 

e x p a n s i o n f o r the d i f f r a c t e d f i e l d , t he c r o s s e d g r a t i n g 

e q u a t i o n and the R a y l e i g h w a v e l e n g t h e q u a t i o n a r e o b t a i n e d . 

These p l a y an i m p o r t a n t p a r t i n e x p l a i n i n g t h e shape of the 

measured b e h a v i o r c u r v e s of g r a t i n g s . Methods t o dete r m i n e 

the p r o p a g a t i n g d i r e c t i o n and t h e e x i s t i n g a n g u l a r r e g i o n of 

a d i f f r a c t e d wave by use of t h e s e two e q u a t i o n s a r e 

d i s c u s s e d . 

C h a p t e r 3 d e s c r i b e s the e x p e r i m e n t a l arrangement and 

measuring p r o c e d u r e . 
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E x p e r i m e n t a l r e s u l t s of s i x p y r a m i d a l c r o s s e d g r a t i n g s 

and two c r o s s e d g r a t i n g w i th h e m i s p h e r i c a l c a v i t i e s , and 

d i s c u s s i o n s on them are p r e s e n t e d i n C h a p t e r s 4 and 5 

r e s p e c t i v e l y . B a s i c a l l y the e x p e r i m e n t a l da ta v e r i f y the 

t h e o r e t i c a l and n u m e r i c a l p r e d i c t i o n s . Comparison between 

the b e h a v i o r of t r i a n g u l a r and p y r a m i d a l g r a t i n g s of the 

same p r o f i l e i s made. The e f f e c t s of v a r y i n g g r a t i n g and 

measur ing parameters a re o b s e r v e d by compar ing measured 

c u r v e s . 

Chapter 6 l i s t s the s o u r c e s of e r r o r s and d i s c u s s e s the 

e f f e c t s of them. F i n a l l y , c o n c l u s i o n s from t h i s 

i n v e s t i g a t i o n a re p r e s e n t e d i n Chapter 7 . 



Chapter 2 
SCATTERING BY CROSSED GRATINGS 

2.1 FORMULATION OF THE PROBLEM 
Consider the diffraction problem in which a linearly 
polarized harmonic electromagnetic plane wave with 
wavelength X is incident upon a doubly-periodic surface, 
having orthogonal periodicity axes and separating free space 
from a perfectly conducting metallic medium. Set up a 
rectangular coordinate system Oxyz, and let the Oy axis be 

Fig. 2.1. The specification of the incident f i e l d 
and of the diffracted wave vectors 
in the (Oxyz) system 

9 



10 

perpendicular to the plane of the grating and Ox axis to be 
aligned with one of the axes of periodicity. The two 
periodicities of the crossed grating are defined by d,, the 
period along Ox, and d 2, the period along Oz. 

As shown in Fig. 2.1, the direction of the incoming 
plane wave is specified by the polar angles \[/̂  and 6^, and 
is represented by the wave vector K" 1. The polarization is 
specified by the angle 6 between the electric f i e l d vector 
E 1 and the intersection of the plane of incidence with the 
plane perpendicular to Tc1. If 6 equals ir/2, the incident 
electric f i e l d is parallel to the surface plane and we say 
that the incident wave is transverse electric-polarized, or 
TE-polarized. If 5 equals zero, the incident magnetic f i e l d 
is parallel to the surface and we say that the incident wave 
is transverse magnetic-polarized, or TM-polarized. TE and TM 
polarizations are two fundamental polarization cases, since 
an ar b i t r a r i l y polarized incident plane wave can be resolved 
into TE and TM components which scatter essentially 
independently from highly conducting classical grating 
surfaces, but not, in general, for crossed gratings. 

Let the grating surface have the equation y=f(x,z), and 
we have 

f(x+d,,z+d2)=f(x,z) , (2.1) 
since the grating is periodic along Ox and Oz. 

In the region of y<f(x,z), the fields are null because 
the medium is assumed perfectly conducting. Above the 
surface, because of i t s double-periodicity, the crossed 
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g r a t i n g g i v e s r i s e t o a d i s c r e t e spectrum of d i f f r a c t e d 

waves i n the v a r i o u s o r d e r s , ( p , q ) , the d i r e c t i o n s of which 

a r e r e p r e s e n t e d by the wave v e c t o r s Epg« We w i l l show i n 

next s e c t i o n tha t the d i f f r a c t e d f i e l d above the s u r f a c e 

p l a n e ( i . e . the r e g i o n y>max[ f (x , z ) ] ) may be w r i t t e n as a 

s u p e r p o s i t i o n of p l a n e waves ( i . e . R a y l e i g h e x p a n s i o n ) . The 

d e r i v a t i o n i s s i m i l a r to t h a t i n [ 2 1 ] . 

2.2 THE RAYLEIGH EXPANSION FOR THE DIFFRACTED FIELD 

The i n c i d e n t p lane wave f i e l d s a r e g i v e n by : 

E ^ E J e x p t j (-Jt^-r+wt) ] , 

H ^ H J e x p f j ( - K i . r + o ) t ) ] , 

where k * 1 = a 0 x - / 3 0 y +7oZ , r=xx+yy+zz, (x, y , and z a r e u n i t 

v e c t o r s a l o n g the x , y and z axes r e s p e c t i v e l y ) 

w i t h : a o = k s i n 0 ^ c o s v ^ > P0=kcos8^f 7o = k s i n 0 ^ s i n i / ^ , where 

k=2tr /X i s the wave number of the i n c i d e n t wave, 

t h e n , 

S 1 = E o e x p [ - j ( a o x - 0 o y + 7 o z ) ] e x p ( j w t ) . 

In what f o l l o w s we w i l l s u p p r e s s the t ime dependence 

exp(jo)t) f o r a l l f i e l d s . 

L e t E and E be the d i f f r a c t e d e l e c t r i c f i e l d and the 

t o t a l e l e c t r i c f i e l d r e s p e c t i v e l y . Then g t =g 1 +E c ^. 

To de termine the d i f f r a c t e d f i e l d E , we seek a v e c t o r 

f u n c t i o n E ^ ( x , y , z ) which s a t i s f i e s : 

1. the v e c t o r Helmholz e q u a t i o n f o r y > f ( x , z ) : ( V 2 + k 2 ) E =0, 

where V 2 = 9 2 / 9 x 2 + 3 2 / 3 y 2 + 3 2 / 9 z 2 

2. the boundary c o n d i t i o n s a t the g r a t i n g s u r f a c e : 
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S (^xn=-E 1xn, and V x E ^ n s - V x E 1 «n, where n is the normal 
unit vector of the surface 

3. the outgoing wave condition. 

The solution of this problem should exist for physical 
reasons, and i t should be unique according to the uniqueness 
theorem. Let us show that the function 

F(x,y,z)=E d(x,y ,z)exp[ j (a0x+70z) ] (2.2) 
is periodic along the directions Ox and Oz with the periods 
d, and d 2 respectively. 

First, we show F(x,y,z+d2 )=F(x,y,z). 
Obviously, the total f i e l d E f c is periodic along Oz, 

that i s , 
E t(x,y,z+d 2)=E t(x,y,z) . 

Considering E t=E 1+E d, we have 
E 1(x,y,z+d 2)+E d(x,y,z+d 2)=E X(x,y,z)+E d(x,y,z) . 

But since 

E 1(x,y,z+d 2)=Ejexp{-j[a 0x-^ 0y +7o(z+d 2)]} 

=Ejexp{-j[a 0x-j3 0y +7o ] l e x p ( - j d 2 7 0 ) 
=E X(x,y,z)exp(-jd 27o), 

then 

E d(x,y,z+d 2)=E d(x,y,z)exp(-jd 27o) (2.4) 
=E d(x,y ,z)exp[ j (a0x-/30+7oz) ]exp{- j [a ox-0 oy+7 O (z+d2 ) ]} 

We can write 
E Q(x,y,z+d 2)exp{j[a ox-0 oy +7o(z+d 2)]}=E a(x,y,z)exp[j(a ox-0 oy+7 Oz)] 

(2.5) 
Recalling the definition of F(x,y,z), the above is 
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F(x,y,z+d2 )=F"(x,y,z), 
and we have demonstrated that F(x,y,z) is periodic along the 
Oz direction with the period d 2. Similarly we can 
demonstrate that F*(x,y,z) is also periodic along the Ox 
direction with the period d,. 

Since the function ¥ is doubly-periodic along Ox and Oz 
with periods d 1 and d 2, we can now expand i t in a double 
Fourier series: 

4 0 0 + C O ^ 

F(x,y,z)= ^ ^ F ,
p q(y)exp[-j(pK 1+qK 2z)] 

where P (y) is a function of y only, 
K 1=27r/d 1, K2 = 2rr/d 2, 

p=0,±1,±2,••• , q=0,±1,±2,.--. 
From the definition F(x, y, z) =E^(x, y, z) exp[ j (a 0x+7 0z) ], we 
have 

E d(x,y,z)= £ ^ E ,
p q(y)exp[-j(a px+7 qz) ] 

where ap=a0+P'2ir/d, , 7q=7o+q* 27T/d 2. 
We can introduce this expansion for in the Helmholtz 

equation (V 2+k 2)E d=0 and get 
d 2F p q(y)/dy 2+(k 2-a p

2-7 q
2)E p q(y)=0. 

We obtain 
F p q ( y ) = g p q e x p ( - ^ p q y > 

where 

v/k 2-a p
2- 7 q

2, i f k 2-a p
2-7 q

2^0 
0 p q = . . — ^ = — 

- j V a D +7a k » otherwise. 
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T h e r e f o r e , a t any p o i n t of t h e h a l f - s p a c e 

y>max[f(x , z )], the f i e l d d i f f r a c t e d by a c r o s s e d g r a t i n g can 

be e x p r e s s e d as a doubl e sum of p l a n e waves, the s o - c a l l e d 

R a y l e i g h e x p a n s i o n : 
+ 0 0 + 0 0 

E d(x,y,z)= £ YL 4 q e x p ( ~ j l W ? ) <2-6> 
- 0 0 q=-oo 

where 
Er^=a^x+/3__y+7_z pq p Hpq- r 'q ' 
a p=a 0+P'27r/d 1 , (2.7) 

0 p q = V k 2 - V - V , (2.8) 
7 q=7o +q-27r/d 2. (2.9) 

E q u a t i o n (2.8) i s c a l l e d t h e c r o s s e d g r a t i n g e q u a t i o n . 

We can see t h a t the o r d e r s of d i f f r a c t i o n formed by a 

c r o s s e d g r a t i n g a r e s p e c i f i e d by a p a i r of i n t e g e r s (p,q) 

r a t h e r than the s i n g l e i n t e g e r adequate i n the case of 

s i n g l y p e r i o d i c g r a t i n g s . I f /3__ i s r e a l , t h e o r d e r (p,q) i s 
pq 

r e f e r e d t o as b e i n g a p r o p a g a t i n g o r d e r , s i n c e i t can c a r r y 
energy t o i n f i n i t y away from the g r a t i n g s u r f a c e . I f 0__ i s 

pq 

i m a g i n a r y , the o r d e r (p,q) i s s a i d t o be evanescent and 

c a r r i e s no energy away from t h e g r a t i n g s u r f a c e . Important 

p h y s i c a l phenomena c a l l e d t h e Wood an o m a l i e s a r i s e i n the 

v i c i n i t y of the t r a n s i t i o n p o i n t /3_=0. I f the i n c i d e n c e 
pq 

p a r a m e t e r s 9^ and ^ a r e f i x e d , j3pg v a n i s h e s a t the R a y l e i g h 

w a v e l e n g t h X r ( p , q ) = (-B+ v'B 2+Acos 20 i)/A (2.10) 

where 
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A=p2/d2+q2/d2
2, 

B=sint?i (cosxf/^ -p/d^sin^. «q/d2 ). 
We define the efficiency of a grating in a given order 

(p,q) to be the ratio between the power P(p,q) diffracted 
into this order and the incident power P(i) . It is easy to 
show that 

e p q = | E M | 2 W ( | E ° | 2 / 3 o K ( 2 ' 1 1 ) 

Because of the conservation of energy and because of the 
assumption of perfectly-conducting surface, we have 

P=-oo (J=-oo 

which is reduced to 
+ 0 0 + 0 0 

Z E e p q = K ( 2 * 1 2 ) 

This equality, which means that the sum of the efficiencies 
is equal to unity, is generally called the energy balance 
criterion and can be used to check the numerical results. 

