LIKELIHOOD RATIOS IN ASYMPTOTIC STATISTICAL THEORY

By
BRIAN GILBERT LEROUX

B.Sc., Carleton University, 1982

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

THE FACULTY OF GRADUATE STUNIES

Department of Statistics

We accept this thesis as conforming

to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

April 1985

®Brian Gilbert Leroux, 1985



In presenting this thesis in partial fulfilment of the
requirémehts for an advanced degree at the University

of British Columbia, I agree that the Library shall make
it freely available for reference and study. I further
agree that permission for extensive copying of this thesis
for scholarly purposes may be granted by the head of my
department or by his or her representatives. It is
understood that copying or publication of this thesis

for financial gain shall not be allowed without my written

permission.

Department of - S‘fo."i'\.Sh.CS

The University of British Columbia
- 1956 Main Mall

vVancouver, Canada

V6T 1Y3

Date Mar(,ﬂl 'g) CERY

DE-6 (3/81)



- {i -
ABSTRACT

This thesis deals with two topics in asymptotic statistics. A
concept of asymptotic optimality for sequential tests of statistical
hypotheses 1is introduced. Sequential Probability Ratio Tests are shown
to have asymptotic optimality properties corresponding to their usual
optimality properties. Secondly, the asymptotic power of Pearson's
chi-square test for goodness of fit is derived in a new way.

The main tool for evaluating asymptotic performance of test§ is the
likelihood ratio of two hypotheses. In situations examined here the
likelihood ratio based on a sample of size n has a limiting distribution
as n > © and the limit is also a likelihood ratio. To calculate
limiting values of various performance criteria of statisticél tests the

calculations can be made using the limiting likelihood ratio.
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INTRODUCTION

The motivation behind some of this work lies in a problem
concerning a sequential procedure for testing the mean of a normal
distribution. The following discussion of tﬁis probleﬁ follows [3].
There are observed independent 1dentica11y_distributed observations Xi,
X2,+0. assumed to be distributed.as N(u, 02) for a known 02. It 1is
required to find a sequential procedure for testing whether u is
positive or negative (sequential procedures are discussed in Section
1.1). The criterion by which procedures are to be judged is the Bayes
Risk. This is defined in terms of a cost function having two
componeﬁts, one due to reaching an incorrect conclusion and a second
depending on the number of observations on which the conclusion is
based. The proposed costs are K'u' for making an error (K is a
constant) and a cost of c per observation.

The average cost for a given procedure will depend on ﬁ. To avoid
problems involved with this it is assumed that u is a random variable,
also with a normal distribution. If its mean and variance are specified
the average coét can be averaged further against this distribution for
ﬁ. The result is the Bayes Risk,

In the development of a sequential procedure which minimizes the
Bayes Risk the partial sums of the observations are replaced by a
Brownian motion. This is a reasonable approximation if the numbef of
observations can be expected to be large, and this can be expected when

the cost ¢ is small. A procedure which is optimal (minimizes Bayes



Risk) in the continuous time setting is derived and then applied (with a
small adjustment) to the discrete time setting. It is desired to have a
result stating that this procedure is asymptotically optimal in some
sense which can be made precise. Asymptotic here refers to c
approaching zero. Results along these lines can be found in [13] where
the setting is the more complicated situation of sequential medical
trials in which further components of cost are considered (see [4]).

This author attempted to establish similar results using the theory
of weak convergence of likelihood ratios which will be discussed in
Chapter 1. Success was met only in simple hypothesis testing settings
where there are only two possible states of nature. In Chapter 2 are
presented discussions of asymptotically optimal sequential procedures
which are based on the likelihood ratio. It is believed that the
methods used there could be applied successfully in more complicated
situations.

Another area for application of likelihood ratio theory lies in the
calculation of asymptotic performance of other tests not necessarily
based on the likelihood ratio. In Chapter 3 the asymptotic power of
chi-square tests is studied via the theory of Chapter 1. It is
indicated there that the chi-square test is asymptotically inefficient

compared to a test based on the likelihood ratio.



CHAPTER 1

THE THEORY OF LIKELIHOOD RATIOS

1.1 Likelihood Ratios and Hypothesis Testing

We describe the general hypothesis testing problem of
distinguishing two probability measures. On a set 2 let there be
probability measures Py and P;. A random element X of Q is chosen
and the question is asked: was X chosen based on the distribution Pj
or the distribution P;? A decision rule for answering the question is
-a subset D of Q; if X belongs to D then it is decided that Py is the
true diétribution, otherwise Pp. In common language D is a test of
the simple hypothesis Hyp:Pgy versus the simple hypothesis H;:P;.

D is also called the rejection region because the occurrence of the
event D leads to the rejection of the null hypothesis Hp in favor of
the alternative Hj.

Each decision rule has associated with it two error probabilities:

a(D)

PO(D) = probability of rejecting Hy when it is true, and

B(D)

Pl(Dc) = probability of accepting H. when it is false,

1
called the type I error and type II error respectively. o(D) is also
called the level and 1-B(D) the power of the test D.

Because it is generally impossible to minimize both types of error
simultaneously, various criteria for comparing decision rules have been
employed. In many cases the best rules are based on the likelihood

ratio which we will now define.



Given two probability measures Pp and Py such that P; is

absolutely continuous with respect to PO (Pl < PO), their likelihood

ratio is the Radon~Nikodym derivative dPl/dPO. This can be generalized

P

by defining the likelihood ratio of any two probability measures PO’ 1

on a measure space (2, F) by

dPI/du
zZ = . (1.1)

dPO/du
where U is any measure on (Q, F) such that P1 € u and PO € 1 (such as
n = P0 + Pl). The conventions 1/0 = © and 0/0 = 0 are used in (1.1).

In order to show that Z does not depend on the particular choice of u

the following result is needed.

Lebesque Decomposition. For any AE€F,

Jo 2 dpy = Pi(an {z <=},

dp, dp,
Proof: Let A, = —— and A, = ——, Then for any AcF
0 1
du du
[yzapy = [zap, = [ 2.z du = [ A du =P (an{z < =}
An{z<=} AN{z< o} An{z<=}

since {Z = w} = {AO = 0} and XOZ = Ay on {z < w},
Now because PO(XO =0) =0, Z is a finite random variable on the
probability space (2, F, Pg). For any AC{z < »} the integral -

IA z dP0 = PI(A) is determined and so Z is uniquely determined on



Q, F, PO). By symmetry 1/Z is uniquely determined on (R, F, Pl) and

hence Z is also uniquely determined on (@, F, Pl)' The notation dPl/dP_0

is used to denote this extension of the Radon-Nikodym derivative and

from here on dPl/dPO will denote Z as defined in (1.1).

Example. When Py and P; are probability distributions on R

with densities fj and fl respectively the ratio of densities

_ z'= £,/%,

is the likelihood ratio of Py and Pj. It need not be assumed that

the support of f( is contained in the support of f,.
Since Z 1s expected to be larger when Hj is true a reasonable
test of Hp vs. H} uses the decision rule
where C is a constant which determines the level of the test. This rule

has the following nice property.

Neyman-Pearson Lemma. If D is any test of Hy vs H; satisfying (D)

< o(D¥*) then B(D) > B(D™).

Proof: By the Lebesque Decomposition

- oy -
B(D) = P, (0%) = | L ZdP

+ Pl(Dcn {z = =}).
D

0



Since D*¢n {z = =} = p,

Pl(Dcn {z = =} Z_PI(D*cn {z = =},

Also
fc Z dpy - ic Z dpy = f*(IDC - ID*C) Z dp, + f* (IDc - ID*C) z dp,
D D D D¢
>cf (1 _ -1,)dp,+C [(T  -1,)dp
D* ¢ NG 0 D*c ¢ NG 0

* %
since Z > Con D and I -1, 0onD ¢,

D D
Therefore
- _ - cy *c
[ =z dp,, i AL cf(1 o~ I ,.) dp = Cl (D) - P (D)™ )]
Dc D c D D

*
= CIPH(D) = Py(D] 2 0.

