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Abstract

Unidirectional broadcast structures constitute a class of high
performance local network architectures. They are very flexible and well
suited for fiber optic implementation. The access methods used in these
networks are often based on certain implicit tokempassing mechanisms to
provide superior delay-vs-throughput characteristics. The performance of
these unidirectional broadcast protocols is evaluated in this thesis via a
study on the classical token-ring system. Emphasis is placed on the analysis
of mean delay-vs—throughput performance for the gated exhaustive service
discipline under asymmetric traffic. The analysis involves examination of
" the statistical behaviour of interacting queues. A number of exact results
are derived and based on these results, a very good approximation for the
average delays 1s developed. The approximation agrees closely with exact
nunerical solutions over a widé range of system parameters. The implications

of the approximation are also discussed.
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1. INTRODUCTION.

1.1 High-performance Local Area Networks.

The demand for local communication resources continues to grow very
rapidly. Today, local area networks (LANs) operating at a few Mbiﬁ/s can
still satisfy most current needs but the situation is likely to change in the
near future. The advent of superfast microcomputers, the evolution of new
system architectures (e.g. distributed processing) and the integration of
data intensive services (e.g. interactive graphics, tele-conferencing) all
lead to ever higher bandwidth requirements. Even with sophisticated
bandwidth compression techniques, the bandwidth of the conventional co-axial
cable will not be adequate for many applications in the future.

Optical fiber emerges as the qpst promising candidate for implementing
the high-performance LANs needed in the future. The most impressive feature
of optical fiber is its enormous informatiomcarrying capacity; the
theoretical limit is well above 100 Gbps-km. Several Gbps—-km can be achieved
using current technology. As the technique of wavelength-division
mul tiplexing matures, the bandwidth of an optical fiber will increase
many~-fold. Thus, not only can optical fiber satisfy the bandwidth
requirements of LANs in the foreseeable future, it will also provide great
flexibility for growth in the long term. Other desirable features such as
immunity to electromagnetic interference, high channel security, low signal,
loss, small size, light weight, etc. all make optical fiber very attractive
for LAN applications. Nevertheless, limitations on current fiber optics

technology do impose constraints on LAN system designs ({5~7]). For example,



the very high insertion loss of current optical taps has led designers to
consider point-to-point configurations such as rings or stars instead of
linear bus structures. Furthermore, bidirectional transmission on a single
optical fiber also faces considerable difficulty due to the minute fiber core
size and crosstalk between source and detector.

To overcome the technological difficulties with fiber optics, a number
of new network schemes have been developed ({8-13]). Among these, the
unidirectional broadcast structures (UBSs) with conflict-free schedulings
appear to be most suitable for_very high data rate applications. The access
protocols used in these UBSs resemble the conventional token—-passing on a
ring which provides superior delay-throughput characteristics. However,
these networks avoid the major pitfalls associated with the token-ring. As a
result, UBSs have received much attention lately. A typical UBS called D-net

will be described in Chapter 2, together with its interesting properties.

1.2 Objeétives.

The primary goal of this thesis is to investigate the performances of
UBSs by studying the classical token-passing protocol. The performance index
will be the average message delay at each node. Unfortunately, a rigorous
delay analysis under the most general conditions is very difficult. To
provide mathematical tractability, a number of reasonable assumptions are
made to simplify‘the problem. Attention is focused on the gated exhaustive
service discipline because it can be analyzed mathematically and also
provides insight to the performance analysis of the more practical

non—exhaustive service schemes.



1.3 Previous Work.

The problem of establishing the queueing characteristics of a
token~ring system has been studied by many authors in the last two decades
under various titles (e.g. polling, traffic control, cyclic queuves). The
long history of this problem indicates both its importance and its
intractability. So far, no solutions are available to the general problem,
whether exact or approximate, analytic or algorithmic. Thus, we have to use
less reliable and hard-to-interpret results obtained from simulations or
~actual network measurements to study the queueing behaviour of many practical
token~ring systems. Nevertheless, rigorous analyses have been carried out
for some special although unrealistic cases. It is the hope of many
researchers that these analyses can shed some light on the behaviour of more
practical systems.

A good summary of the more recent work on token—ring analysis can ke
found in [29]. With few exceptions, most of the previous work dealt with the
gated and the non—gated exhaustive service disciplines with infinite
buffering and Poisson arrivals. The special case with only two nodes in the
system was studied in [19-21) and exact explicit delay results were obtained.
Generalizations to an arbitrary number of nodes were investigated in {22-29].
Moment generating functions of cycle time, queuve length and delay
distributions have been obtained in [22-26]. Unfortunately, these are not
" closed-form solutions that facilitate easy evaluation of delay moments.
Attempts have been made to derive explicit analytic expressions for the
average delays but they were successful for the symmetric case only

({25-27]). For the general asymmetric case, only numerical algorithms



([27-29]) and approximate solutions ([30-33]) are available. Most of the
approximations given in the literature are based on rather heuristic
arguments and hence their regions of validity are uncl;ar. In general,
these approximations break down at very heavy network loadings or under
highly asymmetric terminal traffic. Numerical algorithms have the advantage
of generating exact results but they cannot readily show the effects of
simul taneous changes in the system parameters. An asymmetric token~ring has
an enormous parameter space (the set of all possible combinations of
parameters) and hence resists analysis by numerical methods. Nevertheless,
exact numerical results can serve as absolute references for validating
approximations and simulations.

The more general cases of nonexhaustive service disciplines and finite
buffering are much more difficult to deal with, as evidenced by.the lack of
previous work in this area. An approximate treatment of non-exhaustive
service disciplines can be found in [34]. Non-exhaustive service disciplines
on a two-node system were analyzed in [35]. The system with single-buffer

nodes (interactive-user model) was investigated in [38] based on the work

from [36-37].

1.4 OQutline.

In Chapter 2, a typical UBS called D-net is described to show the
resemblance of the UBSs and token-ring systems. Then the queueing model and
relevant system parameters are formulated. A number of important random

variables are defined and their relationships are discussed.



In Chapter 3, the queueing problem is solved by the hethodAof Imbedded
Markov Chain. The imbedded chain being considered is the joint terminal
service times in a service cycle. A recursive functional equation is derived
for the moment generating function of the imbedded chain at steady state.
Differentiations of this basic functional equation yield recursive linear
equations for the first and second order moments. The existence and
uniqueness of solutions to these linear equations are also established.

In Chapter 4, a number of results are derived concerning the solutions
of joint moments of the terminal service times.‘ A simple difference equation
which has not been reported before is presented. This equation provides the
basis for a very good approximation.

In Chapter 5, the relationships between average message delays and the
normalized cycle time variances are given. A fundamental relation among the
delays, dictated by Kleinrock's conservation law, is also derived. An
approximate solution is then developed, followed by a comparison with exact
nuerical results.

In the conclusion, a summary of results is given with suggestions for

future research.



2. DEVELOPMENT OF THE LAN SYSTEM MODEL.

2.1 Description of D-net and its Communication Protocol.

Unidirectional broadcast structures may be different in topology and in
many other aspects but their basic operations are very similar. A typical
UBS called D-net is described to illustrate the basic communication protocol
commonly used for UBSs. Fig. 2.1 shows the architecture of D-net. The
network consists of an inbound and an outbound channel. All traffic flows
unidirectionally ffom the outbound channel to the inbound channel. There are
N stations in the network, numbered in the order shown in the figure. Each
station has three taps: the receiver (R-)tap, the sensor (S-)tap and the
transmitter (T-)tap. The R-taps are connected to the inbound channel to
receive any broadcast messages. The S-taps and the T-taps are connected to
the outbound channel as shown in Fig. 2.1; they are used to sense upstream
traffic and to transmit broadcast messages, respectively. The black ball is
called the locomotive generator and it has only the R-tap and the T-tap.

To transmit, a station first waits until it senses upstream traffic at
its S~tap. The station then looks for the end-of-carrier (EOC). The EQOC
event is defined as the cessation of signal at the S-tap. It is assumed that
it takes td seconds to detect this event. After detection of EOC, the
station starts transmitting its own packets. While transmitting, a station
may sense more incoming upstream traffic through its S~tap. In this case,
the station aborts its transmission and waits for the next EOC. Otherwise,
the station finishes its transmission. This basic operation will be

repeated. Basically, a station sees a 'train' of packets separated by ty
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seconds on the channel and each station attaches its packets to the end of
this train. The train thus grows in size as it passes through a station with
ready packets.

The locomotive generator is used to transmit a short burst called the
locomotive to head the train of packets. Without the locomotive generator,
the network will stall because no stations will contend for the channel
unless there is some traffic. To keep the network 'alive' all the time, the
locomotive generator generates a locomotive each time it sees the
end-of-train (EOT) at its R-tap. The EOT event signifies the end of a cycle.

It is detected when a silence period of 2t , seconds after cessation of signal

d
is noted at the R-tap of the locomotive generator. If normal operation
prevails, the traffic on the unidirectional channel will consist of trains of
packets separated by 2(t + td) seconds shown in Fig. 2.2 where 1 is the

is

propagation delay on either the inbound or the outbound channel and th

the time needed to detect EOT.

It is noted that the D-net unidirectional bus described here is not
suitable for fiber optic implementation because of the difficulties with
current optical tap technology (e.g. high signai loss). Two modifications of
the basic D-net structure are given in [12] to overcome these technological
difficulties. The star coupled version of D~net shown in Fig. 2.3 is
suggested to enable the insertion loss of R~taps to be lumped in the coupler
so that each station receives approximately the same signal power. The
openr-ring version shown in Fig. 2.4 can be used to avoid the distributed
insertion loss at the T-taps. Since eachznode is active in the opern-ring

D-net, bypass circuits must be incorporated in case of a node failure.
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2.2 Comparison of D-net with Token-Ring Systems.

By taking advantage of the inherent ordering of the network nodes, ﬁhe
'D—net protocol provides orderly network access similar to that of
token-passing on a ring. As long as the EOC detection time in D-net is
comparable to the token detection time in é token-ring, the two networks will
have essentially the same delay performance. From the training sequence of
D-net, we may regard the switching overheads as being lumped in the
inter-round silence period of 2(t + td) seconds. One advantage of D-net over
the conventional distributed token-ring 1is that the impact of the
inter-round overhead can be reduced by interleaving the locomotives. To do
this, the locomotive generator must anticipate the length of each érain and
generate the locomotive not by detecting EOT but by precise timing. However,
interleaving locomotives 1s advantageous only when the inter-round overhead
is a significant portion of the cycle time (train + overhead). Calculations
based on typical parameters suggest that the interleaving of locomotives is
perhaps overskilled for many LAN applications. A more attractive way to
reduce the ratio of overhead to cycle time is to allow statistical variations
of tﬁe station access times according to the network loading, for example by
not restricting service to a single packet per node per cycle. The gated
exhaustive service discipline under investigation in this thesis is one
examplé of this approach.

The reliablility issues surrounding the D-net protocol and toxen-ring
are also different. One observes that the D-net protocol is not completely

distributed. The locomotive generator can be regarded as a central
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controller whose failure will stall the network. Fortunatély, tﬁe locomotive
generator is a simple device so it can be made redundant with little
additional cost. Nevertheless, the D-net protoéol avoids the major pitfalls
in tokenpassing such as lost tokens or duplicate tokens. If a locomotive is
lost because of channel errors, the locomotive generator will simply time out:
and generate another locomotive. Considering the complexity of error
detection and recovery mechanisms of conventional token-passing, the D-net
protocol represents a major improyement over token-passing. Another
reliability issue is related to the control passing mechanism in the D-net
protoéol. Recall that each station attempts to transmit immediétely after
detecting EOC and aborts its transmission as soon as it detects any incoming
traffic at its S-tap. Since it takes a finite amount of time to detect
incoming traffic, there will be collisions of a very short duration (time
needed to detect incoming traffic) at the beginning of each packet. I; is
assuned that each packet is headed by a preamble portion for bit

synchronization and the collisions mentioned above will not affect the

synchronizability of the preamble portion.

