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Abstract

This is an experimental thesis describing the development
of a \monitor for the detection of epileptic activity in the
human EEG. The monitor, built around an Apple II  Plus
microcomputer system, has the capability for real-time detection
of seizure activity and interictal transients (spikes and sharp
waves or SSW) on 16 EEG channels. A dynamic graphics display
symbolically presents to the user a running sum of the SSW
detected during a monitoring session. A report is produced at
the end of the session which 1includes a summary of SSW
detections and the on—iine phase reversal processing of the
transients. An automatic seizure detection by the monitor will
trigger the marking of the location of seizure records on

magnetic EEG recording devices.

Of significance 1is a theoretical explanation which shows
why a simple slope detector performs as well as a complicated
parametric transient detector. The real-time capability of the
slope detector makes it superior in practical applications.
Statistical detection theory 1is applied to the problem of EEG
epileptic transient detection and the computer model which
calculates a theoretical performance factor for detectors is
described. Simple algorithms for selecting epileptic transients
based on morphological considerations and methods of artifact

rejection are presented.

The monitor was evaluated in a clinical seizure

investigation unit at the University of British Columbia.
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Clinically significant seizures were detected over a six month
period with a very high success rate. In the cases of patients
with focal epilepsies, predictions of focus locations by the

device agreed with the neurological diagnoses of the patients.
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I, INTRODUCTION

According to the U.S. National Institute of Neurological
and Communicative Diseases and Stroke, an estimated 2% of the
population suffers from some form of epilepsy.‘3%’ 1In Canada,
this represents about 1/2 million people or close to 50,000 in
British Columbia. Most of these people are able to lead
productive lives with effective use of medication. For about
20%, however, their.condition requires they be given special
care, often leading to institutionalization. Fortunately, some
of these individuals are candidates for a special curative
surgery which can help them to lead normal lives. Before such
surgery can be performed an in-depth assessment must ‘be

performed requiring extensive patient monitoring.

Monitoring patients with epilepsy 1is the task of a new
Seizure Investigation Unit, recently installed in the Acute Care
Hospital at the Health Sciences Centef of the ‘University of
British Columbia (see figure 1). Patients admitted to the unit
are those who have not responded well to medication and for whom
surgery is indicated. The seizure unit at the UBC hospital has
the capability for monitoring two patients concurrently, around
the clock. Patients' movements are monitored by video cameras
and electrical signals recorded at the scalp
(electroencephalogram or EEG) are registered on special paper
chart recorders for viewing {( figure 2). Both video and EEG

signals are stored on magnetic tape( figure 3).



A neurological diagnosis follows from a study of the wvideo
tapes of patient movement during seizure, as well as from EEG
tracings of seizure and between-seizure (or interictal)
activity. As a prelude to surgery, a goal of the diagnosis is
to determine if an epileptic focus exists, howlmany there are,

and where they are.

The recording of seizure or interictal activity is of no
use if the medical staff does not know that it is there. Thus,
patient monitoring requires intelligent supervision for it to be
effective. Most interictal activity goes unnoticed because of
the impossibility of reviewing all data. Many seizures are
missed because no one is available to make a note of them. The
patient has a special push button . to press when a seizure
occurs. This causes a 10hz signal to be recorded along with the
EEG so that when the tape is rewound at high speed there is an
audible tone at the location on the tape where the seizure
occurred and seizuré records are easily obtained.
Unfortunately, seizures are often missed because the patient

fails to press the (seizure) button.

We are developing a microprocessor-based EEG processor for
use in the seizure unit. It detects seizures automatically from
patiént EEG and signals their occurrence. A computer seizure
detection causes the recording tape to be marked as though the
seizure button had been pressed. Soon, with the completion of a
new video tape machine controller being developed at UBC, when

the computer detects a seizure, 1its video record will be



automatically transferred to a single master tape for easy

viewing at a later time.

The EEG processor analyses activity between seizures to
detect epileptiform transients known as spikes and sharp waves
(SSW's). Statistics of SSW detections are kept and reported at
the end of a recording session. The automatic SSW detection can
be used to control the EEG recording devices to produce a

compressed interictal record.
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Figure 1 Seizure Investigation Unit. - Patient movement is
monitored by a video camera(a) and mixed(b) with the video image
of the EEG recording(c) to obtain a split screen image(d). The
image is then taped(e). Sixteen channels of EEG is recorded(f),
multiplexed, and sent via telemetry to the Seizure Unit(g). The
multiplexed signal 1is stored on audio tape(h). A second
patient(i) can be monitored at the same time.



Figqure 2 EEG Chart Recorder. A hardcopy of the EEG is obtained
from a Nihon-Kohden chart recorder.



Figure 3 Tape Recording Equipment. Twenty-four hours of EEG is
saved using TEAC audio recorders., The last 4 hours of the

patient video record is stored on Panasonic video tape
recorders.



IT. HUMAN EEG AND ITS ANALYSIS

2.1 Origins And Characteristics Of EEG

As early as 1875 Caton discovered that the brain produced
electrical activity but the first recorded measurement of
potentials at the human scalp was by Berger in 1924, These
potentials have since been known as electroencephalograms (EEG)
as opposed to electrocortiograms (ECoG) which are recorded at

the cortical surface.

EEG potentials originate from a summation of the individual
neurons of the brain.!3®’ Intracellular recordings indicate that
the source can be traced to graded synaptic potentials generated
by the pyramidal cells of the cerebral cortex.!®) The pofentials
are attenuated and diffused when conducted through the
cerebrospinal fluid, the skull, and the scalp. They are
normally less than 100 microvolts in amplitude but may be as

high as 1 millivolt.

Scalp potentials are amplified by differential amplifiers
with 1input impedances of 1 to 10 megohms and Common Mode
Rejection Ratio in excess of 500 to 1.¢7’ Single order 1low and
high pass filters (corner frequencies at 70hz and 1hz) are
inserted to reduce artifact. Electrodes are placed according to
the international 10-20 system (figures 4a and 4b). Recording
may be either bipolar (difference of adjacent electrodes) or

unipolar (with respect to a reference lead placed on the nose or



occipital bone), although, bipolar recording is favored for

its
lower sensitivity to

noise, Many bipolar

interconnection
montages (figure 5) are possible,

Figure 4 (a)EEG electodes (b)International 10-20 system.



Figure 5 Typical Bipolar Recording Montages.
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The EEG is 1influenced by several factors: age, mental
state, region of brain, heredity, disease or drugs, technical
and biological disturbances.‘'®’ Traditionally, the EEG has been
described in terms of characteristic rhythms (alpha, beta,
delta, theta - figqure 6), transients (spikes, sharp waves -
figure 7), and artifactual content (figure 8). Scientists have
been able to correlate certain brain abnormalities and states of
conciousness with these signal characteristics. Various stages
of sleep, for example, are defined partially by dominant EEG
rhythms. It 1is possible in many cases to distinguish between
normal and abnormal EEG. The exact physiological mechanisms

which generate patterns, however, is not known.

A typical EEG recording session will last for half an hour.
The environment 1is designed to minimize 1interference. As
movement usually causes the greatest problems, the patient is
asked to remain still for the entire period. The session may
include several periods . of eyes open and closed,
hyperventilation, or photic stimulation. It may also be
necessary to study subjects over prolonged periods, with such
sessions lasting days or weeks. The patient has much more
freedom to move about (thanks to the introduction of telemetry
equipment), thus, EEG recorded during these sessions 1is

corrupted to a large degree by artifact.
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Figure 6 EEG rhythms; (a)alpha, (b)beta, (c)delta,o’ (c)theta.
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Figure 7 EEG transients (a)spikes, (b)sharp waves, (c)spike and
wave.

Figure 8 EEG artifact.
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2.2 Epilepsy

Epilepsy first came to be known by its clinical
manifestations. Muscular spasms, disorientation, loss of
vision, aggressive or violent behavior are all possible signs.
Only with the introduction of electroencephalography as a
clinical science did epilepsy also begin to become characterized
electrographically. Electrically, epilepsy is characterized by
"synchronous discharges of 1large groups of neurons, often

including the whole brain",(38)

There are many manifestations of seizure activity in the
EEG including: desynchronization of EEG and decrease 1in
amplitude; moderate or high.amplitude rhythmic activity 1in the
range of 1 to 30 hz, hiéh amplitude EMG, or irregular paroxysmal
activity. Petit mal seizures are identified by a feature known
as spike and wave (figure 7c). In severe grand mal seizureé EEG
wavéformé are characterized by high amplitude éctivity over the
whole o©of the cortex. Seizure activity may be contained in one
hemisphere of the brain - it may be in both. Some smaller
seizures may exhibit no obvious <change 1in the EEG at all.
Another type of seizure (subclinical or electrographic) 1is

characterized solely by EEG manifestation.

There 1s also evidence of intermittent, non-periodic,
between seizure (interictal) activity. This takes the form of
sharp transients known as spikes or sharp waves (SSW). The

morphology of interictal activity is used as a diagnostic tool,
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particularly for locating epileptié focii, Unfortunately, there
is no simple definition of SSW's. Neurologists often differ as
to whether or not an individual waveform 1is an SSW(2’> and
decisions are based more on experience and intuition than the

application of fixed rules.

Some workers!® '°’ have attempted to quantify SSW according
to standard parameters; amplitude, slope, and duration.
Others¢® 21 have examined shape characteristics such as
asymmetry between rising and falling phases of the SSW.
Duration (spikes - 80 milliseconds, sharp waves - 200
milliseconds) is an important distinguishing feature, however,
sharpness 1is the principle one. The sharpness necessary to
define SSW depends on the background "activity, although some

workers(2°’ have attempted to define it in absolute terms.

