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Abstract 

U n i d i r e c t i o n a l broadcast structures constitute a c l a s s of high 

performance l o c a l network a r c h i t e c t u r e s . They are very f l e x i b l e and well 

suited f o r f i b e r optic implementation. The access methods used i n these 

networks are often based on c e r t a i n i m p l i c i t token-passing mechanisms to 

provide superior delay-vs-throughput c h a r a c t e r i s t i c s . The performance of 

these u n i d i r e c t i o n a l broadcast protocols i s evaluated i n t h i s thesis v i a a 

study on the c l a s s i c a l token-ring system. Emphasis i s placed on the analysis 

of mean delay-vs-throughput performance for the gated exhaustive service 

d i s c i p l i n e under asymmetric t r a f f i c . The analysis involves examination of 

the s t a t i s t i c a l behaviour of i n t e r a c t i n g queues. A number of exact r e s u l t s 

are derived and based on these r e s u l t s , a very good approximation for the 

average delays i s developed. The approximation agrees c l o s e l y with exact 

numerical solutions over a wide range of system parameters. The implications 

of the approximation are also discussed. 

i i 
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1. INTRODUCTION. 

1.1 High-performance Local Area Networks. 

The demand for l o c a l communication resources continues to grow very 

r a p i d l y . Today, l o c a l area networks (LANs) operating at a few Mbit/s can 

s t i l l s a t i s f y most current needs but the s i t u a t i o n i s l i k e l y to change i n the 

near future. The advent of superfast microcomputers, the evolution of new 

system architectures (e.g. d i s t r i b u t e d processing) and the Integration of 

data intensive services (e.g. i n t e r a c t i v e graphics, tele-conferencing) a l l 

lead to ever higher bandwidth requirements. Even with sophisticated 

bandwidth compression techniques, the bandwidth of the conventional co-axial 

cable w i l l not be adequate for many ap p l i c a t i o n s i n the future. 

Optical f i b e r emerges as the most promising candidate for implementing 
ft 

the high-performance LANs needed i n the future. The most impressive feature 

of o p t i c a l f i b e r i s i t s enormous information-carrying capacity; the 

t h e o r e t i c a l l i m i t i s well above 100 Gbps-km. Several Gbps-km can be achieved 

using current technology. As the technique of wavelength-division 

multiplexing matures, the bandwidth of an o p t i c a l f i b e r w i l l increase 

many-fold. Thus, not only can o p t i c a l f i b e r s a t i s f y the bandwidth 

requirements of LANs i n the foreseeable future, i t w i l l also provide great 

f l e x i b i l i t y for growth i n the long term. Other desirable features such as 

immunity to electromagnetic interference, high channel s e c u r i t y , low signal, 

l o s s , small s i z e , l i g h t weight, e t c a l l make o p t i c a l f i b e r very a t t r a c t i v e 

for LAN a p p l i c a t i o n s . Nevertheless, l i m i t a t i o n s on current f i b e r optics 

technology do impose constraints on LAN system designs ([5-7]). For example, 



2 

the very high i n s e r t i o n loss of current o p t i c a l taps has led designers to 

consider point-to-point configurations such as rings or stars instead of 

l i n e a r bus structures. Furthermore, b i d i r e c t i o n a l transmission on a single 

o p t i c a l f i b e r also faces considerable d i f f i c u l t y due to the minute f i b e r core 

size and crosstalk between source and detector. 

To overcome the technological d i f f i c u l t i e s with f i b e r o p t i c s , a number 

of new network schemes have been developed ([8-13]). Among these, the 

u n i d i r e c t i o n a l broadcast structures (UBSs) with c o n f l i c t - f r e e schedulings 

appear to be most s u i t a b l e f or very high data rate a p p l i c a t i o n s . The access 

protocols used i n these UBSs resemble the conventional token-passing on a 

r i n g which provides superior delay-throughput c h a r a c t e r i s t i c s . However, 

these networks avoid the major p i t f a l l s associated with the token-ring. As a 

r e s u l t , UBSs have received much attention l a t e l y . A t y p i c a l UBS c a l l e d D-net 

w i l l be described i n Chapter 2, together with i t s i n t e r e s t i n g properties. 

1.2 Objectives. 

The primary goal of t h i s thesis i s to investigate the performances of 

UBSs by studying the c l a s s i c a l token-passing protocol. The performance index 

w i l l be the average message delay at each node. Unfortunately, a rigorous 

delay analysis under the most general conditions i s very d i f f i c u l t . To 

provide mathematical t r a c t a b i l i t y , a number of reasonable assumptions are 

made to simplify the problem. Attention i s focused on the gated exhaustive 

service d i s c i p l i n e because i t can be analyzed mathematically and also 

provides insight to the performance analysis of the more p r a c t i c a l 

non-exhaustive service schemes. 
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1.3 Previous Work. 

The problem of e s t a b l i s h i n g the queueing c h a r a c t e r i s t i c s of a 

token-ring system has been studied by many authors i n the l a s t two decades 

under various t i t l e s (e.g. p o l l i n g , t r a f f i c c o n t r o l , c y c l i c queues). The 

long h i s t o r y of this problem indicates both i t s importance and i t s 

i n t r a c t a b i l i t y . So f a r , no solutions are a v a i l a b l e to the general problem, 

whether exact or approximate, an a l y t i c or algorithmic. Thus, we have to use 

l e s s r e l i a b l e and hard-to-interpret r e s u l t s obtained from simulations or 

actual network measurements to study the queueing behaviour of many p r a c t i c a l 

token-ring systems. Nevertheless, rigorous analyses have been ca r r i e d out 

for some special although u n r e a l i s t i c cases. It i s the hope of many 

researchers that these analyses can shed some l i g h t on the behaviour of more 

p r a c t i c a l systems. 

A good summary of the more recent work on token-ring analysis can be 

found i n [29]. With few exceptions, most of the previous work dealt with the 

gated and the non-gated exhaustive service d i s c i p l i n e s with i n f i n i t e 

buffering and Poisson a r r i v a l s . The s p e c i a l case with only two nodes in the 

system was studied i n [19-21] and exact e x p l i c i t delay r e s u l t s were obtained. 

Generalizations to an a r b i t r a r y number of nodes were investigated i n [22-29J. 

Moment generating functions of cycle time, queue length and delay 

d i s t r i b u t i o n s have been obtained i n [22-26]. Unfortunately, these are not 

closed-form solutions that f a c i l i t a t e easy evaluation of delay moments. 

Attempts have been made to derive e x p l i c i t a n a l y t i c expressions for the 

average delays but they were successful for the symmetric case only 

([25-27]). For the general asymmetric case, only numerical algorithms 
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([27-29]) and approximate solutions ([30-33]) are a v a i l a b l e . Most of the 

approximations given i n the l i t e r a t u r e are based on rather h e u r i s t i c 

arguments and hence t h e i r regions of v a l i d i t y are unclear. In general, 

these approximations break down at very heavy network loadings or under 

highly asymmetric terminal t r a f f i c . Numerical algorithms have the advantage 

of generating exact r e s u l t s but they cannot r e a d i l y show the e f f e c t s of 

simultaneous changes i n the system parameters. An asymmetric token-ring has 

an enormous parameter space (the set of a l l possible combinations of 

parameters) and hence r e s i s t s analysis by numerical methods. Nevertheless, 

exact numerical r e s u l t s can serve as absolute references for v a l i d a t i n g 

approximations and simulations. 

The more general cases of non-exhaustive service d i s c i p l i n e s and f i n i t e 

buffering are much more d i f f i c u l t to deal with, as evidenced by the lack of 

previous work i n t h i s area. An approximate treatment of non-exhaustive 

service d i s c i p l i n e s can be found i n [34]. Non-exhaustive service d i s c i p l i n e s 

on a two-node system were analyzed i n [35]. The system with single-buffer 

nodes (inte r a c t i v e - u s e r model) was investigated i n [38] based on the work 

from [36-37 ]. 

1.4 Outline. 

In Chapter 2, a t y p i c a l UBS c a l l e d D-net i s described to show the 

resemblance of the UBSs and token-ring systems. Then the queueing model and 

relevant system parameters are formulated- A number of important random 

var i a b l e s are defined and t h e i r r e l a t i o n s h i p s are discussed. 
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In Chapter 3, the queueing problem i s solved by the "method of Imbedded 

Markov Chain. The imbedded chain being considered i s the j o i n t terminal 

service times i n a service c y c l e . A recursive functional equation i s derived 

for the moment generating function of the imbedded chain at steady state. 

D i f f e r e n t i a t i o n s of t h i s basic functional equation y i e l d recursive l i n e a r 

equations for the f i r s t and second order moments. The existence and 

uniqueness of solutions to these l i n e a r equations are also established. 

In Chapter 4, a number of r e s u l t s are derived concerning the solutions 

of j o i n t moments of the terminal service times. A simple difference equation 

which has not been reported before i s presented. This equation provides the 

basis for a very good approximation. 

In Chapter 5, the r e l a t i o n s h i p s between average message delays and the 

normalized cycle time variances are given. A fundamental r e l a t i o n among the 

delays, dictated by Kleinrock's conservation law, i s also derived. An 

approximate sol u t i o n i s then developed, followed by a comparison with exact 

numerical r e s u l t s . 

In the conclusion, a summary of r e s u l t s i s given with suggestions for 

future research. 
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2. DEVELOPMENT OF THE LAN SYSTEM MODEL. 

2.1 Description of D-net and i t s Communication Protocol. 

U n i d i r e c t i o n a l broadcast structures may be d i f f e r e n t i n topology and in 

many other aspects but their basic operations are very s i m i l a r . A t y p i c a l 

UBS c a l l e d D-net i s described to i l l u s t r a t e the basic communication protocol 

commonly used for UBSs. F i g . 2.1 shows the architecture of D-net. The 

network consists of an inbound and an outbound channel. A l l t r a f f i c flows 

u n i d i r e c t i o n a l l y from the outbound channel to the inbound channel. There are 

N stations i n the network, numbered i n the order shown i n the f i g u r e . Each 

st a t i o n has three taps: the receiver (R-)tap, the sensor (S-)tap and the 

transmitter (T-)tap. The R-taps are connected to the inbound channel to 

receive any broadcast messages. The S-taps and the T-taps are connected to 

the outbound channel as shown i n F i g . 2 . 1 ; they are used to sense upstream 

t r a f f i c and to transmit broadcast messages, r e s p e c t i v e l y . The black b a l l i s 

c a l l e d the locomotive generator and i t has only the R-tap and the T-tap. 

To transmit, a station f i r s t waits u n t i l i t senses upstream t r a f f i c at 

i t s S-tap. The s t a t i o n then looks for the end-of-carrier (EOC). The EOC 

event i s defined as the cessation of signal at the S-tap. It i s assumed that 

i t takes t, seconds to detect t h i s event. After detection of EOC, the d 

s t a t i o n s t a r t s transmitting i t s own packets. While transmitting, a s t a t i o n 

may sense more incoming upstream t r a f f i c through i t s S-tap. In this case, 

the s t a t i o n aborts i t s transmission and waits for the next EOC. Otherwise, 

the s t a t i o n f i n i s h e s i t s transmission. This basic operation w i l l be 

repeated. B a s i c a l l y , a s t a t i o n sees a ' t r a i n ' of packets separated by t . 
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seconds on the channel and each s t a t i o n attaches i t s packets to the end of 

th i s t r a i n . The t r a i n thus grows i n size as i t passes through a station with 

ready packets. 

The locomotive generator i s used to transmit a short burst c a l l e d the 

locomotive to head the t r a i n of packets. Without the locomotive generator, 

the network w i l l s t a l l because no stations w i l l contend for the channel 

unless there i s some t r a f f i c . To keep the network ' a l i v e ' a l l the time, the 

locomotive generator generates a locomotive each time i t sees the 

end-of-train (EOT) at i t s R-tap. The EOT event s i g n i f i e s the end of a c y c l e . 

It i s detected when a silence period of 2t^ seconds a f t e r cessation of signal 

i s noted at the R-tap of the locomotive generator. If normal operation 

p r e v a i l s , the t r a f f i c on the u n i d i r e c t i o n a l channel w i l l consist of tr a i n s of 

packets separated by 2(T + t^) seconds shown i n F i g . 2.2 where i i s the 

propagation delay on ei t h e r the inbound or the outbound channel and 2t^ i s 

the time needed to detect EOT. 

It i s noted that the D-net u n i d i r e c t i o n a l bus described here i s not 

suitable for f i b e r optic implementation because of the d i f f i c u l t i e s with 

current o p t i c a l tap technology (e.g. high signal l o s s ) . Two modifications of 

the basic D-net structure are given i n [12] to overcome these technological 

d i f f i c u l t i e s . The star coupled version of D-net shown i n F i g . 2.3 i s 

suggested to enable the i n s e r t i o n loss of R-taps to be lumped i n the coupler 

so that each s t a t i o n receives approximately the same signal power. The 

open-ring version shown i n F i g . 2.A can be used to avoid the d i s t r i b u t e d 

i n s e r t i o n loss at the T-taps. Since each node i s ac t i v e i n the open-ring 

D-net, bypass c i r c u i t s must be Incorporated i n case of a node f a i l u r e . 
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2.2 Comparison of D-net with Token-Ring Systems. 