2.3 System Model and Parameters.

As we have seen, the basic operation of D-net is identical to the
token-ring except for the switching overheads from one station to another.
For this reason, the performances of D-net and all other similar UBSs will be
studied in this thesis as if they were token-ring systems. Fig. 2.5 shows
the schematics of the single-server multi-queue model suitable for the

analysis of the tokemring system. N queues, numbered from 1 to N, are



QUEUL
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Fig. 2.5 Schematics for the Single-server Multi-queue Model.
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attended by a single server in a cyclic order. Further, time is divided

into contiguous slots of fixed duration. All time quantities are measured in
terms of this fundamental unit. A number of parameters are needed to specify
the queueing system, in order to pose a well-defined problem involving
dependent queues. These parameters will be discussed in the following
paragraphs.

Message arrivals. Poisson message arrival is perhaps the most popular

assumption in queueing analysis. A slightly more general type of arrival
will be considered here. Messages arriving at a queue within a time slot
will be registered at the end of that slot. The number of message arrivals
at queue i1 in one slot is random and its distribution 1s characterized by the
moment generating function (MGF)1 ai(s). Arrivals within different time
slots are assumed to be independent and the same assumption is made for
arrivals at different queues. By letting the slot interval become
vanishingly small while keeping the message arrival rate constant, one
obtains Poisson message arrivals as a special case of the general independent
slot arrivals considered here. Other arrival statistics can also be
reasonably approximated by choosing the appropriate slot size and the MGFs
{ai-(s) }e

Message lengths. Message lengths are assumed random with general

distributions described by MGFs {Bi(s)}. Although generally distributed, the

1 The MGF of a random variable X is defined as F(s) = E[exp(sX)]-
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length of a message must be an integral multiple of the slot interval.
Moreover, message lengths are assumed to be independent of the message
arrivals and also independent among different queues.

Service discipline. The service discipline in a multi-queue system

includes specifications of the service schedule, order-of-service at each
queue and the number of messages to be served from each gqueue in a service
cycle. In a token-ring system, queues are inherently served in a cyclic
order (service schedule). Further, a first-come-first-serve discipline will
be assumed at each queue (order—-of-service). Thus, the service disciplines
in this thesis will usually refer to the number of messages served from each
queue 1n a cycle. Various service disciplines are possible; they can be
gated or ﬁon-gated, exhaustive or non-exhaustive. For gated service disci-
plines, all messages arriving at a queue after commencemenﬁ of service at
that queue will not be served in that service cycle. Services not gated are
called non-gated. The terms 'exhaustive' and 'non-exhaustive' are
self-explanatory. In practice, almost all service disciplines are
non-exhaustive in nature to avoid the possibility of very long cycles.
Unfortunately, the rigorous analysis of non-exhaustive service disciplines
appear to be insurmountably difficult. As a result, attention will be
focused on the gated exhaustive discipline for mathematical tractability. As
well, most non-exhaustive schemes can be approximated by the gated exhaustive
scheme for low traffic levels. For the gated exhaustive discipline, all
messages buffered at a queue wﬁen service starts at that queue will be served
in that particular cycle while messages arrived during service will be left

in the queue until the next cycle. This is different from the truly exhaus-
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tive (nomgated exhaustive) discipline where queues are served till empty in
each cycle. The nomgated exhaustive scheme will not be considered here.
Interested readers can refer to [22-29] for more detail.

Switching overheads. There is a generally distributed switching

overhead from queue i to the next queue characterized by the MGF wi(s).
Similar to the message length, the switching overhead must be an integral
multiple of the slot interval. Also, all switching overheads are assumed to
be independent of each other. The D-net, with constant switching overheads,
is an example.

Buffering. Infinite bufféring will be assunmed throughout this thesis.
This is a reasonable assumption as long as the blocking probability is
small.

In summary, the system under consideration is a single-server N-queue
system. Time is divided into fixed contiguous slots. Queues are served
cyclically under a gated exhaustive discipline and a first-come-first-serve
order-of-service. Infinite buffering is assumed at each queue. General
independent time slot message arrivals are assumed with slot arrivals
characterized by the MGF ai(s) at queue 1. MesSage§ arriving at queue i have
generally distributed lengths decribed by the MGF Bi(s). The switching
overhead from queue i to the next queue is also generally distributed with

MGF wi(s).

2.4 Definitions of System Random Variables.

To formulate the mathematial queueing problem, a number of random

variables need to be defined. Let



c, ()

(k)
xi

Y.(k)
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(k)
21

()
wi

T.(k)
i

All the above

= kth cycle time of queuve i, i.e. the time between successive

scan instants (instant when service starts) of queue i.
the number of messages buffered at queue i at its scan instant

in the kth cyclic service of that queue.

= the number of messages arrived at queue i during the kth cycle

of queue 1i.

= the nunber of messages served from queue i in the kth cycle of

queve 1.
the switching overhead from queue i to the next queue in the

kth cycle of queuwe i.

= the terminal service time of queue i in the kth cycle of queue

i, i.e. time for the server to serve queue 1 and to switch to
the next queue.

random variables assume nomnegative integer values.

According to the definitions, a number of relationships can be written

as follows:

5 ()

i for gated exhaustive service (2.1)
= Xi(k) - Zi(k) + Yi(k) | (2.2)
Y Ly )y (KD (2.3)
j=1 )J 1
N i-1
;1. 4y g (D (2.4)
j=1i - j=1
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c,® . |
k k :
Yi( ) - ) M, j( ) (2.5)
=1 b
where
Li j(k) = length of the jth message buffered at queue i at its scan
’
- instant in the kth cyclic service of queue i.
Mi j(k) = number of messages arrived at queue i in the jth slot of the
’

kth cycle of queue {i.

The variables M .(k) and L .(k)
i,3 i,]

distributed (i.i.d.) random variables whose statistics are described by the

are two sets of independent and identically

MGFs ai(s) and Bi(s) respectively. When the lower index exceeds the upper
index in any summation, the summation is defined as zero. This convention

will be adopted throughout this thesis.

2.5 Comments on the Relations between System Random Variables.

Equations (2.1)-(2.5) represent the most basic relations between the
system random variables for the gated exhaustive service discipline. For
other service disciplines, equations (2.2)-(2.5) still hold but (2.1) has to
be modified. For example, if queues are served according to the gated
non-exhaustive scheme with queue 1 allowed to be served up to p; messages in
each cyclic service, then (2.1) will become

z (&) oy I(Xi(k) > 1) (2.6)
31
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where I(+) is the indicator function?. By definition, 2 (k) < Xi(k) for all

i

gated disciplines. Moreover, there is often a deterministic relation betwen

Zi(k) and Xi(k) like (2.1) and (2.6) but there are prominent exceptions such

as the non-gated exhaustive case.
One notices that equations (2.1)~(2.5) are recursive in nature. Given

CRFRCRIIEC () () 2, ana 1,9,

Xl s » we can obtain Z, ,
Tz(k), eeny TN(k) using (2.1) and (2.3). Then we can obtain Cl(k), Yl(k) and
(k+1)
?

> ¢ 0y

+ +
Xl(k o from (2.4), (2.5) and (2.2). Clearly, X2(k 1), Xy +++ can be
derived successively in this manner. Thus, (2.1)-(2.5) completely
characterize the evolution of the system. We shall use these equations to

solve our queueing problem by the method of imbedded Markov chain in the next

chapter.

2 The indicator function I(+) is defined to be 1 if the statement within
brackets is true and O otherwise.
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3. FORMULATION OF TBE SYSTEM EQUATIONS.

3.1 Imbedded Markov Chain Formulation.

The imbedded Markov chain we consider here is the joint random variable

of all the terminal service times in a cycle. If we define T(k) = (Tl(k),

(k), T (k)), then T(k) will be the imbedded chain. The steady state

T, cees Ty

statistics of ¥(k) can be obtained using moment generating functions. Let
e k

P(;) where s = (5], Sy, s+, sN) be the MGF of the random vector T( ) as k

approaches infinity. Then we can write

>

P(2) = T exp(s * ) J p(t]w) p(l) (3.1)
ES
t u

where

> >
t = (tl» Loy ooy tN)’ u = (uy, Ugy e, UN)s

> > N
s *t = z s t = dot (scalar) product,
n'n
n=1
p(ﬁ) = lim Prob(f(k)‘= :),
k >

p(E]8) = Prob(TH) = 2120 _ 3

Interchanging the order of summation yields

P(2) = ) p(d) | exp(s + £) p(E|D) (3.2)
> >
u t

The transition probabilities can be expressed by

N
p(E[8) =1 gl fe ) (3.3)
n=1
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where

(k+1) _ k)

- (k) _
q(tnlcn) = Prob(T tn]Cn c) s

~ N n-}-:l
c_ =) u,+) t..
% j=n j=1 J

>
Thus, the summation over t in (3.2) can be written as

N
§ exp(s + £) p(E]d) e (g exp(s_t ) q(t_|c ))
t n
N-1
= 1 (] exp(sntn)q(tnlcn)) ¥ exp(s) tN)q(tNICN) (3.4)
n=1 tn tN

Let LN and MN be random variables having distributions of message lengths and

arrivals in a slot respectively at queue N. Then the summation over tF in
\]
(3.4) can be evaluated as

g exp(syty)a(ty |ey)

N
= E[exp(sNTN(k+1))]CN(k) = cN]
5 (k)
= E[exp(sNLN) N | CN(k) = CN] E[exp(stN(k+l))] by (2.3)
= E[exp(YN(k) RnSN(sN))ICN(k) = cN] w(5y) by (2.1) and (2.2)
C T
= E[(exp(tiy mB(s0)) "] sy by (2.5)

= exp(c, RnaN(QDBN(SN))) “N(SN)
= exp(cy & () w(sy) (3.5)

where

aN(s) = RnaN(RnBN(S))-
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Substitution of (3.5) into (3.4) gives
N-1
] exp(2+D)p(Fl%) = 1 [] exp(s_t dat lc )] expley Gsp)) yylsy)

> n=1 ¢t
n

N-2

(] exp(s_t ya(e e )] 1 exp(sy g daCey ey jdexpley au(sy)) wylsy)
n=1 tn tN—l

N-2 .
=1 [] exp(s_t)aCt_le )] I exp((sy_+%(s\)) ty_daley jfey )

n=1 L, toa-1

« exp((eyty_p) A(s)) wy(sy)
N-2 A ~ -
ST e aCe e 0T explony By eyt ite))] s Coyy + (e
n
¢ exp((eyty 1) G(s)) wy(sy) (3.6)
The last step is done by noticing (cN - tN—l) is independent of tN—l and by

using the same summing technique used to derive (3.5). Continuing in this

fashion, we can write

N N N
I exp(2-D)p(E10) = Texp((] u,) 6 () T w (s +H ()
g n=1 j=n n=1
N N R
= 11 exp(u_ F (g)) 11 uh(s +Hn(s))
n=1 non n=1 n
> > N >
= exp(BFD) T 4 (st () (3.7)
where
Gn(Z) - an(sn+ﬂn(3)) | (3.73a)
N
> > >
H(s) =) G (s), H (8) =0 (3.7b).
n kﬂﬁlk *h
n
> > > >
F_(s) =kzlck<s> = F(s) - H_(5) (3.7¢)
F(3) = (Fy(8), Fo(3), «--y Fy(3)).
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Substitution of (3.7) into (3.2) gives

N
P3) = [T w (s_+ Hn(Z))] P(F(3)) (3.8)
n=1

Egqn. (3.8) is a recursive functional equation that allows us to solve for
P(g). We shall attempt to calculate the first and the second order moments

of %(k)

with k+=® in the next section.

Before leaving this section, we notice that exactly the same procedure
can be used to derive the MGF of the joint terminal service times for the
time continuous system with Poisson message arrivals. The results will be
exactly the same except that all time quantities are expressed in seconds and

the arrival MGFs {ai(s)} are replaced by {exp(xi(exp(s)—l))} where xi is the

message arrival rate at queue 1i.