2.3 Automation Of EEG Evaluation

Electroencephalography was slower to take advantage of
automated techniques than other clinical sciences but in the
last decade and a half there has been a large increase of work
in this area. No doubt, the availability of integrated circuits
and minicomputers was the key factor spurring on the automation
of clinical electroencephalography. The goal of fully
automating routine clinical EEG examinations has, however, not
been realized. Two factors are important: lack of knowledge of

EEG and its origins and the lack of necessary computing power.
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The 1impact of microprocessors and VLSI technology on the latter

problem remains to be seen.

Automated EEG analysis has focused on several areas:(8) (1)
Studying the range of EEG variation 1in terms of standard
parameters and development of standardized data bases,
(2) Frequency analysis of background activity, (3) Detection of
clinically significant transient activity, (4) Development of
simple, meaningful displays, and (5) Classification of standard

patterns and feature extraction.

Compdter analysis of EEG offers the potential f&r aid in
(1) freeing the specialist from tedious, time consuming tasks of
classification and (2) gathering information which was hitherto
unavailable. The latter may involve (a) applying standard
analysis to very long recordings to 1increase the amount of
information?'2) or (b) defining new features and parameters
invisible to the human eye to increase the types of information

available.

2.4 Automatic Detection Of SSW

2.4.1 Non-parametric Methods

Attention has focused on the task of developing automated
methods for detecting epileptiform spikes and sharp waves (SSW).
Claims have been made of limited success in accurately locating

regions where epileptic activity originates‘'® 2%), however,
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much work remains to be done.

The most popular parameter used in existing SSW detection
schemes is the sharpness of a waveform. There is some support
for the hypothesis that epileptiform and non-epileptiform waves

-form two separate statistical populations 1in terms of their
sharpness?5 36) (gee figure 9). Several methods wusing some
form of sharpness criterion (first or second derivative) are
described in the literature. Earlier systems‘® 3% 37) employed
operational amplifier differentiators, timers, and other
specialized analog circuitry. One problem with the analog
methods 1is the inability to reject high frequency artifact.

Filters which adequately attenuate muscle activity also distort
the spike waveforms. Current approaches involve digital
bandpass filters. These techniques‘?? 27 36) don't eliminate
the problem of muscle artifact but records can be further

processed using non-linear operations.

Gotman and Gloor‘''’ have had considerable success with a
heuristic method which examines several parameters, including
sharpness of the wave, The EEG signal is decomposed into
sequences or half waves. These are characterized by a relative
amplitude and a duration which form a two dimensional decision
space for acceptance of the half waves as being potential
components of an epileptic transient. After treating half waves
separately, full waves are examined according to amplitude and
sharpness. Tests are performed to reject major sources of

artifact.



Template matching schemes have been wused with limited
success. Pola and Romagnolif3') reported using a template
matching method for spike detection in the differentiated signal
of stereoelectroencephalograms (SEEG). The authors state that
"the accuracy of the method ranges between 67% and 95%. Such a
range depends exclusively on morphology of the examined spikes."
The problem is that morphology is widely variant and it 1is
questionable if a system which wuses a small enough set of
templates to be practical can be implemented.  Salzberg et
alt?3> described a more sophistocated, adaptive approach which
involves training the system on EEG spikes. Depth electrodes
were used to detect the presence of spikes. The EEG was summed
coherently each time there was a spike in a depth electrode.
The spectrum of this coherent sum was divided by the noise
spectrum (background EEG) and then, using the inverse Fourier
Transform, a template was obtained which could then be convolved
with EEG for spike detection. This method was applied to a very

limited number of spikes, with discouraging results.

All these methods are similar in that they assume a model
of the ideal SSW which can be represented by a fixed set of
parameters. The signal is then processed to find sections whose

parametric measures are within an acceptable tolerance.
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Figure 9 Distributions of Maximum First Derivatives of EEG.
SSW and background appear to form separate populatlons in terms
of waveform sharpness.
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2.4.2 Parametric Methods Of SSW Detection

Some investigators have attempted to instead develop a
linear, parametric model of the background or normal EEG
activity. In processing the signal, they look for sections
which do not have the same background statistics. These

sections are candidates for epileptic transients.

We assume that EEG is stationary over, at least, some small
period of time (ie. 5 seconds). We assume further that the
signal, y(n), is the output of a linear>system, h(n), with input

g(n), a white Gaussian sequence.

Then,

y(n) =-Z a(k).y(n-k) + Ko-Z b(i).g(n-1i) cee2.1
k=1,p i=0,qg

or, if H(z) is the transfer function of the system;

H(z) = Y(z) / G(z) cee2.2
-1 -k
=[Ko+( 1+ Z b(i).z )1/(1 + Z a(k).z ) ...2.3
i=1,g k=1,p

Normally, an all-pole or autoregressive model 1is used. The
coefficients b(i)=0 for 1i>0. The gain factor, Ko, 1is an
arbitrary constant which can be set to 1.

y(n) = -Z a(k)-y(n-k) + g(n) e..2.4
k=1,p
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-k
H(z) =1t / (1 + Z a(k)-z ) =1/ A(z) v es2.5
k=1,p
If the input, d(n), is unknown and the signal is predicted from

past values, then we have the predicted signal, y'(n), such

that;
y'(n) =-Z a(k).y(n-k) cee2.6
k=1,p '
Thus, g{n) = y(n) - y'(n) = e(n) ceo2.7

In determining the coefficients, a(k), we want to minimize the
prediction error, g(n)=e(n). Using least squares minimization,
we obtain a matrix equation which can be solved to get the

coefficients, a(k).

'R(0) R(1) R(2) ...R(p-1)| [a(1)] R(1)
R(1) R(2) R(3) ...R(p-2)| |a(2) R(2)
R(2) R(3) R(4) ...R(p-3)| |a(3) R(3)
R(p-1) +..R(0) | |a(p)] | R(p)|

..'2'8

A method by Durbin‘?%) involves a simple recursive procedure for

solving equation 2.8,

We now have a model of the stationary EEG signal whose
output is the product of passing white, Gaussian noise through a

linear system, H=1/A. 1In other words, the EEG 1is modelled as
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colored Gaussian noise. It is clear from this discussion that
A(z) is a whitening filter. 1In theory, if EEG is passed through
it we obtain a random, uncorrelated sequence, e{(n), whose

spectrum is flat.

If there 1is a transient (ie. SSW) 1in the EEG which is
statistically insignificant in the calculation of the a(k)'s,
then the output of the whitening (or inverse).filter will have a
higher amplitude since it is the prediction error. As such, the
inverse filtering operation is used as a detector of

epileptiform transients.

The parametric approach has been wused by a number of
workers, All wuse the whitening filter, but once ~e(n) is
obtained, the similarity in methods disappears. Some use a
simple amplitude threshold on e(n) for transient detection while
others (Zetterberg) used e(n)?. Lopez da Silva‘??®’ sum e(n)?
over a short interval before testing against a threshold.
-Others have .applied a second differential operator to e(n) and
set a threshold 1level for that.!3?’> Still others suggest

combining the whitening filter with the matched filter.t!' 39

Advantages to wusing the parametric approach include an
apparent ability to detect SSW so obscured by background noise
that they are missed by the human eye. Another advantage is
that, as a byproduct of the method, we get a reliable spectral
estimate of the background activity. The Durbin method even
makes it possible to specify the degree of spectral resolution

of the estimate, so that only significant resonances are



22

resolved.

There are problems with the parametric approach. The
analysis assumes stationarity of the signal. Since signal
statistics can change abruptly, however, the reliability of the
filter may be questioned. Bodenstein‘*’ and Michael!?®’ have
attempted to tackle this problem by first segmenting the data
according to statistical requirements. There may also be
problems when the training segment contains artifact or a number
of SSW. This will bias the spectral estimation and so degrade
the effectiveness of the detection. The cost in computation
time of the parametric method might be considered problematic
for certain applications (especially for real-time detection).
Finally, it should be noted that the parametric method is not an
,SSW detection method: it is a transient detection method. Only
a small number of EEG transients are SSW, thus it is still
necessary to distinguish the SSW from the other classes of short

transients.
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IITI. DETECTION OF EPILEPTIFORM TRANSIENTS: THEORETICAL

CONSIDERATIONS

We know of only one comparative study‘®’ of SSW detection
methods and it 1is strictly empirical in approach. Using
statistical detection theory, we will introduce the notion of
error probability as a performance criterion for SSW detection.
We will describe a computer model which computes a theoretical
performance level for SSW detectors using signal-to-noise ratio
(SNR) . This model 1is used to analyse a parametric method and

the simple slope detection scheme (bandpass) we have implemented

in our EEG monitor.
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3.1 Assumptions In Characterizing Background EEG And SSW

In the SSW detection problem we will assume that EEG, v(t),
is a supérposition of SSW, s(t), and noise, n(t) (see figure
10). The noise is random, but assumed to be colored, Gaussian,
and stationary. The assumptions of Gaussianity and
stationarity have been shown, for short segments of 5 seconds or
less, to have some experimental justification.!?7’ We will
assume that the presence of s(t) does not affect the statistical
properties of v(t). Thus, statistics of n(t) can be obtained
directly from v(t). What is known about spikes is vague. There
is considerable variation in amplitude, duration, and waveshape.
Sharp waves, which are quite different from spikes, can also
occur. Later, we will describe SSW in statistical terms, ie.
power spectrum only. Here too, however, variations permit only

a general description.

