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Abstract

The performances of a number of Automatic-Repeat-Request
(ARQ) protocols are compared on the basis of the expected wasted
time per message incurred over random-error and Rayleigh fading
channels. These include the standard Stop-And-Wait, Go-Back-N,
and Selective-Repeat schemes. The reductions in expected wasted
times achievable through the use of forward-error-correction
(FEC) are demonstrated. It is found that in general,
substantial improvements in performance can be obtained by using
FEC.

A new ARQAprotocol proposed by Weldon is studied. It is
shown that the throughput of Weldon's scheme can be increased by
allowing multiple. copies of a new data block to be sent.  In
order to maximize the throughput in Weldon's scheme, a number of
parameters need to be selected optimally. An efficient method
for choosing these parameters 1is obtained by exploiting the
structure of a simplified expression fof the throughput.

The problem of the optimal block length that minimizes the
expected wasted time per message is also considered. An exact
analysis of the optimal block length is developed for the Stop-
And-Wait scheme using an end-of-message character in the last
block of a message. The optimal block length is a function of
average message length, channel error rate,overhead per packet,
acknowledgement delay and transmission rate. It is found that
the optimal block length converges to a constant value when the
average message length becomes large. Finally, the 'performance

of an algorithm that computes the optimal block length in an
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adaptive way is examined.
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I. INTRODUCTION

1.1 Background

In recent years, the demand for efficient and reliable data
communication systems has been greatly accelerated by the rising
need for computer-to-computer communication. A serious problem
in many data communication systems is the occurrence of errors
in the communication channel. Basically, there are two
techniques for controlling errors in a data communication
‘system: the Automatic-Repeat-Request (ARQ) scheme and the
forward-error-correction (FEC) scheme.

The ARQ scheme can often proVide a simple means to achieve
high efficiency and reliability for a data communication system.
In an ARQ system, the transmitter encodes the message so as to
enable the receiver to detect transmission errors and ask for a
retransmission of erroneous blocks. ARQ protocols differ in the
manner in which the transmitter handles the requests for
retransmission. Standard protocols include Stop-And-Wait, Go-
Back-N and Selective-Repeat schemes[1,2]. A number of
variations of the basic protocols have been suggested[3-6] in
order to improye efficiency.
| In an FEC system,. ah error-correcting code is used to
correct transmission errors. The receiver attempts to locate
and correct the errors in a corrupted packet. Since there is
only a certain number of error patterns which can be corrected,
the result of the correction may not be the original packet

transmitted by the transmitter. Therefore, it may be difficult



to achieve high system reliability with FEC. However, for a
system in which a return channel is unavailable or
retransmission is not possible or convenient, the FEC technigue
is often used. Hybrid schemes in which FEC is combined with an
ARQ protocecl are often more efficient than either ARQ or FEC
alone[7,8].

In an ARQ system, the message is often split into fixed
blocks of size B bits. These are then assembled into packets of
length (B+b+p) bits where b represents overhead required for
synchronization, addressing, sequence numbering, error
éetection,etc, and p is the number of parity bits used for error
correction. There 1is a tradeoff involved 1in selecting the
packet size. On the one hand, it is desirable to choose a large
packet size so as to reduce the acknowledgement delay and the
overhead per message. On the other hand ,a long packet is more
likely to be corrupted by the channel,and hence require a
retransmission. The problem of how to select fhe optimal packet
length for ARQ protocols has been studied by Chu[9] and
Morris[10].

In chapter 2 , a number of ARQ schemes[3-7] are briefly
reviewed. Then the performance of various ARQ protocols are
compared on the basis of the expected wasted time per message
incurred when a message is packetized for retransmission over
the channel., The effect of FEC on the expected wasted time of
each protocol/channel combination is also examined.

In Chapter 3; a new ARQ scheme proposed by Weldon[6] is

studied . A number of methods are proposed to improve the



efficiency of Weldon's scheme.

In Chapter.4, the optimal packet length problem is fgrther
investigated. Some interesting observations are discussed. An
algorithm that computes the optimal packet length in an adaptive
way 1is also developed and its performance 1is examined by
simulation. .

1.2 System Model

The system model[6] we are considering consists of a
transmitter ,a receiver , a forward data link channel and a

noiseless feedback channel.

noise
transmitter ? e delay [~ 7 |receiver
Z )
4 delay <

‘noiseless feedback channel
Fig 1.1 The system model.
The major components of the system model are described as

follows:

Forward and Feedback channels

The transmitter transmits/retransmits packets to the receiver
over the forward data link channel. Packets may be corrupted by
noise in the channel. A noiseless feedback channel is provided
for the receiver ‘té send positive/negative acknowledgement
packets to the transmitter to indicate whether retransmissions

are required. The probability of a packet being in error is



denoted by P. The number of data packets which can be sent by
continuous transmission during the time between the start of the
transmission of a packet and the receipt of a positive
acknowledgement (ACK) or negative acknowledgement (NACK) for that
packet is denoted by S. The throughput efficiency T is defined
as the ratio of the time taken to transmit a packet assuming the
channel is noiseless to the avefage time 1involved in the
transmission of the same packet over the actual channel. Note
that our definition of throughput does not take overhead bits
e.qg. for addressing , error control etc. into account.
ﬁowever , the effects of these overhead bits will be considered
in Chapter 2.

Transmitter

Each message arriving at the transmitter is split into blocks of
size B Dbits. These are then assembled into packets of length
(B+b+p) bits where b represents overhead required for
synchronization, addressing,sequence numbering, error detection
,etc. and p is the number of parity check bits if an error
correcting code is used. The transmitter then proceeds to
transmit or retransmit the packet over the channel and waits for
the positive/negative acknowledgement from the receiver.Since
all the <corrupted packets have to be retransmitted, the
transmitter has a buffer size of at least S blocks to store each
transmitted packet until it is positively acknowledged by the
receiver.,

Receiver

Upon receiving a packet , the receiver proceeds to decode the



packet. It is assumed that all errors in the received packet
are detected at the receiver[11]. If an error-correcting code
is used, the receiver will attempt to correct the corrupted
packet. Whenever a packet 1is received <correctly or error
correction is successful, an ACK is returned to the transmitter.
However, if an uncorrectable error pattern occurs , the result
of the correction is not the original packet transmitted by the
transmitter. Upon detecting the errors , the receiver requests
a retransmission by sending a NACK to the transmitter. 1In order
to store the received packets, the receiver has a buffer size of
5 block or gS blocks, g=1,2,3,..., depending on the particular
ARQ scheme in use. For the class of Selective-Repeat protocols,
the receiver buffer stores all the correct packets following the
bad one until the buffer 1is full. Once a bad packet is

recovered by retransmission , all the consecutive correct

packets following the recovered packet are released and
subsequently delivered to the host computer(data sink).

Therefore the head of the buffer queue 1is always a corrupted
packet followed by some correct/corrupted packets. 1In this way,
all the packets received by the host computer are in consecutive
order. This measure is for the ease of main memory management

in the host computer.



I1. PERFORMANCE COMPARISON OF SOME ARQ SCHEMES

2.1 Review Of Some Specific ARQ Schemes

ARQ schemes are commonly used in data communication éystems
because they can often provide a simple means for achieving high
efficiency and reliability. However, ARQ schemes have a common
shortcoming: the throughputs of ARQ schemes decrease quite
rapidly with increasing error probability. For satellite
communication applications , the presence of large round trip
delays aggravates this problem. Therefore, much effort has been
aevoted to the study of ARQ schemes that maintain high
throughput efficiency for high error rate and large round trip
délay channels. 1In this section, a number of representative ARQ
schemes to be compared in the next section are briefly reviewed.
These include the standard Stop-And-Wait ,Go-Back-N and
Selective-Repeat schemes[1,2] as well as a number of variations
suggested[3-6] by some authors.