This result says that among all rules having type I error at most
PO(D*), D* has the smallest type II error. Equivalently, among
all rules with type II error at most Pl(D*c), D* has the smallest

type I error. A simple and symmetric formulation is:

no rule can simultaneously have both a smaller .
type I error and a smaller type II error than D .

1f PO(D*) = a then D* is called an optimal level-a test. For a
given number o it may be impossible to find a number C such that

PO(Z.Z C) = a. There will always be a randomized decision rule which



achieves this but these will not be considered here. See [15] for a
discussion of randomized rules.
Decision rules having the form of p* are optimal also in the

sense of minimal Bayes Risk. The Bayes Risk for a rule D is
m a(D) + (1 - m B(D) (1.2)

where T is the prior probability of the distribution being P;. This
assumes the 0-1 cost (or loss) function whereby a cost of 1 is incurred
when an error of either type is made. Now the expected cost is the
probability (under the appropriate hypothesis) of making‘an error énd
when this is averaged over the two hypotheses according to the prior
probability 7, (1.2) results.

For fixed ™ the Bayes Risk is minimized by p* with C having the
value 7/(1 - m), i.e.

inflm a(D) + (1 - 7) B(D)j
D

Il

Jlra (1 = ™ z] dp,

and the infimum is achieved at Dy = {Z_Z /(1 - ﬂ)}. This is proved

easily using the Lebesque Decomposition as follows. First,

T D) + (1 - m) B(D) T dP, + / il - m Z dp,

z>ma-mp % {z < wa-m

flmra (1 - m) Z] Py,

and for any D



7 a(D) + (1-7) B(D)

[

c = o0
g T P, + gc (1-m) z dp, + (1-m) P, (D n{z = «h

1A%

[mary + [ (1 = 7 z dP
D 0 ¢ 0

v

[lna@ = m 2] dp,,.

1.2 Sequential Tests of Hypotheses

Wald's Sequential Probability Ratio Test (SPRT) is a procedure for

testing

HO:P0 VS, HI:P1

based on a sequence Xl’ XZ"" of independent identically distributed

or P.. If

(i.i.d.) fandom variables having distribution either P0 1

X15e+.Xy are observed the SPRT uses the statistic
k
™

|2 (1.3)

Zk=

i

where Z is the likelihood ratio dPl/dPO. This is reasonable because
Zy 1is the likelihood ratio of the distribution of Xj,...,Xy under

P; with respect to the distribution under Py. The SPRT proceeds as

follows:

if Zp > A then H; is accepted

if Z < B then Hy is accepted

if B < Zx < A then another observation is taken,



with A and B satisfying 0 < B {1 < A < <, This procedure can be

expressed in terms of the stopping rule

T = inf {k: 2z, > A or 7, < B} (1.4

and the decision rule

D = {z, > A}, (1.5

where Zp denotes the value of Z, when T = k.,

An immediate question arises: can it happen that 7 never crosses
the boundaries determined by A and B? To answer this question
probability distributions, corresponding to Py and Py, for infinite
sequences Xj, X2,... must be used. These are the infinite product
measures denoted Qp and Q;. The questions above is answered in the

negative by

1,2,...) =

!
o]
L[]

Qy(B < 2, <A, k

QB <z, <A k=1,2,...) =

I
(=]
*

These statements are implied by the stronger results

Zk + 0 a.s. under QO

Zk + ® a,s5, under Ql'

A proof of these uses the Strong Law of Large Numbers applied to the

sequence {—a V log Z(Xi)}:—l’ where X V Y is defined to be the larger

)

)

of
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X and Y.

in place of Zy. The Strong Law of Large

n
1im

n->o

where EO

provided

% f (-a V log Z(X,)) = E,(-a V log z(xl))}

denotes expected value under QO.

Py and P; are distinct in the sense that Pp(Z

Note that the SPRT could equally well be defined with logZp

Numbers yields

a.S. (QO).

By Jensen's Inequality,

1) <1,

Eg(logz) = [logZ dP, < log [ z dp, < O.

For large enough a then

EO(—aV logZ(Xl)) = F

(-a V logZ) < O

0
and

k
lim I (-a Vv logZ(Xi)) = ~-® a,5, (QO)
ko 1=]

k
lim I 1log Z(Xi) = =-® a,5, (QO)
k> {=]

lim z, = 0 a.s. (QO).

K+

1

1lim
kro L

By symmetry, =0 a.s. (Q1) and so

lim Zk = ® a,5, (Ql)'

k »o0

We have just seen that the conditions for stopping in (1.4) will be

met eventually, i.e., T is a.s. finite.

other sequential tests of Hy vs. Hj.

Now let us compare the SPRT to

A sequential test in general
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consists of a stopping rule and a decision rule. A stopping rule is a
random variable T taking values in the positive integers such that the
set {T = k} depends only on Xj,«+s,Xkge The decision rule of a
sequential test is a set D which depends only on the observations Xji
up until the random time T, i.e., for each k, Dl\{T = k} is determined
by XijseessXge

Criteria for comparing sequential tests include error probabilities

and the Average Sample Number (ASN) which is the expected value of the

stopping rule.

Only tests with finite ASN will be considered worthwhile; this
implies that the conditions for stopping will almost surely be met
eventually. The error probabilities are defined exactly as for

non—-sequential tests,

(I(T, D) = Qo(D)

[

and B(T, D) Ql(DC).

The SPRT has the following optimality property.

Optimality Property of the SPRT. Let a = Qg(D) and B = Q (D) be

the error probabilities of the SPRT defined in (1.4) and (1.5). 1If
(T', D') is any other sequential test of Hy:Py vs. H :P; with smaller

error probabilities,
Qp(D') < @5 Q(D'¢) < B

then the SPRT has smaller ASN under both hypotheses,

Eg(T") > Ep(T)
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and 'EI(T') Z;EI(T).

(As for E, ’-El denotes expectation under Ql)’

There have been four strategles for proving this result. The
original is due to Wald and Wolfowitz, {23], another is due to Lehmann
(see [15] or [11]) and two others ([3], [20]) first prove that SPRTs are
Bayes procedures. This latter result is important enough to be stated
as a separate result. The Bayes Risk of a sequential test of Hp:Pg

vs. Hy:P) which uses stopping rule T and decision rule D is

P(T,D;m) = m(Q(D) + ¢ E(T)) + (1 = m(Q;(d°) + c E(T))  (1.6)

where 7 is the prior probability of the true distribution being Pg and c
is the cost per observation. Just as for the Bayes Risk in (1.2) the
0-1 cost function is employed here.

Bayes Optimality of the SPRT: There exist constants A and B which

depend on T such that the Bayes Risk (1.6) is minimized by the SPRT
which has stopping boundaries A and B.
This property is proved in [20]); in Section 2.2 we will demonstrate

how to adapt the argument given there to the continuous time setting.

