A UV Zeeman-Effect Polarizer

by
Robert Wallace Grant

B.Sc.; The University of Manitoba; 1979

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE
in
THE FACULITY OF GRADUATE STUDIES

(Department of Physics)

We accept this thesis as conforming

to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

September. 1985

©® Robert Wallace Grant; 1985



no_«

In preéenting this thesis in partial fulfilment of the
requirements for an advanced degree at the University

of British Columbia, I agree that the Library shall make
it freely available for reference and study. I further
agree that permission for extensive copying of this thesis
for scholarly purposes may be granted by the head of my
department or by his or her representatives. It is
understood that copying or publication of this thesis

for financial gain shall not be allowed without my written

permission.

Department of = Thysics

The University of British Columbia
1956 Main Mall | :

Vancouver, Canada

V6T 1Y3

Date ﬂu%.ﬂ%@ 1985

/n 1o



it

ABSTRACT

It is shown that light emitted by mercury vapour at 253.7 am can be
polarized by passing the light through mercury absorption gas embedded in a
magnetic field which is transverse to the direction of propagation of the
light. The absorption lines of the mercury are split by the Zeeman effect,
so that the absorber has an absorption coefficlent which depends on both the
polarization and wavelength of the transmitted light.

A complete theofy for the ngoz isotope is presented and the results
are compared to measurements made with a natural mercury emitter and
“absorber. The observations are in qualitative agreement with the theory
once isotope and hyperfine structure of the isotopes in natural mercury are
included in the theory. Quantitative analysis was not possible because the

emlission line profiles could not be measured with the available equipment.
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CHAPTER 1

Introduction

A number of spectroscopic techniques for analysing line shapes and
transition probabilities require high quality linear polarizers. These
polarizers currently exist for the visible and near ultra=violet region, but
because of the properties of the dispersive media used, they have low
transmissivity in the far ultra-violet region.

The object of this study is to examine the possibility of exploiting
the Zeeman Effect to produce polarizers wbich have a high transmissivity in
the ultra-violet region. The proposed teéhnique involves the charater-
istics of the absorption spectra of a gas immersed in a magnetic field. The
absorption speétra, when viewed in a directlon transverse to the magnetic
field, split into a series of Zeeman Components which are linearly polarized
either transverse or parallel to the magnetic field. By adjusting the
degree of splitting and the shape of the absorption lines the gas can act as
a linear polarizer for incident light at or mear an absorption line of the
gas.

The technique is examined both theoretically and experimentally. 1In
Chapter iI a theoretical model 1is developed for the propagation of light in
a gas immersed in a magnetic field. The derived equations are more general
than is required for this study, but it 1is hoped that they may find

application in further studies.



The theoretical model is used to calculate the effect of a gas composed
of the Hg2°2 isotope, on the state of polarization of an incident 253.7 nm
line of mercury. The 253.7 nm line was selected because its properties are
reasonably well known and therefore the calculation could be performed with
a high degree of‘precision. The theoretical calculations indicate that the
method can be used to produce highly 1iﬁear1y polarized light with small
transmission losses.

The technique is examined experimentally in Chapter III. The state of
polarization of the 253.7 nm line of mercury is measured after the initially
unpolarized light traverses a gas cell filled with natﬁral mercury and
immersed in a magnetic field traverse to the direction of propagation of the
light. While the use of natural mercury rather:than an even isotope
introduces a number of undesirable effects, the experiment supports the
conclusion that the technique can be used to produce high quality

polarizers.



CHAPTER IT

In this chapter a theoretical model is developed to describe the
production of polarized light through the Zeeman Effect. The purpose of
this model is to account for the observed polarization and in so doing
provide a fraﬁework for its study and assessment. The final result is an
equation for the transmission of 1light through a gas immersed in a magnetic
field, where the frequency of the light is at or near a reasonance frequency
of the atoms of the gas, The equation indicates how to optimize the
polarization and in addition feveals the inherent limitations of this method
of polarizing light.

The central role of the Zeeman Effect in this study necessitates a
review of this phenomenon. However; since many comprehensive_accounts of
this effect already exist;’(see Condon and Shortley 1964; Sobel'man 1972,
and Kuhn 1969) only a cursory review is presented. Brevity 1{s achieved in
-part by omitting the mathematical derivations of most of the equations, and
by presenting only those equations which are necessary for a clear under-
standing of the effect, or which are required in the subsequent theoretical

development.



I1.1 THE ZEEMAN EFFECT

When atoms are placed in an external magnetic field it is found that
the field causes some of the spectral lines of these atoms to split into a
series of component lines which are displaced about the frequency of the
original line. TIf a spectral line is observed along an axis which is
transverse to the direction of the magnetic field; it is found that a given
component line is linearly polarized with its electric field vector either
parallel (n-component); or perpendicular (c-compqnent); to the external
ﬁagnetic field vector. It is these two results; the splitting of the
spectral lines and the polarization of the component lines; which together
comprise the Zeeman Effect.

The Zeeman Effect can only be satisfactorily accounted for by using a
quantum mechanical representafion of the atom in an external magnetic field
as given by:

H=H +H (2-1)

where Ho is the Hamiltonian of the 1isolated atom; and Hm describes the
interaction between the external magnetic field % and the magnetic moment of

the at0m'ﬁ. Hm has the form

H =3 + B (2-2)

The magnetic moment of the atom is related to the total orbital angular

momentum 1. and the total spin angular momentum § of the electrons in the
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atom through the equation :

-«

'J=-Fﬂ(i+2§) (2-3)

where B = %E—. (2-4)
e

is the Bohr Magneton; LI is the electron mass; and e is the elementary
charge.
The Hamiltonian H should’also contain a term H& which is quadratic in
B. This term would account for the induced effect of atomic diamagnetism.
However, it can be shown (see Messiah 1962, page 541) that for the lower
energy states of the atom:
"

ﬁ5,~ 107> zB (Tesla) (2-5)

m

where 7 is the atomic number of the atom. Thus, for the modest fields of
less than 1 Tesla considered in this study; the term H& 1s negligibly small
and can be excluded from the Hamiltonian H.

The Hamiltonian equation is solved using perturbation techniques. The
eigenstates of Ho are given by |ajm > where j is the quantum number for the
total angular momentum J of the state, mh is the eigen?alue of Jz (the
component of the total angular momentum operator along the z axis); and «

labels all the remaining quantum numbers of the state. The eigenstates are

tAt this point only atoms with a nuclear spin I = 0 are considered.



(2 + 1) - fold degenerate in the quantum number m; 1.e. states from the
. same level have the same energy.

The degeneracy of the states dictates the use of a degenerate
perturbation technique; which reduces the problem of finding the first order
change in the energy A Ejm of each state to the diagonalization of a
perturbation matrix, (see Merzbacher, 1970; page 425).

In the representation |ajm > the perturbation matrix; which includes
all the states of a given level, i1s already diagonal and the equation for

A® mreduces to:

3

AE,

tm <ajm| H_lojm>

p—g—-<ajm|(-f.+2-§) c 3] aim

"
-2 @jm]gajﬁ e B | ajm>
= W8y Bm (2-6)

where, in the last step, the z axis was chosen along 1. gaj’ known as the

Landé g factor, is a constant for each level, i.e. it is independent of m.

+There is some ambiguity in the meanings of the terms 'level' and 'energy
level', (see Condon and Shortley pages 97 and 385). To avoid confusion the
term ‘energy level' will refer exclusively to the energy assoclated with a
particular state, or when the state is degenerate to the energy assoclated
with the group of degenerate states. The term 'level' will refer to the
group of states which differ only in their m quantum number, even when these
states are no longer degenerate.



Implicit in this development is the assumption that the change in
energy due to Hm is much less than the energy separation between the levels;
or equivalently; the perturbation due to Hm is much smaller than the
perturbation due to the spin-orbit interaction. Where this assumption is no
longer valid the neighboring levels must also be included in the
perturbation matrix. For most of the levels of heavier atoms this is
necessary only for magnetic fields larger than 1 Tesla; which are not
considered in this study. The assumption is easily satisfied for the 253.7
nm line of mercury (see the appendix).

The effect of the magnetic fileld on the states can be deduced from
equation (2~6). The degenerate level splits into (2j+l) different energy
levels; each of which corresponds to a unique value of m. These new energy
levels are symmetrically displaced about the original energy level since m =
+3, 3 -1, ... The magnitude of the splitting is linear in B. There is no
first order change in the energy level of a state with j =0 or m = 0.

The effect of the magnetic field on the line spectra of an atom can now
be examined. The absorption or emission of a photon by an atom is
associated with the transition from one energy level to another. The
angular frequency of a spectral line resulting from such a transition in the

absence of a magnetic field is given by wo; where:

(2-7)



and E;j and E;'j' are the energy levels of the unperturbed states |ajm> and
la'j'm'> respectively.

In the presence of a magnetic field the energy levels Eajm become:

Eajm= E;j +-AEjm = E;j + gaj M, Bm (2-8)
and the line splits into a series of component linesJr with angular
frequencies w__,, where:
Yomt T %'[(E;j- E;'j') + noB (gajm - ga'j'm')
or
v By v
w o = W + Y B (gajm - ga,j,m') (2-9)

This equation describes the observed splitting of the spectral lines by
the magnetic field. However; the additional property of the Zeeman effect,
namely the polarization of the.component 11nes; is only indirectly related
to the presence of the magnetic field. It can only be properly accounted
for by examining the radiative p}ocess which governs the transition between
two states. Furthermore, while eduation (2-9) describes all possible
ltransitions between two levels, these transitions many occur with markedly
different probabllities. It is the radiative process that determines the

probability of a particular transition or equivalently the strength of the

assoclated component line.

1The component lines are produced by the transitions between specific
states of two given levels.



These observations indicate that a brief digression to the theory of
radiative processes is necessary for a complete understanding of the Zeeman
Effect. For the purposes of this study the only radiative processes of
interest are those described by electric dipole transitions, since tﬁese
produce the mést intense lines.

The probability Wﬁ of an electric dipole transition between the states
|ajm> and |a'j'm'> resulting in the absorption or emission of a photon
polarized in the direction of the unit vector R and travelling in the

direction X is of the form: (Sobel'man page 305)
Wy = IR+ <atm |®| a'j'n"> |2 (2-10)

where 2 is the electric dipole operator
Z-)
P=wecz (2-11)
i

>
and the sum is taken over the position r of each electron with respect to

i
the nucleus.

Most of the interesting properties of the transition can be deduced
from the matrix element <uajm {? 1a'j'm‘>. In particular; by exploiting the

Wigner-Eckart Theorem (see Messiah page 573); the dependence of the matrix

element and hence Wﬁ on m and m' can be found as follows:
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<ejm | P latitm'> = L C(i'l m'q| im)

Y (23 +1)

x <<illp|] a'yn> e; (2-12)

where <aj || P ]Ia'j')T, the reduced matrix element, is a scalar independent

of m and w', C(j'l m'qum) is a Clebsch-Gordon coefficient (these are
: *
tabulated in Condon and Shortley page 76), q = m-m', eq is the complex

conjugate of the unit vector eq defined as followsff:

e, = - é (I + 13); e = E; e =}_: (.j-_ - 13) (2_13)
/2 2

From the properties of the Clebsch-Gordon coefficilents it follows

immediately that <ajm ]? k*'j'm'> = 0, and by equation (2-10) Wﬁ = 0 unless:

j=-43' =0, + 1; j+ 3'"> 1 and; q = 0;

i+

1 (2-14)

Thus, only a restricted class of states is connected through electric dipole
transitions and the selection rules contained in equations (2-14) govern

equation (2-9).

t<aj || P|la"3j'> 1is related to the quantities <aj:P:a'j'> introduced in
Condon and Shortley. The relationships are tabulated in Sobel'man (page
85). 1If these relations are substituted into equation 2-12 it is easily
shown that equation 2-12 is equivalent to the equations given by Condon and
Shortly at page 63.

ttThe properties of these spherical basis vectors are presented in Rose,
1957 page 103.
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EQuation (2-12) also accounts for the polarization and relative
intensities of the Zeeman Components. This can be seen most readily by
studying the special case of the emission or absorption of a photon
traveiling along the y—axis; 1.e. kX = 3. Any direction of polarization %
can now be resolved completely into components along the x and z axis, and
no further restrictions are imposed by independently examining Wﬁ along each
of these axes.

Inserting equation (2-12) into equation (2-10), and letting R =K we
find:

Wk « 2-j1+ T C(j'im'q 1jm)2 ' <o § H P Ha'j') | 2 yhen q=0 (2-15)

and Wk =0 when q=21

Now letting R =1 we find:

Wi =0 when q =20

and

1

1
Wy " 7 79

4 C(j'lm'q]jm)2 | «jllp [l«'3'> |2 when q = £ 1 (2-16)

Thus photons polarized in the k direction result exclusively from
transitions where q = 0 and those polarized along the x-axis result

exclusively from transitions where q =+ 1.
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Fig. 1: Relative Intensities Irel of the Component Lines
for Observations along the y-axis
rel ' rel- '
Transition IZ y(m' =m) Ix » (m' =m+ 1)
€f > ol m2 %(jim)(j-&lim)
R | -
aj>a'(j-1) # - 7 GFm) (3-17m)
af > a'(§ + 1) (3 +1)2 - TU+1%m) (3504 2)




- 13 -

For transitions between two levels; aj+ a'j' the term
1
25+1°

probabilities of transitions between the states of the two levels; or

k3|l Plla"3'> |2 remains fixed. Therefore the relative

equivalently, the relative intensities of the component lines Irel depend
only on the square of the Clebsch-Gordon coefficients. These relative
intensities for the special case of k along the y—axis.are tabulated in
Fig. 1.

The origin of the observed polarization produced by the Zeeman Effect
can now be understood. 1In the absence of an external perturbation, such as
a magnetic field, the states la'i'm'> are degenerate in m' and equally
populated. Thus all the transitions between two levels have the same energy
and all the spectral line components have the same frequency. TFTach of the
spectal line components has a characteristic polarization, but when these
components are added together to produce the observed spectral line the
characteristic polarizations cancel exactly to give isotropic unpolarized
light. This result is easily demonstrated for the special case studied
above by noting that for every spectral line the total intensity polarized
along the x axis is equal to the total intensity polarized along the z-axis.
(The total intensity polarized along each axis is found by summing the
relative intensities I;el and I;el, given in Fig. 1, over all allowed values
of m.) This is the expected result since it accords with the principle that
there 1is no preferred direction in space for an isolated atom.

The situation changes when a magnetic field is applied. The component

lines no longer have the same frequency; making it possible to observe each
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component independently. Observations transverse to the magnetic field are
equivalent to the special case examined earlier of photons travelling along
the y—axis; since the z-axis was chosen along'% in equation (2-6). The
T—-components can be immediately identified as the q = 0 transitions and the
g—-components as the q =+ 1 transitions.

The relative intensities of the components will still be given by
Fig. 1 provided the weak magnetic field approximétion remains valid,
implying that the states do not deviate substantially from the unperturbed
states ]ajm). The frequency of each component line 1s given by equation
(2-9).

These results provided a complete description of the main properties of
the Zeeman Effect. They are used in a later section; after the problem of
line broadening has been reviewed, to examine the feasibility of polarizing

spectral lines through the selective absorption ofAthe component lines.