2.3 DETERMINATION OF THE DIRECTIONS OF PROPAGATION OF THE 
DIFFRACTED WAVES 

A plane wave incident on a crossed grating excites a 
discrete, rather than continuous, spectrum of diffracted 
plane waves. The wave vector of the diffracted wave of 
the (p,q) order can be specified by 

* p q = V + W + V -
It is easy to show that 
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a =ksin0 cos\i/ . B =kcos0 . and y =ksin0 sin\I> p pq pq' F p q pq' 7 q pq° 1 w p q 
Thus, from (2.7) and ( 2 . 9 ) , we o b t a i n 

ksin0pqCOSi//pq=a o
+P'2?T/d, =ksin0^cosi//^+p* 2 i r / d , , 

and 

ksin0 r v_sin^_ r T=7o+q'27r/d 2 = k s i n 0 . sini//. +q« 27r/d 2, 

which can be reduced t o 

sin0 pgCOSvVpq=sin0 icos^ i+P'X/d 1, (2.13) 

sin0„sin\// r=sin0. sin\(/. +q«X/d 2. (2.14) 

D i v i d i n g (2.13) i n t o ( 2 . 1 4 ) , we get 

t a n t / v = ( s i n 0 . s i n i K +q«X/d 2 )/(sin0.cos<£. +p«X/d, ). (2.15) 
fc-K-i X X X X 

These t h r e e e q u a t i o n s can be used t o d e t e r m i n e the 

d i r e c t i o n s of the d i f f r a c t e d waves i n the v a r i o u s o r d e r s . 

In the f o l l o w i n g d i s c u s s i o n , we assume d,=d 2=d f o r 

s i m p l i c i t y . 

2.3.1 GRATING WITH PERIOD SMALLER THAN HALF OF  

WAVELENGTH 

S i n c e now X/d>2, t h i s r e q u i r e s p=0 and q=0 i n 

(2.13) and ( 2 . 1 4 ) . Then we have the s e t 

sin0„„cos^„=sin0; cos^-pq "pq l *i 
s i n 0 p g s i n i / / p q = s i n 6 ,

i s i n ^ i 

which l e a d s t o ^^=^1 and 0_=0- . T h i s i s t h e o n l y r e a l 
pq 1 pq 1 

s o l u t i o n f o r d<X/2. T h e r e f o r e , f o r a c r o s s e d g r a t i n g 

w i t h the p e r i o d d<X/2, o n l y the (0,0) o r d e r wave ( i . e . , 

the s p e c u l a r l y r e f l e c t e d wave) p r o p a g a t e s , c a r r y i n g a l l 

the i n c i d e n t energy, and the s u r f a c e behaves as a p l a n e 

c o n d u c t o r no m a t t e r what k i n d of p r o f i l e the g r a t i n g 
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has. For large periods specular r e f l e c t i o n i s reduced by 

scatter into other spectral orders. 

2.3.2 GRATING WITH PERIOD BETWEEN A HALF WAVELENGTH AND  

ONE WAVELENGTH 

2.3.2.1 Under Non-oblique Incidence (^ = 0) 

We often study the case in non-oblique incidence, 

i . e . , the case when ^=0, the incident beam i s 

perpendicular to one of the axes of the grating 

p e r i o d i c i t y . Then we get 

sinf3 c o s t / / =sinfl. +p«X/d (2.16) 

sin»5pqsini//pq=q.X/d (2.17) 

Since now l<X/d^2, from (2.17), we can conclude that 

q=0, which requires e p q = u o r ^pq=®' 

If #,-,0=0, i t i s easy to derive from (2.16) that p=0 

and 0̂  = 0, which i s the normally incident case. 

Otherwise, i//pg=0. From (2.16), we have 

sin 0_ n =sin0.+p«X/d (2.18) p, u 1 

which i s of the same form as the c l a s s i c a l l i n e a r 

grating formula. Thus we can see that the 

three-dimensional grating problem where X/2<d^X and i / ^ = 0 

i s reduced to the two-dimensional grating problem, some 

discussionf1 1] of which can be used for thi s special 

crossed grating case. 

In some applications, i t i s desired to reduce 

r e f l e c t i o n from a surface. This can be done by 

increasing backscatter. Maximum constructive 
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i n t e r f e r e n c e i n the d i r e c t i o n of b a c k s c a t t e r , or back i n 

the d i r e c t i o n of i n c i d e n c e , o c c u r s f o r kdsin0^=mff o r 

sin 0 i = m X / ( 2 d ) , m=1,2,**». (2.19) 

I t i s e a s i e r t o b l a z e a s u r f a c e when the number of 

p r o p a g a t i n g o r d e r s a r e few; i . e . , when t h e p e r i o d d i s 

s m a l l , b u t g r e a t e r than h a l f of w a v e l e n g t h . T h i s i s t r u e 

i n (2.19) when m=1 or 

d = X / ( 2 s i n 0 i ) (2.20) 

which i s c a l l e d the Bragg c o n d i t i o n . Combining the above 

e q u a t i o n w i t h ( 2 . 1 9 ) , we get 

s i n 0 p ^ o =(p+l/2)X/d, p=0,±1,±2, ••• (2.21) 

and f o r p e r i o d s i n the range X/2<d^X the o n l y r e a l 

s o l u t i o n s t o (2.21) a r e 6Q n and 0_1 n , and from (2.20) 

and ( 2 . 2 1 ) , t9_ 1 Q =-6K. T h e r e f o r e o n l y s p e c u l a r 

r e f l e c t i o n ( t h e o r d e r ( 0 , 0 ) ) and b a c k s c a t t e r ( t h e o r d e r 

(-1,0)) e x i s t . By a d j u s t i n g o t h e r p a r a m e t e r s of the 

g r a t i n g , we can get a i n c r e a s e i n b a c k s c a t t e r and a 

c o r r e s p o n d i n g d e c r e a s e i n s p e c u l a r r e f l e c t i o n . 

2.3.2.2 Under O b l i q u e I n c i d e n c e 

We now c o n s i d e r o b l i q u e i n c i d e n c e when t/>̂ *0. Assume 

0<d^<ir/2 and 0<^<TT/2 w i t h o u t l o s i n g g e n e r a l i t y . S i n c e 

1^X/d^2, we can c o n c l u d e from Eq. 2.13 and Eq. 2.14 t h a t 

o n l y p=0,-1 and q=0,-1 a r e p o s s i b l e s o l u t i o n s , so t h e r e 

a r e f o u r p o s s i b l e o r d e r s of d i f f r a c t e d waves: ( 0 , 0 ) , 

( 0 , - 1 ) , (-1,0) and (-1,-1). 

For example, i n the c a s e of X/d=1.24, 0^=38° and 

^.=30°, w h i c h i s one of t h e e x p e r i m e n t a l c a s e s , a f t e r 
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some calculation using Eq. 2.13 and Eq. 2.14, we find 
that in this case of oblique incidence, besides the 
order (0,0), only the order (-1,0) occurs, the direction 
of which can be determined by finding 6_y Q =50.5° and 

1 Q=156.5°. 

2.3.3 GRATING WITH PERIOD GREATER THAN WAVELENGTH 
We consider the cases of non-oblique incidence 

(^ = 0). Again we have Eq. 2.16 and Eq. 2.17, from which 
we can see that q=±1 and possible higher orders are 
excited since now X/d<1. 

For instance, we can calculate the directions of 
a l l the diffracted waves scattered by a crossed grating 
with hemispherical cavities which we have investigated. 
The case is in normal incidence, and X=8.57 mm, d=13 mm. 
Since 0̂ =0, we get 

sin0 p gcosi// p q=p-X/d, (2.22) 
and 

sinepgSini/Zp^q.X/d. (2.23) 
Now that X/d=0.66, p and q can only take values of 0,1 
or -1, and we obtain nine sets of equations from the 
above two equations. Solving them, the directions of 
nine orders of the diffracted waves c a n be found as 
follows: 

order (0,0): specular reflection, 6Q Q =0; 

order (0,1): ^ Q ̂ =90°, 6Q } =41.3°; 
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order (0,-1): tf0f_1=270°, eQ ^ =41.3°; 

order (1,0): tf1fQ=0°' *i,0 = 4 1 - 3 ° ? 
order (-1,0): n=l80°, 0_ 1 f O =41.3°; 
order (1,1): <//lr1=45°, 6} t =69°; 
order (1,-1): 6} , =69°; 
order (-1,1): *_ 1 r l-l35°, 0..,̂  =69°; 
order (-1,-1): ^_ 1 f_ 1=225°, 0_1^_1 =69°. 

From the above results, i t turns out that except 
for the order (0,0), which is back in the direction of 
incidence, the diffracted wave vectors l i e on two cones 

Fig. 2.2. The directions of the diffracted wave vectors 
scattered by a crossed grating with X/d=0.66 
in normal incidence 
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whose axes are superposed on the incident wave vector 
and whose half-angles are 41.3° and 69° respectively 
(see Fig. 2.2). 

2.4 DETERMINATION OF THE ANGULAR REGION WHERE A DIFFRACTED  
ORDER EXISTS 

In general, we can use the Rayleigh wavelength equation 
(2.10) as a guide to find the region of the azimuthal angle 
i//^ where the diffracted order (p,q) exists: for fixed 
incident angles 9^ and \}/̂, i f the actual wavelength X is not 
greater than the Rayleigh wavelength Xf(p,q) given by 
(2.10), the diffracted order (p,q) can exist at this 
position. Let us consider the range 0<\j/^<90° and a crossed 
grating with X/2^d^X. 

For the order (-1,0), we have from (2.10) 
Xr (0,-1 )/d=sin0 icos^ i+ v/sin 2e icos 2^ i+cos 20 i (2.24) 

which is a decreasing function of 6^ in the range 0<\^^<90°, 

and 

If we now assume 0^<sin~1(X/d-1) which is the necessary 
condition that the order (-1,0) exists at <̂ =0, and increase 
^ from zero while holding 6^ at that constant value, we can 
see that the diffracted order (-1,0) will remain existing 
until \}/̂  reaches a certain value which makes the right side 
of (2.24) equal to the actual value of X/d. This is the 
transition point where the (-1,0) Wood anomaly occurs and 
the order (-1,0) ceases to propagate. 

(sin0 i + 1) | ^Xr(-1,O)/d^cos0i| ^ = 90° 
(2.25) 
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For the spectral order (0,-1), we obtain from (2.10) 
\(0,-1 )/d=sinr3 isin^ iVsin 2f3 isin 2 i// i+cos 2f9 i (2.26) 

which is an increasing function of ̂  in the range 0^\^<90°, 
and 

cos0.| <X(0,-1)/d^(1+sin0.)| (2.27) 
1 i^-O r 1 ^ = 90° 

At ^ = 0, the order (0,-1) does not exist since we have 
assumed 1^X/d£2. As ̂  becomes large enough while 0̂  is 
fixed, the diffracted order (0,-1) appears. It begins to 
propagate at the point where the actual value of X/d is 
equal to the right side of (2.26), and the (0,-1) Wood 
anomaly happens. 

For the diffracted order (-1,-1), the normalized 
Rayleigh wavelength can be expressed as 
Xr(-1 ,-1 )/d={/2sin0icos(«/'i-45o) Vsin 20 i(sin2^ i-1 )+2}/2. (2.28) 
When ^ = 0 or 90°, we get 

Xr(-1 ,-1 )/d=(sin0 iV2-sin 20 i)/2 (2.29) 
which is always less than one when 0^0^90°. Thus, in the 
case of 1£X/d^2, the order (-1,-1) does not exist around 
^ = 0 or 90°, this agrees with the previous discussion. 