The throughput of these ARQ schemes are now listed as
follows:

(1) Stop-And-Wait

- After sending a packet, the transmitter waits for an ACK or
NACK from the the receiver to determine whether to transmit a
new packet or retransmit the same packet. The thfoughtput is
given by

-p
T 'Slg'L' (2.1.1)



In the Stop-And-Wait scheme ,the transmitter is often idle.
In all the following protocols, the transmitter 1is always
sending either new packets or retransmissions. For this reason,
these protocols are referred to as continuqus ARQ.

(2) Basic Go-Back-N (GBN)

The transmitter sends new packets continuously until a NACK
is received. Then the transmitter retransmits the NACKed
packets, followed by all subsequent (possibly previously
transmitted) packets. Note that the receiver requires only a

buffer size of one packet. The throughput T is given by

(3) Ssastry's GBN [3]

In this modification of the basic Go-Back-N protocol, the
transmitter enters a stutter mode as soon as a NACK for a packet
is received, i.e., the transmitter keeps sending the NACKed
packet(say 1) continuously wuntil an ACK for packet 1 is
received. At this point, the transmissions of packets i+1,1i+2,

etc. are resumed. For this protocol,

1-P
T~ T aERED (2.1.3)

(4) Morris' GBN [4]

This 1is an enhancement of Sastry's GBN protocol with a



receiver buffer of size S packets to save the good packets

following a corrupted one. Here the throughput is increased to

1-P .
T = 153G (2.1.4)

(5) Selective-Repeat plus Stutter I (SR+ST) [5]

This protocol is an extension of Morris' GBN scheme in that
a buffer of size gS, g=1,2,3,.... 1is available at the receiver.
For the first’ (g-1) times that a given packet is NACKed , the
transmitter retransmits it using a selective repeat mode. If a
gth NACK for that packet is received, the transmitter switches

to a stutter mode. The throughput is given by

T = 1-P .

1 + P1-p)(s-1) (2.1.5)

In chapter 3, we will show that this protocol can be extended
along the lines of Weldon scheme discussed below.
(6) Weldon's scheme [6] A

In this protocol, the receiver has a buffer of size gS
packets,where g=1,2,3,.... . At any given point 1in time, a
packet B can be in any level i, 0g i g g+!. Initially, B is at
level 0. At any given level j, B is repeated n, times , where

J

N is a parameter to be chosen. 1If any of these ny copies is



ACKed,the transmission of B is complete; If all n; copies are

NACKed, B moves to level j+1. 1In this case the throughput T is

given by 1/p [6] where

k-):o "k (nq+s-1)rk'°

B- } n, P + (2.1.6)

n
1-p 4

A more detailed description of Weldon's scheme [6] is given in
Appendix A. It might be noted that many previously suggested
ARQ protocols are special cases of Weldon's AhQ scheme. For

example, the classical Selective-Repeat protocol is obtained by

setting g=1 and ny=n, =1, and results in a throughput of
Te—1F . (2.1.7)
1+ (s-1)p

The Selective~Repeat plus Go-Back-N (SR+GBN) protocol of
[5] 1is obtained by setting Ng=n;=....=ng=1, and yields a
throughput of
1-pP

T - ,
1 + (s-1yp9H

. (2.1.8)
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(7) IDEAL SELECTIVE-REPEAT

In this protocol , a retransmission for a packet 1is made
only 1if all previous copies of that packet are erroneous. This
scheme requires a buffer of infinite size at the receiver and is
therefore not very practical. Nevertheless it is wuseful as a
basis for compéring other ARQ schemes. The throughtput is given
by

T = 1-F. (2.1.9)

2.2 Effect Of Forward Error Correction On Expected Wasted Time

2.2.1 Expected Wasted Time Analysis

In this section , the throughput expressions given in
Section 2.1 are used to obtain expressions for the expected
wasted times of the various ARQ protocols, both with and without
FEC. Two channel models, one with random errors and the other
with Rayleigh fading, are considered. The model wused for
determining the expected wasted time is the one presented in
[9]. Messages are assumed to have geometrically distributed

random lengths, L;[21].i.e.

£-1
?L(2)°(1—Q)q 02'3192’3"' (2.2.1)

with average length L=1/(1-g). Each message 1is split into

blocks of size B bits. The blocks are then assembled into
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packets of 1length n=(B+b+p) bits where b represents overhead
required for synchronization, addressing, error detection, etc.
and p is the number of parity bits used for error correction.

We now proceed to calculate the expected wasted time per
message. The wasted time 1is defined to be the difference
between the actual time required for transmitting the packetized
message and the time it would take to directly transmit the
unpacketized message over an error-free channel with the same
bit rate. Assuming that errors occuring in different packets
are independent and that the last packet is filled with (if
necessary) dummy bits to make all packets bf fixed 1length, the
expected wasted time per message [8,9] is given by

T+b
R (2.2.2)

W = N(B) gD -
where
R=transmission rate in bits/sec.
N(B)=average number of packets per message
D=n/R=time to transmit a packet in sec.
T=throughput of the ARQ scheme employed as given in section 2.1

For geometrically distributed message lengths, the mean.number

of packets per message is given by

N(B) =n§1 nP((n-1)B<L¢nB)

® -R=1
=% (-0

n P
" n=1 -2=(n-1)B+l
‘1
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Therefore, the expected wasted time per message for

geometrically distributed message length is:

1 1 L+0b
V'u_qn) 3 D=5 | (2.2.4)

We now consider the effect of FEC on the expected wasted
time as described by equation (2.2.4). It should be noted that
there 1is a tradeoff involved in using an error-correcting code:
on the negative side, error correction parity check bits
introduce additional overhead in a packet . However, this may
be more than offset by the reduction in the probability of a
packet retransmission P. The error-correcting codes we are
considering are the Bose~-Chaudhuri-Hocquenghem (BCH)
codes[12,13]. Given a packet length n (preferably of the form
n=£“—1, m=2,3,4,... corresponding to the codeword 1lengths of
BCH codes),the distribution of the number of channel errors in
the packet is obtained. This can be derived analytically for
the random-error channel. For the Rayleigh fading channel,
simulation [14,15] were used to obtain the desired distribution.
From this distribution , the probability of a block being in
. error P(n,t),which results when a t-error-correcting code is
used,can be determined. P(n,t) then allows the determination of
the throughput T for use in evaluating the expected wasted time
in equation (2.2.4). The corresponding number of parity check
bits p reguired can vbe easily obtained from BCH code
parameters(n,k,t), namely:

m
n=2 -1
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k=B+bxn-mt
p=n-k
The resulting expression for the expected wasted time can be

obtained by comparing with equation (2.2.4) and is given by

= 1 1 T+b
W= 0 crv—— O - (2-2-5)
1-gn-b-p T P-=x

For a given packet length n, eguation (2.2.5) is evaluated for
different values of t to determine the choice of t which

minimizes W .

2.2.2 Numerical Results For The Random-error Channel

The distribution of the number of bit(channel) errors in a
packet of 1length n transmitted over a random-error channel is
given by the binomial distribution

Prandom(n’N) (N) Py (l-pb)
where Q)is the bit error rate.