By taking advantage of the inherent ordering of the network nodes, the 

D-net protocol provides orderly network access s i m i l a r to that of 

token-passing on a r i n g . As long as the EOC detection time in D-net is 

comparable to the token detection time i n a token-ring, the two networks w i l l 

have e s s e n t i a l l y the same delay performance. From the t r a i n i n g sequence of 

D-net, we may regard the switching overheads as being lumped in the 

inter-round s i l e n c e period of 2(x + t_) seconds. One advantage of D-net over 
d 

the conventional d i s t r i b u t e d token-ring i s that the impact of the 

inter-round overhead can be reduced by i n t e r l e a v i n g the locomotives. To do 

t h i s , the locomotive generator must ant i c i p a t e the length of each t r a i n and 

generate the locomotive not by detecting EOT but by precise timing. However, 

i n t e r l e a v i n g locomotives i s advantageous only when the inter-round overhead 

i s a s i g n i f i c a n t portion of the cycle time ( t r a i n + overhead). Calculations 

based on t y p i c a l parameters suggest that the i n t e r l e a v i n g of locomotives i s 

perhaps o v e r s k i l l e d for many LAN a p p l i c a t i o n s . A more a t t r a c t i v e way to 

reduce the r a t i o of overhead to cycle time i s to allow s t a t i s t i c a l v a r i a t i o n s 

of the s t a t i o n access times according to the network loading, for example by 

not r e s t r i c t i n g service to a single packet per node per c y c l e . The gated 

exhaustive service d i s c i p l i n e under i n v e s t i g a t i o n i n this thesis i s one 

example of this approach. 

The r e l i a b i l i t y issues surrounding the D-net protocol and token-ring 

are also d i f f e r e n t . One observes that the D-net protocol i s not completely 

d i s t r i b u t e d . The locomotive generator can be regarded as a central 
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c o n t r o l l e r whose f a i l u r e w i l l s t a l l the network. Fortunately, the locomotive 

generator i s a simple device so i t can be made redundant with l i t t l e 

a d d i t i o n a l cost. Nevertheless, the D-net protocol avoids the major p i t f a l l s 

i n token-passing such as l o s t tokens or duplicate tokens. If a locomotive i s 

l o s t because of channel e r r o r s , the locomotive generator w i l l simply time out 

and generate another locomotive. Considering the complexity of error 

detection and recovery mechanisms of conventional token-passing, the D-net 

protocol represents a major improvement over token-passing. Another 

r e l i a b i l i t y issue i s re l a t e d to the control passing mechanism i n the D-net 

protocol. Recall that each s t a t i o n attempts to transmit immediately a f t e r 

detecting EOC and aborts i t s transmission as soon as i t detects any incoming 

t r a f f i c at i t s S-tap. Since i t takes a f i n i t e amount of time to detect 

incoming t r a f f i c , there w i l l be c o l l i s i o n s of a very short duration (time 

needed to detect incoming t r a f f i c ) at the beginning of each packet. It i s 

assumed that each packet i s headed by a preamble portion for b i t 

synchronization and the c o l l i s i o n s mentioned above w i l l not a f f e c t the 

s y n c h r o n i z a b i l i t y of the preamble portion. 

2.3 System Model and Parameters. 

As we have seen, the basic operation of D-net i s i d e n t i c a l to the 

token-ring except for the switching overheads from one s t a t i o n to another. 

For t h i s reason, the performances of D-net and a l l other s i m i l a r UBSs w i l l be 

studied i n t h i s thesis as i f they were token-ring systems. F i g . 2.5 shows 

the schematics of the single-server multi-queue model suitable for the 

analysis of the token-ring system. N queues, numbered from 1 to N, are 
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F i g . 2.5 Schematics for the Single-server Multi-queue Model. 
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attended by a single server i n a c y c l i c order. Further, time i s divided 

into contiguous s l o t s of fixed duration. A l l time quantities are measured in 

terms of t h i s fundamental un i t . A number of parameters are needed to specify 

the queueing system, i n order to pose a well-defined problem involving 

dependent queues. These parameters w i l l be discussed i n the following 

paragraphs. 

Message a r r i v a l s . Poisson message a r r i v a l i s perhaps the most popular 

assumption i n queueing a n a l y s i s . A s l i g h t l y more general type of a r r i v a l 

w i l l be considered here. Messages a r r i v i n g at a queue within a time s l o t 

w i l l be registered at the end of that s l o t . The number of message a r r i v a l s 

at queue i i n one s l o t i s random and i t s d i s t r i b u t i o n i s characterized by the 

moment generating function (MGF) 1 c t ^ s ) . A r r i v a l s within d i f f e r e n t time 

slots are assumed to be independent and the same assumption i s made for 

a r r i v a l s at d i f f e r e n t queues. By l e t t i n g the s l o t i n t e r v a l become 

vanishingly small while keeping the message a r r i v a l rate constant, one 

obtains Poisson message a r r i v a l s as a s p e c i a l case of the general independent 

slot a r r i v a l s considered here. Other a r r i v a l s t a t i s t i c s can also be 

reasonably approximated by choosing the appropriate s l o t size and the MGFs 

Message lengths. Message lengths are assumed random with general 

d i s t r i b u t i o n s described by MGFs (p\(s)}. Although generally d i s t r i b u t e d , the 

1 The MGF of a random va r i a b l e X i s defined as F(s) = E[exp(sX)]. 



length of a message must be an i n t e g r a l multiple of the s l o t i n t e r v a l . 

Moreover, message lengths are assumed to be independent of the message 

a r r i v a l s and also independent among d i f f e r e n t queues. 

Service d i s c i p l i n e . The service d i s c i p l i n e i n a multi-queue system 

includes s p e c i f i c a t i o n s of the service schedule, order-of-service at each 

queue and the number of messages to be served from each queue in a service 

c y c l e . In a token-ring system, queues are inherently served i n a c y c l i c 

order (service schedule). Further, a f i r s t - c o m e - f i r s t - s e r v e d i s c i p l i n e w i l l 

be assumed at each queue (or d e r - o f - s e r v i c e ) . Thus, the service d i s c i p l i n e s 

i n t h i s thesis w i l l usually refer to the number of messages served from each 

queue i n a c y c l e . Various service d i s c i p l i n e s are possible; they can be 

gated or non-gated, exhaustive or non-exhaustive. For gated service d i s c i 

p l i n e s , a l l messages a r r i v i n g at a queue a f t e r commencement of service at 

that queue w i l l not be served i n that service c y c l e . Services not gated are 

c a l l e d non-gated. The terms 'exhaustive' and 'non-exhaustive' are 

self-explanatory. In pr a c t i c e , almost a l l service d i s c i p l i n e s are 

non-exhaustive i n nature to avoid the p o s s i b i l i t y of very long cycles. 

Unfortunately, the rigorous analysis of non-exhaustive service d i s c i p l i n e s 

appear to be insurmountably d i f f i c u l t . As a r e s u l t , attention w i l l be 

focused on the gated exhaustive d i s c i p l i n e for mathematical t r a c t a b i l i t y . As 

wel l , most non-exhaustive schemes can be approximated by the gated exhaustive 

scheme for' low t r a f f i c l e v e l s . For the gated exhaustive d i s c i p l i n e , a l l 

messages buffered at a queue when service s t a r t s at that queue w i l l be served 

i n that p a r t i c u l a r cycle while messages arrived during service w i l l be l e f t 

i n the queue u n t i l the next c y c l e . This i s d i f f e r e n t from the truly exhaus-



15 

t i v e (non-gated exhaustive) d i s c i p l i n e where queues are served t i l l empty i n 

each c y c l e . The non-gated exhaustive scheme w i l l not be considered here. 

Interested readers can r e f e r to [22-29] for more d e t a i l . 

Switching overheads. There i s a generally d i s t r i b u t e d switching 

overhead from queue i to the next queue characterized by the MGF co^(s). 

Similar to the message length, the switching overhead must be an in t e g r a l 

multiple of the s l o t i n t e r v a l . Also, a l l switching overheads* are assumed to 

be independent of each other. The D-net, with constant switching overheads, 

i s an example. 

Buf f e r i n g . I n f i n i t e buffering w i l l be assumed throughout t h i s t h e s i s . 

This i s a reasonable assumption as long as the blocking p r o b a b i l i t y i s 

small. 

In summary, the system under consideration i s a single-server N-queue 

system. Time i s divided into fixed contiguous s l o t s . Queues are served 

c y c l i c a l l y under a gated exhaustive d i s c i p l i n e and a f i r s t - c o r a e - f i r s t - s e r v e 

order-of-service. I n f i n i t e buffering i s assumed at each queue. General 

independent time s l o t message a r r i v a l s are assumed with s l o t a r r i v a l s 

characterized by the MGF a^(s) at queue i . Messages a r r i v i n g at queue i have 

generally d i s t r i b u t e d lengths decribed by the MGF 8 i ( s ) . The switching 

overhead from queue i to the next queue Is also generally d i s t r i b u t e d with 

MGF (^(s). 

2.4 D e f i n i t i o n s of System Random Variables. 

To formulate the mathematial queueing problem, a number of random 

var i a b l e s need to be defined. Let 
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(k) 

= kth cycle time of queue i , i . e . the time between successive 

scan instants (instant when service s t a r t s ) of queue i . 
(k) 

= the number of messages buffered at queue i at i t s scan instant 

i n the kth c y c l i c service of that queue. 
(k) 

= the number of messages arrived at queue i during the kth cycle 

of queue i . 
(k) 

= the number of messages served from queue i i n the kth cycle of 

queue i . 
(k) 

= the switching overhead from queue i to the next queue i n the 

kth cycle of queue i . 
(k) 

T\ = the terminal service time of queue i i n the kth cycle of queue 

i , i . e . time for the server to serve queue i and to switch to 

the next queue. 

A l l the above random variables assume non-negative integer values. 

According to the d e f i n i t i o n s , a number of rel a t i o n s h i p s can be written 

as follows: 
(k) (k) 

Z. = X. for gated exhaustive service (2.1) 

7 (k) 

• K, = I L . }*> + W.^; (2.3) 
i fa 1.3 

C.<k> = I T . ( k )

 +rT.(k+1)
 (2.4) 



c ( k ) 

\ W = 1 M. < k ) (2.5) 
1 j=l 1 , J 

where 
(k) 

L . = length of the j t h message buffered at queue i at i t s scan 
i»J 

instant i n the kth c y c l i c service of queue i . 
(k) 

M i j = number of messages arrived at queue i in the j t h s l o t of the 

kth cycle of queue i . 
(k) (k) 

The variables M, . and L. . are two sets of independent and i d e n t i c a l l y 
i , J i . J 

d i s t r i b u t e d ( i . i . d . ) random variables whose s t a t i s t i c s are described by the 

MGFs a^(s) and B^(s) r e s p e c t i v e l y . When the lower index exceeds the upper 

index i n any summation, the summation i s defined as zero. This convention 

w i l l be adopted throughout this t h e s i s . 

2.5 Comments on the Relations between System Random Variables. 

Equations (2.1)-(2.5) represent the most basic r e l a t i o n s between the 

system random variables for the gated exhaustive service d i s c i p l i n e . For 

other service d i s c i p l i n e s , equations (2.2)-(2.5) s t i l l hold but (2.1) has to 

be modified. For example, i f queues are served according to the gated 

non-exhaustive scheme with queue i allowed to be served up to p^ messages in 

each c y c l i c s ervice, then (2.1) w i l l become 

Pi 
Z.^J = I I ( X , V * ' > j ) (2.6) 

1 j-1 1 



where I( •) i s the indicato r f u n c t i o n 2 . By d e f i n i t i o n , Z ^ < X ^ for a l l 

gated d i s c i p l i n e s . Moreover, there i s often a deterministic r e l a t i o n betwen 
(k) (k) 

Zj and Xj l i k e (2.1) and (2.6) but there are prominent exceptions such 

as the non-gated exhaustive case. 

One notices that equations (2.1)-(2.5) are recursive i n nature. Given 
„ (k) w (k) „ (k) v . „ (k) „ (k) „ (k) ,„ (k) , » •••» XJJ » w e can obtain , Z2 , •••> Ẑ j and , 

T 2
( k ) , .... T N

( k ) using (2.1) and (2.3). Then we can obtain C and 

X 2
( k + 1 ) from (2.4), (2.5) and (2.2). C l e a r l y , X 2

( k + 1 \ X 3
( k + 1 ) , ... can be 

derived successively i n t h i s manner. Thus, (2.1)-(2.5) completely 

characterize the evolution of the system. We s h a l l use these equations to 

solve our queueing problem by the method of imbedded Markov chain i n the next 

chapter. 

2 The in d i c a t o r function I(•) i s defined to be 1 i f the statement within 
brackets i s true and 0 otherwise. 
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3. FORMULATION OF THE SYSTEM EQUATIONS. 

3.1 Imbedded Markov Chain Formulation. 

The imbedded Markov chain we consider here i s the j o i n t random variable 

of a l l the terminal service times i n a cy c l e . If we define T^ k^ = ( T ^ k \ 

. .., T K ^ ) , then T ^ w i l l be the imbedded chain. The steady state 

s t a t i s t i c s of T*^k^ can be obtained using moment generating functions. Let 

P(s) where s = (S}» s 2> s^) be the MGF of the random vector T^ k^ as k 

approaches i n f i n i t y . Then we can write 

P(s) = I exp(s • t) I p(t|u) p(u) (3.1) 
t u 

where 

t = ( t l s t 2 , t N ) , u = ( u l s u 2, U J ^ J ) 

N 
s • t = ) s t = dot (scalar) product, , n n n=l 
p(u) = lim P r o b ( ? ( k ) = u) , 

p(t*|u) = P r o b ( ? < k + 1 ) - t V ( k ) = u). 