The maximum value of X (-1,-1)/d can be easily found 
from (2.28) as 

max[Xr(-1 ,-1 )/d] = ( 1+sin0i )//2", at ̂ =45°. (2.30) 
If 0̂  is large enough, the order (-1,-1) can exist 

around \^=45°, and two (-1,-1) Wood anomalies, located 
symmetrically about i / ^ = 450, defines the region where the 
order (-1,-1) exists. 
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In this way, we can find out the range of ̂  where a 
diffracted order (p,q) can propagate. We w i l l apply this 
method when discussing experimental results from the cases 
of oblique incidence. For the case of non-oblique incidence 
(^=0 fixed), the range of 6^ where a diffracted order (p,q) 
can exist will be similarly determined. 

2.5 A PRODUCT FORMULA LINKING CROSSED AND CLASSICAL GRATINGS 
It is interesting to investigate any simple relation between 
the behavior of singly periodic grating and doubly periodic 
grating having the same profile and use i t as a guide to the 
design of crossed grating surfaces since the theories for 
the diffraction by classical grating are now capable of 
dealing with a l l structures of practical importance. Here we 
introduce an empirical equivalence formula linking crossed 
and classical gratings which was suggested by Derrick et a l . 
[5]. 

Let us suppose that the crossed grating is of the form 
y=f(x,z)=u(x)+v(z). The equivalence formula indicates that 
the efficiency e m n of the crossed grating in the order (m,n) 
is given by 

emn=<^n/R' < 2' 3 1' 
where rj m and T?* are the efficiencies of the classical 
gratings with profile equations y=u(x) and y=v(z) in orders 
m and n respectively, under the same conditions of incidence 
and polarization as for the crossed grating , and R is the 
Fresnel reflectance of a plane surface with the same 



2 4 

conditions of incidence. 
This formula in the case of the order (0,0) can be 

derived roughly by use of Taylor series for sufficiently 
shallow crossed gratings under normally incident radiation 
[20]. Indeed, comparisons [5,19] between the rigorous 
theoretical results and those obtained using the equivalence 
formula showed that this product formula gave to a good 
accuracy the efficiency e0o of some sinusoidally-modulated 
crossed gratings under normally incident radiation at 
optical frequencies. It is worth while pointing out that the 
agreement is s t i l l very good for a crossed grating with 
h/d=1 [19, Fig. 1] although the product formula is supposed 
to be valid for very shallow crossed gratings. 

We are mostly concerned about investigating the 
reflection free property of a crossed grating and i f this 
product formula were always true, a crossed grating would 
have the reflection free property when its singly-periodic 
equivalent grating can backscatter a l l the incident energy 
(i.e., e o o=0 i f T7o or rj§ equals to zero). This would be a 
simple way to find a reflection-free crossed grating since 
i t is possible now to design a blazed classical grating by 
numerical methods. We wi l l investigate this possibility 
experimentally. 



Chapter 3 
EXPERIMENTAL ARRANGEMENT AND PROCEDURE 

For our experimental investigation, six metal crossed 
gratings of square pyramids and two metal crossed gratings 
with hemispherical cavities were made in a l l . The details of 
dimensions of these plates w i l l be given in the following 
two chapters. Each of these surfaces consisted of a matrix 
of more than 15x15 identical elements with the period d, the 
value of which is in the range of the wavelength of 
radiation used. 

The experimental arrangement was similar to that used 
in [8], A photograph of the experimental set up is shown in 
Fig. 3.1 and a diagram of the experimental arrangement is 
shown in Fig. 3.2. Reflection measurements were made in a 
microwave anechoic area. Transmitting and receiving antennas 
were two identical pyramidal horns with 24.7 dB gain and 
E-plane 3 dB beamwidth of 9°, the orientation of which can 
be changed to have TE or TM polarization of the incident 
wave and to analyze the polarization of the diffracted wave. 
Microwave absorbers suspended between the horns prevented 
direct transmission, while absorbers were positioned around 
the plate to eliminate reflection from any surface except 
the top of the grating plate investigated. Absorbers were 
also placed at the end of the grating to reduce transmission 
under the plate. The incident angle 8^ could be varied from 
approximately 5° to 90°, but i t was d i f f i c u l t to eliminate 
coupling of two antennas near the 5° limit and direct 
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Fig. 3.1. Photograph of experimental set-up, 
receiving horn in foreground 

2 6 
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transmission between the antennas near the 90° limit. 
Therefore, our measurements were usually taken in the range 
of incident angles from 10° to 80° or less, with an reading 
accuracy of about 1°. The distance from the grating surface 
to either of the antennas was 1.38 m. This non-plane wave 
illumination, as reported by J u l l and Ebbeson [10] and Heath 
[8], has very l i t t l e effect on the grating performances, and 
the results, as far as reflection reduction is concerned, 
could only be better under plane wave illumination. 

A diagram of the experimental circuit is shown 
schematically in Fig. 3.2(a). With the corrugated surface 
exposed, the crystal current reading of the receivng antenna 
was noted. When the grating was covered by a f l a t and thin 
(1 mm thickness) conducting plate of the same area as the 
grating surface, the crystal current reading increased but 
was restored by adjusting a precision variable attenuator. 
The power reduction in surface reflection due to the grating 
is the difference between the former and latter precision 
variable attenuation readings, accurate to about ±0.2 dB. 
The tuning range of the millimeter reflex klystron is 33 GHz 
to 37.5 GHz (or the wavelength X is from 9.09 mm to 8.00 
mm), and the klystron output was monitored continuously to 
detect output level changes during the measurements. 

To investigate the effects of oblique illumination, the 
grating surfaces were mounted on a platform which could be 
rotated around the vertical axis by an azimuthal angle . 
After each rotation, the grating surface was re-leveled by 
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adjusting three screws which were mounted on the platform, 
thus increasing the accuracy of the 6^ measurements. 

Although the emphasis of our investigation was upon 
measuring the relative reflected power by a grating plate 
under non-oblique incidence, we also measured the other two 
kinds of responses of each grating: azimuthal angular 
response and frequency response in reflected power. 
Normally, the measurement procedure was as follows: 

1. With the incident beam perpendicular to one of the axes 
of the grating periodicity, the relative reflected power 
was measured by varying the incident angle from 10° to 
80° with increments of 2.5°. More measurement points 
were taken near a reduction peak to increase the 
accuracy of the position and the value of the maximum 
reduction of reflected power. 

2. With a fixed incident angle which was usually the angle 
where the maximum reflection reduction occured or was 
the Bragg angle (0£=sin~1(X/(2a)), an azimuthal angular 
response was recorded by rotating the plate horizontally 
from i//^=-45° to ̂  = 45°. Since the crossed gratings 
investigated were square symmetric, the f u l l i//^ response 
between 0° to 360° could be derived from the 
measurements taken between 0° and 45°. Nevertheless, we 
also measured the response from -45° to 0° in order to 
check the symmetry of the response curve . 

3. With the same incident angle 9^ and ̂ -=0° (non-oblique 

incidence), the frequency response was obtained by 
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varying the incident wave frequency from 33.0 GHz to 
37.5 GHz (the tuning range of the klystron). Whenever a 
more satisfactory result was found at a new frequency, 
measurements in steps 1 and 2 were repeated at that 
frequency. 

In a l l the measurements, the performance for TM polarization 
and for TE polarization was recorded individually by 
changing the orientation of the antenna horns. 

The experimental values for TM polarization were 
plotted as small circles which were joined by straight 
lines, while those for TE polarization as small crosses 
connected by broken lines. 

Normally we drew curves of variation of the reflected 
power level in terms of dB by using the measured data 
directly. Sometimes for convenience we also plotted curves 
of the efficiency in the order (0,0); i.e., the relative 
reflected power. 



Chapter 4 
EXPERIMENTAL RESULTS OF PYRAMIDAL CROSSED GRATINGS 

4.1 INTRODUCTION 
In this chapter measurements of the power reflected by a 
pyramidal crossed grating are presented. Fig. 4.1 shows a 
photograph of one of the pyramidal crossed grating plates 
studied experimentally, which is composed of conducting 
pyramids with a square base. The pyramids were constructed 
by ruling consecutively, in orthogonal directions, two 
symmetrical triangular groove grating having the same groove 
spacing d and the same apex angle a. Fig. 4.2 shows a 
classical triangular groove grating (echelette grating) and 
a pyramidal crossed grating with the same profile, and l i s t s 
the plate dimensions (period d and pyramid height h), apex 
angle a, the depth-to-period ratio h/d and the numbers of 
pyramids for a l l pyramidal grating plates investigated 
experimentally. These were milled within ±0.03 mm (±0.001 
in.) of the given dimensions. The grating periods were 
designed for an incident wave at a frequency of 35 GHz 
(X=8.57 mm) to satisfy the relation of \/2<d£X, and hence 
only specular reflection (the order (0,0)) and the 
diffracted order (-1,0) existed under non-oblique incidence 
according to the discussion in Section 2.3. 

Since in general i t is only possible to obtain by using 
current theories numerical results for a crossed grating 
whose depth is less than i t s period (also depending on 
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Fig. 4 . 1 . Photograph of a pyramidal crossed grating 
plate (plate C4) 
a. covered with a flat conducting plate 
b. crossed grating exposed 



REFLECTION GRATINGS 

ECHELETTE CROSSED PYRAMIDAL 

PLATE APEX ANGLE DIMENSIONS 
(degrees) d(mm) h(mm) 

A4 

A6 

A9 

B6 

B9 

C4 

45 

60 

90 

60 

90 

44 

8.00 9.66 

8.00 

8.00 

6.23 

6.23 

6.95 

6.93 

4.00 

5.40 

3.12 

8.60 

h/d 

1.21 

0.87 

0.50 

0.87 

0.50 

1 .24 

PYRAMIDS 

30x30 

30x30 

30x30 

39x39 

39x39 

37x37 

Fig. 4.2. A classical triangular (echelette) grating and 
pyramidal crossed grating with the same p r o f i l 
and dimensions for a l l pyramidal plates 
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wavelength) [19], i t is interesting to get experimentally 
diffraction patterns for crossed gratings which are 
deeply-grooved. Therefore, each grating depth which we chose 
was equal to or greater than half of the period, or, in 
other words, the apex angle a of each grating was equal to 
or less than 90°. 

The surfaces of the f i r s t set (set A) consisted of a 
matrix of 30x30 identical pyramids with base dimension 
d=8.00 mm and apex angles a=90°, 60° and 45°. These were 
machined on 240x240 mm brass plates whose thickness was 
about 20 mm. A second set (set B) consisted of 39x39 
pyramids with d=6.23 mm. Plate B9 with apex angle of 60° is 
made of brass while Plate B6 with apex angle of 60° is made 
of aluminium, but no problem in the measurements should 
arise from using these two different materials because both 
can be treated as essentially perfectly conducting in the 
microwave region. Two plates of set B were chosen for 
comparison with earlier work [16] for which some numerical 
results are available. There was only one brass grating 
plate with d=6.95 mm and a=44° in set C, which was specially 
designed to observe how well the reflection free properties 
of a singly-periodic surface carry over to i t s 
doubly-periodic equivalent. 

Unlike previous experiments on classical gratings where 
numerical data were used to design the gratings, we had 
l i t t l e suitable theoretical results on pyramidal crossed 
gratings with infi n i t e conductivity available for predicting 
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our investigation. Therefore, in order to search for the 
best operating point where the maximum reflection reduction 
occured, we tried to change between limits the parameters 
which could be changed, i.e., the parameters of the grating 
(period d, and apex angle a (or height h)) and the 
parameters of the measurement (incident angle 6̂  , azimuthal 
incident angle i / ^ , and frequency of the incident wave). 

