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Abstract

The possibility of influencing nuclear beta decay with
high intensity, 1low frequency electromagnetic radiation
(such as from a laser) 1is examined. The motion of an
electron in an e.m. field is found first according to
classical mechanics and then according to quantum mechanics.
The latter discussion yields the Volkov solution for the
electron wave function which is then used in a beta decay
calculation patterned after Becker et al. In this
calculation the Volkov solution 1is substituted for the
electron plane wave factor in the transition amplitude in

the Fermi theory of beta decay.

with
The ratio of total decay rates R=5M¢£EL is numerically

neo
Laser

evaluated with a computer for the case of 3*H (and some
others) where the emphasis 1is on only allowed nuclear
transitions and on phase space considerations. No change in
rate to 1% accuracy 1is found, for the range of the
dimensionless field strength intensity parameter
V=£& ¢[.3,7], or the photon energy range w e [2,8]eV.

This range of ) corresponds to the range in laser intensity
of 1€[3x10'7,2x102°]wW/cm?. The endpoints of the neutrino
spectrum are found to be wunmodified by the laser (both
analytically and numerically). Thus this calculation
suggests that the basic beta decay process is not affected

by laser irradiation.
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I. INTRODUCTION

1.1 History

The possibility of influencing nuclear beta decay
processes by intense laser beams recently stimulated some
interest following the publication of Becker et al (ref. 2,
1881). The laser modifiéd differential decay rate was
presented along with some dramatic numerical results. For
low energy allowed decays, namely for *H and ‘FF with e~
energies of 18 KeV and 650 KeV, and for laser intensities of
about 10'® W/cm?, they claimed enhancements in the decay
rate by factors of wup to 10%. Their paper outlined the
calculation showing key expressions and important parameters
but omitted the details of a difficult  integral.
Subsequently they published a note (ref. 4, 1983) refuting
their original result without commenting on it directly.
The first letter used a Fourier Bessel series expansion in
the Volkov solution, representing the electron, to arrive at
an expression for the differential decay rate. This
apparently was integrated analytically, but details of the
integration were not included. The subseqguent note used the
approximate integration technique of steepest descent to
arrive at a simple expression for the total decay rate from
which the laser parameters cancelled.

Since tﬁe first 1letter others have repeated and
augmented the work. John Hebron (ref. 14, 1983) included
an explicit calculation of the differential decay rate

expression 1in his M.Sc. thesis. He also included a



discussion of a one dimensional square well nuclear model to
argue against the first result of Becker et al. In
preparation of the present thesis the differential decay
rate calculation has been repeated and the decay rate
expression has again been verified. Riess (ref. 19, 1983)
has performed similar work; but his emphasis was on
forbidden decays and as with Hebron he did not give
numerical results. Ternov et al (ref. 20, 1983) have now
published numerical results that show there 1is no
significant enhancement.

The present work has yielded numerical results also
showing that there is no enhancement in nuclear beta decay.
The summation of large order Bessel functions that appears
in the differential decay rate, and the integration to find
the total decay rate were performed numerically. Although
the differential rate was dependent on the intensity of the
laser, the total decay rate was insensitive to this and was
equal to the unmodified rate. As well the neutrino spectra
was found to be unshifted by the laser. These results are
to be submitted for publication shortly 1in collaboration
with D.S. Beder.

1.2 First Impressions

Becker et al proposed that the gquantum states of the
charged particles produced in , decay were modified by the
laser flux, increasing the number of accessible states for a
decay and consequently , using the Fermi Golden rule (ref.

5) increasing the decay rate. To elucidate this suggestion,



first beta decay and the number of accesible states is
considered, then general arguments concerning the possible
effects of a laser are presented, in this chapter. A
detailed calculation and final results contained in the
succeding chapters complete the discussion.

In 3 decays considered herein, the energy and momentum
are shared amongst three particles in the final state.
Initial considerations have the particles contained in a
large but finite volume in coordinate space (a box) and thus
to have discrete energy spectra. One particle, the nucleus,
is much more massive than the others and acquires
proportionately 1little of the decay energy as dictated by
the law of conservation of momentum. Most of the energy is
distributed to the two leptons. The configurations are not
constrained except by energy-momentum conservation and all
possibilities would be realized in a statistical ensemble of
decays. If the energy of the decay were higher, then the
number of possible configurations would also be higher as
would the total probability of decay for a given time
interval.