Interchanging the order of summation y i e l d s 

P(s) = I p(u) I exp(s* • t) p(t|u) (3.2) 
u t 

The t r a n s i t i o n p r o b a b i l i t i e s can be expressed by 
N 

'p(tlu) « n q(t |c ) (3-3) , n 1 n n=l 
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where 

q(t |c ) = Prob(T ( k + 1 ) = t |C ( k ) = c ) , 
n ' n n n' n 

N n-1 
c n . L 3 . L , j 

Thus, the summation over t i n (3.2) can be w r i t t e n as 
N 

I exp(s • t ) p(t|u) = n e x p ( s n t n ) q ( t n | c n ) ) 
-> n=l t t n 

N-1 
= n {I e x P ( s n t n ) q ( t n | c n ) ) I e x p ( s N t N ) q ( t J c N ) (3.A) 

n = 1 C n S 

Let L and 11^ be random variables having d i s t r i b u t i o n s of message lengths and 

a r r i v a l s i n a s l o t r e s p e c t i v e l y at queue N. Then the summation over t i n 

(3.4) can be evaluated as 

I e x P ( s
N

t N ) q ( t N l C N )  

fcN 
- E t e x p ^ T ^ ) ^ - c K ] 

z ( k + 1 ) 

= E [ e x p ( s N L N ) N | C N
( k ) = c N ] E [ e x P ( s N W N

( k + 1 ) ) ] by (2.3) 

= E [ e x P ( Y K
( k ) X n 8 N ( s N ) ) | C N

( k ) = c N ] o ^ ) by (2.1) and (2.2) 

= E[(exp(M K J ! n B N ( s N ) ) ) C N ] ^ . ( s N ) by (2.5) 

= exp(c N too^CtoSjjCSy))) o^,(sN) 

= e x P ( c N W ) ^ ( B n ) (3-5) 

where 

^ ( s ) = i!na N(toB N(s)). 
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Substitution of (3.5) into (3.4) gives 
N-l 

I exp(s-t)p(t|u) = n [I e x p ( s n t n ) q ( t n | c n ) ] exp(c'N % ( s N ) ) «^(s N) 
•+• n=l t 

n 
t 
N-2 

= n [I e x P ( s n t n ) q ( t n | c n ) ] I e x P ( s N _ 1 t N _ 1 ) q ( t N _ 1 | c N _ 1 ) e x p ( c N S ^ ) ) ^ ( s ^ 
n = 1 'n V l 
N-2 = n [I e x p ( s n t n ) q ( t n | c n ) ] I e x p ( ( s N . 1 + y s N ) ) W ^ N - l lcN-l> 
n = 1 C n CN-1 

. e x p ( ( c N - t N _ 1 ) SN(8N)) u i N ( s N ) 

N-2 
= n [I e x p ( s n t n ) q ( t n | c n ) ] e x p [ c N _ 1 V l ( W W > ̂  V l ( S N - l + 

n=l t 
n 

. e x p ( ( c N - t N _ 1 ) ysN)) (^(SJP (3.6) 

The l a s t step i s done by noti c i n g (c - t N _ ) i s independent of t^_1 and by 

using the same summing technique used to derive ( 3 . 5 ) . Continuing i n t h i s 

fashion, we can write 
N N N _> 

I e x p ( s - t ) P ( t | u ) = n exp((I u ) G n ( s ) ) n u>n( s n+H n(s)) 
->• n=l i=n J n=l t J 

N N ^ 
= n exp(u F (s) ) n u (s +H (s)) r n n , n n n n=l n=l 

N 
= exp(u'F >(s)) n W

n ( s
n

+ H
n ( s ) ) (3.7) 

n=l where 

Gn(h = S n ( s n + H n ( l ) ) (3. 7a) 
N 

H (s) = I G.(s'), !L.(s) = 0 (3.7b). k=rrrl 
Fn(J) = I G k ( l ) = FN(J) - Hn(J) (3.7c) 

k-1 
F(s) = (F,(s), F 2 ( s ) , .... F N(s >)) 
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Substitution of (3.7) into (3.2) gives 
N 

P(s) = [ II co n(s n + H n ( s ) ) ] P(?(s)) (3.8) 
n=l 

Eqn. (3.8) i s a recursive functional equation that allows us to solve for 

P(s) . We s h a l l attempt to c a l c u l a t e the f i r s t and the second order moments 
•*( k) 

of T with k-*00 i n the next section. 

Before leaving t h i s section, we notice that exactly the same procedure 

can be used to derive the MGF of the jo i n t terminal service times for the 

time continuous system with Poisson message a r r i v a l s . The r e s u l t s w i l l be 

exactly the same except that a l l time quantities are expressed i n seconds and 

the a r r i v a l MGFs (ct\(s)} are replaced by {exp( X^ (exp( s ) - l ) ) } where X^ i s the 

message a r r i v a l rate at queue i . 

3.2 Moment c a l c u l a t i o n s . 

To c a l c u l a t e the moments of the j o i n t terminal service times, i t i s 

convenient to take natural logarithm of both sides of (3.8) and write 
N 

P(s) = I 2 n ( s n + H n(s)) + P(F(s)) (3.9) 
n=l 

where 

P(s) = AnP(s) , to (s) = Jlno) (s) n n 
By d i f f e r e n t i a t i n g (3.9), we can get the ce n t r a l moment (and hence the 

moments) of the j o i n t terminal service times. D i f f e r e n t i a t i o n of (3.9) once 

and evaluation at s = 0 gives 
& N - oF. N o(s.+H.) 
» - J * L J + I ft ^ J (3.10) 
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A l l d e r i v a t i v e s w i l l be evaluated at the o r i g i n unless stated otherwise. A 

second d i f f e r e n t i a t i o n y i e l d s 
o~ N N ,* 5F 5F N ~ d 2F 

52P = y y S2P k ™ I y &P k 
^ L Ao Ao Ao Ao A d S i 5 s j k-1 *=1 5 s k d S A & S i & S j k-1 d S k & S i a S j 

+ y 5(s k +H k) 5 ( s k ^ H k ) 

k-1 i j i j 

Eqns . (3.10) and (3.11) can be re a d i l y expressed i n matrix form as follows: 

v = Av + b (3.12) 

V = AVA T + B (3.13) 

where 
-+ T -> T v = ( v l f v 2 , v N ) , b = ( b l t b 2, b N) , 

V i = 5s" • b i ~ . \ U J 5s . • 

V = [v. .] , v. . = ° , 
i j J i j a s 1 a s j 

aF. 
A = t a i j J • a i j = ^ • 

^k 5s., as . 
i J 

3.3 Approaches to the Solutions of the Basic Equations. 

There are two approaches to obtaining solutions of (3.12) and (3 .13) . 

The f i r s t approach i s to recognize that (3.12) i s a set of N li n e a r equations 
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5P of N unknowns-g-^— with the forcing terms . Then we notice that (3.13) 

represents another set of l i n e a r equations of N(N+l)/2 unknowns 

{v. ,} (v..=v..) with forcing terms {b, .}; these {b..} are obtained from the 

s o l u t i o n of (3.12). Hence, we can solve (3.12) and (3.13) by standard 

techniques for solving systems of l i n e a r equations. Naturally, the questions 

regarding existence and uniqueness of the solutions to both set of equations 

a r i s e . These questions can be answered by e x p l i c i t series solutions using 

the second approach discussed l a t e r . The ultimate goal i s to solve (3.12) 

and (3.13) e x p l i c i t l y i n closed form. Unfortunately, no such solutions are 

available for (3.13) except for the symmetric case or for N=2. 

The second approach i s somewhat numerical i n nature. We notice that 

both (3.12) and (3.13) represent recursive r e l a t i o n s that allow i t e r a t i v e 

numerical s o l u t i o n s . A new estimate can be calculated from the immediately 

previous estimate using the right hand side of (3.12) and s i m i l a r l y for 

(3.13). If the i t e r a t i v e procedure converges, then we can obtain a s o l u t i o n . 

The main r e s u l t s obtained following t h i s l i n e of thought can be summarized i n 

Theorem 3.1 i n the next section. 

3.4 Existence and Uniqueness of Solutions to the Basic Equations. 

Theorem 3.1; If the u t i l i z a t i o n of the system s a t i s f i e s p < 1, then unique 
CO 

solutions exist for both (3.12) and (3.13) and they are given by v = £ A b 
k=0 

00 T 
k k 

and V = ^ A B(A ) r e s p e c t i v e l y . 
k=0 
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Indeed, the theorem can be extended to a l l higher order derivatives of 

P(s) but we w i l l r e s t r i c t our attention to the f i r s t two orders of moments. 

The proof of Theorem 3.1 r e l i e s heavily on a result proved i n the Appendix 

st a t i n g that i f p < 1, then a l l the eigenvalues of A have magnitudes less 

than unity. We prove Theorem 3.1 using t h i s r e s u l t . 

Proof of Theorem 3.1: We diagonalize A by 

A = TAT"1 (3.14) 

where A i s a diagonal matrix with elements equal to the eigenvalues Xp X 2» 

X^ of A, and T contains the corresponding column eigenvectors. Using 

t h i s d i a g o n a l i z a t i o n , we can write 

I A b = I r A k r _ 1 b = i x I A V " ^ 
k=0 k=0 k=0 

and lAkB(Ak)T=I r A k r _ 1 B ( r " 1 

k=0 k=0 

= rd A k c A k ) r T 

k=0 
where 

c = p - V " 1 ) 1 - l C l J j . 

(3.15) 

(3-16) 

Now \\ A = 
k=0 

I K Ki=j) 
k=0 1 

and £ A K C A K 

k=0 
I c,.X kX k 

k=0 l j 1 J 

Both series exist i f |X.| < 1 for a l l i and t h i s Is guaranteed i f p < 1 



OO oo X 
Therefore I A b and I A*B (A* ) both e x i s t i f p < 1 and s u b s t i t u t i o n of 

k=0 k=0 
these seri e s into (3.12) and (3.13) w i l l v e r i f y that they are indeed 

solutions to the equations. Hence the existence of the solutions to (3.12) 

and to (3.13) has been established. 

To e s t a b l i s h the uniqueness of those solutions , we l e t v and u be 

solutions to (3.12) and write 

v = Av + D (3.17 ) 

u = Au + b (3.18) 

Subtraction gives 

(v - u) = A(v - u) (3.19) 

which implies 

(v - u) = A k ( v - u) for a l l k (3.20) 

but A k ( v - u) = TA^r *(v - u) •+ 0 as k •*• » so v = u. Similar arguments 

es t a b l i s h the uniqueness of the sol u t i o n to (3.13). 

3.5 Comments Regarding Solutions of the Basic Equations. 

The series solutions given i n Theorem 3.1 are useful i n es t a b l i s h i n g 

existence and uniqueness, but they do not shed l i g h t on the e x p l i c i t closed-

form s o l u t i o n s . Even for numerical solutions', one w i l l follow the i t e r a t i v e 

procedures given by (3.12) and (3.13) instead of c a l c u l a t i n g the series i n 

Theorem 3.1 term by term. In f a c t , a very nice numerical procedure was 

developed i n [28-29]. However, i t i s desirable to have ana l y t i c r e s u l t s that 
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display the e f f e c t s of changes i n system parameters. In the next chapter, we 

s h a l l derive a number of exact a n a l y t i c r e s u l t s . 
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4. SOME EXACT ANALYTIC RESULTS. 

4.1 Overview of Results. 

A number of exact a n a l y t i c r e s u l t s are ava i l a b l e regarding the 

solutions to ( 3 . 1 2 ) and ( 3 . 1 3 ) . F i r s t of a l l , ( 3 . 1 2 ) can be solved 

e x p l i c i t l y i n closed form by considering the average cycle time. The 

sol u t i o n to (3.12) allows us to simplify the forcing matrix B i n ( 3 . 1 3 ) . 

Next, we explore the structures of the matrices A and B i n ( 3 . 1 3 ) . A simple 

difference equation r e l a t i n g the unknowns { v^j) i s derived by ex p l o i t i n g the 

structures of A and B. This difference equation has not been reported before 

and It w i l l form the basis of the mean delay approximation to be presented i n 

the next chapter. 

4.2 Expected Cycle Time. 

From equation ( 2 . 4 ) , we observe that the expected cycle time at steady 

state i s equal to the sum of a l l expected terminal service times. This means 

the average cycle time i s independent of the queue. Using t h i s f a c t , we can 

compute the average cycle time and obtain other r e s u l t s as w e l l . We state 

these r e s u l t s p r e c i s e l y by the following Lemma. 

Lemma 4.1: 

The expected cycle time of queue i at steady state i s independent of i 

and i t i s given by 

(4.1) 
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~ p. EW 
5P _ ^ , _ i 
5s. 

1 

Moreover, 

= P l EC + EW1 = - i — + EW1 (A.2) 
l 

where 

EC = average cycle time, 

EŴ  = Uj' (o) = expected overhead from queue i to the next queue, 
N 

EW = \\ EW. = t o t a l expected overhead, 
j-1 2 

p^ = S^'(o) = u t i l i z a t i o n of queue i , 
N 

p = 1 p . - system u t i l i z a t i o n , 
j - l J 

Proof of Lemma A . l : 

From (2.A), we can write 
N „ x i-1 

lim E C . ^ = lim E[ I T\*> + £ T^'] 
k-**> 1 k-Kt. j=i J j = l J 

N / V. X 

- i m ^ 
- s i r «- 3 ) 

1=1 J 

Equation (A.3) states that the average cycle time of queue i at steady state 

i s independent of i and we denote t h i s quantity by EC. 

