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ABSTRACT

A data set relating to the survival and growth of barnacles is
examined. Survival distributions are compared by means of three
nonparametric tests. The exponential model is then fitted for the
survival distributions and a random effects model is developed for the
slope. Poliﬁomial growth curves are fitted and various hypotheses
relating to the parameters are tested using firstly the model of Pothoff
and Roy and secondly the model of Rao. Owing to the nature of the
growth data, which is not longitudinal, this presents various

statistical problems which are discussed.

A4y John Petkau

Thesis Supervisor
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1. TINTRODUCTION

The examination oan‘particular\data set leads, during theicourse
of this thesis, to the discussion_;nd application of a number of
statistical techniques. These techniques fall ﬁnder the two general
headings of survivai analysis and growth curves. - The data set which was
investigated consisted of survival and growth dat# for barnacles.

Barnacles are little creatures which live in the ocean. The first
part of their lives is spent lboking for a ﬁlace to live, which will be
. some object in the océan such as a'roék, a boat or a whale. They
usually choose a place where there are other barnaclés. It is important
‘that the& choose a place with strong currents to bring in plaﬁkton for
food. Once it has chosen a rock, or some othef object, the'barnacle .
attaches 1tse1f first using a reléfively mild glue ﬁut subsequently
using adult glue which is extremely étrong. The barnacle can then never
again move. The glue which they use is‘so étrong that, for example, it
is easier to chip ﬁhe-rock that the bérnagle is attached to, ;han to
pull off the bafnacle. It has to be strong because of the forces that
the barnacles have to stand up to in the ocean suff. If the barnacle
chooées a bad place, where there 1s not much food, it will starve to
death. In any case it‘might be eatenvby éredators.

The adult barnacle looks a.little like a clam covered with a
protective shell and with a "stalk” or "ﬁeck"»with which it attgches
" itself to the object. The stalk serves to keep the rest of the barnacle

away from the rock. Organs which look a little like feet, protrude from



the bottom of the shell. It is with these that the barnacle eats. The
adult barnacle is approximately 4-5 cm long. Mr. Harry Goldberg, for
his master's thesis in bioresource engineering at U,B.C. conducted an
experiment relating to the survival and growth of barnacles. The
barnacles were attached to lines of three different types of material.
Theée lines were arranged in two systems. Barnacles were dying due to
lack of food and because of predators. At each of a number of times
data was collected on these barnacles, namely the number dead on each
line, shell length, neck length, shell weight and neck weight. Mr.
Goldberg was interested in modelling the survival distribution and in
comparing the distributions for the three different types of line and
for the two systems. He was also interested in fitting growth curves
for each line for shell length and neck length and in comparing the
curves obtained across systems and material types. Finally he was
interested in the length-weight relationship for shell and neck. From
our point of view the statistical methodology is of more interest than
this particular data set, so the length-weight relationship, which
involves'straightforward regression, will not be discussed. Also growth
curves will be fitted only for shell length, not for neck length.
Everytﬁing that is done for shell length could be done in an identical
way for neck length.

Due to the limited nature of the growth data - longitudinal data
was not collected - it was not straightforward to fit meaningful growth
curves and this presented interesting statistical problems.

The remainder of Section.l is devoted to a fuller description of

the experiment and the data. In Section 2 the survival data is



examined: firstly the survival distributions for various different
lines are compared using nonparametric tests. Then the exponential
model is fitted for each line and the slopes of the resulting curves are
compared by means of the likelihood ratio test. Finally random effects
models ére developed for the slopes of the curves. In Section 3 growth
curves are fitted for shell-length for each of the seventeen lines and
vafious hypotheses about the parameters are tested. In this way it is
determined whether system and material type are important factors in
determining growth characteristics., However because of the limited data
available, strong assumptions have to be made in order to be able to
apply the growth curve models. Within each of the seventeen lines,
there are a number of "items” (which will be described later). Growth
curves are then fitted separately for each item within each line. An
attempt is made to test for differences between the items within a line,

but this 1s found to be impossible with the data available.

1.1 The Experiment

Seventeen lines of three different types of material were
constructed as follows:
i. Oyster lines - ropes, each with 10 or 11 oyster shells
attached.
ii. Dowling lines — ropes each with 20 pieces of wood (dowling)

attached.



iii. Netting lines - long cylindrical pieces of netting each with
10 compartments and a pilece of hard rubber in each
compartment.,
The seventeen lines were arranged in two systems, the number of lines in

each system being given below:

Oyster Dowling Netting
System 1 6 2 1
System 2 6 1 1

The lines were taken out to the ocean, where barnacles became attached
to the items on each line. The lines were later retrieved and set up
along the coastline in a natural environment. At this stage no new
barnacles could become attached and those already attached could not
move. In this environment the barnacles were dying due to lack of food
/
and because of predators. A record was made of the number of barnacles
initially (at t=0) on each line. There were approximately 200 barnacles
initially on each system one oyster line, approximately 500 on each
system two oyster line, approximately 1000 on each dowling line and on
the system one netting line, and 1600 on the system two netting line.

The actual numbers are given in Table l. At a number of subsequent

times data was collected on the barnacles.



1.2 The Data

Survival Data

At t =1, 2, 3,.4, 5, 6, 7, 8, 9, 10, 11, 14 and 17 weeks the
number of barnacles found dead on each line was recorded. The dead
barnacles were then removed. So for example the barnacles found dead at
t = 7 weeks were those that had died between t = 6 and t = 7 weeks. No
barnacles died before t = 5 weeks. More detailed information, namely
the number of deaths at each time on each item within a line, was not
available to us although it was probably recorded at some stage during
the experiment. The survival data is given in Table 1,

Growth Data

At each of the above times a haphazard sample of live barnacles was
selected from each item on each line. It was assumed that within each
item each barnacle had equal probability of being sampled. For each
sampled barnacle the following measurements were taken:

(1) mneck length

(ii) shell length
The data was recorded in centimetres. These barnacles were not removed
from the items. The sample size was 5 except in the cases of samples
from items on netting lines where it was 10. So the total number of

barnacles measured at each time was:

From oyster lines: 2 x6 x10 (or 11) x 5 = 600
From dowling lines: 3x20x5 = 300
From netting lines: 2 x 10 x 10 = 200

So there is an enormous amount of growth data. The growth data and the

ways in which it is incomplete, are discussed more fully in Section 3.



2. EXAMINATION OF THE SURVIVAL DATA

In order to obtain the length-weight data, approximately 40
barnacles were removed from each type of material at each of a number of
times (on a total of five occasions). In all analyses relating to the
survival data, this fact was neglected. It was assumed that the removal
of these barnacles would not significantly affect the analyses. This
assumption seemed reasonable since the barnacles removed were chosen at
random and the number removed was very small compared to the total
number: 1in total approximately 200 barnacles were removed from each
type of material, whereas the total number of barnacles initially on
respectively oyster, dowling and netting lines was 6561, 2969 and 2552,
The total number of barnacles on each of these types of line at the end
of the study was respectively 1668, 1200 and 1121.

The initial number of barnacles on each line and the number found
dead at each time are given in Table 1. No barnacles died before t = 5
so the first time at which barnacles were found dead was t = 6. More
detailed information, namely the number of deaths on each item within
each line was not avaiable to us.

The first question of interest was whether the survival
distributions for lines of the same type within the same system were
essentially the same. If this were found to be the case it would be
reasonable to collapse across the six oyster lines within each system
and across the two dowling lines in system 1. Then the situation would

be simpler - we would have three "treatments™ (types of material) within



Table 1 = Survival Data

Initial Number Found Dead at Week

# 6 7 8 9 10 11 14 17

01 204 31 32 33 3 6 4 7 5
02 187 27 30 22 0 8 3 11 9
03 134 22 31 15 1 3, 18 1 3
04 137 27 21 19 5 6 7 5 5
05 187 34 26 29 9 6 10 4 8
06 306 40 27 25 9 7 14 11 14
D1 937 128 122 113 32 29 41 44 45
D2 817 127 168 118 37 32 16 50 37
N1 952 75 226 119 116 19 75 10 7
07 530 30 42 69 34 35 26 39 20
08 180 9 18 12 7 14 7 9 17
09 579 24 40 39 47 78 49 37 17
010 155 14 16 28 9 9 1 7 4
011 677 20 61 80 35 62 30 67 16
012 470 7 22 33 28 38 21 33 25
D3 1215 50 89 126 77 96 61 99 32
N2 1600 19 23 118 216 175 110 75 48




each of two systems instead of the present more complicated situation of
lines within treatment within system., The line effect woﬁld be known to
be insignificant. Three non—parametric rank tests ﬁere performed in
order to determine whether differences existed between the survival

distributions of various groups of lines.

2.1 Description of the Non-Parametric Tests

a. Logrank (Savage) Test

This test can be derived either as a linear rank test or in the
context of Cox's proportional hazards model. It will first be
considered from the latter point of view:

The proportional hazards model (Cox, 1972) for failure time is
specified by the hazard function A(t;z) = Ag(t) exp (zB)
where T is failure time, t is the observed value of T,
z(l x p) is a vector of covariates,
B(p x 1) is a vector of regression coefficients and
Ag(t) is an arbitrary unspecified base—line hazard functionm.

Let U(p x 1) be the vector whose jth element is given by

_ OlogL .
Uj(B) __aB;.L_ j=1,eee, Ps

where L is the likelihood for B.

Let I(p x p) be the matrix whose (j,h)th element is given by

_ -azlogL

Ijh(B) —W’ joh=1,..0, p.



Then a test of the null hypothesis Hg:f = Bg is based on the score
statistic U(Bgp). Under Hp and other mild regularity conditions U(Bg) is
asymptotically normal with mean O and covariance matrix which can be
consistently estimated by I(Bp). Note that is being used to denote the
observed Fisher information matrix. To find U and I the likelihood must
be obtained:

Let the distinct death times be t(y) < «eo < T(yye

Let dy be the ﬁumber of deaths at t(1).

Let ny be the number at risk just prior to t(i)'

In the case where ties and censoring are allowed the likelihood is given

by (Kalbfleisch and Prentice, 1980):

exp(s,8)

1 by eXP(SIB)
leRdi(t(i))

L =
i

=3

where: s; is the sum of the covariates associated with the di

dy

failures at t(i)’ 8, = z

j le, 1 = (11,von ldi), R(t(i)) iS the set Of

1

all individuals at risk at t ,y - O and Rdi(t(i)) is the set of all

subsets of d; items chosen from R(t(i)) without replacement. The
exact partial likelihood with ties arises from a discrete model
specified by

A(t3z)de xd(t)dc
T = nt;z) dt 1 - ML exp(zB)
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This likelihood is very laborious to compute. Peto (1972) and Breslow

(1974) suggested the following approximation to L:

k d
L = 1 eXP(SiB)/ T exp(zlﬁ)
i=1 1 R(t(i)

This approximation is good provided that dj/ngy is small, i=1,...,k.
This means that at each time the number of failures must be small

compared to the number at risk.

d log La .
The test statistic is then U(By) where Uj(B) = _—7ﬁ;__——’ j=1,0ee, Do
h|

U(Bg) is asymptotically normal with mean O and covariance matrix

) _a2
0° log La

estimated by I(By) where Ijh(B) = —5§;~5§;——, joh = 1,eee, Do

In particular, to test Hg:f = 0 (that failure times are unrelated to the

covariates), U(0)' y-! U(0) is compared to Xz(p) tables

_ ' -1 ' =
where U(0) = cH di oy X 2] and th jh(
t(i)) .

i

0).

M~

1 1 R(

In the case where the survival distributions for samples from p + 1
different populations are to be compared, z(lxp) is an indicator
variable: z; consists of a ome in the jth position and zeros
elsewhere if the ith observation is in the jth sample. In this case

testing Hg:pB=0 is equivalent to testing that all the populations have
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the same survival distribution. In this case

k
Uj(O) = izl (dji - nji di/ni) j = l,ooo,p
k d,(n,-d;) n
. ivi i hi
and v, = » =2 g4 (5, -—2%) j,h = 1,00a,p
jh i=1 ni(ni 1) 7ji‘7jn n,

where 5jh is the Kronecker delta (éjh =1 if j = h and O otherwise),

ny4 number at risk in the jth sample just prior to t4)

and dji = number of deaths at time t(y) in the jth sample.

This test can also be derived as a linear rank test for comparing
survival distributions which differ only with respect to location
(Lawless, 1982): suppose we have p + 1 distributions defined by
probability density functions (p.d.f.'s) g(y - 61), .. g(y - Qp),

g(y) where y = log lifetime. We wish to test that 0) = ... = 0p = 0
i.e. that all distributions are identical. Let z(l x p) be an indicator
variable (zij =1 1if the ith observation is from sample j and Zij = 0

otherwise)., Let 6 = (01,..., O Then, given the regression vector

P)'
z, the p.d.f. of y is f(y|z) = g(y - z6'). Under this model we wish to
test 6 = 0. We first consider the case with no censoring:

suppose we obtain a sample yj,...,y, from these distributions.

Let y(1) < eee £ Y(n) be the ordered observations (assumed to be
distinct) and Nj be the number of observations from distribution i
(i=1,...,p+l).

If r (1 x n) is the rank vector based on the y;'s, then a test of §=0

can be based on U(0) (p x 1) whose jth element is given by
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U.(8) = o) logep(r;e)
] ]

where p(r; 6) is the probability mass function of r.

It follows that

e =1

Uj(O) = z(i)j ai j = l,ooo,p

i=1
where z(4) is the indicator variable associated with Y(1)s 2(1)j

is the jth element of z(j) and the a's are scores given by

_g'(Y(i))
ai =E—§(?(:)—); 0=0].

To define a particular rank test, the ai's are generated by
choosing a specific p.d.f. g(y). Then if the data actually comes from
this p.d.f. the test will be asymptotically fully efficient relative to
the parametric procedure based on the actual values rather than the
ranks of the yy's. If the data arises from a different p.d.f. the
rank test will be more efficient. In the case of the logrank test the
scores are generated by letting g(y) = exp(y - e¥), the extreme value
distribution.

The mean and covariance matrix for U(0) can be obtained by
permutation theory arguments (Lawless, 1982). The aj's can be chosen
so that E(U(0))=0. Let V be the covariance matrix of U(0). Then since
U(0) is asymptotically normal, H,:6=0 can be tested by comparing
u(0)* vl U(0) to Xz(p) tables.

This test can be extended to accommodate censoring as follows:

suppose that there are k distinct observed log lifetimes and n-k
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censoring times. TIf z¢y) is the indicator variable associated with
Y(i)>» let 5(1) be the sum of these vectors for all individuals
censored in [y(i), y(i+1)). Then the score statistic suggested by
Prentice (1978) is U(0)(p x 1) where

k

Uj(O) = E (z(i)j @ + S(i)j ai), 3=1,eee,pe

i=1
So indviduals whose lifetimes are censored are given different scores
aj. The scores may be chosen so that E[U(0)] = 0. 1In particular,

taking g(y) = exp(y - e¥) as before, and using Prentice's method of

obtaining the ay and a; leads to the logrank test via the scores
1
;1_, i=1,oto,k

where nj; = the number at risk just prior to t¢j) = exp(y(i).)
Then we obtain as before
k

Uj(O) = _151 (dji - 0y di/ni) j=1,...,p{
with notation as before. The expectation of U(0) is 0. Prentice
obtains a permutation variance for U(0O). Either this or the variance
obtained before in the context of Cox's model can be used. Since the
scores were motivated by letting g(y) = exp(y — e¥), the extreme value
distribution, the test is asymptotically fully efficient for detecting
location differences under an extreme value model for log lifetimeé or
equivalently, for testing equality of lifetime distributions in a

proportional hazards or Lehmann family when there is no censoring or

equal censoring in all samples. This test was derived under the


http://j-i.--.p-
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assumption of no ties but may be used with a small number of ties.

b. Wilcoxon Test

The Wilcoxon (or as it is sometimes called, Prentice's generalised

Wilcoxon test) can also be derived as a linear rank test of the form

k
Uj(O) = 51 (z(i)j @, + S(i)j ai) j=1l,e0e,p

i
for testing equality of lifetime distributions. In this case the scores
are defined as (Prentice, 1978):
i

1 -2 jgl (nj - dj + 1)/(nj + 1)

oy

ay

1
—
|
e I

. —d, +1 .+ 1
s (nJ 5 )/(nJ )
J
with notation as before.