The counting argument of the 1last paragraph is
suggestive regarding the case of an infinite box and
continuous spectra. The phase space domains allowed by
energy conservation are Riemann integrable, continous, and
constrained by the total energy available for the decay.
Larger decay energies entail larger domains in phase space

which entail higher decay probabilities, as for the discrete



case. It is a success of 4 decay theory that the wide
variations in decay rates found in nature can be explained
by such phase space arguments.

In a semi-classical approach to s decay in a laser
field, the energy, Q>Kev, might be thought of as the energy

necessary to convert a virtual /% decay into a real one: fig
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Figure 1 - Virtual and Real /3 Decay

This energy and the Heisenberg uncertainty principle
determine a time interval and thus an energy absorption rate

for the virtual e-

Q at 2 H

P = Qt — %f ~ 10'% MeV/s
A

If the wvirtual e- responds to the electric force (the
Lorentz force is weaker by 1/c) of a laser V=1, w=2eV, for
this at, then the absorbed power is
P~ vimt wr/ wt = |O'° MeV /s
Consequentiy we are not led to an expectation of enhancement
of , decay by this route.
In a quantum mechanical approach to 5 decay in a laser

field, the large difference in scale size (wavelength) of



the ,»a decay phenomena (Q>KeV) and the laser field photons
(lwxeV) leads initially to no expectations of a significant
interaction in analogy to the resonance phenomenon. But the
most intense lasers available today can provide intensities
.of light to atomic sized regions of about 10%2° times gg;gﬁgf
the usual laboratory environment for sA decay experiments
(about 102W/cm?), Thus even if there 1is only a small
coupling, at this intensity the modification of the rate
could possibly be significant. '

To calculate the magnitude of this effect the
electrically charged particles are coupled to the laser
photon field. Then the transition rate for the 2 decay
process is recalculated. As a first approximation the
nuclear response to the laser flux may be neglected relative
to the g particle's response. This calculation comprises
the body 6f the thesis and is outlined in the next section.
In light of the above discussion of 5 decay rates attention
will be given to whether the laser flux increases the number
of accessible states. It will be seen that the total decay .
rate does not change (sec 4.6) and that the neutrino
spectrum retains its original bounds (sec 4.2); the latter
result is consistent with no increase in rate, and no

modification of the 3 decay process.

The assumption that the nucleus of an atom or ion may be
exposed to the laser flux has been debated in the literature
(ref. 2,3,13,14) as has the possibility of experimentaly
distinguishing 3 particles from background (ref.
2,3,14,18) Only the question of the theoretical existence of
an effect will be considered in this work.



1.3 Outline

Chapter 2 is a discussion of the motion of an electron,
(or charged particle), wunder the influence of the e.m.
field of a laser. The classicai solution included is useful
for building intuition and the guantum solution for the ,
decay calculation that follows.

Then the gquantum calculation of the decay.rate is
presented; chapter 3. 1t begins with general considerations
in order to shed some light on the basic physics. These
considerations involve some phenomenology governing the
Hamiltonian, but then the discussion centers on unpolarized
nuclear transitions, wunobserved final polarizations of
leptons, and unobserved neutrino momenta. These Qquantities
are summed or integrated out of the decay rate expression
early in the discussion economizing on labour. Induced
decay 1is then treated in a similar manner.

Chapter 4 begins with the determination of the
kinematical domains for the differential decay rate and
continues with some detail of the numerical work.

Chapter 5 is a conclusion.

1.4 Conventions

Throughout this paper the fundamental unit has been
chosen to be energy, MeV. Then other wunits are derived
using %=1=c . Electromagnetic units are Gaussian with this
modification. For example the charge of the electron is

e=1//iz7 , (dimensionless).