From (3.10), we have 



30 

Next, we notice from (3.7a) and (3.7b) that Gj,' G 3, and Hj, H 2, 

are a l l independent of s ̂  and from (3.7 c) that F^ = G^ + G2+ • • • + G ^ , 

therefore 
oF. oG1 S(s . + H.) 
^ = IT, - a n d 'as, 3 = I ( ^ = 1 ) 

N 

1 3-1 3 
From the d e f i n i t i o n s of 3. and S., we have 

i l 

a.' = a.' 8 . ' 

= (average a r r i v a l s i n a s l o t x average message length i n s l o t s ) at 

q ue ue i 

Thus, 

S.' - <*>.' = EW. i i ] 

/s N " 
° P V 0 P J . 1711 " P l A TT. + EWl 5s i -. . uo . 

1 3=1 3 

= p ]EC + Ew~i ( 4 . 5 ) 

Similar r e s u l t s can be obtained f or a l l other queues so (4.5) can be 

rewritten as 
-g-= p. EC + EW, ( 4 . 6 ) 0Sj i I 

Summation of (4.6) over a l l i gives 

EC = pEC + EW 

*=> EC =1̂- ( 4 . 7 ) 
L - p 

Combination of (4.3), (4.6) and (4.7) gives (4.1)-(4.2) 
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We remark here that (4.1)-(4.2) are very general r e s u l t s that can be 

obtained by considering equations (2.2)-(2.5) only without assuming any 

p a r t i c u l a r service d i s c i p l i n e . One also notices that we did not solve (3.12) 

d i r e c t l y to obtain (4.2). Instead, we exploited the c y c l i c symmetry of the 

system to get (4.6) and (4.7), which are much simpler than (3.12). This 

r e a d i l y demonstrates the importance of c y c l i c symmetry In our problem. 

4.3 S i m p l i f i c a t i o n of the Forcing Matrix B. 

The s o l u t i o n to (3.12) given by (4.2) can be used to simplify the 

elements i n matrix B to a considerable extent. This i s stated i n Lemma 4.2. 

Lemma 4 .2 

The elements {b̂ .. } of the matrix B i n (3.12) can be s i m p l i f i e d as 
N o(s + H ) o ( 6 . + H ) 

b i J " [ K 5s, 5s. ] E C <*'8> J k=l i j 
where 

0 ) . 

C i = V + EC 
2 varMj varL^ varW^ 

P i (TH^J2 + P i E L ^ ~ + "EC ( 4 ' 8 a ) 

EMj = average message a r r i v a l s at queue i i n a s l o t , 

varMj = variance of message a r r i v a l s at queue i i n a s l o t , 

EL^ = average message length at queue i , 

varLj = variance of message length at queue i , 

varW i = variance of switching overhead from queue i to the next queue; 

for the time continuous system with Poisson a r r i v a l s , 
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* .. . i 
r i = a i + -EC 

varWj 

= EMj E L j 2 + - g g — (A.8b) 

E L j 2 = second moment of the message length at queue i . 

Proof of Lemma A.2: 

From the d e f i n i t i o n of {b^^ } given i n (3.13), we have 

Y R a? * \ . . a 2 ( s k + V . . .. a ( s k + Hk> 5< sk + V 
i j , ̂ , ̂  5s, Bs, 3s . ^ 5s, 5s , 5s, 5s. J 

k=l "k i j i j i j 

and s u b s t i t u t i o n of (A.2) gives 
N 5 2F 5 2(s, + H ) 

b i 3 " H ( V E C + V ) - 5 T B ¥ T + V 5s as 
J k=l l j I j 

+ V L 5s. ] <*-9> 
i J 

From (3.7 a)-(3.7c), we have 

F. + H, = F. = G, + G~ + ... + G., 
a i N L 2 N 

and therefore 
a 2 F k a 2 ( s k + \ ) 

= \ E C "aiT^T + "k SiT^T ! 

i J i J 
a 2 F k a 2 F N a 2 s k 

i J i J i J 
a 2F a2H 

i J i 3 
(A.10) 
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Summation of (4.10) over a l l k and s u b s t i t u t i o n into (4.9) give 
3 2F N o2H, 

b i i = ( p E C + EW> lis-oin - A V E C i i y os,5s . , S Tc 5s.5s . 
i J k=l I j 

N 5 ( s k + Hfc) 5 ( s k + H k) 
+, ^, ̂ k 6s. 5s. k=l l j 

p r » r
 a \ . , a \ , N

v - . . &< 8k 4 f lk> r A 1 M 
= E C J t - a s - s s - " \ a r s r ^ r ^ — a r a T " <A-n> 

k=l i j l j k=l i j 

From (3.7 a), we have 
a \ . .. 9 ( s k + V 5 ( s k + V . , & 2 ( s

k
 + V 

as. as. K. as. as. \ as, as. 
i 1 i J i J 

and s u b s t i t u t i o n into (4.11) gives 
p r » ,. ̂  V 5< sk + V a< sk + V 

i j = k=l ^ ^ ^ 
= E C ? a ( s k + V a ( s k + V . 

, ̂, k 5s., as. 
k=l i j 

4.4 The Jacobian Matrix A. 

To study the Jacobian matrix A, we have to look i n t o the properties of 

the functions {F^, {G^ and {H^. The functions {G±} and {li\ } are defined 

i t e r a t i v e l y by (3.7a) and (3.7 b). We start with and calculate G N from H 

then we obtain H N_ 1 from G^, then G from then from G ^ and Ĝ ., 

and the i t e r a t i o n goes on. After we have obained Gp G 2, G^ and Hj, H 2, 

. . . i 1^ we compute F^ by summing {Gi> over a l l i and then F i by (F^ - 1L). 

These are the basic steps we follow to calculate the elements i n A. 
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Lemma 4.3: 

The Jacobian matrix A i n (3.13) can be expressed as 

A = [ u 0 - u 1 | u 0 - u 2 | u 0 - u 3 | ... | u 0 - U J J ] 

where 

u 0 = Pi 
(l+Pl)P2 

( l + p 1 ) ( l + p 2 ) p 3 

( V ( l + P k ) ) P N 

->• 
» u l = 

N-l 0 
0 

0 

P2 
(1+P2)P3 

( l + p 2 ) ( l + p 3 ) P 4 

N-l 
( n d+P k))P N 

k=2 k W 

o" 

0 

, u 2 

(4.12) 

0 

0 

P3 
( 1 + P 3 ) P 4 

N-l 
( n (i+Pk))P N 

k=3 

Proof of Lemma 4.3: 

From (3.7a)-(3.7c) , we have 
dG . S(s . + H .) oH 
3 _ £ » J 3 _ 

osj ai ~ 9 S i J i 

dF . 6T dH. 
1 m N 1 (4.15) 

dSj QSj oSj 
Eqns. (4.13) and (4.14) imply 
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SB. , 5H. 

i J 1 J 

5 F N 
a n d _ = ( i + 

dH 
+ P 1 I ( i = D 

j > 1 (4.16a) 

(4.16b) 

It can be seen that 

u. . = (1 + p.)u. + p.e. (4.17) 
->• 

where e. i s the i t h unit column vector. 
3 

The i t e r a t i v e r e l a t i o n s given by (4.16a) - (4.16b) and (4.17) are i d e n t i c a l 

and since û , = 0 = [ -g^- ], we conclude that 
i 

" i = t - s r ^ a n d uo= t - s r 1 ( 4- 1 8 ) 

J i i 
C l e a r l y , (4.18) and (4.15) imply the res u l t given i n Lemma 4.3 

4.5 An A u x i l l i a r y Result. 

We derive an a u x i l l i a r y r e s u l t before the de r i v a t i o n of the difference 

equation r e l a t i n g the unknowns ^ v ^ j } * n t n e n e * t section. 

Lemma 4.4: 

Let = -z— and I(«) be the ind i c a t o r function defined e a r l i e r i n i 5s i ' 

Chapter 2. Then 

( b i + l i + l 2 " [~^T 1 1 +1 ~ T ~ 7̂ 1 1 J 

a 2 1 a 1 
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Ji+l 
)t.) + 2t P ) I ( i - l ) ] KN 

2 i i al 

(A.19) 

Proof of Lemma A.4: 
oH. 

From the structure of given by (A. 18), we have 
i 

a s 1 + 1
 =

 P l a s i 

a i ± i ^ ! l j < i < N (^-20) 
a i a s i 

From (A.8), 

N a(s k-r H k) 2 

b « • E C j i t k [ — ^ T " ] 

i-1 oH. 2 oli 
= *C [ I t k(-g?) + t j (v * - 0 f o r k >1) (A.21) 

k=l i 1 

Thus, 
a 2 

( V i m — r b i i } 

a i 

i oH, 2 i-1 a oH 2 a 2 

° H- a i + l 2 

- E C ^ i -ar— + V i — r ' i ] 

i+1 a t 

a. 2 

= - [ t 1 + 1 + ( P l + 1 - - ^ ) t l ] 
a i 

Using the same r e s u l t s from (A.18) and (A.8), we have 
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d(s + H ) 
b i i = E C t i — a l " < 4- 2 3> 

Thus, 

f
a i + l a i + l 2 3 i . ^ 

^~a~r b n + i — r ^7 11 J 

1 a^ 1 
_ a i + l , _ a i + l ^ 

i b l i + l ~ b l i j 

- l i l i E C t r _ l l ± i i ! l + - a j + i a H i i 
~ a i 1 a s i + i a i ^ i + i a i 9 81 

2 
a ? 

= -EC t. (—) I( i = l ) i < N (A.24) 
1 a l 

Combination of (A.2A) and (A.22) give (A.19) 

A.6 A Difference Equation for the Second Joint Moments of Terminal Service  

Times. 

It i s d i f f i c u l t , i f not impossible, to solve (3.13) i n closed form. 

An a l y t i c solutions are a v a i l a b l e for the symmetric case and for N=2 only. 

For the symmetric case, (3.13) can be solved quite e a s i l y by arguments based 

on symmetry i . e . v. . = v . . and v . . = v. ,, .... In f a c t , v . . i s i ndependent 
i i 33 i J i + k J + k i J 

of i and j so long as i t j for the symmetric case. The algebra involved for 

the very simple case of N=2 i s already very tedious and the solu t i o n i n this 

case suggests that there i s l i t t l e hope i n the search for a simple formula 

for the general asymmetric case. Numerical techniques and h e u r i s t i c 

approximations were developed but t h e i r d i f f i c u l t i e s have already been 

discussed i n Chapter 1. Here, we derive a simple difference equation 
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r e l a t i n g the unknowns ^ v j j ) * Although t h i s equation does not allow us to 

solve (3.13) a n a l y t i c a l l y , i t represents a big improvement over e x i s t i n g 

a n a l y t i c r e s u l t s . 

Lemma A .5 : 

The unknowns {v. .}, modified from {vJ . }, s a t i s f y the following i j i j 
r e l a t i o n : 

< D H D V + P i D V + PjDH><V 

' i ti+l 
= -2 — I ( j - i ) + -=-=• I ( j = i < j < N (A.25) 

p i p i + l 
where 

v 
i j 

p.p .EC 
1 J 

i * j 

v = { (A.25a) 

1 , V i i . ^ C i 

P , 2 

var Cj = variance of cycle time of queue i at steady state, 

D = the forward difference operator i n the f i r s t index, H 
= the forward difference operator i n the second index; 

that i s 

W • v i j - V i y 

Vv<V = D vD H(v 1 : J) = v. . - v l j + 1 - v i + 1 . + v 1 + 1 J + 1 . 

Proof of Lemma A.5: 

We define r. to be the i t h row vector of the matrix [ u 1 1 u 2 | u 3 1 . . . | i ^ J , 
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^IN • - T = as i n Lemma 4.4 and 1 = (1, 1, 1) . Using these d e f i n i t i o n s , 
i 

we can write the i t h row vector of A as ~ Th 6 1 1 from (3.13), we 

have 

v.. = (a. f T - r . T ) V ( a . f - r,) + b.. i i l i i i i i 
= a . 2 f T vf - 2a.f TVr. + r . T V r . + b.. (4.26) l l l l l i i 

and v u = ( a ^ 1 - r 1
T ) V ( a 1 f - r^) + 

= f Tvf - a 1 ? T V r + b u (v = 0) (4.27) 

Elimination of l ^ V r ^ using (4.26) and (4.27) gives 
a. T a. 