Substituting these scores in Uj(o) gives

n.
= - - LS =
Uj(O) z Fi(dji dy 5 ) 3=l e0.,p

(nj - dj + 1)
(nj +1) °

i

where F, = II
i .

j=1

An estimate of the covariance matrix of U(0) (see Prentice and Marek

(1979)) is V where

V.. = g 72 di(ni - di) T (6., - Ehi 5 h=l b
jh i=1 i (ni -1) ny jh ny ’ ’ ’
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Again U(0)' V”lU(O) is compared to X2(p) tables.

The scores in this case are generated by taking g(y) = e¥/(1 +
ey)z, the logistic density. So this test is asymptotically fully
efficient for detecting location shifts when the underlying
distributions are logistic. Whereas the log rank test gives equal
weight to all terms (dji - dinji/ni)’ the Wilcoxon gives more
weight to earlier events than to later ones. Hence this test is good at
detecting differences early on. Again it was derived under the

assumption of no ties, but may be used with a small number of ties.

c. Logrank Test for Grouped Data

In the derivation of the log rank test in the context of the
proportional hazards model it was assumed that if ties were present this
was because the data arose from a discrete model. It may instead be the
case that the data arises from a continuous model but that it is grouped
- the actual survival time is not recorded, only the interval into which
it falls. This would give rise to a slightly different likelihood and
thus to a slightly different test than that obtained in a, as will now
be described. Censoring is assumed only to occur just prior to the end
of an interval., Assuming a proportional hazards model for the
continuous data, then, if xj represents failure in the ith interval,

[aj-1, aj), the hazard contribution at x{ for covariate z is

a
1 - - xi)exP(zB), where (1 = A;) = exp [—fai-l A (u) du) and A (t)



is the base-~line hazard function.

Let Yi = log [—log (]."'}\,i)], i=1 ,oo,ko

Then the likelihood is

k

L(v,B) = £ ( I log{l - expl-exp(y; + 2;8)1} = T exp(y, + 2z,8))
i=1 1eDi 16Ri

where D; is the set of labels attached to individuals failing at x4

and Ry is the set of labels attached to individuals censored at X4

or observed to survive past x;. A test of Ho:B=0 is based on U(y(0), 0)
where Uj(y,B) = 5%— logl and y(0) is the maximum likelihood estimate of
i

M
~

vy at B8 = 0. Again U(y(O), O) is asymptotically normal with mean O and

~ 2
covariance matrix estimated by I(y(O), O) where I., (y,B) = 9 logh .
jh aBj aﬁh

Suppose that there are p + 1 samples. When z is an indicator variable
for the samples it follows that

Uj(y(O), 0) = - f n, /d; log(l - d;/n;) (dji - 4 nji/ni) 3=l,eee,p
and the elements of the covariance matrix are

q
=3 (;i)n (5

Vih L ny 3t U3h = oy /ny) j>b=l,...,p

n.{n, - d,) d
_ ey = dy Y
qi = dj_ (10g(1 ni))

where

and other notation is as before. The test statistic is

A

U(v(0),0)" v}

U(y(0), 0) which can be compared to X(p)2 tables.
n, di
If di/ni is small then -=— log(l - E—) = -] and the test is

di i
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approximately the same as the logrank test in a.

Application of the Tests

In our case we have continuous data which has been grouped - the
actual survival times are not recorded, only the interval into which
they fall. This gives rise to a large number of ties. However there
are also a large number at risk and di/ni is rarely bigger than 0.2
and usually much smaller.

Censoring is due only to the fact that some barnacles are still
alive at the end of the study - this 1is type I censoring. So we have
the same censoring pattern in all samples.

The underlying distribution of the survival times is not known so
it is not clear whether the logrank test or the Wilcoxon test will be
more powerful., We do know, however, that the Wilcoxon 1is more sensitive
to differences early on whereas the logrank is more sensitive to
differences later. If the logrank test is to be used it would be more
appropriate to use the test described in c. as we have grouped data.
The logrank test a. on the other hand assumes a discrete model. Also
the approximation to the likelihood used in the derivation of this test
assumed small values of dy/nj. It is not clear whether our values
of dy/n; are sufficiently small.

The Wilcoxon was derived under the assumption of no ties and is
only an approximation when, as in our case, a large number of ties are

present.,
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Each test was applied to various grous of lines to test the

equality of the survival distributions of the lines, with the following

results:
Logrank for
Lines Compared Logrank Wilcoxon grouped data
2 2 2
0:,0,2,03,04,05,0¢ X5 = 34,7 X5 = 31.8 X5 = 35.9
2 2 2
07,08,09,010,011,012 XS = 28.9 X5 = 36.6 XS = 33,6
2 2 2
D;,Doy X = 32,5 X = 29.3 X = 32.9
1 1 1
2 2 2
D;,D5,D3 X = 129,8 X = 164.2 X = 126.7
2 2 2
2 2 2
N;,Np X = 129.8 X = 301.6 X = 196.2
1 1 1
2 2 2
D3,N2 X = 5.8 X = 12,6 X = 5.1
1 1 1

All p-values are < .00l except that obtained in the comparison of D3 and
No. Here the logrank test for grouped data gives p = .025, the logrank
gives p ~ .017 and the Wilcoxon gives p < .00l. For each group of
lines, the hypothesis that their survival distributions are the same is
strongly rejected. The p values are very small possibly due to the
large amount of data. The smallest p-values occur when lines from
different systems, for example N; and Ns, are compared. On the other
hand the survival distributions for Dy and N3, lines of different types

within the same system, appear to be much more similar judging by the
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relatively small chi-squared value. This suggests that system may be a
more important facto; than material type in determining the survival
distribution. In any case differences exist even between lines of the
same type within a system and it is clearly not reasonable to collapse
over these groups.

The discrepancy between the results of the two logrank tests is
surprisingly small except in the comparison of N; and N3. This could be
because dij/ny is always quite small in spite of the large number of
ties. For the first three comparisons the Wilcoxon gives a similar
result to the logrank tests but for the last three comparisons it gives
-a much smaller p-value than the other two tests. This could reflect the
fact that the Wilcoxon is better at detecting differences early on,
which is where the biggest differences lie in these cases. For example
the percentage dying between weeks 6 and 7 on line N; is 23.7 whereas on

N, this percentage is l.4. Later on the discrepancies are not as great.

2.2 Exponential Models

Having compared the survival distributions for different lines
nonparametrically, it was then of interest to look for a parametric
model to fit the survival curves. There were two reasons for doing
this. Firstly thé shape of the survival curves was of interest in
itself and secondly under a parametric model the task of comparing
survival distributions for different lines would be simpler - instead of

having to compare a large amount of data, namely number of deaths and
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number at risk at each time, we would just have to compare a small
number of parameters, for example slope.

With so much data it was likely that any parametric model would be
rejected by a goodness—of-fit test. This shouldn't matter provided that
the model captures the most important features of the data.

Because of its simplicity the exponential was the first choice of
model. The exponential was first fitted to each of the 17 lines

starting at t=0. So the following model was assumed:

_Bt
P(T > t) = |® t20

otherwise

where T = lifetime of barnacles.
For each of the 17 lines the maximum likelihood estimate of B was

obtained. Notation is defined as follows:

t o=0 ti1=5 t2=6 tg=14 tg=17
| 1 ! . L | L
d; deaths d; deaths dg deaths N—Zdi

Under this model the likelihood is proportional to

N—-Edi

L= (1 - e Pt1)d1 (7Bt1 _ ~Bt2yd2 (e7Bts _ "Btoydy (~Bto)

Since there were no deaths prior to t); = 5 weeks on any of the lines,
d; = 0 and the first term is identically one. The last term is the

contribution of the censored observations: under our model the

probability that a barnacle survives at least until the end of the study
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at tg = 17 is e Pt9, The number that do survive this long is N-Idy
where N is the initial number on the line. To obtain the maximum

likelihood estimate of B, note that

-Bt -Bt
i-1 i
slog 2 4t e teye 7
55 = T =TS At - to(N - Id,)
i=2 i-1 i
(e - e )
2
8%logl _ 2 TBlegtty ) (b mty)
Ologh . § g f-e ).
o8 1=2 “Ptyy By,
(e - e )
6210 L
Q 208 ig clearly < 0 for all B since the di are > 0 (and clearly at
2p2
. 0logl _
least one di is > 0). So the turning point at the solution to B 0

A

is B, the maximum likelihood estimate of B.

This was obtained by doing a Newton Raphson iteration:

~ - A

Bapr = By = L(B,)/ L(B)

-~ -—

and By = 1/T

where T = median survival time (not exact due to discreteness) and

dloglL ** _ 3%logl

L= , L
oB 562

ee ~

When convergence to desired accuracy is achieved -L(B) is the observed

A

Fisher information and leads to an estimate of the variance of B:
A A e A —l A A ~ 1
Var B = [-L(B)]™", SE(B) = [Var B]

After obtaining B, two goodness of fit tests were carried out to check

/2
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the fit of the model for each line.

l. Pearson's Goodness of Fit Test
_ 2
- k+1 (oi Ei)
2= L
i=1 i

where 05 = observed number of deaths in ith interval and

E; = expected number of deaths in ith interval

~ A

. Bty TRy
Under our model the estimate of Ei is Ei = N(e - e ) and k + 1

is the number of time intervals. X2 is compared to Xz(k_s) tables
where s = number of parameters estimated in the model (=1). If x2 is
too large the fit is poor. It wasn't necessary to combine any intervals

as for all lines the expected frequency in all intervals was at least 5.

2. Likelihood Ratio Goodness of Fit Test

9 k+1 0i
X =2 ¥ 0,log(z=) is compared to X
=1 1 T E

2

(k-s) tables where

notation is as for 1.

Results

Results are given in Table 2., Comparing to chi-squared tables with
eight degrees of freedom, the p-values for the goodness—of-fit tests are
all < .001, Clearly the model doesn't fit. The largest residuals were
found to be at the beginning which is not surprising since the model

gives a positive probability of death for t € [0,5] but no deaths were
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Table 2 - Results of Fitting Exponential Model Starting at t = O.

6+ SE(R) Pearson's X2 Likelihood Ratio X°
01 0.0520 + 0.0047 299.3 242.7
0, 0.0506 *+ 0.0048 221.5 192. 4
03 0.0672 + 0.0069 263.7 216.8
0y 0.6540 * 0.0067 187.7 167.0
0s 0.0623 + 0.0055 251.9 226.2
O¢ 0.0374 * 0.0031 232.2 215.5
D, 0.0500 + 0,0021 368.1 380.4
Dy 0.0680 * 0.0028 94.6 106. 8
N, 0.0638 + 0.0025 506.4 477.0
07 0.0444 *+ 0,0026 183.3 154.6
Og 0.0391 *+ 0.0041 500.1 508.6
09 0.0455 £ 0.0025 218.7 238.8
010 0.0475 + 0,0051 905. 4 844.5
011 0.0432 *+ 0.0022 1168.2 1008.0
012 0.0318 % 0.0022 743.9 402.8
D3 0.0402 + 0.0016 1692.0 1419.0
N, 0.0367 + 0.0013 1707.3 1976.0
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actually observed in this period. So the same model was then fitted

starting at t=5:

-B(t-5)
t > 5

P(T >t) = {¢ .
0 otherwise

Letting t' = t - 5, we have the following situation

' = ! = ’ L 1 =
t0 0 t1 1 t7 9 t8 12
dy) deaths dj deaths dg deaths N--Z‘di
For this model the likelihood 1is
—-Rt? —at!? —Q¢t —Qp? —Rp? _aer N-Zd
Btl d1 Btl Btz d2 Bt7 Bt8 d8 Bt8 i
e °) —e )7 (e

L = (1 - e ) (e -

sesee e

where ti =1, té = 2....,té = 6, t; =9, té = 12, Now
_Bt'_ —Bt' _Btl
srog, & di(-tije Trarie 1) are !
_3@5_ = 3 = Ty + ey - té(N - Zdi).

The new maximum likelihood estimates of B were obtained and the
goodness—of—-fit tests repeated. Results appear in Table 3. The
p—values for the tests are much larger this time but are again all <
001, The fit is much better but still poor. The model appears to fit
better for the oyster lines than for the dowling or netting lines,
though this might be because there is a smaller amount of data for the
oyster lines.

It was possible that a better fit might be obtained by starting at some

point other than t=5. So the same model was fitted again, this time



Table 3 — Results of Fitting the Exponential Model Starting at t = 5

B * SE(é) Pearson's X2 Likelihood Ratio X°
0, 0.0927 + 0.0084 94,5 103.0
0, 0.0883 + 0.0084 62.5 68.9
03 0.1290 + 0.0130 77.2 94,3
0y 0.1240 + 0.0130 40.6 45.9
05 0.1160 + 0.0100 59.3 69.7
0g 0.0613 + 0.0050 69.2 70.5
D, 0.0867 + 0.0037 80.8 79.8
D, 0.1298 + 0,0054 17.9 18.3
N; 0.1200 + 0.0047 148.1 141.9
07 0.0740 + 0.0043 58.3 59.2
0g 0.0630 + 0,0065 127.7 136.9
09 0.0755 + 0.0042 54,1 53.6
010 0.0818 + 0,0087 221.8 235.0
011 0.0713 + 0.0037 242,5 253.5
035 0.0497 + 0.0034 171.8 187.8
D3 0.0656 + 0.0026 495.5 599.4
N, 0.0588 + 0.0021 681.4 639.8




- 26 -

with two unknown parameters — the slope parameter B and the location
parameter o — both of which are to be determined by maximum likelihood.
Since the likelihood is different for « in different time intervals, to
find ; and é it is necessary to determine a-priori in which interval the
maximum likelihood estimate of a lies.

Fortunately it was possible to determine a-priori that ; would have
to lie in the interval (5,6] assuming no deaths in (0,5] and at least
one death in (5,6). In our case these conditions are satisfied since no

deaths are observed in (0,5] but on every line the first deaths are

observed in (5,6].

~

Proof that a € (5,6]

For a € (0,5] and no deaths in (0,5], the likelihood is

8
'B(tlfa) 9 -B(ti—l_a) 'B(ti’a) di—l 'B(t9'a)(N—i§1di)
L) = (l-e )0 I (e - e ) e .
i=2
0 t1=5 to= tg=14 tg=17
L $ I
0 deaths d; deaths dg deaths N—Zdi
Then
8 9 -ft -Bty
logL; = BaN - Btog(N - I d,) + I d log(e - e )
=1 1 g=p 171

G(B) + BaN



- 27 -

where G(B) is a function of B independent of a.

Since B > 0, logL; is monotonic increasing in a for a € (0,5].