IT.2 LINE BROADENING

The results presented in the previous section pertain to the idealized
case of a perfectly isolated atom at rest. 1In this idealization the atom
can only absorb or emit photons with the discrete energy of a transition
between two states. In practlice an atom is moving randomly through a gas
and 1s surrounded by perturbing particles which alter its staté; These

deviations from the ideal have the effect of allowing an atom to absordb or
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emit photons over a range of frequencles for each allowed transition. This
effect is known as Line Broadening and the function which expresses the
dependence of the transition probability on the angular frequency; w, of the
photon is the Line Profile P(w)Jr |

In the case of emission lines the broadening processes are intimately
related to the specific mechanism used to excite the atoms and therefore
cannot be described without reference to the particular light source. Even
when the excitation mechanism 1s well understood the calculation of the
resulting line profile is generally very complex. 1In this study our chief
interest is in the absorption of light by a single element gas through
resonance transition; i.e. transitions connected to the ground state. 1In
this case the problem assumes an unusually tractable form in which the line
broadening is dominated by only three well understood mechanisms. In this
section these three mechanisms, Natural, Resonance; and Doppler Broadening,
are treated separately and then with some qualifications the results are

- combined to obtain the complete line profile.

Natural Broadening

An atom can never be isolated from the ubiquitous photon radiation
field. The field interacts with the atom allowing energy to be transferred

between the atom and the fileld. This transfer of energy is; in turn,

t The Line Profile corresponds to the experimentally observed spectral line
shape only in the case of lines in an optically thin material.
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accompanied by a transition from one atomic state to another. The existence
of these allowed transitions between states implies that the states aj have

a finite average or natural lifetime < Applying the time-energy

aj.

uncertainty principle AEa T .~ h we find that a finite 1lifetime implies an

j ad .
indeterminancy in each energy level of the order AEaj'
field leads to a finite lifetime and a finite 1lifetime means that a

Thus the photon

transition must occur at a range of energles rather than at a single
discrete energy. A complete analysis (see Heitler 1954 page 181; or Messiah
1962, page 994) shows that a finite lifetime manifests itself in the form of

a Lorentz Line Profile L(w).

L{w)dw = X d
o (- wp )+ 2

(2-17)

where y is the full width at half maximum. This line profile occurs
whenever a perturbation has the effect of altering the lifetime of a state
and is therefore not unique to Natural Broadening.

and is called the natural line width

For Natural Broadening y = Yy
where
Yy = 1-1 + 1—1 for the transition aj +» a'j' (2-18)
N aj a'j'

When an atom is immersed in radiation which it is capable of absorbing,
the lifetime of the ground state is not strictly infinite. However,

excepting the case of very intense radiation, the lifetime of the ground
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state 1s much greater than that of any excited state. Thus for resonance
absorption Yy~ 1;§ where aj 1s the excited state.
Natural Broadening usually makes the least significant contribution to

the final line profile.

Resonance Broadening

Collisions among the atoms of a gas also lead to line broadening. 1In a
gas composed primarily of atoms of one element, the broadening of the
resonance lines of this element is dominated by collisions among the
atoms of this element. Consider two atoms differing only in that one 1s in
the ground state (aojo), while the other is in an excited state (aj) which
has an allowed transition to the ground state. A collision between these
two atoms permits a resonance transfer of energy, i.e. the excited atom
décays to the ground state while the ground state atom is driven into the
state a j. This resonance transfer effectively creates an additional mode of
decay for the state aj and hence leads to a shortening of the lifetime of
that state. This collision induced shortening of the lifetime will
independently produce a Lorentz line Profile characterized by a full width
at half-max.

YRr.

Yg has been theoretically calculated using a variety of techniques.

The most complete treatments appear to be by Ali and Griem; 1965 and

D'Yakonov and Perel 1965. Ali and Griem derive their result using the
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impact and classical path approximations for a state aj which has an

electric dipole transition to the ground state aojo. They find:

2jo + 1 e2fa
Yg = 3.84 1 33 ¥ 1 p— (2-19)

eo

in cgs units, or
2 £ 4

_ 2jo + 1 a

IR TS e gm0, (2-20
Oeo

in MKS units:
where:
N is the density of atoms in the ground state,
m 1s the electron mass;
e 1s the electron charge,
fa is the absorption oscillator strength; and

€9 is the Permittivity constant

D'Yakonov and Perel determine Yr using irreducible tensors to calculate
the relaxation of the nondlagonal density matrix of an excited atom in
collision with an atom in the ground state. They also use the classical
path and impact approximations and assume the existence of an electric
dipole transition to the ground state. Thelr result does not exhlbit the
simple dependence on j and j° of equation (2-20) and a numerical result is

provided only for the case where j = 1 and j0 = 0. However; if for this



-19 -

specific case, their result is put in the same form as equation (2-20) they
find that the numerical factor corresponding to 3.84 has a value of 2.55.

The impact approximation, upon which these results are based, remains
valid provided the time between effective collisions is much larger than the
duration of an effective collision Q‘l; and only frequencies within a range
Aw from the line centre are considered. These two validity criteria are

contained in the equation from Ali and Griem: Max {YR; Aw}((Q where,

K. T
3.84mN B
R

and, KB is the Boltzmann constant, T {s the temperature in K°, and M is the
mass of the atom.
YR has been experimentally determined by G. Stanzel 1974; for the 253.7

nm resonance line of Mercury; he found:
Yg = (5.3 % 0.5) 10 N sec™ cm® (2-22)
for N~ 5 x 10}8 cm™3 and T ~ 553 K°. Using the characteristics of the

253.7 nm line given in the appendix; the theoretical values given by Ali and

Grien and by D'Yakonov and Perel are respectively:

4

Yg = 6.03 x 10 N sec! emd (2-23)

and

4.01 x 1072 N sec™! cmd (2-24)
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Thus both results are in fair agreement with experiment given that the
validity criteria are only weakly satisfied at these temperatures and

densities, 1.e. from equation (2-21).
Y~ 3 % 1010 << 8x10l0 ~ 0 (2-25)

The theoretical equations for Y were derived assuming that the atoms
were not lmmersed in a magnetic field. 1In the absence of a magnetic field
collision between two like atoms permits not only a resonance transfer of
energy; but also an alteration in the exited state. The resulting excited
atom can be in a state with an m quantum number different from that of the
excited atom before the collision. When a magnetic field is applied the
states no longer have the same energy, therefore a change in the m quantum
number of the excited state must be accompanied by a change in the kinetic
energy of the colliding atoms. This has the effect of decreasing tﬂe
probability of a change in the resulting exited state. The theoretical
equations for Yr should remain valid, however, provided the magnetic field
induced line splitting (wmm,ﬂno), from equation (2-9) is small compared to

the inverse of the duration of an effective collision; i.e.

W T8 K QqQ (2-26)

(see D'Yakonov and Perel and Sobel'man page 464).
For many lines this inequality is not satisfied at even modest field

strengths of less than 1 Tesla. At these field strengths the Zeeman
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splitting of the line becomes sufficiently great to cause a significant
decrease in the probability of a collision induced transition to a state
with a different m quantum number. This in turn decreases the overall
probability of a resonance transfer of excitation energy since in effect the
number of states able to participate in the transfer has decreased. Thus
the resonance line width Yr will be smaller than predicted by equation

(2-20) when the inequality (2-26) is not satisfied.

Doppler Broadening

Doppler Broadening of spectral lines is the cumulative result of the
random motion of the atoms. Ignoring all other broadening mechanisms; an
atom will only absorb or emit photons of frequency w, as measured in the
atom's frame of reference. The frequency of these photons in the reference
frame of an external observer is m; where according to the non-relativistic
. Doppler Principle w = W + %-wo, and V 1s the component of the atom's
velocity along the direction of observation. 1If the distribution function
for V is £(V) dV then the Doppler line profile; D(w); produced by a unit

volume of atoms is:

D) do = (=5 (ww ) = dv (2-27)
(o] o

For a gas in equilibrium £(V) dV is just the Maxwellian velocity

distribution and D(w) dw becomes:
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D(w)dw = n3/2 DL exp [- ( 0)2] dw (2-28)

v ' ' 2K T
where D = w_ —% is known as the Doppler Width, and V.= (——%%ﬁl/z (2-29)

The Combined Line Profile

The combined line profile P(w) dw is a convolution of the character-

istic line profiles of each broadening process. If two broadening processes

are statistically independent and have profiles Pl(w-wo) and Pz(m—wo); the

combined line prdfile P'(w-wy ) is given by:

PG = [T P () P, (u-P) AP (2-30)

where P', P, and P, are‘expressed as functions of frequency differences,

W=wWy » rather than absolute frequencies w.

Natural and Resonance Broadening are strictly independent processes and

the combined line profile L'(w) is again a Lorentzian with y now given by:

Y =Yy tyg (2-31)
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Doppler and Resonance Broadening are not statistically independent,
because -a single collision can produce both a resonance transfer of
energy and a change in velocity. A complete analysis involving the
calculation of a correlation function (Sobel'man; page 401) shows that the
correlation between these two processes can lead to a collisional narrowing
of the Doppler width of the combined line profile. However; where:

L << %%S (2-32)

and L = is the mean free path and cois the gas-kinetic cross section,

Y26 N
o
the two processes can be treated independently. The complete line profile

P(w) is therefore given by:

P(u) = [_ L'(P) D(u-9) dp (2-33)
or
X
® -(5)'2 d
Plw) = Ln-l/Z p—i f_m e X (2-34)
2n (wwy =x)% + (%02

This type of profile is knowﬁ as a Voigt Profile.

In conclusion; where all the assumptions made in this development
remain valid; we expect a unit volume of atoms in the gas to absorb photons
over a range of frequencies with a probability given by the Voigt Profile of

equation (2-34). 1In the presence of a magnetic field the line will split
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and each Zeeman Component will have this same Voigt Profile, apart from a
slight narrowing due to the effect of the magnetic field on the resonance

broadening of each m-component.

11.3 THEORY

In this section a theoretical model is developed for the transmission
of light through a gas immersed in a magnetic field where the frequency of
the light is at or near a resonant frequency of the atoms of the gas. The
theory 1s based on a semi-classical approach similar to one used in a
related context by Corney et al., 1965 and Dodd and Series 1961. While more
sophisticated and rigorous methods involving quantized fields are possible,
little additional information of importance to this study is gained at the
cost of much greater complexity. Therefore; while acknowledging the merits
.of rigor, I have opted for a simpler and I hope more readlly comprehensible
exposition of the problem.

Conversely most of the results obtained through this development can be
derived more simply by making perspicacious substitutions into the more
familar equations describing the transmission of 1light through a gas. It
was felt however that only through the step by step development of ; theory,
in which all the assumptions and approximations are glven explicitly, can
the applicability of the result be properly determined. Thus a complete and

systematic development is presented.
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In this development the light is treated classically as an
electromagnetic (em) wave governed by Maxwell's equations, while the atoms
are treated quantum mechanically. The external (static) magnetic field is
allowed to assume any orientation with respect to the direction of
propagation of the light. While this provides a more general equation
.than 1s necessary for this study; and involves some additional complexity,
the more general équation may be useful in future research.

For simplicity the theory is developed using c.g.s. Gaussian units;
however, the important resulting equations are also expressed in MKSA
units.t The electric field; E(},t), of a classical em wave travelling

through a non-magnetic, current-free medium obeys the equation:

2
V2h(E,t) v(veR(E, b)) = - —62— ECE,e) + dab ) (2-35)
ot

where ic is the dipole moment per unit volume.

In the equation all higher electric moments have been neglected. This
corresponds to the earlier approximation of considering only electric dipole
transitions.

>

To solve equation (2-35) for'ﬁ(r,t),'fc must be determined for a gas in

a magnetic field. This 1s accomplished by first finding the average dipole

moment'iz for a single atom immersed in a magnetic field and interacting

t+ J.D. Jackson's "Classical Electrodynamics” provides a table for converting
any equation from one system to the other.
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with an em wave. The average dipole moment'ﬁz corresponds to the
expectation value of the quantum mechanical electric dipole operator i (see

equation (2-11)). Thus,
’?2 =<t | P (2-36)

where [t> 1s the state of the atom at time t.
The problem has therefore been reduced to solving the time dependent

Schrodinger equation:
th—— |t =8 | > (2-37)

The Hamiltonian, H for this atom is given by:

Ho

-}
H=H +H + g J-§+HI(t) (2-38)

3

where:
H 1is the Hamiltonian for the unperturbed atom, and H | ajmd> =

Eajlajm>.

"

2 . 3 . % was introduced in equation (2-6) and accounts for the
h gaJ .

effects of a weak magnetic field. With complete generality the magnetic

field can be confined to the x-z plane with the angle between B and the z
axis denoted by B. (see Fig. 2). Recall from equation (2-6) if B=0;
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Fig. 2: Orientation of the Magnetic Field
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u
Eg g 33 Jajm> = p

o ] Bm | o jmd.

ogaj
The operator HD is Iintroduced phenomenologically to provide for the
exponential decay of the excited states e‘Yt; where 1/y is the lifetime of a

given state. The finite lifetime can account for all spectral line

broadening mechanisms which produce a Lorentz profile. Note that:
Hp fajm> = =(1/2) 1 h Yaj | o jm> (2-39)

HI(t) describes the interaction between the atom and the
electromagnetic wave. If the wavelength of the em-wave 1s much greater than
the size of the atom (which 1s true for optical frequencies) then HI(t) can

be given by:
o (t) = B EG, (2-40)

which is analogous to the classical expression for the energy of a dipole in
an electric field.

The interaction between the atom and the em—wave's magnetic field is
much weaker and has been neglected.

To solve the Schrodinger equation the techniques of time-dependent
perturbation theory are employed. The state k) 1s expressed as a

superposition of states which are independent of time.
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> = Cg(t) | g> + Edcd(t) > (2-41)

where:

lg> represents the ground state which has been made non-degenerate: i.e.
!g) = hOO). While this restriction is not essential it greatly simplifies
the derivation of ]t). The solutions for degenerate ground states are
introduced later in an obvious, albeit ad hoc; way for the special case of
light travelling transverse to the magnetic field.

h) is simply a shorter notation for the excited states ]ajm> where
"d" represents all the quantum numbers of the state.’

Cg(t) and Cd(t) are the time dependent probability amplitudes for the

states lg> and ld> respectively. Since all the states are orthonormal:
Cg(t) =<gt> and Ca(t) = <d le> (2-42)
The probability of an atom being in a state other than the ground state

is very small, implying [Cgl ~ 1. This indicates that the state of the atom

can be well described by just the first order terms in the perturbation

expansion.

Defining the time-independent operafor

H=H- Hp () | (2-43)

1t can be shown (see Messiah page 722) that to first order:
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-i = -1 = -1 =
Y H(t~-1) ¢ 7 H(t—to) Y H(to—‘t)

k> = e B> + —;_- [ arge Ho(t ) e B> (2-44),
i T

where the oscillating electric field producing HI(t) was switched on at time

t = 1 at which time the atom was in the ground state.