1.3 Weak Convergence of Likelihood Ratios

For testing simple hypotheses, results based on the likelihood
ratio ‘are good tests as measured by the optimality properties we have

just seen. For testing a simple null hypothesis against a composite
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alternativé a reasonable approach consists of choosing one element of
the alternative, thus forming a new simple alternative. For example let
X]sesesXy be a random sample from the N(8,1) distribution and

consider testing Hp:6 = 0 vs. H{:06 > 0. One test is based on the
likelihood ratio for Hy:6 = 0 vs. Hy:0 = 6y for some fixed 6y >

0. In this case the likelihood ratio is

1 2
— —(x 8 )4/2 2
X 0 Sox = 8/2 (1.7)
Z(x) = 1 5 = e
— —x" /2
VoX

k 2
= exp(e0 f Xi -k 90/2)

Another example involves the parameter 8 in the exp(l + 6)

distribution. The likelihood ratio for HO:G =0 vs. HI:G = 90 is

-(1 + 00) X '
(1 + 60) e -0 x
Z(x) = = = (1 + %) e R (1.8)
e

and the likelihood ratio based on a random sample Xj,...Xy is

k
T xi). (1.9)

= (1 + eo)k exp(-9
1

i)

k
Z, =1 Z2(X
1 0

One way of comparing two tests of HO:G =0 vs. lee > 0 is to look
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at their performance for testing HO vs. simple alternatives and let the

alternatives approach HO. A common choice for alternative is

Hl’n:GO//H where n is the sample size. The reason for this choice is
the desire for the test statistic to have a non-degenerate limiting
distribution under the alternative. This enables one to calculate
limiting (or asymptotic) power and it is by this criterion that tests
will be compared. Tests which perform well according to this are
considered sensitive to small departures from 8 = 0.

For making asymptotic power calculations the limiting distribution

of the likelihood ratio is useful in two ways:

1. When measuring the performance of tests based on the likelihood
ratio its limiting distribution is essential.

2. The limiting distribution, under the alternative, of other
statistics can be found from the joint limiting distribution,
under the null, of the statistic and the likelihood ratio.

These two uses are explored in Chapter 2 and Chapter 3. In Chapter 2
tests based on Z are shown to have certain asymptotic optimality
properties. In Chapter 3 weak convergence of Z is used to find the
1imifing distribution of Pearon's chi-square statistic for goodness of
fit tests.

Let us examine the asymptotic distribution of the likelihood ratio

in the exponential example introduced above. For each n there is a

random sample X?,X;,... from the exp(l + 0) distribution. The

hypothesis H,  says that 0 = 60//; for this sample. The likelihood
’

ratio for Hy:8 = 0 vs. Hy , is, from (1.7),
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) -(8,/vn) -x
Z2%x) = (1 + 2y e O
Van

n

and the likelihood ratio statistic based on X?,...,XE is

9 -8,
) = (1 + " exp(—=

M.
Ja i

—
31 1S
Lol =)

n 0 0 % .n
log Zn =n log(l + —) - — I Xi
Vn VYn 1
2
0 6 0 n
= (=2 - 52+ 0(57)) = 2 LX)
n Vyn 1
2
-0 n 5]
=235} - 1 - =+ 0
Vya 1 n

i.e., the remainder term 0(1//n) is deterministic and converges to 0 at

n [+

rate 1/Vn). Now under HO’ {Xi - 1}i=1 is a sequence of i.i.d. mean 0,
n n d

variance 1 random variables and hence (1/vn) Z(Xi - 1) +» N(0,1) by the
1

Central Limit Theorem. Therefore

n d —63 2 ‘
log Zn +> NC—E—, 90) under HO. (1.10)

Similarly under Hj o
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{a + E) " - —L )
Ya 1 04 90//1'_1 1=1

is a sequence of i.i.d. mean 0, variance 1 random variables and thus,

using the same Taylor expansion,

-9 (1 + 6./V/n) n 6./V/n
log zn - 0 0 Z(X? _ 1 _ 0
(1 + eo//H) Vo 1 1+ eO//E 1+ eo//ﬁ
62
0 1
+ eo//'ﬁ -+ 0(/—;:)
2
-eo (1 + 90//5) ; 0 1 eO
= (Xi - ) +
(1 + eo//E) Vn 1 1+ eO//E 1+ eo//H
2 2
8 d 8
0 1 2 0
-+ O(Fn) +—60 N(0,1) + 60 -

where N(0,1) stands for a random variable having that distribution.
Therefore

deg2
log 22 > N(5—, 90) under H

l,n

There 1s a connection between the limiting distributions of log A
under the null and alternative hypotheses with another hypothesis

testing problem which is thought of as a "limiting problem.” Given
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X d N(9,1) the likelihood ratio statistic for testing

HO:B = 0 vs. H :06=206, %0

1 0
is
%
Z(X) = exp(90X --ff).
Thus
4 ,—eg 2
log Z(X)= N(——, 6.) under H,, (1.11)
2 0 0
i % 2
log Z(X)= NCE—, 60) under HI’ (1.12)
and hence
n d
log Zn + log Z(X) under HO and under Hl,n' (1.13)

We will use this fact for evaluating the asymptotic properties of

tests based on Zg as the sample size n gets large. The bhroadest

interpretation of (1.13) is that the parameter 9 in the exp(l + 8/ Vn)
family of distributions plays the same role asymptotically as 06 in the

N(6,1) family. We pursue this idea in Section 1.5.

For evaluating the performance of tests of the form {ZE 2K } or

n

n

1 be the exp(l + 60//5) distribution

equivalently {1og Zz ZLCn} let P

n

and PO

be the exp(l) distribution. In the notation introduced in
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Section 1.1, ZE = dP?/dPg. Now if the test mentioned previously is to

have asymptotic level o, i.e.,
Pg(log Z:_Z Cn) > a as n +

then (1.11) and (1.13) imply that

c + 8%/2
n 0
— 5 > Za as n > ®
0
eg
or Cn > 90 Za - as n *> @

where Z, is the 100(1 - a) percentile of the standard normal

distribution. Note that from (1.11) and (1.13) it follows that

n 2
log Zn + 60/2 d

60 + N(0,1) under Ho(under Pg).

Now by (1.12) and (1.13) the asymptotic power of this test is

2 2
log 20 - 05/2 C - 85/2
lim P’f(log z‘r: >C) = lim P’l‘( 5 0 > ——5 0
n-+o° 11> O O

1 - Q(Za - 60)

where ¢ is the distribution function of the stahdard normal

(1.14)
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distribution. How does this compare to the asymptotic power of other

tests of Hy vs. Hl,n which have asymptotic level o? This can be
answered by considering the power of level a tests of Hp:8 = 0 vs.

H1:9 = 90 based on X having distribution N(6,1). Now 1 - oz, - 90)

log 2(X) - €5/2
is the power of the test { 8 Z_Za - 60} or
0

{1log z(X) 2_eoza - 98/2} and by the Neyman-Pearson lemma this test has

the greatest possible power.

From this it can be shown (see [10]) that the test
{log ZE‘Z GOZa - 98/2} has the greatest asymptotic power among all
tests having asymptotic level a, This is demonstrated in general in
[10]; the particular form of the likelihood ratios is not important. We
will produce a similar result in the sequential testing situation in
Chapter 2. TFor this purpose it is necessary to study the functional
convergence of the likelihood ratio viewed as a stochastic process. We

take up this topic next.

1.4 Functional Convergence of Likelihood Ratios

In Section 1.2 sequential procedures for testing simple hypotheses
were examined and the SPRT was seen to be optimal in certain ways. The
question of asymptotic power against alternatives tending to the null
leads to the study of the limiting distribution of the likelihood ratio
considered as a process with time measured by observations of the data

points. The data Xj,Xp,... are i.i.d. observations from
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distribution either Py or Pj. The likelihood ratio process
{Z):k=1,2,...} 1is defined in (1.3).