SSW, s(t)

Gaussian white
noise, g(t)

coloring | EFG background
filter n(t)

[ — |

composite EEG, v(t)

Figure 10 Model for EEG Signal, v(t).
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3.2 Error Probability In Binary Detection Systems

Detection of epileptiform transients falls into the most
elementary class of detection systems; those which ask if a
signal is present or not. 1In such systems, a useful performance
criterion is detection probability and a basic measure of
performance is probability of error, Pe. There are two types of
error probability in this system; (1) that an SSW is present and
the system misses it (false rest probability = Pfr) and (2) that
there 1is noise alone but the system falsely detects an SSW

(false alarm probability = Pfa),

In an N-dimensional decision space we have N parameters,

ViVay...v,, that are outputs of the system (figure 11). Then
Pfr = SS...SdV]dVZ-..an pS(V1V2...Vn) 0003.1

Rn
Pfa = SS...S dv1dv2...dvn pn(V1V2.o.Vn) .'.3.2

RS

where ps(v,v,...v,) 1is the joint probability function for
ViVz...vy 1if an SSW occurs and pn(v,v,...v,) if noise alone
occurs, Rs is the region of acceptance‘ for SSW in the N-
dimensional space, while Rn is the region for noise alone.
Theoretically, if the above probability density functions are
known, we know the probability of detection error, Pe, 1in the
system,

Pe = Pfr + Pfa ' ...3.3

Our goal 1is to reduce Pe. We can reduce the region Rn to
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minimize Pfr, but that increases Pfa: reducing Rs will increase
Pfr. False rest error can only be decreased at the cost of
increased false alarm error and vice versa. The combination of
these errors, Pe, should be minimized subject to one of the
criteria defined below.

1) The ideal observer criterion - overall error probability is
minimized.

2) The minimum average 1loss <criterion - a loss factor is
assigned to each type of error, Pfr and Pfa, and the combined
loss is minimized.

3) The Neyman-Pearson criterion - false rest probability is

minimized for some fixed false alarm probability.

v / noise alone .
3 acceptance region, Rn

ssw

acceptance
region,

N

Figure 11 A 3-Dimensional Decision Space.
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3.3 Model For Evaluation Of Detectors

In linear systems, error  probability 1is a monotonically
decreasing function of signal-to-noise ratio at the output of
the system (SNRo). Therefore, SNRo is a good measure of system

performance, which is fortunate because it is easy to calculate.

To better understand the usefulness of particular filters,
Fk , we have created a computer model that generates simulated
EEG spectra and calculates theoretical input and output SNR for
each filter.

A = SNRO/SNRi LI I ] 3 . 4
k : .

The quantity, Ak' of equation 3.4 is an improvement ratio in SNR
from input to output. It provides a good comparative measure
for filters. We would hope that Ak be at least 1.0 for all
possible EEG spectra and considerably greater than 1.0 for a

large class of them.

Calculation of Ak for a particular filter is quite straight
forward. Output power spectral density (psd), Po(f), from a
linear system is simply;

Po(£) = |F (£)|2-Pi(f) ...3.5
k .

where Fk(f) is the filter transfer function and Pi(f) Iis
the input power spectral density. Making use of the model of
EEG background as filtered white noise we have the situation as

shown in figure 12. The psd of EEG background, N(f), is
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|H(f) [2-Gn(f), where Gn(f) is the psd of white noise and H(f) is

the system function which colors the noise. Thus,

SNRi

S Q(f)df / S N(f)df «..3.6

SNRo

S IF (£)]2-Q(£)af / SlF (£)|2-N(£)af
J ok Ik ce.3.7

where Q(f) is the psd of the SSW whose Fourier Transform is

S(f). Using the relations in the above equations, A, can be

calculated for each filter.

ssw, Q(f)

.detector output,
white noise, |IF (£)|2-Q(f) +
k
onit) H(g) [ N(E) EEG F ()|, |F (£)]2-N(£)
- T k k

Figure 12 Change in Power Spectral Densities due to Linear
Filter. ‘
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|H(£) |

K=1/2v$

R=,05|H(f) |max"

POWER DENSITY (normalized units)

S g Oy s

&

FREQUENCY (hz)

Fiqure 13 Spectral Model of EEG Background. EEG spectrum is
modelled wusing a second order function of natural frequency fo
and damping factor §. A linear function takes over for higher
frequencies.

s{t) 10 l s(1) |

05

50
MAGNITUDE {arbitrary units)

00
e} S 10 1B 20 5

FREQUENCY (hz)

Figure 14 Spike Model and its Frequency Representation.
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To model the EEG spectrum, H(f), we used the scheme shown
in figure 13. The transfer function, H(f), was generated using
a second order function of natural frequency, fo, and damping
factor, §. In order to more realistically represent the high
frequency content, we used a second, linear function beginning
at .05 of the maximum height of the second order function and
deciining to 0 at 50 hz. This is necessary when considering the
inverse spectral filters, otherwise high frequencies are
unrealistically magnified in the model. The psd for SSW was
obtained by taking actual SSW (figure 14) from EEG records and
performing FFT's to get S(f). The integrals of equations 3.6

and 3.7 were solved numerically on a general purpose computer.

Initially we compared three filtering methods: (1) a simple
bandpass, F, = 2j-{sin(27f) + sin(4wf)}; (2) the inverse
spectral filter, F, = 1/H(f), and (3) the unrealizable, optimal
matched filter, F, ={S*(f).exp(2j7f)} / { H(f) } (unrealizable

because in practice we don't know S(f)).

3.4 Results Using Simulated Spectra

Results are shown in figure 15. The first observation of
interest is the sub-optimality of filters F, and F, compared
with the matched filter, F3. A; never falls below 1.0 and only
approaches it in a very small region. Where A; approaches 1.0
is understandable because it is for H(f) which are similar in
form to S(f). If signal and noise have identical spectra, the

matched filter will pass both unattenuated and the SNR gain, A,,
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will be 1.0.

Anothef interesting result is that, although the actual
values of A, and A; are much different, the contour plots are
similar in shape. F, is merely a whitening filter and the first
stage in the implementation of Fj. Since the SNR gain in
detecting a signal 1in white noise with a matched filter is
approximately constant‘?®2’, A, and A; should also differ by a
constant., The constant factor is Bn/Bs, where Bs is the spike
bandwidth and Bn is the bandwidth of the whitened noise. In
fact, this will not be exactly constant since the whitening

process of F, alters the spectrum of s(t).

Theoretically, if the SSW spectrum reaches into any range
of frequencies where there is no noise power, the measure, A,,
goes to infinity (flawless detection).‘ This 1is because the
inverse filter will infinitely boost signal power in the bands
where there is no noise. 1In practice, this doesn't happen. The

results here demonstrate what happens for the non-ideal cases.
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When there is a coincidence of SSW spectra and noise
spectra the results can be devastating for output SSW power
(figure 16). The inverse filter suppresses noise but it 1is
totally indiscriminate in dealing with SSW power because it
assumes no prior knowledge of it. Even when there is
considerable separation of the SSW and noise spectra, the result
may not be good. In the case shown in figure 17 the inverse
filter will boost power by a factor of R. Because this is done
across the whole spectrum, however, noise power 1is also
increased by a factor of Bn/Bc, where Bc is the bandlimit of the
colored noise. The SNR improvement from input to output will be
R: (Bc/Bn) which could be less than 1 if the ratio Bc/Bn 1is too
small. If we study the contours, A,, in figure 15b we see that
the best results are obtained at very 1low frequencies or at
higher frequencies if the noise power 1is concentrated in a
narrow band. When the noise spectrum is spread out, the SSW

power 1is severely reduced by the inverse filter.
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1

> IHCE) |2
= 10 8.1 : \\
n " |s(f) ]2
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1§J / b (So/Si)-(Ni/2Ni)= 1/2
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0 , or -~ :
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FREQUENCY

Figqure 16 Coincidence of SSW and Noise Spectra. For this kind
of EEG spectrum ( H(f) ) the inverse filter (1/|H(f)]|2?) favors
frequencies outside the range where most SSW power is located.

1.04

HGIE

POWER DENSITY

LAY I =N e

FREQUENCY

Figure 17 Separation of SSW and Noise Spectra. Since A, =
R-ch7Bn5, if R = 10 and Bc = .1+Bn, then A, is only 1.
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One parametric method usually follows the inverse 'filter,
F,, with a squaring and summing operation. We have already seen
the effect of the inverse filtering. To calculate the
contribution of the squaring and summing (autocorrelation) we
make use of the relation¢32):

Ap = A;+-{ 1/ (1+4Bn-T)} ...3.8

where Ap 1is the SNR improvement for the parametric method
(including autocorrelation), T ié the integration time = (N-
1)-to (to = sampling period), and T>>1/Bn. Since A; is the
improvement factor for a matched filter, it can be expressed as
A,-(Bn/Bs). The effect of the autocorrelation operation itself,
Aa, is;

Aa = Ap / A, = (Bn/Bs)/(1+4Bn-T) ¥ 1 / 4Bs-T ...3.9

Lopez da Silva‘23) reports using a value of 25 milliseconds
for T. Substituting this into equation 3.9, we must have that
Bs is less than 10 hz in order that Aa be greater than 1. Thus,
the detectability of a signal in white noise by this method is
dependent on the signal's bandwidth. Values for Ap can be
obtained directly from the contours of A;. Since Ap = .2A;, the
1.0 contour of Ap is equivalent to the 5.0 contour of A;.
Comparing this to figure 15b, we see that the summing and
squaring operation offers soﬁe small improvement in detection
capability over simply applying the inverse filter (ie.
Aa > 1). It should be noted, though, that we have been 1lenient
in allowing T = 25 milliseconds and so violating the condition

that T>>1/Bn. 1In reality, T should be made much 1larger, thus



reducing the factor, 1/(1+4Bn-T), in equation 3.9.

Figure 18 shows a cémparison of the SNR improvement ratios
for the inverse filter and the simple bandpass detector. The
bandpass, F,, works best at lower frequencies and when the EEG
spectra is more distributed. If most of the noise background is
concentrated in a resonant peak, F, can even worsen thé
situation wunless the resonant frequency is low. In general,
however, it compares very favorably to the inverse filtering
method. The only advantage of the 1inverse filter over the
bandpass method is for a few spectra with strong resonant peaks

at higher frequencies.