(v - 2 — v,.) = -a. 2 f vf + r7Vr. + (b. . - 2 — b..) ( 4 . 2 8 ) v i i a li.' l i i i i a^ l i ' 

Replacement of i by i+1 i n (4.28) gives 

< ' i + l i + l " 2 i f 1 V l i + 1 > " - a i + l 2 f T v f + r 1 + l V * i + l + < b l + l i + l " 2 a f \ i + l > 

i < N (4.29) 
Elimination of ? TV? using (4.28) and (4.29) gives 

3 3 ^ 3 

( v i + l i + l - 2 I — v l i + l > T < V ^ " 7̂ 1 a. * 1 l 
3 ^ 3 3 ^ 3 

•*• T + i+1 -• „ i+1 . , i+1 , u 9
 1

 K i 
= r i + l V r i + 1 T V r i + ( b i + l i - r l " 2 T. b l i + l } ^ i * aT 

a. 1 a. * 1 l i 
a 2 

= r . ^ V r V , --i±^Lr. TVr. + b. . i < N (4.30) 
1+1 1+1 o i l 11 a. * l 

where 
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2 

\ i
 = < V i i + i " 2 TT b W - ~ r ( b i i " 2 b i i } 

1 ^ 1 
a 2 a 2 

= EC [ t ^ + ( p 1 + 1 t±) + 2 ^ ^ ) I ( i = l ) ] i < N (A.30a) 
V 1 

Eqn. (A.30a) i s obtained by Lemma A.A. 
Now, 

T a 2 

r i+l V r i+l T r i a. z 

l 
N N OR. dH 0 a. . 2 dH, dH . Y Y r 1+1 k A -I 

=,̂ . // as,,, as... 2 ^ os- J V k* 
k=l A=l i+1 l+l a^ i l 

i i dH. dH 0 a. . , 2 dH. dH 0 dH . 
= y * i ± l _ k * ] v ( v ^ - O f o r j ) ! ) 
k=l W d S i + l 3 s i + l a ^ 2 i i i 
i-1 dH i-1 dH dH^ dH, dH, 

_ y K I + y i * + i i 
\ i i d s i + i d s i + i V k l xii ^ i + i a s i + i V i i L ^ i + i ^ i + i V i l 

by (A.20) 
5H. i-1 SH k dH. 2 

=  2 *^Ti J i ^ I + T V k l + ( " ^ + T ) V l i 

i-1 a b\ 
=
 2 p i + i ^ i r ^ r v ^ i + i S i by (4-2o) 

k=l i i 
g 

= 2 7 I
L ± I Pi+1 ' i ^ i + P i + 1 2 V i i (A.31) 

Su b s t i t u t i o n of (A.31) into (A.30) gives 
a i + l . a i + l 2 

( v i + n + i - 2 7 — vn + i > r ( v i i " T: V I I } 

1 a / 1 i 
a. 

= 2 I T 1
 p i + i r l v*i + p i + i S i + bii 1 < N (A'32) 
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The next step i s c r u c i a l i n t h i s proof. We notice that a l l the 

variables i n (A.32) are functions of {p^} and {t^}. By c y c l i c symmetry, eqn. 

(A.32) should hold i f we perform a c y c l i c s h i f t of indices i . e . replace p by 

p^+2.» p^ by p^ and s i m i l a r l y for {t^}. We denote t h i s c y c l i c s h i f t of 

indices by the operator CS(»). We further notice that 

C S ( V • v i + i j + i 1 » J < N ( 4 - 3 3 ) 

CS(p.) = p i + 1 i < N and C S ^ ) = P]_ (A.34) 

CS(t.) = t. ^ . i < N and CS(t. ) = t. (4.35) 
cL c l 

Csf - i i i ) = - i i 2 - i < N-l (4.36) 
a i a i + l 

With these i n mind, we perform the c y c l i c s h i f t of indices on (A. 32) and £,et 
2 

(v, + 9 , + 9 " 2 CS v ) - !i+L^ ( v - 2 C S 

1 a i + l 

- 2 — P i + 2 C S < V V e V + P " i + 2 v l + l i + l + C S ( b i i ) 1 < h ~ l ( 4 < 3 7 ) 

a i + l 

i+2 •*• T..+ , . 2 

Replacement of i by i+1 i n (A.32) gives 

ai+2 \ a i + 2 2 , „ a i + l 
( vi+2i+2 " 2 a — V l i + 2 ) : ( v i + l i + l ~ 2 — V l i + 1 } 

1 a. *• i+1 

- 2 — P,„ r ^ / v e * + R , „ V 1 U 1 + b~ + 1 i < N-l (4.38) 
a i + l 

i+2 i+1 i+1 Ki+2 i+li+1 i+li+1 

Noticing that CS(b' i i) = ^ for KKN-1, we can subtract (A. 37) from 

(A.38) and get 

1 1 a 2 ! 1 
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" 2 Pi +2 ( rVlT v eVl " 1< i < N-l ( 4 . 3 9 ) 

Now, 
-> T + T •* 
r i + l V e i + 1 - c s ( r i V e i > 

i d l ^ 1-1 oĤ . 
= E l i — Vki+1 ~ C S ( I IT v

k i ) 
k-1 1+1 k-1 1 

Y V a H k + i 
" k - i ^ i + i V k i + 1 " k i i a s i + i V k + 1 1 + 1 

i 5H, i 5H^ 
v. = y v - y 

k= 
OH 
k-1 ^1+1 k l + 1 k=2 5 S 1 + 1 k l + 1 

1 
v. 

& s i + l 1 1 + 1 

1 + 1 v, . i < N (4.40) 1+ P l li+1 

Moreover, 

a, a 
CS f—) = - i i i 1 < N (4.41) 

V V a2 

Substitution of (4.40) and (4.41) into (4.39) gives 

, V l i + 2 V 2 i + 2 ^ ^ , a i + 2 r
V l i + l V 2 i + 1 , 

- ^ 2 ^ a 7 ) + 2 a i + 2 7 ^ ^ 

= 2a „ ~ v 1 J M 1 < i < N-l (4.42) i+2 1+p li+1 

S i m p l i f i c a t i o n of (4.42) gives 
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( l + P l + P 1 + 1 ) v 1 1 + 1 - d + P 1 + 1 ) v 2 l + 1 - d + P ! ) v 1 1 + 2 + v 2 1 + 2 = 0 

1 < i < N-l (4.43) 

(l - r p 1 - r p.)v l i - d + P l ) v 2 1 - < 1 + P l ) v 1 1 + 1 4 v 2 1 + 1 = 0 

2 < 1 < N (4.44) 

Similar c a l c u l a t i o n s can be done for i = 1 and i = 2 and the r e s u l t s are very 

s i m i l a r except f or the residual terms on the right hand side of the equation. 

The r e s u l t s are 

c2 

(1 + P l + P 2 ) v 1 2 - ( l + p2) v 2 2 - (1+Pj)v 1 3 + v 2 3 = — (4.45) 
t. 

( l + 2 P l ) v n - ( H - P l ) v 2 1 - ( 1 + P l ) v 1 2 + v 2 2 = -2 — (4.46) 

Combination of (4.44), (4.45) and (4.46) gives 

< DH DV + P l D V + P j D H ^ l j 
£1 C2 

= _ 2 _ i i ( j = l ) + _ £ I(j=2) j < N (4.47) 
p l p2 

Cy c l i c s h i f t of indices on (4.47) y i e l d s (4.25). 
var Cj 

We would also l i k e to show v.. =—57— given i n eqn. (4.25a). From 
i i fcL 

(4.26), we have 
v n = a ^ f v t + b n 

= P. 2 ? T V l " + t, EC. 

Thus v EC = tTvt 
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' A A a s i d s j 
N N o = I I [ a^--&-P-^-] 

i = l j=l & S i d S j & S i d 3 j 

= lim I f { E I T . ^ T . ^ ] - E [ T < k ) ] E [ T <k>]} 
k*» i - i j=l 1 J 

2 N 2 

( k) 

= l i m { E[( f T < k )) ] - ( E [ £ ' T ^ ] ) } 
k+» i - l i - i 

= lim var 

var C n 

=> v 11 EC 
var C. 

= > v i i = - T c - < 4 ' 4 8 > 

Lemma 4.5 i s a major contribution of this t h e s i s . No such simple 

r e s u l t r e l a t i n g the jo i n t moments of terminal service times has been reported 

before. Eqn. (4.25) i s a two dimensional l i n e a r but s p a t i a l l y variant 

difference equation. It can be solved up to N a r b i t r a r y constants. To see 

t h i s , we rewrite (4.25) as 

- H ^ i j ^ V i j ^ i + i j + i ^ p — ^ = i + 1 > < 4' 4 9 a> 

* i j + l = ( 
l+2p, . _ i fci 

It H ^ v i l + ! ¥ - v 1 + u + 1 ] + ~ i - J (4.49b) 

Using (4.49b), we can express v i i + ^ including CS(v N_^ N) i n terms of the 

diagonal elements. Then we can use (4.49a) to express other off-diagonal 

elements and th e i r c y c l i c - s h i f t e d counterparts i n terms of the diagonal 

elements i n a successive manner. Thus, we can assign N a r b i t r a r y values to 



45 

the diagonal elements and generate a so l u t i o n to (4.25). In other words, 

(4.25) i s not a complete set of equations that characterize a unique 

s o l u t i o n . 

However, we can use (4.48) to generate N equations r e l a t i n g v to 

other off-diagonal elements. This suggests a new numerical algorithm for 

solving (3.13). We start with a guess of the diagonal elements, compute a l l 

other off-diagonal elements by (4.49a) and (4.49b), update the diagonal 

elements by (4.48) and repeat the same procedure. The c r i t e r i a for 

convergence of th i s numerical procedure has not been established but 

experiments have shown that not only does the procedure converge f o r p < 1, 

i t also converges much faster than the algorithm given i n [29]. 

Eqn. (4.25) i s not only useful for numerical solutions, i t can also be 

used to solve (3.13) e x p l i c i t l y for special cases and to obtain approximate 

s o l u t i o n for the general case. In the next section, we use (4.25) to solve 

(3.13) for the symmtric case. An approximation based on (4.25) w i l l be 

presented i n the next chapter. 

4.7 Solution for the Symmetric Case. 

As remarked e a r l i e r , (3.13) can be solved e a s i l y for the symmetric 

case. We do t h i s i n the following Lemma. 

Lemma 4 .6 

If p and t j are independent of i , then the s o l u t i o n of (3.13) i s given 

by ( i n terms of v. .) 
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where 

r. . - . w -i T + T - I - K i * j ) (4.50) 
i j ( l + P i ) ( l - p ) 1 + Pi Pi 

p = Np ±, t = Nt i. 

= v. 

Proof of Lemma 4.6: 

By symmetry, v n = v 2 2 ... . N N -

From (4.49b), we have 

1  li 
V i o = v O Q = • . . = v.. 1 X = v. . + - r — (4. 51) 
12 23 N-1N i i 1 + P i Pi 

From (4.49a), we have 
, t. 

^ ""̂  1 1 

IJ 24 N-2N i i 1+p 

Successive c a l c u l a t i o n s using (4.49a) show that 
v. . = v.. + ~ ' i * j (4.53) 

i j n 1+p. p. 

Furthermore, 

v = ±- f Tvf 11 EC 
N N N 

t. l = y y p. p. v.. + y t. 
i i i j i i P I P J ^ i ^ 1 

= N ( p 1 2 y n + t 1 ) + N ( N - l ) P l 2 ( v 1 1 + I ^ - - ^ ) 

- P ^ l l - ^ 

A V l l d + P l ) ( l - p ) 

Combination of (4.53) and (4.54) gives (4.50). 

(4.54) 
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5. MEAN DELAY ANALYSIS. 

5.1 Relationship between Mean Message Delays and Service Time Moments. 

As remarked i n Chapter 1, our goal i s to analyze the mean message 

delays on a token-ring. In the l a s t chapter, we concentrated on the solution 

for the second j o i n t moments of the terminal service times, because there i s 

an intimate r e l a t i o n s h i p between the mean message delays and these moments. 

This r e l a t i o n s h i p i s stated i n Lemma 5.1. 

Lemma 5.1: 

The mean queueing delay (excluding service) of a message' at queue i i s 

given by 

E D _ ( s l o t ; = j ( 1 + p i ) ( ~ i . + E c ) + ^ { i EL 1 - 1) (5.1) 
i 

for the discre t e time slot system and 

ED.(Poisson) " I d + P i X v ^ + EC) (5.2) 

for the continuous time system with Poisson a r r i v a l s . A l l quantities i n 

(5.1) and (5.2) are defined e a r l i e r i n Chapter 4, EC i n Lemma 4.1, var M , 

EM^ and EL^ i n Lemma 4.2 and v ^ i n Lemma 4.5. 

Recall that the delay i n a di s c r e t e time s l o t system i s measured i n 

sl o t s whereas the delay i n a time continuous system i s measured i n seconds. 

Thus, the quan t i t i e s i n (5.1) and (5.2) may have d i f f e r e n t numerical values 

even i f they represent the same thing. This i s important for system 

conversions such as t r e a t i n g the time continuous system as a l i m i t i n g case of 

the d i s c r e t e time slot system. 
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Proof of Lemma 5.1; 

The d e r i v a t i o n of eqn. (5.1) can be found i n [27] but we s h a l l include 

i t here to make th i s thesis self-contained. 

P h y s i c a l l y , the average mesage delay at a queue on a token r i n g i s the 

r a t i o of the sum of a l l message delays over many cycles to the number of 

messages served i n the same period of time. Let N be the number of cycles 
T 

we measure the message delays, ED^ be the expected t o t a l message delays i n a 

cycle and EZ^ be the expected number of messages served i n a cy c l e . Then the 

average message delay ED^ i s given by 
T T N ED ED 

E D i = IT EZ" - = E Z ~ <5-3> c i i 
T 

Quantities ED^ and EZj are independent of the cycle because we are only 

interested i n the steady state. For t h i s reason, a l l superscripts k denoting 

the kth cycle w i l l be dropped. 