The terms of the form e :%-ﬁ | > can be evaluated immediately since

H h) E b> where E is the energy of the ground state. HD h> = 0, since

By
there is no broadening of the ground state, and ——-g 3 i1 b) = 0 since
le> 1s non-degenerate. Thus:
i= i
5 H(t-1) E-Eo(t-r)

e le> = lg> e (2-45)

and equation (2-44) becomes
i i = i
TREETD TR ) =% Eoto—®)

> = lgde + 1w ]T de e B (t)) [g> e (2-46)

This equation for |t> although not directly solvable can be used with
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equation (2-41) to obtain Cd (t) and Cg(t). To first order

1
- Y Eo(t—"c)
Cy (t)= <d > ~ <d Ig> e

i = 1
1t Bt ) & B (D)
+ deco<d | e Aot ) lg> e (2-47)

The first term is zero since the states‘are orthonormal. The second
term can be solved if H d> can be found. Toward this end we consider the
states h>'T defined in a new co-ordinate system R'. R' is chosen such that
the z'—axis 1s parallel to the magnetic field B. Thus R' is generated by a
rotation ahout the y-axis through an angle 8 with respect to the old
co-ordinate system; see Fig. 3. 1In the new co-ordinate system the operator

H becomes:

Y
= o
H —H°+H.D+—h—-gaj BJ, (2-48)
Therefore
T t = - ' = ' -
H > (Eaj 1/2 1 LR b o8, §BY > xu|u> (2-49)

<dl is related to '<u| through the equétion

<l =<am| =% pdop,0@i =3 b3 <cul'  (2-50

u mua u mu

where Diu(o;B,O) are elements of the rotation matrix; (see Rose; 1957).

tTo simplify the notation the state |x jud' is designated j>' with the
remaining quantum numbers implied.
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Fig. 3:

!

Orientation of |ud' Co-ordinate System
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Inserting these results into equation (2-47) gives:

~-1i i
T }\u(t—to ) 5 EQ(t:0 -1)

¢, ()= 0 [T at, %p’?‘“ e N 'u | B (t)) B> e (2-51)

Now tranforming back to the original co-ordinate system using the equation:

* *
<ul|=7) Diu(O,B,O) ajnl|=1Y nfm <nl (2-52)

n n

we have
1 1
; A (t-t ) -~ E (t-1)
_ 1t j ooi* h "u o h o _

C () = 5 jT de_ Zn D~ D, e <n | Hi(t ) [g> e (2-53)

To evaluate the remaining matrix element <n| HI(tO) h); the time
dependence of %(;,t) must be given explicity. Let %(?;t) be given by the

sinusoidal wave;
. - *
Bre) = B W 4Gy oIt (2-54)

Where %(;) may be complex, but as defined E(;,t) is real as required for

HI(t) to be Hermitian. With this definition

<n | Ho(t) lg> = (2-55)
<n| - F R TE)) lg> et |y ‘¥§-E*(;)‘eiwt

= - | bk BE) e - calbley - B (F) olUE
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The last step 1skpermitted becauselﬁ(;) affects the states only through the
épetator $. The matrix element <n]| %!g) is just the familar electric dipole
transition matrix, and equation (2-12) is applied at a later stage to give
the explicit dependence on n. .Invoking the electric dipole selection rules
the element <n | P > = 0 except for states > with j=1 since lg> is non-
degenerate. Since <n ]? B> - E(?) is independent of time the equation for
Cd(t) becomes

-1 E 1

1
=A t -
_ -1 (D (D*  h'u " o .
cg(t) =351 o " e e <n | P k>
' 1 (. - Et
- * iy - 0
JSEG e oty 4 B¥F) eWh) ¢ P T o a (2-56)
The integral can be easily solved, with the result
Lo s ~hw )t L (A ~E +hp)t
. s eh u o o . . eh u o o .
B(r) [§ 1 +% () [ n 1 (2-57)
7 (A~ E - hw) i (\,~ E,* ho)

’ A - F
u _1 _ _
Recall from equation (2-49) =% (Eaj Et uogajBu /2y 1 hYaj)'
The cases of interest occur when the frequency of the light is at or near a

E .- E
resonant frequency of the atom, i1.e. w ~ _EQF_JE, In this case the second

term in equation (2-57) 1is negligible compared to the first term and the



.= 35 -

expression for C,(t) {s given finally by:
, d

fi-h t fi E ¢

! (1) (%, "Mt FE |
Cd(t)- 5 in Dmu Dnu (e ) e <n ﬁ h) .

BTy (== - -~ e —) (2-58)

Equations (2-41) and (2-44) can also be used to determine Cg(t). To

first order

4 Eo(t-T)

C(t) = <glg> e " +

1= i
- = H(t-t ) =+ E (t -1)
1 dt_<gle b H6E7% Hi(t )g> e h 7o' : (2-59)

ih

Q
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Using arguments similar to those used for Cd(t), it is apparent that the

second term is zero since <g|P|g> = 0. Thus,

i
e~h EO( t— )

Cg(t) (2-60)

The expressions for Cg(t) and Cd(t) can now be inserted into equation

(2-41) ylelding |t> to first order. With |t> known, <t P k> can be found'.

Expanding <t E k> and retaining only first order terms:
> >
<[P k>=<g|? k> € *(t) ¢ () +3 <glb k> c_*(r) ¢ (t)
8 4 g d
* -
+%<dﬁ’lg>0g(t) C4*(t) (2-61)

The first term is zero since <g{§]g> =0
The third term is also just the complex conjugate of the second term; hence
<t|P|t> can be written as:

<t|Blt> = 2 Re (5 < glPla> ¢ (&) ¢, (b) (2-62)
% g d

where Re(Z) stands for the real part of Z.

tNote that <t]t> # 1, since the states ‘g) and |d> were made orthonormal;

i.e. <d]d>=1. Thus, the proper expression is <tt T 2, However,

since T C;(t) Cd << 1 this small numerical correction can be ignored.
d
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Inserting the derived expressions for C?(t) (equation 2-60) and Cd(t)

(equation 2-58) the expression in brackets in equation (2-62) becomes:

> * > 1) .*(1
: <lBla> ey ¢  (v) = diﬂ(g!?]d) p{Up™ (D a3 g5 t(r)
Lo-e) Gty _ -
eh u . o’ 1wt

e -lwt _
= ) (2-63)

x *n -E_-tw)

The steady state solution, which is the one of interest; occurs when
the electric field has been interacting with the atom long enough for all
transient effects to have vanished. In the above equation this is
equivalént to taking the limit of T » - . Examining the function which is

dependent on T, it is clear that it contains an oscillatory component and

1/27aj1 /2y =

the component e « Since %}E& e ®J = 0 1t follows that the

expression in brackets in equation (2~63) becomes:

. e-iu)t .

ey (2764)

when © + - o,

The summation over d in equation (2-63) includes all excited states.
However, if the frequency of the light 1s near a particular resonance line,
as we have assumed; the contribution from the states of neighbduring levels

will be minimal and the sum can be taken only over the states of the
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relevant level. (Where the levels are closely spaced the sum should include
the states of the neighbouring levels.) With these modifications equation

(2-63) becomes.

p <glb k> p{00 D ol pybch) eTE ((—}\—-_-Ti‘.—l-—h—w)-) (2-65)
mun u (o}

The matrix elements <g]% h); and <nr§ > can now be reduced using

equation (2-12):
*
<g|P b> = C(11mq|00) <xi||P|| a'j"> & (2-66)
Since ]g> is non-degenerate; q = -m; i.e. each unit vector correspbnds to a

single allowed transition. From tables (see Condon and Shortley, page 76)

the Clebsch-Gordon coefficients are found. to be:

N
C(11mqjo0) = - 1) (2-67)
V3
Thus
m
e PR = - i;—i)—- @il|el] a'y'> e*_m (2-68)
3

-k
From the property of the unit basls vectors, eu = (-1)u e_p this becomes:

<g|B > =/1i—— s IP|] a'3r> e (2-69)
3
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similarly
ablp> = = aillpll «'in" el (2-70)
/3

Using these equations, (2-65) becomes:

p{Dp(I* ™ | gepyeiot (1) (2-71)

1 T
L 3 Iaallellatsnl® e 00l 0" e

mun

As an aid to further development; <t[¥ k) is expressed in terms of the

complex polarizability tensor per atom; g? which is defined by the equation:
<t B> = 2Re@® ¢ E(E) 70T (2-72)

It is evident from equations (2-62) and (2-71) that g? is most

conveniently defined with respect to the unit vector basis eq. Thus

a _ o [ed| Plla'3">[2 (1) (1)* _
®mn i 3(xu- Eo-hn) Dmu Dnu (2-73)

and,

->
e Bh>ee =Pl e =2Re(s a® B _(F) e (2-74)

The dipole moment per unit volume'¥c; which is required in equation

(2-35), can be found by summing ?: over the atoms in a unit volume. It is
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convenient to define a complex polarizability tensor per unit volume a by

the equation

ety (2-75)

?C = 2Re(g_- %(})e
It follows from.the definition of_i’c that a is given by the sum of gé over a
unit volume of atoms, or:

a4

a
1 "mn

a = 1B

m 1% (2-76)

At this point we neglect the small number of atoms in the excited state,
which is equivalent to ignoring induced emissions, and take the sum ovef
atoms in the ground state. By performing the usuél macroscopic spatial
averaging, (see Jackson 1975, page 226) the discrete sum can be replaced by
an integral over the velocity distribution of a unit volume of atoms.
Assuming a Maxwellian velocity distribution and accounting for the DNoppler
shift of each atom's natural frequency as seen by an external obser?er;

(1.e. accounting for Doppler Broadening) the integral is given by:

1 s ! R
tpn = 35 | <@3llpllaryr>i2 g p(Hp(h) 1/2
u Vom
) ’ 0
X f ® e av (2-77)

v Ko “w
Wy + T + 7§ gajBu w -~ (/)i Taj
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ZKBT 1/2
recall V, = ( —
N = density fo the atoms in the ground state
M = mass of the atom
V = component of the velocity along the direction of observation

1
W = E'(Eaj- Eo)

This equation may be simplified by introducing the complex error

function W(a + ib) (see Abramowitz and Stegun 1972, page 295)

2
® e t dt

1
Wa +10) = = [ ey =

whence a becomes
mn

_ iNenl/2 . 9 (1) (1)*
“mn T 3W VY, w, |<a3fPlla3>] i Diu’ Py W(a,* 1b)
Ho

W -wy = —=—

c
where a = Vo n gaj Bu)

(2-78)

(2-79)

(2-80)
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C

D =
\@wo

(1/2)(y ) (2-81)

It 1s conventional to introduce the dimensionless quantity fa the absorption
oscillator strength for the transition aj > a'j'; which is defined by the

relation (Sobel'man page 302):

2mew0 1
— l@illp|{ar3'>]? (2-82)
3he? 23+1

f =
a

With this definition @ becomes, (recall j=0):

2172
B icha ecn (1), (1)
a_ = £ D /D 7 W(a_ + 1ib) (2-83)
mn mu  nu u
2V, mew02 u

To facilitate future development some elements of o are given

explicitly. From Rose, 1957 the matrix:

%-(1 + cosB) -;é sing %(1'C°SB)
V2
{1 0,8,0) = | L sing cosp - L sinp (2-84)
o V2 V2
-% (1-cosB) —%T-Sinﬁ -% (1 + cosB)
V2




- 43 -

Therefore:
a; = 1K, [% (1l+cosB )ZW(a1 +ib) + 1/25in2B W(a0+ib)+
1 2
+ 7 (1-cosB ) W(a +1b)] (2-85)
- 1 2 1 4.2
oy = 1Ky [ (1-cosB)2W(a +ib) 4 5 sin? W(a,+ib)
1
+ 7 (1+cosp ¥ W(a +1b)] (2-86)
@y = @ = 1K, sin’p [% W(a, +ib) - -;- W(a,+b)
+ Lyca, +b ]
7 W(a. +ib) (2-87)
cha e2ql/2
where: K, = -————?—- (2-88)
2Vomew0
or
cha e2nl/2
= —— — in MKSA units (2-89)

2
8n g0 Vo m Wy

For most lines in a gas of modest density lamnl<<1. For example, using
the information in the appendix: |a| ~ 10® for the 253.7 nm. 1line of
mercury at the vapour pressure of mercury at 20°C.

Equation (2-75) for -})?c and equation (2-83) for a together contain the
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relevant quantum mechanical results in a form suitable for further'analysis
using the classical electromagnetic equation (2-35) given earlier. Insert-

ing these quantities into equation (2-35) gives:

. . 2 .

v2ECE, 0)-v(v-k(E, 1) = =2 &t )b )

2 3t ¢
2 ' - * "4
=L 2 (FF, 0 toane - BT 4 oF . 1 THeloty) (2-90)
2 at? - -
1 - %
where Elocal = E(?)e 1wt+'ﬁ (;)eﬂ»t is the total electric field at each

atom.

Equation (2-90) has the same form as the equation which describes the
propagation of an em wave through an anisotroplc crystal (see Born and Wolf
1975, page 665). In an anisotroplc crystal the electric field need not be

perpendicular to the phase velocity; 1.e. there may be a component of
the electric field in the direction of the phase velocity. If this occurs
th; energy of the wave does not propagate in the direction of the phase
velocity.

The component of the electric field along the direction of the phase
velocity arises from the term V(V-%(;;t)) which is zero for isotropic

materials. From Maxwell's equations:

Vok = —~bnv o ‘ﬁc (2-91)

hence
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VO By = ~w [ o(a » Erie ™ o B M (yelVt)] (2-92)

Using this equation it can be shown that where |amn‘<<1 the term V(V-%)
and the componet of £ along the phase velocity is small compared to the
component perpendicular to the phase velocity. Thus, in order to simplify
greatly the solution to equation (2-90), the term V(V-ﬁ) may be omitted, and
the small difference between the direction of the phase velocity and energy
flow may be ignored.

In the equation for %c the electric field interacting with the atoms

must be the total field at the atom, E This field is produced by both

local’
the field of the incident em wave'ﬁ(;;t), and the induced field of the
neighbouring atoms. The relation between the incident field and the induced
field is extremely complex for.high frequencies in anisotropic materials.
However where )amn]<<1 the induced field 1s much smaller than the incident

fleld and the approximation E(;,t) =.Elocal(;;t) can be made. With these

- approximations equation (2-90) becomes:

- 2 -
v2(E (B eIt 4 BN ) o0 - —1-6—2— [(c « B(F) alot
ot

+e ) %) (2-93)
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where € =1 + 4no : (2-94)

or g2 ﬁ(?) e-hnt - l—-jf-(g_' E(}) e-iwt)
2
92 B et - LY (M E G Y -0 (2-95)

*
Since %(?) and % (?) are linearly independent and the differential

operators are linear, this equation can be true only if:

v2E(Ey 10t L 3T o . REy Sty - g (2-96)
2 at2

and likewise for the complex conjugate term.
Without loss of generality equation (2-96) can be solved for the case

of a plane wave propagating along the z-axis. The solution is of the form

% - Elei(KZﬂnt) e +E ei(Kz-mt)e-1
where
E ¥ 1E .
E,, =% (— (2-98)

and EX and Ey are the amplitudes of the wave along the x and y-axis

respectively.
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Substituting this solution into equation (2-96) yields the two

homogeneous equations:

. 2 . ’
¢ g - ‘ -
and
C
— K E, - (64, B +eq E,) =0 (2-100)

w2

Solving these two simultaneous equations for K2 gives:

2

c (ey + g0 ¢ [(srl.; 5_1.1)2 + 452-1_1]1/2
_KE = (2-101).
2 - .
w 2

where the fact that e, = €) - has been used.