If no error correcting code is used, the probability of a
block being in error P is given as

(2.2.7)

P = -
1 P an dou‘(B+b_, 0)

If a t-error-correcting code is used, the probability of a block

being in error P is given as

P = P(n,t) = 1-F (n,1)

I . P
120 “random (2.2.8)

An idea of how the number, t, of errors corrected affects the

expected wasted time per message W can be obtained from Figures
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(2.1) ,(2.2) and (2.3). These are plots cf W as a function of t
for the Stop-And-Wait,Go-Back-N and Selective-Repeat schemes
respectively.The parameter A is the acknowledgement delay in
seconds given by (S-1)D. The plots show that for a given
blocklength n,there is an optimum value for t. Moreover, W is
quite sensitive to t, especially for the smaller values of n,.

The expected wasted time W 1is plotted as a function of
B,the number of information bits per packet, for 7 different ARQ
schemes with and without error correction in Fig (2.4) to (2.7).
In order to provide a common basis for comparison, a receiver
buffer size of S packets is assumed(i.e.,g=1) for the SR+GBN,
SR+ST and Weldon schemes.Hence in these figures, the curves for
SR+GBN and Morris are the same as those for the classical SR and
SR+ST respectively. The parameters used in Figure (2.7) might
correspond to a satellite system with large file transfers. The
solid curves corresponding to the use of FEC are obtained by
using the optimum t for values of n of the form 5"—1. In each
figure , there is an optimai value of AB' which minimizes the
expected wasted time for each ARQ scheme as suggésted by the
discussion above.

From these figures, it is clear that FEC can substantially
reduce W. It is also interesting to note that FEC tends to
equalize the expected wasted times of the continuous ARQ
protocols. This can be explained by the fact that the use of
FEC effectively results in a channel with a lower block error
" probability P. As P decreases, the difference in throughputs

between the continuous ARQ schemes becomes smaller .
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5 7 10!
by b

EXPECTED WASTED TIME PER MESSAGE (SEC)

é | T [ |
Q- 10 - 20 - - 30 -

NUMBER OF ERRORS CORRECTED, t

Fig 2.1-Expected wasted time against number of errors corrected
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2.2.3 Numerical Results For Rayleigh Fading Channel

The Rayleigh fading channel is commonly used to model the
transmission of data over mobile VHF/UHF radio channels. The
distribution of the number of bit errors can be obtained from a
simulation program{14,15].A typical distribution is given in Fig
2.8), which shows the cumulative distribution function (CDF) of
the number of errors in packets of 1length 63,127,255,511,1023
and 2047 bits. 1In this figure, a bit error rate P

b
transmission rate R of 4000 bits/sec, a Doppler frequency fp of

of 0.01 ,a

25 HZ(corresponding to a vehicle speed of about 20 MPH at a
earrier frequency of 850 MH) and non-coherent FSK modulation
were assumed.

The results from Fig (2.8) can be used in conjunction with
equation (2.2.4) and (2.2.5) to obtain Fig (2.9). As in the
random error channel case, the curves with FEC correspond to the
use of the optimum values of t. Here again, it can be seen that
FEC can substantially reduce the expected wasted time W.
However, the reduction are not as large as for the random-error
channel,

2.2.4 Concluding Remarks

It has been shown that FEC can be used to substantially
improve the performance of a number of different ARQ schemes.
The improvement in a given application will obviously depend on
system parameters such as packet retransmission probability,the
‘acknowledgement delay, etc. and on the distribution of channel
errors. The benefit”of any reduction in wasted time will have

to be weighed against the additional cost and complexity of
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using FEC.

The expected wasted time can be gquite sensitive to the
number, t ,of errors corrected(assuming FEC is used). Hence,
the choice of t should be made with some care. It 1is also
possible that the wuse of FEC will influence the choice of the
particular ARQ scheme‘ used. For a given set of system
parameters such as transmission rate,acknowledgement delay ,
overhead per packet, etc. , the improvement in expected wasted
time by ‘the use of FEC depends on the channel bit error rate
P, -One would expect the improvement to decrease with P, .
Table (2.1) to (2.2) show the expected wasted times with no
error correction and with error correction as a function of Py
for the Go-Back-N and Weldon(assuming q=1) schemes.The expected
wasted times for no error correction are optimized with respect
to packet lengths n of the form 2" , and the expected wasted
times with error correction are optimized with respect to n and
the class of BCH codes. Thus, for the particular example
considered, the use of error correction is quite beneficial for
P, >0.0005. ~ Below P, ¥0.0001, there is little gain that is
obtained. This can be illustrated in Table (2.2) in which the
optimum number of errors to be corrected is zero for P,%0.0001

for Weldon's scheme(g=1).
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EXPECTED WASTED TIME PER MESSAGE FOR RANDOM-ERROR CHANNEL WITH

R=4000BITS/SEC,L=1000BITS,A=0.2SEC,b=30BITS FOR GO-BACK-N SCHEME

Py Expected Wasted Time (sec) BCH Codes used
no error correctioniwith error correction (n,k,t)
{0.01 6.10 1.51 (511,412,11)
0.005 2.32 0.12 (255,233, 4)
0.001 0.42 0.08 (255,239, 2)
10.0005 0.237. 0.079 (255,247, 1)
0.0001 0.083 0.070 (255,247, 1)
0.00005 0.076 0.069 (255,247, 1)
0.00001 0.062 0.062 (255,255, 0)
TABLE 2.2

EXPECTED WASTED TIME PER MESSAGE FOR RANDOM~ERROR CHANNEL WITH

R=4000BITS/SEC,L=1000BITS,A=0.2SEC,b=30BITS

FOR WELDON'S

SCHEME WITH g=1.

Py Expected Wasted Time (sec)
no error correction|with error correction

0.01 1.32 0.14

0.005 0.643 0.109

0.001 0.167 0.079

0.0005 0.117 0.071

0.0001 0.068 0.067

0.00005 0.063 0.063

0.00001 0.060 0.060

BCH Codes used

(n,k,t)

(255,215, 5)
(255,231, 3)
(255,247, 1)
(255,247, 1)
(255,255, 0)
(255,255, 0)
(255,255, 0)
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Fig'2.8- CDF, P,(N) of number of errors in packets of lengths n

for Rayleigh fading channel with P, =0.01, f,=25 Hz, and
transmission rate R=4000 bits/s.
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III. ON WELDON'S ARQ SCHEME

3.1 Weldon's ARQ Scheme

Recently, Weldon has proposed a new ARQ protocol [6] which
appears to have a higher throughput than any of the previously
known practical schemes (naturally, the Ideal Selective Repeat
protocol which requires an infinite buffer at the receiver has
the highest throughput: 1-P ). The merit of Weldon's scheme 1is
in the idea of repeating NACKed packets multiple times with the
number of repeats increasing as the receiver buffer approaches
overflow. Moreover,the number of repeats is optimized to yield
the highest throughput performance. It might be noted that many
of the wellknown ARQ schemes such as GBN, Selective Repeat ,
etc. are special cases of Weldon's scheme.