4.2 PLATE B9 IN COMPARISON WITH ITS SINGLE-PERIODIC 
EQUIVALENT 

In our departmental workshop, a symmetrical triangular 
groove grating was f i r s t milled across the brass plate in 
making a square pyramidal crossed grating of the same 
profile. One such comparison is shown in Fig. 4.3 for 39 
symmetrical triangle grooves with apex angle of 90° (Fig. 
4.3a) and the corresponding plate B9 (Fig. 4.3b) of 39x39 
square pyramids at the frequency of 35 GHz (X/d=1.37). The 
experimental results have already been presented in [12], 

For TM polarization, the triangular grooves are 
essentially perfectly blazed to the n=-1 spectral order at 
the Bragg angle 0^=sin~1(X/(2d))=43.5° where a reduction in 
the reflected power is about 47 dB (eo=0.00002) or 99.998% 
of the incident energy is reflected back in the direction of 
incidence. Over a wide angular range of 3O°^0^7O°, the zero 
order efficiency is below 0.01 and specular reflection is 
almost eliminated. TE polarized reflection is approximately 
halved (eo=0.45 at ̂ =43.5°) by the grooves for Bragg angle 



Fig. 4 . 3 a . Relative reflected power (or e 0) vs. angle of 
incidence for the singly periodic equivalent 
of plate B9 at f*35 GHz, 4^=0 
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0 30 60 90° 

Fig. 4.3b. Relative reflected power (or e0o) v s . angle of 
incidence for plate B9 at f«35 GHz, ^=0, 
Predicted for infi n i t e surfaces: 

— T E case, • TM case 
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incidence. We also obtained from a computer program by Facq 
[17] two numerical results of eo=0.04 for TM polarization 
and eo=0.64 for TE polarization at 0^=43.5° and f=35 GHz for 
a perfectly conducting strip of six symmetrical triangular 
grooves with the same period and apex angle. The calculated 
power patterns were also obtained (see Fig. A.2, Appendix). 
After taking into account the effect of the larger size (39 
grooves) of the experimental grating, the correspondence 
between the calculated and measured values is good. 

With the corresponding pyramidal grating Fig. 4.3b 
shows that TM polarized specular reflection is s t i l l 
substantially reduced over a wide range of incident angles 
where at least 80% of incident energy is diffracted into the 
order (-1,0). At this point, i t seems that the TM polarized 
reflection free property of the corresponding 
singly-periodic surface carries over in a certain extent to 
crossed grating plate B9. TE polarized reflection is only 
slightly affected by the surface. 

Fig. 4.3b also shows that the experimental results for 
both TM and TE cases agree with predicted results [16] 
indicated by bold solid (TM) and broken (TE) curves. A 
slightly upward shift of the experimental TM curve with 
respect to the calculated TM curve is probably due to the 
site-.reflections. P. Blick and R. Deleuil had reported their 
experimental results [10, Fig. 12] obtained from the same 
kind of pyramidal crossed grating with the same apex angle 
of 90° under the same incident conditions. These are the 
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only pair of experimental curves available for comparison 
with our work. Their results almost coincided with the 
numerical curves presented here. Our measuring arrangement 
is much simpler and incapable of the same precision (their 
relative accuracy of the grating efficiency measurement was 
better than 3% as reported), but s t i l l has provided adequate 
experimental accuracy to verify theoretical predictions for 
millimeter-wave reflection gratings, as proved in the 
previous work on classical gratings [9-12], 

For classical gratings maximum reflection reduction 
always occurs at the Bragg angle, which can also be seen in 
Fig. 4.3a. However, from Fig. 4.3b, i t seems that basically 
there is no Bragg angle effect for crossed grating plate B9. 

It is also noted that the experimental points are in 
good agreement with the theoretical predictions concerning 
the so-called Wood anomaly, which occurs at any wavelength 
where a diffracted order ceases to propagate, that i s , at 
the Rayleigh wavelength introduced in Section 2.2. Using 
(2.10), the Rayleigh wavelength Xf of the order (p=-l,q=0) 
under non-oblique incidence (i^ = 0) can be found as 

Xr(-1,O)=(1+sin0i)d, 
from which we deduce that when the incident angle 6^ is less 
than 

e ^ s i n - 1 (X/d-1 ), (4.1) 
the diffracted order(-1,0) ceases to propagate and only the 
specular reflection exists. 
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In the case of classical gratings, by applying the 
grating equation 

sinen=sin0i+nX/d, (n=0,±1,±2,...) 
where &n is the diffraction angle from the surface normal, 
and considering that when 6>n=-ir/2,the n=-1 spectral order 
w i l l cease to propagate, we can get easily the value of 
incident angle where the n=-1 Wood anomaly occurs which is 
also 

fl^sin"1 (X/d-1), 
the same as (4.1). 

Therefore,the (-1,0) Wood anomaly for plate B9 and the 
n=-1 Wood anomaly for i t s singly-periodic equivalent at 35 
GHz should both occur at 

S ^ s i n " 1 ( 1 .375-1 )=22°. 
Back to the experimental results presented in Fig. 4.3a or 
4.3b, we can see that there is indeed an abrupt drop at 
about d^=22° in the relative reflected power curve for TM 
polarization, which is due to a rapid exchange of power 
between specularly reflected and diffracted modes — in a 
change of only 2° in 6^, 80% of the incident energy switches 
from the order (0,0) (or the n=0 order for classical grating 
) to the order (-1,0) (or the n=-1 order for classical 
grating) which can only exist when 0^>22°. Thus, the 
agreement between theory and experiment is very good. In the 
case of TE polarization, the Wood anomaly is s t i l l evident 
for the classical grating,but is not clear for the crossed 
grating. 



41 

Let us concentrate our study on the crossed grating. 
For angles of incidence less than the limit value 22°, only 
the order (0,0) propagates and the efficiency e 0 0 in the two 
polarizations TM and TE should be identical and equal to 
unity. The fact that c 0 0 is only near unity when 0^<22° in 
Fig. 4.3b is due to experimental error. The effect of 
polarization becomes apparent rapidly as soon as the 
incident angle is greater than 20°. e0o for TM polarization 
f a l l s rapidly to about 0.1 and stays below 0.2,while e 0 0 for 
TE polarization remains close to one. Thus, this structure 
behaves like a polarizer,because i t can diffracted most of 
the TM component of an ar b i t r a r i l y polarized incident wave 
into a single order (-1,0) and reflect specularly most of 
the TE component. 

Fig. 4.3b also shows that when the incident angle is 
greater than 65°, the relative reflected power is below 0.1 
and even reach as low as 0.007 at 0^=82°. Measurements for 
0£>8O° are d i f f i c u l t due to direct transmission between 
transmitting and receiving horns, but i t has been 
established that e 0 0 at 6^=82° is at most 0.007 or less 
(since the effect of direct transmission is to make the 
measured value of e0o larger than i t s true value). Also, 
this near-zero value of e0o agrees with the tendency of both 
the calculated and the experimental curves for TM 
polarization in Fig. 4.3b when the incident angle is greater 
than 50°. It seems that e 0 o would approach zero and almost 
total cancellation of specular reflection would occur over a 
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wide range of 9^ for near-grazing incidence, which is a 
desirable property for some applications (for example, 
multipath interference suppression,since most multipath 
interference occurs for near-grazing incidence). Thus this 
kind of crossed grating appears to be a promising structure 
for those applications. 

The experimental plot of the relative reflected power 
as a function of the angle of rotation (^) for plate B 9 at 
an angle of incidence 8^ = 4 3 . 5 ° is exhibited in Fig. 4 . 4 . 

The measurements were taken at 3 5 GHz. The curves for TE and 
TM cases are essentially symmetrical about \ ^ = 0 , which is 
expected from the square symmetry of this crossed grating 
and w i l l be found to be true basically for a l l plates 
investigated. Hence we wi l l consider mainly the region 
0<,\l/^45° when we discuss the cases of oblique incidence for 
a l l plates. As shown in Fig. 4 . 4 , in a broad range 
- 4 2 ° £ i / ^ £ 4 2 ° , t h e reduction in TM polarized specular 
reflection is at least 7 . 3 dB, while the reduction in TE 
polarized specular reflection is less 1 dB. Thus the 
behavior of a polarizer is conserved over the f u l l range of 
i/^ except for a narrow range of about six degrees centered 
by ^ ^ = 4 5 ° . This exception is caused by the ( - 1 , 0 ) and ( 0 , - 1 ) 

Wood anomalies. By applying the method of Rayleigh 
wavelength equation discussed in Section 2 . 4 , we can 
determine which diffracted order can exist and where i t can 
exist in the f u l l range of . Fig. 4 . 5 shows schematically 
the results of calculation which is corresponding to Fig. 



Fig. 4.4. Reflected power vs. angle of rotation for 
plate B9 at f = 35 GHz, 0^43.5° 
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4.4 and can be applied to a crossed grating having any type 
of square-symmetrical profile with the incident conditions 
of X/d=1.37 and 0^=43.5°. Since the pyramidal surface is 
square-symmetrical, the regions for the orders 
(-1,0),(0,-1),(0,1) and (1,0) have the same width and are 
symmetrical about 0°, 90°, -90° and 180° respectively, as 
indicated in Fig. 4.5. For 0^=43.5° fixed, at any value of 

there is at most one more diffracted order which can 
exist besides the order (0,0). According to the calculation, 
the order (-1,0) ceases to propagate at ^=43.9° where the 
(-1,0) Wood anomaly occurs, and the order (0,-1) begins to 
propagate at ^=46.1° where the (0,-1) Wood anomaly exists. 
Thus there is only specular reflection in a very narrow 
azimuthal range of about two degrees around \/̂  = 45 0. This 
explains the abrupt rise of TM polarized power from 40° to 
45° in Fig. 4.4: the energy in the order (-1,0) switches 
totally to the order (0,0). Ideally the relative reflected 
power at i^=45° should be one in this case. The experimental 
discrepancy is attributed to positioning the plate. 

The measured frequency response curves of plate B9 at 
0^=43.5° under non-oblique incidence are shown in Fig. 4.6. 
The broad band nature of this polarizer-like plate is 
readily seen. Within the tuning range of the klystron, the 
reduction in TM polarized specular reflection remains about 
8dB,or 84% of the TM-polarized incident power is scattered, 
while the TE-polarized incident wave is almost completely 
reflected. 



FREQUENCY(GHZ) 

Fig. 4.6. Reflected power vs. frequency for plate B9 
at 6̂  = 43.5°, tf.=0 
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4.3 PLATE C4 A DEEPLY-GROOVED PLATE IN COMPARISON WITH 
ITS SINGLY-PERIODIC EQUIVALENT 

It is interesting to investigate experimentally deeper 
groove surfaces which cannot be handled theoretically at 
present while seem most l i k e l y to be effective in some 
applications [20]..It had been reported that essentially 
perfect blazing to the n=-1 spectral order for arbitrary 
polarization should occur for symmetrical triangular groove 
reflection gratings when the apex angle is 44° and the angle 
of incidence is 0^=38.1° [4,9]. Such a surface was f i r s t 
milled in making i t s doubly-periodic equivalent plate C4. 
The experimental values in Fig. 4.7, which were obtained 
from this classical grating at f=35 GHz, show that although 
essentially perfect blazing occurs for TM polarization at 
the Bragg angle 6^=38° where eo = 0.00003 or the reduction is 
45 dB, the result for TE polarization (eo=0.039 or the 
reduction is 14 dB) is less satisfied. Fig. 4.8 shows the 
measured frequency response of this grating at 0^=38° under 
non-oblique incidence. The intersection of the TM and TE 
curves proves the same effect for arbitrary polarization, 
and the corresponding frequency is 33.75 GHz where the 
reduction is about 23 dB, or the diffraction efficiency to 
the n=-1 order for both polarizations is about 99.5%. The 
angular response of this triangular grating at the new 
frequency 33.75 GHz in Fig. 4.9 shows that at the new Bragg 
angle 0^=40°, near-perfect dual blazing is achieved, a good 
improvement over that obtained at f=35 GHz. Numerical 
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Fig. 4.7. Relative reflected power (or e 0) vs. angle of 
incidence for the singly periodic equivalent 
of plate C4 at f=35 GHz, .̂=0 
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Fig. 4.8. Reflected power vs. frequency for the singly 
periodic equivalent of plate C4 at 0^=38°, 
*.-0 
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4.9. Relative reflected power (or e 0) vs. angle of 
incidence for the singly periodic equivalent 
of plate C4 at f = 33.75 GHz, ^=0 
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results from Facq's program agree with these experimental 
results (see Appendix). 