Substituting this expression back into equations (2~-99) gives

E Loe, ~em o)t ey e )2+ L2
1 2 11 =1-1/7 = b4 11 -1 1-1
R (2-102)
-1 €11

where the signs + and - are associated with the solutions Ki and KE (see eq.
2-101) respectively.
The form of the solution is greatly simplified by defining the complex

function suggested by Corney; Kibble and Series; 1965:
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26
tan 6 = —————— (2-103)
f11 - €111
E; cos 6/2
= 2 -
whence E‘l sin 672 for the solution K+ (2-104)
Ey ~sin 0/2 '
and = for the solution Ka (2-105)

E cos 6/2
The general solution for the differential equation (2-96) is thus

% = a; (cos 6/2 e +sin6/2 e ) ot (Kyzmwt)

1 (Roz-wt) (2-106)

+ a. (-sin 6/2 e, + cos 6/2 e ) e
The factors ay and a_ are determined by the boundary conditioms. K4
and K_ are the roots of equation (2-101) which give an exponentially

decaying solution. These expressions are examined in detail in a later

section.

For the purpose of this study we can select an incident e-m wave

propagating along the z axis and given by the equation:

i(K

. _ _ z=wt)
t = (E @) T+E W) D e

1 (2-107)

where,

0
Ex(w) = AxQn) e , and (2-108)
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Ax(m) is the amplitude, (a real valued function of the frequency ) and ¢x
is the phase of the x component. Ey(w) is defined analogously.

We choose the boundary of the gas at z = 0 normal to the z = axis,
therefore the electric fleld is continuous across the boundary and there is

no refraction. Equation (2-107) can now be equated to equation (2-106) at =z

0 and solved for a; and a.. Thus:

1 1

= (B, +1E) ey + E (-E_+ 1€ )e,
= (a4 cos6/2 - a_ sin 8/2) e + (a+ sin 6/2 + a_ cos 6/2) e (2-109)
with the solutions
E 1€ ,
a; = — (sin 6/2 - cos 8/2) + —L (cos 6/2 + sin 8/2) (2-110)
v v 2
E ‘ 1E
a_ = —= (cos 6/2 + sin 6/2) + — (cos 6/2 - sin 6/2) (2-111)
vz vz :

The reflected wave has been omitted because we are primarily interested
in the change in the transmitted wave with the application of the magnetic
field. It i1s clear that the change in the reflectivity of the gas with the
application of the field is small; hence there 1s a neglegible effect on the

transmitted wave.
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The final solution for the em wave in the gas can now be given:

E iE
E = {[—%{sin 8/2 - cos 8/2)cos 6/2 + —:; (cos 6/2 + sin 6/2)cos e/Z]e_l
/2 V2
E iE

+ Dﬁé (sin 6/2 - cos 6/2) sin 0/2 + ——z-(cos 8/2 + sin 9/2)sin 9/2]e_l}
V2 V2 '

ei(K+2ﬁut) +

-E -1iE
{[-= (cos 8/2 + sin 68/2) sin 6/2 + —Z (cos 6/2-s106/2) sin 6/2]e
V2 ) V2 1
B iE 1(K_zwt
+{—:§cos 8/2 + sin 6/2)cos 8/2 + —:gkcos 6/2-3in8/2)cos G/Z]e Je zwt)
V2

V2 -1
' (2-112)

I1.4 THE WAVE IN A TRANSVERSE AND PARALLEL FIELD

The physical effects of the gas upon the incident light can now be.
ascertained from equations (2-112). While the equation 1s quite complex, it
reduces considerably in the case where the magnetic field is either
transverse or parallel to the direction of propagation. Since these two

cases are of particular interest they are examined in detail.
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The Transverse Field

When the magnetic field is parallel to the x-axis, it is transverse to
the direction of propagation. From our earlier definition of the
orientation of the field this corresponds to an angle 8 = n/2. Returning to
equations (2—85); (2-86) and (2-87) and substituting this value for B we
find

ap =@ = 1K (F Wy +1b) + 1/2 W(zy + 1b) + =Wl + 1b))  (2-113)

G =y = 1Ky (FW(ay £ 1) - T W(ay + D) + EW(a, +1D))  (2-114)
This increased symmetry simplifies equation (2-112). Recall from
equation (2-94):
€ =9 + 4na (2-115)
mn mn mn

hence

1 T €~ and ey =g
Thus the complex function [equation (2-103)]

2 4
tan 8§ = ~——————— 3+ o (REAL) (2-116)

Bl - &1

and we have the simple result 6 =w/2. Substituting this value into

equation (2-112) yields:
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E T —t— (el + e_l) ei(K+ - wt)
V2
B 1(K_ - wt)
+— (eq -¢) e~ (2-117)
‘/2
but from the definition of eq this is simply

R 1(Kez - wt) _ 14z - wt) j
E = Ex(w) e i+ Ey (w) e (2-118)

Thus the electric field of the incident wave divides naturally into two
components along the x and y axis. The properties of these two components
in general will be different as they are governed by the two different
factors K. and X,.

The effect of the magnetic field is contained in the expressions for

K_ and K;. Recall equation (2-101):

c2
2
w?

| 2
(Bmpm *Ep)® ey = e )2 + bep))/2
)

Invoking the unique symmetry of € n for the transverse fleld we have:

2
2 =
w? "

hence:

C2 2
—K =l (@ *aq) (2-120)
W .
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The physical consequences of this equation are most readily

demonstrated by introducing the conventional parameters n_, the index of

T

refraction and k , the absorption coefficient where :

c C
-k = (ni + 1 1/2 Jki) (2-121)
It follows that:
2
n, > -%-Cf-kf = Y Re (R) (2-122)
w C
S ok = Y (x 2-12
Jnii—_cz—m(i) (2-123)

Solving these equations for n_ and k, using the approximation |amn1 << 1 we

find
k, o~ dn S Im (o) * @) (2-125)

Thus from equation (2-121):

+The factor 1/22§ multiplying the absorption coefficient k, 1s introduced to
conform with the conventional definition of k as the coefficient
governing the exponential damping of the intensity&zl, which 1s proportional

to the square of the electric field, i.e. T = Lje .
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SK o= 1l+ 2 (@ o) - (2-126)

Substituting the complete expressions for o, and a; - from equations

(2-113) and (2-114), we find

1+ 2n 4% (1/2 W(a, + ib) + 1/2 W(a., + ib)) (2-127)

Elo
7

Eln
~
]

1+ 2rn 1 K W(a + 1ib) : (2-128)

With these expressions inserted into equation (2-118) the equation for
propagation transverse to the magnetic field assumes its final form.

Let us now examine the physical content of this equation. The magnetic
field manifests itself through the term a, in the functions W(au + 1b).
Recall from equation (2-80)

c Ho B
R T L% ke
Vo

The consequences of this are clearly illustrated by considering first the
absorption coefficients k;y and k_ from equations (2-125); (2-113) and

(2-114):

k,=4m Ky = Re (1/2 W(a) + 1b) + 1/2 W(a + 1ib)) (2-129)

k_ = in K %Re (W(ay + 1b)) (2-130)



- 55 =

Examining k_, which determines the amplitude of the x component of the
wave, we find that the magnitude of the absorption varies over a frequency
range determined by Re (W(a0 + ib)) which is independent of the field.
(Note that Re (W(z)) is proportional to a Voigt function.) In contrast the
amplitude of the y component of the wave depends on k4 which is a function
of the magnetic field. As the fileld is increased the peaks of the two

functions Re(W(al + 1b)) and Re(W(a_l + 1b)) shift to the frequencies wy +

Bo Ho
Tr-gaj B and w; - e gajB respectively. Hence the magnitude of the

absorption will decrease at the frequency Wy while increasing at the two

frequencies displaced symmetrically about wy « Note that when 3 = o, k+ = k_

k where k 1s the familiar absorption coefficlent for a gas not immersed in

magnetic field, (See Sobel'man; 1972 p. 381)

[

The indices of refraction n_ and n, determine the phase velocity of the
x and y components of the wave respectively. In the presence of a magnetic
field n, # n_ and a wave propagating through the gas will experience a
relative phase shift between its x and y components.

Examining the equations for k+ and k_ in the light of ouf earlier
discussions of the Zeeman effect (section II.l1) leads to an obvious
extension of the equations for K+ and K_ to the more general instance of a
degenerate ground state. In that discussion we noted that g-components
could only absorb photons polarized perpendicular to the magnetic fieid
(1.e. along the y-axis); while n components could only absorb photons
parallel to the field (i.e. along the x-axis). It is therefore not

surprising to observe that the expression for k+ is simply proportional to
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sum of the line broadened o~components while k_ is proportional to the sum
of the line broadened m—-components for this non-degenerate case. Thus there
emerges an intimate relationship between the absorption coefficients and the
Zeeman components. This relationship can be demonstrated

rigorously; (see Sobel'man 1972).

Extrapolating this relationship to the more general degenerate case K+

and K_ become

< = 1 -
5 K+ 1+ ZRiKb %m' C o W(amm,+ ib) (2-131)
where m - m' =1 1
[ _ ° -
B-K_ =1 + 2niK, %m' C o W(amm, + ib) (2-132)
where m - m' = 0
) .
a o S0 T B (gajm - ga'j'm ) (2-133)

The constants C%m, and C;m’ are the relative intensities of the n and o

components respectively, which have been normalized such that

0 = : 1 = -
%m, Cmm' 1 and D Cmm' 1 (2-134)
where m'-m =0 where m'-m=t1l

In the next section propagation parallel to the magnetic field is

examined.
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The Parallel Field

The magnetic field is parallel to the direction of propagation when

B = 0. From equations (2-85), (2-86) and (2-87),

al -1 = a_ll =0 (2"135)
a;, = 1K W(al + 1b) (2-136)
a4 = 1K W(a_1 + 1ib) (2-137)
hence from equation (2-94)
and from equation (2-103) tan8 =0 (2-139)
and therefore ‘ 6 =0

- Using this result; equation (2-112) reduces to

-E_+ 1 E 1(Xy - wt) E_+ 1E i(K_ - ot)
ﬁ = _L:___}_’ e ‘ e + —X-———__-: e e (2-140)
Y 2 1 v/ o2 -1

Thus the wave divides naturally into two circularly polarized components.

From equation (2-101)
2

c 2
— K2 = 2— 2 = : -

> Ky =€, and 5 Re €~ (2-141)
w w



Again making the assumption la! << 1 we find

K, =1+ 2t 1K W(a + 1b) (2-142)

K_=1+2n 1K W(a_l + 1ib) (2-143)

These expressions together with equation (2-140) completely describe
the propagation of light parallei to the magnetic field. Note that each
circularly polarized component is affected by a specific transition; u==*1,
of the atom.

When a magnetic field is applied these two components have different
indices of refraction and will absorb light over a different range of
frequencies. The differing indices of refraction lead to the familiar
effect of faraday rotation of linearly polarized incident light. These
results can be extended to the situation of a degenerate ground state by
analogy with the case of a transverse fleld. When this is done the final
equation is in complete agreement with that obtained by Camm and Curzon,
1972; using a different approach.

In the next section these results are used to examine the polarizing

effect of a gas on an incident em - wave.

IT1.5 THE POLARIZATION OF THE TRANSMITTED WAVE

To thils point the theory has been developed for the special case of a

monochromatic plane wave. Recall equation (2-118) for the case of a

transverse magnetic field.



- 59 -

i(R_z -wt) ’ 1(K+z -wt)
% = B (w)e 1+ E () e 3 (2-118)

where K+ and K_ are given by equations (2-127) and (2-128) and from equation

i 1
X - y
Eyﬁn) Ay@u)e

(2-108): Ex(w) = Ax(w)e
where Ax and Ay are the amplitudes and ¢y‘and ¢x are the phases of the
incident em wave.

A characteristic of monochromatic plane waves is that three quantities,
examined at a given point z in space, remain constant for all time. They

are the two amplitudes,

/2y 4 -1/2y

A e and Aye k+z and the phase difference given by;

X

On
[]

(% n_z + ¢x) - (‘-‘(—;— nz + ¢y)
These three independent quantities are sufficient to determine completely
the state of polarization of the light represented by this wave; (Xlein,
1970, p. 485). Since for a monochromatic plane wave these quantities are
constant in time, a monochromatic plane wave must have a fixed state of
polarization.

A strictly monochromatic plane wave 13; however; a mathematical
idealization which is never realized in practice. Consequently equation
(2-118) must be modified slightly to accord with reality. This is most
readily accomplished'by transforming equation (2-118) into the

quasi-monochromatic plane wave:
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i(RK_z - wt) _ i(K+z - wt)_

E=E (e 1y By (w,t)e J (2-144)

where Ex(w,t) and Ey (w;t) are slowly varying functions of time compared to

eiwt and are defined by the expressions:

| 1 (D)
Ex(w,t) = Axﬁn,t)e (2-145)

o v (v)
E (w,t) = A @,t)e y (2-146)

whevre the modified amplitudes and phases are now stochastic functions of
time.

This new representation of the light wave requires a more sophisticated
definition of polarization than was necessary for strictly nonchromatic
plane waves since it admits the possibility of unpolarized light.

A number of equivalent schemes have been devised to represent the state
of polarization of light. The scheme used in this study is after a method
presented in Born & Wolf (1975); p. 544 where the polarization 1is related to
the degree of correlation between the irregular fluctuations of Ax; Ay; ¢x’
and ¢y. An attractive feature of this scheme 1s that the theoretical
parameters are closely related to the experimentally measured quantities
because the theoretical development closely models the experimental
technique used to analyse the light. This feature proves to be particularly

advantageous when we compare the results of theory with experiment.
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The theory is developed by considering ﬁhe following idealized
experiment, (see Fig. 4). The incident light, having tra?ersed a length, 2,
of gas in a transverse magnetic field, passes through a compensator (such as
a quarter wave plate) which retards the phase of the y-component by an
amount { with respect to the phase of the x component. Using equation

(2-144) the wave 1s given by:

> IR L B L R (2 z ~ wt)
E = [Ex(w,t)e' i+ Ey (w,t)e e gj] . e (2-147)

The wave next passes through a polarizer with its pass direction inclined at
an angle ¢ with respect to the x axis. Whence the component passing through

the polarizer 1s given by:

1K 8 iK% i(%z - wt)

E(),E,t) = [Ex(w;t)e T cos ¢ + Ey(w;f)e + eii sin ¢] . e (2-148)

Finally, the intensity of the wave 1s measured by a detector. The
instantaneous intensityT, I'; of the wave is proportional to the square of

the real part of the complex electric field function; E(¢;§;t); i.e.

I' « Re? (E(Y,E,t)) (2-149)

tTechnically, this quantity is the flux density or irradiance and not the
intensity, (see Klein, 1970 at pp. 122 and 508). However, the two are
closely related and many authors including Born and Wolf use the term
intensity. Therefore, for convenlence, the term intensity is used here.



a) 1\ é
< -
e
LIGHT GAS CELL |

IN TRANSVERSE  COMPENSATOR POLARIZER DETECTOR
SOURCE  MAGNETIC FIELD
yA
b)

Fig. 4: a) Polarization Measuring System
b) Polarization Orientation

_29_
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However, a real detector; such as a photomultiplier or a photgraphic plate,
does not measure the instantaneous intensity; it measures a time averaged
intensity I. This experimentally measured intensity; I; is theoretically

described by taking the time average of I' as described by the expression:

T

p I'(E) at (2-150)

T =<1 (t)>=32_
where T is the averaging time period.