From (2.1), (2.2) and (2.5), we have 

EZ = EYj = EC± EMj (5.4) 

T 
The quantity ED., i s more d i f f i c u l t to c a l c u l a t e . We sum a l l the message i n 

a t y p i c a l cycle and l e t 
p 

Cj = previous c y c l e , 
P 

Mj ^ = number of messages arri v e d i n the j t h s l o t of the previous 

c y c l e , 
Zj = number of messages served i n the current c y c l e , 

r 

L. . = the length of the j t h message being served i n the current cycle. 
1 > 3 
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The delay of a message consists of two parts: waiting time f o r the beginning 

of current service cycle and the sum of service times of messages buffered up 

front of the queue. By separating these components, we can see that the 

t o t a l delay i s given by 

Z - C - 1 T r P P r r C D. = I (C - j) M + I L (5.5) 
1 j-1 1 1 , 2 j-1 k-1 1 } 

Taking expectation of (5.5) gives 

ED 

= Z [ \ cJ(cJ-l)EM1 +4 Z ^ z J - U E L j (5.6) 

Since Z therefore 

= E[cJ EM2 + C j ( C j - l ) ( E M 1 ) 2 - C^EMj 

= E[Cj(var K± + CjCEM^) 2- EM^ ] (5.7) 

Substitution of (5.7) into (5.6) yi e l d s the following a f t e r some 

s i m p l i f i c a t i o n : 

EC. EM i 
(5.8) 

Substitution of (5.8) and (5.4) into (5.3) gives (5.1). 
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Eqn. (5.2) can be derived from (5.1) as a special l i m i t i n g case. To do 

t h i s , we f i r s t l e t the number of message a r r i v a l s i n a slot be Poisson. Then 

the term (var - EM^) becomes zero. Next, we l e t the time s l o t go to zero 

while keeping the absolute value ( i n seconds) of the cycle time f i x e d . Thus, 

the constant (- -ijj) e f f e c t i v e l y disappears from (5.1) and (5.1) Is converted 

to (5.2) with the units changed from time s l o t s to seconds. 

5.2 A Fundamental Relation for {v^}-

Eqns. (5.1) and (5.2) show that v ^ i s an important element of the mean 

message delays. In f a c t , i t i s the only unknown appearing i n the mean delay 

expressions. Therefore, i t i s hel p f u l to have as much information on {v„ } 

as p o s s i b l e . Based on Kleinrock's conservation law [15], a simple r e l a t i o n 

for ( V J J } can be derived. This i s stated i n Lemma 5.2. 

Lemma 5.2: 

The unknowns ^ v ^ j ^ s a t i s f y the following equation: 

j / i ^ i ^ i i " T^p ( 5' 9> 

where 
N 

p = 1 p = t o t a l system u t i l i z a t i o n , 
1 = 1 1 

N 
t = I * i • 

i=l 



Proof of Lemma 5.2: 

Let us c a l l the general time s l o t system we are considering System A 

and denote i t s parameters with superscript A. We now a r t i f i c i a l l y construct 

System B with parameters superscripted by B from the following 

s p e c i f i c a t i o n s : 

( i ) System B i s time continuous with Poisson a r r i v a l s , 

It i s important to r e a l i z e that System B i s r e a l i z a b l e i . e . no 

ove r s p e c i f i c a t i o n s or inconsistencies i n the parameters. 

Since the numerical values of {v^} depend only on {p̂} and {t^}, we 
~ A ~ 3 ' - 3 

conclude that v^^ i s equal to v^^ for a l l i numerically. Furthermore, v i s 

independent of the fixed overhead Ŵ , which i s the only overhead i n System B. 

Thus, i f we l e t EŴ  go to zero, the mean delay at each queue i n System B w i l l 
1 B ~ B B be given by (I4p^) v ^ . With EW^=0, System B i s now a work conserving 

system i . e . the server w i l l not be Idle so long as there i s a customer i n the 

system. We are now ready to apply the conservation law. 

Kleinrock's conservation law states that i n a work conserving 

multi-queue system, the i n t e n s i t y weighted mean of the average delays of a l l 

the queues i s independent of the way the queues are served. The law also 

states that for any M/G/l system with no preemption, the i n t e n s i t y weighted 

mean of the average delays i s given by 

( i i ) P 

( i i i ) var 
j=l 



where 
N . EL. 2 

We notice from (A.8b) that 
2 

B 
Zi = P i 

B E ^ ! ) 

EL' B 

S u b s t i t u t i o n of (5.11) into (5.10a) shows 

o A 2 C i 2 1 

1=1 

and therefore 

N p 

I 
1=1 p 

Therefore, 
N p 

1»; 
B 
i 1 

1 B 
~2 Z 

1-P B 

r 1 1 , B. ~B 

i-1 p 
N 

1 B 

B 1-p 

r B / I _ L B ~ B p t 

-» 2, P 1 ( 1 + P 1 ) V = J I — i i 
B. B 

B 
1=1 * * 1-p 

Replacing the superscripts B by A gives the desired r e s u l t . 

(5.10a) 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

5.3 An Approximation for { v^j}. 

To obtain exact solutions for { V J J }> ( 3 . 1 3 ) or equivalent equations 

must be solved. We cannot provide a closed-form a n a l y t i c s o l u t i o n . However, 

a very good approximation based on Lemma 4.5 can be derived. We start by 

considering the di f f e r e n c e ( v 2 2 - v ^ ) . From (4.26) or (4.27), we have 
1 *T (5.15) 

and 
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v 2 2 = — CS(?TV1) ' (5.16) 
where CS(») Is the cyclic shift operator defined in Sec. 4.6. 
Subtraction gives 

( v 2 2 - v n ) = ^ (CS(f TV?) - 1TV1) 
N-l N 

= E c t . ^ C S ( V - . = ^ l j ] 

- 2 [jIiCS(p.pNv.N) -l^ P lp. v x.] 

= 2 [ ^ P x P ^ S ^ . ^ - ^ p . p . v , . ] 

= 2 P1 ^ P j + J C S ^ N > - ^ l j + J <5'l7> 

Now, assuming that the total u t i l i z a t i o n i s low, a l l the coefficients 
appearing in (4.49a)-(4.49b) can be essentially replaced by unity and thus 

'i+l 
V i j * V i + l j + V i + l j + l " p ^ ; I ( j = i + 1 )

 1 < J 
v.. + 1 - { (5.18) 

1 ~ Zi 

i ( v i i + v i + n + i ) + T : 1 = J 

Successive calculations of the off-diagonal elements using (5-18) gives 

v ~ i j 4<*ii + v + -pf 4 < J ( 5 - 1 9 ) 

Substitution of (5.19) Into (5.17) gives 

( v 2 2 - v n ) - 2 P l Y P J + 1[CS£ ( V j ^ ) + 1*) ( v n + v . + 1 . + 1 ) - Ii ] 

N _ 1 C4+1 t7 
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N-l tl N-l 

= 2 p i [ ^ V i ^ P J + I ] 

= 2 P l [ ( t - t ^ - l l ( p - P l ) ] 

P i t 
= 2pt (— - —) (5.20) •P 

By c y c l i c symmetry 

•P 

Using (5.21), the l e f t hand side of (5.9) can be computed as follows: 
^ i + i i + i " v ~ i i * 2 p t £ " 7 ^ ( 5 > 2 1 ) 

N N i-1 p. t . 
I P i d + P i ^ j i - I PjCl+Pj) [ v n + 2pt I ) ] 

i = l 1=1 j=l 
N N i-1 p. t . 

= i p (i+p ) v + 2 Pt i j Pi(i+Pi) ( - ^ - r 1 ) < 5 ' 2 2 > 

i-1 i-1 j=l p 

Thus, (5.9) can be used to ca l c u l a t e as 

* u te t T V 2PT I ^ p i ( 1 + p i ) ("S1--^ )] / I p i < 1 + p i > ( 5- 2 3> 
p i-1 j-1 H i-1 

By c y c l i c s h i f t i n g of i n d i c e s , we can compute ^22' v33' '*'» VNN* 

Unfortunately, the double sum In (5.23) cannot be s i m p l i f i e d for general 

cases so we have to leave i t as i t i s . 

5.4 Comments on the Approximation for { v^}* 

It i s important to e s t a b l i s h or have some i n d i c a t i o n on the region of 

v a l i d i t y of our approximation given by (5.21) and (5.23). Clearly, our 

approximation i s exact for the symmetric case. From the l o w - t r a f f i c 

assumption we made to e s t a b l i s h (5.18), our approximation should also be very 
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good at low t r a f f i c l e v e l s . Although (5.21) i s not exact, i t suggests that 

the di f f e r e n c e s among ( v ^ } are small compared with the actual values of 

{v^ } at very high t r a f f i c l e v e l s (p •*• 1). With t h i s assumption and using 

Lemma 5.2, we can write 
N 

' i i K ~l-p ' J 1
P i ( 1 + P i > ( 3 ' 2 4 ) 

for p close to unity. This matches the dominant term i n (5.23). Thus, we 

expect (5.23) to work well at high t r a f f i c l e v e l s as w e l l . As a matter of 

f a c t , comparisons with exact numerical r e s u l t s have shown that the 

approximation given by (5.21) and (5.23) i s very good over a very wide range 

of the parameters ( P j ) a " d {t^}•. These comparisons w i l l be discussed in the 

next section. 

A nimber of i n t e r e s t i n g properties of {v^^} can be deduced from (5.21) 

and (5.23). Eqn. (5.23) shows that v ^ consists of two parts. The f i r s t 

part i s a hyperbolic function independent of i that grows unbounded as p •+ 1. 

The other part i s the p o s i t i o n dependent part given by a double sum. Eqn. 

(5.23) i s also l i n e a r i n t ^ , which conforms with the l i n e a r i t y of the exact 

equation (3.13) with respect to t ^ . Eqn. (5.21) gives a somewhat d i f f e r e n t 

flavour about }; i t shows the r e l a t i o n of v^^' s between adjacent queues. 

For example, (5.21) suggests that a queue 'suffers' i f the preceding queue 

has a large f r a c t i o n of the t o t a l u t i l i z a t i o n but 'benefits' i f that 

preceding queue has a large t ^ . If t^ i s d i r e c t l y proportional to P i, 

(5.21) predicts that v ^ i s approximately independent of i . This special 

case corresponds to the time continuous system with Poisson message a r r i v a l s , 



fixed overheads and a constant message length for the whole system. 

5.5 Comparison of Approximation and Exact Numerical Results for {v^}* 

In t h i s section, we compare the approximations given by (5.21) and 

(5.23) with exact numerical r e s u l t s . The biggest problem i n the comparison 

i s the search for representative cases, because we cannot possibly do the 

comparison for a l l conceivable combinations of parameters. Besides the 

number of queues N i n the system, the parameters needed to solve (3.13) are 

(Pj) and { t j } . These parameters cannot take on a r b i t r a r y values. F i r s t of 

a l l , they are a l l p o s i t i v e . Secondly, the t o t a l u t i l i z a t i o n p of the system 

should be less than unity. Even with these r e s t r i c t i o n s , the parameter space 

i s s t i l l unmanageably large. 

Since the approximation i s exact for the symmetric case, we c e r t a i n l y 

should look into highly asymmetric cases. Furthermore, we notice from (4.8a) 

that 
var Mj var L. var Ŵ  

This suggests that t^ can be very roughly regarded as a li n e a r combination of 
var M. - var L. var W. 

o i i i 
p . , P j , 1 i f the normalized variances j , —gj- and — — do not vary 

1 (EM.) i 
l 

appreciably among the queues. For this reason, we s h a l l look into cases for 

t j a P j 2 , t ^ <* p ^ and t ^ « 1. With these considerations i n mind, we do the 

comparisons for a l l possible combinations of the following parameters: 

( i ) N = 8, 16. 
( i i ) t ± cc ? 2 t p ^ i , ! / p ^ l / p ^ . 
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( i i i ) 0.01 < p < 0.99 with steps of 0.01. 

( i v ) 1 large user with u t i l i z a t i o n 100 times that of other i d e n t i c a l 

users, 

1 small user with u t i l i z a t i o n 0.01 times that of other i d e n t i c a l 

users, 

2 c l u s t e r s of i d e n t i c a l users with u t i l i z a t i o n r a t i o of 1:5. 

In each case, the r e l a t i v e errors (absolute value) between the approximation 

and the exact numerical s o l u t i o n are computed for a l l queues; then the 

maximum and the average of these r e l a t i v e errors among the queues are plotted 

against the t o t a l u t i l i z a t i o n . There are f i v e curves, l a b e l l e d from 1 to 5, 

i n each graph. Curve 1 corresponds to the case of t^ « P±^' 2 to t^ « p^, 3 

to t^ « 1, 4 to t j <* 1/Pj, 5 to t j « 1/p j 2 . The plots are shown at the end 

of t h i s section. Some of the curves i n these plots are too close to be 

l a b e l l e d separately so they w i l l be l a b e l l e d as a group. 

As expected, our approximation works well under very l i g h t and very 

heavy t r a f f i c , as shown In the p l o t s . The p l o t s also show that the 

approximation i s very good for t <= p 2, t <* p , t « 1 as well as for a l l 
i i i i i 

cases of a single large user. When t̂ , <* 1/p^ or t^ <* 1/p^ 2 , the maximum 

r e l a t i v e errors at medium system u t i l i z a t i o n s of 0.7-0.8 can be as high as 

12%. Fortunately, these are rather u n r e a l i s t i c cases. For example, i n the 

D-net protocol, var Ŵ  = 0 and so from )(4.8a) 
var M var 

ti = p i 2 TEMTT2 + p i ~EL7~ • 

Therefore, t tends to be small i f p̂  i s small and t h i s contradicts the 

inverse r e l a t i o n s given by t. « 1/p, and t. * 1/p, 2. Even with these 
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u n r e a l i s t i c system parameters, our approximation can s t i l l give reasonably 

accurate r e s u l t s (errors of about 10%). For more r e a l i s t i c parameters, our 

approximation i s excellent (errors of 1 to 2%). Thus, i t i s not unreasonable 

to treat our approximation as though i t were exact for many ap p l i c a t i o n s . 