3.2 Moment calculations.

To calculate the moments of the joint terminal service times, it is

convenient to take natural logarithm of both sides of (3.8) and write
(a3 4 NA > ~n D D>
P(s) = ) & (s_ + H_(s)) + P(F(s)) : (3.9)
ml PR n

where

P(3) = wP(3) , B (s) = nw (s).
By differentiéting (3.9), we can get the central woment (and hence the
moments) of the joint terminal service times. Differentiation of (3.9) once

>
and evaluation at s = 0 gives

~ ~ H
3 g o oF | N ~ a(sj+ j)

7R e (3-10)
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All derivatives will be evaluated at the origin unless stated otherwise. A

second differentiation yields

~ N ~ ~ 2
0% _ % I% 228 O ¥y +’§ o Ok
bsibsj k=1 =1 askbsi bsi bsj k=1 bsk bsibsj
N

2
. z [A" b(sk+Hk) b(sk +Hk) oA ) (sk + Hk)] A1t
L% T s, 3s “k 3, 0s, (3-11)

k=1 i h| i™]

Eqns. (3.10) and (3.11) can be readily expressed in matrix form as follows:

> > >
v =Av + b (3.12)
V= AVAT + B A (3.13)
where
> T > T
v = (Vl) Vo, e, VN) ’ b = (bls b2) LA bN) ’
A N (s ,+H,
v = O b = a '._S_l__lz
H] : : E]
i 0s i e i ds |
i j=1 i
V=[V ] v =_£2:§_
ijt ? ij bsiasj ’
oF ,
= - J
A=laglsa =57
i
~ 2
B=(b ], bi. ) g gp ab Zk . % [ak" 6(sg+Hk) a(sk+Hk)
ij h| k=1 sk2 Sy sj k=1 Sy 6sj
. ' 3 (Sk+Hk)
asiasj

3.3 Approaches to the Solutions of the Basic Equations.

There are two approaches to obtaining solutions of (3.12) and (3.13).

The first approach is to recognize that (3.12) is a set of N linear equations
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~

of N unknowns-gg- with the forcing terms bi' Then we notice that (3.13)
i

represents another set of linear equations of N(N+1)/2 unknowns

{vij} (

solution of (3.12). Hence, we can solve (3.12) and (3.13) by standard

Vij=vji) with forcing terms {bij}; these {bij} are obtained from the
techniques for solving systems of linear equations. Naturally, the questions
regarding existence and uniqueness of the solutions to both set of equations
arise. These questions can be answered by explicit series solutions using
the second approach discussed later. The ultimate goal 1is to solve (3.12)
and (3.13) explicitly in closed form. Unfortunately, no such solutions are
available for (3.13) except for the symmetric case or for N=2.

The second approach is somewhat numerical in nature. We notice that
both (3.12) and (3.13) represent recursive relations that allow iterative
numerical solutions. A new estimate can be calculated from the immediately
previous estimate using the right hand side of (3.12) and similarly for
(3.13). If the iterative procedure converges, then we can obtain a solution.
The main results obtained following this line of thought can be summarized in

Theorem 3.1 in the next section.

3.4 Existence and Uniqueness of Solutions to the Basic Equations.

Theorem 3.1: If the utilization of the system satisfies p < 1, then unique
@ k..)
-3
solutions exist for both (3.12) and (3.13) and they are given by v = z A'b
k=0

w
and V = Z A B(Ak) respectively.



Indeed, the theorem can be extended to all higher order derivatives of
?(g) but we will restrict our attention to the first two orders of moments.
The proof of Theorem 3.1 relies heavily on a result‘proved in the Appendix
stating that if p < 1, then all the eigenvalues of A have magnitudes less

than unity. We prove Theorem 3.1 using this result.

Proof of Theorem 3.1: We diagonalize A by

A= rar! (3.14)

where A is a diagonal matrix with elements equal to the eigenvalues xl, Aoy
coey KN of A, and T contains the corresponding column eigenvectors. Using

this diagonalization, we can write

] A% =7 mrif s ny A58 (3.15)
k=0 k=0 k=0
o T ©
and J A"B(a*) =7 rarlecrhyTakpt
k=0 k=0
= I(}) akcakyrt (3.16)
k=0
where
~1_ =147
C=T"'B(l") = [cij].
Now ) X = AE I(i=j)| and } wcak = ) ci.x§x5
k=0 k=0 k=0 ' k=0 *J *J

Both series exist if |Ki| < 1 for all 1 and this is guaranteed if p < 1.

25
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c© -3 T
k> k. k
Therefore 2 A'b and 2 AB(A ) both exist if p < 1 and substitution of
k=0 k=0

these series into (3.12) and (3.13) will verify that they are indeed
solutions to the equations. Hence the existence of the solutions to (3.12)
and to (3.13) has been established.

To establish the uniqueness of those solutions , we let v and U be

solutions to (3.12) and write

> > > '

v=Av+b (3.17)
> > >

u=Au-+ b (3.18)

Subtraction gives

(Vv - 0) = A(V - 1) (3.19)
which implies
3~ 2y = a3 - ) for all k (3.20)

k

but Ak(s - G) TA r'1(3 - 3) + 0 as k » @ so 3 = u. Similar arguments

establish the uniqueness of the solution to (3.13).

3.5 Comments Regarding Solutions of the Basic Equations.

The series solutions given in Theorem 3.1 are useful in establishing
existence and uniqueness, but they do not shed light on the explicit closed-
form solutions. Even for nunerical solutiong, one will follow the iterative
procedures given by (3.12) and (3.13) instead of calculating the series in
Theorem 3.1 term by term. In fact, a very nice numerical procedure was

developed in [28-29]. However, it is desirable to have analytic results that



display the effects of changes in system parameters.

shall derive a number of exact analytic results.

27

In the next chapter, we
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4. SOME EXACT ANALYTIC RESULTS.

4.1 Overview of Results.

A nunber of exact analytic results are available regarding the
solutions to (3.12) and (3.13). First of all, (3.12) can be solved
explicitly in closed form by considering the average cycle time. The
solution to (3.12) allows us to simplify the forcing matrix B in (3.13).
Next, we explore the structures of the matrices A and B in (3.13). A simple
difference equation relating the unknowns {vij} is derived by exploiting the
structures of A and B. This difference equation has not been reported before
and it will form the basis of the mean delay approximation to be presented in

the next chapter.

4.2 Expected Cycle Time.

From equation (2.4), we observe that the expected cycle time at steady
state is equal to the sum of all expected terminal service times. This means
the average cycle time is independent of the queue. Using this fact, we can
compute the average cycle time and obtain other results as well. We state
4these results preéisely by the following Lemma.

Lemma 4.1:
The expected cycle time of queue i at steady state is independent of i

and it is given by

N ~
-y o _EW .1
EC = ) 5 = 1o (4.1)



Moreover,
~ pEw
oP _ _ i
-a-;; = pi EC + EW, = 1-P+ Ewi (4.2)
where

EC = average cycle time,

Ewi = ®.'(0) = expected overhead from queue i to the next queue,

total expected overhead,

tm
=
1]
i t~12Z
[52]
=
]

utilization of queue i,

kel
[
[}
(23]
~
o
~
L[}

p = Z pj = gsystem utilization.

Proof of Lemma 4.1:

From (2.4), we can write

N i-

1im £c, %) = 1am e[ § T 4 2 p{k+1) ]
Ko T k+m j=1 J §=1 J
gpk)
Z Ha BT
N ~
-7 = (4.3)
=1 73

Equation (4.3) states that the average cycle time of queue i at steady state

is independent of i and we denote this quantity by EC.

From (3.10), we have

a N o ©OF N (s, + H
6L=EBL___J+M'(J ),
asi j=1 6sj bsi 31 bsi

29
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Next, we notice from-(3.7a) and (3.7b) that Goy Gy wee, GN and Hl’ Hyy oo,

HN are all independent of s; and from (3.7¢) that F; =G, 4+ G, 4 «+« 4 GN’

therefore
ij oG, . a(sj + Hj) -
= A~ .
== = — = @,'(0) and —F5——— = I(j=1)
bsl aSl Nl 551
S S
= ds, 9 Z_ 5. T W (4:4)
=1 773
From the definitions of Ei and Gi, we have
R . ' '
a4 o By
= (average arrivals in a slot x average message length in slots) at
queue 1
= Py
~ory o v - .
Wy Wy Ewl
Thus,
~ N ~
0P _ oP
3sy - pl.; 0s + EW)
=1 73
= p,EC + EW, (4.5)

Similar results can be obtained for all other queues so (4.5) can be

rewritten as

—-S’Z = pEC + EW; (4.6)
i

Summation of (4.6) over all i gives
EC = pEC + EW
EW
= EC = y— (4.7)
-pP

Combination of (4.3), (4.6) and (4.7) gives (4.1)-(4.2).
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We remark here that (4.1)-(4.2) are very general resclts that can be
obtained by considering equations (2.2)-(2.5) onlf‘without assuning any
particular service discipline. One also notices that we did not solve (3.12)
directly to obtain (4.2). 1Instead, we exploited the cyclic symmetry of the
system to get (4.6) and (4.7), which are much simpler than (3.12). This

readily demonstrates the importance of cyclic symmetry in our problem.

4.3 Simplification of the Forcing Matrix B.

The solution to (3.12) given by (4.2) can be used to simplify the
elements in matrix B to a considerable extent. This is stated in Lemma 4.2.
Lemma 4.2

The elements {bij} of the matrix B in (3.12) can be simplified as

N b(sk + Hk) b(sk + Hk)

b,.=[ 7t ] EC (4.8)
ij k=1 k bsi bsj
where
~n
~A n 1
b 7% T
_ 2 varMi N varLi . varwi (4 .80
Pi TEMY2 7 P1 EL] EC ' s
EMi = average message arrivals at queuve i in a slot,
varMi = variance of message arrivals at queue i in a slot,
ELi = average message length at queue i,
varLi = variance of message length at queue i,
varwi = variance of switching overhead from queue i to the next queue;

for the time continuous system with Poisson arrivals,



A

w

i
_ A n
ty = % *EC
varwi
= 2 4 =
EM, EL;? + —¢ (4.8b)
ELi2 = second moment of the message length at queue {i.

Proof of Lemma 4.2:

From the definition of {bij} given in (3.13), we have

~ 2 2
- g [ 2P e} Fk . ak‘ o) (sk + Hk) . ak" b(sk + Hk) a(sk + Hk)
ij kel bsk 6sibsj asiasj asi asj
and substitution of (4.2) gives
N 3 d2(s, + H )
- A k ~ k k
_ \ ' Y
bij _k— [(ak EC + 4 ) 3s. 05, T % Os, 0s,
=1 i) i j
L O T s+ B o)
“x ds ds . '
i R
From (3.7a)-(3.7c), we have
and therefore
2 2 +
(& 'EC + &.') flf%r- + 5 '-E—%iEET—EEZ
% W Bsi sj Yy S, sj v
2 2 -
e e 0°Fy Y 04(Fy = H + 5, + H)
T % 6si§j “ Bsibs.
o%F, 0%F d2s,
SR S oz, = ©)
d2F 324

(4.10)

]
~~
~
tr
(@]
+
FE>
-
jo 4
n
[U
4 =4
.
}
7‘9)
&
(@]
8.’
(o4
»
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Summation of (4.10) over ail k and substitution into (4.9) give

d2F N a2Hk
b, ., = (pEC + EW) m——— = ] @ 'EC m——z—
ij bsias. k=1ak asiasj
. 1§ Gk (s, + Hk) (s, + Hk)
ko1 2 asi :S.
N 3% 3%H N d(s, +H, ) 3(s, +H, )
e ] bt G mae )t LA e e (1D
k=1 i j i3 k=l i 3

From (3.7 a), we have

2 2
o} Gk A 6(5k + Hk) b(sk + Hk) Y a ) (sk + Hk)
Bs Bs % 3 B & s 0s

and substitution into (4.11) gives

g &k d(s, + B,) d(s, +H)
b,. = EC (o " + )
ij k=1 % EC asi asj
Cec g . a(sk + Hk) a(sk + Hk)
k s 3s. ’
k=1 i j

4.4 The Jacobian Matrix A.

To study the Jacobian matrix A, we have to look into the properties of
the functions {Fi}’ {Gi} and {Hi}' The functions {Gi} and {Hi} are defined
iteratively by (3.7a) and (3.7b). We start with HN and calculate GN from HN’
then we obtain HN_1 from GN’ then GN__1 from HN—l’ then HN-l from GN-l and GN’
and the iteration goes on. After we have obained G, G,,. «-s, GN and Hl’ Ho,
oo HN we compute FN by summing {Gi} over all i and then Fi by (FN - Hi).