In this chapter, some methods to improve Weldon's scheme
are discussed. First, a simplification of the throughput
expression of Weldon's scheme is presented. Then it is shown
that the throughput of Weldon's scheme can be 1increased by
allowing multiple copies of a new data block to be sent.Also, by
exploiting the structure of the simplified throughput expression
, an efficient method for determining the optimum number of
repeats {ni} can be obtained. Finally a modified Weldon ARQ
scheme that prevents receiver buffer overflow is presented, and
its throughput performance 1is analyzed. A description of

Weldon's scheme [6] is included in Appendix A.
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3.2 A Simplified Throughput Expression For Weldon's ARQ Scheme

Following [6], we define 8=1/T as the average number of
transmissions required to successfully send one block. Egquation

(8) of [6] shows that

1-X1
n
i Lk n
= ) { § Pt a-eh
i=0 3=0
% 0
! kzonk (n + s - 1P
+ n, P + .
gm0 1 l-an (3.2.1)

It is found that the above expression can be simplified to

9

iil oo n,
g = ‘% . pk=0

" (n+S-1)P
1 +
1=0

(3.2.2)

n
1-p9



The simplification is done by noting that the first two sums

equation (3.2.1) can be reduced to

ii} % 133
1 " o " "

k=0 i k=0 ~ _ k=0

120 (j zonj ) ¥ (- ")+ j}gnip jzoniP (3.2.3)

The L.H.S. of equation (3.2.3) can be re-written as

1-1 i 171
yn % an
i Lk i Lk k=0 K k=0
(1} nj) k=0 % ( nj) P04+ % R 3 R + F
i=0 j=0 1=0 j=0 0 1=0
where
1—1 1

q i-1 - z:n q }nk
pd 1 (Ta)e o™ - et Lot G

1=0 j=0 1=0 =0 3 i=0

Expanding the second term in F , we have

131 . ; ,
151 .
- 126(:z;n1) pk‘on E}(jégnj) Pkgsnk
"o (3.2.5)

This completes the proof of equation (3.2.2).
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3.3 Weldon's ARQ Scheme With Variable‘nO

q
i%FO can be

chosen so as to minimize g (or equivalently maximize the

For given values of S and P, the parameters {n

throughput T). 1In Weldon's original scheme [6], the parameter
N, which 1is the number of transmissions of a block at level 0,
is set to 1.,However , this may not be the optimum value for
n, .as indicated in Figure (3.1). Here the throughput is
plotted against the block error rate P for S=1000 blocks and
g=1, an example used in [6]. For Pg0.25, the optimum value of
n, is 1. However, for larger values of P ,the throughput is
increased by wusing larger values of nO.In section 3.4, a
detailed analysis of the optimum values of {nihgo is given .

At this point, it suffices to note that the Weidon scheme with
variable n, can have a significantly higher throughput . As an
example, for P=0.6 , Figure (3.1) shows that T can be increased
from 0.10 to 0.17. Also plotted 1in Figure (3.1) 1is the
throughput curve for the ideal selective repeat scheme for which
T=1-P. The values of n,, n, which maximize throughput for
S=1000 blocks (g=1) are shown in Table (3.1) . It might be
noted that the improvement in T éhould decrease if more
buffering capabilities are available in the receiver for the
above example. This is shown in Figure (3.2) and Figure (3.3)
in which the throughput T is plotted against P for S$=1000 and
g=2, g=3 respectively. The reason why the improvement in T
decreases can be expléinéa by the fact that the probability of

receiver buffer overflow decreases with increasing g. Table 3.2

shows the values of no,nl,nz,and n, which maximize T for $=1000
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blocks and g=3.

TABLE 3.1

VALUES OF n, AND n

° 1 WHICH MAXIMIZE THROUGHPUT FOR S=1000BLOCKS

WITH g=1 FOR SEVERAL VALUES OF P

P Ny ny T
0.0t L 2 0.97943
0.04 1 3 0.89082
0.10 1 3 0.71413
0.20 1 5 0.48443
0.30 2 6 0.38373
0.40 2 7 0.29550
0.50 3 S 0.22875
0.60 4 12 0.17120
0.70 5 17 0.12113
0.80 8 24 0.07788
0.90 17 45 0.03841




TABLE 3.2

VALUES OF no'nl'nZ’AND ny WHICH MAXIMIZE THROUGHPUT

FOR S=1000BLOCKS WITH g=3 FOR SEVERAL VALUES OF P

P Ne ng ny ng T

0.1 1 1 1 3 0.89767
0.2 1 1 1 5 0.77648
0.3 1 1 2 6 0.64517
0.4 1 1 2 8 0.50471
0.5 1 2 3 10 0.38240
0.6 2 2 4 13 0.27739
0.7 2 3 6 17 0.19364
0.8 4 5 9 26 0.11713
0.9 7 10 16 45 0.06232

32
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3.4 Determination Of The Optimum Values Of {n;}

In order to maximize the throughput, a method must be

devised to chose the optimum values of the parameters {ni}igd

One obvious method is to use brute force searching, For example,
the optimum values of n0 and n1 for the cases of g=1 can be

obtained as followS:€(Tﬁe Lconvexity of B(no,nl) is shown in Appendix B)

step 0: Initialize n0=1 .

step 1: Compute B(no,nl) of equation (3.2.2) for n.=1,2,3,4,,....

1

until the value of nT which minimizes g is found.
step 2: Increment n, by 1 .
' % %
step 3: Go back to step 1 until the pair of values ( no“ﬁ) that

minimizes g is found.

x %
For the cases of g=1, the above method takes T ng™
_ *x %
searches to find the optimum pair of values (“OJH) . In
general, the brute force searching method takes =
Y h find th i 1 £ {n, 19
ngnny0g. .. Ny searches to find the optimum values o niiFO .

However, a more efficient method for choosing these parameters
can be derived by exploiting the structure of the simplified
throughput expression ,equation (3.2.2). We first note that

equation (3.2.2) can be re-written as

n n,in n,tn,.+ ... +n
8'n0+n1P0+n2P0 1+...+n1Po 1 -1,

n0+n1+ coe +nq
nytn + .. .+nq_1

(n +S-1)P
+ an + 4

n
1-p49
n n

0 L L n
=g+ P (a, +P (o, + P 2( ..o, + P (...

n__ n n -1 (3.4.1)
gy * P g + 2 ICE D)) ) ))))
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Equation (3.4.1) shows that the minimization of 8 can be
performed by using the following procedure:

step 0 : Determine the values of nq (say'n; ) which minimizes

o nqi-S -1
fqlng) = ngt P N —) (3.4.2)
1-p21

step 1 : Determine the value of n (say n * ) which minimizes
q-1 - q1

n 1
q
- <+ *
£ l(n 1) n 1 P fq(nq)

. ' (3.4.3)

step g-i. Determine the value of n, (say ni) which minimizes

n
1 *)
=n, + P £ (0% ., 0f o5 ceer B
. fi(ni) " {41V 0141 i+2 ﬁ (3.4.4)

step @ . Determine the value of n_ (say n*) which minimizes
0 0

n
0
fo(no) n, + P fl(ni » 0%, oo, na) (3.4.5)

The above procedure 1indicates that the optimum value of n,
depends only on S, P and the optimum values of n  _,n yeeoD o
i+l i+2 q
As an example of how the procedure can be used to derive the
optimum values of {ni} we consider the case when g=1. It is
shown in Appendix B that the functions {f,(n,)}? are all
. i=0
convex functions. Hence,the necessary and sufficient conditions

for n to be the optimum value for n are
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fl(nf) < fl(nt -1) (3.4.6)

o]
o]
(o]

fl(nf) < fl(nf + 1),
(3.4.7)
Using fl(nl) as given in equation (3.4.2), it is readily shown

that nf is the optimum value if and only if

~(n% - 1) -n}

P -1 _ P -1 _
(l‘P) n1+2<S<-—(my n1+l.