.5.1b E versus p for N=8 and 1 single large user, avg 
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F i g . 5.3a E versus p for N=8 and 2 c l u s t e r s of Identical users. 
& max 

6 . 0 - = j 

. 5.3b E versus p for N=8 and 2 c l u s t e r s of I d e n t i c a l users, 
avg 



F i g . 5.4a E versus p for N=16 and 1 single large user, 
avg 
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F i g . 5.6b E versus p for N=16 and 2 c l u s t e r s of i d e n t i c a l users. 
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5.6 Delay-vs-Throughput Results. 

Eqns. (5.1) and (5.2) show the r e l a t i o n between average message delays 

and the unknowns {v ̂  } while eqns. (5.21) and (5.23) give approximate 

expressions f o r ^ V J J}* By combining a l l these equations, we can obtain an 

approximate sol u t i o n for the average message delays. We copy (5.1), (5.2), 

(5.21) and (5.23) here for easy reference: 
. . . . var M. - EM. 

E D ( s l o t ) = 1 ( l - ^ K v ^ 4 EC) + j ( i E ^ - l ) (5.1) 
i 

^ ( P o i s s o n ) . 1 ^ ) ^ + E C ) ( 5 . 2 ) 

W I - V ^ T ) ( 5 ' 2 1 ) 

- i i • [ £ - P - X X p i ( i + p ^
 {^-^)] ' U ( i + P i > 

1=1 J=l i=l 
There are a nunber of special cases worth atten t i o n . 

(5.23) 

We f i r s t consider the case where v ^ i s independent or approximately 

independent of i . With this assumption and using Lemma 5.2, we get (5.24). 

We can rewrite (5.24) as 
N 

v. . - - r ^ - / (1 + I p , 2 / p ) (5.25) 
1 1 1 _P i = i 1 

Substitution of (5.25) into (5.1) and (5.2) gives 

/ -, i T].t i var M. - EM 
E D ( s l o t ) m l ^ ^ + l ( EL^-1 ) (5.26) 

i 
and 

TI t 
(Poisson) B j i new ( 5 > 2 7 ) 

i 2 1-p 
where 
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N ? 
n. = (1+P.) / (1 + I P./p), 

1 i=l 

tnew = t + EWd+ĵ  p 2 / p ) . 

The f i r s t term on the righ t hand side of eqn. (5.26) i s the queueing delay of 

an»M/G/l single-queue system with appropriate parameters. The second term i s 

due to the non-Poisson nature of the a r r i v a l s , which can be p o s i t i v e or 

negative. The t h i r d term arises because a l l message a r r i v a l s are registered 

at the end of a time s l o t . For the time continuous system with Poisson 

a r r i v a l s , the l a s t two terms vanish, as noted e a r l i e r . 

For very heavy system t r a f f i c (p+1), v i s approximately independent 

of i , as remarked e a r l i e r . Thus, (5.26) and (5.27) are v a l i d for this case. 

Moreover, the hyperbolic term dominates the right hand side of (5.26). 

Therefore 

( s l o t ) _ 1 T 1i tnew , 
E D i ( 5 , 2 8 ) 

and 
•n t 

(Poisson) „ 1 'i new (5.29) 
i 2 1-p 

Eqns. (5.28) and (5.29) show that the average delays for both s l o t and 

Poisson a r r i v a l s are approximately proportional to (1+p^) as p •*• 1. This i n 

turn implies that i f a system has a user with u t i l i z a t i o n close to unity, the 

delay suffered by t h i s user i s roughly twice the delay suffered by other 
users. 

For very low system t r a f f i c (p •*• 0), (5.21) implies i s 
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approximately independent of i . Thus, (5.26) and (5.27) are again v a l i d in 

this case. Furthermore, 

1 T 1i tnew 1 
j \"p - j (t + EW) (5.30) 

By making the reasonable assumptions that var •* 0 as EM^ •*• 0 and 

var Lj > 0 as EL^ •*• 0, we can further approximate t for p •* 0 by 

i N 

1 V TT V a r W / C O I N 

E C lml

 v a r w i w - s r ( 5- 3 1 ) 

where 
N 

EW = I EW 
i-1 

N 
varW = 1 varW.. 

i-1 1 

Therefore, 
varM — EM 

E D i ( s l o t ) . 1 (varW + ^ + 1 ( i _ _ i ^ 

and 
£ (Poisson) 1 (varW + £ W ) ( 5 

l 2 v EW ' 
If var W = 0, then 

(Poisson) m 1 E W ( 5 > 3 4 ) 

Eqn. (5.34) i s i n t u i t i v e l y c l e a r but (5.33) shows a more subtle result i f 

var W * 0. For the time s l o t system, more information i s needed on the 

a r r i v a l s t a t i s t i c s i n order to si m p l i f y (5.32) any further. 

For the system with a single dominant user, that i s , p^ and t^ for the 

dominant user are much greater than p^'s and t ^ s for the other users, eqn. 
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(5.21) again implies that are approximately Independent of I. Thus, 

(5.26) and (5.27) are v a l i d in th i s case. 

Furthermore, 

1 ^ i t new 1 t + EW(l + p) 
2 iTp~ 2 1=^ 

for the dominant user and 

1 Vnew 1 1 + Pi t + EW(l + p) , _ (5.36) 

for a l l other users. 

For the system with N-l i d e n t i c a l users and a single small user, that 

Is, p, and t. for the small user are much less than p.'s and t.'s for the i l
 r i i 

other users, eqn. (5.21) implies once more that v ^ i s approximately 

independent of i . As a r e s u l t , (5.26) and (5.27) are v a l i d . Furthermore 

1 Vnew _1 1 t+EW(l+p/(N-l)) 5 . 
2 1-p " 2 1+p/(N-l) 1-p 1 ; 

for the small user and 

1 Vnew 1 t+EW(l+P/(N-l)) ,. 
2 i-p 2 — — r ^ p ( 5 , 3 8 ) 

for the other i d e n t i c a l users. 

For t j * p^, eqn. (5.21) again implies that v.... i s approximately 

independent of i so eqn. (5.26) and (5.27) are again v a l i d . 

For the system with c l u s t e r s of i d e n t i c a l users, eqn. (5.21) shows that 

v ^ i ' s obey a l i n e a r r e l a t i o n s h i p within each c l u s t e r . This l i n e a r 

r e l a t i o n s h i p i n turn shows that the delays given by (5.1) and (5.2) are 

l i n e a r within each c l u s t e r of i d e n t i c a l users. 
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In most of the s p e c i a l cases considered so f a r , v^^ i s approximately 

independent of i . This i s v e r i f i e d for the following combinations of 

parameters: 

( i ) N-8. 

( i i ) t 4 = pj, P i , 1. 

( i i i ) 0.01 < p < 0.99 with steps of 0.01. 

( i v ) 1 large user with u t i l i z a t i o n 100 times that of other i d e n t i c a l 

users, 

1 small user with u t i l i z a t i o n 0.01 times that of other i d e n t i c a l 

users. 

2 c l u s t e r s of i d e n t i c a l users with u t i l i z a t i o n r a t i o of 1:5. 

There are two plots for a l l combinations of ( i i i ) and ( i v ) . The f i r s t plot 

consists of the exact numerical s o l u t i o n for {v^ } versus p (8 curves) and 

the second plot consists of the normalized variance of i V j . j } versus p. The 

normalized variance of ) i s defined as 

v a r < * i i > = ^ 2 \ <'ii-»> 2 ( 5 ' 3 9 ) 

Nm 1=1 
where 

1 N ~ 
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F i g . 5.3a v.. versus p for N=8, 1 single large user and t j - P ^ 

, r t V ) 110' 

32. C -H 
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1 6 . G 
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F i g . 5.8b v a r ( v l j L ) versus p for N=8, 1 single large user and t^p^ 
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F i g . 5.12a v.. versus p for N=8, 1 single small user and t =1. 
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F i g . 5.13a v.. versus p for N=8, 2 c l u s t e r s of i d e n t i c a l users and t j - p . 2 . 

v o r t V ) 110"') 

6.0-3 





F i g . 5.15a v.. versus p for N=8, 2 c l u s t e r s of i d e n t i c a l users and t i = l . 
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5.7 F i n i t e Buffering and Non-exhaustive Services. 

We have assumed i n f i n i t e buffering and gated exhaustive service 

throughout t h i s t h e s i s . Nevertheless, we can use our re s u l t s to approximate 

the more r e a l i s t i c cases of f i n i t e buffering and non-exhaustive services. 

We start by considering the f i n i t e buffering case. Two kinds of buffer 

designs are possible, message buffering and s l o t buffering. As the i r names 

imply, a message i s the fundamental unit i n message buffering and a slot of a 

message i s the basic unit i n s l o t b u f f e r i n g . While s l o t buffering appears to 

be more e f f i c i e n t i n terms of memory requirements, message buffering allows 

for h i e r a r c h i c a l buffer management. We s h a l l consider message buffering 

here. Let us modify the i n f i n i t e buffering system we have considered to a 

f i n i t e buffering system with n^ message buffers at queue i . As long as the 

blocking p r o b a b i l i t y i s small, we can approximate the f i n i t e buffering system 

by the i n f i n i t e buffering system. We further approximate the blocking 

p r o b a b i l i t y at queue i by 

(block) „ 1 1 b p r o b ( x 0 0 > ) ( 5 . A 0 ) 

This approximation i s based on the assumption that the queue length i s a 

l o c a l maximum at the scan ins t a n t s . From (2.1) - (2.5) and previous 

a n a l y s i s , we have 

EX, = EM. EC (5.41) i l 
and 



var = var Y^ 

= var M± EC + (EM^) E C ^ 

= var H± EC + var C± (Eti±) 2 + ( E M 1 ) 2 ( E C ) 2 

= [var H + ( E M 1 ) 2 ( v i i + EC)] EC (5.42) 

where a l l variables are defined e a r l i e r . The blocking p r o b a b i l i t y given by 

(5.40) can be bounded using (5.41), (5.42) and Chebyshev's in e q u a l i t y which 

states that 

°x 2 

Prob(|X-m | > 6) < (5.43) 
X 6 Z 

where 

X i s any random variable, 

i s the mean of X and 

a Y
2 i s the variance of X. 

By choosing n^ large enough, we can l i m i t ^(b-*- o c k) t o a n acceptable l e v e l . 
No t i c e that {n^} depends on (p^) and { t^} . Thus, we cannot choose a fixed 

set {n^} to keep {u^k^ o c , c)} small for a l l loading conditions. In f a c t , n^ 

grows unbounded as p + 1. 

The problem of approximating non-exhaustive services by the gated 

exhaustive service scheme i s s i m i l a r to the approximation for f i n i t e 

b u f f e r i n g . Let us consider the general gated non-exhaustive service where 

up to p^ messages are served i n each c y c l i c service of queue I. Let v^ be 

the p r o b a b i l i t y that the scan queue length (number of messages buffered at 

the scan instant) at queue I i s greater than p^. As long as v^ i s small for 

a l l i , we can approximate the gated non-exhaustive service reasonably well by 

the gated exhaustive service. We further assume that can be approximated 

by 
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v± » 11m Prob (X v J> p ) (5.44) 
k-*= 

Again, can be bounded using (5.41), (5.42) and (5.43). By choosing the 

appropriate i p ^ } and {t^ }, we can l i m i t within the desired l e v e l . Thus, 

we can obtain a region of loading conditions under which the gated 

non-exhaustive service can be approximated by the gated exhaustive service. 

In general, for a s u f f i c i e n t l y small p, the gated non-exhaustive service can 

always be approximated by the gated exhaustive service. For heavy t r a f f i c , 

one can use various heavy t r a f f i c approximations; see for example [15]. For 

intermediate t r a f f i c , i n t e r p o l a t i o n techniques could be used. 
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6. CONCLUDING REMARKS. 

6.1 Summary of the Results. 

Recently, applications of f i b e r optics to LANs and the development of 

UBSs have i n t e n s i f i e d i n t e r e s t i n the performance analysis of token-ring 

systems. As a f i r s t step, the average message delays in a general asymmetric 

token-ring under gated exhaustive service d i s c i p l i n e have been investigated 

i n t h i s t h e s i s . Although the gated exhaustive service d i s c i p l i n e i s a 

s p e c i a l case, i t provides insights and l o w - t r a f f i c approximations for most 

non-exhaustive service schemes. 

The approach used i n t h i s thesis i s to formulate and solve the imbedded 

Markov chain of the j o i n t terminal service times. Recursive l i n e a r equations 

are derived for the f i r s t and second joi n t moments of the imbedded chain. 

The existence and uniqueness of solutions to these equations are also 

established. A number of re s u l t s concerning the solutions are also derived. 

Among these, the simple difference equation r e l a t i n g the second j o i n t moments 

of the terminal service times i s a s i g n i f i c a n t contribution of this t h e s i s . 

Such simple r e s u l t s have never been reported before. Based on equation 

(4.25), a very good approximation given by (5.21) and (5.23) i s derived. 

This approximation i s exact for the symmetric case and i t works very well 

over a wide range of system parameters for the asymmetric case. Even under 

very unusual circumstances, the r e l a t i v e errors i n the approximation are 

s t i l l acceptable (~10%). Some delay-vs-throughput r e s u l t s based on the 

approximation are also discussed. 
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6.2 Suggestions for Further Work. 

The performance analysis of a general token-ring i s a very d i f f i c u l t 

problem. In t h i s t h e s i s , a s p e c i a l case has been investigated but the 

ultimate goal i s to solve the general problem. Thus, future work i n t h i s 

area should concentrate on the generalizations of the work i n t h i s t h e s i s . 