A LY

So @ > 5. Furthermore a { 6 since a > 6 would mean that there would be

a zero probability of death in (5,6], but we have assumed that deaths

~

are observed in this interval. o« > 5 and a < 6 together imply

A

o € (5,6].

Determination of «

For « € (5,6] the likelihood is

8
-g(t2-a) 9 -p(t,_,~-a) -p(t,-a) d,_, -B(tg—a)(N- I 4,)
Ly = (l—e )dl I (e -1 - e 1 ) i-1 e 1 1
i=3
t =0 o
t1=5 t2=6 t8=14 t9=17
18 | | |
d; deaths dg deaths N—Zdi

~

Since we have already ascertained that o € (5,6], this is the

appropriate likelihood.

algiLZ =B (N - dl/(l - e_B(CZ—a)))

2 2 -B(t2-a)
and Q-logky _ -B” dj e ple2

da (1 - e-B(tz-a))Z

2 2
Since‘g“l%gkl < 0 for all a and B > 0, the solution to alogL =0

oa 0
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yields a local maximum. dlogl, _ 0 can be solved explicitly for a in
o«

terms of f:

da 2

So if we maximise Lo over a and B simultaneously we obtain

_ 1 N-d

g

- A

where B is the maximum likelihood estimate of B. Since t2=6, 8 > 0 and

log(EL%%JiL) < 0, we have @ < 6.

Case 1

If o« e (5,61, (<===> ln(g—%%iil) € (-1,0]) then o« is the

1
B

~

maximum likelihood estimate, a, of a, since it is the solution to

2
algiL = 0, 9.;2%&2 < 0 and L; is the appropriate likelihood for «
da

in this interval.

Case 2

If a <5 (<===> ln(E—§~QL) < -1), then @ is not the maximum

™ >

likelihood estimate of g. It is the solution to él%%El =0 but Ly is

not the appropriate likelihood for a < 5. In this case the true maximum

~

likelihood estimate is a = 5.
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Proof

For given B, 9195&3 = 0 has a unique solution, a , which is assumed
oa m

to lie in (0,5]. We have shown that the turning point is a maximum and

therefore logL, is monotonic decreasing in a to the right of «_ and in

A -~ A

particular for a € (5,6]. So a < 5. But we know that a € (5,6].

A

So a = 5.

~

Determination of 8

logL2 was initially maximised over « and B simultaneously to obtain

on and Bp. This was done via a Newton Raphson iteration as follows:

Let L = dloglLo _ OlogLo
a da * B g’

2 2 2
L _ 0 logLZ, L =0 long’ L - 0 loglo .
aa 6a2 af dadp BB aB2

Initial estimates were given for a and B. Then the iteration

-1

A ~

Yo~ - L L
IR |
ap "8g| [,

(an+1’8n+1) = (an’Bn) - (La’L

A A

a6,

was used until convergence to desired accuracy was achieved.

Case 1

Suppose we obtain a, € (5,6].
Then @, and Bm are the true maximum likelihood estimates a« and B.

A PN

In this case an estimate of the covariance matrix of (a, B) is given by:
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-1
Laa LaB

S PN

the inverse of the observed Fisher information. In our case, since

9%%&&; = 0 can be solved explicitly to find a = a(B), we could instead

have substituted for a in terms of B in Ql%%EZ = 0, Then we would have

had just one equation in one unknown. This could have been solved by a

a

Newton Raphson iteration to find B and its standard error. Then

" - ~

a = a(B) and the variance of a would have been estimated by

4L (L L. -L .51 ««
BB xR B’ o o

Case 2

Suppose we obtain @y < 5. Then oy and Bm are not the true

maximum likelihood estimates. As already shown, a = 5. Knowing that

~

a = 5, we can think of a as fixed. We maximise with respect to B given
that o« = 5. This means that when we fitted the exponential starting at
t = 5, we already had the best possible fit as t = 5 was the best point

A

at which to start . So B is as obtained in this previous analysis. As

~

25\-1
for case 1 the variance of is estimated by -L (L L - L ) oA
B y aoe aa BB apf (a,B)
b4

The X2 values are the same as those obtained in the previous analysis
starting at t = 5. We have one degree of freedom fewer but this

shouldn't affect the conclusions.
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Results

-

In those cases for which a > 5 the fit was slightly improved by
maximising over two parameters, This improvement was reflected in the
slightly smaller X% values. For seven of the seventeen lines it was
found that t = 5 was not the ideal place to start. The results for

these lines are as follows:

N A a A Likelihood Ratio
B + SE(B) @ * SE(a) Pearson's X2 x2

0; 0.0763 + ,0047 5.24 + 147 76.1 77.8

0g 0.0646 + ,0071 5,21 + ,279 16.9 17.8

09 0.0805 + .0046 5.47 + ,112 129.2 130.8

07; 0.0774 * 0041 5.61 + .089 99.7 114.2

01, 0,0541 + ,0038 5,72 + ,107 37.3 36.7

N, 0.1281 * .0054 5.36 + ,079 454.,2 584,8

N, 0.0624 + ,0019 5.81 + ,152 682.1 580.3

-

Values of a are generally smaller for the system one oyster lines and
for the dowling lines than for other lines. It appears that barnacles
on these lines start dying sooner. However the scale parameter B, which

relates to the rate at which the barnacles die off, is of more interest.

2.3 Inference on theAﬁ‘s

-~

Although the model doesn't fit very well, B is a good summary

statistic and contains a lot of information about the lines. So many
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analyses relating to the ; values were then carried out. All of these
analyses were based on the estimates of B obtained by maximising over
two parameters. Previously we had compared the survival distributions
of certain groups of lines nonparametrically. Now we were in a position
to compare the distributions of the same groups of lines parametrically
by testing whether all system one oyster lines (say) had the same
underlying B8 value. This was done by means of the likelihood ratio test

as follows:

To test Hg: By; = By = B3 = By = Bs = Bg

2[1logL(B, a) - logL(Bp, ag)] is compared to Xz(q) tables and H; is
rejected if this statistic is too large. Here Bj denotes the true
slope for the‘jth oyster line on system one. This test is wvalid

provided that samples are large, which they are. Here q = number of

A N

constraints imposed by Hg, logL(B, a) = value of log likelihood at the
maximum likelihood estimates and 1ogL(ép,_;0) = value of log likelihood
at the maximum likelihood estimates obtained under Hg. In our case
L(ﬁ,.g) is the likelihood of obtaining the observed numbers of deaths on

each line if the jth line follows the exponential model with parameters

. and g; which may be different for each line.
B3 j

~ A

So to obtain 1ogL(§) a) we maximize for each line separately (which we
have already done) and add the maximum values of the log likelihood.
L(Bo, @0) is the likelihood of obtaining the observed numbers of deaths
on each line if the jth line follows the exponential model with

parameters $ and aje So all lines must have a common B but their



location parameters a},...,as may be different. This time the six parts

cannot be maximized separately.

9 —sti_l -Bti 8
logL(Bo, ag) = I d;_; log(e -e ) ~ Bro(N - £ d;)
i=3 : i=1
+ Blap(Ny - d11) + @2(N2 = d12) + ... + 0g(Ng = d16)]

+ dll 1og(1 - e—B(tZ'al)) + ...+ dlslog(l _ e*B(tz-cxs))

where Nj = initial number of barnacles on line j,
dij = number of deaths at time t; on line j,

6
d,= ¥ d,.,= total number of deaths at time i and N=N; + Ny, + .. + N¢.

In this case, ologl _ 0 can be solved to give
doa,

N. - d,.
a, = to +-l log(~l———~Ll) =1, 2,¢04,6.
J B N,
J
5%10gL
This is clearly a maximum since ———gg— < 0 for all aj and B8 > O,
oo
]
This can be substituted in a%ggL to give
~Bty Bt
8 9 d, ,(t, e t e )
dlogL -1 -
e ~teM - I 4+ T = i_Bt _i_Bt + ta(N - d)).
i=1 i=3 i-1 i
( )
A Newton Raphson iteration using
2 9 -B(t,+t, ,) t -t 2
0°logL _ i 7i-1 i-1 i
= I dygfe -Bt Bt
op? 1=3 i-1 i
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A

which is clearly < O then yields B. It is then straightforward to

A

obtain ais j=1, 2,...,6 and to substitute the maximum likelihood

~ ~

estimates into logL(B0,x0) to obtain logL(Bo, ap).

Results

1. Test Hp: that all system one oyster lines have the same B value.

~

2[logL(B, a) - logL(go,.;o)] = 2(-2190 - (-2257)) = 135.

Refer to X25 tables. P <K ,00l.

2. Test Hg: that all system two oyster lines have the same B value.

A Y ~ ~

2[logL(B, a) - logL(Bo, @g)] = 2(-4740 - (-4753)) = 26.
Refer to X25 tables. P << .001.

3. Test Hg: B = By. = Bn_, that all the dowling lines have the same
D Dy D3

1

g value.

~ A A ~

2[logL(B, a) - logL{(Bo, ao)] = 2(~-5648 - (-5759)) = 222,

Refer to X2 tables. P << .001.

4, Test Hp: BD = BDZ, that the system one dowling lines have the

1
same B value. Since we are comparing only two B values, a t-test can be
used, provided that the sample from which BDl and BD2 are estimated is

reasonably large. In our case it is very large. The use of a t-test

’

can be justified as follows: in general, if 6 is a maximum likelihood

A

estimate of 6, then 8 is asymptotically normal with mean 6 and
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2 2
[_9_12551}-1 which can be estimated by {:9—1252 A}_l

262 a0° e
This arises from the central limit theorem applied to the sum of the

-~ A

contributions to the log likelihood. Since BDl and BD2 are maximum

covariance matrix {E

likelihood estimates and since their variances are estimated, under Hy

-~ -~

By, = Bp,

and for large samples, might reasonably be

/(sECpy ) + sE(R; ) )
compared to t-tables. This statistic works out to 6.6 and Hgy is

rejected with p < .001,

5. Test Hp: BN = BN , that the two netting lines have the same B
1 2
value.
BN]_ B BNz

= 11.5 is referred to a t-distribution. Again,

~ ~

/(SE(BN1)2 + SE(BN2)2
p < .001 and Hg is rejected.

Differences were found in every set of B values. The B values for
the system two oyster lines have a much smaller range of values than the
values for the system one oyster lines as indicated by the smaller X2
value. The non—-parametric tests also found the survival distributions
to be different for different lines but found the system one oyster
lines and the system two oyster lines to be approximately equally
homogenous in their survival distributions. This discrepancy could
arise from the fact that our parametric model doesn't fit the data very

well.
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Other Parametric Models

The Weibull would have been the natural choice of a model to fit
next. Since this model has two parameters (or three if a location
parameter is included) and is a generalization of the exponential, it is
likely that we would obtain a somewhat better fit. However the Weibull
was not pursued for two reasons. Firstly, with so much data, the
improvement in fit would probably be slight (in fact any model would
probably be rejected). Secondly, the subsequent interpretation would be
difficult - it would not be clear which parameter to focus on, and

meaningful results would be hard to obtain with so many parameters and

2.4 Random Effects Model

Instead of looking at these particular seventeen lines, it might
be of more interest to think of these lines as a sample from an infinite
population of lines. $So we could think of an infinite population of
lines of each type (material) within each system. For each of these
subpopulations there would be a true underlying B value. It would be of
interest to compare the underlying B8 values for the different
"treatments” (types of material) and for the two systems, by examining
the g values obtained for our sample of seventeen lines. With only one
netting line in each system and only one dowling line in system two it
would be difficut to obtain an estimate of line~to—line variance

separately for these treatments. So initially a random effects model

was developed incorporating only the oyster lines. Throughout this
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~

section, for those lines for which a = 5, the estimate of the variance

~

of B that was used was that obtained when the exponential model starting
at t= 5 was fitted. Although, strictly speaking, the variance of é
should have been estimated instead in the manner described in Section
2.2, any resulting inaccuracies were likely to be negligible;

Let B1 and B2 be the true underlying parameters for the
hypothetical population of system one and system two oyster lines
respectively. We wish to test Hyp: By = Bo. If Hg is rejected, this
would suggest that a significant system effect is present. We have a
sample of six lines from each population. Let Bij be the true B value
for the jth line in the ith system and éij be the maximum likelihood

estimate of Bij . V = SE(Bij)2 is assumed to be a known constant

1j
(not unreasonable considering the large amount of data with which Bij
was estimated).

Then, provided that the model fits, since ;ij is a maximum
likelihood estimate based on a large sample, it seems reasonable to

assume

We assume further, that the Bij are independently distributed and that

~ N(By, 0F)

1

B
where 612 is the line—to-line variance (unknown) of the true Bij
values for the infinite population of lines in system i, It is not
clear that this second assumption is entirely reasonable. We can only

proceed while bearing in mind that a strong assumption is being made.

It follows that
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~

By~ N(Bys of +Vyy)

Naive Analysis

Initially a naive analysis was carried out in which two fairly

strong assumptions were made:

-

1. It was assumed that the standard errors of the Bij were negligible
compared to the line-to~line variance, i.e., Vij <« 612.

It seemed reasonable to expect that the Vij would be small since Bij
was estimated with a large amount of data. By ignoring Vij we were

in effect, treating Bij as known exactly.

Since we are neglecting the Vij an estimate of ¢y is provided by the

~

sample standard deviation of the Bij's. The previous results yield

"2 2 1 a2 D
ol = 5% = _5’-? (Byy = B))? where B = g;; Byy = 0.1019,

1 _ 2 _ _
0y 25 ? (sz By)“ where B, = . sz = 0.0724,

We obtain o, = .026 and o, = .011., The values of /Vij in system one

1
range from .0050 to .0130 and in system two from .0034 to .0087; while
the Vij are smaller than our estimates of the 021, they are not
entirely negligible.

2. The second assumption was that the line-to—-line variance was the

same for both systems, i.e. o3 = 0. Since we have assumed that the
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ﬁij's are normally distributed we can test the hypothesis o] = o by

comparing 812/522 to Fg g tables.

So the assumption 0} = o7 appears to be a fairly strong one.
Under assumptions l. and 2. we have a sample of six B values from
each of two normal populations with equal variance. So Hg: B8] = B2 can

be tested by a two sample t-test:

A -

B1= B2 -5 57 === p = 0.015

1 1
Sp‘/ﬁ +z
2 2
where S = /5S1 + 58y 0.020.
P 10

This seems to suggest that there is a difference between the underlying
B values for the two systems. However‘this analysis relied on two
fairly strong assumptions. The second assumption, o} = oy was tested by
means of an F-test, which is particularly sensitive to our assumption

that the Bij's are normal. A more careful analysis is called for.

Second Analysis

~

This time the standard error of the Bij's was not neglected.

This analysis was done both assuming o3 = o7 and also without this

assumption.
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Case 1: Assume 0y = 09 = ©

If we assume that the line—to—-line variance is the same in both

systems then there are three parameters — B3, By and ¢ to be estimated.