(3.4.8)

Weldon [6] gives the following guidelines for choosing n,od

n, =1, 0< SP <1

n, =2, 1 <SP and 0 < SP2< 1

(3.4.9)
n >3,1¢ Sp2,

From equation (3.4.8), the exact rules for choosing n, are:

ni = l, SP < 1.
n} = 2, 1 <SP and SP2 <1+ P - P2

- 1-1
ot = 1, (L4B+ ... +p172) - (a-29pt7t < sp

1-1 1
and SP"< (3.4.10)

(1+P+ ... +Pi-1) - (1-1)Pi-

As noted earlier, in [6) it is assumed that Ny is 1, Recalling

from equation (3.4.4) with g=1 that
n (3.4.11)
0

we obtain the optimum value of n0 by using

fo(nﬁ)-< fo(n5 -1)
and

fo(na) < fo(n6 + 1).
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(3.4.12)
Figure (3.4) shows a plot of the values of P and S for which a
given value of nO is optimum. For example, if P=0.3 and $=1000,
the optimum value for ngyis 2. A similar plot for n, is given
in Figure (3.5) . It can be seen that for P=0.3 and S=1000,thé

optimum value for n, is 6.
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3.5 A Modified Weldon ARQ Scheme

It has been shown that the throughput of Weldon's scheme
can be improved by allowing multiple copies of a new block to be
transmitted. Another modification is to prevent buffer overflow
(at level g+1) by repeating any block which is at level g
continuously until an ACK 1is received.The analysis of this

modified scheme leads to the following expression for 8

1-1
- q-1 1 (,Zo74)
B =g, (§ ny)P 037,
=0
q-1
© ( T n +i—1)
+ - q5l - 3=0 h
1EoH+(S-D4z g n ) 2P (3.5.1)

After simplification , equation (3.5.1) is reduced to

13:1 q-il
q-1 Pk oy
- k=0 1 =0 (3.5.2)

It might be noted that Morris' GBN scheme in [4] is a special
case of this modified scheme for g=1, and n,=1. Also, Miller
and Lin's SR+ST I [5] 1is a special case of this scheme with
n; set to 1 for all i.

Unfortunatély , it was found that this modified scheme
yields a higher throughput than the Weldon with variable
nO scheme only for high values of P. For example, with §=10,
the threshold value for P is 0.88 and with $=50, the threshold

value is 0.98.

It might be concluded that this modified Weldon scheme
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should be considered for use only for channels with very high P.
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IV, OPTIMAL BLOCK LENGTH ANALYSIS

4.1 An Exact Analysis Of Optimal Block Length

As illustrated 1in previous chapters,the expected wasted
time performances of all ARQ schemes critically depend on the
choice of the packet length. For given values of R,A,Pb,f and b
,an optimum block length that minimizes the expected wasted time
should exist [9]. Morris[10] gave an analysis of optimum block
length for some standard ARQ schemes. However, Morris' analysis
neglects the overhead b for addressing, error control, etc. in
each packet, which is an important parameter to be considered.
Chu [9] gave the solutions of optimum packet length in the form
of non-explict equation for the Stop-And-Wait,Go-Back-N, and
Ideal Selective-Repeat schemes. However, Chu's analysis of the
optimal packet length for the Stop-And-Wait scheme using an end-
of -message character is * inexact (Appendix C shows Chu's
analysis(9]). In this section, an exact analysis of the
expected wasted time per message is given for the case of using
end-of-message character for the Stop-And-Wait scheme. It is
found that the optimum block 1length derived from the exact
analysis can lead to some improvement of expected wasted time
for small values of L.. The analysis is shown as follows.

We assume the messages have random message lengths?L which
are geometrically distributed with average length L=1/(1-q).
Each message is split ipto blocks of size B bits. These blocks
are then assembled “idto' packets of length (B+b) bits. To
increase channel efficiency, an end-of-message character is used

to designate the end of the last unfilled block rather than fill



45

the rest of the block with dummy information .Thus, the length
of the last packet is between (1+b) bits and (B+b) bits.

For the Stop-And-Wait scheme, the exact expression for the
expected wasted time per message incurred over a random-error

channel 1is:

W, ®=F -0y ]._—_"-J( 22D ) —

B R (1-P, )B+b
o-| &= |B+b b ‘
b ket 1 g4b
+ Fe( R +A) 7 - =X }
- a-|g/Beb
(1-Py)
(4.1.1)
where 1 if 2/B is not an integer.

F(g)=

0 if Q/B is an integer.

1

andb [ J is the floor functlon.

_Equation 4.1.1 can be rewritten as:

2+b

2-1, 2+b ® -1
5 ‘251 (1-9q" " (—x—

— B-1 1

-1
+(1-q) B+b A 1 ZB _ -1.B+
q q (—"" )(1 o )B+b 2 B+1(1 q)q (T'FA)'I?TB

2B 2-1,2-B+b 1
+ (1 -q)q " ( +A)
R Ty o <L-B¥D
[ B+1 (I—Pb) B
2B-1 B+b 3p-1 ‘
+2(1-q)q (___ +A) 1- £~1 R-2B+b 1
(1-p) B+b 9.23+1( Ve (5 +A)(1_P Y 2=2B+b
T b
3B-1 B+
P (l-q)q 2(—b— +A)-—-—1—§Ib—
§=2B+ S (1) (4.1.2)

L]

By a change of variables in the summation terms and making use
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of the equalities ¥ gl =1/(1-q) and jl_EOiq'i--1 =1/(1-qf ,
i=0 =
equation (4.1.2) can be simplified to
- B-1
185 P+ 3-1) (7550 1-(:35-)
— 1- 1 b , b b . b )
‘ (l'q ) (I‘Pb) R(1- l—Pb) ) l-Pb
B —
- -1 L+b
+E 0 B¥5,. B.7 (1-" - -
(1-p)" "(1-q )" :

(4.1.3)

Therefore, the block 1length B' that minimizes the expected
wasted time for the Stop-And-Wait scheme using an end-of-message
character can be obtained from searching for the B',such that
EQ(B') is a global minimum. In Figure (4.1), the optimum block
lengths B' obtained from equation (4.1.3) is plotted against the
average message 1ength'f. Also plotted in Fig (4.1) are the
optimum block lengths B, obtained from Chu's inexact expression
(equation (C.5) ) for the case of using an end-of-message
character and the optimum block length for the case of using
duhmy bits(equation (2.2.4)). From Fig (4.1) , it can be seen
that the block lengths B, differ significantly from B' except
for large values of average message length. Table (4.1) shows
the percentage differences in expected wasted times which result
wvhen B' and B, are used in equation (4.1.3) . The results show
that for small L ,say-f<200, sdme improvement in expected wasted

time can be achieved by using B' instead of B..
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Fig 4.1-Plot of optimum block length against average message length
Jait scheme with pP,=0.01,R=4000bits/s,A=0.2s,

for Stop-And-W:
and b=30 bits, ' -
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TABLE 4.1
PERCENTAGE DIFFERENCE IN EXPECTED WASTED TIME FOR

R=4000BITS/SEC,A=0.25EC,b=3OBITS,Pb=0.01

EXPECTED WASTED TIME W
( equation (4.1.3) )
T B' B. | We(B')[We (By) |(We(Bg)-We (B'))/We(B')x100%
10 209 23| 0.305 | 0.332 7.9%
50 115 52 | 0.542 ] 0.614 13.2%
100 101 64 | 0.937 | 1.001 6.8%
500 92 83| 4.238] a.2581 0.5%
1000 91 86 | 8.380 ] 8.392 0.1%

4,2 Asymptotic Values Of Optimum Block Length

It should be noted that computing the optimum block lengths
from equations (4.1.3),(C.4), or (2.2.4) requires the knowledge
of average message lengtH-El In practice, it may not be easy or
convenient to have an accurate measurement of L. 1In Fig (4.1),
it appears that there is an asymptotic vaiue for the optimum
block length when L becomes large. One way of avoiding the need
to know L is to use the asymptotic value rather than B'(L). 1In
this section, a method to compute the asymptotic wvalue of the
optimum block 1length is.given . The performance of using this
asymptotic value is also examined for the standard Stop-And-Wait

and Go-Back-N schemes.
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We proceed by introducing an approximate expression for the

wasted time to successfully transmit a packetized message of

length ¢: ';, L1 2+b
w B cm—® ammm—— -

T R
A B (4.2.1)

where T=throughput of the ARQ scheme used.