FREQUENCY, 1, (hz)
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0.1 ‘ L ‘\\

0.5;/ W  F . region where A ¥ 1.0
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R 22 L2 N—
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a & |
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a
: os{2N L

o
10 ///ﬁ N

Figure 18 Types of H(f) for which SNR Gain is > 1.0.
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Figure 19 Results of SSW detection. (a) The inverse filter and
Zb§ a bandpass detector.
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In theory, the SNR gain from input to output of the inverse
filter could be infinite. 1In practice, we have found (figure
19) the inverse filter to give results no better than a simple
‘bandpass detector. This model shows, theoretically, that this
can be expected for many types of EEG background. Intuitively,
the bandpass filter, F,, seemed like a good choice as a detector
since SSW are often characterized by their steep slopeé. In
addition, it is almost trivial to implement when compared to the
complexity of the inverse filter. We have seen that it is a
good detector of SSW in low frequency activity such as delta or
theta. It has problems with higher frequency activity such as
alpha or muscle (figure 20) but it would be difficult to find
any single operator that functions well as a detector of SSW in
all kinds of EEG background. Our approach has been to use this
operator, which functions well as a detector of SSW in a broad
class of EEG, and to develop separate strategies for the cases

where it is poor (muscle and alpha activity).
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Figure 20 Response of F, to Typical EEG. SNR Improvement ratio,
A;, was calculated using background spectral model for (a)
alpha, (b) delta, (c) theta, and (d) muscle activity.
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IVv. A SIMPLE DETECTOR OF SSW

Detecting SSW in EEG with success has been reported by many
workers. Most of these systems process the EEG off-line and on
sections of data preselected to contain a minimum amount of
artifact. We are interested in real-time detection for 1long

term recording sessions using a simple microprocessor based

system.

Our strategy for detection of SSW is to select candidate
transients on a first pass with a low-level operator. The more
complex and time consuming processing is then applied only to
the reduced data. Specifically we will describe the design of:

(1) the low-level operator (a bandpass)

(2) shape tests

a) duration
b) form factor or 'wiggliness'
c) triangularity
(3)‘artifact rejection filters
a) muscle
b) alpha rhythm and spindles
We will also describe a method for detecting phase reversals

when bipolar montages are used.
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4.1 Lowpass Differentiator (Bandpass)

A differentiator highlights the sharp positive and negative
sldpes of a waveform. Since waveform sharpness 1is the main
distinguishing feature of SSW, the differentiator is an obvious
choice as an SSW detector. High frequency artifact, such as
muscle activity, greatly affects the output of a pure
differentiator. For this reason, differentiators which include

a lowpass characteristic are desireable.

Ninomiya and Matsubara‘??’ wused a linear regression
operator for differentiation (equation 4.1).
M M
b(k) = Z n-x(n+k) / Z n? eeodl
n=-M n=-M ,
The value b(k) is calculated for each sample time and represents
an approximate differentiation of the signal. This is a 1linear
transform with Z-transform, F,(z), as shown in equation 4.2.
M n _ '
F,(Z) = Ko Z {n-2 } Y S
n=-M
where Ko = 1 / ZIn?
This 1is an easy operator to implement depending on the value of

M chosen. It 1is particularly well suited to a recursive

calculation of values.

An interesting paper by Usui and Amidror(¢3%’ compares a
large number of digital lowpass differentiators. One of the
simplest, and the one we chose for cur low-level operator, has

the following Z-transform,
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+n -n
F,(z) = [ {z -2 } 1 /K, ce.4.3

n

([ o e

1
M
or b(k) =[ Z {x(n) - x(-n)} ] / K, c..4.4
n=1
This is similar to equation 4.2 except for the weighting factor
of each term in n. We see from the magnitude responses of the
two operators, that they are quite similar (figure 21). F, |is
slightly broader in the main lobe but has a lower side lobe. F,
also lends itself to recursive computation.
Ky-b(k) = Kyeb(k-1) + [x(k-M-1)+x(k+M)] - [x(k)+x(k+1)]
es.4.5
This calculatibn is considerably simpler than for F,,

particularly when M is not a convenient number.

Ny
|

GAIN

N4

/2 3

FREQUENCY (radians/sec)

Figure 21 Frequency Response of lowpass differentiators.
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4.2 Threshold Settings

We must put some threshold on the output of the bandpass
filter in order to detect candidate SSW. The human eye does a
considerable amount of processing to set a threshold. In
addition to considering background level, the type of background
is also important; (1)Amplifier gains are adjusted so that
characteristic rhythms have a particular look, (2)If background
statistics change abruptly, the eye will separate the signal
into sections and consider each individually, (3)Transients are
visually filtered out before setting a level, (4)The eye takes

in activity from other channels.

In automated systems it is very' difficult to match "the
proceésing done by the trained eye. Since the human coﬂéiders a
more global picture (activity over time and in all channels) an
automated system would require a powerful processor and a huge
améunt of memory. Setting an absolute level is the simplest
possible approach. At least one objection to this, from the
neurologist's point of view, is that SSW are defined in terms of
the background activity. Also, setting absolute thresholds
requires a calibration procedure and this can be difficult since
the signal may change drastically from one calibration period to

the next.

An adaptive procedure which sets threshold levels according
to the background a few seconds before and after the point

concerned would be preferable. We set a threshold on the
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bandpass output by considering 5 seconds of past activity. We
assume that the EEG (and thus the bandpass output also) can be
modelled as the output of a 1linear system whose input is
Gaussian white noise (see Chapter 3). Following from this model
it is a relatively simple matter to set some threshold level
which corresponds to a low probability of acceptance of a given
bandpass output value. The threshold, Th', is calculated from
the relation 4.6.

Th' = Th.o ‘..4.6

wvhere Th is the appropriate value from the table of the
Normal Probability Integral, o is the standard deviation of the
background activity, and assuming the bandpass output to have

zero mean over the 5 seconds.

This is not a difficult computation if it doesn't have to
be done too often. It is even easier if we take advantage of an
interesting property of Gaussian distributions described below.
The probability density £function, ®(x), of a Gaussian

distribution, N(0,0%), is given in equatibn 4.7.

$(x) = (1/0/27)-exp(-x2/20%) R
thus, _
E(x) = Sx-(1/o/f§)-exp(-x2/202) dx v..4.8

which is easily shown to be = 0. (p.139 in ref.15)

But now consider |x| instead.

E(|x]|) = ZS (1/0/27) -exp(-x?/20%) dx cee4.9

[+)



45

Since the pdf of x is symmetric about the y axis

E(|x]) = (-20//27) -exp(-x2%/2) = 20/ /27 ...4.10
and so,
o = (/27/2)-E(|x]) | celd 1
Using this result, the calculation of ¢ in equation 4.11 is very

simple. Rather than calculating o¢ wusing the relation that
02 = E(x?)-E(x)?, we have only to find the mean of the absolute
values, which 1is considerably easier. This result depends on
the assumption of a zero mean, which 1is reasonable since the

threshold calculation is done for 5 seconds of data.

4.3 Waveform Sharpness

In reality we are more interested in a second differential
measure, since it is the sharpness of the waveform which is
considered. We can achieve a double differentiation with two
passes of F, or F,. We could also use a single pass operator
such as in equation 4.12 below. It is obtained by a least
squares error fitting of a curve y=a+x? + bex + ¢ to a set of
points.

M
a = {N-Z [n2:x(n) - N,-S]} / {N.N, - N,2} ...4.12
' n=-M
M i M
where N =ZI n , S =Z x(n) and N = 2M+1
i =-M n=-M
Alternatively, we can take the difference of slopes from

rising and falling phases. This approach, which is the one we
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implementea, is simple and has the advantage of allowing wus to
set a minimum slope threshold for rising and falling phases
independently. A waveform with one steep rising phase but a
gradual opposite phase  would not be accepted. A double
differentiator may end up passing it as a possible candidate

because the two phases cannot be considered separately.

4.4 Waveshape Of SSW

The bandpass operator alone 1leads to an excess of false
detections and so a second stage of filtering is required based
on waveform parameters, duration, form factor, and

triangularity.

4.4.1 Duration

Spikes are generally defined as having a duration of 80
milliseconds and .Sharb waves 200 milliseconds. Leaving aside
disagreements over these figures, we must deal with thé
definition of duration itself. Considering figure 22, we would
intuitively chose duration to be 6,, but if we were‘looking for
a definition that was simple to implement, such as distance

between slope zero crossings, we would end up with §,.

Gotman and Gloor‘''’ describe a somewhat arbitrary method
that appears to work well. They define a pseudo duration as
shown in figure 23. This pseudo duration is obtained by finding

the point on the half wave which corresponds to the signal value
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at the half duration. A line is drawn from the apex of the wave
and where it crosses the base line defines the pseudo duration,

§'. This method is quite simple.

Let us model a half wave by a rectangle and a hypefbola as
shown in figure 24 and consider the two cases, A .and B, shown.
In A, as the area under the hyperbola goes to zero, the pseudo
duration goes to 8/2. There 1is a direct dependence on the
length of the tail. Clearly for the case of B, pseudo duration
goes to infinity. Thus, in the limiting cases the Gotman-Gloor

method is not a good representation of duration.

As an alternative to this method, we have used an approach
which finds the pseudo duration, 6'', by matching the area of an
ideal triangular wave of amplitude, Vm, and width, &'', to the
actual area of the half wave of amplitude, Vm, and width, 6.
Referring to figure 25, we <can write the relation shown in
equation 4.13 to define pseudo duration.

511 = 2a/vm ce.4.13
In the 1limiting cases discussed above, when the area under the
hyperbola goes to zero (case A) the pseudo duration goes to
twice the width of the rectangular part. In contrast to the
Gotman-Gloor method, the length of the tail 1is 1important only
insofar as it contributes more area to the half wave. As the
half wave becomes rectangular in shape (case B) the pseudo
duration goes to 26. This is not ideal but considerably better

than the Gotman-Gloor method.
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Figure 22 Definition of Spike Duration. An intuitive choice for
duration measure is 6, but §, is easier to compute.