A A

since Bij N(Bi, o + Vij)’ the likelihood of obtaining the twelve B's

that we obtained is

2 6 (8, - B,)?
L=1I0 I — L exp|-1/2 —-%g————l——-.
i=1 j=1 V2= /o2 + Vij (o° + vij)

~

Our estimate of the variance of Bjj was made with a large amount of

data, so it can be assumed to be close to the true variance Vij. So

we replace Vij with this estimate, thus treating Vij as a known

constant.
]\ 2
1 2 (Bij - By)
logL = -5 Z Z{log(oc” + Vij) +-——?;——————— + constant
i o+ V, .
hj ( iJ)
dlogl _ (Bry = P a2y501, - 1 < 0)
0B1 j (0'2 + Vlj) 6312 j (0’2 + Vlj)
plogl _ ; P25 © P2 pliegL o 1 < 0
%2y (% + Vay) 8822 i (% + Vay)
L aN2
ologh _ 1,0 1 Py m B
602 2

. s 2 2 2
i jl(o +Vij) (o +Vij)
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To find the maximum likelihood estimates of B), By and o we need to
OlogL _ dlogL _ dlogL _

solve simultaneousl = = 0.
¥ 7By 0B 302
1
Let Wes =0 i=1,2,
] o2 +V .
ij
Lw B
. 1ij "1i3
Then _.a_lggl‘. = O ===> B = J—————-—-— i = 1,2.
0B i Zw,,
i . 1]
|
% dlogl
Substituting the above values (B;* and Bs* say) in =
0o
Lw,. B;.
~ . 1j "ij
logL
9—2%— = 0 ===> T Z[wij - Wi. (Bi. _41_57;____)2] = 0 and
da ij 3IH PR
2 2
) lOgL(Bl*, B,Zi’ o) =_1_2 ¥ W2
22 244 1
9o
Ty By T Ty By
2 B T
+ I Tw (B, - M~ . (B, - )
i b I Ny ? Wij ij i3 z wij
h| ]
Lwl, B, S Wy, -~ L w,, Bei I W
3 ij "i3 [ i3 . 1] ijj 1j
+ ( ] - )}
(% w,.)
A |
i J
91%5& = 0 can be solved by a Newton Raphson iteration to obtain 62.
oo
0logL _
A numerical check can be done to verify that = 0 does in fact
oo
d°1ogL 9% 1ogL
yield a maximum. Furthermore since og and °§ are both < O,
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A

dlogL

dlogh =0 and 38, = 0 will certainly yield maxima. Having obtained o

381

~ -~

it is straightforward to obtain Bj; and B» as we have explicit
expressions for them in terms of 02.

To test whether the underlying parameters B1 and B2 are the same,
we need to know the variance of our estimates. An estimate of the
covariance matrix of (él, gz, ;2) is provided by the inverse of the
negative of the matrix of second derivatives of logl evaluated at the

maximum likelihood estimates.

Alternatively we can proceed as follows:

~ A

Bi = ——, where wij = i__——__—__ i=1,2,
X w,. 2
. o + V. .
J J ij

Suppose the wyj were known. Then we would have

~

A z.wij Bij A
B, = 4 and var B, = 1
i I w,, i I w,, i=1,2.
3 4 j oM

-~

Substituting our estimate wij of wij we obtain the following rough

-~

approximation to the variance of Bi:

~

var Bi = I i=1,2,
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Results

~ ~

81 = 0.0983, B, = 0.0722, o = 0.0158,

A

Estimated SE(B)) = 0.0076, estimated SE(B2)

1

0.0068.

These lead to

A ~

81— 82 = 2.56

/(SE(B1)? + SE(B)?)
which is almost identical to the value of the statistic obtained in the
naive analysis. Comparing the value 2.56 to normal tables would again
suggest that there is a significant difference between B; aﬁd Boe
However this test is not completely legitimate for two reasons:

Firstly ;1 and 52 are not independent since they both involve ;2
and secondly it would seem more reasonable to compare the value of the
statistic to t—tables as the variances of él and 52 are only estimates.
The problem is that it is not clear how many degrees of freedom are
appropriate. If the square of the denominator of our statistic were a
linear combination of independent chi-squared variables, Satterthwaite's
approximation (Satterthwaite, 1946) could be used to estimate the
degrees of freedom.

However our estimates of the variances of él and gz are of a more
complicated form and Satterthwaite's approximation is not applicable
here.

Also, the whole analysis was based on our assumption of normality

for the Bij's. Because of these problems an exact p—value cannot be

given. However the value of our test statistic is sufficiently large to
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suggest a significant difference between B; and By, even allowing for

slight inaccuracies.

Case 2: o) and 0, not assumed equal

If o) and o, are not assumed to be equal then we need estimates

of four parameters - B;, Bz, 0], 02. For the system one oyster lines

A ~ A

the likelihood under our model of obtaining B1i, Bi12,...,B16 is

(Bay - 81)2

L= 1 — 1 exp(-1/2 P
j /2= Vo? + v, (01+V1j)
1 ]
and
]\ 2
1 (Blj - B1)
logL = ) Z{1ln (of + Vlj) +-———7;——————— + constant.
j (c° + Vi,
J 1 IJ)
If we let wij = 3 1 , then
(ci + Vij)
T w
dlogl _ o __y 5, - 13 B
3B, ! Tw,
As before we can substitute in 9125%. Then 2195% = 0 can be solved by
30, 003

~ A

Newton Raphson to obtain 012. Then it is easy to find Bj. Analogously

~

to the previous case, an estimate of the variance of B) is given by

~

var Bl = 11
z

3

A
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Similarly the likelihood of obtaining B3),..+B2¢ is

6 ) (B2, - B2)?
L =1 exp|-1/2 _
—_— - (o + Vo)
j=1 /2= /ci + sz 2 J

A ~ ~

and 622, B2 as well as an estimate of the variance of B2 can be obtained

in the same way.

Results
él = 0.0997, éz = 0.0719.
;1 = 0.0219, ;2 = 0.0089.
Estimated SE(él) = 0.0098, estimated SE(;Z) = 0.0043.
él_é2
= 2.59

~ ~ A~

/(SE(B1)2 + SE(B)?)

The same problems arise as for the case where we assumed o] = o7,
except that this time gl and ;2 aren't correlated. Again an exact
p—value cannot be quoted, but again a significant difference betwe%n
B1 and P9 is strongly suggested. Our test statistic will be found
significant at the 5% level if it is compared to tg tables for any f >
3. It seems to make very little differeﬁce whether or not we assume o)
= 0; the result is almost identical for both cases. So the fact that
for case 1, él and ;2 are correlated probably doesn't affect the
analysis too much. However the fact remains that our analysis depends

on our assumption of normality for the Bjj's and may be sensitive to

this assumption. A summary of the results is given below:
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Estimate * standard error

Second Analysis

Second Analysis without assuming
Parameter Naive Analysis assuming o} = O o] = 07
81 0.1019 + .0041 0.0983 + ,0076 0.0997 + ,0098
B2 0.0724 + ,0024 0.0722 + ,0068 0.0719 + ,0043

Our analyses suggest that B) and B2 are significantly different
which can be interpreted as meaning that system is an important factor
in determining the survival distribution, at least of the oyster lines.
Significant system effect is certainly not surprising as when the
nonparametric tests were carried out the biggest differences occurred

when lines from different systems were compared.

2.5 Incorporating Netting and Dowling Lines into the Model

It is not only the system effect which is of interest. It is
also of interest to know whether the type of material plays a role in
determining the survival distribution. With only one netting line in
each system and one dowling line in syétem two it will not be possible\

to obtain an estimate of line-to—line variance for each type of material
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within each system. It will have to be assumed that line-to-line
variance is independent of type of material. As before 012 and 622 are
the line-to-line variances for systems one and two respectively
(regardless of material type).

The previous model is extended to incororate netting and dowling
lines as follows:

Let Bijk be the true B value for the kth line of the jth type in system

~

i, Let Bijk be our maximum likelihood estimate of Bijk and let

~

Vijk = variance of Bijk* assumed to be a known constant. Assume

Byl Pige  NPiger Vg
2
and Bijk N(B + fi + tj’ ci)
where fi = system effect i=1,2, and & fi =0,
i
tj = type effect j=1,2,3, and ¥ tj = 0,
R
So t; = effect due to type 1 (oyster),
to = effect due to type 2 (dowling),
t3 = effect due to type 3 (netting).

We are assuming no system—type interaction. The variance of
Bijk 1s 012 instead of cijz as we don't have sufficient

replication to allow the variance to depend on type. As before the

~

assumption of normality for the Bijk's is certainly reasonable, but
the assumption of normality for the Bijk's is purely an assumption and

cannot be verified. It follows that

~

2
Bijk

N(B + fi + tj, oy + Vijk) .

In order to compare the slopes of the survival curves for the two

systems and for the three types of material, we need estimates of B, f;,
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£i, t1, to, tg3, olzand 622 and estimates of the variances and

covariances of fi, f3, t}, to, t3. The likelihood under our model of

~

obtaining the seventeen Bijk's that we obtained is

(Byap - B - £, - t.)2
L=nInn — 1 exp|-1/2 Lik 5 1 J
ijk V2 , 2 (o5 +V,.)
/oi + Vijk i ijk

Substituting f; = -f; and t3 = =t; - t,, the maximum likelihood

A A ~ -~ ~ A

estimates (612, 022, fy, t;, tys, B) are obtained by Newton Raphson.

2
During the iteration, o;~, and 622 are constrained to be nonnegative.

Results

é = 0.0862.

;1 = 0.0176 ===> f, = -~ 0,0176,

;1 = 0,00245, ;2 = 0.00105, ;3 = - ,00350,
A ~

.0072.

o1 = .0234, o

The Bijk =B + fi + tj are given below:

Type

System Oyster Netting Dowling
1 0.1063 0.1003 0.1049
2 0.0711 0.0651 0.0697

Note that the estimates of the slope for respectively the system one and
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the system two oyster lines (0.1063 and 0.0711) are similar but not
identical to the estimates obtained before under the model for the
oyster lines alone (respectively 0.0997 and 0.0719).

Estimates of the variances of these estimates are obtained as usual
using the matrix of second derivatives evaluated at the maximum
likelihood estimates, which was already calculated during the Newton

Raphson process.

-~ A

SE B = .0035.
SE £, = SE f5 = .0031.

It was then of interest to test for differences between f; and f; and

between t;, t,; and tj3:

~ A

f1 - f5

= 5,62

Y v;r(gl - ;2)
;1 ~ ;2 = 0,25

v v;r(;l - ;2)
El — ;3 = 1.02

A - A

Y var(t; - t3)

Since t] + t2 + t3 0 it 1is unnecessary also to compare t) to t3. As
before, it seems reasonable to compare these quantities to t—tables

since the variances are estimated. Again it is not clear how many
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degrees of freedom should be used. Since we are doing three comparisons
the significance level should be adjusted accordingly: if the overéll
significance level is to be 5%, then significance level of each
comparison could be 5/3% = 1.66%. For the above comparisons, whatever
the degrees of freedom wé reach the sameconclusion, namely that there is
a significant difference between the B values for the two systems (as
was found previously), but no significant difference between the B
values for the three types of material. This suggests that regarding
the rate at which the barnacles die off, there is a significant
difference between the two systems but not between the three types of

material.

Discussion

Inspecting the B values, it is seen that the values for system

one are generally larger than those for system two, whereas ; values for
any particular type of material show no tendency to be bigger or smaller
than those for any other type. These observations are borne out by the
above analyses which suggest a significant sjstem effect but not a
significant type effect. It is seen from ;1 and ;2 that B values are
more variable in system one than in system two.

Statistical analyses relating to the ; values were not carried but
an inspection of the values suggests that there is both a system and
type effect. The ; values for system one are generally smaller than

values for system two and values for dowling lines are generally smaller

than values for the other types of line. The physical interpretation of
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these observations is that barnacles on dowling and system one lines
tend to start dying earlier than other barnmacles. Barnacles in system
one tend to die at a faster rate than those in system two. Furthermore
the rate at which the system one barnacles die shows more variability
from line to 1line.

The final observation relates to the initial number of barnacles
on the lines. There are more barnacles initially on a line of a given
type in system two than on a line of the same type in system one. Also
we found the é values to be generally smaller and the ; values generally
larger for system two lines than for system one lines. Formal
statistical tests are not appropriate and even the simple correlation
coefficient is not very meaningful with such a small number of lines of
a given type. However it is worth noting that for the system one oyster
lines, the correlation coefficient between the initial number of
barnacles and ; is - .93, This correlation suggests that on lines with
fewer barnacles initially, barnacles tend to start dying earlier and at
a faster rate. However the correlation may also be due to a third
variable related to both é and initial number. This will be discussed
again later in relation to the growth data. All in all it appears that
system is more important than type as regards survival distribution.
However this conclusion is somewhat tentative since it is based on the
analysis of parameters B and o of a model which doesn't adequately fit

the data. Furthermore the subsequent analyses required a strong

normality assumption.
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3. EXAMINATION OF THE GROWTH DATA

3.1 Growth Data

Growth data was collected at t = 1, 2,.,..,9, 10, 11, 14, 17 weeks.
At each of these times samples were taken as follows: from each shell
on each oyster line and from each piece of wood on each dowling line a
haphazard sample of 5 live barnacles was selected. From each piece of
rubber on each netting line a haphazard sample of 10 live barnacles was
selected. It will be assumed that on each item every live barnacle was
equally likely to be sampled, so for example the probability of being
sampled was not related to size. For each sampled barnacle shell length
and neck length were measured. Measurements were recorded in cm. The
sampled barnacles were not removed from the items to which they were
attached. In total there was an enormous amount of growth data: the

total number of barnacles measured at each time was:

From oyster lines: 2 x6 x10 x 5= 600,
From dowling lines: 3x20x5 = 300,
From netting lines: 2 x 10 x 10 = 200.

The data was incomplete in several ways: at t = 1 week, observations
Wefe taken only on barnacles from 3 oyster lines and 1 dowling line in
system 2, Also at t = 10 and 11 weeks observations were taken on
barnacles from some of the lines but not all of them. It sometimes
happened that fewer than five (or ten) barnacles were sampled from a

particular item. This was because the population from which the
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barnacles were sampled was contipually getting smaller due to barnacles
dying. Sometimes, towards the end of the study (particularly for the
system one oyster lines where initial sample sizes were small) fewer
than five (or ten) living barnacles remained on a particular item. 1In
this case all remaining barnacles were sampled.

The analyses which were used assumed that measurements were taken
at the same time points for all individuals. So only the data collected
at t = 2,3,4...,9, 14, 17 weeks was used. The analyses could have been
extended to accommodate the missing data and methods of handling missing
data will be discussed later. However this would have made the
computation much more laborious and since the amount of data neglected
is relatively small it wasn't considered worthwhile. Also items were
not included if at any point in time fewer than five (or ten) barnacles
were sampled from them. Again not much information was lost by doing
this. Only the data relating to shell length was analyzed. The data
relating to neck length could have been treated in an identical way. In
summary: on each of 17 lines there are a number of items (oyster
shells, pieces of wood or rubber). At each point in time, measurements
are made on a random sample of barnacles taken from each item. The
population from which these barnacles are sampled is continually
diminishing because barnacles are dying.

The proportion of barnacles sampled on a particular item is
approximately 107 initially and 20-30% towards the end of the study
except for items on the system one oyster lines where the proportions

are somewhat larger — approximately 257% initially and close to 1007 by
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the end of the study. These proportions are only estimates as we don't

actually have the survival data for each item, only for each line.
Individual barnacles cannot be identified. We would like to fit

growth curves for the shell length of the barnacles and to compare these

curves for the two systems and for the three types of material.

3.2 Growth Curves for Items

Sophisticated growth curve models have been develoéed for
longitudinal data - for the situation where an observation 1s obtained
at each time point on each of a number of individuals. In our case we
don't have longitudinal data for the barmacles: at each point we have
measurements on a sample of unidentified barnacles — each barnacle may
or may not have been measured at the previous time point. The items,
however, can be iden;ified and if we were to average over the sample
obtained from each item at each time point, we could think of our data
as longitudinal data for the items: on each line we would have a number
of items and we would have a measurement representing each item at each
time. This measurement would actually be the average shell length over
a sample of barnacles picked from the remaining living barnacles on that
item at that time.