D=(B+b)/R=time to a packet in sec.

Obviously, the above equation 1is close to exact if % is very
large compared to B. By differentiating equation (4.2.1) with
respect to B and setting the derivative to zero,

(4.2.2)

WA 3 . D .
= 55 (g0
3B

oo
the asymptotic value B of optimum block length can be obtained.
For the Stop-And-Wait scheme(assuming random-error channel) with

“ -

T=(1-P)/S ( as given in equation (2.1.1) ), B 1is :

A

) 1 -
B -T(RA*'b)fl‘m D (4.2.3)

where A=(S-1)D=acknowledgment delay in sec.
The derivation of eguation (4.2.3) 1is shown 1in Appendix E.
Similarly, for the Go-Back-N scheme with T=(1-P)/(1+(S-1)P) (as

given in equation (2.1.2) ), B” is obtained by solving :

B(ER 4y tn(1-Pp) -A(1 ) P*P + (A+'—2)=0 (4.2.4)

Table (4.2) shows the ‘B” solved from equation (4.2.3) for
several values of P . It is seen that for B, =0.01, B =90 bits

which is the same as the asymptotic value of optimum block
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length shown in Fig (4.1)

TABLE 4.2
ASYMPTOTIC VALUES OF OPTIMUM BLOCK LENGTH FOR STOP-AND-WAIT

SCHEME WITH R=4000 BITS/SEC, A=0.2SEC, b=30 BITS

P, B®
0.1 )
0.05 19
0.01 S0
0.005 166
0.001 586
0.0005 938
0.0001 2496

Also, Table (4.3) shows the B solved from equation (4.2.4) for
several values of Pb
TABLE 4.3
ASYMPTOTIC VALUES OF OPTIMUM BLOCK LENGTH FOR GO-BACK-N SCHEME

FOR R=4000 BITS/SEC, A=0.2SEC, b=30 BITS

Py B
0.1 9
0.05 17
0.01 55
0.005 82
0.001 179
0.0005: " ° 248
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We now examine the performance degradation in expected wasted
time which resuits if B® is used instead of B'(L). Tables (4.4)
,(4.5) and (4.6) show the percentage differences in expected
wasted time between using B” and using B' for the Stop-And-Wait
scheme(end-of-message character and dummy bits cases) and Go-
Back-N scheme (dummy bits case) for several values of L.
TABLE 4.4

PERCENTAGE DIFFERENCE IN EXPECTED WASTED TIME BETWEEN

USING ﬁw AND B' FOR THE STOP-AND-WAIT SCHEME

(END-OF-MESSAGE CHARACTER CASE) WITH Bw=90BITS,

R=4000 BITS/SEC, A=0.2SEC, Pb=0'01' b=30 BITS.

L B' We(B") | We(B")|(We(B®)-We(B'))/We(B')x100%
10 209 0.305 0.305 0.0%
50 115 0.548 0.542 1.0%
100 101 0.940 0.937 0.4%
500 92 4.239 4.238 0.0%
1000 91 8.379 8.379 | 0.0%
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PERCENTAGE DIFFERENCE IN EXPECTED WASTED TIME BETWEEN

USING B

AND B'

FOR THE STOP-AND-WAIT SCHEME

(DUMMY BITS CASE) WITH Bw=QOBITS,R=4000BITS/SEC,

A=0.2SEC,P, =0.01 AND b=30BITS.

L B' W(B") W(B') | (W(B®)-W(B"'))/W(B')x100%
10 22 0.758 0.388 95.1%
50 51 0.897 0.731 22.7%
100 64 1.258 1.179 6.6%
500 83 4.526 4.510 0.3%
1000 86 8.664 | 8.655 0.1%
TABLE 4.6
PERCENTAGE DIFFERENCE IN EXPECTED WASTED TIME BETWEEN
USING B AND B' FOR THE GO-BACK-N SCHEME
(DUMMY BITS CASE) WITH B*=55BITS,R=4000 BITS/SEC
A=0.2SEC,P, =0.01,b=30BITS. |

L B' w(B”) | w(B") (W(B®)-W(B'))/W(B')x100%
10 15 0.311 0.157 98.0%
50 32 0.457 0.404 13.1%
100 39 0.721 0.691 4.3%
500 51 2.935 2.929 0.2%
1000 53 5.717 5.715 0.0%
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From the example in Table(4.4),it is seen that the use of
B” makes little difference in the expected wasted time for the
Stop-And-Wait scheme using an end-of-message character. Thus;
one might suspect that the expected wasted time for "the Stop-
And-Wait scheme using end-of-message character 1is not very
sensitive to the block length used as long as B>>L for small L.
For the Go-Back-N and Stop-And-Wait schemes (using dummy bits),
there are significant percentage differences in expected wasted
time for small values of T (i.e. L<i00bits) , as shown in
Tables (4.5) and (4.6). However, using B® gives almost the
same expected wasted time as using B’ for 1larger values of
L(i.e. L>100bits) in all three cases.

4.3 Adaptive Algorithm For Optimal Block Length Computation

For the optimal block 1length analysis cited above, the
block length is optimized to give the minimum expected wasted
time per message for meésages of average length L. However,the
block length that minimizes ﬁhe expected wasted time per message
for messages of average length L does not necessarily give the
minimum wasted time for each individual message. Therefore, one
could consider computing the optimal block 1length for each
individual message of 1length ¢ . in ﬁhis section, such an
optimal block 1length strategy 1is presented with an algorithm
that computes the optimal block length in an adaptive way for
the Stop-And-Wait scheme. The idea of the algorithm is to
search for the optimum combination of number of packets(denoted
by N) and block lengths for transmitting a messége of length %.

It might be noted that executing the algorithm reguires a
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knowledge of the message 1length. This 1information <can be
obtained by scanning the message while it is stored in the
buffer queue waiting for packetizing .For a message of length -9
, the adaptive algorithm for packetizing is given as follows :
step 1: set N=0
step 2: Increment N by 1.
step 3: Compute the block length B¥l 2 /N | and the remaining
bits M=%-N-B
step 4: Distribute the M bits into the N packets ,resulting in
M packets of length (B+1) bits and (N-M) packets‘of length
B bits.
step 5: Compute the wasted time of transmitting these N packets

‘for the Stop-And-Wait scheme(for random-error channel)
without using dummy bits.
B+b 1 2+b

B+1+b 1 . _
W ()= M- (A+ ) + (N-M) « (A+ ) -
sV R (I‘Pb)B+1+b R (I_Pb)B+b R

(4.3.1)
step 6: Go back to step 2 until the value of N that

gives the minimum wasted time Wg(2) is’ found.

- Although it is not p0551ble to prove the convex1ty of W , all

" the simulation results indicate Ws is a convex functlon of N,

Notice in step 4, the remaining M bits are distributed into
the N packets so that the lengths of the N packets are equalized
into B bits or (B+1) bits. In Appendix D, it is shown that such
an equalization of packet length always gives better or equal
performance in the wasted time of transmitting a packetized
message.