These are the basic steps we follow to calculate the elements in A.



Lemma 4 .3:

The Jacobian matrix A in (3.13) can be expressed as

34

> > > > > > > >
A=[uy - ulluo- u2|u0- u3| coe | ug - uN] (4.12)
where 4
3 > >
= f — u; = > Un = t— 71>
0 o] * ! r' 0 2 0
(I+py) Py _ P2 0
(1+p;) (1+py) p3 (1+p3) p3 P3
: (14pP2)(1tp3) Py (1+p3)py,
N-1 * 3 3
(kfl(“"k))pN (N—l ) N-1
| - I (1+p ))p (1 (+p))p
k=2 N e T
> = r_. - o =
Tt oR-l 0 » Uy of -
0 0
0 0
Proof of Lemma 4.3:
From (3.7a)-(3.7c), we have
bGj b(sj + Hj) aHj
=y S = = 4 -+ 4,
%, a %, pj(I(i b)) —Bs—i) (4.13)
oH N G aF N &
=1 = =0 = (4-14)
i k=j¥1 i i k=1 i
OF . OF dH
aJ_aN_b (4.15)
sy Sy 54

Eqns. (4.13) and (4.14) imply
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ok, oH, - :
seT— = (I4p) 5= + py1(1=3) i1 (4.16a)
1 i
OF dH,
and  =— = (1 + p;) 5=+ p,1(i=1) (4.16b)
i i

It can be seen that
> > >
u, = (1 + p,)u, + p.e,. 4.17
-1 ( pJ) 5t Py ( )

.’
where ej is the jth unit column vector.

The iterative relations given by (4.16a) - (4.16b) and (4.17) are identical

> bHN
and since uy = 0= [-Bg; ], we conclude that
oH JF
> j > - N
Uj = [-——asi ] and Ug [_6-5‘: ] (4-18)

Clearly, (4.18) and (4.15) imply the result given in Lemma 4.3

4.5 An Auxilliary Result.

We derive an auxilliary result before the derivation of the difference
equation relating the unknowns {vij} in the next section.

Lemma 4.4:

oF
Let a; =35 and I(+) be the indicator function defined earlier in
i
Chapter 2. Then
2 ‘ a2 a
b _""1+1b )_2("’i+1b 52 S )
Cirrin™ 7 Put s, Puw T2 3 Pu

1 4y
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a a
_ i+l 2 _
= EC [(ty,, + (pypy > ) + 2t1(a1) I(i=1)] 4<N
i

Proof of Lemma 4 .4:

BH .
From the structure of-ggl given by (4.18), we have
i
98,41 Pi 0s4
a OH
- .
SR .0 §<i<N

a 0s,
i i

From (4.8),

byy = EC kzltk[ ?s
2
i-1 ka bﬂk
=ec [ ) t, =) +t.] (w—=— =0 for k » i)
kel k bsi i bsi
Thus,
2
a
1+1
(Bit15401 > byy)
; 2
1 oH, 2 il a4y Oy 2 qi+1
=kc [ ] t b5 ) -1 tk( a ) Tt T t;]
k=1 i+l k=1 i i : ai2
OH a 2
i i+1
= EC [t —+ t - ]
i bsi+1 i+l aiz i
a1+12
= EC [ty * (P "—;'3”) :] 1 <N
i

Using the same results from (4.18) and (4.8), we have

(4.19)

(4.20)

(4.21)

(4.22)

36
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b(s1 + Hl)
Thus,
a a 2 a,
i+l i+1 i
¢ b, . — b, )
a 1li+l 2 a 1i
1 a 1
i
! (b 141 )
a1 1li+1 ai 11
3441 ! 341 05 Oy 34, OH
=Bty [m—- =, sl =,
1 Si41 %4 i 41 %3 i
2
ay
= -EC t; (-é—) I1(i=1) 1< N (4.24)

1
Combination of (4.24) and (4.22) give (4.19).

4.6 A Difference Equation for the Second Joint Moments of Terminal Service

Times.
It is difficult, if not impossible, to solve (3.13) in closed forum.
Analytic solutions are available for the symmetric case and for N=2 only.
For the symmetric case, (3.13) can be solved quite easily by arguments based

on symmetry i.e. v = v,. and v,

ii ij 13 = Vitk Fk In fact, vij is independent

of i and j so long as i # j for the symmetric case. The algebra involved for
the very simple case of N=2 is already very tedious and the solution in this
case suggests that there is little hope in the search for a simple formula
for the general asymme;ric case. Numerical techniques and heuristic
approximations were Aeveloped but their difficulties have already been

discussed in Chapter 1. Here, we derive a simple difference equation
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relating the unknowns {vij}' Although this equation does not allow us to
solve (3.13) analytically, it represents a big improvement over existing
analytic results.
Lemma 4 .5:

The unknowns {;ij}’ modified from {Vij}’ satisfy the following

relation:

(DyDy + p;Dy + ijH)(vij)

t t .
+
st ren + 1= 141) 1 <i<N (4.25)
Pi i+1
where
v
ij X
— i#]
E
pyp4EC
Vi © { (4.25a)
1 ' var Ci
— G - t)=—%¢ 1=
Py
var Ci = variance of cycle time of queue i at steady state,
DH = the forward difference operator in the first index,
DV = the forward difference operator in the second index;
that is
D ~ = ~ - ~
V57 T Vi3 T Vim0
DV(Vij) = vij - vij+1’

DHDV(Vij) = DVDH(vij) = vij - vij+1 - vi+1j + vi+1j+1

Proof of Lemma 4.5:

>

+ T > > >
We define r, to be the ith row vector of the matrix [u1|u2|u3[...|uN],

i



'y
a; = Egg-as in Lemma 4.4 and I = (1, 1, ..., l)T. Using these definitions,
i
. . >T > T
we can write the ith row vector of A as (ail - T ). Then from (3.13), we
have
_ T _ 2T _ 2
v = (aif £ -1 +b,,
= a 2ATT - 2a. T2, + 207, + b, (4.26)
i i i i i ii
>T > T > >
and vii < (all - )V(ail - ri) + bli ,
_ >T F _ > > o
= alail V1 all Vri + b1i & T 0) (4.27)
o . +L -+ . .
Elimination of 1 Vri using (4.26) and (4.27) gives
ai 1 > +I > ai
(v., =2 —v_ . )==-a 2 vi+r.vr, +(b,., -2 —0Db_.) (4.28)
ii a; 1i i i i ii a; 1i
Replacement of i by i+l in (4.256) gives
a
_ i+l _ 2T > T > 1+l
(Vit1341 T 2 a Vigr) T TR TV r g Vi P T2 2 ®1541)
i <N (4.29)
Elimination of fTVf using (4.28) and (4.29) gives
2
a a a
i+l i+l i
Givrinr T 23 Vuw? T, W T 23 V1g)
1 a; 1
> T > 8417 2T » .ai+1 241 ° 24
= Tiel VEiel” L2 i Ve 72 a, Privr?” Py 'Zéq P14
i . 1
T 8417 a1
> > > > ~ . .
T an T, T Y i1 1 <N ' (4.30)
i

where
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a a 2 a

~ _ i+1 R G2 _ i
by = (Pyyy 441 25— b)) T, (byy = 257 byy)
1 ai 1
2
a a. 2
i+1 2 i .
= EC [ti+1 + (P, --—;-- t,) + 2tlg;I) I(i=1)] 1 < N (4.30a)
1

Eqn. (4.30a) is obtained by Lemma 4.4.

Now,
2
2 T v I oM 3
SO 15 I S
; ‘
2
_ g g [ o OH, A4 3H, OH, -
k=1 221 OSi41 OSi41 ai2 Os; Os k1
. 2
i i bﬂk 6H2 a1+1 aHk aHx oH | . .
=) Z[as 3s - 5% B ]vkl ('-‘—Jas =0 for j » i)
k=1 2=1 i+l i+l ai2 i i i
i-1 » 2H i-1 aH., @H 3H.  BH
- ;k F vt L mm B E i
k=1 %ji+1 141 =1 i+1 Biql ? i+1 ®i41 M
by (4.20)
dH i-1 BH 3H, 2
=2 ds Z 5sk vki + (asl ) Vii
i+1 k=1 "°i+l1 i+1
i-1 a O,
_ i+l 2
=200 LT B Via * Pie1Vig by (4-20)
k=1 21 i
2 ai+1 *TV-> + 2
SfE P Ti Piv1” Vi1 (4.31)
Substitution of (4.31) into (4.30) gives
2
a a a.
i+l i+l i
Vg4 ~ 23 Vigs) T (Vig = 25 vyy)
1 ai 1
454 ST .+ 2, -
= 2-;——— pi+1ri Vei + pi+1 11 + bii i <N (4.32)

i
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The next step is crucial in this proof. We notice that all the
variables in (4.32) are functions of {pi} and {ti}. By cyclic symmetry, eqn.
(4.32) should hold if we perform a cyclic shift of indices i.e. replace P by
Pi41° Py by n and similarly for {ti}. We denote this cyclic shift of

indices by the operator CS(e). We further notice that

CS(vij) = V4541 i, 3 <N (4.33)
CS(p,) = p. i < N and CS(p.) = p (4.34)
i i+l 1
CS(ti) =t i < N and CS(tN) =t (4.35)
a a
i+l  _ Ti+2 . . )
cs( 5 ) =3 i <N-1 (4.36)

i i+l
With these in mind, we perform the cyclic shift of indices on (4.32) and get
2

8541 8i+2 4
Vigagen 205 G) vau40) - > Cigninn ~ 2 OGN
1 a, 1
i+l
8142 > T »
- 2 o ; _
2 p14oCS(F Ve ) + P2 v Loy + CS(B) ) i < N1 (4.37)
a,
i+1
Replacement of i by i+l in (4.32) gives
. 2
) _ o liv2 y - %i+2 (v P to! N
Vit2i+2 a li+2 5 Vi+li+l a 'li+l
1 a, 1
i+l
ai+2 > T. » ~
T2 P2 i i T P Yierien P Oippper P SN (4.38)
i+l
Noticing that Cs(bii) = bi+li+1 for 1<i<N-1l, we can subtract (4.37) from
(4.38) and get
2
a a a, a a,
i+2 i+l i+2 i+l i
-2 (al Vii42 T Cs(a1 Maie) ¥ 2 7 (a1 Vig+p T (al)v2i+l)



Noﬁ,
.’
T
i
Moreover
CS

i+2 > T > > T »
23 142(T 141 Veqqyy ~ CS(r; Vey))
1+1
T » + T >
+1 Veyqy ~ O8(ry Vey)
E bﬂk iil ka
v - ¢s == v, .)
WLy Bsyy kil WLy B8, ki
% oH, . i iil oH .
kel bsi+1 ki+l k=1 asi+1 k+1li+1
3 oH, . ) % oK, .
oy By k¥l L) s kit
oH, .
asi+1 1141
1+p:L 1i+1
b}
éi;) _ i+l
8y 4y

1< 1< N-1

i<N

i <N

Substitution of (4.40) and (4.41) into (4.39) gives

-2

Simplifi

= 2

N1i+2 V2442 8342 Y14+l _ V2141
44+2 72 - a )+ 2ai+2 a La - a )
1 2 141 1 2
o)
1+2 1< 1< N-1

142 Tp, V1i+1

cation of (4.42) gives

(4.39)

(4.40)

(4.41)

(4.42)
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(T4py 4Py Vg — Py )Vopy — O¥edvgyp ¥

1< 1<

o (1+p1+pi )vli - (1+Pi)V21 - (1+pl)v11+1 + V21+1 =
2<1¢

Voi+2 T
N-1

Similar calculations can be done for i = 1 and i = 2 and the

similar except for the residual terms on the right hand side

The results are

~~ ~ ~ ~ 2
(10 ¥0p)vyp = (¥Ry) oy = (FeIVyg * Vo3 =
(1+2p1)vll = (1+p1)V21 - (1+pl)V12 + V22 = - FI
Combination of (4.44), (4.45) and (4.46) gives
(DHDV + plDV + ijH)vlj
1 2
= =2 — I(j=1) +— I(3=2) j <N
1 P2
Cyclic shift of indices on (4.47) yields (4.25).
var C
We would also like to show Vig = —Fc given in

(4.26), we have

22T
v a1 I Vf + b11

11

plszvf + t, EC.