In the non-sequential case of the previous section a sequence of
alternative hypotheses was indexed by the sample size and the
alternative grew closer to the null as the sample size increased. With
a larger number of observations smaller departures from the null
hypothesis can be detected with equal power. In the sequential
situation, to detect nearby alternatives many observations are required
on average and so it 1s reasonable to approximate the likelihgod ratio

process by a continuous time process.

n

1,Xn with distribution either P@

Based on an i.i.d. sequence X PERTE 0

or P? one continuous time version of the likelihood ratio process is

(nt]
zZ"t) = I z“(x?) (1.15)
i=1

where Z" = dP?/dPS as defined in (1.1) and [nt] denotes the integer

part of nt. Symbolically, the observations X? are associated with the

time points i/n.

Example. If X?,X;,... are independent N(6,1) random variables and HO
specifies 8 = 0 while Hy o specifies 0 = 90//5 then
b
6~ [nt]
log z(t) = FO D oxy - 28 ¢, (1.16)
’ n 1
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It 1is known that processes of this form converge weakly to a Brownian

motion (e.g., see Corollary 6 of [16]); in this case we have

w eg
log z™(t) + 8, B(t) - — t under H (1.17)
w Gg
and log Z™(t) + 8. B(t) + — t under H (1.18)
0 2 l,n

w
where {B(t):t Z_O} is a standard Brownian motion. The convergence +

takes place in the space D([0,%)) of right continuous functions with
left limits with the Skorohod metric (see [1]). However, because B(t)
has continuous sample paths we can use the alternative formulation
a 62
£(log Z7(+)) > £(8,B(*) = —(*))
for functionals f continuous with réspect to the sup-norm (uniform)
metric ([11]).

As in the non-functional case the limiting distriﬁutions of the
log—-likelihood under the null and alternative hypotheses are the
distributions of the log-likelihood process for a "1imiting hypothesis
testing problem.” This fact will be used for computation of asymptotic
power and the derivation of asymptotically optimal sequential procedures
in Chapter 2. |

Conditions which guarantee the weak convergence in (1.17) and

(1.18) for general likelihood ratios are explored in [12]. One result
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states that

w

log z™(t) » B(t) --% At under H, (1.19)
and log Z(t) > B(t) +-% At under‘Hl (1.20)
if and only 1f

n [(/E2x) - /fg(x»i‘dx > 2 (1.21)
and n ] (EG - /R ax > 0 (1.22)

A ()

as n * « yhere Ah(e) = {x:|/f?(x)/f8(x) - 1‘.2 8}. Here {B(t):tlz O}
is a Brownian motion with variance A per unit time (i.e., Var (B(t)) =
At.)

More general processes can arise as the limit of a log-likelihood
ratio process, including processes with independent normally distributed

increments. If we have independent and identically distributed

observations Xn

D x;,... such that (1.21) and (1.22) hold then the

limiting process can only be a Brownian motion. The reason for this is
n _n

X.,,eee are i,i.d. then log Zn(t) has stationary

clear; if Xl’ 2

independent increments because it is formed from partial sums of 1.1i.d.
random variables. If the limiting process log Z(t) say, has stationary,
independent, normally distributed increments it must be a Brownian

motion. The limiting processes in (1.19) and (1.20) are Brownian
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motions both with variance A per unit time and with drifts —-A/2 and A/2

per unit time respectively.

1.5 Contguity and Convergence of Experiments

The concept of nearness of null and alternative hypotheses or of
families of probability measures is made precise by the notions of
contiguity and convergence of experiments.

A sequence {P?} of probability measures is said to be contiguous to

another sequence {Pg} (written PT L4} Pg) if for any sequence of events
{a”}

1im PS(AH) = 0 implies lim p‘l‘(A“) = 0.

n+o N>
Discussion of contiguity and its uses can be found in [12]) and [21].
Contiguity has a close relationship with weak convergence of the
likelihood ratio " = dPT/dPg. In the case that Z" has a limiting
distribution under the null hypothesis contiguity is equivalent to the
existence of a limiting distribution for ZM under the alternative
hypothesis ([12]).

In order that asymptotic power be non-degenerate the sequence of

alternatives must be contiguous to the éequence of null hypotheses.
Typically in the absence of contiguity there will exist tests with

arbitrarily small error probabilities for sufficiently large sample
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sizes. This was the case in Section 1.2 where the likelihood ratio had
a degenerate limit because both the null and alternative did not change.
When a composite hypothesis is specified the testing problem cannot
be described in terms of contiguity or the likelihood ratio of two
sequences of probability measures. A means of comparing more than two
sequences of probabilities at one time is needed. Conve}gence of
experiments describes the nearness of families of probability
distributions. An experiment refers to a family E = {Pe} of
probability distributions. A sequence of experiments " = {P%} is said

to converge to E (written E =+ E) if for every finite set {61,...,qn}

the vector (dPg /dun,...,dPg /du™) converges in distribution, under un,

1 m
n_ T n n
to (dPe /du,...,dPe /du) under W, where py = I Py and u = T Pge
1 m 1 i 1 i

In the case of binary experiments (those that contain two
distributions) convergence of experiments coincides with weak
convergence of the likelihood ratio.

Convergence of experiments is the eséential hypothesis of the
Hajek-LeCam minimax theorem ([17]). This is one example of its
application to composite hypothesis testing.

An example of convergence of experiments is given by the family

" = {exp(l + 6//3):GER} which has limiting experiment E = {N(B,l):eeR}.
This fact is suggested (but not proven) by the one-dimensional weak
convergence in (1.13).

An interesting way of thinking about convergence of experiments is



- 25 =

as an extension of the likelihood principle. The likelihood principle

(see [6]) says that all inference about the family {Pe} should be

based on the likelihood function

dPe

KO = o

when there is a measure U such that PB &y for all 8. An extension
of this might say that whgn {Pg} > {Pe} (in the sense defined above) all :

inference about {Pg} should be based on the likelihood function for {Pe}

when n is 1érge.
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CHAPTER 2

ASYMPTOTIC OPTIMALITY OF SEQUENTIAL PROCEDURES

2.1 Wald's Criterion

Let X© Xn,... be i.i.d. random variables with common distribution

12 72

" or P" and let the likelihood ratio process {Zn(t):t Z_O} be

eithé? PO 1

given by

[nt] dp®

Z(t) = I ——(X)

dap™

with z" -1 defined by (1.1). Assume that the process 7" has the

n
dPO

asymptotic behaviour discussed in Section 1.4, namely

w
log z%(t) + B(t) —-% t under PS, [2.1]
n v A . n
and log Z (t) » B(t) - 7t under Pl’ [2.2]

where {B(t):t 2_0} is a Brownian Motion with variance A per unit time
(i.e., Var B(t) = At).

A test will be defined using the limiting process and this test
will be shown to be asymptotically optimal when applied to testing

HO:Pn vs., H :p" This is an extension to the sequential testing

0 1,n"1°

situation of the similar result discussed in Section 1.3.
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As a first step we recognize the limiting process in (2.1) and
(2.2) as likelihood ratios. Let Pg and P; be the distributions on
C([0,®)) of the processes {B(t):t 2.0} and {B(t) + At:t > 0}

respectively and let

1,t

0,t

where PO t and P are the restrictions of P0 and P1 to Cc([0,t]). Tt
1]

1,t
is shown in [10] that

log z(t)d B(t) - % t under P, (2.3)
d A

log Z(t)= B(t) tst under Pl. (2.4)

T n

If H. represents P

0 and P, then we have the

and P, and H, represents P1 1

0 0 1

weak convergence of the processes

Z > Z under HO and under Hl' (2.5)

The Sequential Probability Ratio Test (SPRT) for testing Hy vs. H,

uses the stopping rule

T" = inf{t: 2(t) < B or z(t) > A} (2.6)

and decision rule

p* = {z(r™) > al. (2.7)
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It can be shown ([8]) that T* is finite under both hypotheses; thus
when the event D* does not'occur Z(T*)_S B and Hy is accepted.