-
o
N
)

e M

Figure 23 Pseudo duration wused by Gotman et al. A pseudo
duration, &', is obtained by drawing a line from the half wave
apex, A, through the point B on the waveform.
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Figure 24 Halfwave Modelled by a hyperbola.
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Figure 25 Area Matching Approach for Pseudo Duration. A pseudo
duration, §'', is obtained by matching the actual halfwave of
area, A, amplitude, Vm, and duration, §, with a triangular
halfwave of the same area and amplitude but duration &''.
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4.4.2 Form Factor

In the presence of muscle artifact it is possible to get
false detections that look nothing like SSW (see fiqure 26).
Such false detections are easily eliminated by demanding a
minimum 6f monotonicity on the rising and falling phases of the

spike.

Consider the rising slope in figure 27 and let,
N-1
Ay, =L |x -X | o c..4.14
n=0 n+1 n o

which 1is the sum of absolute differences of adjacent

samples from A, to A,.

" Let,

A, = |x -x | ' ...4.15

Then, as a 'form factor' we have that,

n = (A, + A;) / A, cesd.16

This measure will pass many types of shapes (see figure
28). It 1is a crude measure of higher frequency noise which is

superimposed on the waveform.
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Figure 26 Waveform With Superimposed muscle artifact.

A2
b, = sum of absolute differences =
14+3+0+14241+140 = 9
A; = height of the halfwave = 7
N = form factor = (&, + 8;)/4,
= 2/7 .
— N

ceqm———e e -
|

Figure 28 Different Waveforms with equal Form Factor.
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4,4.3 Triangqularity

None of the shape measures so far mentioned 1is wuseful 1in
rejecting those waveforms with sharp rising and falling phases
but flat or squared tops. Using the area measure discussed 1in
the section on pseudo duration, it 1is possible to define a
measure which gives some indication. We are interested in
rejecting waves as seen in figure 29. If A = total area under

the half wave and A' = area under the triangle only

then

T=(A-AaA") /A

where T gives a measure gf divergence from the ideal.
There‘are several cases (figure 30) which can pass.these simple
tests, but are still quite different from the ideal. With these
tests, however, we eliminate a 1large category of false

detections with relatively simple algorithms.
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A = the area under the halfwave

= 80
A'= the area under the triangle
= 64
triangularity divergence

-3
noa

(80-64) /64 = .25

Figure 29 Triangularity Measure.

Figure 30 Non-ideal Waveform Which Passes the tests.
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4.5 Artifact Rejection

It is possible to obtain waveforms which are similar to SSW
but are genérated by non-epileptic processes, artificial or
otherwise. Distinguishing these from SSW requires that the
context be considered, Iie. we must look at the type of
background or what the activity is like in the other channels.
SSW rarely occur in only one channel. Thus, we can demand that
there be simultaneous detections on several channels before an
SSW is accepted. Unfortunately, with certain types of artifact,
the events causing the false detection (ie,. electrode pops)
extend to more than one channel and other approaches must be

used.

4,.5.1 Movement Artifact

Patient movement causes the most severe disturbances in EEG
recording (see figure 31). During periods of movement it is
best not to attempt to detect SSW at all due to the heavy
corruption of the signal. To ignore sections containing a lot
of artifact, it is necessary to be able to detect the artifact.
Since high frequency EMG is present during patient movement, it

is a good flag for corrupting artifact.

The simple difference operator, x(n) - x(n-1), can be used
to detect muscle activity. It is a high pass operator with a

frequency response, Fj;, 2as shown in figure 32. The measure, ¥,
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in equation 4.17 is an indicator of muscle activity in the
signal. With this measure, no calibration procedure is
required.

¥(f) = ( |F5|2' |F1|2 )/|F5|2 eead. 17

The measure is not difficult to obtain using the relation
4.11 discussed earlier. ¥(f) ranges from 0 to 1. It is 0 when
|F,] and |Fs| are equal (ie. not much power above 10hz) and 1

when |Fs| is much greater than |F,]|.

< 2

1 sec

Figure 31 Effect of Patient Movement on EEG.
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4.5.2 Spindles And Alpha Rhythms

There are some typical rhythms which have similar shape and
duration to spikes. Both alpha rhythms and sleep spindles can
cause false detections. The threshold value of the bandpass
output is set according to background statistics but this
doesn't help if the rhythms come in short bursts ( 3 or 4
waves) . The simplest approach 1is to detect the rhythms
themselves. and not to allow spike detections during the period
when rhythms are present. Simple period measurements are

effective in detecting the presence of these rhythms.

4.6 Phase Reversal Detection

In the case of focal epilepsy, determination of the
location of a potential maximum is of special interest. If
recording is bipolar, it is not straight forward where the
maximum is. Consider the figure 33a. If recording is
differential between electrodes A & B and B & C as shown, then
if a potential maximum occurs at electrode B, we will obtain SSW
in channel A-B and B-C but they will be reversed in phase. In
figure 33b the potential maximum midway between electrodes B and
C causes SSW of opposite polarity in A-B aﬁd C-D and none in B-

C.

Since there are many montages, locating phase reversals and

the areas of potential maximum is difficult. The task is made
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more tractable 1f the montage is divided into bipolar chains

(figure 34 ).

In designing an algorithm for phase reversal detection, the
following conditions are imposed:
(1) SSW are considéred for phase reversing if their apexes are
shifted no more than 10 milliseconds in time.
(2) We consider bipolar chains with a maximum of seven channels.
(3) We consider chains with a minimum of 2 channels.
(4) Only 3 adjacent channels are considered at a time.
(5) Only one vphase reversal is allowed per chain except in the
case where the detected reversals are in homologous areas of the
brain.

(6) There is a maximum of four chains in a given montage.

These restrictions are lenient enough to allow for detection of
phase reversals in all the popular montages. The algorithm
first divides the montage into separate chains and processes the
chains in subqhains of 3 channels. Currently, we are capable of
handling 8 different montages but the main subroutines are
general enough that other montages can be added as long as some

information about the number and kind of chains is provided.
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Figure 34 Bipolar Chains.
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V. DETECTION OF SEIZURE ACTIVITY IN EEG

Apart from systems for spike and wave detection, there are
very few reports of automated seizure detection systems. The
only consistent work reported is by the team of Gotman et
al¢'® '7 18> yho have incorporated automatic seizure detection
into their monitoring wunit at the Montreal Neurological
Institute (MNI). 1In this chapter, we will examine some features
of seizures which can aid in their detection by computer.
Later, we describe an approach used by us in the seizure monitor

at the University of British Columbia.

The first reported automatic seizure monitor at the MNI
employed é PDP-12 minicomputer and operated on eight channels of
EEG in real-time. Seizure detection depended on the amplitude
of the EEG and the output of a bandpass filter. The MNI system
has since been redeveloped and the seizure detection system is
part of an integrated sjstem-whiéh also includes detection of
interictal activity. Seizure detection criteria have been
changed. The system does not attempt to detect all seizure
activity; only that in which there 1is sustained paroxysmal

activity with a fundamental frequency between 3 and 20 hz.

In a recent study of frequency content of EEG at seizure
onset by the Gotman team '3’ the fundamental seizure rhythm wa§
most often found to be in the 3 to 6 or the 15 to 20 hz range
(figure 35). 1In our own study of the frequency characteristics

of EEG at seizure onset we found the same concentration of
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fundamental seizure rhythms in the 3 to 6 hz range as the Gotman
team, but we had no seizures with fundamental frequency in the
higher range (figure 36). We were only able to study 1/3 the
number of seizures that the Gotman group considered, and, unlike
them, we | included seizures corrupted by EMG artifact.

Considering the problem of EMG obscurring higher fréquency
rhythms and the normally lower level of cerebral activity in the
higher frequencies, that we found no higher frequency
fundamental rhythms in the seizures we studied is therefore not

surprising.

Initial results of seizure detection from the MNI system do
not, at first, appear -encouraging. From surface recordings,
only 22% of the detections were of epileptiform activity and
from depth recordings a mere 2.5% were true detections. False
detections are not necessarily a problem, however, since the
only function of their seizure detector is to trigger an EEG
recording devicelso ~that a reduced amount of data can be
examined later by: an electroencephalographer. Even if the
number of false detections 1is large, the amount of data
reduction due to incorporating automated seizure detection is

still significant.
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frequency (hz)

Fiqure 35 Fundamental Frequencies at Seizure Onset, I. The team
of Gotman et al studied 50 seizures and recorded the fundamental
frequency of the EEG activity at the seizure onset. Only
seizures free of EMG activity were included in the study.

000+~ : . trequency (hz)
L
Moo ‘

Figure 36 Fundamental Frequencies at Seizure Onset, II. At the
UBC Hospital 15 seizures were studied and the fundamental
frequency of the EEG at seizure onset was recorded. Seizures
corrupted by EMG were included if there was a clear resonant
peak in the spectrum.
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In the Seizure Investigation Unit at the UBC Health
Sciences Center Hospital we are developing a detector of seizure
activity in EEG. Initially the goal has been 1limited to
detecting seizures with moderate to high amplitude EEG activity.
Such seizureé are most often accompanied by <clinical
manifestations which, along with the EEG patterns at seizure
onset are studied prior to a neurological diagnosis. A
definition was provided by a neurologist that activity would be
a candidate for seizure level activity if it was of high
amplitude for a sustained period on a majority of the recording
channels (figure 37). Sustained muscle activity could also be

considered a sign of seizure.