The performance of this algorithm 1is examined with
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geometric message length distribution and random error channel.
The expected wasted time WS(E) per message (L=1/(1-g)) for the
system using the adaptive optimal block length algorithm is:
—. . _ _ max o1 _ (4.3.2)
Ws( L)R,k (-q" "W (1)
where Wg(2) is the minimum wasted time computed from the adaptive
algorithm‘for a message of length 2.
Table (4.7) shows the expected wasted time W (L) computed from
equation (4.3.2) with max set to a sufficient large number , say
10000 , along with We(L) computed from equation (4.1.3) using
the conventional optimal block lehgth approach. It might be
noted that Ws(i) should increase with max. However, for this
example, the percentage increase in'ﬁs(i) is on the order of
165 if max is increased from 10000 to 50000.
TABLE 4.7
PERCENTAGE IMPROVEMENT OF EXPECTED WASTED TIME
FOR THE ADAPTIVE ALGORITHM FOR OPTIMAL BLOCK
LENGTH COMPUTATION WITH R=4000BITS/SEC,

A=0.2$EC,Pb=0.01 AND b=30BITS.

L Ws (L) W (L) (W, -Ws ) /W, x100%
10 0.305 0.305 0.0%
50 0.529 0.548 3.6%
100 0.900 0.940 4.3%
500 4.160 4.238 1.8%
1000 8.289 8.379 1.1%
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The results in Table (4.7) show that the adaptive algorithm
yields some improvement in expected wasted time performances for
some values of L. For small values of L (i.e. T<50), the
adaptive algorithm is not effective since a message 1is most
likely to be transmitted as one block. Also, when T becomes
large (i.e. T>500), the improvement decreases since the effect
of the last packet on the overall expected wasted time is less
significant. It is found that the percentage improvement is not
very sensitive to R ,A or b, However, as the bit error rate
P, gets smaller, less improvement is expected. It should be
noted that a system implementing such an adaptive algorithm. has
the extra costs for scanning the length of the messages and

executing the algorithm .
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V. CONCLUSIONS

5.1 SUMMARY OF RESULTS

In this thesis , the performances of a number of ARQ
schemes are compared on the basis of expected wasted time per
message. The reductions 1in expected wasted times achievable
through the wused of FEC are also demonstrated. It is
interesting to note that FEC tends to equalize the expected
wasted times of the continuous ARQ schemes.

A new ARQ scheme proposed by Weldon [6] 1is investigated.
It is found that the throughput of Weldon's scheme can be
substantially increased by allowing multiple copies of a new
data block to be sent. An efficient method is also developed
for determining the parameters of Weldon's scheme which maximize
throughput.

An exact analysis of the optimal block length is given for
the Stop-And-Wait scheme using an end-of-message character.It is
found that there 1is an asymptotic value for the optimal bléck
length as the average message 1length becomes large. An
‘algorithm that computes the optimal block 1length on an
individual message basis is also developed .

5.2 Suggestions For Future Research

The analysis in this thesis is restricted to point-to-point
channels. Attempts could be made to extend this analysis to
broadcast channels”U:Mase,Takenaka and Yamamoto [19] gave an
analysis for the Go-Back-N protocol in a broadcast environment.

Similar studies could be made for other ARQ schemes.i.e. SR+ST
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, Weldon ,etc.It might be noted that if these schemes are to be
used in a broadcast environment, some additional logic may need
to be implemented in the transmitter and receiver so as to be

applicable to point-to-multipoint channels.
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APPENDIX A - DESCRIPTION OF WELDON'S ARQ SCHEME

Weldon's ARQ scheme and its throughtput analysis are
briefly described here. The full description can be found in

(6].

In Weldon's scheme, the receiver buffer is of size QS where

. q is a positive integer. The transmission state of each block

is described by its level. Each block is transmitted according

to the following procedure:

level 0: 1Initially, B is at level 0 and is transmitted for the
first time. If an ACK is received (S block times later)
the transmission of B is complete. If an NACK is
is received, B moves to level 1.

level 1: B is repeated n, times.If any of these n, copies is
ACKed,the transmission of B is complete., If all n,
copies are NACKed, B moves to level 2.

level 2: B is repeated n, times. If any of these n, copies is
ACKed, the transmission of B is complete. If all n,
copies are NACKed, B moves to level 3.

level q: 1If all nq.; copies are in error, the receiver buffer
is considered full even though it may not actually be
full because of repeats of other erroneoue blocks.
This assumption leads to a simple analysis of throughput
If all n, copies are NACKed , B moves to level 3.

level g+1:Buffer overflow occurs leading to the loss of (S-1)
blocks. B is repeated ng times and stays at this level
until it is sucessfully received.

It is understood that whenever the transmitter does not
have any repeats to send, it transmits new blocks of
data.Equation (8) of [6] shows that the average number of
transmissions require to successfully send one block =1/T is

1-1
q i ( ,E, ny)
8 =4k (o np? I°° " |

q
+ kEl(k(nq+S 1+ jgo ny )+(1-P H)PJ h| q

(A.1)
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: q ' i '
Lemma: The functions {fi(x)}i-o’ x » 0, defined by equation (3.4.2-3.4.5) are

convex.

Proof: We proceed by first proving that fq(x) is convex. It can then be

q-1
easily shown that {fi(x)}1=0 are also convex.

From (3.4.2) we can write

fq(x) = x + PX(X+CX) where ¢ # s-1.
1-pP

Téking the derivative of (B.l) twice, we obtain
20 = AP TF(m D120-F) + (xke) (14 1 B

Since #n P < O, f;(x) >0 (1.e. fq(x) will be convex) if and only 1if

2(1-P*) + (x+c)(14P*)t P < O.

Since ¢»>0, a sufficient condition for fa(x) » 0 is that
g(x) £ x(1+P") tn 3 - 20-F%) > 0.

Now,

g'(0) = (@ 3 h(x)
where
h(x) €1 - P’(1+x %).

Also,

(B.1)

(B.2)

(B.3)

(B.4)

(B.5)
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h'(x) = xP"(m D). (B.6)

Since h'(x) > 0 for x » 0 and h(0) = 0, we have that h(x) » 0 for x » 0. From
(3.4.3) - it follows that g'(x) > 0 for x » O.
But g(0) = 0. Hence g(x) > 0 and this completes the proof of the convexity
of £ (x).
q( )

From (4b),

x
fq_l(x) x + P fq(nq)' (B.7)

Differentiating twice with respect to x, we obtain

. - 2.x
fq_l(x) fq(nq)(m P)“P | _ (B.8)

which 1s non—-negative since fq(x) >0, x » 0, By using the same argument, it
is easily seen that fq_z(x), fq_3(x), cse ,'fo(x) are all convex functions

for x > 0.
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APPENDIX C - CHU'S ANALYSIS OF OPTIMAL BLOCK LENGTH

Chu's analysis of optimal block length for the Stop-And-Wait
scheme using end-of-message character [9] is briefly described
as follows:

The expected wasted time due to acknowledgement delay and
retransmission is :

, W (B) = N(B) -A(B+b) (c.1)

where N(B) is the expected number of packets per message and is
given as equation (2.,2.3) for geometrically distibuted message
length

and A(B+b) is the expected acknowledgement overhead for a
packet size of (B+b). Chu gave A(B+b) as:

- e 4, . B+b A,
A(B+b) = A + 151 (P(B+b)) " (At—p—) (C.2)

The expected wasted time due to packet overhead is:
— b b

W,(8) = NB) g - T (C.3)

Therefore the total expected wasted time per message using the
end-of-message character for the Stop-And-Wait scheme is:

WC(B) -_ﬁ-l(B) +v2(3) : (C.a)

A non explicit equation (10a) of [9] for the optimal block
length can thus be obtained by differentiating equation (C.4)
with respect to B and set to zero.