Since each barnacle has equal probability of being sampled,
regardless of size, and since the proportion of barnacles sampled is
quite large, it should be reasonable to allow this average to represent

all the remaining living barnacles on that items at that time. So
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instead of following individual barnacles we would be following
individual items.

Suppose we would like to fit polynomial growth curves. With
effectively only one observation per item we will have to assume that
all items within a line have the same parameters. So comparison of
items will be impossible. But in any case the main interest lies in
comparison of the 17 lines. We may allow each of the 17 lines to have
different parameters and we may think of the items on each line as a
sample from a conceptual population of items on that line. We may then
fit the average growth curve for items on each line. What will this
curve represent?

Consider the growth curve for the first oyster line. This will
show how the average shell length of the remaining living barnacles on a
typical item from this line changes with time. (We hope that the
average over all barnacles on a particular item at a particular time
will be well-represented by the average over a sample of barnacles taken
from that item at that time). This average size changes for two reasons
- firstly because the barnacles grow and secondly because the population
of living barnacles changes due to barnacles dying. So the growth curve
represents the natural population’ rather than individual barnacles. We
would expect the growth curves for the natural population to be similar
to the growth curves for individual barnacles, provided that the
probability of dying is unrelated to size. If the barnacles that die in
a particular time-interval are neither particularly big nor particularly

small, then the change in population will not affect the average size of
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the living barnacles. The changes in this average size will then be
entirely due to the growth of the barnacles. If, on the other hand,
there is a tendency for the larger barnacles, say, to die first, then
while each individual barnacle grows bigger, the average size of the
living barnacles might actually get smaller. If this were the case, the
growth characteristics of the natural population would not reflect the
growth characteristics of individual barnacles. Without being able to
identify individual barnacles it is difficult to ascertain whether the
probability of dying is related to size. This question will be
addressed later along with a discussion of the legitimacy of the
approach and of the assumptions that are implicitly being made.

So using the "longitudinal” data for items, polynomial growth
curves were fitted for each of the 17 lines. Two growth curve models
were employed — the first was due to Pothoff and Roy (1964) and the
second to Rao (1965, 1966). The curves obtained for the two different

systems and for the three types of material were then compared.

3.3 The Growth Curve Models

Pothoff and Roy's Model

It is assumed that longitudinal data is available - successive
measurements on a number of individuals. The measurements for any one
individual are then clearly correlated. Typically the individuals are
divided into groups which are to be compared.

It is assumed that each individual has measurements taken at the
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same q points in time. The set of q measurements for any one individual

form one row of the data matrix Yg. The model is as follows:

EfY,]="A & P
nxq nxXm mXp PXq

where n = number of individuals,

m = number of groups,
q = number of time points,
p = number of parameters fitted within each group (p < q),

and A is the design matrix across individuals,
€ is a matrix of parameters to be estimated,
P is a matrix of known constants related to time (assumed to be
of full ramnk, p).

It is assumed that the rows of Yy are mutually independent
(measurements on different individuals are independent) and that the g
elements in any one row follow the multivariate normal distribution with
unknown covariance matrix Ig (q x q), the same for every individual. £
is not diagonal since successive measurements on the same individual
are correlated. It would be possible to extend the model to allow the
covariance matrices for different individuals to be multiples of each
other and also to ‘allow different individuals to have measurements taken
at different times, These extensions are appropriate in our situation
and will be considered later.

To illustrate the model consider the following situation: we have
m groups of individuals with ny in the jth group. The growth curves

for individuals in all groups are from the same family, for example
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polynomials of degree p-l. But the parameters may be different for the

different groups. So the growth curve associated with the jth group is

2 p-1
o+ t + t2 4+ ...+ t
0 F 5 B By %5 1
1‘ .'...0
Then A=n{l), o . . . ¢
o 1 ® e & ¢ o 0
n2{0 1 v ... 0
O e * o 9 o 9 1
nm{o * e e e e o 1
E= gloo'oooglp_l
ng gm p-1l
P = 0
tl ......t
tl ...'..tq
Pl Pl
_1 *® e e e e » q—

Alternatively if the time points are equally spaced, orthogonal
coefficients may be used for P.
This can be generalised to the situation where there are two or

more factors each with a number of levels or to the multi-response
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situation where more than one growth characteristic is measured. Any of
the usual factorial or block designs can be accommodated by this model.
We want to estimate the parameters Eij and to test various
hypotheses of the form
C g v =20,
SXm mMXPpP pPXu
For example, if the hypothesis is that all m growth curves are the same,
i.e. that all parameters for all groups are equal, then

C = I -1 Yand V= 1I.
(m-1)x(m~1) (m-1)xl pXp

If the hypothesis is that all curves are of degree p~2 or less then

0

c=1I and v = .
mxm (pxl1) 0

1

Solution

Pothoff and Roy suggest a transformation which reduces the model to
a more standard model which has been treated.extensively in the
literature. The transformation is

X = Y,6t pr (pgtpry?
DXp nXq qxq qxp pxp

where G is an arbitrary symmetric positive definite matrix such that
PG™! P' is of full rank. Then X is such that:

(a) its rows are mutually independent,

(b) the p elements in any one row follow the multivariate normal

distribution with unknown positive definite covariance matrix
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1 -1

o=@ et eyt g e ter e gt eyl

PXp
(c) EI[X] = AE.
This is the usual multivariate analysis of variance (MANOVA)
model., Under this model a test of CEV = 0 is based on Sh(u X u) and

Se(u X u) where

] ~ ' -1 -1 A
s, = (CEV)' (¢, ap~le1Tt e
= v X' AA' A Y ere At Ay et cocar Ay A x
1481 &4 116108 A&y 1 1081 &4 1
=yt ' - 1 -1 ,,
and s, = V' X'[T-A @A AN A XY,

A

where £ is the least squares estimate of E,

Ay = first r columns of A,

Ci first r columns of C,

and rank A=71 ( {m <n),

rank C s ( <m, < 1),

rank V = u (X p).

Several possible tests are available:

(1) Roy's test is based on the largest characteristic root of Sh Se-l
b4
(2) Hotelling's test is based on the trace of Sh Se'l,
5|
(3) Wilk's test is based on the ratio of determinants S &3S .
h e

In order to test a hypothesis CEV = O under the original model,
X = YOG"l P' (P ¢! P')"l is substituted into the expressions for Sy
and Sg. In all analyses which follow, Roy's test was used. This

proceeds as follows:
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1

Let A = 1largest characteristic root of Sh Se~ . Compare to Heck

1+

tables (e.g. Morrison, 1976) with parameters

s*

min (s, u),

m* 1/2 (|s—u'—1),

1/2 (n-r-u-1).

n*

Reject the null hypothesis if I l x is too large.
(n* + 1)

(m* + 1)

If s* = 1, the statistic A can be compared to F tables with

(2m* + 2) and (2n* + 2) degrees of freedom. The least squares estimator

of £ is given by

-

£ = (A] Al)“l AL X = (A Al)"l A} Y, ¢l pree gl pry-l,

A

The best linear unbiased estimator of the function CEV is then CEV.

Confidence bounds can also be found for these functions.

Choice of G
The analysis is valid for any G satisfying the given conditions.
However the choice of G affects the power of the tests and the variance
of the estimators. The minimum variance unbiased estimator of £ is
1

\ —1 L _1 ] _l 1\" 2
(A1 Al) A1 Yo Zo P' (P Zo P') . Comparing this with the least

squares estimator of £ given above, would suggest that the optimal
choice of G is G = Z. Pothoff and Roy suggest that the more G
differs from I, the worse the power of the test will be and the
greater the variance of the estimators. However L, is unknown and an

estimate of I, obtained from Y, may not be used. If the
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experimenter has no idea aﬁout the form of I, the simplest procedure

is to use G=I. 1If an estimate of X, can be obtained from a similar
but independent experiment it would be preferable to use this estimate.
Alternatively, if a guess of I, can be made before the experiment is
run, this may be used. For example, it might be assumed that the
corfelation between any two observations d periods apart is pd and
that the variance is constant with respect to time. Then I, 1is

proportional to

—1 ) p2 p3....—
o 1 o} p2....
p2 e 1 P evee
o0 o2 o 1 ...

Unfortunately, however, the choice of p is arbitrary unless an estimate

of it can be obtained from an independent experiment.

Rao's Model

The problem with Pothoff and Roy's model is that G must be chosen
arbitrarily. Rao points out that their model doesn't utilize all the
available information unless G = I, and they do not allow an estimate
of I, obtained from the data to be used. So Rao suggests an
alternative way of reducing the growth model to the usual MANOVA model:

construct a q X q nonsingular matrix H = (H1 H2) such that the columns
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of Hy form a basis for the vector space spanned by the rows of P and
PH; = I, PHyp = 0. When rank P = p we can choose

=¢glpeclienyyl, g =1-m87P

H 2 1

1
where G is an arbitrary positive definite matrix. The choice of G does

not affect estimates or tests.

1 -1

Let X =Y H =Y 6P e lepylanda z =Y u

2.
nxp nx(q-p) .
Then, as for the Pothoff and Roy's model, E[X] = AE, but in addition

E{Z] = 0. Hence E[X|Z] = Af + ZT where Z is a matrix of q—p covariables

and r is a matrix of unknown regression coefficients.
(q-p)xp

Rao claims that the estimate of £ obtained under this model is more
efficient than that obtained under Pothoff and Roy's model as it uses
information contained in the covariables Z, which is neglected under
Pothoff and Roy's model. However this is not true. The best linear

unbiased estimator of £ under Rao's model is

£ = (a] Al)'l Al Y sl pr (p st pry-!

where S is an estimate of I, obtained from the data:

-1
= vt — ]
S Yo[I Al(Al Al) Ai] Yo

This is precisely what we would obtain under Pothoff and Roy's model if
we set G = S, thus allowing an estimate of I, obtained from the data
as Rao does.

To test hypotheses of the form CEV = 0, matrices S, and S, are

again found. This time they have a slightly different form:

Let B = [s! - st prep s~ pylp sy,
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= y! ' 1 -1 ' -1 ' -1 '
Then s, = V' X' A Al AD7hcicc, ReDT e ar apTh Al x v
s, =v' (@ steyTly
= L _l 1] _l L | ] _l
where R = (AJA)™' + (AJAD™' AT Y B Y! A (A A))
and X =Y, s~l prep s~ pry-1,

The expression for S, is identical to the expression for S, in
Pothoff and Roy's model with G set equal to S. However S, is not the

same. The tests based on Sy and Se are the same as for Pothoff and
Roy's model. However when comparing T—%fx to Heck tables the

parameter n* is now slightly different,
n* =n-s8-u-1-(q-p).
Sometimes as discussed by Grizzle and Allen (1969) it is preferable to

use fewer than q-p covariables.

3.4 Application of the Models

The two growth curve models were applied to the longitudinal data
for items. Each row of the data matrix contained nine entries. The ith
entry was the average shell length over a random sample of living
barnacles taken at t = tj from the item corresponding to that row.

The items were diQided into groups according to the line that they were
on. In their present form the models require the following assumptions:
(1) The rows of the data matrix are mutually independent.

(2) The set of entries in any row follows the multivariate normal

distribution with the same covariance matrix I, for each row.
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Provided that we are prepared to assume that observations on
barnacles from different items are independent, then the rows of our
data matrix will certainly be mutually indepndent since each row of our
data matrix corresponds to a different item and no two items have any
barnacles in common. Furthermore, if we are prepared to assume that
the set of observations on an individual barnacle is multivariate normal
then the first part of assumption 2 would also be satisfied since each
entry in our data matrix would then be the average of a number of
variables assumed to be normally distributed. Whether or not it is
reasonable to assume that the covariance matrix is the same for every
row of our data matrix will be discussed later.

Subsequently another analysis was carried out in which the weaker
and more reasonable assumption was made that a set of observations
corresponding to items from oyster or dowling lines had covariance
matrix %-Z and a set of observationms corresponding to items from
netting lines had covariance matrix %6-2 for some fixed, unknown X.
In order to do this the model had to be modified slightly as described
in Section 3.8. It is not clear that even this weaker assumption is
reasonable, This too will be discussed later. Only those items for
which every 6bservation was an average over five (ten) barnacles were
included in the analysis.

In total 141 items were used in the analyses. The number of items

used from each line was as follows:



01

02

03

04

05

06

The main objective was to fit polynomial growth curves to each of the

8

D1

D2

N1

07

08

09
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11

11

8

010

011

012

D3

N2

10

13

10

lines and to determine whether differences existed between these curves

for the three different types of materials and for the two systems.
a first step it was of interest to determine whether lines within each
system—type combination could be ignored.

would be reasonable to collapse over lines of the same type within the

If this were the case it

same system and we would have a two factor situation with the following

number of items.

In order to determine whether differences existed between the

System 1 System 2
Type
Oyster 38 50
Dowling 22 13
Netting 8 10

growth curves for the six oyster lines in system one, polynomial growth

curves were fitted to the six lines and the parameters were compared.

A

similar analysis was carried out for the six oyster lines in system two.
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3.5 System One Oyster Lines

The analyses were carried out using:

(a) Rao's model,

(b) Pothoff and Roy's model with G = I,

]

(c¢) Pothoff and Roy's model with G = an independent estimate of Zo

namely an estimate of I, obtained from the system 2 oyster lines,

-~

= ! - ' -1 4 -
¢ Y02[1 Al(Al Al) All YoZ z:o

where Y o and A are respectively the data matrix and the design matrix
for the system two oyster lines.,

For all models Y, (38x9) = data matrix and

(j,k)th element of P = (tk - t)Jml

where t = = 58/9 (since the time points are not equally spaced we

1
9

Lt
i i

cannot use orthogonal coefficients).

1 1 1 1 1 1 1 1 1
So P =
-4 -31 =22 -13 -4 5 14 23 68
9 9 9 9 9 9 9 9 9
40,p-1 68,yp-1
9) . . . L) L) ] L) ( 9)
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where p is the number parameters fitted. Since we have taken the

j-1

x the growth

(j,k)th element of P to be (tk - t)J—l rather than t

curve for the jth group will be on + glj (t - t)

- p_l
+ eee + At - ¢t .
£y 46O

The items are divided into six groups with the following number in

each group: 5, 8, 5, 6, 6, 8., So

8{|.

6 0...01

n = 38 (number of individuals), m = 6 (number of groups), q = 9, r = 6,
In Section 3.3, it was described how to test hypotheses of the form
CEV = 0 under each model. By choosing C and V appropriately the

following analyses were carried out under each model:

1. It was determined what degree of polynomial adequately fitted the
data. This was done in the following way: initially cubics were fitted

and the hypothesis that all curves were of degree 2 or less was tested.
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This required a test of £;3 = &93 = ves = Eg3 = 0 which can be written

CetV =0 with C =1 (6 x 6) and

OO0

If quadratics were found to be adequate, quadratics were then fitted in
order to determine whether linear curves would also be adequate. If
quadratics were not found to be adequate, quartics were then fitted to
determine whether cubics would be adequate. This process continued

until the appropriate polynomial was determined.

2. The hypothesis that all six growth curves were identical was

tested. This hypothesis can be written

€10 = &9 = a0 = &g
€11 = €21 = ... = Eg)
81 p-1 = %2 p-1 T +vr = Bg o1
or CEV = 0 where C = |1 0 0 0 0 -1
(5%6)
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I(pxp)), s=5,u=p,

where p—-1 is the degree of the polynomial found to be appropriate in 1.