The SPRT has the same optimality property in continuous time as it does
in discrete time. A sequential procedure for testing Hp vs. H
consists in general of a stopping rule T which takes values in [0, %]
such that the event {T S_t} is determined by {B(s):0 <s S_t} and a
decision rule D which must be such that Dn{T.S t} is determined by

{B(s):0 <s S_t}, for each te[0,«].

Optimality Property of Continuous Time SPRT ([8]): Assume that for each

n,Z" has a continuous distribution under P If a sequential test (T,D)

n
0.
of Hp:Pp vs. Hy:Pp has smaller error probabilities than

(T*,D*) defined by (2.6) and (2.7), i.e.,
P (D) < P.(D*) and P (D) < P, (D*®)
0’ > %o ané 5 =5
then (T,D) must have higher average.sample numbers (ASN),
* q *
EO(T) Z_EO(T ) an EI(T) Z_EI(T ).

We will now prove a result (stated more precisely below) which says
that this optimality property 1is preserved in the limit when the SPRT is

£k
applied to the discrete time setting. Consider the procedure (Tn’ Dn)

given by

T: = inf{t: z%¢t) > A or z™(t) < B}.
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*

2 > Ak

and D: = {Zn(T

x %
To study the asymptotic properties of (Tn’ Dn) the following

results are used

x4 &

+
Tn T under HO and under Hl,n (2.8)
¥y § gert d und 2.9
yA (Tn) Z(T ) under HO and under Hl,n (2.9)

These follow from the fact that T and Z(T*) are continuous functionals
of {Z(t):t Z_O} relative to the sup—norm metric and the weak convergence
(2.5) holds with respect to this metric (see Section 1.4). From (2.9)
it follows immediately that the asymptotic error probabilities of

x % % *
(Tn’ Dn) are equal to the error probabilities of the SPRT (T , D ), i.e.

1im P2 (D¥) = P.(D®) (2.10)
0 n 0
n-+o
n *c *c
and 1lim P1 (Dn ) = PI(D ).. (2.11)
n-

The same result for the average sample numbers requires the uniform

* _
integrability of {Tn}; this is demonstrated in Appendix 1, thus

1im ENTY) = E_(T) (2.12)
0" n 0
n>e
. n,oky *
and lim El(Tn) = El(T ). (2.13)

n-+oe
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The asymptotic optimality result can now be stated.

% %
Asymptotic Optimality Property of (Tn’ Dn): Assume that Pl(D) > 0, If

(Tn’ Dn) is any sequential test of H

o VS- H1 satisfying
— T *
1im P, (D) < P (D ) (2.14)
0 n — 0
n->o
—— n c * .
and lim P1 (b)) < PI(D ) (2.15)
n>e "
then
. n *
lim EO(Tn) Z_EO(T ) (2.16)
1 >
n *
and 1im El(T ) > E(T). (2.17)
—— n = "1
n-rew

A proof of this result will now be given. First we find a SPRT
which has the same error probabilities as (Tp, Dp). This is where
the assumption of continuity of the distribution of Z! is neeaed; it
implies the existence of the required SPRT. We state the needed result

from [24]:

Lemma. Assume that 7" = dP?/dPg has a continuous distribution. If %
and o, are non-negative numbers with % + a1.§ 1 there exist A.n and

Bn such that the SPRT with stopping boundaries An and Bn'has error

probabilities ao and al.
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In order that the lemma applies the error probabilities of (Tn, Dn)

must satisfy the constraint %, + a1 S l. Since we have assumed that

% *
PO(D ) + PI(D C) <1, (2.14) and (2.15) imply that for large n we will
have Pg(Dn) + P?(Dﬁ) < 1 as required. Since only the tail of the

sequence affects (2.16) and 2.17) we can assume without loss of
generality that this inequality holds for all n.

Now let (Tﬁ, D&) be the SPRT determined by the Lemma, that is

=]
z‘
li

inf{t: 27(t) > A_or 2™(t) < B},

LI n.'
b = {z%T) > A}

By the optimality property of (T;, D;) it must have lower ASN than

Tn’ Dn); thus it will suffice to show (2.16) and (2.17) with (Té, D&) in
place of (Tn, Dn)’ Because of the 1nequalities (2.14) and (2.15) for
(TA, D;), the sequences {An} and {Bn} must be bounded. If, say, {An}

was not bounded above then %%% PT(D;) = 0 and this contradicts (2.15).
By considering a subsequence if necessary assume {An} and {Bn} converge,
say lim An = A', lim Bn = B'. Now if one of (2.16), (2.17) did not

hold the SPRT (T', D') with stopping boundaries A' and B' would be

* * *
better than the optimal procedure (T , D ) i.e., PO(D') S_PO(D ),

P,(0'®) < P (D7), B (T") < B (T") and E/(T') < B (T") with strict
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inequality in one of the last two inequalities. This contradicts the

x %
optionality property of (T , D ).

2.2 Bayes Risk Criterion

In this section a different criterion for comparing sequential
testing procedures is used, the Bayes risk. We begin with the set up
described in the first paragraph of Section 2.1. For a sequential test
of HO:PS VS. HI:PT, say (T,D), we define the Bayes Risk, just as in
(1.6), by

p_(T,D;m) = n(Pg(D) + cEg(T)) + (1 - w)(PT(Dc) + CE?(T)), (2.22)

where T is the prior probability of the distribution being Py and c is
the cost per observation.
For a sequential test (T,D) of Hy:Py vs. H;:Py, where Py and P

are as in the previous section, the Bayes Risk is
p (T,D;3m = (P (D) + cEL(T)) + (1 = (P (D) + cE (D)),  (2.23)

Here c represents the cost per unit time of observing the likelihood
ratio process Z(t).

We will now solve the problem of minimizing p over all continuous
time sequential tests. bur derivation will mimic the strategy used in
[20] for deriving the same result in discrete time; the appropriate
theory for the continuous time case corresponding to Snell's envelope is
given in [20] and also in [9]. The solution will be a particular SPRT.

Although the solution is derived here only for the special case that
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Pp and Pl.are distributions of Brownian motions the same argument

will work for more general situations. 1In particular it will work under
the general conditions of [8] whicﬁ are used there for obtaining the
previous optimality property of continuous time SPRTs given in Section
2.1.

To begin it will be necessary to consider the equivalent problem of

minimizing
p{) (T,m5m) = MR (D) + B (T)) + £(1 = (P (D%) + cE (T)),

allowing the new parameter r to vary. The first step consists of fixing

a stopping rule and finding the best decision rule to go with it.

Lemma. If T is fixed

min[T P (D) + r(1 - ™ PI(DC)]

E(TA r(1 - m Z(T))
b 0

and the minimum is achieved at D, = {Z(T) > m/r(1 - W)}.
Proof: First we note that Dn{T < t} is determined by {B(s):O <s $ t},
for all t, and Z(T) equals dP)/dPp on the og-field of such events.

By the Lebesque Decomposition,

™ By(D) + (1 - m) PI(DC) jD ™ P, + / L (1 =™ 1) dp,

D

| v

JImA r(1 = ™ Z(T)) dPy.

It is straightforward to check that there is equality here for D = Dx.
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The problem is now reduced to minimizing

T ¢ EO(T) + r(l -7 ¢ El(T) + Eo(w Ar(l -1 Z(T))

Eo(ﬂ e T+r(l -7 ¢TIZ(T) + TA r(1 = m Z(T))

]

(r)
EO(Y (T))

where the process {Y(r)(t):t Z_O} is defined by

Yy =mct+r(l -m ct Z(t) + TA (1l - 1) Z(t).