An obvious approach was to put a fhreshold on the RMS value
of the EEG as a detector of seizure 1level activity. Instead,
the EEG is first filtered by a bandpass (the lowpass
differentiator discussed earlier) and then the RMS value of the
outputb is calculated. Motivation for use of the bandpass was
rather simple: since interictal epileptiform activity was
limited to a frequency range coincident with the pass band of
the filter, the same might be expected of seizure activity. As
the later frequency studies of seizures showed, the assumption
of a direct correlation between the frequency distribution of
SSW and of seizures was without justification. We did find,
however, that at seizure onset there is a shift of signal power
into the frequencies favored by the bandpass for most of the
seizures studied. Several seizures were analysed as to their

frequency content for several 5 second periods leading into the
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beginning of the seizure. Two ratios were then calculated.

R1 = So / Si : ceebh.

R2 = So' / Si' te.5.2
where So = EEG signal power after seizure onset, Si = EEG
power before onset, So' = power of bandpassed EEG after seizure
onset, and Si' = power of bandpassed EEG before onset. Eight
seizures were studied and in 6 cases R2 > R1., In 1 case R2 = RI

and 1in only 1 case was R1 > R2., For the case where R1 > R2, R2

was still very much greater than 1.

The brief study mentioned here tends to support using a
bandpass operator in the detection of seizures. The reason for
the shift of signal power into the bandpass range is not clear.
A large percentage of seizure records are corrupted by EMG.
Gotman and Gloor estimate 30%, thougﬁ our experience is that
this figure is considerably higher ( >50% ). The bandpass will
not entirely attenuate muscle activity, thus, this could be a
partial explanation for the improvement gained by the bandpéss.
We have found, however, even in seizures that are free of EMG
the relative shift of power into the bandpass range is still

evident.

Following the bandpass operation, the signal is further
processed. The RMS outpuf of the bandpass is averaged over 5
second periods and it must pass a preset threshold to be
considered of seizure level., The threshold must be passed in
three successive, 5 second intervals and this must happen 1in a

majority of the 16 channels or 3/4 of the channels of one
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hemisphere. The requirement that activity be of a sufficient
level on a number of channels reflects the fact that seizure
activity comes to involve large sections of the brain. It 1is
also possible that seizures remain confined to one hemisphere
and, for this reason, each is also considered separately. Since
the arrangement of channels varies from montage to montage, the

detector had to be flexible enough to adapt to different ones.
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Figure 37 EEG at Seizure Onset. In many seizures the EEG signal
level rises dramatically in most of the recording channels.
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Vi. IMPLEMENTATION OF THE EEG MONITOR

Many techniques for the detection of epileptiform activity in
the human EEG are described in the literature. There are far
fewer descriptions of integrated systems which incorporate these
techniques into real-time monitoring devices. We will describe
the implementation of an EEG monitoring system developed at the
Seizure Investigation Unit of the University of British
Columbia. Hardware schematics and software flowcharts can be

found in the Appendix.

Our real-time monitor is | comprised of a popular
microprocessor system, some special purpose eiectronic hardware,
and several software packages. The detection of seizures and
detection of interictal activity is done by separate softwaré
modules, only one of which is resident in the system duriﬁg a

monitoring session. Only one patient is monitored at any given

time.
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6.1 Hardware Structure

Hardware for the EEG monitor constructed for use in the
Seizure Investigation Unit of the UBC Acute Care Hospital
consists of the units shown in figure 38. The basic pieces are
a general purpose digital computer, color graphics monitor, and

special purpose interface electronics.

Figure 38 EEG Monitor Hardware Components. (a) Computer,
Zbi graphics monitor, and (c) interface electronics.
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6.1.1 Computer Hardware

The computer is an Apple II Plus , a microprocessor-based
device. Although deVeloped for the home market, it 1is widely
used for research and educational applications. The Apple II
Plus is equipped with 48K bytes of random access memory on its
main board. The machine includes a keyboard, power supply,
circuitry for the generation of memory mapped graphics, system
read only memory (ROM) with monitor and extended BASIC
interpreter, special purpose I/0 1interface, and 8 expansion

slots.

Five of the available 8 expansion slots are presently
occupied by special purpose boards. There is a 16K byte memory
expansion board, a timer board (which generates timed
interrupts), a serial communications card, a disk controller
(that can handle 2, 5 and 1/4 inch floppy disk drives), and an
A/D-D/A board. All the peripheral boards, with the exception of
the timer, were purchased off the shelf. The A/D board has 16
channels for analog to digital conversion (conversion time of 9
microseconds) and 16 channels for digital to analog conversion
(conversion time of 16 microseconds). The conversion resolution
is 8 Dbit. The timer board 1is software programmable and is
enabled or disabled by commands which access specific location
in the Apple's memory. A Sanyo color monitor is used for
displaying text information and color graphics. All text and

graphics are c¢reated by hardware which is inherent to the
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computer. Input to the monitor 1is a single composite video

signal generated by the computer.

6.1.2 Interface Hardware

A bank of filters and amplifiers was built to provide an
interface between the EEG recording equipment and the A/D
converter resident in the computer. A single order high pass
filter with .1 hz cutoff removes very low frequency artifact.
Fourth order Butterworth filters with a 25 hz corner frequency
provide sufficient anti-aliasing for a 100hz sampling rate as

well as 60 hz rejection of about 20db.

We have designed a special purpose board which includes low
current relays that are opened by digital outputs included with
the Apple. This board interfaces the Apple to a setup 1in the
Seizure Investigation Unit for marking the audio tapes on which
EEG is recorded. When the patient presses a (seizure) button a
circuit 1is opened and the tape is marked so the EEG seizure
record can be found later. Our interface is wired in series so
that 1its relays can also open the circuit and mark the tape if
the computer detects a seizure. Relays are wused 1in order to
provide total isolation of the computer from the rest of the
equipment setup. The relay is held open by a monostable so
that, even 1if the digital output of the computer is toggled by
accident, the relay will only remain open momentarily and have

minimal consequences in the operation of the seizure unit.
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6.2 Monitor Software Structure

Monitor software is designed for (1) detecting and
cataloging interictal SSW and (2) detecting seizures. As well
as detection routines, there are programs for calibration,
adjusting key system parameters, and maintaining patient files.

All routines are loaded and started via a main menu program.

6.2.1 The SSW Monitor Software

The interictal monitor is written entirely 1in assembler,
although 1its program modules are loaded and linked from a BASIC
routine called from the main menu. On startup, the entire
contents of the stack and zero page are relocated to a safe spot
so that the monitor may make use of them without compromising
the integrity of Applesoft BASIC or the disk operating system.
On exit, the system is restored and the main menu program is re-

entered.

The SSW monitor 1is interrupt driven - interrupts are
generated at equal intervals according to the sampling rate
desired - (100hz). On each 1interrupt, conversions are made on
each of 16 channels of incoming EEG and values are loaded into a
buffer to await processing. Buffering is necessary so that the
more complex processing, which is done on candidates from the
first pass, can take several sample 1intervals, Samples are

processed, one after the next, until the system buffer is empty.
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Normally, spike candidates are few so that there is ample
processing time. The buffer is large enough (4K bytes) to deal
with short bursts of activity. In the unlikely case that the
buffer overflows, the system turns off spike detection until

enough space is available to continue.

The monitor consists of 4 tasks which run in parallel on
three priority levels. The system accomodates multiple tasks at
the middle priority level. Each task has 1its own section of
stack and workspace to avoid conflicts over memory and
resources. The running‘oﬁ tasks is organized by a task handling

program. The 4 tasks, according to priority, are the following:

1) The Main Analysis Routine.

It is queued to run each time a new set of samples is

placed in the signal buffer. It is the highest priority task in
the system. As long as there are any samples left in the
buffer,vthis task will continue to rﬁn, taking precedence over
all tasks at other levels, even the interrupted tasks that are

waiting to be restarted.

2) The User Ingquiry Interface.

This task is queued to run in response to user 1inguiries
about the system status. It is a level 2 task. Although the
keyboard port is polled during the interrupt service routine,
except for a few single charactef commands, response must wait

according to the priority structure of the system.
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3) The Graphics Routine.

This routine is queued to run every 1/4 of a second. It
updates a continuous color graphics display (figure 39) of the
results of SSW detection. This also is a priority level 2 task.
If both task number 2 and number 3 are queued then number 2 will
be run first, but task 3 must be run next. Also, any
interrupted level 2 task takes priority over other level 2 tasks

yet to be started.

4)The Background Task

This task is run when no task of any other kind is waiting.
It has the lowest priority of all. At present, it does nothing

but kill time, It is a nul task.
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VIEW FROM TOP OF HERD

Figure 39 Color Graphics Display of SSW Monitor. The running

sums of detected SSW are dynamically displayed using circles
appropriately placed on a map of electrode locations. Sums are
represented by both size and color of the circles.
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6.2.2 The Seizure Monitor Software

The seizure monitor is also written in assembler, though it
is loaded by a BASIC routine called by the menu program.
Essentially, it is a subset of the spike monitor. The system
structure 1is identical, although there is really only one task
in the system. Other than the real time clock and a 1list of

times of seizure detections, there is no graphics display.

When a seizure detection is made, the monitor marks the
information (time) on the screen and holds a single digital
output low for 1 second to signal the fact to the outside world.
The output can be used to sound alarms, turn on recorders, etc.
Presently, it is used to put a mark on the tape recording of the

EEG.
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VII. RESULTS AND DISCUSSION

In this chapter we evaluate the accuracy of the EEG monitor
in detecting SSW and seizure activity. Evaluation of the
seizure monitor is considerably easier than the SSW monitor.
There are far fewer seizures and they are usually very dramatic
events. It is , therefore, clear when the computer detects a

seizure or misses it.