3. The

hypothesis that the curves were identical except possibly for an

additive constant (i.e. parallel) was tested. This hypothesis can be

written CEV = 0 where C is as in 2. and

Results

1. (1)

ae

(11)

V= 0

1
(p-1) x (p-1)

Cubics were fitted and the hypothesis that all curves were of

degree 2 or less was tested.

A

Pothoff and Roy's model with G = ZO

Sh Se_l = .115, refer 1.04 to Fg 5y, P > .1

Rao's model
5, 5,7! = 138, refer 1.12 to Fg u9, p > -1

According to both models, quadratics are adequate., It is

possible that linear curves are also adequate.

Quadratics were fitted and the hypothesis that all curves were
linear was tested.
Pothoff and Roy's with G = I

Sy Se“l = 1.84, refer 16.6 to Fe, sus P < .001

pt D



b.
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Pothoff and Roy's model with G = Zo

S, Se—1 = 1.41, refer 12,7 to Fg sy, P < 001

Rao's model
-1

Sh Se = 1,86, refer 14.3 to Fg’qs, p < .001

Clearly linear curves are not adéquate and quadratics are
appropriate. So for each line we have estimates of three

parameters, which are as follows:

Pothoff and Roy, G = 1

2.00 .113 - .0043
1.95 .119 - .0050
1.93 .127 - .0063
1.99 .117 - .0054
2.05 .106 - .0069
2.00 .112 - .0049

Pothoff and Roy, G = %

£=

Rao

>
it

2.00 .114 - .0042
1.95 .116 - .0047
1.91 .123 - .0057
1.98 .120 - .0051
2.09 .102 - .0066
2.01 .107 - 0044
1.97 112 - .0043
1.92 .119 - .0046
1.94 .132 - 0074
2.02 .126 - 0070
2.02 .104 - .0060
1.99 114 - .0045
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All three models give very similar estimates of £. In particular, the
choice of G in Pothoff and Roy's model affects the estimate very
little. So, letting y(t) denote shell length at time t, the growth

curves that we obtain under, say, Rao's model for 01, 02,..., 06 are

respectively:
y(t) = - .0043 t2 + .167 t + 1.07
y(t) = - 0046 t2 + J178 t + .96
y(t) = - .0074 t2 + .227 t + .78
y(t) = - 0070 t2 + .216 t + .92
y(t) = - .0060 t2 + .181 t + 1.10
y(t) = - 0045 €2 + .172 t + 1.07

According to Rao's model, estimates of the average shell length
over a sample of living barnacles taken from an item oﬁ 0l at £t = 2, 3,
4, 5, 6, 7, 8, 9, 14 weeks are respectively: 1.39, 1.53, 1.67, 1.80,
1.92, 2,03, 2,13, 2.23, 2.57 cm. Pictures of the six curves obtained
under Rao's model are given in Figure 1. The six curves are not too far
from being linear and are very similar to each other - almost parallel,
although not quite identical. The hypotheses that the curves were
identical and that they were identical except for an additive constant

were then tested with the following results:

2. The hypothesis that all six curves were identical was tested.

a. Pothoff and Roy's model, G = I
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ﬂfigure 1. Growth Curves for the System 1 Oyster Lines
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Figure 2. Growth Curves for the System 2 Oyster Lines
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-1

Larg?st root of S S = 419

Refer 419 «29 to Heck tables
1.419

with s* = 3, m* = 1/2, n* = 25,

p = ..04

b. Pothoff and Roy's model, G = Eo

-1

Largest root of Sh Se = ,613
.613 _
Ref 1.613 «38 to Heck tables

i

with s* = 3, m* = 1/2, n* 25,

c. Rao's model

Largest root of S, Se'l = ,452

<452
1.452

Refer = ,31 to Heck tables

with s* = 3, m* = 1/2, n* = 25,

p= .05‘
We have a Sufficient amount of data to reject the hypothesis that the
six growth curves are identical, although they appear very similar in
Figure 1. .There is a considerable discrepancy between the p-values
obtainedlunder Pothoff and Roy's model with G = I, and with G = ;o' It

seems that the choice of G greatly affects the variance of the

estimators and hence. the p-values,
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3. The hypothesis that the curves were identical except for an additive

constant was tested.

a. Pothoff and Roy's model, G = L

-1 _
Largest root of Sh Se = ,164

.164
Refer T.164 = .14 to Heck tables
p >> .05

b. Pothoff and Roy's model, G = Zo

_1_
Largest root of Sh Se = ,224

Refer 1:%32 = ,18 to Heck tables
p > .05

c. Rao's model

-1

Largest root of Sh Se = ,212
212 _

Refer 1212 - .17 to Heck tables

p >> .05

Not surprisingly the curves are found to be parallel. This conclusion
is clear in spite of the considerable discrepancy which is again
observed between the p-values obtained under Pothoff and Roy's model

A

with G = 20 and with G = I. Before discussing the results further,

similar results will now be obtained for the system two oyster lines.
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3.6 System Two Oyster Lines

The same analyses were repeated for the system two oyster lines.

We had a new data matrix Y(50 x 9) and a new design matrix

-]. 0.‘..0
A = 9{].

while P was unchanged.

Again the analyses were carried out using Rao's model and using

Pothoff and Roy's model both with G = I and with G = an estimate of I,

~

obtained from the system one oyster lines, I, = Yé[I - Al(Ai Al)"1 Ai]Yo
where Yo and A are respectively the data matrix and the design matrix

for the system one oyster lines.

Results
1. (i) Cubics were fitted and the hypothesis that all curves were of

degree 2 or less was tested.

a. Pothoff and Roy's model with G = Zo

-1
S, Se = +066, refer .59 to Fg su> P > .l

b. Rao's model

-1 _
Sh Se = .196, refer 1.6 to Fg u9, P > .1



a.

b.

(ii) Quadratics were then fitted and the hypothesis that all curves

b.

Coe
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Clearly quadratics are adequate. The conclusion is clear

despite the discrepancy between the two values of the test

statistic,

were linear was tested.
Pothoff and Roy, G = 1

S, 8" = 8.37, refer 75.3 to Fg sy P << .00l

A

Pothoff and Roy G = Zo

5, 8.} = 4.51, refer 40.5 to Fg sy, P << .001

Rao's model

5, S, = 8.26, refer 62.9 to Fg ug> P << 001

The hypothesis that linear curves are adequate is very strongly

rejected. So quadratics are again appropriate.

of £ are:

Pothoff and Roy, G =1

§=

2.23 .094 - .0052
2.15  .104 - .0070
2.28 .076 - .0053
2.17 .125 - .0099
2.28 .097 - .0063
2.16 .106 - .0082

Pothoff and Roy, G = &

§=

2.21 .091 - .0042
2.16 .101 - .0069
2.29 .077 - .0059
2.18 .128 - .0105
2.27 .095 - .0063
2.14 .103 - ,0080

The estimates
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c. Rao
= [2.24 .094 - .0054
2,16 .107 - 0074
2.25 .081 - .0055
2,17 .122 - .0096
2,28 .099 - 0064
2.15 .107 - .0084

Again, the estimates obtained from all three methods are almost
identical. The growth curves that we obtain under Rao's model for 07,

08, ..., 012 are respectively:

y(t) = — 0054 t2 + .164 t + 1.41
y(t) = - .0074 t2 + .202 t + 1.16
y(t) = - .0055 t2 + .152 t + 1.50
y(t) = - .0096 t% + .246 t + 0.98
y(t) = - .0064 tZ + .181 t + 1.38
y(t) = - .0084 t2 + .215 t + 1.11

According to Rao's model, estimates of the average shell length
over a sample of living barnacles taken from an item on 07 at t = 2, 3,
4, 5, 6, 7, 8, 9, 14 weeks are respectively: 1.72, 1.85, 1.98, 2.10,
2,20, 2,29, 2,38, 2,45, 2,65 cm. Pictures of the six curves obtained
under Rao's model are given in Figure 2. The curves are less linear
than those obtained for the system one oyster lines (the hypothesis of
linearity was rejected with a much smaller p-value for the system two
oyster lines than for the system one oyster lines). They are also less

homogeneous than the curves obtained for the system one oyster lines —
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whereas the curves for the system one oyster lines were found to be
parallel, these curves are far from being parallel. This observation

was confirmed by the results of the following tests:

2. The hypothesis that all six curves were identical was tested.

a. Pothoff and Roy's model, G = I

_1_
Largest root of Sh Se = ,801
.801 _
Refer T80T ~ .44 to Heck tables

1% critical value = .32, p < .01
b. Pothoff and Roy's model, G = Zo

Largest root of § Se_l = ,89%

h

Refer TL%%% = .47 to Heck tables, 1% critical value = .32,

1% critical value = .32, p < .01

c. Rao's model

Largest root of Sy Se_l = ,660

Refer 1:228 = ,40 to Heck tables

1% critical value = .36, p < .01
As expected the curves are not found to be identical.
3. The hypothesis that the curves were parallel was then tested.
a. Pothoff and Roy's model, G = I

Largest root of S Se"1 = ,648

h
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Refer T;%%% = .39 to Heck tables

1% critical value = .30, p < .01

b. Pothoff and Roy's model, G = Zo

-1 _

Largest root of Sh Se .678
.678

Ref 1.678 = .40 to Heck tables,

1% critical value = .30, p < .01
c. Rao's model

1

Largest root of S Se_ = ,490

h
Refer T;%% = ,33 to Heck tables,

17 critical value = .33, p = .01
The p-values are somewhat larger than in 2., but nevertheless, even the

hypothesis that the curves are parallel must be rejected.
Discussion

As already observed, the growth curves for the system one oyster
lines are more homogenous than the curves for the system two oyster
lines. But even for the system one lines differences were found, so it
won't be reasonable to ignore lines within a particular system—type
combination. The constant term is geﬁerally larger for the system two
curves than for the system one curves which suggests that barnacles on

system two are generally larger than those on system one. The system



one curves are more linear than the system two curves. The average size
of barnacles on items in system two appears to increase fairly quickly
to start with and much less rapidly later on, whereas the average size
of barnacles on items in system one increases at a more constant rate.
We cannot conclude however, that barnacles on system two tend to grow
more quickly at first than barnacles on system one and less quickly
later on, as the curves represent the natural population, not individual
barnacles., It is possible that the difference does reflect different
growth characteristics for the two systems, but if the probability of
dying is related to size, it may also reflect the different survival
patterns for the two systems. Suppose, for example, that there is a
tendency for the bigger barnacles to die first, then a large number of
deaths in a particular interval would cause the increase in average size
in that interval to be smaller than would be expected for the increase
in size of any individual., On system one oyster lines barnacles die off
very quickly between t = 5 and t = 8 weeks, but at a much slower rate
after that, whereas barnacles on system two oyster lines die off at a
more constant rate between t = 5 and t = 17 weeks. This could account

for the more linear curves for system one lines.

The Models

The estimates of £ are very similar for all three methods. As
already pointed out, the choice of G in Pothoff and Roy's model doesn't
greatly affect the estimate of &, but it does affect its variance and

hence the p-values of the tests. The p~value obtained using G = I
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A

was usually considerably different from that obtained using G = Zo.

The p—value obtained with G = I tended to agree more closely with the

p-value obtained under Rao's model. So the p-value obtained with G = Zo

may be suspect, particularly since the estimate of the covariance matrix
obtained from the system one oyster lines turned out to be very
different from that obtained from the system two oyster lines.

The estimates of the vecfor of variances obtained respectively from
the system one oyster lines and the system two oyster lines were:
[.015, .018, .016, .014, .0096, .026, .035, .051, .040] and
[.025, .024, .041, .020, .012, .0094, .018, .0l4, .024].

The estimates of the correlation matrix were respectively:

_1 —
.62 1

.48 .61 1

44 .57 .55 1

.23 .32 .29 .43 1

.13 .27 47 A4l .40 1

.20 .25 .40 .37 .23 I7 1

.19 .23 .19 .36 .07 .62 .69 1

.03 .09 .17 .28 .09 .19 .19 .26 1

and



..
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1
.72 1
74 .73 1
.52 .59 .61 1
.54 .61 .58 .68 1
W47 .54 .49 .55 .63 1
.24 .22 .13 »30 .27 .31 1
.35 .35 .35 .50 .57 .61 47 1
«25 .22 .15 .29 .32 W43 .45 .59 1

Observations for the system one oyster lines are more variable towards
the end of the study than at the beginning, whereas measurements for the
system two oyster lines are more variable at the beginning of the study
than later on. The two correlation matrices have a roughly similar
pattern although the correlations between observations at t =7 and t =
8 weeks and between observations at t = 8 and t = 9 weeks are
particularly low for system two and particularly high for system one.

In view of these differences it may be that using an estimate of
Zo obtained from one system as the choice of G in the model for the

other system, led to dubious p-values.

3.7 Application of the Model to All Seventeen Lines

The next step was to incorporate the netting and dowling into the

model and to test for differences not only between the two systems but
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also between the three types of material. Since differences had been
found between the system one oyster lines and between the system two
oyster lines, each of the seventeen lines was allowed different
parameters. After fitting growth curves for each of the seventeen
lines, contrasts were examined.

This time only Rao's model was used. Since no estimate of I, was
available from a similar but independent experiment in this case, the
only reasonable choice of G in Pothoff and Roy's model would be I, which
could differ substantially from Z.

Yo (141 x 9) is the data matrix for all 17 lines. The data for

system one appears first, then the data for system two. P is unchanged.

A = 5{[.
(141x17) .
1

10{].

L d . L L] 0 1

=}
]

141 (number of individuals), m = 17 (number of groups),

q =9 (number of time points), r = 17 (rank A).
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At this stage it was assumed that each set of nine measurements had the
same covariance matrix, whether measurements were averages over five as
for oyster and dowling, or over ten as for netting.

Suppose we wanted an overall test for differences between the
growth curves for the two systems. This could be done by testing the
hypothesis:

By + 8E) + vue +8Eg = 9E1g = ees — 9837 =0

where §, = [510 81 ° ¢ ¢ &y p—ll

is the set of p parameters for group i. Since the first nine groups
correspond to system one lines, and the other eight to system two lines,
this is equivalent to testing that the average of the éi's over the
system one lines is the same as the average of the §i's over the

system two lines. A rejection of this hypothesis would indicate a
difference between the two systems in the average value of at least one
of the parameters, The hypothesis can be written

CtV = 0 where C =(88.,..8-9-9 ,,. -9)and V=1 (pxp)e
(1x17)

Other contrasts were examined in order to determine whether differences
existed between the three types of material.

First of all, it was determined what degree of polynomial was
needed to fit the growth curves for all 17 lines adequately. This was
done in the same way as for the oyster lines previously. It was found
that quartics were needed. The fitted growth curves obtained for DI,

D2, D3 were respectively:



y(t) = - .0002 t* + .,0067 t3 - ,086 t2 + .578 t + .44
y(t) =  .0005 t“ - 0143 t3 + .126 t2 - .224 t + 1.06
y(t) =  .00001 t* + .0009 t3 - .030 t2 + .387 t + .51

and for N1l and N2:

.0001 t* - .0023 t3 + .014 t? + .100 t + 1.24

.0002 t* - .0059 £3 4 .058 t2 - .113 t + 1.62

y(t)

y(e)
Pictures of the curves for the dowling lines appear in Figure 3 and for
the nettingiiines in Figure 4. The curves for the netting lines are
almost linear. A test of the hypothesis of linearity for these curves
alone yielded a p-value as large as 7%. We have already ascertained
that quadratics are adequate for the oyster lines. Clearly it is
because of the dowling lines, and because of D2 in particular, that

* {s much larger for D2 than

quartics are needed. The coefficient of t
for any other line and the growth curve for D2 looks remarkably
different from any of the other growth curves (see Figure 2). Before

discussing this, results of the tests comparing the curves for the two

systems and for the three material types will be presented:

1. The growth curves for the two systems were compared by testing

CEV = 0 where C = (8 8¢eee 8 -9 -9 ... =9) and V =1 (5x5).
(1x17)

Largest root of S Se—l = ,732,

h

Refer 16.9 to F5’116, p < .001.