According to Theorem 7.3 in [20] or Theorem 4 in [9] this can be
done by finding the largest positive sub-martingale, say {V(r)(t):t 2_0}

dominated by{Y(r)(t):t_Z 0} and then forming the stopping rule

T = inf{e: YT (e) = v (o) ). (2.24)
The process v(r) is given by

V(r)(t) = egsinf E(Y(r)(T)|B(s):O_S s < t) (2.25)

where the essinf is taken over all stopping rules T which satisfy T > t.

Since Z(0) = 1, the initial value V(F)(0) is deterministic and

v{0) = 1nf BT = n(x). (2.26)
Note that h is an increasing concave function because it is the infimum
of such functions. This fact will be important for determining the
nature of the solution.

For any stopping rule T satisfying T > t
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E(Y(T) (T |B(s):0 < 8 < t) = E(me(T = t) + £((1-m) Z(t) o(T - t) %%%%

+ 7 A (1 - 7 Z(t) %%%%'B(s):o <s<t)

+met +r(l - M) et Z(t) (2.27)

where we have used the fact that E(Z(T)'B(S):O_ﬁ s < t) =2z(t) (i.e., Z

A
B(t)—-5 t
is a martingale). Using the representation Z(t) = e .

A
2(w) B(u) -~ B(t) - 7-(u - t)

Z(t)

= e

and since {B(t)} has stationary independent increments, the process

{Z(u) ]
7(t)"

distribution as the process {Z(u):u 20 }. Therefore the conditional

u Z_t} is independent of {B(s) :0 <s S_t} and has the same

expectation in (2.27) is minimized exactly as for the case t =.0 in

(2.26) but with r replaced by r Z(t), i.e.,

V() = essinf B(YT)(T)[B(s) s < £)) = h(r Z(t)) + met

+ r(l = ) ctz(t).

Now the stopping rule T is given by

T = tnf{e:x((r) = v (&)} = tnfle:h(rz(e)) = T A (1 - ™ 2(e)}.

In order for the Bayes Risk given in (2.23) to be minimized by T*, r

is now set to 1. Thus
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T = inflt: h(Z(t) = 1A (1 = ) 2(t) }.

Since h is increasing and concave, T* has the form

*
T = inf{t:2(t) > A or z(t) < B}.

for constants A and B illustrated below.

TA(1-m)x

h(x)

v e e wme fn . e A e - mn e .

|
|
|
{
|
|
|
)
|
i
|
|
|
|
|

v -

B w/(1-7) A

Fig. 1. Graph of h which determines stopping boundaries A, B
of optimal SPRT.

1f T is the stopping rule employed, the decision rules {Z(T*)_Z Al

%
and {Z(T~) Z-Tg?} (recall the lemma, pg. 33) are equivalent due to the
inequality B S-TgF-S A, Also, the cases B > 1 and A < lcorrespond to

T = 0 in which the initial decision based only on the prior

probability is optimal, having Bayes Risk TA(1l - ™).
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As in the previous section the optimal procedure for the continuous
time problem will be applied to the discrete time setting; a procedure
which minimizes the asymptotic Bayes Risk results. Define the stopping

rule
T: = inf{t:Zn(t) > Aor Zn(t)_g B}

where A and B are the stopping boundaries of the SPRT which minimizes

the Bayes Risk (2.23) and the decision rule

% [ on,k
p_ = {z1) > al.

* _*
Thus (Tn’ Dn) has the asymptotic optimality property given by (2.14) -

(2.17). Here it will be shown to have the following property.

* *
Asymptotic Bayes Optimality Property of (T,, D,):The asymptotic Bayes

* *
Risk of (T, D) is

% % * %
lim p (T , D 3 ™) = p(T , D ; m). : (2.28)
e D DM

If (Tn, Dn) is any sequential test of HO Vs, Hl then

lim 4inf p (T, D; ™ > p(T", D3 . (2.29)
n —
n+*e (T,D)

* %
This will say that (Tn’ Dn) has the smallest possible asymptotic

% %
Bayes Risk and the value is the Bayes Risk of the procedure (T , D ).
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The proof of (2.28) is achieved by the application of (2.10),
(2.11), (2.12) and (2.13) which state that all of the components of the

x %
Bayes Risk pn(Tn’ Dn; T) converge to the corresponding components of

* *
(T , D5 m).

The first step in proving (2.29) is to compute the minimum value of
Ppe From the discussion preceding the derivation of T* it is known
that p, is minimized by a SPRT with some stopping boundaries, say A,

and B,, that is

inf pn(T, D; ) = pn(Tn, D ; M

T,D n’
where

Tn = inf{t:Zn(t) Z_An or Zn(t)_s Bn}
and

D = {z“(Tn) > A"},

Assume now that along a subsequence of the integers {n'} the 1limit
1:-1131 pn'(Tn" Dnv; m)
* *
exists and is less than p(T , D ; 7). Within this subsequence there is

a further subsequence (also called {n'}) such that the limits

] 1
lim A" = A' and lim B® = B' exist, possibly infinite. Finally we c¢an
n' n'
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repeat the argument at the end of the previous section, to show that the
continuous time SPRT with stopping boundaries A' and B' has lower Bayes
Risk than the SPRT which uses A and B. This of course contradicts the

fact that A and B were derived to minimize the Bayes Risk (2.23).
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CHAPTER 3

POWER OF CHI-SQUARE TESTS -

The focus of this section is the asymptotic power of Pearson's
chi-square statistic for testing goodness of fit against a certain clas
of alternatives. These alternatives are contiguous to the null
hypothesis in the sense defined in Section (1.4).

We will reproduce a derivation of the limiting distribution of
Pearson's chi-square statistic under the null hypothesis ([7]1, [19]).
In [5] the limiting distribution under a class of alternatives is
computed, whereby the asympotic power can be computed. We will give a
different development of this result which uses the weak convergence of
the likelihood ratio. This highlights the usefulness of the likelihood
ratio as a tool for studying hypothesis testing problems. 1In [18] the
limiting alternative distribution is found for situations where a
parameter: must be estimated.

Also we will compare the asymptotic power of the chi-square test
and of a test based on the likelihood ratio., We know from Section 1.3
that the test based on the likelihood ratio must win} the extent of the
difference is of interest.

Let N = (Niseee,Ni) be a multinomial random vector which
records the nuﬁbers of data points which fall into each of k
classifications. Let the total number of data points be n and the
probability of any one falling into the ith category be Pj. The

probability function of N is
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nt k n, k
P(Nl=n1"°"Nk=nk) = ' ' I Pi (niE Z+, I ni=n) (3.1)
nteen ! 1 1

A common question asks whether the probability vector

P = (Pl"’°’Pk) belongs to a parametric family [2(9):9 € H}. This

question reflects on the distribution of the underlying data which is
usually the source of interest. For example when testing whether a
sample Xl""’xn came from the Normal distribution, categories

E, = (ai-l’ ai]g (i =1,.0.,k) could be formed and the numbers

i
N

i #{Xj € Ei} of observations falling into these intervals recorded.

under the normal distribution the probability vector P would be given'by

; a w12 .
P, = faiil 1 ~ewP2d
v2mo
a; - ag_y - M
= =) - o)

The hypothesis of normality for Xj,...,X; is also specified by the
particular parametric form for P.