Fig. 4.10 shows the measured relative reflected power 
as a function of the incident angle for the corresponding 
pyramidal grating plate C4. Both TM and TE polarized 
reflections near the Bragg angle 0^=40° are only halved by 
the crossed grating. Apparently, the reflection free 
properties of the singly-periodic surface are lost for i t s 
doubly-periodic equivalent . Therefore, we can conclude from 
this example of plate C4 that the product formula (2.31) 
linking shallow crossed and classical gratings cannot in 
general be applied to deeper gratings under non-normal 
incidence. 

In Fig. 4.10, the (-1,0) Wood anomaly occurred around 
0^=sin~1(X/d-1)=17° is evident only as a change in the 
gradient of the TE and TM curves, while for the classical 
grating, Fig. 4.9 shows the corresponding n=-1 Wood anomaly 
around the same incident angle as being an abrupt energy 
transfer from the specular reflection to the n=-1 order. 

The measured angular response at f=35 GHz is 
represented in Fig. 4.11, along with the response at f=33.75 
GHz which is the same as that in Fig. 4.10 except that now 
i t is plotted in terms of dB for easy comparison. At both 
frequencies, the behavior for TM polarization is similar to 
that for TE case, and no maximum reduction is observed 
around the Bragg angle. The experimental frequency response 
at 0.=38° shown in Fig. 4.12 confirms further the 
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Fig. 4.10. Relative reflected power (or e0o) vs. angle of 
incidence for plate C4 at f=33.75 GHz, .̂=0 



Fig. 4 . 1 1 . Reflected power vs. angle of incidence for 
plate C 4 : a. at f = 3 3 . 7 5 GHz 
b. at f = 3 5 GHz 



_ J I I I I 1 1 1 - J — 
33J0 340 35J0 36.0 370 

FREQUENCY (GHZ) 

Fig. 4.12. Reflected power vs. frequency for plate C4 
at 0^38°, ^ = 0 
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insensitivity of this crossed grating to frequency changes 
around 35 GHz. Increasing or decreasing by 2 GHz from 35 GHz 
does not affect the diffraction efficiency of plate C4 very 
much and the reduction of reflected power is always below 5 
dB. 

Fig. 4.13 shows the measured reflected power as a 
function of rotation angle \^ for plate C4 at f=35 GHz and 
0^=38°. Again, the curves are basically symmetrical about 
v//̂  = 0°. Although the diffraction efficiency of the grating is 
insensitive to polarization under non-oblique incidence, the 
effect of polarization become apparent in a remarkably rapid 
manner as the plate is rotated apart from the ^=0° 
position. For TM polarization, the reduction gets larger and 
reaches i t s maximum 13 dB at about \^=35°, while the 
reduction in TE polarized specular reflection remains under 
2 dB. The calculated region diagram for a l l spectral orders 
diffracted by plate C4 with X/d=1.24 and 0^38° is shown in 
Fig. 4.14. We can see that only two spectral orders (0,0) 
and (-1,0) exist between i//̂ =-37° and i/^ = 37°, and hence from 
Fig. 4.13, 95% of the incident energy is diffracted into the 
order (-1,0) at 0^=35°, the direction of which can be 
determined by (2.13) and (2.14). The results of calculation 
in Fig. 4.14 predict that the regions of orders (-1,0) and 
(0,-1) are overlapped around i/^ = 45° and the (0,-1) Wood 
anomaly should occur at $^=31° where the (0,-1) order starts 
to propagate. This Wood anomaly causes a re-distribution of 
incident power among three orders (0,0), (-1,0) and (0,-1) 



Fig. 4.13. Reflected power vs. angle of rotation for 
plate C4 at f=35 GHz, 0^38° 
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Fig. 4.14. Diagram of azimuthal angular regions in which 
spectral orders exist for a crossed grating 
at X/d=1 .24, 0^38° 
region boundaries: ^=53°, Vi. = 37° 
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when ^£>37°. This explains the rise of the experimental TM 
curve from 35° to 40°. 

4.4 PLATE A4 AN ESSENTIALLY PERFECT BLAZED CROSSED 
GRATING SURFACE FOR TM POLARIZATION 

Plate A4 is also a deeply-grooved surface with the period 
d=8 mm and the apex angle a=45°. Fig. 4.15 shows 
experimental values of the reduction in specular reflection 
by the singly-periodic equivalent of plate A4, with 30 
triangular grooves at f=35 GHz. The maximum reduction 16.1 
dB for TM polarization occurs almost exactly at the Bragg 
angle fl^sin"1(X/(2d))=32.4°, where the diffraction 
efficiency (e.,) of this classical grating is 97.5%, whereas 
for TE polarization there is no maximum reduction observed 
at the Bragg angle. 

The behavior of the corresponding crossed grating plate 
A4 at the same frequency of 35 GHz is exhibited in Fig. 
4.16a. The Bragg angle effect for TM case now becomes not 
evident and the reduction in the specular reflection for 
both TM and TE polarizations is always below 4 dB. The 
experimental results of plate A4 measured at f=33 GHz is 
shown in Fig. 4.16b, which shows a decrease by about 6% in 
frequency does not change the behavior of this surface very 
much. 

Measured frequency variation of TE and TM polarized 
reflection from plate C4 at 0^=46° under non-oblique 
incidence is shown in Fig. 4.17. For TE polarization, the 
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reduction is below 3 dB and the curve is quite f l a t within 
the f u l l frequency range. The reduction for TM polarization 
from f=32.75 GHz to f=36.5 GHz is a l i t t l e less than that 
for TE polarization. However, when the frequency becomes 
larger than 36.5 GHz, TM curve descends steeply and the 
reduction reaches as large as 32 dB at f=37.52 GHz which is 
the highest attainable frequency of the klystron. Here, for 
TM polarization, a increase by about 3% in frequency 
completely changes the properties of this crossed grating 
from reflecting specularly 100% of the incident power at 
f=36.25 GHz to diffracting essentially t o t a l l (99.94%) of 
the incident power into the (-1,0) order at f=37.52 GHz. 
This is the best result that we got from a l l plates 
investigated, as far as total cancellation of specular 
reflection is concerned. Therefore, we demonstrated 
experimentally near perfect blazing of the pyramidal crossed 
grating for TM polarization. 

Fig. 4.18 shows the measured relative reflected power 
as a function of 8^ under non-oblique incidence at f=37.5 
GHz. Very interesting behavior of plate A4 is observed when 
the incident wavelength is equal to the period. There are 
two remarkable reduction peaks for TM polarization. The 
larger one occurs at 0^=46° where the reduction is 27 dB, or 
99.8% of the incident power is diffracted to the order 
(-1,0), the direction of which can be found as 0_1 Q =16.3° 
and \{/_] Q=180° by using (2.13) and (2.14). Over a narrow 
angular range of about 3°, the reduction is greater than 20 
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dB or 99%, and the specular reflection is essentially 
eliminated. The smaller peak is at 0^=20° where the 
reduction for TM polarization is 16.7 dB. It is surprising 
that at the Bragg angle 0i=sin"1(X/(2d))=30°, a local 
minimum reduction is observed, instead of a maximum 
reduction of specular reduction. This behavior is quite 
different from that of classical gratings. The reduction in 
TE polarized specular reflection is much less than that for 
TM polarization and is below 4 dB, except for a peak at 
0^80° where the reduction is 13.1 dB or 95.1%. 

Holding the frequency at 37.5 GHz and the incident 
angle at 46° where maximum reduction for TM polarization 
occurs under non-oblique incidence, we recorded reflected 
power as a function of angle of rotation by rotating plate 
A4 horizontally (see Fig. 4.19). Both TM and TE curves look 
somewhat complicated in this case where the ratio of 
wavelength over period is one. For TM polarization, the 
plate could be rotated up to about three degrees in both 
directions and s t i l l give about 20 dB or 99% reduction. 
Within this narrow azimuthal angular range, the surface is 
blazed to the spectral order (-1,0). Fig. 4.20 shows the 
corresponding diagram of azimuthal angular regions where 
spectral orders exist, which is the results of calculation 
by applying Rayleigh wavelength equation. Theory predicts 
that the (-1,-1) Wood anomaly occurs at \^=3.2° where the 
diffracted order (-1,-1) begins to propagate. This 
prediction corresponds to the sudden rise of the 
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4 19 Reflected power vs. angle of rotation for 
plate A4 at f = 37.5 GHz, 6^=46° 
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Fig. 4.20. Diagram of azimuthal angular regions in which 
spectral orders exist for a crossed grating 
at X/dk1.00, 0."46° 
region boundaries: Vv-68.9, i/i=21.1°, ^ = 3.2° 





(0,0) 
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at X/d=1 .07, 0^32.5° 
region boundaries: ^=67.8°, Vi=22.2°, ^ = 31.5° 
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experimental TM curve at about ^=3° in Fig. 4.19, where the 
appearance of the spectral order (-1,-1) causes a 
re-distribution of incident power among the three existing 
orders (0,0),(-1,0) and (-1,-1). Similarly, we attribute the 
small peak of the experimental TM curve and the dip of the 
experimental TE curve, both at i/^ = 20°, to the (0,-1) Wood 
anomaly at ^=21.1° indicated in Fig. 4.20, where a fourth 
diffracted order appears. In this case, the agreement 
between theory and experiment is very good for both TM and 
TE polarizations. There exist four spectral orders around 
</̂  = 45°, instead of only two orders at ^.=0°. 

The azimuthal angular response of plate A4 at f=35 GHz 
and 6^=32.5° is presented in Fig. 4.21. The general shape of 
the TE curve is somewhat similar to that at f=37.5 GHz and 
0^=46° shown in Fig. 4.19, while for TM polarization, the 
reduction in specular reflection becomes much less. The 
downward peak of TE curve at i//^ = l8° and the upward peak of 
TM curve at \p^ = 20° are caused by the (0,-1) Wood anomaly 
which should occur at ^=22.2° according to the results of 
calculation shown in Fig. 4.22. The experimental discrepancy 
is due to locating the plate. The effect of the (-1,-1) Wood 
anomaly which should exist at 1 ^ = 31.5° is not sor evident in 
the observed curves. 



70 

4.5 PLATE A9 INFLUENCE OF THE RATIO X/d 
Plate A9 has the same apex angle of 90° as that of plate B9, 
but with a different period. Therefore, we group together in 
Fig. 4.23 and Fig. 4.24 four cases of the experimental 
results obtained from these two plates in order to 
investigate the effect of the ratio X/d on the behavior of 
crossed gratings. The reflected power curves as a function 
of incident angle for plate A9, measured at frequencies 37.5 
GHz (X/d=1.00), 35 GHz (X/d=1.07) and 33 GHz (X/d=1.14), are 
presented in Fig. 4.23a, Fig. 4.23b and Fig. 4.24a 
respectively. The curves at X/d=1.37 in Fig. 4.24b are for 
plate B9 and are the same as those in Fig. 4.3b, except that 
the reduction is expressed in terms of dB here for easy 
comparison. From these four pairs of curves we can see that 
the value of the ratio X/d affects the diffraction 
efficiency greatly. The behavior of the grating with 
X/d=1.00 (see Fig. 4.23a) looks quite different from those 
with other values of X/d. At X/d=1.00, the reduction in 
specular reflection for both polarizations fluctuates very 
much as the angle of incidence varies, and the reduction in 
TE polarized specular reflection is the largest among these 
four cases and reaches its maximum 13.8 dB at 0^=8.5°, where 
96% of incident energy is scattered to the spectral order 
(-1,0), noticing that only two spectral orders (0,0) and 
(-1,0) exist in the f u l l range of 0̂  since order (-1,0) is 
cut off at 0^=sin"1(X/d-1)=0°. The maximum reduction for TM 
polarization occurs at 0.=32.5° which is close to the Bragg 



Fig. 4.23. Reflected power vs. angle of incidence for 
plate A9: a. at f=37.5 GHz (X/d=1.00) 
b. at f=35 GHz (X/d=1.07) 



4.24. R e f l e c t e d power v s . a n g l e of i n c i d e n c e f o r 
a. p l a t e A9 a t f=33 GHz (X/d=1.14) 
b. p l a t e B9 a t f=35 GHz (X/d=1.37) 
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angle 0^=sin~1(X/(2d))=30°. On the contrary, there appears a 
minimum reduction at 0^=30° for TE polarization. 