Figure 3. Growth Curves for the Dowling Lines
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The growth curves for the

testing CEV = 0 where C

and V = E (5x5).
=1

Largest root of Sh Se

Refer 25.9 to F5 116, P <

The growth curves for the

testing CEV = 0 where C

and V = T (5%5).
-1

Largest root of Sh Se

Refer 9.9 to FS,llG’ p <

The growth curves for the

testing CEV = 0 where C

and V = T (5%5).

...1_
Largest root of Sh Se =

Refer 12 to F5 116> P <
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oyster and dowling lines were compared by

(111111~-4-40111111-40)

1.121,

.001,

oyster and netting lines were compared by

(111111

.436,

001.

dowling and netting lines

(0000 0022-300

2524,

.001.

00-61111110 -6)

were compared by

00002 -3)

The same anaiyses were then repeated this time allowing the curves to

differ by an additive constant.

So this time £, was not included;

for each test C remained unchanged, but V was replaced by

QOO m~=O

OO~ QOO

QO OO
- O OO0



Results

1.

The two systems

Largest root of S Se—1 =

h
Refer 12.2 to Fy 119

p < .001 ,

Oyster and dowling

Largest root of S Se-l =

h

Refer 21.7 to F4,119

p < .001 .

Oyster and netting

-1

Largest root of Sh Se =

Refer 10.7 to Fq 119
s

p < .001 .

Dowling and netting
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412

.730

.357

Largest root of S Se_l = 471

h
Refer 13.9 to Fq’llg

p < .001 .

Discussion

three types of material.

Differences are found both between the two systems and between the

This 1is in contrast to what was found for the
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survival distributions, namely that only system was an important factor.

With such a large amount of data it is not surprising that
differences are found everywhere. The relative size of the test
statistics indicates that the biggest differences lie between dowling
and the other two types of material. This was to be expected in view of
the unusual growth curve for D2.

For the comparisons of the two systems and of oyster and dowling
lines the p-values were much larger when the curves were allowed to
differ by an additive constant. On the other hand for the other two
comparisons the p—-values did not.change substantially when the curves
were allowed to differ by a constant. So the difference between netting
and dowling and between netting and oyster is (almost) solely
attributable to the different shapes of fhe growth curves. The
difference between the two systems and between oyster and dowling is due
partly to the different shapes of the curves and partly to different
locations. We conclude that barnacles on system two are generally
bigger than those on system one and that barnacles on oyster lines are
generally bigger than those on dowling lines.

The smoothness of the growth curves for the netting lines may
reflect the averaging over ten instead of five, rather than a growth
characteristic.

The average size of barnacles on netting lines appears to increase
at an almost constant rate except towards the end of the study when it
increases a little faster, whereas the average size of barnacles on

dowling lines is particularly small initially, increases rapidly to
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start with and less rapidly later on. The behavior of the average size

of barnacles on oyster lines lies somewhere between these two extremes.
The average size of barnacles on D2 is exceptionally small at

t = 2 weeks, increases fairly rapidly until t = 8 weeks, appears to

remain the same until t = 12 weeks and then to increase extremely

rapidly. This could be a growth characteristic, but since this behavior

is so different, it may also be that particularly small barnacles were

sampled at t = 8 and 9 weeks and particularly large barnacles were

14 weeks.

sampled at t

3.8 Extension of the Model to Allow Different Covariance Matrices for

Different Items

An estimate of I, was obtained separately from the oyster lines,
the dowling lines and the netting lines. Not surprisingly the estimate
obtained from the netting lines was considerably smaller than the other
estimates since measurements from items on netting lines are averages
over ten instead of five. It would seem more reasonable to assume that
the covariance matrix for items on oyster or dowling lines is (1/5)% for
some %, and (1/10)L for items on netting lines. The growth curve models
can be extended to the case where the covariance matrices for different
individuals are assumed to be known multiples of each other (Ito,

1968). Suppose that there are N individuals who are assumed to have
covariance matrices
61 L, 82 Z, 03 Z,ee., OyI.

where the 64 are scalars and ¢ is fixed but unknown. Suppose the
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individuals are divided into groups with ny in the jth group.
Individuals in the same group are assumed to have the same covariance
matrix, 80 0] = 69 = sees = enl and similarly for the other groups.
Define a diagonal matrix of weights
W = |1/6;

(NxN)
1/69 0

1/9N

Instead of choosing £ to minimise (X - AE)' (X - AZ) it is now chosen to
minimise (X - AE)' W (X - AE) (weighted least squares). So more weight

is given to individuals with smaller covariance matrix. It follows

= ! -1 !
that & (A1 W Al) A1 W X.

Tests of CEV = 0 are based on

s, = (€ £V (1 Rep™! (¢ £V
= -1 ' -1 A 1 ' -1
where R (A1 W Al) + (Al W Al) A1 WXBX'"W Al(Al W AI)

and S, = V'(P s~l pry-ly,

If W =1 (this means equal weight is given to all observations) we

A

obtain the same expression for R and £ and hence for Sh as previously.

The estimate of ¥ is given by S, where
S=% Sl+"é_ S2"'l S3+ooo.
1 n1+1 n1+n2+l
and S is the estimate of the covariance matrix for group t, namely

= v1 — ' -1 4
Se YO[I Al(Al Al) All Y  where Y is the data matrix for group t
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and A, the design matrix for group t, is a (ng x 1) vector of 1's.

Individuals in group 2 have covariance matrix en I, those in group 3

1+1
have covariance matrix en1+n2+lz and so on., If 9 = 6) = ... = GN = ]
(all individuals have the same covariance matrix) then S will be as

‘ T - A (AT A )L Al
for the standard model, namely YO[I Al(Al Al) AI] Yo where Y0 and A

are the data and design matrices for the complete set of data. The
tests based on Sy and S, are then as before. Quartics were again
fitted and all the tests of the previous section were repeated with the
adjusted Sy and Ses

In our case S = %—[covariance matrix for oysters] +

%[covariance matrix for dowling] + [covariance matrix for netting]

and 91 =2,i=1,...,60 and 69,...,131 (items on oyster and dowling
lines),
ei =1, 1 =61,¢..,68 and 132,,..,14]1 (items on netting lines).

A, Y, and P are unchanged.

Results
The same tests as in the previous section, to compare the growth

curves for various pairs of subgroups were carried out:

1. The two systems

~1 _
Largest root of Sh Se «595

Refer 13.9 to F5,116’ p < .001
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2. Oyster and Dowling
-1

Largest root of Sh Se = ,902
Refer 20.9 to Fg,y36, P < .001
3., Oyster and Netting
-1 _
Largest root of Sh Se = ,610

Refer 14.2 to F5,116, P < .001

4, Netting and Dowling

il

Largest root of S Se—l 640

h

N

Refer 14.8 to Fg5,;6, p < .001
Comments

The estimate of £ is unaffected by including W in the analysis,
since within each group (line) the same weight is given to all items
(the same covariance matrix is assmed for individuals in the same
group).

However the p—values of the tests are affected. 1In comparisons
involving netting, the p-value obtained in the original unweighted
analysis was larger. This is because the estimate of the covariance was
too big’because it was obtained from all items, whether from oyster,
netting or dowling lines, and these were all assumed to have the same

Iy+ For comparisons not involving netting the original p value was
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smaller. This is because the estimate of the covariance matrix was too
small because it was obtained not only from items on oyster and dowling
lines but also from items on netting lines. The p-values obtained in
the weighted analysis should be expected to be more reliable.

The main conclusions remain the same however, namely that
differences exist both between the two systems and between the three
types of materials with the biggest difference being between the oyster

and dowling lines.

3.9 Collapse Over Lines Within Each System—Type Combination

Although differences had been found between lines of the same type
within a system, (particularly within system two), another analysis was
then carried out in which these differences were ignored. Ignoring
lines we get a two—factor situation as previously described. The number

of items in each category is given below:

Type System 1 System 2
Oyster 38 50
Netting 22 13
Dowling 8 10

The analysis was unweighted — the same covariance matrix was assumed for
all individuals (items). It was assumed that the growth curve for an

item on the jth type of line in the ith system was
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2 p-1
(goi+gut+g21t +...+§p_11t )

+ (uoj + ulj t+ ... + up-lj tp_l)
So E[Y,] = A £ P,
1 0 0 1 0
where A (141 x 5) = 38 {: . ) . .
o 1 0 1 0
22{: . . . :
o o 1 1 0
s (. . L ..
1 o o o 1
so {}- . . . .
o 1 0 o0 1
s{. ..
o o 1 o 1
o {l. . . ..

Bol M1l o o o o ¥
Ho2  H12 o o o o P
£(5xp) = Ko3 Hi3 o o o o U
o1 E11 e o o ¢ &
Ego E12 o o o o &

o
1
[
N =W N =

and Y, and P are as before.
Quartics were fitted and the usual hypotheses were tested, namely

that the growth curves for various pairs of subgroups were identical:
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1. The two systems

Test C £ V = 0 where C =

-1

Largest root of Sh Se = ,752.

Refer 19.2 to F5 )38, p < .001

2., Oyster and Dowling

Test C EV =0 where C = (1 -1 00 0) and V

Largest root of Sh Se'1 = 4,561

Refer 116.7 to F5,128’ p <<.001

3. Oyster and Netting

Test C & V = 0 where C

Largest root of S Se—l = .874

h

Refer 22.4 to F5 128> P < .001

4. Netting and Dowling

(0001 -1) and V

I1(5%5).

I1(5x%5).

(1 0-100) and V = 1(5%5).

Test CE V =0 where C = (0 1 -1 0 0) and V = I(5%x5).

Largest root of S Se_l = 5,022

h

Refer 128.5 to F5,128’ p << .001

Again differences are found everywhere with the biggest differences

being between dowling and each of the other two types.

difference is between the two systems.

The smallest

However the p-values for the two

comparisons involving dowling are suspiciously small and this method of

collapsing over lines is suspect.
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3.10 Missing Data

Another generalisation of the model could also have been used,
namely the generalisation suggested by Kleinbaum (1973) to allow missing
data. In this way the assumption that observations are taken at the
same times for all individuals (items) could have been relaxed. Under
this model if is aséumed that data is missing at random - whether or not
an observation is missing is unrelated to the value it would have
taken. Kleinbaum's generalised model proceeds as follows: The n
individuals are divided into u disjoint groups S;, S2,e.., S, such
that individuals in the same group Sj have measurements taken at the
same qj time points. The number of individuals in Sj is nj.

Individuals in different groups may not have measurements taken at the
same time points but may have measurements taken at the same number of
time points (qj = qj')'

Let q be the total number of time points. Then for each group S;

J
we have a design matrix A, (nj x m) (since within each group Sj,

J
individuals are subdivided according to which of the m "treatment”
groups they belong to). Also for each group Sj we have an incidence
matrix By (q x qj) of O's and 1's indicating the positions of
missing observations for individuals in Sj. If Yj(nj X qj) is
the data matrix for the individuals in Sj and I, is the covariance

matrix for a complete set of q observations on any individual (assumed

the same for every individual), then for each j =1, 2,...,u we have:
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ElY,] = A, P B,
[ J] | £ J
and for each row of Yj the covariance matrix is Bj‘ Zo Bj’ where & and

P are as for the growth curve models for complete data described in
Section 3.3,

As before the rows of Yj are assumed to be mutually independent
and each row is assumed to have a multivariate normal distribution.
Under this model it is not possible to find the maximum likelihood
estimates of £ and Z in closed form, but Kleinbaum finds some best
asymptotically normal (BAN) estimators which have the same large sample
properties as the maximum likelihood estimates.

Let £* be the column vector formed by putting the columns of E
underneath each other and let i be the vector formed by putting the
columns of Yy underneath each other. Then a BAN estimator of £*

(which Kleinbaum finds by writing the model in the form of a general
univariate weighted least squares model) turns out to be:
~ u A

u

-1 -
*= [ £ PB.(B'ZX B, " B, P' @A' A, T
gr= i3 o] h| ® h| J] -

: -1
P B, (B! £ B, A'l y.
z R RN T T

1

~

where M~ indicates the generalized inverse of the matrix M and Z,, an
unbiased and consistent estimator of Zys is found as follows: The

~

(r,s) element Crg of Zo is the usual pooled estimate using only

those individuals for which measurements were obtained at both te and
tge In order to test a hypothesis of the form H'F* = 0, where H (mp
x w) 1s of full rank w and H'E* is estimable (which means that it has an

unbiased estimator linear in y where y 1s the vector formed by putting
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the columns of Y underneath each other), the test statistic is given by
W = (H' E¥)'[H'[ £ P B,(B! Z B.)  B. P'"@A! A,]” H]”" (H' g*
a ™ (T EONIHLE By 5, BT By R @AY AT T (Y £

where £* is any BAN estimator of £* and Eo is any consistent positive

definite estimator of I, In particular the estimators obtained by
Kleinbaum may be used. Under Hg, Wn is asymptotically distributed

as Xé. Wn is the analogue of S Se'l in Pothoff and Roy's model

h
described in Section 3.3. An alternative statistic Wn* may be used

which is the analogue of S Se'l in Rao's model. Wn* is obtained by

h
replacing (Aj' Aj) in W, by a more complicated matrix Qj whose

generalized inverse is analogous to R of Rao's model.

Application of the Model to our Data

This generalisation might have been appropriate for our data set,
because some data was neglected in order to satisfy the assumption that
observations on all individuals were taken at the same times. Namely
the data taken at t = 1, 10 and 11 weeks was ignored.

Under Kleinbaum's model this data could have been included: The
items would have been divided into groups first according to the times
at which data was taken on them. For example items for which data was
available at 2, 3,...,9, 10, 14, 17 would form one group, those for
which data was available at é, 3,000,9, 11, 14, 17 would form another
group and so on. Within each group items would be divided according to

line. Thus the Aj's would be determined. Then polynomials would have



- 101 -

been fitted as before and the parameters for different lines compared.
However since the amount of data neglected was so small compared to

the total amount of data, and since application of the model would have

been quite laborious it was not considered worthwhile to pursue this

model.

3.11 Growth Curves for Individual Barnacles

In all the previous analyses relating to the growth data, after
averaging over the sample of five (ten), there was only one observation
at each time for each item. For this reason it was not possible to fit
a different growth curve for each item. So our covariance matrix
contained two components of variability - barnacle-to—barnacle
variability within items and item to item variability. It would be nice
to fit the average growth curve for individuals on each item and then to
compare the growth curves for the different items within a line.

Whether this is possible with the limited data that is available will be
investigated in this section.

Consider just the first oyster line. Ideally a data matrix Y;
would be available, each row of which would correspond to one barnacle.
There would be five rows corresponding to each item on the line. 1In
fact all that is available is a data matrix Y,. In Y, five rows
correspond to each item, but within each set of five rows, successive
observations in a row may or may not correspond to the same barnacle.