Emphasis has been placed on the average message delay as a performance 

measure. This can be generalized to include the delay variance. The delay 

variance i s of considerable i n t e r e s t i n many applications such as packetized 

voice and i n t e r a c t i v e terminal conversations. In our model, the delay 

variances depend on the t h i r d j o i n t moments of the terminal service times. 

The analysis w i l l involve a t h i r d d i f f e r e n t i a t i o n of the basic functional 

equation (3.9) and the solutions of (3.12) and (3.13) to set up the necessary 

equations for the t h i r d j o i n t moments. The problem i s to examine the 

s o l u t i o n of those moments. Generalizations to even higher moments are 

possible but they tend to be d i f f i c u l t and less useful for p r a c t i c a l 

purposes. 

Although the a r r i v a l model used i n t h i s thesis appears to be very 

general, i t i s s t i l l inadequate for many p r a c t i c a l s i t u a t i o n s . For example, 

our a r r i v a l model does not accommodate deterministic a r r i v a l s i n voice 

applications and dependent a r r i v a l s i n functional d i s t r i b u t e d computing. 

Thus, generalizations on the a r r i v a l model i s d e s i r a b l e . 

Perhaps the most i n t e r e s t i n g generalizations are associated with the 

service d i s c i p l i n e . F i r s t of a l l , we have assumed the c y c l i c service 

schedule i n t h i s t h e s i s . In other words, each queue has a c y c l i c p r i o r i t y 

which cannot be interrupted by other queues. In a general p o l l i n g system, 
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many possible p r i o r i t y assignments are possible. Even in- a token-ring, the 

basic protocol can be modified to accommodate various p r i o r i t y schedulings. 

The assignment of p r i o r i t i e s , s t a t i c or dynamic, i s a design parameter which 

deserves further attention. 

Secondly, generalization of the gated exhaustive service d i s c i p l i n e to 

the more general non-exhaustive schemes would be very u s e f u l . This i s 

because non-exhaustive service schemes can be implemented very e a s i l y on a 

token-ring. Unfortunately, the rigorous analysis of non-exhaustive service 

schemes appears to be very d i f f i c u l t . Very often, one should contend with 

approximate approaches. One approximate approach i s to note that most 

non-exhaustive schemes can be approximated by the gated exhaustive service 

d i s c i p l i n e at low t r a f f i c l e v e l s ; for heavy t r a f f i c , one can use various 

h e a v y - t r a f f i c approximations, see for example [15]. Thus, the d i f f i c u l t case 

occurs when t r a f f i c i s between the two extremes. 

One further generalization can be made on the service d i s c i p l i n e . We 
(k) 

notice that i n a l l ' s t a t i c ' service d i s c i p l i n e s , can be derived 
(k) 

d i r e c t l y from (e.g. the r e l a t i o n given by eqn. (2.1)). One can 

generalize t h i s dependence. For example, In the D-net protocol, each station 
can detect the length of a t r a i n f a i r l y e a s i l y and estimate the current 

(k) (k) network loading, and then the s t a t i o n can determine not only from X^ 
but also from previous network loading estimates. Such elaborate service 

d i s c i p l i n e s may not be j u s t i f i e d for many LAN applications but we cannot be 

sure u n t i l we have done the a n a l y s i s . 
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There are some r e l a t i v e l y l e s s urgent matters, for example, f i n i t e 

b u ffering, dependent switching overheads, and time-variant system parameters 

whose e f f e c t s could also be examined-
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APPENDIX: Eigenvalues of the Jacobian Matrix A. 

A number of re s u l t s regarding the eigenvalues of the Jacobian Matrix A 

are proved i n t h i s Appendix. 

Lemma A . l : 

The c h a r a c t e r s t i c equation |A—rI[ = 0 of the matrix A i s given by 

Q(r) = { n [(l+p.)r - p.] - r N + 1 } / (1-r) = 0 
1=1 

(A.l) 

Proof of Lemma A . l : 

From the structure of A given by Lemma 4.3, we claim that A can be 

written as follows: 

(A.2) 
A " TN TN-1' .T̂ DR 

where 

T i • h-l 0 0 

p i p i ' " p i 1 0 

0 0 h 

1̂  = k x k i d e n t i t y matrix, 

D = 
J2 . 

R = 1 1 . . . . 1 
1 

o • • . i 

To see t h i s , we successively compute T^D, T^TjD, .... T N ^ - ] / - - 1 ! 0 A N D 8 e t 

T N T N - r * ' T l D = [pA+^\P2^2+e2^--'^^+t^] (A'3) 
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where and e^ are defined i n Lemma 4 . 3 . Then we notice that 
2 N 

T N T N - 1 ' " T 1 D R = l P l<V * l>l J,^\+\^''-l\^\+\^ <A'4> 
k=l k=l 

N 
and u j [_ 1 = I \(\ + ê .) (A.5) 

k=i 
Thus, 

T N V r " T i D R = I V " I I V " 2 I ' - - I V " N ] • A* 

The determinant |A— r11 can now be computed as follows: 

|A - r l | = | TDR - r l | 

- |T| |D - r T " 1 ^ 1 | |R| (A.6) 

where T = T T _.. .T.. 
N N-l 1 

We notice that |T| = |R| = 1 so 

|A - r l | = |D - r T - 1 R - 1 | 

= |D - r T j " 1 ^ " 1 . . . ^ " ^ " 1 ! (A.7) 

The inverses of T^' s and R can be expressed by 

1 - 1 

1 - 1 

- 1 

0 

Using these to calculate T ^ R - 1 , T ^ j T ^ 1 * " 1 » * * *' ^ ^ i ^ '' ̂ N1**"1 

x k - l 0 0 

-Pk-V-'-Pk I 0 

0 0 IN-k 

successively, we have 



91 

.'. D - rT~ 1R~ 1 

p i r + p r ( 1 + p i ) r 

P 2r 

p 3 r 

-1 -1 

-p 2 l+p 2 -1 0 

3 

"P-

1+P3 . 

N 
* . -1 

1+p. N 

P 2 " ( l + P 2 ) r 

P 3-(1+P 3)r 

P N r 

(A.8) 

—I (A.9) 

The determinant of the above matrix can be s p l i t into a sum of determinants 

of two matrices and U 2 where 

U l = p l r 

p 2 r P 2 ~ ( 1 + P 2 ) r 

P 3-(1+P 3)r 

P N r p N " ( 1 + p N ) r 

and 

U2 " p 1 - ( l + p 1 ) r 
p 2 - ( l + p 2 ) r 

P N - ( 1 + p N ) r 

C l e a r l y , 
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|u 2 | = n J P l - d + P l ) r ] (A.10) 

F a c t o r i z i n g P j from each row of 1^ and then from the f i r s t column, we 

have 
N 

(A.11) | u j = ( n P ) |u | 
1 i - i 1 -

where 

U 3 = 
1-r 

1-r 

r 

77 
l - ( l + i )r r 

l - ( l+-7 - ) r 

r 
PN-1 

1-r 1-(1+ - i - ) r 
pN - I 

Replacement of the f i r s t column by subtracting from It the sum of a l l other 

columns y i e l d 

U4 " 
r 

1-(1+ ~)r 
p3 

r 
p N - l 

1 1-(1+ - ) r 

J- pN 
JN — I 

(A.12) 

where |U,| = |U | 
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C l e a r l y , 
N . N 

|U | = n [1 - (1 + — ) r ] + (-if n (-^-) (A.13) 
i-1 M i 1=1 P i 

Using (A.10)-(A.13) and af t e r some algebra, we have 

| A - r l | = l u j + |U2| 

= T ^ <-D N 1 " [ d+P^r-p.] - r ^ 1 } (A.13) 
1=1 1 1 

N 

Since the factor (-1) i s unimportant i n the c h a r a c t e r i s t i c equation, we 

a r r i v e at (A.l) 

Notice that the c h a r a c t e r i s t i c polynomial Q(r) i s indeed of degree N 
N N+l 

because IT [ (1+p. )r-p. ]-r i s d i v i s i b l e by (1 - r ) . Also, Q(r) does not 
1=1 i i 

depend on the s p e c i f i c order of the queues, that i s , s h u f f l e of the queue 

pos i t i o n s w i l l not aff e c t Q(r). 

Lemma A.2: 
N 

Let p = 1 p, be the system u t i l i z a t i o n and p < 1. Then there e x i s t s < 
1 = 1 

p o s i t i v e r e a l root of the c h a r a c t e r i s t i c equation Q(r) = 0 and i t i s bounded 

by p. 

Proof of Lemma A.2: 
N N+l Let f ( r ) = II [(1+P.)r - p ] and g(r) = r 

1=1 
C l e a r l y , 

f ( l ) = 1 = g ( l ) 
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N • 
and f (1) = I p + N < N+l = g'(1). 

1=1 

Therefore, there e x i s t e > 0, which can be a r b i t r a r i l y small, such that 

f ( l - e ) > g ( l - e ) . 
Pi 

Next, we notice that f ( r ) = 0 has exactly N r e a l roots at r = ^ , a l l 

Pi 
l y i n g between zero and one. Let t be the maximum of - r - — , then J 6 max 1+pj 

f ( t ) = 0 < g(t ). 
max max 

Since t < 1, we can choose e such that t < (l-e)» From the max max 
i n e q u a l i t i e s shown above, there must exist a r e a l root of 

Q(r) = f ( r ) - g(r) = 0 between t and (1-e). In f a c t , there i s only one 

r e a l root of Q(r) = 0 between t and (1-e) because f ( r ) and g(r) are both 
max 

monotonic i n that region. We s h a l l c a l l t h i s root r 
° max 

To show r < p, we look at (Jin f ( r ) - An g(r)) on the i n t e r v a l max 
[ t ,1). 
1 max 

N 
Jui f ( r ) - Jui g(r) = I An[ (1+p )r-p ] - (N+l) An r 

1=1 
N 

= I An[l - (1+p ) ( l - r ) ] - ( N + l ) A n ( l - ( l - r ) ) . 
1=1 

Let 6 = 1-r and expand the logarithmic function i n Taylor's series at r=l to 

obtain 
An f ( r ) - An g(r) 

N - (1+p ) 6 - 6k 
= -I I 1 + (N+D I — 

i = l k - l k k-1 
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N . .k 
= I [(N+l) - I (1 + P l ) k ] f 

k-1 i-1 

= I [(N+i) -1 ( i +1 P j ) ] ^ 
k-1 1=1 j-1 J 

N k . *k 
= I [1 - I I {)) P ? ] £ 

k-1 1=1 j-1 3 1 

k , N . -k 

k=l j-1 J i=l 1 K 

k . N . ,k 

k-1 j-1 J 1=1 1 * 
N . ck 

= I [I - (1 + I P l ) k + l ] f 
k-1 1=1 1 

- I 2 -r - X 

k-1 k-1 

= -2An(l-6) + An(l-(l+p)6). 

Setting r = 1 - 6 = p, we have 

An f(p) - i n g(p) > -2An p + An p 2 = 0. 

Therefore, 
f ( P ) > g(p). 

Since p > t , we can deduce that t < r < p. max max max 

Lemma A.3 

A l l the eigenvalues of A, r e a l or complex, have magnitudes les s than o r 

equal to r i f p < 1. ^ max 
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Proof of Lemma A.3: 

We prove Lemma A.3 using the famous Rouche's Theorem i n complex 

analysis which states the following: 

If f ( z ) and g(z) are a n a l y t i c i n a closed region on the complex plane 

with a simply connected boundary C and i f | f ( z ) | > |g(z)| on C, then 

f ( z ) , f ( z ) + g ( z ) , f ( z ) - g(z) a l l have the same number of zeros inside 

C 

Let us consider a semicircle on the right h a l f complex plane with 

centre at the o r i g i n and radius R = r + E < 1 with E > 0 shown i n ° max 
Fi g . A . l . 

F i g . A . l Right-half plane s e m i c i r c l e . 



97 

N N+1 We l e t f ( z ) = II [ (1+p, )z - p ] and g(z) = z . On C. , 
1=1 1 1 

N 
| f ( z ) | = n |(i+p.)z - P,| 

i=i 1 

N 
= n |(l+p )R(cos9 + jsinB) - p | ( j 2 = " l ) 

1=1 1 

N 1/2 
= II [ (1+p )R 2 + p 2 - 2(l+p ) p Rcose] 

1=1 
N 1/2 

= n [ ( ( 1+p )R - p ) 2 + 2(l+p ) p R(l-cos9)] 
1=1 1 

N 
> n |(i+ P.)R - p I 

1=1 

= f(R) 

> g(R) 

- feU) I-
On C^, z = jy and 

| f ( z ) | = n [ ( i + P l ) 2 y 2 + P l
2 ] 1 / 2 > y N > y

N + 1 = |g(z)| 
1=1 1 1 

By Rouche's Theorem, f ( z ) and f ( z ) - g(z) have the same number of zeros 

inside C. C l e a r l y , f ( z ) has exactly N r e a l zeros inside C so f ( z ) - g(z) 

should also have N zeros in s i d e C. We already know that the (N+l)th zero of 

f( z ) - g(z) i s at z = 1. Thus Q(z) = ( f ( z ) - g ( z ) ) / ( l - z ) = 0 has a l l N zeros 

i n s i d e C. 

Therefore, a l l eigenvalues of A have magnitudes l e s s than R = r + £• 

Since e can be a r b i t r a r i l y small, we can deduce that a l l eigenvalues of A 

have magnitudes l e s s than or equal to r . Moreover, r < p < 1 shows c ^ max max 
that A has eigenvalues of magnitudes less than unity. 