The curves in Fig. 4.23b, Fig. 4.24a and Fig. 4.24b 
looks somewhat similar, and the behavior of a polarizer is 
conserved over a wide range of 0̂ , where the reduction for 
TE polarization is small, and that for TM polarization is 
roughly 10 dB or 90%. From the point of view of a good 
polarizer, the best operating range is found in Fig. 4.24a 
to be lO°^0i<27.5°, where the surface can scatter 90% of the 
TM components of an ar b i t r a r i l y polarized incident wave, 
while TE polarization is totally reflected. In Fig. 4.24b, 
the very small reduction for both TM and TE polarizations 
below 20° is due to the fact that theoretically the (-1,0) 
spectral order w i l l cease to propagate as long as 0̂  is 
smaller than sin"1(X/d-1)=22° where the (-1,0) Wood anomaly 
occurs, and the surface should act as i t were a flat metal 
plane, as discussed in Section 4.2. For X/d=1.07 and 1.14, 
the (-1,0) Wood anomaly should occur at 0̂  = 4° and 7.8° 
respectively, but these two positions are out of our range 
of convenient measurements. The Bragg angles are 32.3°, 
34.6° and 43.4° for the values of X/d 1.07, 1.14 and 1.38 
respectively, their effects are not evident as found in 
Figures 4.23b, 4.24a and b. 

Measured frequency response of plate A9 at 0^=32.5° 
under non-oblique incidence is shown in Fig. 4.25. Within 
the range 33 GHz<f<37.5 GHz, or 1.136<X/d<1, the 
polarizer-like behaviour is s t i l l preserved. This is 
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Fig. 4.26. Reflected power vs. angle of rotation for 
plate A9 at f=35 GHz,0^=35° 
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consistent with the frequency response of plate B9 in Fig. 
4.6, where X/d varies from 1.46 to 1.28. It seems that the 
apex angle of 90° determines the polarizer-like behavior of 
plates A9 and B9. Therefore, the profile of a pyramidal 
crossed grating has great effect on the general behavior of 
the grating, while at some values of X/d, a small change in 
X/d may change the behavior of the grating tremendously (for 
example, from X/d=1.00 to 1.07 in Fig. 4.23). 

The experimental results in Fig. 4.26 display the 
reflected power as a function of angle of rotation for plate 
A9 at f=35 GHz and 0^=35°. The curves are basically 
symmetrical about ^=0° as before. It is interesting that 
when ^ becomes larger than 10°, the reduction for TE 
polarization increases rapidly and reaches 12.8 dB or 95% at 
i//^ = 20°. Then, there appears an abrupt rise in TE curve from 
20° to 25°. We attribute this rise to the (0,-1) Wood 
anomaly which should occur at \^=22.8° according to our 
calculation (see Fig. 4.27). The appearance of the spectral 
order, (0,-1) at this position causes a re-distribution of 
incident energy between three orders (0,0), (-1,0) and 
(0,-1). In Fig. 4.26, the TE curve changes suddenly again at 
i/^ = 25°. This change is due to the appearance of the order 
(-1,-1) at 1^=24°, as shown in Fig. 4.27, where the (-1,-1) 
Wood anomaly should exist. Again, we have very good 
agreement between theoretical predictions and experimental 
results. For TM polarization, the effect of these two Wood 
anomalies is not so obvious. 
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4.6 PLATE B6 INFLUENCE OF APEX ANGLE a 
Together with plate B9, Plate B6 was designed to check with 
some earlier numerical results. Fig. 4.28 shows the measured 
reflected power as a function of angle of incidence for the 
singly-periodic equivalent of plate B6 at f=35 GHz 
(X/d=1.37) When 0̂  is small, there is no reduction in 
specular reflection for both polarizations, and the surface 
behaves as a plane conductor. This is because only the n=0 
order exists when 0^<sin"1(X/d-1)=22°. For angles of 
incidence greater than this limit value, the reduction for 
TE polarization remains small, but for TM polarization, 
there appears a sudden drop between 20° and 25°, which is 
caused by the n=-1 Wood anomaly occured at 0^=22°. Also, a 
minimum relative reflected power of 0.28 is observed at 
0^=42.5° which is close to the Bragg angle 
©^sin- 1 (X/(2d))=43.5°. 

Fig. 4.29 presents the experimental results for the 
corresponding crossed grating plate B6 under non-oblique 
incidence. We can see from the figure that the behavior of 
this doubly-periodic grating is quite different from that of 
it s singly-periodic equivalent. For the incident angle 
greater than twenty degrees, the reduction in TM polarized 
specular reflection becomes much larger than that for the 
classical grating, whereas for TE polarization the reduction 
gets smaller. It is worth notice that the influence of the 
Wood anomaly occured at 0^=22° is .remarkable for TM 
polarization, instead of for TE polarization in the case of 
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4 28. Relative reflected power (or e 0 ) vs. angle o 
incidence for the singly periodic equivalent 
of plate B6 at f = 35 GHz, 



ia 4.29. Relative reflected power (or e 0 0) vs. angle incidence for plate B6 at f=35 GHz, ^=0 
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i t s c l a s s i c a l grating. No maximum reduction i s observed 

around the Bragg angle (43.5°) Instead, there i s a l o c a l 

minimum reduction at 37.5°, around which TE and TM curves 

overlap roughly. The reduction for both polarizations i s 

s t i l l small when the incident angle i s less than 20°, since 

only the specular r e f l e c t i o n exists in t h i s range where the 

r e l a t i v e r e f l e c t e d power should be unity t h e o r e t i c a l l y . The 

discrepancy i s probably due to the experimental errors. Also 

in F i g . 4.29, for comparison with the experimental r e s u l t s , 

we display the calculated curves [16] obtained by using the 

coordinate-transformation method mentioned in Chapter 1. 

Although the behavior of the two curves in some regions 

(e.g., in the range 22°£0 i^62° for TE polarization) i s 

similar to each other, the agreement i s much less than that 

found in the case of plate B9. Noticing that plate B6 with 

apex angle of 60° i s more deeply-grooved, the great 

discrepancy between numerical prediction and experimental 

results i s presumably due to the fact that for deeper 

grooves the numerical re s u l t s converge very slowly, or not 

at a l l [5]. 

The measured frequency response for plate B6 at 

0^=43.5° under non-oblique incidence i s i l l u s t r a t e d in F i g . 

4.30, where no s i g n i f i c a n t reduction in specular r e f l e c t i o n 

i s found. 

F i g . 4.31 shows r e f l e c t e d power curves as a function of 

angle of rotation for plate B6 at f = 35 GHz and 6^=43.5°. 

Although the energy properties of the grating are 



F i g . 4.30. Re f l e c t e d power vs. frequency f o r p l a t e B6 
at 0 ^ 4 3 . 5 ° , ^ = 0 
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Fig. 4.31. Reflected power vs. angle of rotation for 
plate B6 at f*35 GHz, 0^43.5° 
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polarization independent around i /^ = 0 ° , the effects of 
polarization become apparent as i /^ gets greater than 1 5 ° . 

The reduction in TE polarized specular reflection becomes 
smaller and reaches zero at I / N = 4 5 ° , while the reduction in 
TM polarized specular reflection gets larger , reach a 
maximum of 8 . 5 dB at 4 0 ° , and then suddenly decreases to 
zero at ^ = 4 5 ° . Since the incident conditions here (X/d=1.37 

and 6 ^ = 4 3 . 5 ° ) are the same as those in Fig. 4 . 4 for plate 
B 9 , we can use the schematic diagram in Fig. 4 . 5 to explain 
the above behavior of plate B 6 . As discussed before for 
plate B 9 , the diffracted order ( - 1 , 0 ) is cut off at ^ = 4 3 . 9 ° 

according to the calculation, and only specular reflection 
(the order ( 0 , 0 ) ) for both polarizations exists in a very 
narrow range of centered by \ J ^ = 4 5 ° , where the crossed 
grating should behave like a perfectly conducting fl a t 
surface even with such a noticeable roughness. Hence, we 
attribute the sharp rise of TM polarized reflected power 
from 4 0 ° to 4 5 ° in Fig. 4 . 3 1 to a sudden total energy 
transfer from the order ( - 1 , 0 ) to the order ( 0 , 0 ) , and the 
experimental result that no reduction for both polarizations 
is observed at i/^ = 4 5 ° in Fig. 4 . 3 1 is exactly what the 
theory predicts. 

The azimuthal angular responses of plate B 6 in Fig. 
4 . 3 1 and plate B 9 in Fig. 4 . 4 give us good examples to look 
into the influences of the apex angle of pyramidal grating 
and the ratio X/d. It seems that the apex angle has an 
important effect on the general behavior of the grating, 
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whereas the value of X/d defines some c r i t i c a l points, for 
example, the positions of Wood anomalies, where remarkable 
changes in the shape of the curves often occur. Therefore, 
both of apex angle a and ratio X/d determine the properties 
of the grating at a particular incident condition. 

4.7 PLATE A6 A BLAZED CROSSED GRATING SURFACE FOR TE 
POLARIZATION 

Since plate A6 and plate B6 have the same profile with an 
apex angle of 60°, we collect their experimental curves 
together in Figures 4.32 and 4.33 to see how the behavior of 
the grating changes as the value of X/d varies. Figures 
4.32a, 4.32b and 4.33a are from the measurements of plate A6 
at frequencies 37.5 GHz (X/d=1.00), 35 GHz (X/d=1.07) and 33 
GHz (X/d=1.14), respectively. Fig. 4.33b is for plate B6 and 
is the same as Fig. 4.29, except that the reduction is 
expressed in terms of dB here. Again, the experimental 
results at X/d=1.00 in Fig. 4.32a looks most interesting. In 
Fig. 4.32a, although the reduction for both polarization is 
weak when the incident angle is small, i t becomes larger 
after 9^ is greater than 40°. The reduction in TE polarized 
specular reflection reaches a maximum of 17.2 dB at 
0^=77.5°, where 98% of the incident energy is diffracted 
into a single order (-1,0), the direction of which can be 
determined as 8i(-1,0)=1.4° and ^=180° by Equations (2.13) 
and (2.14). In the point of view of elimination of specular 
reflection, this is the best result for TE polarization 
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4-32- zviutt i - f v % - n n » o , 
b. at f=35 GHz (X/d=1.07) 
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Fig. 4.33. Reflected power vs. angle of incidence 
a. for plate A 6 , at f«33 GHz (X/d=1.14) 
b. for plate B 6 , at f«35 GHz (X/d=1.37) 
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which we got from a l l the crossed grating plates 
investigated. Also in Fig. 4.32a, the intersection of TM 
curve with TE curve at 0^=64° provides an equal reduction of 
6.6 dB for both polarizations. At this particular incident 
angle, plate A6 scatters about 80% of the energy of an 
arb i t r a r i l y polarized incident wave into a single order 
(-1,0). This is the best performance achieved with regard to 
equal reduction for both polarizations. The behavior curves 
of this grating at X/d=1.07 and X/d=1.14 are alike as seen 
in Fig. 4.32b and Fig. 4.33a. In both cases, the reduction 
in TM polarized specular reflection is always less than that 
for TE polarization. The behavior of the grating with a apex 
angle of 60° at X/d=1.37 has been discussed in last section. 
The drop of reflected power for TM polarization in Fig. 
4.33b is due to the (-1,0) Wood anomaly. The Bragg angles 
are 30°, 32.3°, 34.6° and 43.4° for X/d=1.00, 1.07, 1.14 and 
1.37 respectively. As observed in Fig. 4.32 and Fig. 4.33, 
no maximum reduction occurs at the Bragg angle in these four 
cases. 