With the light source and detector used in this study; the functions Ex
and Ey defined by equations (2-145) and (2-146) undergo a large number of
random fluctuations within the response time T of the detector. It is
therefore reasonable, for the sake of mathematical simplicity; to take the
limit T + » rather than the actual response time of the detector in

calculating the time average of I'. That 1s; I 1s given by:

= ¢ = l_ T 14
I =<KI'(t)> = ;:m 57 ) _p 1'(B)dt

oD

which is proportional to

. 2
lin 2=/ 7 [Re (Ev,E:t)| dt (2-151)

T 2T

Using this expression for the time averaging; it is possible to show that:
2¢Re? (E(4,E;5)> = <H(Y,E3E) - E*(¢,E5t)> (2-152)

(see Born and Wolf 1975 at p.'498)

Thus, the experimentally measured intensity I is simply given by:

I(,E50) = <E($,E,t) . EX($,E5t)> (2-153)
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where the unimportant constant of proportionality has been set equal to 1.

Inserting equation (2-148) into the above; we have:

Lk
«  1(R - R %) x LK =R
I(¢,E3w) = <E.LE_ D> e cos2 ¢ + <EE_ De sin? ¢ (2-154)
X X - yvy
*
i(K - k¥ * 1(K,- K_N
+ [<E: E; > e T, <EyEx >e T eig] cos ¢ sin ¢

Equation (2-154) can be written more succinctly as

I(d,E3w) = Jxxcosz b+ I sin? ¢

—1E 1 i}
+ (ny e + Jyx e?) cos ¢ sin ¢ (2-155)
where:
. *
3. =< E> et RTRNR
XX X X
*
* =
J =<KEE> ei(K+ K )L
yy yvy
*
* -
1 =<E RS> RN
Xy Xy
*
* -
I =< E> LEERN
“yx yXx

The four terms J_ , J ; J and J form the elements of a matrix called
XX Xy yx

yy
the coherency matrix J.

Jxx ny
) (2-156a)

I=(;";
yx yy
It is evident from the definitions of ny and Jyx that:

Txy = Jyx (2-156b)
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Further, it follows from equation (2~154) that the total intensity IT (i.e.

the intensity measured with the polarizer removed) is given by:
I.=J_+3J (2-157)

It is clear from equation (2-155) that any two light beams with the
same coherency matrix are indistinguishable in an experiment involving a
polarizer and a compensator.* Thus this matrix can be used to define
uniquely the state of polarization of the light. Let us briefly digress to
i1lustrate this with some examples. For simplicity we use the coherency
matrix of the incident light J1 which from equations (2-107) and (2-144) is
simply:
* *
<E_FE > <E_E_ >
X X Xy

J = . y (2-158)
1 KE_E_> <EE_>
y x vy

Completely Polarized Light

Completely polarized light occurs when the random fluctuations of the
two amplitudes and two phases are correlated such that the ratio of the
amplitudes and the difference in the phases are time independent. This may

be expressed as

+In interference experiments the waves may be distinguished by their
characteristic coherence length and spatial coherence. However, since these
are intrinsic properties of the light source which are only mildly affected
by the absorbing gas, they are not consldered here.
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Ay(t)
=q and x =¢_(t) - ¢ (t) (2-159)
y
A (t)
X
where q and ¥ are constants. In this case J1 may be written;
2 ix
e > (L 9y (2-160)
X -ix 2
i qe q

The superscript P has been added to denote completely polarized light.

It 1s easily shown that this matrix is indentical to that of a strictly
monochromatic plane wave. Since two light beams with the same coherency
matrix are in the same state of polarization it follows that the matrix Jz
does indeed represent completely polarized light. From (2-160) note that a

property of polarized light is that

Det X =3 J -3 3 =0 (2-161)
i XX VY Xy ¥X

By exploiting the relationships between Ji and monochromatic plane

waves we can denote the various states of Ji by the familiar terms
'applicable to monochromatic plane waves. Thus; in general Ji represents an
elliptically polarized wave. If the wave is linearly polarized y = mn where
m =0, 1, *2 ... and the coherency matrix becomes
2 - m

(2-162)
X (-1)"q ¢

The direction of polarization makes an angle ay with the x-axis, where:-

®, = arctan [ (-1)"q] (2-163)
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For circularly polarized light ¥ = m n/2 and Ax= Ay and the matrix is

given by:

1 1
i )

2
<Ax > (I 1

(2-164)

where the upper and lower signs represent right and left circularly

polarized light respectively.

Unpolarized light

We define unpolarized light as light whose intensity is independent of

the angle ¢ of the polarizer, and of the phase shift g, i.e.
I(¢,E,w) = constant for a given w. (2-165)

It is evident from equation (2-155) and (2-156b) that this is true if and

only if

An equivalent and perhaps more Insightful definition of unpolarized
light is a wave whose components Ex and Ey are completely incoherent so that
<ExEy*> = 0 for any cholce of x, y axes perpendicular to the direction of
propagation. 1t follows that the coherency matrix for unpolarized light 1s‘

given by:
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U _ 1
I, =172 (4 (1’) (2-167)

: U
note: Det Ji # 0 (2-168)

Partially Polarized Light

In general the state of a light beam lies between the two extremes of
completely polarized and unpolarized light and this i{s known as partially
polarized light. It can be shown that partially polar;zed light can be
uniquely expressed as the superposition of a completely polarized and an
unpolarized wave, (Born and Wolf, 1975; p. 550). That is

1=3"+3° (2-169)

where in accordance with matrices (2-160) and (2-167) we can define:

=5 (2-170)
and

3% = (o O (2-171)

The matrix elements of JU and JP are given in terms of the elements of J by

the'following equations.

= - 2 _
A=1/2 J__+ Jyy) 12/ + Jyy) 4 Det J (2-172)
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B=J ~-A (2-173)
C = Jyy -A (2-174)
D=J. (2-175)
D* = Jyx (2-176)

The elements of JU and JP thus provide a unlque representation of the state
of polarization of the light,
It is useful to introduce one final parameter; the degree of

polarization P. P is defined as the ratio of the intensity of the polarized

portion Ipol to the total intensity of the light. That is:
Ipol B +C°
P = T . (2-177)
T XX yy
note 0 < P 1 (2-178)

When P = 1 the light is completely polarized and when P = 0 {t is
unpolarized. The degree of polarization is independent of the choice of x,
y axes.

We can now use these definitions to examine the polarizing effect of a
gas in a transverse magnetic field. From equation (2-155) the coherency

matrix is given by
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. -k 2 * i(K_-Ki)l
CEE >e - ‘ ' <EE > e
X X Xy
J = . o . (2-179)
* i(K+- R_*)R * —k¥1
<EE > e <E E De
y x Yy

where equation (2—121) for k* has been used.

If the state of polarization of the incident wave 1s known the above
matrix will describe completely the state of the wave after traversing the
gas. Two cases are of particular interest: when the incident wave 1is
linearly polarized and when the wave is unpolarized. We examine these two

cases in order to establish the conditions under which the gas may act as a

polarizer.

Unpolarized Incident Wave

When the incident wave 1s unpolarized [from matrix (2-167)]:

* *
<EE> = <EE> = 1/2 Ij(w)
X X vy

*
and <E E > = 0
Xy

where Ij(w) is here defined as the total intensity of the incident wave.

Thus, from matrix (2-179):

1
J = E-Io(u)) , e-k+2 (2-~180)
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One result is immediately evident from this matrix. The gas affects
the state of polarization only through the absorption coefficients k+ and
k_. Moreover, it is also clear how the gas is able to polarize the light.

Consider a situation where at a glven frequency w;

k A>>1 and k 2<<1 (2-181)
then:
0 o
I~ 12, (g 4) (2-182)

Thus the light at frequency w becomes linearly polarized along the y-axis.
In fact only the condition k_ >> k+ and not K+l << i is necessary for the
gas to act as a polarizer.' However it is highly desirable that the
polarizer have as high a transmittance as possible and in this example this
is achieved when k+£ + 0.

If the conditions of (2-181) can be arranged; two limitations to the

technique are still apparent. The light can only be linearly polarized and

-k 2
the light will never be completely polarized since e is never exactly

zero. That 1s, there will be a strong linearly polarized component along
the y-axis and a weak unpolarized component. In the representation (2-169)

this can be written as;

-~k 0 0 0

+ L (w)/2
e-k’l K 0 (e—k+x —e_k‘x)

J = I,(w)/2 (2-183)

Clearly then the larger k% the higher the degree of polarizationm.
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Simple Examples

To demonstrate that the conditions given by (2-181) can in fact be
realized we examlne equations (2-129) and (2-130) which give k_ and k+ for

lines with a non-degenerate ground state:

k, = 4 Ko ‘;-’- Re (1/2 W(a, + 1b) + 1/2W(a_, + 1b)
= w
k_ = 4n Ko c Re (W(q) + 1ib)

Let us assume for the moment that a line can be found such that at frequency
wg, k & >> 1 for a gas of reasonable length and density. (It is
demonstrated later that this 1s indeed the case for the 253.7 nm line of
mercury.) In view of the earlier discussién of the effect of the magnetic
field on k+ it is clear that in principle we can apply a magnetic field
which 1is sufficiently large to cause k*i << 1 at the frequency wg+ Thus an
.unpolarized Incident beam would become partially polarized when passed
through the gas. Our objective is, however; much more ambitious. We want
the gas to polarize the light over its entire frquency range and not just at
the central frequency wy. That is if the incident light has a line shape
with a characteristic width Av we require that the conditions k_l >> 1 and
k+g << 1, (see 2-181) both remaln valid over the frequenéy range Av.
Examining the equation for k_ and assuming k_% >> 1 at wb; it is
evident that the first condition can be met over Av if the absorption line
profile W(a0 + 1ib) is sufficiently broad so as to remain nearly constant

over Av, (see Fig. 5a). Of course if k g 1s very large at Wy the condition
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k 2 >> 1 could be satisfied even with a substantial change in W(a, + 1b)
‘over Av.

While it is desirable to have a broad line profile in attempting to
satisfy the firét condition, just the opposite 1s true of the second
condition; k+l << 1 over Av. For if W(a1 + 1b) and W(a..l + ib) in the
equation for k+ became broader (recall that W(a0 + ib); W(al + ib) and
~w(a__l + ib) all have the same breadth); a larger magnetic field must be
applied to shift the centres of the two line profiles far enough from wy SO
that only their much smaller wings contribute to k+ over the range Av. For
many purposes it may also be important that k+g remain reasonably constant
over Av since changes in k+g over Av will alter the line shape of the
transmitted light.

In conclusion any attempt to optimize the polarizing properties of the
gas must reconcile the two conflicting conditions k & >> 1 and k & << 1 over
Av.

The foregoing comments would, of course; be less impdrtant if we could
not alter the line profile width according to our design. However in our
earlier discussion of line broadening we.established that the line width
depended on the temperature and density of the gas. Moderate adjustments in
these two parameters can lead to changes in the line width of an order of
magnitude; which provides the latitude necessary for optimizing the gas
polarizer's performance.

There 1s another situation which can give rise to polarized light.

Consider the case where k & >> 1 at frequency w;, but the line profile of
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the absorption line Re(W(a0 + 1b)) 1s much narrower than the width Av of the
incident line, (see Fig. 5b). For the x component, the light at the center
of the line is almost completely absorbed; but the light in the wings of the
line is mostly transmitted. For the y component a weak magnetic field is
used to spread the line profiles Re(W(al + 1b)) and Re(W(a_1 + 1b)) over the
frequency range Av rather than to split them away from Av as was done
previously. (Note that this effect can be enhanced by using an
inhomogeneous, but highly isotropic magnetic field.) In this way kyt >> 1
is maintained over Av and the transmitted light is polarized along the
x—-axis.

The obvious disadvantage of this technique is that the absorbing gas,
while polarizing the source line, also distorts its shape by almost
completely absorbing the centre of the line. Thus, this technique for
_polarizing light is only of use in studies where it is acceptable for the
source line to be distorted, (although in a predictable way) by the
polarizer.

Linearly Polarized Incident Wave

Consider now the effect of the gas on a linearly polarized incident
light beam. This situation can be completely illustrated by considering the
case where the incident light is polarized at an angle of 45° with respect
to the x-axis.

That is, from matrix (2-162) and equation (2-163):

* * *
<ExEX> = <Ey Ey> = <ExEy> =1/2 I (w)
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The coherency matrix for the transmitted light is then given by

)
X 2 i= (n_- n+)1
- c
e (e e

2 (k, + k)R
(2-184)

! .
(eig (n+- n_)zQ. . - 1/2(k+ + k__),?,) e-k 2

where equation (2-121) has been used to define n_.

Note that the transmitted light at frequency w remains completely
polarized since Net J = 0. 1If Qe again imagine a situation where k £ >> 1
and k+ﬂ ¢ 1 we obtain essentially the same resulf as in the case of an
unpolarized incident wave, namely

0 O

I~ (1yw)/2) o 1

(2-185)

Thus the gas will behave as a polarizer much as it did in the case of an
unpolarized incident beam. 1In particular; the earlier comments on how to
optimize the polarizing properties of the gas remain valid here. However
the two cases are not exactly the same. The chief difference between the
two is the appearance of the indices of refraction n,_ in the coherency
matrix (2-184). To demonstrate the effect of these terms consider again the
situation where k & >> 1 and k& << 1 over Av. For uﬁpolarized incident
light the fraction of the light along the x axls which was not absorbed

after traversing the gas appeared as an unpolarized coamponent, [recall
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(2-183)]. If the incident light is polarized, however, this fraction does
not appear as an unpolarized component since DET J = O.

To help 1llustrate this situation imagine first that n,=n_. In this
case the transmitted light remains linearly polarized but it is now
polarized along a direction forming an angle ag with the x—axis; where from
equation (2-163)

@, = arctan [ (-1)" (%)1/2] (2-186)

o Re(ny) v
and (-1) =
|Re(ny)| v
(See Born and Wolf, 1975, p. 27)
Using the equations (2-173) and (2-174) for B and C:

m H20(k_ - k)
@, = arctan [(—1) (e )] (2-187)

If n, # n_, (which is generally the case), the transmitted light is
elliptically polarized and the shape of the ellipse is governed by the

factor:

o
"
n|E

(n_ - n+)£ (2-188)

The ellipse is inscribed into a rectangle whose sides are parallel to
the co-ordinate axes and whose lengths are 2/C and 2/5; (See Fig. 6). The

ellipse touches the sides at the points
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Fig. 6:
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(+ VB, £ /C cosd) and (+ /B cosd, * /C) (2-189)

The angle; ¢; which the major axis of the ellipse makes with the x-axls is
given by the equation

tan 2 = (tan 2a;) cosd (2-190)

Thus, ia general; when the incident light 1is linearly polarized thé gas
will.produce elliptically polarized light; where the shape of the ellipse is
a function of the frequency of the light.