SSW are very short events. When they occur, it may be in
great numbers. We are interested in the aggregate of the SSW
detection and not so much in the detection of any single event.
We may want to obtain totals simply to see if a cértain drug has
been effective in reducing the amount of abnormal activity. We
may also want to use the information to aid in localizing the

source of the abnormal activity.
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7.1 Evaluation Of The SSW Monitor

As can be seen from figure 40, our simple detector is able
to discriminate epileptiform activity from the background. Even
in the case shown in figure 41, where the spike amplitude |is
lower than the background, a detection is made. When the EEG is
relatively free from artifact the detection rate is quite good.
There 1is a rate of better than 80% accurate detections with a
false detection rate of less than 5%. When there 1is a great
deal of artifact, particularly that due to movement, the rate of
false detections can reach as much as 50% or more. The
introduction of a muscle artifact detector has greatly reduced
the rate of false detections but it has not completely

eliminated the problem.

It is difficult to measure the effectiveness of the monitor
on an event by event basis because of the vast amounts of data
that are processed eQen over a short period of time. 1Instead,
we have chosen to select a few patients and study the results of
a monitoring session in relation to the neurological diagnosis.
Three patients suffering from focal epilepsy were chosen.
Results from 1 hour long monitoring periods were obtained and
the results are shown in figures 42 to 44. The neurological
diagnoses of the patients used in this study were based on the
full time the patients wére in the seizure investigation unit.
This was several days 1in some cases. Because the computer

monitoring was done only over short periods, some of the
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activity analysed by the neurologist was not available to the

computer.

A. é‘ VMMM’VW |
5. 1sec 1 I | l
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Figure 40 Detection of SSW. The bottom trace indicates where a
detection is made.

Figure 41 Detection of SSW; 1low signal to noise ratio. The
bottom trace indicates where a detection is made.



77

Patient A was diagnosed as having multifocal epilepsy with
one focus in the left occipital region and the other in the left
temporal, Patient B has interictal abnormalities in the mesio-
temporal region with a tendency to bilateralization and patient

C has abnormal activity near the midline in the frontal region.

From the results presented in figures 42b, 43b, and 44b, we
see that there 1is only a rough correlation between the
neurological diagnosis and the SSW detection results. This 1is
not surprising since, with bipolar recording montages, simple
SSW information doesn't directly indicate the site of maximal
activity. Phaée reversal information is a more useful indicator
of the site. It is also less susceptible to false detections
since the criteria for phase reversal detection 1is quite
stringent. In the following discussion we will rely primarily
on the phase reversal detections for the evaluation of the SSW

monitor.

From figure 42c we see a good correspondence between the
plot of phase reversals and the neurological diagnosis (patient
A). Both neurologist and computer note the existence of a focus
in the 1left fronto-temporal region and a mirror focus on the
right side. There is no sign of a focus in the 1left occipital
region from the computer results as was noted by the
neurologist. Unfortunately, no computer analysis was done of a
montage covering that area. Therefore, it would not have been

possible for the computer to predict the occipital focus.
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Bipolar Channel Electrode

Number Pair
1. F, - Fy
2. Fg - F,
3 sz- FB
4 Spl- sz
5 F, - Sp,
6 Fy - F,
7 Fz - F3
8 Fg - T,

Y 9 Fp,- Fg

10. Fpl-sz

11. F, - Fp,

12. Ty - F,

13. 'ra - Fp,

14, ¢, - F,

15. Fy - Fp,

16. Cy - Fy

Figure 42 Interictal Monitoring; Patient A. (a) Montage used in

monitoring. (b) Interictal SSW detection totals for Patient A
(1 circle = 3 detected SSW). (c) Phase reversal totals for the
same patient (1 circle = 1 phase reversal detected). (d)The

locations are marked where patient A has multiple focii
according to the neurologist. One focus is the left fronto-
temporal region has a mirror focus on the right side. The
neurologist also noted a focus in the left occipital region.
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Patient B (figure 43) exhibits abnormal activity near the
midline of the frontal region. The very large number of phase
reversals detected 1in this area again indicates a good
correspondence of the computer's results and the neurological
diagnosis. The computer detected a large number of SSW in
channel 13. When SSW occur at the ends of a bipolar chain, the
~monitor makes a special note of it because it could mean that
there is a potential maximum at the last electrode in the chain.
Information in these channels is similar to that obtained from
phase reversals. SSW which appear alone at the end of a chain
are sometimes considered phase reversals for this reason, even
though there is no actual phase reversal in the chain. Since
these types of 'phase reversals' only require the detection of a
single SSW, they are more likely to be false detections and we

must be careful when interpreting the results.

In the case of patient B, the detection of a 1large number
of end-of-chain phase reversals at Fp2 (channel 13) has some
significance since we have detected a number of phase reversals
at the midline nearby. There were no phasé reversals detected
at Fp2 involving channels 9 and 10 as would be expected if
indeed there was a strong potential maximum at Fp2. Therefore,
the SSW detected in channel 13 are more likely due to a
potential maximum near the midline rather than at Fp2. Since
there are far more SSW in éhannel 13 on the right than in
channel 15 on the 1left, however, we would expect that the
activity is more lateralized to the right side of the midline.

In fact, the neurological report mentions frontal abnormality
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near the midline. There is some tendency to bilateralization,
which coincides with our detection of a smaller number of SSW

and reversals in the left frontal region.

There were a number of phase reversals detected around the
sphenoidal electrode, Sp2. The neurological report makes no
mention of this, but it seems the report was based primarily on
slow wave analysis. Extensive damage was done in the frontal
region of the patient's brain due to the entry of a small
bullet, still lodged in the supra ventricle. It is, therefore,
quite possible that abnormal activity would be coming from
around Sp2. There is also the same tendency to bilateralization
at the sphenoidal electrodes with a maximum occurring on the
right side. This would further indicate that the reversals

detected there are not merely due to artifact.
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Bipolar Channel Electrode

Number Pair

L ., "1

2 Fg = F,

3 Spy~ Fyg

4 Spy- Spy

5 F7 - Sp1

6 F, - F,

. 7 Fz - F3
; 8 Fg = T,
9 Fpy- Fg

10. Fp,~Fp,
11. F, - Fp,

12. T, - F,
13. 'FA - Fp,

14. c, - F,

15. F, - Fp,

16. Cy - F,

D.

Figure 43 Interictal Monitoring; Patient B. (a) Montage used in
monitoring. (b) Interictal SSW detection totals for Patient B
(1 circle = 10 SSW detected). (c) Phase reversal totals for the
same patient (1 circle = 1 phase reversal detected). (d)The
locations are marked where, according to the neurologist,
patient B exhibits abnormal activity. This is near the midline
in the frontal region. There is right frontal activity near the
midline with some tendency to bilateralization. :
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Patient C exhibited interictal activity in the anterior
mesio-temporal area. There was a tendency to independent
bilateralization. Looking at figure 44c, we see that reversals
were detected near the sphenoidal electrodes Spt! and Sp2.
Considering that the exact location of the surgically implanted
sphenoidai electrodes is difficult to determine, the computer

prediction is reasonable.

The report also mentions that activity is greater on the
left side than on the right but the computer detected more phase
reversals on the right side. If we look at figure 44b, however,
the picture is somewhat different. There are a considerable
number of SSW at the ends of bipolar chains in channels 1,5,6,
and 10. The computer determined that most of these represented
end-of-chain phase reversals. It is probable that many are bona
fide potential maxima at the ends of their respective bipolar
chains. Many more of them were detected on the left than on the

right which would agree with the findings of the neurologist.
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Bipolar Channel Electrode

Number Pair
! Fg - F,
2. spz- FB
3. Sp)- Sp,
¢ F7 757
> F3 - F
6 T, - ¢,
’ Sppm T,
8 Sp;- Sp,
’ T3 - Spy
10. c3 - T3
11. F8 - sz
12. T4 - F8
13, T6 - T4
14, p7 - Fpl
15. T3 - p7
16. TS - T3

D.

Figure 44 Interictal Monitoring; Patient C.

(a) Montage used in

monitoring. (b) Interictal SSW detection totals for Patient C
(1 circle = 6 SSW detected). (c) Phase reversal totals for the
same patient (1 circle = 1 phase reversal detected). (d)The
locations are marked where, according the the neurologist,
Patient C exhibits abnormal activity. This is in the mesio-

temporal region. There is a tendency to independent
bilateralization.
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From this brief study, we can see that the interictal SSW
monitor, at its present stage of development, is capable of
predicting the focus or focii of activity which correlate quite
well with the findings of a neurologist. 1In one of the cases
presented here (patient B) the monitoring session included
several lengthy periods of corrupting muscle and movement
artifact. 1In spite of the artifact, we were able to get results

which corresponded well with the findings of the neurologist.

In order to insure the acceptance of a large enough
percentage of actual SSW (ie. a small false rest probability),
we usually end up with a large number of candidates from the
first pass of the detection algorithm. That number is greatly
reduced by subsequent processing but we still can have a high
level of false detections in the presence of serious artifact.
For long term recording sessions this is not good enough. At
present, the results are obtained from 1 hour recording sessions
with an operator 1in attendance. The dynamic graphics display
lets the operator know how well the monitor is doing so that, if
there are long segments with false detections, the session can

be aborted.

A goal for future development of the monitor should be to
reduce the rate of false detections. The strategy for achieving
this is twofold. First, although we have included some tests of
SSW shape, we have not exploited all that 1is known about SSW
morphology in the detection algorithm. Second, we must develop

better artifact detectors. Detecting the presence of muscle
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artifact has aided 1in reducing false detections but some
movement and electrode artifact continues to be problematic.

Developing detectors (for SSW or artifact) requires the ability
to 1identify enough wuseful parameters of the waveforms to
discriminate them from normal activity. Identification of such
parameters ultimately involves the analysis of large amounts of

data from a large number of patients.
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7.2 Evaluation Of The Seizure Monitor

The EEG seizure monitor, although still in a developmental
state, has been in operation in the Seizure Investigation Unit
for some time. This has made it possible to obtain a good
measure of its performance. Over the period of 6 months, the
seizure monitor was operating almost continually. Because we
are still unable to monitor both patients in the wunit at the
same time, we were only able to obtain results from about half
the patients who went through the unit. Of these, a few had no
seizures at all. In total, we have results from 12 different

patients and these are shown in table 1I.