In general a test of the composite hypothesis

TIH = P(8) for some 6 € H

02

requires estimation of 8., This situation is treated in [18]. We will

consider only the simple hypothesis

Hy:P = P(8;)

0
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for some specified 60 € H, This is also written as

(1=1,...,k) (3.2)

_ 0 0
wherelg(eo) = (Pl"'°’Pk)’

Pearson's chi-square statistic for testing Hp is

(N, - nP(.))2
L i (3.3)

1 nPQ
i

x%(n) =

M~

i

It will be shown that X2(n) has a limiting (n » ®) chi-square
distribﬁtion with k-1 degrees of freedom. This fact is used for
computing critical values of the test. The proof is based on a simple
multivariate Central Limit Theorem ([7]) applied to the sequence of

random vectors V, given by

v == (3.4)

A simple computation produces the covariance matrix of Vp

Cov(yn) = Ik -qgq'

where q = (/P?,...,/Pg)'. Because the N, are sums of independent

i
identically distributed (Bernoulli) random variables the multivariate
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CLT can be applied to yield

d » .
!n > Nk(g, A) under H0 (3.5)

as n > © where A = Iy f.g_g'. In view of the relation

the following result is needed ([7]), [19]).

[

Proposition 1. If Y = NK(Q, A) and A is idempotent with rank r then

4.

Y'Yy
- T

An application of this to V, (recall (3.5)) gives

d
2 2
X“(n) > x4 (3.6)
since the covariance matrix A = Ik - q q' of Xn is idempotent with rank
k-1. Here we have used the continuity of the mapping X » X' X.
The statistic X2(n) is not designed with any specific
alternatives to Hy in mind. The asymptotic power of Xz(n) against

the sequence of alternatives

(3.7)



- 4l -

k

where I Ci = (0, can be calculated. The limiting distribution of Xz(n)
1

under the sequence of alternatives Hl n’ is non-central chi-square as
b

af :
stated in the following result. The notjon x;zuﬁ) represents the

distribution of (Z1 + ﬁf)z + Z% + .. t Zi where Zl""’Zr are i.i.d.

standard normal random variables.

Theorem
, 4,k ci ‘
X“(n) > x'"°. (L —) as n » o, (3.8)
k-1, 30 _
i

One possible proof (as in [18]) uses a multivariate CLT for

triangular arrays which establishes

d
+ NKQQ, ) under H; _ as n > (3.9)

J’<

b

with A as in (3.5) and

Cy Cy

S =(— ,e00y, =

0 0
/Pl /Pk

This must be combined with the following fact about the multivariate

normal distribution which generalizes Proposition 1.
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Proposition 2. ([17]1) 1If X_g Nk(é’ A) and A is idempotent with rank r

and 8 is in the range (column space) of A then
i@ .

Using this result it is immediate that the Theorem follows from
(3.9). A different proof of (3.9) will now be given; it will be based
on the likelihood ratio for the simple hypothesis testing problem Hy
vs. H) ne This likelihood ratio is simply a ratio of multinomial

probabilities defined by (3.1), namely

k N
T (Pg + Ci//E) i
n 1
7 = " - Ni 4 (3.10)
f(Pi)

1

In order that Z» can be used to find the limiting distribution of
V, there must be established a relationship between the two. This is

done by taking logarithms and using a Taylor expansion as follows:

k c

log 72" = 1 Ni log(l + Oi )
1 Pi n
2
c c
i i 1
= I N ( o= 2?0520 + O(n3/2))
Pi/n i
2
c c
1
SIS N - LT N+ 0
Vn- P, 2(Pi) Vn
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2
c — C N,
1 i 0 0 1 i
= =I5 i/nPi + o)) -5 I3 (Pg + —H - P ) +0 (—-—)
/n Pi ’ P0 /—n
i
2
P B e BT
—0- n,i 2 PO P
/Pi i
= & -1 s
8V -5 8 8+ 0,(1). (3.11)

where OP(l—O is a term which converges to 0 in probability at rate 1/vn,
n

and Op(l) converges to O in probability. The latter term arises because

0 _
Ni/n - Pi = oP(l).

Now we use the following strategy. There is a "limiting” simple
hypothesis testing problem which approximates the multinomial testing
problem Hy Vvs. Hl,n in such a way that there is a quanéity which
assumes the role of V). The distribution of this quaﬁtity, under null
and under alternative, is the limiting distribution of V, under H,

and under H; ,, respectively. The limiting problem is
’

0 k(O N) vs. H N s, M.

The likelihood ratio based on a single observation X is (see Appendix

A.2)
20 = exp(8 X -3 8 9.

Comparing the equation
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log 2(X) = &' X -3 & & (3.12)

with (3.11) it is seen that (Z%®, V,) are related by the same

equation as (Z(x), x), except for the error term OP(l). Also

d

log YA logz under H0 (3.13)

as n > ©, The limiting distribution of log Z" is calculated from

(3.11) and (3.5) as

¥

log 2" > & N (0, M) - —%—_6' 5 under H

- 0

I[=H

N(- 2 8§, & 8 (3.14)

(since the variance of &' Nk(g, A) is &' A S =_§_'(Ik -qq') §=28" §.)
The distribution of log Z under Hy is easily seen from (3.12) to be
the same.

Finally, we show that (3.9) follows from (3.5), (3.11) and (3.12).

Two lemmas are required; their proofs are found in the Appendix A.3.
Lemma 1. Let Z be a likelihood ratio and {Zn} a sequence of
likelihood ratios. If a sequence of statistics X, satisfies

d
(Xn’ Zn) > (X, Z)
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under the null hypothesis then

under the alternative. Note that the distribution of X under the
alternative is not the same as the distribution of X under the null

hypothesis.

Lemma 2. Let X and Y? be sequences of random quantities which

converge in distribution say

n 4 nd
x> x, YU+ Y.

If there is a continuous function H and random quantities €% such that

Y = H(X),
Y = HX™) + "
and e’ > 0 in probability

then

d
x™, ) » (X, Y).

Lemma 1 reduces the proof of (3.9) to showing joint convergence of

yn and z" or equivalently of yﬂ-and log Zn; this follows from Lemma 2

and (3.11). Since yﬂ'+_§ where g.g Nk(g, A) under the null and
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X d Nk(g, A) under the alternative it follows that the latter is the

limiting alternative distribution of V.

Finally we turn to a comparison of the test based on X2(n) with
the test based on Z".

The comparison will be done via the limiting distributions of the
statistics. Denoting §8' 6 by A the limiting distributions of x2(n) are
2

Xk—l under HO and x&EI(A) under Hl’ and the limiting distributions of

log z are N(- %—A ,A) under HO and N(—%—A ,4 ) under Hl' The asymptotic

power of the test based on logZ" is given in (1.14); replacing 93 there

by A the asymptotic power is

1 - &(z, - /B) (3.15)

where Z, is the 100(l-a) percentile and @ is the distribution function
of the standard normal distribution.

Now for levels a = .05 and o = .0l we find the values of required
for the asymptotic power of the X2(n) test to be .85, .90 and .95.

These values of A solve the equations

2

2
\ o
P(x1 2, (8) > % ) = .85, .90, .95.

l,a

where x2 is the 100(1-a) percentile of the xi distribution and
k-1,a v -1

they can be read from Table 25 of [2]. From A the power in (3.15) is

computed and this is then compared to the relevant power for the
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chi-square test. In Table 2 below the results are displayed for various

values of k-1 the degrees of freedom for the chi-square statistic.