The discussion to this point has been facilitated by using a
representation which describes the state of polarization of the light at a
specific frequency w. This representation is not; however; always the most
convenient one. For instance if the state of polarization changes over the
width of the incident line (Av) it is difficult to assess the degree of
polarization of the entire line. Furthermore the theoretical results are
not compatible with the experimental results since an experiment necessarily
measures the Intensity over a range of frequencies and not at a definite
frequency w. To overcome these difficulties we introduce a slightly
modified representation. Instead of considering the intensity at a specific
frequency w as in the defining equation (2—154); we observe the intensity
taken over the entire frequency range of the line. That 1is, we are

interested in the integral of equation (2-154) over w. Therefore we define

IW,E) = [0 1(b,E50) do (2-191)

o

N
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1f only a part of the line is of interest the limits of the integral
can be changed accordingly.
In complete analogy with the earlier representation we can define a

coherency matrix T by the equation -

' = 1 2 r 2
I(¢,xi) Jxx cos® ¢ +_Jyy sinc ¢

+ (f;y e 4 j;X ey cos ¢ sin ¢ (2-192)
and
*
. . kA . x (R_K)2
JOEE>e 7 EE D> e dw
0o XX o Xy
I = - (2-193)
1(K,-K ) '
@ * -~ 4
FwmEde T T a2 e T odw
(o] Vy X [o] vy

from which all the remaining parameters can be calculated in the same way as
they were in the earlier representation.

Note that the total intensity of the x and y components of the incident

-

line are given by:
® *
1= <CE>d and 1°-=
X o X X y

o— 8

*
<E E > dw (2-194)
yy

and the total intensity of the incident line, Io, is given by
0_.0 o
—Ix + Iy

An important consequence of the fact that a real detector measures the

(2-194a)

intensity over a range of frequencies and not at a single frequency is made
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apparent 1In this representation. For if K+ and X_ are not constant over the
measured range of frequencies, then; (from matrix 2-193) even if the
incident light is completely polarized, the transmitted light is only
partially polarized since Det J, # 0. That is; even though the light is
completely polarized at any given frequency w, the overall line is found to
be only partially polarized when it is measured experimentally.

Consider the situation where the gas acts as a ﬁolarizer by absorbing
the x component of the incident 1light. The overall effectiveness of the gas
as a polarizer for the entire line can be determined from the degree of

polarization P_ and the fractional change in the intensity of the polarized

o o]
J
component XY | An ideal polarizer would have g” =1and XL = 1. That is
IO . 1 0
y y

the entire line would be completely polarized and the transmitted y

component would be unattenuated. In general it can be assumed that the

]

smaller —ZZ-, the greater the distortion of the line shape of the incident

10
y

line as a result of traversing the gas. Therefore it is desirable to choose

the condition of the gas such that

0
J
P > 1 and 2L > 1, which implies XL + 1/2
IO
y

To illustrate the ideas presented in thils section J;y and j:x are

calculated as functions of the magnetic fileld strength for the 253.7 nm line
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of mercury using the properties listed in the appendix. The absorbing gas
consists of a 3 c¢m length of ngoz. The numerical calculation is performed
for a number of gas temperatures, with the gas density determined from the
known vapour pressure. For simplicity the incident light is unpolarized and
has a Gaussian line profile.

For convenience, the equations used in the numerical calculation are

collected below.

From the matrix J (2-193)

© ® * -k_1 - © * —kIQ
J =[<EE>e dw, J_=[ <E E > T dev here £ = 3 cn.
XX 0 X X vy o ¥y X

From equations (2-177), (2-173), (2-174) and (2-172){

) A(Jxnyy - nyJyx)]“2

p=[1 = —
(I +3 )2
XX yy

(2-195)

But, since the incident light 1s chosen to be unpolarized, from matrix

(2-180), J.=J =0 and
xy yx

£o-5
A (2-196)
J +3J

yy

Furthermore, for an unpolarized incident beam, from equations (2-166) and

* *
(2-157) BE> = EED> = [ (0)/2
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The Gaussian line profile selected for the incident source line is

given by:

(2-197)

where D is the half-width and the profile has been normalized such that from

equation (2-194a) the total incident intensity I° is equal to 1; i.e.
o0 *
P =/ 2 EED> dw =1 : (2-198)

From equations (2-129) and (2-130)

ky = bnky T Re [1/2 W(aj+ib) + 1/2 W(ay + 1b)], ko = 4n¥, = Re [w(a, + 1b)]

where, from equations (2-88) and (2-89)

Nef e?nl/2

= —2  _ in MKSA units or
Sneovomepg
chaeznl’2

Ky = ——————— in cgs units and

ZW)mé»&
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2
n

the density of the atoms in the ground state

the speed of light

0
1

fa = the absorption oscillator strength (see equation (2-82)).

e = the electron charge

€ ='the Permittivity of free space

m, = the electron mass

wy, = the resonance frequency of the line (see equation (2-7))
ZKBT

Vo = (5r)*/? (see equation (2-29)) and

the Boltzmann constant

o

T = the temperature in degrees Kelvin
M = the atomic mass.
w(au + 1ib) 1is the complex error function defined by equation (2-78) and from

equations (2-80) and (2-81)

Ho
au = "70‘(;'0— (w—wo- —ﬁ- o Bu)
_ c
b = Ty (/2 Yaj) where

#y = the Bohr magneton (see equation (2-4))

gja = the Landé g factor for the state aj; (see equation (2-6))

B = the magnetic field strength

Yaj = the total Lorentz broadening width, (see equation (2-39))

From equation (2-31)

Yaj = YnF YR
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where Yy 1s the natural line width defined by equation (2-18)
Yr is the resonance broadening width.
In the calculation the Ali and Griem expression (2-19) was used.

In Fig. 7, j;y is plotted as a function of magnetic field strength for
three different gas temperatures, 300K, 350K'and 375K. Note that Jxx is
unaffected by the magnetric field and has a constant value equal to Jyy at
zero field. The half width of the source line, D; is 25 1073cem™l, Figs. 8
and 9 are the same as Fig. 7 except that the half width of the source line
has been Increased to 40 103 cm™! and 60 103 cemt respectively.

In the next chapter the polarizing properties of a mercury gas are

examined experimentally.
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CHAPTER T1II

I11.1 THE EXPERIMENTAL DESIGN

A schematic diagram of the experimental arrangement is given in
Fig. 10. The object of the experiment was to determine the state of
polarization; or more specifically the coherency matrix fn; of light
corresponding to the 253.7 nm line of mercury after the light traversed a
mercury gas cell immersed in a magnetic field.

As 1s evident from Fig. 10, the experiment closely paralléled the ideal
experiment described in the last chapter, and the method for experimentally
determining the coherency matrix is indicated by equation (2-192) which

defines fn. Recall:

xy eig) sin¢ cos¢

= 2 24 + -1£
I1(b,E) Jxx cos<¢ + Jyy sin‘¢ (nye +J
(where the superscript = has been omitted for convenience).

Measuring the intensity I(¢,f) for four independent combinations of the
varlables ¢ and § leads to four independent equations which can be solved
for 3 ,J ,J and J__ . While there are many acceptable choices of the

XX° yy ¥yx Xy
four combinations of ¢ and £, the following set of measurements was used in

the experiment:

a.) Polarizer along x—axis, thus H_(0,0) = Jxx

b.) Polarizer along y=-axis, thus Iz(n/Z,O) = ny (3-1)

c.) Polarizer set at 45°, thus I;(n/4,0) = 1/2 (Jxx + Jyy) + Re(ny)

d.) Polarizer set at 45° and quarter-wave plate inserted with fast axis

along x-axis, thus L (n/4, n/2) = 1/2(Jxx + Jyy) - Im (ny).
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These four equations are linearly independent and easily solved for

Jxx’ Jyy’ Re(Jxy) and Im(Jxy), yielding the complete coherence matrix.

The experimental set of x-y axes was arbitrarily selected; hence the
experimental x-axis does not necessarily lie along the direction of the
magnetic field as in the theoretical description. This 1s explained in more
detail in a later section.

Briefly; the experimental method was as follows. A beam of light
propagates through a cell filled with mercury vapour which is immersed in a
magnetic field. The magnetic field is transverse to the direction of
propagation. The light next traverses the quarter-wave plate and polarizer,

_which are arranged in one of the four preselected combinations discussed
earlier in (3-1). The light then passes through a monochromagor which
selects the line of interest. Finally the intensity of the entire line is

measured by a photomultiplier and an oscilliscope.
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The Light Source

It was essential that the light source used in the experiment produce a
stable, intense, unpolarized and reasonably narrow 253.7 nm line. The
source most commonly used in experiments of this kind is a microwave
excited .electrodless discharge lamp, (see G. Stanzel; 1974). However, the
extreme sensitivity of neighboring experiments to microwave radiation
precluded its convenient use in this experiment.

Two other light sources were considered; a high voltage mercury
discharge tube and a standard low voltage laboratory mercury lamp filled
with natural mercury and argon. The lamp was finally selected after a
spectroscopic analysis demonstrated that the lamp produced a narrower
253.7 nm line than the tube at the required intensity.

The stability of the 253.7 nm line produced by the lamp was examined by
monitoring its intensity over a period of 30 hours. Following an initial
warm—up period of two hours; the intensity of the line was found to drift by
as much as 30% over the 30 hour period. However, the drift was not
constant; there were long periods; typically greater than four hours, during
which no measurable change In the intensity was observed. These long period
of stability'were followed by relatively bhrief periods; during which changes
in the intensity of up to 20% were observed. These periods of instability
persisted despite efforts to locate the source of the instability and
eliminate it. Ultimately, the experimental procedure was simply adapted to
accommodate the instability. This adaptation 1s described in a later

section.
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The Gas Cell

" The gas cell was a cyiinder; 3.7 cm long and 2.5 cm in diameter,
containing a dropiet of natural mercury and its vapour. Before the mercury
was added, the cell was purged of impurities by heating it as it was
evacuated by a high vacuum pump. The cell was equipped with high quality
quartz windows which, even under the strain of the partial vacuum, had a
negligible effect on the state of polarization of the light.

Since the mercury vapour pressure (and hence the gas density) is highly
temperature sensitive, the temperature of the gas cell had to be carefully
controlled. This was accomplished by immersing the cell in the temperature
regulated water bath sketched in Fig. 11. Water was circulated past the gas
cell and into a large dewer vessel which contained a heating coil. An
electronic monitoring device was constructed which continuously measured the
.temperature of the water and automatically switched the heating coil on and
off when the temperature reached certain fixed settings above and below the
desired temperature. By ;his means the mercury temperature could be set at
any value between 20°C and 30°C with an accuracy of +1/2°C. Mercury
condensation on the windows of the cell excluded temperatures greater than

30°C.
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The Magnet

The electro-magnet and its current supply were manufactured by Varian
Associates for use in Nuclear Magnetic Resonance studies and thus provided a
very stable and homogeneous magnetic field. Measurements of the uniformity
of the field, using an Incremental Gauésmeter Hall Probe; showed that the
field never varied by more than .3% over the length of the cell.

The magnetic field was calibrated using both a Rotating Coil Gaussmeter
with a rated accuracy of .1%; (at the calibrated field strength of 25 KG)
and, an Incremental Gaussmeter Hall Probe. To ensure a consistent result the
field was édjusted; both during the calibration and the actual experiment,
by first setting the current at a large preselected value and then lowering
the current to the largest of the current settings to be used in the
calibration. The current was then lowered sequentially through the
pre—determined current settings which were used both for the calibration and
the experiment. 1In this way variations due to hysteresls were reduced.

The two sets of measurements were found to be consistent to about 1% over
the complete range of experimental field strengths. When no current flowed

in the magnet a residual field of 90t 1G was found to persist.
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The Aperture Stops and Lenses

The first aperture stop, (S1 in Fig. 10) encountered by the light
served only to define a sufficiently narrow light beam to prevent light frém
being reflected into the detector from the walls of the gas cell or the
poles of the magnet. The second aperture stop (SZ) limited the beam to a
total divergence of less than .75°.

The three lenses Ll; L, aﬁd Ly (see Fig. 10) were all made of quartz.
The purpose of L, was to concentrate the light emitted from the lamp into a
narrow and intense beam, hence a lens with as small a focal length as
possible was selected. The lens L, collimated the beam before it passed
through the polarizer and the quarter-wave plate and thus permitted the
diameter of the second stop to be made as large or larger than the face of
the polarizer, which in turn greatly increased the intensity of the light
reaéhing the monochromator. The lens L; was used to focus the beam on the
-entrance slit of the monochromator. The focal length of L; was such that
the f-number of the lens was only slightly larger than the f-number of the
monochromator. Thus effectively all of the monochrometer's grating was used

and the dispersion of the instrument approached its rated value.
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Polarizer and Quarter-Wave Plate

A Glan-Thompson polarizer; with a transmissivity of about 40% for a
wavelength of 253.7 nm; was used in the experiment. The polarizer could be
set at any angle in the plane normal to the optical axls with an accuracy of
better than 1°.

The'quarter—wave plate was designed specifically for use at the
253.7 nm wavelength. The plate was a:true quarter-wave plate in the seunse
that the relative phase shift between the two components was m/2 and not w/2
+ m 2n wherem = 1, 2, 3..... . This property was necessary to ensure that
the relative phase shift never exceeded the finite coherence length of the
light, which in turn ensured that the coherence length did not manifest
itself in the experimental measurements.

Most of the intensity measurements required only the polarizer énd not
the quarter—-wave plate. Therefore the quarter-wave plate was fixed to a
pivoting mount which enabled it to be moved in and out of the light beam
without realignment. Measurements taken with and without the quarter-wave
plate were made compatible by determining the attentuation of the light by
the quarter-wave plate. It was found that the intensity of the light was
diminished by a factor of 1/1.14; regardless of the angle of the quarter-
wave plate's fast axis. Thus all measurements takean with the quarter-wave
plate in place were multiplied by the factor 1.14 before being combined with

the measurements taken without the quarter—wave plate.
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Monochromator

The monochromator was a Spex 1800, with a rated dispersion of 10A°/mm.
in the first order. The 253.7 nm line was observed in the 3rd order with
the entrance slit set at 140 pm and the exit slit set at 500 pm to maximize
the intensity. This resulted in a bandpass of about 1.7A° which was

sufficlent to exclude all other detectable lines emitted by the source.

Detector

The intensity of the line; isolated by the monochromator; was measured
by observing the oscilliscope trace of the output of a photomultiplier
placed at the monochromator's exit slit. To reduce noise the light was
chopped to give a series of 2 msec. pulses. Shorter pulse lengths were
necessarily excluded by the long observed rise time of the oscilliscope
trace.

The linearity of the detector system was tested using a series of
neutral denéity filters to produce a range of intensities encompassing the
range found in the experiment. A least squares fit to a straight line was
performed on the data with a resulting linear-correlation coefficient of
r = .998 for the 14 data points, (see Bevington; 1969). This high degree of

linearity allowed the height of the oscilliscope trace to be taken as
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directly proportional to the intensity over the inténsity range of

interest.

Effect of the Magnetic Field on the Experimental Apparatus

To minimize the effect of the magnetic field on the light source and
the photomultiplier; each of these devices was surrounded by a p-metal
shield. The maggtic field strength inside the p-metal shield of the light
source was measured using an Incremental Gaussmeter Hall Probe. It was
found that the field was as always less than .77 of the field at the centre
of the magnet poles; which, even for the largest fields used in the
experiment, would lead to a negligible Zeeman Splitting of the source
lines.

The effect of the field on the remainder of the system was tested by
removing the absorption cell and monitoring the intensity as the magnetic
field was increased. Even with flelds up to 4 KGaﬁss there was no

detectable change in the intensity.
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IIT.2 THE EXPERIMENTAL PROCEDURE

The He-Ne alignment laser was positioned to define an optical axis
parallel to the surfaces of the poles of the magnet and through the centre
of the gap between the poles. All of the optical instruments; including the
light source and the entrance slit to the monochrometer; were initially
centred on the optical axis using the alignment laser. The lens L, and the
light source were placed on moveable mounts allowing the light source to be
moved across the optical axis and the lens L, to be moved along tﬁe axis.
These two devices were adjusted until the focal point of L, was positioned
on a region of excited gas in the lamp which produced the most intense
253.7 am.