It should be noted that equation (C.2) assumes all packets are
of the same length (B+b),which is a wrong assumption to be made
if an end-of-message character is used in the 1last packet.
Therefore, the above analysis of optimal block length is not
exact.
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APPENDIX D - EQUALIZATION OF PACKET LENGTHS

A proof of why egqualization of packet 1length can improve
the expected wasted time for the Stop-And-Wait scheme using end
of message character is given in this appendix. 1If a message of
length & is packetized into blocks of (B+b) bits long, the last
packet will consist of (2-L2/BJB) bits long whenever ( &/B ) is
not an integer. For (2- |¢/B]B ) ' smaller or comparable to b,
the 1last packet will consist of a large amount of overhead.
Therefore, it might be wise to distribute the information bits
of the last packet into the | ¢/B j blocks so as to equalize the
lengths of the packets. These are justified as follows:
Defining f(B) as the time it takes to transmit a packet of
length (B+b):

. B+b 1
£(B) = (a+ R TF (D.1)

where P is the block error probability.
For random error channel:

£(8) = (a+ 2231 v
a-r) (D.2)

By differentiating equation (D.2) twice with respect to B,it is
shown that :

, B} B+b |, 1 1
£ @y=(1-p) TP (FHarg S = (= Z 0

Therefore ,f(B) is a convex function. Jensens theorem [18]
states that if f is a convex function and x, (k=1,2,...n) never
decreases, and if c¢ (k=1,2...n) satisfies the conditions:

and for v=1,2..n

then
? Xk g ckf(xk)
k=1 k=1
f(— s —5 ( :
r ¢ B I D.3)
k=1 k k=1 k

If ck=1 for k=1,2.,..n
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n

E
. - D.4
f(kFl ) < k=1 ( )

X =

Let { B for k=1,2...n-1
K

(D.s)
£-(n-1)B for k=n

where n=ly/B}

Substituting X, 1into D.4 for k=1,2,..n

£( (n-l):ﬂz-(n-l)B ) € (n—l)f(B):f(l_-.(n-l)B )

L o ' (D.6)

n-f(—=) ¢ (n-1)-£(8) + £(2-(n-1)B)

Equation D.6 shows that the time it takes to transmit (n-1)
packets of (B+b) bits and one packets of ( 2 -( n- 1 )B+b) bits
is always greater or equal to that of transmitting n packets of
( 2/n+b ) bits. This implies that the lengths of the n packets
should be equalized as much as possible rather than leaving the
last packet as a short packet with large amount of overhead 1in

it. The argument of eqgualization of block 1length is thus
complete.
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APPENDIX E - DERIVATION OF EQUATION (4.2.3)

The derivation of equation (4.2.3) 1is shown as follows:
Differentiating equation (4.2.1) with respect to B and setting
the derivative to zero,

W

A3 (b 1 B¥b b .,
38 BB T R R (E.1)
where T=(1-P) /S (throughput for the Stop-And-Wait scheme)

S=A-R/(B+b)+l  (acknowledgement delay in blocks)
p=1_0,yb)EH) . (assuming random error channel)

Since { 1is independent of B, equation (E.1) is reduced to :
9 1 1 " B+b

A 575 (At—x— )=0 (E.2)
(1-p))
= + (At ) BH(Ar—pg— ml-F,) (E.3)
Solving the quadratic equation (E.3) with B>0 ,
b J b 2 b, 1
i WA eiis S S T¢I
2 (E
= (E.4)
where
b .2 b 1 (E.5)
(a+) A ) Ty

The derivation of equation (4.2.3) is thus completed.



10.

11.

12,

13,

66

BIBLIOGRAPHY

R.D. Stuart, "An insert system for use with feedback
communication links," IEEE Trans. Commun. System, vol.
CS-11, pp.142-143, March 1963.

R.J. Benice and A.H. Frey, Jr.,"An analysis of
retransmission systems," IEEE Trans. Commun. System,
vol. CS-12,PP.135-144, December 1964.

A.R.K. Sastry, "Improving automatic repeat-request (ARQ)
performance on satellite channels under high error rate
conditions," IEEE Trans. on Commun. ,vol.COM-23,pp.436-
439 April 1975.

J.M. Morris, "On another go-back-N ARQ technique for high
error rate conditions," IEEE Trans. on Commun. , vol.
CoM-26,PP,187-189, January 1978.

M.J. Miller and S. Lin, "The analysis of some selective-
repeat ARQ schemes with finite receiver buffer," IEEE
Trans. _on Commun. ,vol. COM-29,pp. 1307-1315,
September 1981.

E.J. Weldon,Jdr., "An improve selective-repeat ARQ
strateqy,"” IEEE Trans. _on Commun., vol. COM-30, pp.480-
486, March 1982.

A.R.K. Sastry, "Performance of hybrid error control
schemes on satellite channels," IEEE Trans. on Commun,
vol. COM-23, pp689-694, July 1975,

C. Leung and A. Lam,"Forward error correction for an ARQ
scheme," IEEE Trans. on Commun. ,vol. COM-29, pp.1514-
1519, October 1981.

W.W. Chu, "Optimal message block size for computer
communications with error detection and retransmission
strategies," IEEE Trans. on Commun. ,vol. COM-22, PP.
1516-1525, October 1974,

J.M, Morris, "Optimal blocklengths for ARQ error control
schemes," IEEE Trans. _on Commun. ,vol., COM-27, pp.488-
493, Feb. 1979.

S.K. Leung and M,E. Hellman, "Concerning a bound on
undetected error probabiliy,” IEEE Trans. _on Info.
Theory. , vol, IT-22, NO.2, March 1976.

W.W. Peterson and E.J. Weldon, Error-Correcting Codes ,
M.I1I.T. Press, 1972.

S. Lin, An intoduction to Error-Correcting Codes. ,




14,

15.

16.

17.

18.

19.

20.

21.

67

Prentice-Hall, 1970.

G.A. Arredondo, W.H. 'Chriss, and E.H. Walker, "A
multipath fading simulator for mobile radio," IEEE Trans.
on Commun. ,vol. COM-21, Nov. 1973,

J.I. Smith, "A Computer generated multipath fading
simulation for mobile radio," IEEE Trans. Vehic.
Technol., vol. VT-24, August 1975,

S.E. Tavares and S§,G.S. Shiva, "Detecting and correcting
multiple bursts for binary codes," IEEE Trans. Info.
Theory. ,vol. IT-16, Sept. 1970.

P.J. Mabey, "Mobile radio data transmission-coding for
error control," IEEE Trans. Vehic. Technol. vol. VT-
27, Aug. 1978.

D.S. Mitrinovic, Analytic Inequalities ,Springer-Verlag
1970.

K. Mase,T. Takenaka and H. Yamamoto,"Go-Back-N ARQ
schemes for point-to-multipoint satellite communications,”
IEEE Trans. _on Commun. , vol., COM-31, April 1983.

A. Tanenbaum, Computer Networks , Prentice-Hall, 1981,

M. Schwartz, Computer-Communication Network Design and
Analysis , Prentice-Hall ,1977.