Table 1. Asymptotic power 1 - @(Za - YA) of the test based on 7"

for values of size o, power B and degfees of freedom k-1
of the chi-square test.

a= .05 « = .01

k-1\ 8 .85 .90 .95 .85 .90 .95
1 911 .945 .975 .901 .937 971
2 .952 .972 .989 .945 .968 .987
3 .969 .983 .994 .968 .980 .993
4 .978 .989 .996 .976 .987 .995
5 .984 .992 .997 982 991 .997
6 .988 .994 .998 .987 .994 .998
7 .991 .996 .999 .990 .995 .999
8 .993 .997 .999 .992 .996 .999
9 .994 .997 .999 .994 .997 .999
10 .995 .998 1000 .995 .998 .999
15 .998 .999 1.000 .998 .999 1.000

Note that the power seems to converge to 1 as k gets large; this is
also expressed by the fact that the non-centrality parameter & must
increase with the degrees of freedom in order that the chi-square test
have constant power. For a large number of cells k the chi-square
statistic Xz(n) has greater difficulty in deéecting a particular
alternative because it attempts to detect alternatives in many direc~

tions. It should be mentioned that under alternatives other than that

specified by Zn (i.e., P0

t Ci//E)’ A may have smaller asymptotic power

than Xz(n). Thus a trade—-off exists between increased power from using

the likelihood ratio and the risk of using the wrong likelihood ratio.
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APPENDIX

A.1 Uniform Integrability of a Sequence of Stopping Times

The convergence of Average Sample Numbers ((2.12), (2.13)) which is
used in Sections 2.1 and 2.2 requires the uniform integrability of the

*
sequence of stopping times {Tn} given by

T: = inf{t: Zn(t)lz A or Z#(t)'s B}.

This we will establish now using the set-up described in the first
paragraph of Chapter 2.

The uniform integrability must be estahlished under both sequences

n

of probabilities {PO

} and {P?}. In doing this for both sequences at
once we will let P! denote either of the sequences. Let F, be the

*
distribution function of Tn under Pn,

F_(t) = PU(T_ < t).

*
n

Let t be an integer. Then

n *
1 - Fn(t) P (Tn > t)

P™(B < z™(s) < A for all s < t)

P"(LlogB < logz"(s) < logA for all s < t)

P™(1logB < logZE < logA for all k £ tn)
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< P™(1ogB < logZE < logA, logB < 1ogz;n < logA,...,

logB < log Zzn < logA)
n n n
<P (lloan' <c, 'logzzn - logzo| < C,...,

n n
'logZtn - 1ogZ(t_1)n| < Q)

n

where C = llogAI + 'logB 70

« Since 1og22, log Z, - 1og2,...,

n

(t-1)n are i.i.d.

1ogzzn - logZ

1= F (e) < [P(m)]°
with

P(n) = Pn('logzg’ < 0.
Now since logZE = loan(l) 4 logZ(1l) we have

p(n) » P(|1ogz(1)| <ec) <1
and thus we can assume without loss of generality that
P(n) < v<1 for ‘every n

Therefore 1 - Fn(t) S_Yt for integers t, so for any t

1

1= F (1) <1 = F(le]) < v oyt (AL.1)
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holds for every n.

Now by integration by parts

2[5 - F(0) wde = (4= B (0)) £/ 4 [T 6% ar (o)

© 2
fo t° dF_(t)
using the inequality (Al.l1). Therefore

Nem®\2 _ o [ _
EN(T )T = zfo (1 - F_(£)) tdt

t-1

I~

zf:;ty at < =,

*
It now follows that {Tn} is uniformly integrable.

A.2 The Likelihood Ratio of Singular Multivariate Normal Distributions

It is required to find the likelihood ratio of the distributions

Nk(é, A) and Nk(g, A). Consider the representation ([19])

for the Nk(g, A) distribution, where Z is a vector of i.i.d. N(0,1)

variables and A1/2 is the square~root of A, a symmetric matrix

. 1/2 ,1/2 .
satisfying A A = A, In our situation A is idempotent with rank r
so that A1/2 = A; also
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I.,0
== s e e L '
A= Blgt5| B' =B DB (A2.1)

with B an orthogonal matrix, a representation which will be used below.
Now if § is in the range (column space) of A the vector A Z + § will
remain in the range of A and the two distributions Nk(é, A) and Nk(g, Y]
will have the same support. This will make their likelihood ratio
meaningful., In Chapter 3 we had A = Ik -qq' and_é was orthogonal to q

so that A § = 8§ thus ensuring that § is in the range of A.

Now let QO’ Q1 be the probability measures on Rk corresponding to

the Nk(g, A), Nk(é’ A) distributions respectively. With D as in (A2.1)

(=9

x4n 0, =N, D (A2.2)

Now let PO’ Pl be the probability measures corresponding to Nk(g, D),

N, (¥, D). From (A2.2) and (A2.3), Q, = POB—I and Q; = PlB_l where the

notation means
_ -1 _ -1

for Borel sets A in Rk.

The likelihood ratio dPl/dP0 is simple to find and the following

lemma shows how it relates to dQl/dQO’ the desired likelihood ratio.
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Lemma. Let Py, Py be probabllity measures on a measure space (X,F)
and f:(X,F) > (Y,G) be measureable and 1-1 with measurable inverse

£1:(v,6) > (X,F). Define Qq» Q, on (¥,6) by

_ -1 _ -1
Qy(A) = Py(f ~ A), Q(A) =P (f " A). (A €eG).
Then if P1 L P0 and Q 4 QO then

do, dP,
Q () =5 () (v e .
O

Proof: Let A € G.

-1

f\ ke o) aQ, (¥) £ () dpy £y

A dP IA dP

dp

apy
/
1, @y

(x) dp (X)

(by the change of variables formula with y = f(x).)

-1 _
P (£71() = o ().

The use of this lemma requires dPl/dPO. But Py is the

distribution of a vector (Xj,...,X_, 0,...,0)" of r i.i.d. N(O,1)

-r’

variables and P; is the distribution of this vector with the added

mean vector M = (ul,...,ur, 0,ee4,0)'. Therefore for any

= (xl,...,xr, 0,¢0.0)
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dp

EINEY

Therefore, by the lemma, since the linear map B is 1-1 from the range of
D to the range of A, for each y in the range of A

dQ; ar dP,

._]_ _ 1 '
aq, (y» = 5 (B y) = T, (B' y)

u}

explyr w0y - Ly

exp{(B'8)' > B'y - 2(3'8)'(B' )}
= exp{d'y - 5 8'3}

and this was the formula used to obtain (3.12).

Note: A further use of this calculation is made for the application of
the SPRT to the problem of testing the mean vector of a multivariate
normal distribution. Note that only alternatives which specify a mean

vector in the range of the covariance matrix can be tested.
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A.3 Two Lemmas on Weak Convergence

In this section proofs of Lemma 1 and Lemma 2 are provided. Lemma

1 is first restated more precisely.

Lemma 1. Let PO and P1 be probability measures with P1 < PO and Z =

™ and PP be

dPl/dPO be their 1likelihood ratio. For each n=1,2,... let PO 1

probability measures with PT 14 PS and z" = dPT/dPg. If there are

random elements X, X" such that

d
(x", z™ » (X, 2Z) under Pg, P,
then
nd n
X" > X under Pl’ P

10

Proof: If f is bounded and continuous on the space where X" and X lie

n

Je(x™ 2" dp)

[£(x™ dp?

hx™, zM dPg

1

¥

/n(x, 2) dp,

(since h(x, z) = £(X) z is continuous on the product space.)

1]

JE(x) z dp

JE(X) dp, .
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Lemma 2. Let P0 and Pg(n=1,2,...) be probability measures and let

X, Y, X" and Y" be random elements such that

x4 x under P2, P,
nd n
an@ Y Y under PO’ PO'

If there is a continuous function H and random elements €U such that

<
1}

H(X)

= H(X?) + €

=
3
|

n

€' + 0 in probability under P

then

", ™ ¢ x, v under P1

0* P

0.
Proof: Since €0 > O in probability it suffices to prove that

d
x", HEM) > (X, H(X)).
(see [1]). For this let f be continuous and bounded on the product

space where (X,Y) lives. Then

JE(x™, H(X™)) 4Pl

n n
0 Je(x™ dP0

¥

Ja(x) dap,

JE(X, H(X)) dp,,

Since g(x) = f(x, H(x)) is continuous.