The lens L; was placed on a moveable mount which enabled it to be
manoeuvered to the point in the plane normal to the optical axis which gave
the maximum intensity. It was found that when the angle of the polarizer
was changed, the position of Iy which gave the maximum intensity also
changed due to a deflection of the beam By the polarizer. Although this
effect could be significantly reduced by carefully positioning the polarizer
in its mount, it could not be completely eliminated. Thus whenever the
polariéer was rotated the lens L, was repositioned to give the maximum
intensity.

In general a monochromator polarizes the light which it disperses.
This property of the monochromator was studied because in the course-of the

experiment it was necessary to send light polarized at different angles into
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the monochromator and the measured intensity of this light would be affected
1f the monochromator acted as a polarizer.

To examine the effect; the absorption cell was removed so that only the
unpolarized light from the source was incident on the polarizer. The
polarizer was sequentially rotated through 180° while the max. intensity of
the 253.7 nm line was measured. Tt was found that the max. intensity was
unaffected by the angle of the polarizer. This result was greeted with some
scepticism and the measurements weré repeated for the 763.5 nm line of
argon. In this case the intensity varied by a factor of more than four over
the 180° rotation. Since the polarizing effect of a monochrometer is known
to be highly frequency dependent, with frequencles where there is no
polarizing effect, (see K. Rabinovitch et al., 1965 and G.W. Stroke, 1963),
the result for the 253.7 nm line was regarded as one of those rare instances
in experimental physics where nature conspires to lessen the work of the
experimenter.

The x-y axes of the polarizer were selected arbitrarily rather than
setting the x—-axis along the field as in the theoretical analysis. Thils was
done because the only method available for aligning the axes was to find the
polarizer angles which produced the maximum and minimum intensity for light
polarized by the gas cell in the magnetic field; and this could only be done
to an accuracy of a few degrees. It was felt that rather than introducing
this further source or error it was simpler and more precise to calculate
the maximum and wminimum intensity from equation (2-192) using the J obtained

from the arbitrary set of axes.
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The experiment required the quarter-wave plate, when in place, to be
oriented such that its fast axls was parallel to the designated x—agis of
the polarizer. The most sensitive method found for accomplishing this was
as follows. Another Glan-Thompson polarizer (P,) was placed along the
optical axis just past the sécond aperture stop. With the monochromator set
for the intense line of the He-Ne laser; and the quarter-wave plate
positioned out of the laser beam, the polarizer P, in Fig. 10 was rotated
until the measured intensity was minimized; i.e. the polarizers were
crossed. This position of the polarizer P, was henceforth designated as the
x-axis. The quarter-wave plate was then swung into position between the two
polarizers, and rotated in the plane normal to the optical axis until the
measured intensity was again a minimum. This could only occur if the fast
and slow axes were aligned with the pass directions of the two polarizers.
It was found that using this method the quarter-wave plate axes cogld be
positioned along the x-y axes of the polarizer P, to within 1°,

Of course this -method cannot distiguish between the situation where the
fast axis 1s along the x-axls and the situation where the slow axis is along
the x-axis. Returning to the equations (3-1) it is evident that the only
effect of this uncertainty is to leave the sign of 1mey, or equivalently
the handedness of the elliptical wave in doubt. It was felt that this was
of little importance and no attempt was made to distinguish getween the fast
and slow axes of the quarter-wave plate.

As a check on the experimental technique a mock experiment was

performed using the Glan-Thompson polarizer P, which was known to produce
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highly linearly polarized light. With no current flowing in the magnet,
the polarizer P, was placed between the poles of the magnet while the gas
. cell was placed between the second aperture stop Szvand the lens L,. To be
certain that the residual field of the magnet would not affect the Hg gas,
the cell was surrounded by a p-metal shield. With this arrangemeﬁt the
complete set of measurements (3-1) was taken. Tt was found after analyzing
the data that P_ = 1.00 £ .03 and |

ny = -,02+ .13
(an explanation of the error estimates is given later). Thus tg within the
accuracy of the experiment the light was found to be completely linearly
polarized. This result indicated not only that the experimental system was
performing as expected; but also that any depolarization of the light; by
the gas or intervening optics; was entirely negligible.

The actual experiment was performed with the instruments positioned as
in Fig. 10. The initally unpolarized light from the source passed through
the gas cell, which was held at a constant temperature and immersed in a
uniform magnetic field of known strength. With the polarizer along the
x-axis as in (3-1a) and the lens L; positioned for maximum intensity, the
height of the oscllliscope trace corresponding to thé transmitted intensity
of the 253.7 nm 1line was recorded. The current in the magnet was then
lowered to the next setting at which the magnetic field had previously been
measured and the intensity was again measured. After a representative set
of measurements had been taken covering fields from about 250 G to 3500 G,

the polarizer and the quarter-wave plate were set at the next combinatlon
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described by (3-1) and the process was repeated for'the same magnetic field
settings. This was done for the four combinations described by (3-1). The
complete set of measurements provided all of the information necessary for
determining J as a function of field strength at a given temperature. The

problems created by the unstable light source are considered below.

The Unstable Light Source

The instability of the light source affected the experimental procedure
in a number of ways. First; in order to reduce the probability of a period
of instability occuring during the taking of a given set of measurements,
the number of measurements in the set had to be limited to permit the
complete set to be taken in about 3 héurs. Second; at the beginning, the
end and periodically during the course of the experiment; the intensity of
the light at a fixed setting was measured to ensure that the intensity of
the source had remained constant throughout tﬁe set of measurements. When a
measurable change in this intensity was observed the complete set of
measurements was rejected.

Finally, it might appear that because the magnetic field settings were
not exactly reproducible, greater precision would result if all four
measurements (3-1) were taken before the field strength was changed.
However, because a significant period of time was required to reset the

polarizer and the quarter-wave plate and to realign 13; the time necessary
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to complete a set of measurements wogld be greatly increased if this
approach were adopted and the Instability in the intensity of the source
would begin to influence the results, thereby negating any gain in
precision.

In addition to the experiment using an unpolarized light source, an
attempt was made to study the effect of the gas on a linearly polarized
incident light beam produced by inserting the polarizer P2 in front of the
gas cell. Unfortunately; this attempt was unsuccessful because the
polarizer P, had a low transmissivity and with the intensity of the light
further diminished by the polarizing properties of the gas cell the
resulting intensity was too weak to provide a meaningful intensity

measurement.
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I1T.3 EXPERIMENTAL ERROR

The experimental intensity measurements could not, of course, be made
with absolute precision. Experimental error was introduced into the
méasurements principally from three sources. First; there was error in
reading the height of the oscilliscope trace; in part because of the
inherent imprecision of such a reading, Sut primarily because the background
noise of the photomultiplier caused the height of the trace to fluctuate.
Second, the repositioning of the equipment between each of the four series
of measurements described by equations (3-1) unavoidably perturbed the
alignment of the equipment. Finally, because of the effects of hysteresis,
the same electrogmagnet current settings may not have produced precisely the
same magnetic field strengths for each of the four measurements (3-1).

It 1s difficult to determine directly the impact of each of these
factors on thé magnitude of the error in the intensity measurements. In
general, the best estimate of the experimental error would be obtained by
repeating the complete set of measurements until a statistically meaningful
sample is collected, from which the standard deviation in the intensity at
each point could be calculated. This approach was; however, unworkable in
this experiment because the t{me required to collect a large sample would
greatly exceed the time period during which the light source remained
reasonably stable. 1If the only consequency of the lamp's instabllity was a

drift in intensity it would have been possible to renormalize the results
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before comparing them. However; the observed change in the lamp's intensity
was accompanlied by a change in the line shape of the source. This produced
a variation in the measurements which was unrelated to the actual
imprecision of the experimental technique. Thus, to achieve a better
estimate of the actual error in the experimental measurements an alternative
approach was adopted. 1Instead of taking a large number of measurements at
each magnetic fleld setting, a large number of measurements was taken at
only a small but representative group of field settings. Unlike the
complete set of measurements, these measurements could be taken in a
sufficiently short period of time to avold the consequences of the changing
intensity and line shape of the source. Thus, the standard deviation in the
intensity measurement at each of these representative settings can be taken
as truly indicative of the magnitude of the error in the experimental
measurements.

When the standard deviation in the intensity measurements was
calculated it was found not to be simply proportional to the intensity of
the light. It was instead found to be virtually constant for measurements
taken at the same oscilliscope voltage scale setting, even when the height
of the trace varied considerably. However; the standard deviation was found
generally to Iincrease when the voltage scale setting was decreased (in order
to observe less intense signals). This result suggests that the principal
cause of error in the measurements was the inherent imprecision in

determining the height of the oscilliscope trace against the background
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nolse, since the nolse becomes more pronounced as progressively lower scale
settings are used.

Since the magnitude of the error remained reasonabiy constant for a
given voltage scale setting, it was possible to provide a reasonable
estimate of the error in the intensity by ascribing the same absolute error
oy to all measurements taken at the same scale setting, (the subscript i
identifies the intensity measurement associated with the error oi). It was
this ascribed error which was used in all subsequent calculations involving
the experimentally measured intensities.

The error in the intensity measurements o leads to an error in all of

i’

the quantities, such as P, Jxx’ and Jyy’ that are calculated from the
measured Intensities. In general, each of these quantities is a function of
the four measured Intensities given in equations (3-1) and therefore may be

represented by:

£(L,L,5,L,) = £(1,) (3-2)

Since there is no correlation in the errors ci assoclated with each

intensity measurement T the error in the experimentally determined

1’

quantity o_. is given by:

f

2 -
¢ %y

L, LT .1.+>)2

1% o1, (3-3)

ne1 e~



- 109 -

(See Bevington, 1969, p. 58.)
The error in each experimentally determined quantity presented in the

next section was found from this equation.
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IT1I.4 EXPERIMENTAL RESULTS

In this seétion the experimental results are presented in a form which
permits a direct comparison with the theoretical results.

The experimental coherency matrix J, as initially determined from the
equations (3-1), can not be directly compared to the theoretical coherency
matrix because the experimental x—-axis is not along the direction of the
magnetic field. However, the two matrices can be made compatible by
performing a transformation from the experimental (x;y) axes to a new set of
axes (x',y'). The x' axis is aligned with the direction of the magnetic
field, and forms an angle ¢ with respect to the x—axis. The coherency
matrix J transforms under this rotation into the matrix J' which is readily
expressed in terums of the matrix elements of J and the angle ¢, (see Born

and Wolf, 1975, P. 548).

J ¢ +J S2 4+ (3 _+J _)CS (J_ ~J )YS+J C2 -3 2
XX Yy xy yx yy XX Xy yx
(3-4)
(J -J YSs+J 2 -J 2 J 2 4+J3 € -(J__+J _)cs
yy XX yx Xy XX vy xy yx
where C = cos ¢ S = sgin ¢

The elements of J' are directly comparable to the theoretical coherency

matrix once the angle ¢ 1s determined.
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The angle ¢ may be determined by noting that when the incident light is
unpolarized and the x'-axis is aligned with the magnetic field the theory
requires the coherency matrix of the transmitted light to be of the form

(see equation 2-180)

(3-5)

That is, the transmitted light may only consist of an unpolarized component
and/or a linearly polarizea component with the direction of polarization
along either the x' or y' axis. Thus, the angle ¢ may be found from the
matrix (3-4) by setting J;y = J;x = 0 and solving the two equatiouns for ¢.
When this is done it is found that:

$ = arctan (%)l/z or ¢ +n/2 = arctan (gﬂl/z (3-6)
where B and C are calculated from the experimental intensity measurements,
(with unpolarized incident 1light) using the equations (3-1), (2-173) and
(2-174). A choice can be made between the two possible solutions by
comparing them with the observed orientation of the experimental x-axis with

respect to the magnetic field.
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The foregoing method for determining ¢, (and hence J') is of course
only valid if the transmitted light is found to consist entireiy of an
unpolarized component and/or a linearly polarized component as predicted by
the theoretical analysis. For, 1f the transmitted light is found to contain
an elliptically polarized component, that 1s 1f Im(ny) # 0, then from fhe
matrix (3-4) J;y # 0 for all ¢ and the method is inapplicable. Thus; before
the suggested technique for finding ¢ can be used; the theoretical
prediction that Im(ny) = 0, (for unpolarized incident light), must be
experimentally verified. To this end; Im(ny) was calculated at each
magnetic field setting using the experimental intensity measurements and the
equations (3-1) and (3-3). The result for a gas at 22.6°C is plotted in
Fig. 12.

It is evident from Fig. 12 that Im (ny) 1s zero at each magnetic field
setting to within experimental error. However, it 1s also evident that the
average value of Im(ny) is not zero. In fact if ny is averaged over all
field settings, it is found to be:

-8.8 x 102 + 1.7 x 1072
Thus, it would appear that there is a small elliptical component in the
transmitted wave. This small component can; however; be completely
accounted for by the systematic error which is introduced when, in
calculating Im(ny), the measurement I, ([see equations (3-1)] is multiplied
by the constant factor G = 1.14 in order to compensate for the attenuation
of the light by the quarter-wave plate. The error og in determining G is

* 0.04 and, using equation (3-3), this produces a systematic error in
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Im(ny) of about 0.12 for a typical value of I, . Thus; the apparent
elliptical component can be attributed entirely to this systematic error and
the theoretical prediction that Im(ny) = 0 for all field strengths is
verified to within experimental error. This result justifies using
equations (3-6) to determine ¢ in the experiment. The average value of ¢

was found to be

86.2°+0.8°

For the purposes of comparing the experimental results with the
theoretical results the quantities of primary interest; (when considering
unpolarized incident light), are J;x ; Jy; and the degree of polarization
P, (where again the superscript « has been omitted from ?w). These
quantities were determined from the experimental measurements in the
following ways.

" The degree of polarization P; is independent of the cholce of x,y axes
.and therefore was simply determined from the elements of the experimental
coherency matrix J, which were in turn determined from equations (3-1).
From equation (2-195):

43 I .- I I ) 12
p=[1- Yy y Ix 1

J +J )¢
( % yy)

J;x and J;y can be calculated from the matrix (3-5) by simple
substitution, once the angle ¢ and the matrix J have been determined.

Instead, however, J;x and J;y were calculated using a set of equations in
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which the values of Jxx' and Jyy' are not directly dependent upon the

calculated value of ¢. This set of equations is agaln based on the fact

that Im(J__) = 0 at all field strengths which implies that J' = J' = 0,
Xy Xy ¥x

By further noting that the trace and the determinant of the matrix J' are

invariant under rotational transformations the desired set of equations can

be readily derived from the matrix J'.

J!'.=J__+J_)-A and J' = A
XX XX vy vy

when (3-7)

cC'' =0 and B' # 0O

and that:
J' =A and J' = (J __+J ) - A
XX yy XX yy
when
B'=0 and C' # O
where

A is given by equation (2-172) and B' and C' are found from equations
(1-173) and (2—1?4) and the matrix J' which is found from the calculated
values of ¢ and J.