1
Ec = Tovi

<

Thus 11

eqn. (4.25a).

(4.43)

(4.48)

(4.45)

(4.46)

(4.47)

From
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results are very

of the equation.



I L
1=1 j=1 °51°%;
N N
3P dP dP
- 2 2[ 8s.0s. &8s, ds }
i=1 j=1 1777 i 7]
N N
=1im ) ) {E[Ti(k)T.(k)] - E[T.(k)]g[r.(k)n
k—)co i=1 j=1 ) J 1 ) J
N N
k !
s { f( J 1)) -(d ) 1, )
k> i=1 i=1
= lim var Cl(k)
k>
N var C1
=> Vi1 T TEC
- var Ci
= Vi T TR (4-48)

Lemma 4.5 is a major contribution of this thesis. No such simple
result relating the joint moments of terminal service times has been reportea
before. Eqn. (4.25) is a two dimensional linear but spatially variant
difference equation. It can be solved up to N arbitrary constants. To see

this, we rewrite (4.25) as

14p ,4p . 14p . t
i1 i~ 1l ~ 1 i+l o . .
i+1j+T;5;Vi+1j+1—T:a; — I(j=i+1) i<j (4.49a)

v

Itp, "1 T4, Pi+1
Vil T {
1+2p t
1 i~ 1~ 1 1 _
7 T, vig t T, Vitg+d t T, S: 1=3 (4.49b)

Using (4.49b), we can express ;ii+1 including cs(v ) in terms of the

N-1N
diagonal elements. Then we can use (4.49a) to express other off-diagonal

elements and their cyclic-shifted counterparts in terms of the diagonal

elements in a successive manner. Thus, we can assign N arbitrary values to



the diagonal elements and generate a solution to (4.25). In other words,
(4;25) is not a complete set of equations that characterize a unique
solution.

However, we can use (4.48) to generate N equations relating G;i to
other off-diagonal elements. This suggests a new numerical algorithm for
solving (3.13). We start with a guess of the diagonal elements, compute all
other off-diagonal elements by (4.49a) and (4.49b), update the diagonal
elements by (4.48) and repeat the same procedure. The criteria for
convergence of this numerical procedure has not been established but
experiments have shown that not only does the procedure converge for p < 1,
it also converges much faster than the algorithm given in [29].

Eqn. (4.25) is not only useful for numerical solutions, it can also be
used to solve (3.13) explicitly for special cases and to obtain approximate
solution for the general case. In the next section, we use (4.25) to solve
(3.13) for the symmtric case. An approximation based on (4.25) will be

presented in the next chapter.

4.7 Solution for the Symmetric Case.

As remarked earlier, (3.13) can be solved easily for the symmetric
case. We do this in the following Lemma.
Lemma 4.6

If p; and t, are independent of i, then the solution of (3.13) is given

i

by (in terms of vij)



t
~ t 1 i
v,., = + — I(i#))
+ - +

i3 Q#p)(d-p) 1+ p p;
where

p = Npi, t = Nti.
Proof of Lemma 4.6:
By symmetry, Vi1 S Vop T v = VNn©
From (4.4%9b), we have

~ o~ I R G

R X e L E A )
From (4.4%9a), we have

iy = v = = 9 = i + 1 i—.

Y13 7 Vo4 Tttt T Vean T Vin T THp]

Successive calculations using (4.4%a) show that

1t
v,. =v,, + —_— i #])
ij ii 1+pi P
Furthermore,
Vin “wc V!
N % - N
= z P: P + z t,
i=1 =1 *+ 3 Y 41t

1 5

N(p12$i1+t1) + N(N—l)p12(3i1+ T:?T'EI)
1

~ | 14p
]y * T+p, "

~ t
11 (1+p)(1-p)

Combination of (4.53) and (4.54) gives (4.50).
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(4.50)

(4.51)

(4.52)

(4.53)

(4.54)
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5. MEAN DELAY ANALYSIS.

5.1 Relationship between Mean Message Delays and Service Time Moments.

As remarked in Chapter 1, our goal i1s to analyze the mean message
delays oﬁ a tokenmrring. In the last chapter, we concentrated on the solution
for the second joint moments of the terminal service times, becaqse there is
an intimate relationship between the mean message delays and these moments. |
This relationship is stated in Lemma 5.1.

Lemma 5.1:

The mean queueing delay (excluding service) of a message at queue i is

given by
var M, - EM
(slot) _ 1 ~ 1 i i _
EDi =3 (1+pi)(vii + EC) +-§ t EMi ELi 1) (5.1)
for the discrete time slot system and
(Poisson) _ 1 ~ .
EDi =3 (1+pi)(vii + EC) (5.2)

for the continuous time system with Poisson arrivals. All quantities in
(5.1) and (5.2) are defined earlier in Chapter.é, EC in Lemma 4.1, var Mi’.
EM1 and ELi in Lemma 4.2 and ;ii in Lenma 4.5.

Recall that the delay in a discrete time slot system is measured in
slots whereas the delay in a time continuous system is measured in secondé.
Thus, the quantities in (5.1) and (5.2) may have different numerical values
even if they represent the same thing. This is important for system

conversions such as treating the time continuous system as a limiting case of

the discrete time slot system.
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Proof of Lemma 5.1:

The derivation of eqn. (5.1) can be found in [27] but we shall include
it here to make this thesis self-contained.

Physically, the average mesage delay at a queue on a token ring is the
ratio of the sum of all message delays over many cycles to the number of
messages served in the same period of time. Let NC be the number of cycles

we measure the message delays, ED be the expected total message delays in a

i

cycle and EZ, be the expected number of messages served in a cycle. Then the

i
average message delay EDi is given by
NC EDiT EDiT
By =% —Ez T2 (-3
c i i

T
Quantities EDi and EZi are independent of the cycle because we are only
interested in the steady state. For this reason, all superscripts k denoting

the kth cycle will be dropped.

From (2.1), (2.2) and (2.5), we have

EZ, = EY, = ECi EM

i i (5.4)

i
The quantity EDiT is more difficult to calculate. We sum all the message in
a typical cycle and let

c L. previous cycle,

i
Mifj = nunber of messages arrived in the jth slot of the previous
cycle,
ZiC = nunber of messages served in the current cycle,
L C. = the length of the jth message being served in the current cycle.

i,3
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The delay of a message consists of two parts: waiting time for the beginning
of current service cycle and the sum of service times of messages buffered up
front of the queue. By separating these components, we can see that the

total delay is given by

i
0.7=F «F-n ¥ . +7 73 Lf . (5.5)

Taking expectation of (5.5) gives

P 2
1 5 i j-1
; = E ) (Cy - J)EM, + YD EL, ]
j=1 j=1 k=1
; C
P, P i
= E[5 ¢, (C; - L)EM, +j£1 (3-1)EL,]
1

1 P, P c..C
= E[5 C,(C{-1)EM, + Zi(Zi—l)ELi] (5.6)

=3

ED

n

Il o~ ™ g
=
= g

Since ZS =

E[25(Z5-1)] =

t
tm
—
N

j=1 i)j j"—: 1’J

P _2
= E[C; I

i
P
E[Ci(var M

P P 2 _ P
+ C (C -1)(EM,) C,EM, ]

P 2 :
+ Ci(EMi) - EMi)] (5.7)

i
Substitution of (5.7) into (5.6) yields the following after some

simplification:

T 1 2 1 1
= = - ~EM,)EL, - — EC, EM 5.8
ED, =5 (1+EM, EL,) Eci EMi + 2 ECi(var M, i) ; ~ 3 EC, EM, (5.8)

Substitution of (5.8) and (5.4) into (5.3) gives (5.1).
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Eqn. (5.2) can be derived from (5.1) as a special limiting case. To do
this, we first let the number of message arrivals in a slot be Poisson. Then
the term (var Mi - EMi) becomes zero. Next, we let the time slot go to zeroc
while keeping the absolute value (in seconds) of the cycle time fixed. Thus,
the constant (—-%) effectively disappears from (5.1) and (5.1) 1s converted

to (5.2) with the units changed from time slots to seconds.

5.2 A Fundamental Relation for {;;i}.

~

Eqns. (5.1) and (5.2) show that Vig is an important element of the mean

message delays.‘ In fact, it is the only unknown appearing in the mean delay

expressions. Therefore, it is helpful to have as much information on {;;i}

as possible. Based on Kleinrock's conservation law [15], a simple relationm

for {v } can be derived. This is stated in Lemma 5.2.

ii

Lemma 5.2:

The unknowns {;11} satisfy the following equation:

N
v = Rt
¥ pi(l+pi)vii = (5.9)
i=1
where
N
p = z Py = total system utilization,
i=1
N
t =)t .
1=1 1
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Proof of Lemma 5.2:

Let us call the general time slot system we are considering System A
and denote its parameters with superscript A. We now artificially construct
System B with parameters superscripted by B from the following
specifications:

(1) System B is time continuous with Poisson arrivals,

, t, = tA for all i,
(i11) var W, = 0, EW} = 2 EWA ) I(i=N).

It is important to realize that System B is realizable i.e. no
overspecifications or inconsistencies in the parameters.

Since the numerical values of {;11} depend only on {pi} and {ti}’ we
conclude that ;?i is equal to ;?1 for all { numerically. Furthermore, ;ii is

independent of the fixed overhead WB

N’ which is the only overhead in System B.

Thus, if we let EWB go to zero, the mean delay at each queue in System B will
be given by (1+p, ) v B With Ewg=0, System B is now a work conserving
system l1.e. the server will not be idle so long as there 1s a customer in the
system. We are now ready to apply the conservation law.

Kleinrock's conservation law states that in a work conserving
multi-queue system, the intensity weighted mean of the average delays of all
Vthe ﬁueues is independent of the way the queues are served. The law also
states that for any M/G/1 system with no preemption, the intensity weighted

mean of the average delays' is given by

N p W
2 1 EDi = 10 (5.10)
1=1 P s



52

where
N ELi2 ‘
W = z 5 Py T (5.10a)

P
o) i=1 i ELi

We notice from (4.8b) that

B 2
g E(by)

(5.11)

Wb =7 .% ¢ =.% t (5.12)
i=1
and therefore
B
N p
i B
—_ EDi =

i=1 pB 1-p

(5.13)
Therefore,

(1+p3) vo, = 2

l o
=1 N ]
N'v—-

e~z

i=1

1-p
B_B
= t

i

(5.14)

N2 D

B,  B.~B _p

1 SR B

Replacing the superscripts B by A gives the desired result.

5.3 An Approximation for {Gii}.

To obtain exact solutions for {C;i}’ (3.13) or equivalent equations
must be solved. We cannot provide a closed-form analytic solution. However,

a very good approximation based on Lemma 4.5 can be derived. We start by

~

considering the difference (v22 - 311). From (4.26) or (4.27), we have
~ 1 T '
N vt (5.15)

and



V22

where CS(e+) 1s the cyclic shift operator defined in Sec. 4.6.