Furthermore observations at different time points in different rows may
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correspond to the same barnacle, so the rows are dependent. However,
the five observations at any one time are independent.

But E[Y;] = E[Y,] = AEP. So we can use our data matrix Y, just as
we would have used Y} to obtain a least squares estimate of £. This
estimate involves only the average of the observations at each time and
it doesn't matter whether or not the observations at successive times
correspond to the same barnacles - our estimate is still valid. Of
course if we were to assume that all items have the same growth curve,
we would obtain the same growth curve for the oyster line as previously
when we first averaged within each item. But by choosing a different
design matrix A, we can now obtain a different growth curve for each
item.

Testing for differences between the growth curves is not as
straightforward as fitting the growth curves: in order to test
hypotheses relating to the parameters we need to find matrices S, and

A

Se» These involve £ and S, an estimate of the covariance matrix Zo

for the set of observations on an individual barnacle. We have already

-

obtained £, but S is more difficult.

Since each row of Y, does ot necessarily correspond to the same

barnacle, Yo'[I - Aj(Ay° Al)_1 Ay'] Y, does not provide an estimate of

X However if a strong assumption is made about the form of z.,, it

0.

is possible to obtain an estimate of it.
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Obtaining an Estimate of I,

If we assume that variance is constant over time and that the

correlation between observations d weeks apart on an individual is pd

then I, is proportional to:

1 0 p2 p3 pk p5 p6 p7 p12
1 ¢ p?
1 P o
1 P 02
1 P o2

1 P p? o’

1 P p®

1 0°

1

Under this strong assumption all that is needed is an estimate of p.
This is obtained as follows:

A number of items were excluded from the previous analyses because
towards the end of the study, fewer than five ba£nacles were still alive
on them. It was assumed that these barnacles were representative of all
the barnacles and an estimate of p was obtained using only these
barnacles. Suppose that on a particular item, four barnacles remained
for the last few time points. Then clearly we would be sampling the
same four barnacles at each of these times. Furthermore it was usually
clear which observations at successive times corresponded to the same

barnacles (since barnacles cannot get smaller). If this wasn't obvious
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it was assuméd that the smallest observation at the first time
corresponded to the smallest observation at the next time, and so on.

Items with only one barnacle left could not be used, as replication
was needed. Eleven items (all from the system one oyster lines) were
used. Longitudinal data was available at t = 11, 14 and 17 weeks on 2,
3 or 4 barnacles on each of these items; the total number of barnacles
involved was 34. Using this data, the maximum likelihood estimate of p
was obtained. Koopmans (1942) describes how to find the maximum
likelihood estimate of p under our model of serial correlation. Since
our longitudinal data was taken at three week intervals we let p' = p3.
Our assumption about I, implies that

G =0 =o' Gy =) + 2,

where the Zt'are‘independently distributed as N(O, 02), Ve and
Yy-1 are observations on the same individual respectively at t and
t-1, and py = Ely.]l. It follows that the variance of the y's is
o?/(1 - p'?),

The likelihood of obtaining the y's is,

.2)N/2

G NT/2  €XP [- (A -2pB+ (1+ P'z)c)/zczl

(2nc2)

L

where T is the total number of time points, N is the total number of

individuals and

-

A=z Z[(yij'— ui)2 + (y,Ji:j - u%)zl,

i3
B=rt 2[(y{j - ui) (yéj - u;) ..+ (y%il - u;_l) (y%j - u%)],
i3

I (¢ LI ¢ N I LS
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where yiJ is the observation at time t on the jth barnacle on the ith

item and ui = E[sz]. Maximising this likelihood over the ui and p'

leads to an estimate of p' as the root of a cubic equation (Koopmans,
1942).

Results

~

| The estimate of p' turned out to be .899. So p = .965. The
correlation between observations on the same individual at successive
times is seen to be very high. It is possible to obtain estimates of
the barnacle—to-barnacle variance within items at each time and thus
check our assumption of constant variance over time, The variance at

time t is estimated by

ij _ =142
yt)

(yt

ff N - 1

where 1 is the number of items.

Thé estimates turned out to be .054, .069, .056, .054, .048, .049, .060,
043 and .053 suggesting that our assumption of constant variance over
time was a fairly weak one. Combining these estimates would then lead
to an estimate of ¢ and thus to an estimate of I, of the assumed

serial correlation form. Althéugh this is probably the best estimate of
%, that can realistically be obtained from our limited data it is
unlikely to be a good estimate for several reasons: firstly a strong
assumption was made about the form of I, and secondly the estimate was

obtained using only a small number of barnacles and using observations

only at the last three time points.
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Testing Hypotheses of the Form CEV = 0

A

Having obtained an estimate Zo of Zo, is it possible to test

~ A

hypotheses of the form CEV = 0 by substituting 20 for S and £ obtained

A

from Y, for § in the expressions for S_ and Se? This is not clear.

h
The tests of hypotheses which have been discussed rely on the fact

A

that if p ~-N(p, cf) where ¢ is constant, and D~ Wp(k, %), the Wishart

distribution’ with k degrees of freedom, then the distribution of

n' p~! p 4is known (namely Hotelling's T2 = %‘H p~! u). Suppose an

~

estimate of ¥ is obtained from the data matrix Y; (the true longitudinal
data), namely

£ = (A] A1)'l A' Y, Pr(p Pt
1 1 1

where we have taken G = I in Pothoff and Roy's model. Then the

A

covariance matrix of & is

' -1 T -1 ? t -1 = ' -1
(p P") P(A1 Al) Zo P'(P P") = (A1 Al) X

where I is the covariance matrix for one row of X = Y P' (P P')_l.

Further

A

g~ N(E, (A7 A7 D) (1)

and

' - ) -1 ] ~
X'[1 Al(Al Al) AI] X~ Wk, ). (2)

1

Together (1) and (2) imply that the distribution of Sh Se_ is known

and this forms the basis for the tests of CEV = 0.
Now suppose that the estimate of £ is obtained instead from our

A

data matrix Y2 (let this estimate be denoted £1) and that
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~

S = Y'IT — A (A" A )L A
S Yo[I Al(Al Al) AI] Yo is replaced by our estimate Zo of 20.

Then there are two reasons why the same distribution theory no longer

applies:

~

1. Although £ still has a multivariate normal distribution with
mean £, its covariance matrix is not the same as that of £ and in
particular is not proportional to IZ.

~

2. I, does not have a Wishart distribution as S does because of

the special form that was assumed for it.
So although it is possible to obtain growth curves for individual
barnacles without longitudinal data, it does not seem possible to test

for differences.

3.12 Discussion

The growth curve models that were applied the previous sections to
our longitudinal data for items required a number of assumptions. As
mentioned in Section 3.4 the only assumption that was likely to cause a
problem was the assumption of equal covariance matrices for every
individual (item). There were two reasons why this might be a strong
assumption even if the covarance matrices were assumed to be the same
for every individual barnacle:

1. Our observations were averages over five barnacles in some
cases and over ten barnacles in other cases.

2. At each time the population from which the barnacles were

sampled was of a different size for each different item.



- 108 -

In Section 3.8 the analysis was modified to allow for the fact that
observations were averages over sometimes five and sometimes ten
barnacles. New p-values were obtained which were slightly different
from those obtained previously. However the broad conclusions remained
the same.

It is not so straightforward to accommodate the different
population sizes, especially since the number of barnacles alive at each
time on each item is not known (we know only the total number on each
line). 1In Section 3.6 estimates of the covariance matrices obtained
respectively from the system one oyster lines and from the system two
oyster lines were presented. The two estimates did indeed show somewhat
different patterns which may be partly dug to the different population
sizes. In view of this difficulty, the p-values obtained in Sections
3.5, 3.6 and 3.7 should not be considered completely reliable. However
the p—~values that we obtained were so small, that even if the error
involved weré quite large, we would still reach the same conclusions,

In Sections 3.5, 3.6 and 3.7, growth curves for items were fitted.
In these sections each data point was an average over a number of
barnacles alive at that time. So our growth curves represented the
natural population. In Section 3.1l we discussed fitting growth curves
for individual barnacles. But agaln our estimate of £ was obtained from
data on the barnacles which happened to be alive at any particular
time. So agéin the curves represented the natural population.

Ideally we would like to fit growth curves that would represent the

growth of a typical individual barnacle between t = 2 and 17 weeks. It



- 109 -

is not clear that this is possible with the limited data available.

Ideally the following information would be available for each
barnacle:

(a) Growth data at each time point until t = 17 weeks or until its
death whichever 1s the earlier.
(b) Time of death if this is before t = 17 weeks or knowledge that it

survived past t = 17.

(c) Cause of death — food shortage or predator.
(d) Number of the item and line to which it is attached.

If this were the case several approaches would be possible
depending on the objectives:

1. Suppose we wanted to fit growth curves for individual barnacles
while accounting for the censoring. The deaths would affect the
analysis only in one way, namely the growth data for each individual
would be truncated at its death time if this is before t = 17 weeks; we
would have growth data with missing observations.

Kleinbaum's model is sufficiently general to allow this pattern of
missing data, so this model could be used to fit growth curves and to
test for differences between various groups. The growth curves that we
would obtain would represent not the natural population, but the growth
experience of a typical barnacle between t = 2 and 17 weeks.

2. If we were interested instead in whether survival was related
to growth we could think of our data as survival data with a time
dependent covariate. We would have type I censoring in the survival

data; for barnacles which survive past t = 17 weeks, the exact lifetime
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would not be known. The time dependent covariate could be shell length.
Time dependent covariates can be incorporated into Cox's

proportional hazards model, which is described in Section 2.1. The

z(t)B

hazard function would then be A(t; z(t)) = xo(t) e where in our

case:

xo(t) is an unknown baseline hazard function,

‘R is an unknown parameter,

z(t) is our time dependent covariate — shell length at time t.

In thisﬂcontext a test of B = 0 would be a test that growth
characteristics and survival time are not related. The method of
testing Hy: B = 0 is described in Section 2.1. A rejection of this
hypothesis would suggest some dependency between growth characteristics
and survival time, for example a tendency for larger barnacles to live
longer.

3. There are two possible causes of death for the barnacles,
namely they may be eaten by predators or they may die due to food
shortage. Instead of testing whether growth is related to survival
time, it ma§ be of interest to test separately whether each cause of
death is reféted to growth. Then we would be able to address questions
such as "do the bigger barnacles tend to be eaten first by the
predators?” and "is it the smaller barnacles which tend to die of food
shortage?"”

This can be done in the context of Cox's proportional hazards model

by finding the hazard function specific to each cause of death. Growth
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is again included as a time dependent covariate but this time B may vary
over the two types of failure. So estimates of B; and B, would be
obtained and a test of B; = 0 would be a test that the ith cause of
death is unrelated to growth . To obtain an estimate of B;, all
failures other than those of type i are treated as censored
observations, and the usual maximum likelihood methods are used.

Unfortunately we do not have all the information that we would
like: at each time point we do not have growth data on all barnacles,
only on five from each item. Furthermore individual barnacles cannot be
identified so it is not known whether or not successive observations
correspond to the same barnacles, nor which deaths correspond to which
growth measurements. The cause of death is not known. Survival data is
available only for the lines not for the items within the lines. For
these reasons we cannot pursue any of the approaches described above.
However, the growth experience of a typical barnacle between t = 2 and
17 weeks on a particular line will be well represented by the growth
curve that was fitted for that line in Section 3.7, provided that the
probability of a barnacle dying is unrelated to its size. This can be
explained as follows: 1if the barnacles that die between two time points
are neither particularly big or particularly small, then the change in
average size of living barnacles over this time interval will be due
solely to barnacles growing, not to the changing population.

With our limited data it is not easy to ascertain whether the
probability of dying is related to size: since survival data is

available only for the lines, growth data was averaged over items within
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each line. So for each of the 17 lines average shell length and the
percentage of deaths were available at each time.

Using all 17 lines a significant correlation was found between size
at week 5 and the percentage dying between weeks 5 and 6. On those
lines where average size at week 5 was large, a smaller percentage
tended to;die between weeks 5 and 6. However we cannot conclude from
this that within a particular line the smaller barnacles tend to die
first. The correlation may be due to a third underlying factor related
to both survival and growth. It may reflect, for example, a system or
treatment (type of material) effect — barnacles on system two tend to
start dying later and furthermore they are generally bigger than
barnacles on system one. To eliminate a possible system or treatment
effect, we should use, for example, just the system one oyster lines.
However there are only six of these so a correlation obtained just from
these lines wouldn't be very meaningful. If survival data were
available for every item, we would have average size and percentage
dying at each time for 60 items from system one oyster lines. In this
case it would even be possible to eliminate a possible line effect by
using just the items from one line., Then a significant correlation at a
particular time between average size and percentage dying would
certainly suggest dependency between the probability of dying and size.

From a biological point of view the experimenter expected that size
and lifetime would be unrelated. Without detailed survival data we can
only assume that this is true.

One other point is of interest: in Section 2.5 it was noted that

there was a strong correlation between the initial number on a line and
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the estimates of B and a for that line. The correlation suggested that
on lines with fewer barnacles initially (e.g. system one oyster lines),
barnacles tended to start dying sooner and at a faster rate,

We now have the additional observation that barnacles on system one
are generally smaller initially than those on system two. We could
speculate from these observations that system two is a more ideal site
for the barnacles which is why more barnacles become attached to system
two. But maybe there isn't room for all the barnacles on system 2 and
they have to compete for a place. The bigger healthier barnacles may
have a better chance of finding a place on system 2, which would explain
why the barnacles on system two are initially bigger. The barnacles on
system one tend to start dying earlier and at a faster rate. Also
barnacles on the dowling lines are particularly small initially and
start dying early and at a fast rate. The fact that the population of
barnacles on system one and on dowling lines diminishes quickly may be
due to the fact that the barnacles here are small to start with or may
be attributable to a poorer environment - it is difficult to say which.

Similarly it is difficult to know whether to attribute differences
in the growth curves to the different environments or to the initial

differences in the barnacles.
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CONCLUSION

A data set provided by Mr. H. Goldberg relating to the survival and
growth of barnacles was examined. Nonparametric tests, namely the
logrank and the Wilcoxon, indicated that differences existed between the
survival distributions even of lines of the same material type within
the same system. The tests suggested that system had more influence
than material type on the survival distribution. The exponential model
was fitted for the survival distributions of each of the 17 lines and
the estimated slopes, é were compared.

A random effects model was developed for the B values, initially
incorporating only the oyster lines but subsequently including all 17
lines. Maximum likelihood estimates were obtained of the true
underlying B8 value for lines of each type within each system. A
comparison of these estimates suggested that slope was dependent on
system but not on material type. Again system was found to be the more
important factor.

The growth data was less straightforward to examine as we did not
have longitudinal data. We averaged over the set of measurements
obtained at each time from each item and treated the resulting data set
as longitudinal data for the items. Using this set of averages,
polynomial growth curves for items were fitted to each line using both
Pothoff and Roy's model and Rao's model. Quadratics were adequate
except in the case of the second dowling line. A comparison of the

parameters indicated that differences existed both between systems and
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between material types, with the biggest differences being between
dowling and the other two types of material. The p—values may be
somewhat unreliable as the strong assumption of equal covariance
matrices for every individual (item) had to be made. Although, we
didn't have longitudinal data for barnacles it was found to be possible
to fit the average growth curve for individual barnacles on each item
but not to test for differences between the curves obtained.

In conclusion, although we had a large amount of growth data, a

smaller amount of longitudinal data would have been more useful.
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