It is clear from these equations that the error in determining ¢ only
affects the precision with which B' and C' are determined and these values
are only used to choose between the two possible solutions for J;x and J;y'
Thus, when equationé (3-7) were used to calculate the experimental values of
J;x and J;y, the uncertainty in J;x an& J;y was not affected by the

uncertainty in determining ¢.
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The experimental values of Jxx" Jyy' and P for the two gas
temperatures of 22.6°C and 30°C are plotted in Fig. 13, 14, and 15.
In the next chapter the theoretical and experimental results are

comared.
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CHAPTER IV

COMPARING THEORY AND EXPERIMENT

When the experimental curves of J;x J;y and P; (given in Figs. 13,
14, 15) are compared with the theoretical curves for J;x , and J;y and
- (given in Figs. 7, 8, and 9) it is evident that there are significant
differences between the two. This result is; however; not unexpected since
certain characteristics of the experiment do not accord with certain
assumptions made in calculating the theoretical curves. 1In particular, the
theoretical calculations were carried out using the properties of the
single, even isotope of mercury; Hg?oz, (with nuclear spin I = 0); while the
experiment was performed using natural mercury which consists of 7 isotopes,
each of which has a unique spectrum. Furthermore, while the theoretical
curves were based on an incident source line with a guassian line profile,
the éxperimental source line had a much more complex shape.

In principal it is possible to carry out the theoretical calculation
using the properties of natural mercury and an incident line profile
matching the experimental source 1ine. However, in practice this complex
calculation can only be performed with limited precision and no attempt was
made in this study to perform such a calculation.

In this section the differences between the assumptions in the
theoretical calculation and the characteristics of the experiment are
examined. It is then suggested that when these differences are accounted

for the theory and experiment are in qualitative agreement.
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IV.1 The Effect of Using Natural Mercury in the Absorption Cell

When the spectrum of natural mercury is examined the 253.7 nm line {is
found to consist of a series of very closely spaced lines; (Schweitzer;
1963). This complex line spectrum, results from superposing the hyperfine
structure ¢f the various 1isotopes of mercury which are present in natural
mercury.

Different isotopes of the same element have different spectra because
the energy levels of an atom are affected not only by the nuclear charge but
also by other nuclear characteristics; such as the nuclear angular momentum
or spin, I, the nuclear mass and the nuclear charge distribution. The
effect of these nuclear characteristics is examined in detail in Kuhn; 1969
at page 329 and in Sobel'man, 1972 at page 204. For‘the limited purpose of
explaining the results of the experiment it is sufficient simply to note
that the chief effect of the difference in nuclear mass and charge
distribution between isotopes of the same element is a small shift in the
frequencies of the line spectra. The effect of the nuclear spin I is

briefly considered below.

Effect of Nuclear Spin

Isotopes with an odd mass number have a half-integral nuclear spin,
while isotopes with an even mass number have an integral nuclear spin.

Isotopes with an even number of protons and neutons have zero nuclear spin.
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The nuclear spin gives rise to a nuclear magnetic moment; Bps which is
of the order of 1000 times smaller than the Bohr Magneton. The nuclear
nmagnetic moment interacts with the magnetic field caused by the orbital
motion of the electrons, and to a lesser extent with the magnetic field
generated by the electron spin. This interaction leads to a shift in the

energy levels, AEI’ which is given by:
AEL = A/2 (F(F+1) - T(I41) - J(I+D)) (4-1)

where

A is the magnetic dipole interaction constant,

¥ is the total angular momentum of the atom and is produced by the
coupling of I and J in complete analogy with the coupling of S and L to
produce J. The quantum values of F run from |J+I]| to |J-1].

A quadrupole coupling which courses a smaller shift in the energy
levels has been ignored. It follows from equation (4-1) that 1isotopes where
#0 will exhibit a hyperfine splitting of the spectral lines while isotopes
where I = 0, will exhibit no hyperfine splitting.

With these results, the structure of the 253.7 nm line depicted in
Schweritzer's paper can be understood. The even isotopes of mercury Hg?04,
Hg2°2, Hg2°° and Hglg8 produce 253.7 nm lines at slightly different
frequencies because of the different nuclear shapes, but, since I=0 for
these 1sotopes, their lines do not exhibit any hyperfine splitting. The odd

isotopes, Hglgg-and HéOI also produces a frequency shifted 253.7 nm line,
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but, sine I#0 for these isotopes, their lines exhibit hyperfine splitting
described by equation (4-1).

In weak magnetics fields, (those producing line spliting whiéh is
smaller than the hyperfine splitting); each hyperfine line splits into
Zeeman Components having a definite state of polarization. The first order

change in the energy levels, AEZ, is given by:

_ F(F+1) + J(J+1) - I(I+l)

AE, 2F(F+1) (8y5 o By (4-2)

where m has the values

m=F, F-1, .. , =F

When the magnetic field splitting exceeds the hyperfine splitting
equation (4-2) is no longer valid, and the spectral line splits into the &
and c-components given by equation (2-9) and each of these components is in
turn split into several equidistant hyperfine lines as a result of the
nuclear spin. It is important to note that when I=0, the Zeeman splitting
of the lines 1is simply governed by equation (2-9) and not equation (4-2).

It follows that when natural mefcury is immersed in a weak magnetic
field, the 253.7 nm lines of the odd isotopes will independently exhibit a
more complex splitting described by equation (4-2). This complex lines

splitting makes it difficult to describe the resulting absorption spectrum
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with precision, particularly since equation (4-2) becomes invalid at
relatively weak field strengths of about 1 KGauss. The splitting of the
lines will, however, be used in section IV.3 to describe the shape of the

ekperimental curves for J;x and J' 1in qualitative terms.

IV.2 The Shape of the Experimental Incident Line

The light éource ﬁsed in the experiment was a mercury lamp filled with
natural mercury and argon. While the lamp produced an intense 253.7 nm
line, most of the light was produced at the centre of the lamp's gas buld
and had to traverse a volume of cold gas before being emitted from the lamp.
As the cold gas would re-absorb some of the light the lamp would be expected
to produce a highly self-reversed line profile.

The 253.7 nm line produced by the lamp was examined in a spectrograph
which in the 5th order had a reciprocal linear dispersion of 400 mA/mm.
Unfortunately, this did not provide sufficiently high resolution to observe
the hyperfine structure or the detalled shape of the line. It was, however,
possible to estimate that the width of the line was between 70 and 85 mA.
Since Schweitzer's work shows that the width of the hyperfine structure in
natural mercury is less than 50 mA it may be assumed from the size of the
measured line width that eéch componet line was sufficiently broad to create
a continuious line profile marked by narrow troughs produced by the
re-absorption of the cold gas.

Iﬁ the next section th effect of this line profile on the experimental

curves for J' and J' 1s examined.
XX yy
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IV.3 The Experimental Results

The experimental and theoretical results are in broad agreement when
the differences between the theoretical assumptions and the experimental
conditions are considered.

In the theoretical curves, Figs. 7, 8 and ng;x is independent of
magnetic field strength while in the experimental curves, Figs. 13 and 14,
J;x varies with field strength. This difference 1s; however accounted for
by the presence of odd isotopes of mercury in the experimental but not the
theoretical absorption gas.

It was shown in matrix (2-180) that the magnitude of J;y is only
affected by the strength and frequency of the o-components of the absorbing
gas, while the magnitude of J;X is only affected by the strength and
frequency of the m-components. The even isotopes of mercury have zero
nuclear spin, (see the appendix) and a non-degenerates ground state and
therefore, from equations (2-129) and (2—130); only the o-components of the
253.7 nm line are field dependent. Thus, when the absorption gas consist
entirely of even isotopes of mercury, as in the theoretical calculation,
only J;y should be field dependent for the 253.7 nm line.

In contrast, odd isotopes of mercury which were present in the natural
mercury used in the experiment, produce both n and og-components which are
field dependent. This 1is because odd isotopes of mercury have a mon-zero
nuclear spin, I, (see the appendix) and this produces a degenerate ground

state with a non-zero angular momentum, F. The Zeeman splitting of the
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253.7 nm line is governed by equation (4-2). When equation (4-2) is
examined for all allowed transitions, it is found that some of the
n—-components are field dependent. Thus, when the absorption gas contains
odd isotopes both Jéx and J;y are field dependent.

While it is clear that the presence of odd isotopes in the experimental
absorption gas leads to the field dependence of J;x’ the shape of the curves
for J;x in Figs. 13 and 14 can not be verified by direct calculation. This
is because the dependence  of J;x on field strength depends critically upon
the line shape of the incident source line, and in the experiment this line
shape could not be determined with precision. The general shape of the J;X
curves can, however, be explained.

Referring to the emission spectrum of natural mercury (Schweitzer,
1963) and Fig. 13, the initial decrease in J;x with increasing field
strength is caused by the splitting of the m~component absorption away from
the centres of the absorption lines of the odd isotopes, Hg20l and Hg199.
.This splitting leads to an increased absorption of the m-component of the
source line and hence a decrease in the magnitude of J;x. The increase in
J;x at a field strength of about 2.4 X Gauss which is evident in Fig. 13 is
likely due to three éffects. First, some of the nm-components of the
absorption lines will be split beyond the width of the source 1line,
reducing the total absorption of the m—component of the source line.
Second, some of the m—component absorption lines will shift to the same
frequency, again reducing the total absorption of the n—component of the
source line. Finally, in stronger fields the coupling between J and 1

breaks down and the Zeeman splitting is no longer described by equation
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(4~2). At these higher field strengths the field dependence of some of the
n—-components 1s reversed and there lines again approach the centres of the
incident lines which reduces the total absorption of thekn—component of the
incident sourée line.

The most striking difference between the theoretical and experimental
curves for J;y is the oscillatory appearance of the experimental curves.
This feature can, however, be explained 1f the effect of having a number of
even isotopes in the absorption gas is examined.

From Fig. 13, the magnitude of J§y peaks at field strengths of ébout
1.25 X Gauss and 2.5 K Gauss. Using equationl(249) these field strengths
lead to a splitting of the o-component absorption lines of the even isotopes
from the line centre by 86.75 x 103 cm™ and 173.5 x 10 3cm~! respectively.
By referring to the emission spectrum of natural mercury (Schweitzer, 1963),
it can be seen that the emission lines of the even isotopes are separated

from each other as shown below

a) between 202 and 204 174 x 103 cm™!
b)  between 200 and 202 177 x 103 e}

c) between 198 and 200 160 x 103 cm!

Thus, a frequency shift of about 86.75 x 103 cm™l would place the
o-component absorption lines approximately half-way between the line
centres, while a shift of about 173.5 x 103 cn! would place the g-component
absorption lines approximately at the centre of the adjacent absorption

line. It therefore appears that the oscillatory appearance of J;y is caused
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by the crossing of the g-component absorption lines which results in a
decrease in the total absorption of the g-component of the incident source
line.

In conclusion, the differences between the theoretical assumptions and
the experimental results preclude using the latter to verify directly all of
the theoretical predictions. However, when the theoretical predictions
could be tested directly as in the case of Im (ny) the theory and experi-
ment were in good agreement. Further, even when the theory could not be
tested directly as in the case of J;x and J;y, the theory was shown to be at
least consistent with the experimental results.

In the next Chapter the conclusion which may be drawn from this study

are examined in wmore detail.’
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CHAPTER V

Concluding Discussion

The object of this study was to examine the feasibiiity of using the
traverse Zeeman effect to produce a narrow band polarizer in the
ultra-violet region. The theoretical model indicated that an absorption gas
éonsisting of the even isotope of mercury; ngoz; would act as a high
quality polarizer for narrow 253.7 nm emission lines produced by an Hg202
source. The experimental reSults; while not inconsistent with the theory,
were Insufficient to verify the theoretical predictions because of the
complications introduced by the hyperfine structure of natural mercury in
the absorption gas, and by the broad self-reversed source line.

The general theoretical model which was developed for the transmission
of light in a gas immersed in a magnetic field is applicable to a variety of
spectroscopic studies. Equation (2-112) provides a complete description of
the propagation of an EM-wave 1n a gas with a non-degenerate ground state
where the magnetic field may assume any orientation with respect to the
direction of propagation. A demonstration of how equation (2-112) could be
extended to the case of a gas with a degenerate ground state was presented
in equations (2-131) to (2-134).

A general description of the state of polarization of an incident wave

after traversing a gas in a transverse magnetic field was provided by matrix



- 130 -

(2-179). The matrix is valid for incident waves with any initial state of
polarization.

The theoretical calculation of the polarizing effect of an Hg292
absorption gas an ngoz created 253.7 nm emission lines with a variety of
line widths indicated that the technique should produce high quality narrow
band polarizers in the ultra-violet region.

The experimental results supported some of the theoretical predictioné.
For example, the theoretical prediction tht Im (ny) = 0 for an unpolarized
incident source line was verified to within experimental error. However,
the hyperfine structure of the natural mercury used in the experimental
absorption gas, and the broad source line generally precluded a direct
comparison between theory and experiment.

The width of the source line limited the variation of J;y to a single
order of magnitude, while the theoretical curves of J;y varied over several
orders of magnitude. It was for this reason that the theoretical and
experimental plots of J}y and J;x were not presented in the same graph.

The hyperfine structure caused J;; to be field dependent contrary to
the theoretical model. Further, the isotope shift of the 253.7 nm line and
the presence of a number of even isotopes in natural mercury lead to line
crossing which in turn caused the plots of J;y as a function of field
strength to assume on oscillatory form.

The ﬁrecise shapes of the experimental curves of J;x and J;y could not
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be theoretically calculated because the source line profile, upon which the
calculation critically depend, could not be measured with the limited
resolution of the available spectrograph.

Thus, while the experimental results confirm the theory in some limited
respects, the experiment could not provide a quantitative test of the
theory. To test the theofetical prediction that the transverse Zeeman-
effect can be used to produce a high quality polarizer a gas consisting of a
single isotope with zero nuclear spin should be used in the experiment.
Further‘the source line should be reasonably narrow; if it is broad, then

its line profile should be known.
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APPENDIX

Properties of the 253.7 nm Line

a) A term diagram of the Atomic Spectra of Hg can be found in Condon and

Odishaw (ed.), Handbook of Physics, McGraw-Hill Book Company, New York,

196, at page 7-45.

b) Lifetime of the state 3Pl’ from Lurio, 1965

3 =1. -7 .
Taj( Pl) 1.14 x 10 sec

which gives an absorption oscillator strength, fa, of

fa = 2.54 x 1072

c) Landé g, (3P1), from Lurio, 1965

3
gy jC R = 1.486094(8)
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d) Natural Isotopes of Mercury

ISOTOPE % NATURAL ABUNDANCE NUCLEAR SPIN, I ATOMIC MASS
go Hgt 28 0.146 0 195.9658
goHgt?® 10.02 0 197.9668
go He!?? 16.84 /2 - 198.9683
goHg?00 23.13 0 - 199.9683
g0 B?0! 13.22 3/2 200.9703
goHe202 29.80 0 201-9706
g0 Hg?0" 6.85 0 203-9735

(Taken from Handbook of Chemistry and Physics, The Chemical Rubber Co.,

Cleveland, 1969 on page B-491 to B-494)

e) FREQUENCY AND WAVELENGTH OF THE 253.7 nm LINE

Ag = 2536.519 R wy = 7.42613 x 1015 Hz.
(Taken from, Handbook of Chemistry and Physics Op. Cit. Page E-222)

f) The Properties of the Hyperfine Structure of the 253.7 nm Line

Structure of the 253.7 nm Line can be found in Schweitzer, 1963.