1 2T > - ,
= ¢ Cs(1VD) (5.16)

Subtraction gives

(Vyy = V1) =LC- (cstTvly - i’TvT)
, Nl
=gl L cseyg >-Z 15)
j=1
2 [T :
= cs(p, OV i) = Z 0P Vy ]
j 1 N" jN 3= 173 13
-1 . N
= [ P (PP OS5y jE P1oV1 4]
N-l
- r iy -
= 2p, j=21 Pip1 [CSCY5y) v1j+1] (5.17)

Now, assuming that the total utilization is low, all the coefficients

appearing in (4.49a)-(4.49b) can be essentially replaced by unity and thus

t

~ ~ ~ 41 . . .
vij vi+1j + vi+1j+1 _.B;:I I(j=i+1) i< j
Vil { (5.18)
t
1~ ~ i
7 gs * Va4 +Fi' 1=13

Successive calculations of the off-diagonal elements using (5.18) gives

t
~ ~ i

_ 3 .1
(vii + ij) + 3 i< j (5.19)

~

vij

~

N'v—t

Substitution of (5.19) into (5.17) gives

N N;l 1 o~ o~ tj 1 ~ o~ tl
(Voomv11) = 27 jfl Pin (sl (Vygtvg) + 'p—j) "z Ontgam) T ]
t t

j+1 1
= 291 z p3+1(_£— —)

Pi+1 P2



N-~1 tl N-1
=20, [} to == 1 Pyl
1 j=1 i+l ) j=1 j+1
!
= 2p, [ (t-t)) "5, (P p)]
SO
= 2pt (—p- ‘;—)
By cyclic symmetry
p t
Visige T Vi = 20t G o) (5.21)
Using (5.21), the left hand side of (5.9) can be computed as follows:
) Sy - ] @ T ohl
o (1+p )v . = ) p (14p) [v, + 2pt (=2-+)]
R 17741 - oM 1 11 o1 0P t
N - I% i-1 pj tj
= ] p,(1+p,) v, + 20t I p4p) (=2--1) (5.22)
121 i i i1 1=1 1 i i p t
Thus, (5.9) can be used to calculate 311 as
~ ot N i-1 pj tj N
Vi s [T—’ﬁ' 2pt 121 jZ1 Py (+e) (5 -+ )] /izlpi(1+pi) (5.23)

~

By cyclic shifting of indices, we can compute 352’ 653, cees VaN©
Unfortunately, the double sum in (5.23) cannot be simplified for general
cases so we have to leave it as it is.

}e.

5.4 Comments on the Approximation for {;ii

It is important to establish or have some indication on the region of

validity of our approximation given by (5.21) and (5.23). Clearly, our

approximation is exact for the symmetric case. From the low-traffic

(5.20)
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assumption we made to establish (5.18), our approximation should also be very
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good at low traffic levels. Although (5.21) is not exact, it suggests that
the differences among {Cii} are small compared with the actual values of
{;ii} at very high traffic levels (p » 1). With this assumption and using

Lemma 5.2, we can write
N

. ot
Vig "Tp / izlpi(lﬂ’i) (5.24)

for p close to unity. This matches the dominant term in (5.23). Thus, we
expect (5.23) to work well at high traffic levels as well. As a matter of
fact, comparisons with exact numerical results have shown that the
approximation given by (5.21) and (5.23) is very good over a very wide range
of the parameters {pi} and {ti}. These comparisons will be discussed in the
next section.

A nunber of interesting properties of {;ii} can be deduced from (5.21)

and (5.23). Egn. (5.23) shows that v consists of two parts. The first

ii

part is a hyperbolic function independent of i that grows unbounded as p » 1.
The other part is the position dependent part given by a double sum. Egn.
(5.23) is also linear in ti’ which conforms with the linearity of the exact

equation (3.13) with respect to t Eqn. (5.21) gives a somewhat different

.
's between adjacent gqueues.

flavour about {;ii}; it shows the relation of ;ii

For example, (5.21) suggests that a queue 'suffers' if the preceding queue
has a large fraction of the total utilization but 'benefits' if that

If t

preceding queue has a large t i

i is directly proportional to Py s

(5.21) predicts that v,, is approximately independent of i. This special

ii

case corresponds to the time continuous system with Poisson message arrivals,
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fixed overheads and a constant message length for the whole system.

5.5 Comparison of Approximation and Exact Numerical Results for {;ii}'

In this section, we compare the approximations given by (5.21) and
(5.23) with exact numerical results. The biggest problem in the comparison
is the search for representative cases, because we cannot possibly do the
comparison for all conceivable combinations of parameters. Besides the
number of queues N in the system, the parameters needed to solve (3.13) are
{pi} and {ti}‘ These parameters cannot take on arbitrary values. First of
all, they are all positive. Secondly, the total utilization p of the system
should be less than unity. Even with these restrictions, the parameter space
is still unmanageably large.

Since the approximation is exact for the symmetric case, we certainly

should look into highly asymmetric cases. Furthermore, we notice from (4.8a)

that
var M var L, var W

£, =p, 2 — 4 =+ 1

i i (EM1)2 i ELi EC
This suggests that t:i can be very roughly regarded as a linear cowbination of

var Mi - var Li var W
o] 2 p., 1 if the normalized variances R and ——=— do not vary
i

appreciably among the queues. For this reason, we shall look into cases for
ti°c piz, t:i =Py and t1 « 1. With these considerations in mind, we do the

comparisons for all possible combinations of the following parameters:

(i1) ¢, = pi ’ pi, 1, l/pi, 1/p12-
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(iii) 0.01 € p < 0.99 with steps of 0.01.
(iv) 1 large user with utilization 100 times that of other identical
users,
1 small user with utilization 0.0l times that of other identical
users,
2 clusters of identical users with utilization ratio of 1:5.
In each case, the relative errors (absolute value) between the approximation
and the exact nunerical solution are computed for all queues; then the
maximum and the average of these relative errors among the queues are plotted
against the total utilization. There are five curves, labelled from 1 to 5,
in each graph. Curve 1 corresponds to the case of t, = 912’ 2 to tyo= Py 3

tot, =1, 4 to t

" x 1/p12. The plots are shown at the end

« l/pi, 5 tot

i i

of this section. Some of the curves in these plots are too close to be
labelled separately so they will be labelled as a group.

As expected, our approximation works well under very light and very
heavy traffic, as shown in the plots. The plots also show that the

approximation is very good for t. « p 2, t « ps t =1 as well as for all
' i i i i 1

cases of a single large user. When ti « l/pi or ti @ 1/p12, the maximum
relative errors at medium system utilizations of 0.7-0.8 can be as high as
12%. Fortunately, these are rather unrealistic cases. For example, in the

D-net protocol, var Wi = 0 and so from )(4.83)
var M1 var L

= g 2 L i
17 P1” TEy 2 * Py TEL

t

Therefore, t, tends to be small if Py is small and this contradicts the

i

inverse relations given by t, = 1/pi and ty = l/piz. Even with these

i
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unrealistic system parameters, our approximation can still give reasonatly
accurate results (errors of about 10%Z). For more realistic parameters, our
approximation is excellent (errors of 1 to 2%). Thus, it is not unreasonable

to treat our approximation as though it were exact for many applications.
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5.6 Delay-vs-Throughput Results.

Eqns. (5.1) and (5.2) show the relation between average message delays
and the unknowns {;ii} while eqns. (5.21) and (5.23) give approximate
expressions for {;ii}' By combining all these equations, we can obtain an
approximate solution fof the average message delays. We copy (5.1), (5.2),

(5.21) and (5.23) here for easy reference:

(slot) _ 1 p jver My - EM

= e v _— [ - . .

ED, 5 (L+p (v, + EC) +5 [ £ EL, - 1) (5.1)

(Poisson) _ 1 ~

ED, =5 (l+pi)(vii + EC) (5.2)
o t

~ ~ i i

Vivli+l © Vid ZDtGE_ ) : (5-21)

N 0 N i-1l pj tj N

Vll 4 [T_:—p - 2pt izl jZl pi(1+p1) (_p— -—t— )] /iz_lpi(l-,.pl) (5'23)

There are a nunber of special cases worth attention.
We first consider the case where ;;i is independent or approximately
independent of i. With this assumption and using Lemma 5.2, we get (5.24).

We can rewrite (5.24) as

N
g S 2
Vi TT [ A+ lele (5.25)
i=1 ‘
Substitution of (5.25) into (5.1) and (5.2) gives
n.t var M, - EM
(slot) _ 1 i mew 1 i i _
EDy “27 1 7! M, EL;-1) (5-26)
and
(Poisson) 1 nitnew
EDy "3 T 1-p (5.27)

where



66

Voo
n = () / (A +izl pi/P)>
N

_ 2
t oy = ¢ EW( +121 py/0) -

The first term on the right hand side of eqn. (5.26) is the queueing delay of
an.M/G/1 single—queue system with appropriate parameters. The second term is
due to the non-Poisson nature of the arrivals, which can be ﬁositive or
negative. The third term arises because all message arrivals are registered
at the end of a time slot. For the time continuous sy;tem with Poisson

arrivals, the last two terms vanish, as noted earlier.

For very heavy system traffic (p-l), v,

ii is approximately independent

of i, as remarked earlier. Thus, (5.26) and (5.27) are valid for this case-

Moreover, the hyperbolic term dominates the right hand side of (5.26).

Therefore
n,t
(slot) _ 1 i new
EDi 2-——T:B— (5.28)
and
n,t
(Poisson) _ 1 i new
EDi 7 1= (5.29)

Egqns. (5.28) and (5.29) show that the average delays for both slot and
Poisson arrivals are approximately proportional to (1+pi) as p » 1. This in
turn implies that if a system has a user with utilization close to unity, the
delay suffered by this user is roughly twice the delay suffered by other
users.

~

For very low system traffic (p » 0), (5.21) implies Vig is
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approximately independent of i. Thus, (5.26) and (5.27) are again valid in
this case. Furthermore,

n,t
1 1 1
7—-1—’_‘5—“’= > (t + EW) (5.30)

By making the reasonable assumptions that var M, > 0 as EMi +> 0 and

i

var Li +> 0 as ELi + 0, we can further approximate t for p + 0 by

1 N var W
t = i var Wi = —Ei (5.31)
i=1
where
N
EW =] EW,
i=1
N
varW = z varwi.
i=1
Therefore,
4 varM, - EM
(slot) _ 1 (varW 1 i i _
ED, > (S * EW) + 3 (———-———EMi EL, 1) (5.32)
and
(Poisson) 1 (varW
ED, 3 (——-—Ew + EW) (5.33)

If var W = 0, then

(Poisson) - 1
EDi 2

EW (5.34)
Eqn. (5.34) is intuitively clear but (5.33) shpws a more subtle result if
var W# 0. For the time slot system, more information is needed on the
arrival statistics in order to simplify (5.32) any further.

.For the system with a single dominant user, that is, Py and t:i for the

dominant user are much greater than pi's and ti's for the other users, eqn.
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~

(5.21) again implies that Vi

(5.26) and (5.27) are valid in this case.

are approximately independent of i. Thus,

Furthermore,

1 "i%new |1 t + EW(1+p) (5.3
5 T i-p 2 o +33)

for the dominant user and

1 Minew _ 1 7P ¢ 4+ ENQI+R) (5.36)
2  1-p 2 1+p 1-p .

for all other users.
For the system with N-1 identical users and a single small user, that
is, Py and ti for the small user are much less than pi‘s and ti's for the

other users, eqn. (5.21) implies once more that v

i1 is approximately

independent of i. As a result, (5.26) and (5.27) are valid. Furthermore

1 %ew 1 1 t+EW(1+p/(N-1)) (5.37)
2 T 1-p 2 THp/(N-1) 1-p :
for the small user and
n,t
7 1-p 2 I-p )

for the other identical users.

For ti = py» eqn. (5.21) again implies that ;gi is approximately
independent of i so eqn. (5.26) and (5.27) are again valid.

For the system with clusters of identical users, eqn. (5.21) shows that
;ii's obey a linear relationship within each cluster. This linear
relationship in turn shows that the delays given by (5.1) and (5.2) are

linear within each cluster of identical users.
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~

In most of the special cases considered so far, Vit is approximately
independent of i. This is verified for the following combinations of
parameters:

(i) N=8.