The reflected power as a function of angle of rotation 
for plate A6 at f=35 GHz and 0^35° is illustrated in Fig. 
4.34. In order to analyze the shape of the curves, we can 
apply the calculated results presented in Fig. 4.27 to this 
case, because of the same incident conditions here (X/d=1.07 
and 0^=35°) as those in Fig. 4.26 for plate A9. The most 
remarkable feature in Fig. 4.34 is a very steep falling down 
of reflected power for TM polarization from 20° to 22.5°. 



89 



90 

According to the calculation, this is due to the appearance 
of the diffracted order (0,-1) at ̂ =22.8°. where the (0,-1) 
Wood anomaly occurs. The (-1,-1) Wood anomaly at \/>̂  = 24°, 
which is close to the (0,-1) Wood anomaly, causes the TM 
polarized reflected power to increase somewhat from 22.5° to 
30°. For TE polarization, the influence of Wood anomalies is 
not obvious. 

It is interesting to take a comparison between the 
azimuthal angular behavior of plate A6 and plate A9 having 
the same period but different apex angle. In the case of 
plate A6 (see Fig. 4.34), the effect of Wood anomalies is 
much more apparent for TM polarization than that for TE 
polarization, whereas in the case of plate A9 (see Fig. 
4.26) the reverse is true. In both cases, the positions 
where Wood anomalies occur are very close to what the theory 
predicts. From the comparison, we can see again, as we have 
discussed for plates B6 and B9 in the end of last section, 
that the profile of the grating (that i s , the apex angle for 
pyramidal grating) affects the general behavior of grating 
very much, while the grating period (more accurately, the 
ratio X/d) determines the positions of Wood anomalies, where 
great change in grating behavior always happens. 



Chapter 5 
EXPERIMENTAL RESULTS OF CROSSED GRATINGS WITH HEMISPHERICAL 

CAVITIES 

5.1 INTRODUCTION 
This chapter presents the results of the experiments carried 
out on crossed gratings with hemispherical cavities which 
are regularly spaced along two orthogonal directions on a 
conducting plane surface. Fig. 5.1 illustrates the profile 
of this crossed grating, and gives the dimensions of such 
two plates investigated. Each surface consisted of 16x16 
identical hemispherical cavities which were hollowed on a 
208x208 mm aluminium plate with thickness of 20 mm. The 
crossed gratings have the same period, but different cavity 
radius. It is worth notice that the period 13 mm is greater 
than the wavelength within our experimental range (8 mm to 
9.09 mm). For example, at f=35 GHz, the ratio X/d is 0.66. 
According to the discussion in Section 2.3, in the case of 
d>X, generally more than three diffracted orders are 
excited. For instance, i f either of these two crossed 
gratings with hemispherical cavities is illuminated normally 
(6^=0°) by a incident plane wave with X=8.57 mm (f = 35 GHz), 
there w i l l exist as many as nine diffracted orders (see the 
calculation in the end of Section 2.3). Therefore, blazing 
to a single spectral order is not possible for these two 
crossed gratings in our measurements, although elimination 
of specular reflection is possible. This is quite different 
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PLATE DIMENSIONS 
d (nun) R (mm) 

R4 13 4 

R6 13 6 

HEMISPHERICAL 
CAVITIES 

16x16 

1 6x1 6 

Fig. 5.1. The profile of a crossed grating with 
hemispherical cavities, and dimensions for 
such two plates investigated 
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from our measurements on the pyramidal gratings. In the 
latter case, the periods were chosen to be in the range of 
X/2<d£X and hence blazing to a single order (-1,0) is 
possible. 

These two gratings were made by Laboratoire de 
Radioelectricite, Universite de Provence, and were specially 
designed for comparison with^newTy^\ork [22] for which some 
numerical results are available for the simple case of 
normal incidence. The numerical work for the non-normal 
incidence case is being performed [56] and our experimental 
study on this case provides the opportunity for a check on 
the r e l i a b i l i t y of the theory. Since these two plates were 
available in our laboratory for a short period of five days, 
only limited measurements had been taken. 

5.2 PLATE R4 
The measure reflected power as a function of 8^ for plate R4 
under non-oblique incidence at f=35 GHz (X/d=0.66) is 
presented in Fig. 5.2. It is interesting to see that when 
the incident angle is less than 30°, the reduction in 
specular reflection for both polarizations is greater than 5 
dB. It was reported [22] that the efficiency for both 
polarizations in the order (0,0) for a infin i t e crossed 
grating of this profile under normal incidence (8^=0°) has a 
value of 0.08 (or -10.8 dB in terms of reduction), which is 
indicated as Point P in Fig. 5.2. This is the only available 
numerical result for this grating. We could not take 
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Fig. 5.2. Measured reflected power vs. 0. for plate R4 
at f = 35 GHz, ^=0; 1 

and calculated angular regions of ^ for a l l 
existing diffracted orders (on top) 
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measurements near normal incidence as mentioned in Chapter 
3. However, from Fig. 5.2, we can s t i l l observe that this 
calculated result agrees quite well with the tendency of 
both TM and TE curves when the incident angle becomes 
smaller and approaches 0°. This more than 10 dB reduction in 
specular reflection for normal incidence means that 90% of 
the incident energy of an ar b i t r a r i l y polarized plane wave 
is scattered into the other eight spectral orders and only 
10% of that is specularly reflected. 

In Fig. 5.2, on top of the experimental data, we also 
display schematically the results of our calculation by 
using Rayleigh wavelength equation (2.10), which indicate 
the regions where various spectral orders can exist. One can 
see that there are at least seven spectral orders at any 
position of 0̂ . Four Wood anomalies exist within our range 
of measurement (1O o£0 i^75°). The (1,0) Wood anomaly at 
0^=20° (calculated value) probably cause the small dip in 
the TM curve at 0^=22.5°. The effects of others are not 
evident. One w i l l see later that the effects of Wood anomaly 
on the behavior of these two crossed grating with 
hemispherical cavities are less apparent, which probably due 
to the multi-diffracted-order nature when the grating period 
is greater than the incident wavelength. 

Fig. 5.3 shows the experimental results for the same 
plate at a different frequency 33 GHz (X/d=0.70). A 
frequency deviation of about 6% from 35 GHz does not change 
the behavior of the grating very much. The reduction for 
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Pig. 5.3 Measured reflected power vs. 0. for plate R4 
at f=33 GHz, ̂ =0; 

and calculated angular regions of ̂  for a l l existing 
diffracted orders (on top) ' 
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both polarizations is s t i l l greater than 5 dB when 0̂  is 
smaller than 30°, and i t also seems that the reduction in 
specular reflection for both polarizations at 0̂  = 0° would be 
more than 10 dB according to the tendency of both TM and TE 
curves, as seen in Fig. 5.3. This is consistent with the 
results shown in Fig. 5.2. Small changes in gradient of TE 
and TM curves are observed in Fig. 5.3, some of which we 
attribute to the corresponding Wood anomalies, the 
calculated positions of which are shown on top of the 
experimental curves. For example, a small peak in 
experimental TM curve at 0^=17.5° is probably due to the 
(1,0) Wood anomaly at the same angle as calculated, and a 
small change in gradient of TE curve at 0^=45° corresponds 
to the disappearance of the spectral orders (0,±1) at 
-0^45.5°. 

Fig. 5.4 presents the reflected power as a function of 
angle of rotation (^) for plate R4 at f=35 GHz and 0^10°. 
The experimental curves are roughly symmetrical about ^.=0°. 
A remarkable feature of the behavior in this case is that 
within the f u l l range of , the reduction for both 
polarizations is greater than 5 dB. Again, the diagram 
showing the calculated angular region of \(/̂  for a l l existing 
diffracted orders is displaced directly on top of the 
experimental curves for easy comparison. Only the results in 
the range of 0°<\l/^<^5° are shown because of the symmetry of 
the behavior curves. According to the calculation, seven 
spectral order exist in the range of 0°^\//.^45o and a 8th 
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Fig. 5.4. Measured reflected power vs. for plate R4 
at f = 35 GHz, 6^10) 

and calculated angular regions of -̂ for a l l existing 
diffracted orders (on top) 
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order (1,-1) begins to propagate at ^=27.5° which 
corresponds to a smooth change of the experimental TE curve 
near this position. 

The azimuthal angular responses of plate R4 at the same 
frequency of 35 GHz, but at a different fixed 8^ of 30° are 
shown in Fig. 5.5. While the curves here look more 
complicated than those in Fig. 5.4, they have a common 
feature that the reduction in specular reflection for both 
polarizations is about 5 dB or more. Relating this with the 
fact shown in Fig. 5.2 that the relative reflected power is 
predicted 8% (or -10.8 dB) for normal incidence (0^=0°) and 
keeps lower than 32% (or -5 dB) when 8^ is smaller than 30° 
under non-oblique incidence (^ = 0°). We can conclude 
reasonably that this crossed grating w i l l reflect specularly 
at most 32% (-5 dB) of the incident energy of an arbitrarily 
polarized plane wave whenever the incident angle 8^ from the 
normal of the surface plane is less than 30° (̂». is 
arbitrary). This anti-reflection property of plate R4 around 
normal incidence is of great interest to the proposed 
application on solar energy absorption where non-tracking 
collectors are used. 

On top of the experimental curves in Fig. 5.5, the 
calculation results show that four Wood anomalies occur in 
the range of 0°<\J/^<45°, which are responsible for the 
complication of the curves. The (-1,1) Wood anomaly at 
1 ^ = 37.5° accounts for the reduction peak at \//̂  = 37° for TM 
polarization, while the very close (-2,0) and (-2,-1) Wood 



Fig. 5.5. Measured reflected power vs. \b. for D l a t e R4 
at f = 35 GHz, ^ = 30°; 1 

and calculated angular regions of for a l l existina diffracted orders (on top) existing 
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anomalies at \^=41° and ^ = 41.25°, respectively, correspond 
to the reduction peak at ^=44° for TE polarization. The 
discrepancy is due to positioning the plate. 

5.3 PLATE R6 
Plate R6 has the same period as that of plate R4, but a 
larger cavity radius of 6 mm. In Figures 5.6 and 5.7, we 
present the variation of reflected power with the incident 
angle 8^ for plate R6 under non-oblique incidence at f=35 
GHz (X/d=0.66) and f=33 GHz (X/d=0.70) respectively. The 
behavior curves in both cases are remarkably different from 
those for plate R4 in Figures 5.2 and 5.3. Thus, we find 
experimentally that the cavity depth R affects the shape of 
the curves greatly. 

The only available numerical result for plate R6 is 
indicated as point P in Fig. 5.6, where the relative 
reflected power for both polarizations in the case of normal 
incidence (0^=0°) is 0.8 (or -0.97 dB by means of 
reduction). This value corresponds quite well with the 
tendency of experimental TE and TM curves shown in Fig. 5.6. 

The largest reduction in specular reflection for plates 
R4 and R6 is 20.1 dB as found at ^=76° for TM polarization 
in Fig. 5.7, where 99% of the incident TM-polarized energy 
is scattered into other seven spectral orders. This shows 
that essential elimination of specular reflection for TM 
polarization can be achieved by using this kind of crossed 
grating, although the available angular range is very narrow 
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here. 
By using the calculated results shown schematically on 

top of Figures 5.6 and 5.7, we can investigate the effects 
of Wood anomalies. The (0,±1) and (-2,±1) Wood anomalies can 
account for the changes of the TM curve at the corresponging 
positions in Figures 5.6 and 5.7. The influence of the other 
Wood anomalies are not evident here. The two reduction peaks 
for TM polarization at 0^=65° and 0^=75° in Fig. 5.6 are not 
caused by Wood anomalies, since two similar peaks can be 
found at 0^67.5° and 0^76° in Fig. 5.7 and there is no 
Wood anomaly at a l l in that range of 0^. The Bragg angle 
effect is not observed either in Fig. 5.6 or in Fig. 5.7 
(the Bragg angles are 19.3° for X/d=0.66 and 20.5° for 
X/d=0.70). 