The requirements of seizure detection are different from
SSW detection. The goal 1is to detect seizures but, since we
only want to signal their occurrence for later scrutiny by
humans, we <can tolerate a relatively high degree of false
detections. Missing a few interictal SSW 1is not of much
‘conseguence since generally there are a lot of them. This is
not true of seizufes. If at all possible, we want to detect
100% of the seizures because there are so few of them. We aim
for a perfect rate of detection even at the expense of a higher

rate of false detections.
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Number of patients ceeesl2
Total number of seizures v ee.e30

Total number of detections
by the computer teesabd

Total number of false detections
by the computer ceeee26

Total number of true detections
by the computer ceee.28

Total number of seizures missed
by the computer cevee 2

Total number of seizures detected only
by the computer R

TABLE I Automatic Detection of Seizures. Results of computer
detection of seizures in the Seizure Investigation Unit for a
period of 6 months beginning November 1982,

»

From the results presented in Table I, we see that, of 54
computer seizure detections, 52% were bona fide seizures and 48%
were false detections. The rate of false detections 1is quite
acceptable. It means that for every two seizures the computer
detects, one is valid. This is an enormous saving in time for
the human observer, considering that the alternative is to study

the EEG record for the entire monitoring period.

The relatively 1low rate of false detections can only be
considered good if the rate of false rests in very low or 0. 1In
fact, in 30 valid seizures the computer missed 2 (from the same
patient) of them or only 7%. We should also look at the number
that would have been missed without computer monitoring. Some

11 seizures, or 37% of the total number, would have gone
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undetected if not for the computer monitoring. Comparing this
with the 7% of the misses by the computer, the monitor seems
very good. Since the monitor was active roughly twice as long
as there were human observers available to detect the computer's
misses, however, we could expect the actual false rest rate to

be almost double at around 13%.

The seizures that were missed did not conform to the
definition we were working with - moderate to high amplitude
activity on a . majority of channels. That we missed some
seizures 1s, therefore, more a shortcoming of our original
definition of a seizure that it is a problem of the detector.
The original definition 1is sufficient for most clinically
significant seizures, however, there are seizures of interest to
the medical staff which are not being detected. The main
distinguishing feature of the seizures missed by the computer is
a strong rhythmic content on most channels. It is not necessary
to include a capability>for sophistocated frequency analysis to
detect such seizure rhythms. A simple analysis, which gives the
average period and the amount of deviation from the average
would be sufficient. The interictal monitor already uses this
technique in detecting alpha rhythms, although in that case we
only 1look at very short sections of the waveform (4 periods).
In seizure detection, we are only interested in rhythms that are
sustained over a long time (in excess of 5 seconds) and are on

many channels.
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In this chapter we have evaluated the effectiveness of the
EEG monitor to detect SSannd seizures. For both monitors the
evaluation indicates the need for further development. This is
particularly true for the interictal monitor. We have shown,
though, that both monitors give very positive results. The
seizure monitor is already in use in the Seizure Investigation
Unit and the interictal SSW monitor, if used subject to some

restrictions, can also extract useful information.
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VIII. SUMMARY

We have described the development of a real-time EEG
processor to be wused for patient monitoring in the Seizure
Investigation Unit of the Acute Care Hospital at the University
of British Columbia. This monitor automatically detects
epileptiform abnormalities 1in patient EEG as an aid in
neurological diagnosis. Both seizure and between seizure

activity are targets of the investigation.

The seilzure detector operates with a definition of seizure
level activity as that which is of consistently high amplitude
on a majority of recording channels. The definition 1is not
sufficient to detect all seizures but is sufficient to flag most
clinically significant ones. The EEG is first subjected to a
bandpass operation, because we have found that, at the onset of
seizure, signai power shifts into the range of freqguencies
favored by the band pass filter. A seizure is detected when the
output power of the bandpassed signal reaches a threshold level
on a majority of all channels or 3/4 of the channels in one

hemisphere.

Initial results of seizure detections are encouraging.
Over 90% of seizures occurring during a 6 month period were
accurately detected by computer in the Seizure Investigation
Unit. The false alarm rate was about 50% but this is considered
acceptable since the purpose of the monitor is only to note the

occurrence of the seizures for later verification by a
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neurologist or electroencephalographer.

The EEG monitor is also designed to detect between seizure
epileptiform activity known as spikes and sharp waves (SSW).
These are short transient events of less than 250 milliseconds
in duration whose main distinguishing feature is their relative
sharpness compared to the background EEG. Many approaches have
been tried in the automatic detection of SSW and these <can be
divided into two categories; parametric and non-parametric
detectors. Non-parametric detectors attempt to match an ideal
model of the SSW to the input waveforms. The model may be a
template, a set of parameters, a set of rules, or some
combination of all of these. Such detection methods, on some
level, try to mimic the action of the human observe;. The
parametric approach assumes an 1ideal model of the background
EEG. When the signal fails to conform to the model, it 1is
assumed to be due to abnormal events such as SSW. There is no
mimicing of the human in this approach. In fact, a parametric
filter 1is apparently able to detect SSW otherwise invisible to
the human eye. Considering the difficulty in exactly defining
SSW, it therefore appears quite attractive as a detection

scheme,

Our experience has been that, in practice, the parametric
approach 1is no more effective than simpler non-parametric
detectors. Using percentage gain in signal-to-noise ratio from
input to output o¢of a system as a measure cof performance, we

theoretically compared the inverse spectral filter (parametric
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detector) to a simple bandpass filter (non-parametric detector)
as SSW detectors. From a signal-to-noise point of view, we
found no theoretical advantage of the inverse filter over the

bandpass.

The parametric approach is to model the background EEG, but
little is actually known about the mechanisms which generate EEG
patterns. The non-parametric approach is to model the SSW, but
definitions of SSW are vague. There are problems, therefore,
with both approaches. The non-parametric methods are, however,
generally much easier to implement and are almost always used in

practical, real-time detection systems,

Our approach to SSW detection is to process EEG on a first
pass with a low-level operator that discriminates SSW candidates
on the basis of a sharpness criterion. The 1low-level operator
is a bandpass filter. It acts as a good detector of SSW in EEG
whose power is concentrated in lower frequencies. When higher
ffequency activity such as alpha rhythms or muscle artifact is
present, SSW detection 1is disabled completely. - Waveforms
accepted on the first pass detection are then subjected to a

series of tests based on their morphological characteristics.

The accuracy of the monitor for detecting SSW was evaluated
by comparing results obtained from several computer monitoring
sessions with the neurological diagnésis of 3 patients suffering
from focal epilepsy. In all cases, in spite of some problems
caused by artifact, the monitor was able to accurately predict

the location of epileptic focii as noted by the neurologist.
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Very positive results were obtained 1in detecting both
seizure and between seizure activity. The EEG processor,
therefore, has immediate value as a clinical device. Much of
the epileptiform activity recorded is never viewed by the
medical staff because of the impossibility of searching through
all the data. Now, with the introduction of computer
monitoring, data <can be preprocessed to save only relevant

information for later scrutiny by humans.

An immediate goal for future work is the improvement of the
processor to minimize detection error. A further goal 1is to
move beyond detection and attempt to answer some of the basic
questions of the generatibn of epileptiform activity: Do SSW
occur randomly 1in time or are they generated according to some
deterministic pattern? What 1is the relationship, if any,
between 1ictal and 1interictal activity? What significance is
there to seizure rhythms? Can a model be developed for the
generation of epileptiform activity? Providing answers to such
qguestions requires the study of massive amounts of data. 1In the
past, the ability to analyse data has been limited primarily by
the lack of automated systems of analysis, Real-time,
automatic, computer detection of epileptiform activity in EEG
provides a strong base from which we can begin to tackle some of

these puzzling questions.
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APPENDIX A - SPECIALLY CONSTRUCTED HARDWARE
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Figure A3 Tape marking interface. When a seizure is detected a

10 hz tone is recorded on the audio tape machine which stores
the EEG signal..
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INITIALIZATION
ROUTINE

save all registers
on the stack

]

save stack pointer
on the zero page

i

relocate stack
and zero page

I

STARTUP
ROUTINE

load task ! stack pointer
get task 1 starting address
and push it on the atack

load task 2 stack pointer
get task 2 starting address
and push it on the stack

initialize all buffers,
queues, tables, and the
pointers for sll tasks

initialize all variables

I

program the timer

Fiqure A4 SSW Monitor Software;

load task N stack pointer
get task N starting address
and push 1t on the stack

]

post interrupt
vector

]

enable timer

]

enable
interrupts

|

Jump into the
background task

Interrupt Routines.

INTERRUPT
ROUTINE

save registers
and program counter
on task's stack

P

save stack pointer
in pointer buffer

—

update interrupted
task queue

1

do A/D conversions
for 16 EEC channels

store samples
n buffer

buffer
overflow?

set flag to
disable SSW
detection

1

i

update clock
display

save the
character
in buffer

Initialization, Startup, and
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main program
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" set program
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set program
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get stack pointer
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pop registers
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“retura from subroutine
starcs program from the
beginning

"return from interrupt”
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Figure A5 SSW Monitor Software; Task Handler Routines,
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Figqure A6 SSW Monitor Software; Main Routines.
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Figure A7 SSW
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PERIOD
ROUTINE

Update average
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four periods

sverage period
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alpha or sleep
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low deviation
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set flag to
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Monitor Software; Main Routines.
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GRAPHICS
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JUMP GRAPHICS ) ¢o GRAPHICS program
via "return from
subroutine” in the
TASK HANDLER

Figure AB SSW Monitor Software; Graphics and Exit Routines.