(1i) ty = p%, Pys 1.

(1ii). 0.01 < p € 0.99 with steps of 0.01.

(iv) 1 large user with utilization 100 times that of other identical

users,

1 small user with utilization 0.0l times that cf other identical

users.

2 clusters of identical users with utilization ratio of 1:5.
There are two plots for all combinations of (iii) and (iv). The first plot
consists of the exact numerical solution for {;;i} versus p (8 curves) and
the second plot consists of the normalized variance of {G;i} versus p. The

normalized variance of {;ii} is defined as

- 1 N . 2
var(vii) =—5 Z (vii-m) (5.39)
Nm~ i=1
where
m-l§:
N {=1 ii
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5.7 Finite Buffering and Non—exhaustive Services.

We have assumed infinite buffering and gated exhaustive service
throughout this thesis. Nevertheless, we can use our results to approximate
the more realistic cases of finite buffering and nomexhaustive services.

We start by considering the finite buffering case. Two kinds of buffer
designs are possible, message buffering and slot buffering. As their names
imply, a message is the fundamental unit in message buffering and a slot of a
message is the basic unit in slot buffering. While slot buffering appears to
be more efficient in terms of memory requirements, message buffering allows
for hierarchical buffer management. We shall consider message tuffering
here. Let us modify the infinite buffering system we have considered to a

finite buffering system with n, message buffers at queue 1. As long as the

i
blocking probability is small, we can approximate the finite buffering system

by the infinite buffering system. We further approximate the blocking

probability at queue i by

(block)
i,

N (k)
5 lim Prob(Xi > ni) (5.40)

k>

This approximation is based on the assumption that the queue length is a
local maximum at the scan instants. From (2.1) - (2.5) and previous
analysis} we have
= : 41
EXi EMi EC (5 )

and



80

var X1 = var Yi
= var M, EC + (EM.%) EC. 2
i 1 1
= var M, EC + var C, (EM )2 + (EM )Z(EC)2
1 i i 1
= [var M, + (mi)z(Tru + EC)] EC (5.42)

where all variables are defined earlier. The blocking probability given by
(5.40) can be bounded using (5.41), (5.42) and Chebyshev's inequality which

states that
OXZ .
Prob(|{X-m | » §) ¢ —— (5.43)
X 62
where

X is any random variable,

mx is the mean of X and

cxz is the variance of X.

(block)

large enough; we can limit By

By choosing n

{ to an acceptable level.

Notice that {ni} depends on {pi} and {ti}' Thus, we cannot choose a fixed
set {ni} to keep {ui(bIOCk)} small for all loading conditions. In fact, n,
grows unbounded as p + 1.

The problem of approximating non-exhaustive services by the gated
exhaustive service scheme is similar to the approximation for finite
buffering. Let us consider the general gated non-exhaustive service where
up to pi messages are served in each cyclic service of queue 1. Let vy be
the probability that the scan queue length (number of messages buffered at
the scan instant) at queue 1 1s greater than Py As long as A is small for

all 1, we can approximate the gated non-exhaustive service reasonably well by

the gated exhaustive service. We further assume that v, can be approximated

by



v, = lim Prob (x> p) | (5.44)

k =

i
Again, v; can be bounded using (5.41), (5.42) and (5.43). By choosing the

‘appropriate {pi} and {ti}, we can limit Vi within the desired level. Thus,
we can obtain a region of loading conditions under which the gated
nomexhaustive service can be approximated by the gated exhaustive service.
In general, for a sufficiently small p, the gated nonexhaustive service can
always be approximated by the gated exhaustive service. For heavy traffic,

one can use various heavy traffic approximations; see for example [15]. For

intermediate traffic, interpolation techniques could be used.
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6. CONCLUDING REMARKS.

6.1 Summary of the Results.

Recently, applications of fiber optics to LANs and the development of
UBSs have 1ntensifiedlinterest in the performance analysis of token-ring
systems. As a first step, the average message delays in a general asymmetric
token-ring under gated exhaustive service discipline have been investigated
in this thesis. Although the gated exhaustive service discipline is a
special case, it provides insights and low-traffic approximations for most
non—-exhaustive service schemes.

The approach used in this thesis is to formulate and solve the imbedded
Markov chain of the joint terminal service times. Recursive linear equations
are derived for the first and second jolnt moments of the imbedded chain.

The existence and uniqueness of solutions to these equations are also
established. A number of results concerning the solutions are also derived.
Among these, the simple difference equation relating the second joint moments
of the terminal service times 1s a significant contribution of this thesis.
Such simple results have never béen reported before. Based on equation
(4.25), a very good approximation given by (5.21) and (5.23) is derived.

This approximation 1s exact for the symmetric case and it works very well
over a wide range of system parameters for the asymmetric case. Even under
very unusual circumstances, the relative errors in the approximation are
still acceptable (~10%). Some delay-vs—-throughput results based on the

approximation are also discussed.
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6.2 Suggestions for Further Work.

The performance analysis of a general token—rinélis a very difficult
problem. 1In this thesis, a special case has been investigated but the
ultimate goal is to solve the general problem. Thus, future work in this
area should concentrate on the generalizations of the work in this thesis.

Emphasis has been placed on the average message delay as a performance
measure. This can be generalized to include the delay variance. The delay
variance is of considerable interest in many applications such as packetized
voice and interactive terminal conversations. In our model, the delay
variances depend on the third joint moments of the terminal service times.
The analysis will involve a third differentiation of the basic functional
equation (3.9) and the solutions of (3.12) and (3.13) to set up the necessary
equations for the third joint moments. The problem is to gxamine the
solution of those moments. Generalizations to even higher moments are
possible but they tend to be difficult and less useful for practical
purposes.

Although the arri§a1 model used in this thesis appears to be very
general, it is still inadequate for many practical situations. For example,
our arrival model does not accommodate deterministic arrivals in voice
applications and dependent arrivals in fun;ﬁional distributed computing.
Thus, generalizations on the arrival model is desirable.

Perhaps the most interesting generalizations are associated with the
service discipline. First of all, we have assumed the cyclic service
schedule in this thesis. - In other words, each queuve has a cyclic priority

which cannot be interrupted by other queues. In a general polling system,
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many possible priority assignments are possible. Even in. a token-ring, the

basic protocol can be modified to accommodate various priority schedulings.

The assignment of priorities, static or dynamic, is a design parameter which
deserves further attention.

Secondly, generalization of the gated exhaustive service discipline to
thé more general non-exhaustive schemes would be very useful. This is
because non—-exhaustive service schemes can be implemented very easily on a
token-ring. Unfortunately, the rigorous analysis of non-exhaustive service
schemes appears to be very difficult. Very often, one should contend with
approximate approaches. Ope approximate approach is to note that most
non—exhaustive schemes can be approximated by the gated exhaustive service
discipline at low traffic levels; for heavy traffic, one can use various
heavy~traffic approximations, see for example [15]. Thus, the difficult case
occurs when traffic iIs between the two extremes.

One further generalization can be made on the service discipline. We
notice that in all 'static' service disciplines, Zi(k)‘can be derived
directly from Xi(k) (e.g. the relation given by eqn. (2.1)). One can
generalize this dependence. For example, in the D-net protocol, each station
can detect the length of a train fairly easily and estimate the current

(k) (k)
i

network loading, and then the station can determine Z not only from Xi
but also from previous network loading estimates. Such elaborate service
disciplines may not be justified for many LAN applications but we cannot be

sure until we have done the analysis.



There are some relatively less urgent matters, for example, finite
buffering, dependent switching overheads, and time-variant system parameters

whose effects could also be examined.

85



(1]
(2]

[3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

(12]

{13]

[14]

86

References
A.S. Tanenbaum, Computer Networks, Prentice-Hall, Inc., 1981.

W.'Stallings, Local Networks: An Introduction, New York: MacMillan,
1984.

D.D. Clark, K.T. Pogran, and D.P. Reed, "An Introduction to Local Area
Networks,” Proc. IEEE, vol. 66, no. 11, pp. 1497-1517, Nov. 1978.

R.M. Metcalfe and D.R. Boggs, "Ethernet: Distributed Packet Switching

for Local Computer Networks,” Commun. Ass. Comput. Mach., vol. 19, pp.
395-404, 1976.

S.D. Personick, “Review of Fundamentals of Optical Fiber Systems,” IEEE
J. Selec. Areas Commun., SAC-1, no. 3, pp. 373-380, Apr. 1983.

N.L. Rhodes, "Interaction of Network Design and Fiber Optic Component
Design 1in Local Area Networks,” IEEE J. Select. Areas Commun., SAC-1,
no. 3, ppn 489-492, Apr' 1983.

M.R. Finley, Jr., "Optical Fibers in Local Area Networks,” IEEE
Communications Magazine, vol. 22, no. 8, pp. 22-35, Aug. 1984.

E.G. Rawson and R.M. Metcalfe, "Fibernet: Multimode Optical Fibers for
Local Computer Networks,” IEEE Trans. Commun., COM. 26, no. 7, pp.
983-990, July 1978.

R.V. Schmidt, E.G. Rawson, R.E. Norton, Jr., S.B. Jackson, and M.D,
Bailey, "Fibernet II: A Fiber Optic Ethernet,” IEEE J. Select. Areas
Commun., SAC-1, no. 5, pp. 702-710, Nov. 1983.

E.S. Lee and P.I.P. Boulton, "The Principles and Performance of Hubnet:
A 50Mbit/s Glass Fiber Local Area Network,” IEEE J. Select. Areas
Commun. SAC-1, no. 5, pp. 711-720, Nov. 1983.

F.A. Tobagi, F. Borgonovo, and L. Fratta, "Expressnet: A
Hi gh~Performance Integrated-Services Local Area Network,"” IEEE J.
Select. Areas Commun., SAC-1, no. 5, pp. 898-912, Nov. 1983.

C.-W. Tseng and B.-U. Chen, "D-Net, A New Scheme for High Data Rate
Optical Local Area Networks,” IEEE J. Select. Areas Commun., SAC-1, no.
53, pp. 493-499, Apr. 1983.

J.0. Limb and C. Flores, "Description of Fasnet: A Unidirectional
Local Area Communications Network,” Bell Syst. Tech. J. vol. 61, no. 7,
Part I, pp. 1413-1440, Sep. 1982.

L. Kleinrock, Queueing Systems, Vol. 1l: Theory, New York: Wiley,
1975.



87

[15] L. Kleinrock, Queueing Systems, Vol. 2: Computer Applications, New
York: Wiley, 1976.

[16] H. Kobayashi and A.G. Konheim, "Queueing Models for Computer

Communications System Analysis,” IEEE Trans. Commun., COM-25, no. 1,
PpP. 2-28, Jano 19770

[17] W. Bux, "Local-Area Subnetworks: A Performance Comparison,” IEEE
Trans. Commun., COM-29, no. 10, pp. 1465-1473, Oct. 1981.

{18] W. Stallings, "Local Network Performance,” IEEE Communications

Magazine, vol. 22, no. 2, pp. 27-36, Feb. 1984.

.[19] L. Takacs, "Two Queues Attended by a Single Server,” Oper. Res., vol.
16, no. 3, pp. 639-650, 1968. .

[20] B. Avi-Itzhak, W.L. Maxwell, and L.W. Miller, "Queueing with
Alternating Priorities,” Oper. Res., vol. 13, no. 2, pp. 306-318,
1965.

f21] M. Eisenberg, "Two Queues with Changeover Times,” Oper. Res., vol. 19,
pp. 386-401, 1971.

[22] R.B. Cooper and G. Murray, "Queues Served in Cyclic Order," Bell Syst.
Tech. J., vol. 48, no. 3, pp.ﬁ675-689, Mar. 1969. '

[23] R.B. Cooper, “Queues Served in Cyclic Order: Waiting Times,” Bell
Syst. Tech. J., vol. 49, no. 3, pp. 399-413, Mar. 1970.