Fig. 5.8 shows the measured reflected power as a 
function of angle of rotation (^) for plate R6 at f=35 GHz 
and 0^=10°. It is observed that the reduction in TE 
polarized specular reflection is always somewhat greater 
than that for TM polarization in this case. This is very 
different from the behavior of plate R4 under the same 
incident condition, shown in Fig. 5.4. Again, we can see 
that the cavity depth R has an important influence on the 
behavior of this kind of crossed gratings. 
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Chapter 6 
ERROR ANALYSIS 

There are mainly two kinds of errors: experimental 
errors and errors from the non-ideal nature of the surface. 
Experimental errors occur in positioning the plate, 
readings, non-plane wave illumination, and site reflections. 
The surface is non-ideal from the fact that i t has f i n i t e 
conductivity, f i n i t e size, and milling errors in groove 
dimensions. 

The error in positioning the plate accounts for the 
shift of symmetry of the measured azimuthal angular response 
curves with respect to the predicted symmetry about 1/̂  = 0. 
The non-plane wave illumination has l i t t l e influence on the 
performance of grating as shown by J u l l and Ebbeson [ 1 0 ] . 
The site reflections are believed to cause the oscillatory 
behavior of some of the experimental curves and they are a 
large source of experimental error. 

By using microwave radiation in the range of 35 GHz, 
a l l groove dimensions which had been designed in the range 
of the incident wavelength were large enough to be milled to 
a sufficient accuracy, and also we can work with 
near-perfectly conducting models (it was reported [20] that 
the model of in f i n i t e conductivity for metal gratings is 
very well adapted even when the wavelength exceeds 4 am). 
Hence, the effects of fin i t e conductivity, surface roughness 
and oxide layers which are the largest source of error in 
the optical region [ 1 ] , are negligible in this range of 
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frequency. 
It is also believed that the f i n i t e size of grating 

only affects the performance of grating slightly. The 
measurements on some profiles of singly periodic gratings in 
the microwave region conducted by Deleuil [1,20] showed 
that, as soon as the number of corrugations is greater than 
about twelve, gratings behave as i f they were in f i n i t e l y 
wide. Further numerical analysis by J u l l and Hui [14] shows 
that for high efficiency diffraction gratings, as the 
grating size decreases, the diffracted beam broadens but the 
diffraction efficiency can remain high until the number of 
corrugations is very small. For instance, Facq's numerical 
results [7] for TM-polarized scatter from fin i t e 
near-optimum rectangular-groove surfaces at 0^=30° show a 
reduction in diffraction efficiency from 98.8% for an 
infi n i t e surface to 97.4% for 10 corrugations and 96% for 5 
. Therefore very few corrugations are needed for effective 
reduction of specular reflection. The above conclusion is 
for singly periodic gratings, but i t seems quite reasonable 
to believe that the situation for crossed gratings is 
similar to that for classical gratings, and for the nine 
crossed grating plates investigated experimentally, there 
must be enough corrugations for grating-like behavior. 

It is worth while pointing out that there is another 
kind of experimental error. In our measurements i t had been 
actually assumed that when the incident wave was 
TE-polarized (say), the specularly reflected wave would be 
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s t i l l totally TE-polarized. Therefore the orientation of the 
receiving horn was always the same as that of the 
transmitting horn when the reflected power was measured. 
This assumption is true for classical gratings in the case 
of non-oblique incidence (^=0°). For crossed gratings, 
there is s t i l l no theoretical analysis on this problem. 

In order to investigate the above assumption, we took 
some measurements on plate C4: by holding both horns 
vertically-oriented, we measured the power of TE component 
of the reflected wave when the incident wave is 
TE-polarized; then by changing the receiving horn from 
vertical to horizontal, we measured the power of TM 
component of the reflected wave. The results, presented in 
Fig. 6.1, show that when the incident wave is TE-polarized, 
the power of the TM component of the reflected wave is at 
most 5% (-13 dB) of that of the TE component, either in the 
case of non-oblique incidence (see Fig. 6.1a) or in the case 
of oblique incidence ( see Fig. 6.1b). One similar 
measurement was also taken on Plate R4 in the case of 
0^=30°, ^=-15°, and f=35 GHz. The measured relative power 
of TM component of the reflected wave is 2.2% (-16.5 dB) of 
that of the TE component when the incident wave is 
TE-polarized. 

From the above sample measurements, i t seems reasonable 
that in general, when the incident wave is TE-polarized, the 
measured power of TE component of the reflected wave can 
approximate the total reflected power. It is believed that a 
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Fig. 6.1. Relative power PTM of TM component of the 
reflected wave when a TE-polarized wave is 
incident on plate C4 
(that of TE component is 0 dB) 
a. non-oblique case (^=0) 
b. oblique case ( 9; =38° f ixed) 
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similar approximation is valid for a TM incident wave. In 
other words, the crossed-polarized reflected power can be 
neglected when compared with the co-polarized reflected 
power. Hence, our measurements on reflected power from 
crossed gratings seem within acceptable accuracy as far as 
the above problem is concerned. 



Chapter 7 
CONCLUSIONS 

To our knowledge, this work is the f i r s t systematic 
experimental investigation of the scattering of an 
electromagnetic wave by a conducting pyramidal crossed 
grating, concentrated on the case of a higher ratio of 
groove depth to period of grating, for which numerical 
results are s t i l l very d i f f i c u l t to obtain. Some 
measurements were also taken on the conducting crossed 
grating with hemispherical cavities. Summarized below are 
the conclusions drawn: 

1. It is demonstrated experimentally for the f i r s t time 
that elimination of specular reflection from a 
conducting pyramidal surface can be achieved. The best 
performance is that 99.94% of the power of a 
TM-polarized incident wave can be scattered into a 
single spectral order (-1,0) by plate A4. For TE 
polarization, the best result is a reduction of 98%, 
achieved by plate A6. The same plate can also diffract 
at the other incident angle 80% of the energyof an 
ar b i t r a r i l y polarized incident wave, and this is the 
best result from the point of view of equal reduction 
for both polarizations. 

The above results are less satisfactory i f compared 
with those obtained from the two-dimensional gratings 
with rectangular grooves [11]. However, the 
pos s i b i l i t i e s of obtaining better performances of 
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pyramidal crossed gratings s t i l l exist since our 
investigation is just the beginning. 

2. It is worth noting that very interesting phenomena occur 
when the incident wavelength is equal to the period of 
the pyramidal crossed grating, and in this case of X/d=1 
our three best results just mentioned were obtained. We 
suggest that further experimental and theoretical 
investigation for crossed gratings with different 
profile (for example, crossed gratings with 
hemispherical cavities) be conducted under the condition 
of X/d=1. 

3. For situation in which the angle of incidence is near 
grazing (0^80°), reduction in TM-polarized specular 
reflection can be as large as 99.3%, which is obtained 
by plate B9. This is a desirable property for some 
applications. 

4. The polarizer-like behavior of some pyramidal crossed 
gratings is observed. The best performance is that 90% 
of the TM components of an arbi t r a r i l y polarized 
incident wave can be scattered by a pyramidal surface 
(plate A9), while TE polarization is completely 
reflected. 

5. It is shown experimentally that the product formula 
linking shallow crossed and classical gratings is not 
valid for deeply-grooved crossed gratings, and in 
general the reflection free properties of a 
singly-periodic surface cannot carry over to its 
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doubly-periodic equivalent. 
The Wood anomaly often causes remarkable changes in the 
shape of behavior curves of grating, the position of 
which is determined by the values of incident angles 
(both 0£ and yp^), period of grating and incident 
wavelength (or the ratio X/d). The experimental points 
are in good agreement with the theoretical predictions 
concerning the Wood anomalies. 

For classical gratings with period in the range X/2<d^X, 
the largest reduction in specular reflection in the 
non-oblique case (\^=0°) always occurs at the Bragg 
angle 0^=sin~ 1(X/(2a)). However, this Bragg angle effect 
is not evident for crossed gratings. 
Because of the square-symmetry of the pyramidal grating, 
i t was originally thought that this kind of crossed 
grating was an interesting profile for the reduction of 
specular reflection when the direction of incidence is 
arbitrary. However, our measured azimuthal angular 
responses have shown that the reduction in specular 
reflection also depends on the value of \[/̂  greatly. It 
seems that an effective wide, range of i//^ where the 
specular reflection is eliminated is at least d i f f i c u l t 
to find, i f not impossible. 
The major parameter of the grating profile (the apex 
angle a in the case of pyramidal crossed gratings, the 
cavity depth R in the case of crossed gratings with 
hemispherical cavities) has an important effect on the 
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general behavior of grating, and the value of the ratio 
X/d defines the c r i t i c a l positions of Wood anomalies. 
Thus, the grating profile and the ratio X/d both 
determine the properties of grating at a particular 
incident condition. 

10. Our experimental results prove indirectly the 
theoretical prediction that a crossed grating with 
hemispherical cavities (plate R4) can eliminate 90% of 
specular reflection for an arbitrarily polarized 
incident wave in the case of normal incidence, and i t is 
also observed that this plate can s t i l l keep cancelling 
at least 68% of specular reflection when the incident 
wave is deviated from the normal of surface by an angle 
as large as 30°. This is very interesting for the study 
of solar energy captation with a roughened surface. 

11. It is demonstrated experimentally that a crossed grating 
with hemispherical cavities (plate R6) can eliminate 99% 
of TM polarized specular reflection, though the 
effective angular range is very narrow. 
In general, our experimental results agree with the 

theoretical predictions, and provide useful information for 
an understanding of the behavior of these two kinds of 
crossed gratings. This may assist and give new impetus to 
further numerical and experimental investigations. 



APPENDIX: NUMERICAL RESULTS FOR PERFECTLY CONDUCTING STRIPS  
OF SIX SYMMETRICAL TRIANGULAR CORRUGATIONS 

We obtained from a computer program by Facq [17] numerical 
results for perfectly conducting strips of six symmetrical 
triangular corrugations, with the same profiles as those of 
the classical grating plates investigated experimentally. A 
comparison between numerical and experimental results is 
presented in Fig. A.1. After taking into account the effect 
of the larger size of a experimental grating of 30-39 
grooves, which increases the diffraction efficiency, the 
correspondence between the calculated and measured values is 
good. There are only two exceptions where the measured value 
is slightly less than the calculated value. 

Also obtained were the calculated power patterns which 
are exhibited in Figures A.2-A.6. Since a grating is f i n i t e 
there is always a forward-scatter lobe in 9O°<0<18O°. In 
Figures A.5 and A.6 there is also a backscatter lobe but 
essentially no specular reflection, indicating near total 
diffraction to the n=-l spectral order. 
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ECHEIETTE 

STRIP d a 

(mm) (GHz) 
DIFFRACTION EFFICIENCY £ - 1 

NUMERICAL EXPERIMENTAL 

TM TE TM TE 

A4 8.00 45° 35 32.4° .8488 .7281 .975 .620 

B6 6.23 60° 35 43.5° . 1962 .6566 .073 .718 

B9 6.23 90° 35 43.5° .9605 .3603 .99998 .553 

C4 6.9 44° 35 38. 1° .9526 .9704 .99997 .9611 

C4 6.9 44° 33.75 40.0° .9701 .9489 .9967 .9946 

Fig. A.1. Comparison between numerical results for 
perfectly conducting strips of six 
symmetrical triangular corrugations 
and experimental results for the 
corresponding triangular grating plates 
of 30-39 grooves with the same profile 
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