[24] M. Eisenberg, "Queues with Periodic Service and Changeover Time,"” Oper.
RES., VOl- 20, Ppo 440—451, 1972-

[25] A.G. Konheim and B. Meister, "Waiting Lines and Times in a System with
Polling,"” J. Ass. Comput. Mach., vol. 21, pp. 470-490, 1974.

[26]) G.B. Swartz, “"Polling in a Loop System," J. Ass. Comput. Mach., vol.

27, pp. 42-59, 1980.

{27] 1I. Rubin and L.F.M. DeMoraes, "Message Delay Analysis for Polling and
Token Multiple-Access Schemes for Local Communication Networks,"” IEEL
J. Selec. Areas Commun., SAC-1l, no. 5, pp. 935-946, Nov. 1983.

[28) Y. Aminetzah, "An Exact Approach to the Polling System,” Ph.D.
dissertation, McGill Univ., Montreal, P.Q., Canada, Mar. 1975.

[29] M.J. Ferguson and Y.J. Aminetzah, "Exact Results for Nonsymmetric Token
Ring Systems,” IEEE Trans. Commun., COM-33, no. 3, pp. 223-231, Mar.
1985.



[30]

[31]

(32}

(33]

[34]

[35]

[36]

[37]

[38]

88

R.T. Carsten, E.E. Newhall, and M.J.M. Posner, "A S4mplified Analysis
of Scan Times in an Asymmetric Newhall Loop with Exhaustive Service,"
IEEE Trans. Commun., COM-25, no. 9, pp. 951-957, Sep. 1977.

W. Bux and H.L. Truong, "Tokenmring Performance: Mean Delay
Approximation,” in Proc. 10th Int. Teletraffic Cong., June 1983, pp.
30303.1-30303'—7 .

M. Leibowitz, "An Approximate Method for Treating a Class of Multiqueue
Problems,” IBM J. Res. Develop., vol. 5, pp. 204-209, 1961.

S. Halfin, "An Approximate Method for Calculating Delays for a Family
of Cyclic Type Queues,” Bell Syst. Tech. J., vol. 54, no. 10, pp.
1733-1754, Dec. 1975.

P.J. Kuehn, “Multiqueue Systems with Nonexhaustive Cyclic Service,”
Bell Syst. Tech. J., vol. 58, no. 3, pp. 671-698, Mar. 1979.

S.S. Nair, "Alternating Priority Queues with Non-Zero Switch Rule,”
Comp. and Opns. Res., vol. 3, pp. 337-346, 1976.

C. Mack, T. Murphy, and N.L. Webb, "The Efficiency of N Machines
Unidirectionally Patrolled by One Operative when Walking Time and
Repair Times are Constants,” J. Royal Stat. Soc., ser. B, no. 19, pp.
166-172, 1957.

A.R. Kaye, "Analysis of a distributed control loop for data
transmission,” in Proc. Symp. Comput. Commun. Networks Teletraffic,
Polytech. Inst., Brooklyn, NY, Apr. 1972.

F.A. Tobagi and M. Fine, "Performance of Unidirectional Broadcast Local
Area Networks: Expressnet and Fasnet,” IEEE J. Select. Areas Commun.,
SAC-1, no. 5, pp. 913-925, Nov. 1983.



APPENDIX: Eigenvalues of the Jacobian Matrix A.

A number of results regarding the eigenvalues of the Jacobian Matrix A

are proved in this Appendix.
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Lemma A.l:
The characterstic equation [A-rI[ = 0 of the matrix A is given by
N N+1 | ‘
Qr) = { M [Q+p)dr-p ] -1 '}/ (1-r) = 0 (A.1)
i=1

Proof of Lemma A.l:

From the structure of A given by Lemma 4.3, we claim that A can be

written as follows:

= s 000 ,-2
A TNT.-I ilDR (A.2)
where
Ti = Ii-l 0 0 s
PyP Py 1 0
0 0 INTl.
Ik = k x k identity matrix,
D= r‘;l ’
Py 0
| T
R= [T 1....11,
1, :
LO "i_

To see this, we successively compute TlD’ T2T1D, ooy TNTN-I"'TID and get

T Ty -+T,0 = [p, (3 +E) 0, (Byter) |oo |y (utéy)] (4.3)



where J and g are defined in Lemma 4.

i i

2
> > > >
TyTy_p*--T;DR = [pl(u1+e1)|k21pk(uk+ek)

> _ I‘EI: > >
and u,_; —k- Ay + &)
=1
Thus,

T «++T.DR

NTN-I 1

T N
= [ugmuy [ugmy,

3. Then we notice that
N > >
coo]) (0 4e )]
k=1°k YTk
> > - A
Uy uN] = A.

The determinant |A-rI| can now be computed as follows:

|A - rI| = |TDR - rI|

= |1| D - xR R

where T = TNTN—I"'TI'
We notice that |T| = |R| =1 so
|a - rI] = [D - rT R
= |p - e, 7'p,7?

1 2 ...TN

The inverses of T,'s and R can be

k
Rl =11 - 0 . Tk'l
1 -1,
. . ._1
0 . 1
Using these to calculat T-lR_1 T_1 T
& € N * N-1"N

successively, we have

expressed by

(4.4)

(A.5)

(A.6)

(A.7)

= 1., 0
—pk-pk. . .-pk
0 O Ty
-1 -1 -1.-1  -1.-1
R ’...’ Tl T2 ..'TN R
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o ?_- r'l"-1

= plr+pl

| o

The determ

of two matrices U1 and U2 where

U1 =

and

Clearly,

r-_plr r
P,T Py~ (1+p )T r
* 93'(1+P3)r
0
PNt
p,~(14p))r r
pZ_(1+p2)r
0 -

-1 ~
2 ...TN R - 1 1
=P, 1+p2 -1 0
'p3 1+p3. .
. 0 ‘e -1
—.-pN 1+pN
R—l
-(+pr
Py~ (I+p,)r r
93'(1"‘93)1' .
0 L ]
inant of

T
pN—(1+pN)r
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(A.8)

(A.9)

the above matrix can be split into a sum of determinants



N

lu,l = 1 [p; = (+pr]
i=1
Factorizing Py from each row of U1 T
have
N T
IUlt = ( 151 pi)(-l_-_f ) |‘U3|
where
v, = | l-r z
3 1 0
1 r
1- 1-(1+ = —
r ( pz)r Py
1 .
. 1- 1+’_
( p3)r
- O -
l-r
|

T

PN-1
1
1-(1+ —)r
PN
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(A.10)

r
and then-—:; from the first column, we

(A.11)

Replacement of the first column by subtracting from it the sum of all other

columns yield

U, = 1- 1+ = )r %;
1 1 0
0 1-(1+ 2 e R
P2 )
1
0 1-(1+ =)r -
93 .
. 0 L
r
L PN

where |U3| = |y,

(A.12)
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Clearly,
N N
1
|U4| = n1-q +‘Er)r] + (‘1)N+1 m =) (A.13)
i=1 1 1=1 Py

Using (A.10)-(A.13) and after some algebra, we have

aer1] = [y | + [0,
1 N N N+1 .
=g (-1 { 151[ (1+pi)r-pi] -r } (A.13)

Since the factor (-1)N is unimportant in the characteristic equation, we
arrive at (A.l)
Notice that the characteristic polynomial Q(r) is indeed of degree N

N
because Il [(1+pi)r-pi]-rN+1 is divisible by (l1~r). Also, Q(r) does not
i=1 '

depend on the specific order of the queues, that is, shuffle of the queue

positions will not affect Q(r).

Lemma A.2:

N
Let p = Z Py be the system utilizationm and p < 1. Then there exists a
i=1

positive real root of the characteristic equation Q(r) = 0 and it is bounded

by p-

Proof of Lemma A.2:

N
Let f(r) = 1 [(1+pi)r - pi] and g(r) =r
i=1

N+1

Clearly,

£(1) =1 = g(1)
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N
and f'(1) = ) p, + N < N4 = g'(1).
i1=1

Therefore, there exist € > 0, which can be arbitrarily small, such that

f(l-¢) > g(l-¢).

P,
Next, we notice that f(r) = O has exactly N real roots at r = 1+; , all
i
Py
lying between zero and one. Let t be the maximum of —— , then
max I1+p

f(tmax) =0< g(tmax).

Since t < 1, we can choose € such that t < (l1=¢). From the
max max
inequalities shown above, there must exist a real root of
Q(r) = f(r) - g(r) = 0 between tmax and (1-¢). In fact, there is only one
real root of Q(r) = 0 between tmax and (l-¢) because f(r) and g(r) are both

monotonic in that region. We shall call this root T oax’

To show T oax < p, we look at (f&n f(r) - fn g(r)) on the interval

[tmax,l).

n f(r) - f&n g(r) =

Xn[(1+pi)r-pi] - (N+D)gn 1
i

1

Z 2

= ] 2n[1 - (1+p,)(1-1)] = (W1)an(1-(1-1)).
i=1

Let & = 1-r and expand the logarithmic function in Taylor's series at r=l to
obtain

n f(r) - 2n g(r)
@ (L4, 8" -

b 7 &
- - + (1) Y —
1=1 k=1 k k=1 K
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E (1+p)k6k

2 &
k k

= kzl [(N+1) iZl(l+pi) 5
© N k i
- T lwpy-Ta+] () oi)]ﬁﬁ
k=1 i=1 j=1
@ N k k
i _ ky 316
kzl 5 121 jzl (j) pi] ‘
= i L B jf
kzl 5 jzl (j)izl 1%
- k N .. &
>3 -1 8 (Te]E
k=1 3=1 1=1
o N k
=Tl sl ]
k=1 i=1
L

=
—

k=1
= ~22n(1-%) + An(1-(1+p)8).

Setting r = 1 = 6 = p, we have
fn £(p) - &n g(p) > =28 p + n p2 = O.
Therefore,

£(p) > g(p)-

, we can deduce that t <r < p.
max

Since p > t
m max

ax

Lemma A.3

All the eigenvalues of A, real or complex, have magnitudes less than or

equal to T oax if p< 1.
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Proof of Lemma A.3:

We prove Lemma A.3 using the famous Rouche's Theorem in complex
analysis which states the following:

If f(z) and g(z) are analytic in a closed region on the complex plane

with a simply connected boundary C and if [f(z)]| > |g(z)] on C, then

f(z), £(z) + g(z), £(z) - g(z) all have the samé nunber of zeros inside

C.

Let us consider a semicircle on the right half complex plane with
centre at the origin and radius R = T oax + €< 1 with € > 0 shown in

Fig. A.1.

z—-plane
4
Ci

Fig. A.1 Right-half plane semicircle.
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N
We let f(z) = T [(I+p,)z - p;] and g(z) = L o c,,
i=1
: N
lf(z)’ = 1 l(l+pi)z - pil
1=1
N .
= 1 [(1+p,)R(cos® + jsin®) = p,| (j2=-1)
1=1
N 1/2
= I [(1+Pi)R2 + Df - 2(1+p_ ) p Rcos8]
1=1 17P4
N 1/2
= 1 [((1+pi)R - 91)2 + 2(1+pi)piR(1—cose)]
i=1
N
> T |(1+p )R - p,|
i=1 1 i
= £(R)
> g(R)
= g(2) |-
On Cz: z = jy and
N 1/2

2

€] =1 [arep’y%0, 21 >y > ¥V = e

i=1

¢. By Rouche's Theorem, f(z) and f(z) - g(z) have the same number of zefos
inside C. Clearly, f(z) has exactly N real zeros inside C so f(z) - g(z)
should also have N zeros inside C. We already know that the (N+l1)th zero of
f(z) -~ g(2) is at z = 1. Thus Q(z) = (f(z) - g(z))/(1-2) = 0 has all N zeros
inside C.

Therefore, all eigenvalues of A have magnitudes less than R = T oax + E.
Since € can be arbitrarily small, we can deduce that all eigenvalues of A

have magnitudes less than or equal to Toax” Moreover, L < p< 1 shows

that A has eigenvalues of magnitudes less than unity.