The standard summation convention including the use of
the metric to map tensors into their dual spaces (raise and
lower indices) and the distinction between Latin and Greek
indices is also followed; however, vector or tensor notation
without indices is also commonly used. Brackets will often
enclose a typical term 6f the tensor they denote, for
example (MM -M*#" | The duals of geometrical objects will
be denoted by a star in componentless notation. For example
a 2-tensor has a dual F*=GFG, where G is the metric. The
natural inner product for tensors of rank 2 and lower is
(X,Y)=tr(Xy*). The 'square' shall refer to the inner
product of a tensor with itself.

Feynman representation for ¥ algebra is chosen so that
Dirac equation results resemble those of Bjorken and Drell.?
More detail is displayed in appendix A.

Throughout the thesis m will be the electron mass;
other masses will be subscripted. W will be the laser
frequency (energy); other energies will be subscripted. The
dimensionless parameter governing the whole effect is

- ea
V= ™

where e is the electron charge, and a is the field

strength of the vector potential representing the laser.

2 Bjorken and Drell, ref 5, appendix A



II. MOTION OF AN ELECTRON IN AN E.M. FIELD

2.1 Classical Solution

Governing eguation

The Lagrangians l,.= f!';- JL‘(X-V) ol3y or L,= mfd‘J?*‘V) d?, ,

defined up to multiplicative constants, lead via a
minimizing principle of the action S=[ldt to the Euler-
Lagrange equations and to the expected result for a free
uncharged particle at x,namly 32a=o .

The Lagrangian density Z7=-#.15FF*=-% gm,Fﬂ”, formed

from the square of the e.m. field tensor,leads in a similar

manner to the governing equations of the e.m. fields in
vacuum, Maxwell's equations. The E and B fields can be
replaced by potential fields A , (where Fav =,y -AVV‘)' a

Lorentz 4 vector. The governing equations are now second
order in the time derivative, and the dynamical wvariables
resemble those of particle mechanics. The source.free
Maxwell equations Q“Ff” =0 are automatically satisfied. The
dynamics are given by the waQe equation if the Lorentz gauge
is chosen.

The Lagrangian density & = 114-1m-q,A”’ including
source fields J=mfu §16-pdz  ,where U=¥(,V)is the 4-
velocity, leads to Maxwell's equations with sources and also
accounts for the interaction of the sources with their own
fields. Gauge invariance of the Lagrangian is guaranteed by
the vanishing divergence of J and the insensitivity of the
~minimizing procedure to additions of a total derivative to

L Here, as a good approximation the A" are assumed to



describe only the laser and the JT# to describe the
mechanical electric current of the point source, the
electron.

The Euler Lagrange equations lead to homogeneous wave
eqguations for each of the laser e.m. fields. If k is the
lightlike propagation vector for the laser e.m. field andeg

is the spacelike polarization, then

K*= kege=o | g*=-1
and solutions of the wave equations are functions, f , of
S= K-x
aA* = e~ £(5)

The ordinary derivative of a function with respect to its
argument will be denoted by " ' ". The piece of the action
involving the electron is
' m .

g:—f(—x—-PCAV)Ol't
Though written using the guantities measured in an inertial
reference frame, the Euler Lagrange eguations

d - ‘ =

o (mv +eA)- eAv k=0
can be rearranged to give the familiar covariant Lorentz

force equation

mde? _ o F

cr. = )
‘ M
T IT.1

where (J 1is the relativistic 4-velocity as stated above.

Solution

The general solution for the motion of this classical
particle has been found from the Lorentz equation II.1 by

Itzykson and Zuber (ref. 15). Landau and Lifshitz (ref.
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17) have also found the solution; they solve the
relativistic Hamilton Jacobi eqguation for Hamilton's
principie function and then the'dynamic variables, momentum
and energy. The approach taken here builds intuition by
first solving the Lorentz equation for the simple initial
conditions of a particle at rest at the origin. Then the
action 1is calculated to corroberate the literature and to
facilitate comparisons with the quantum mechanical solution
of the next section. In that case one expects ‘Y=e¢s '
where S is the action of a trajectory in phase space, to be
the probability amplitude that that trajectory is realized
by a quantum mechanical particle. Next the lab frame motion
is described and then Lorentz transformations are wused to
show the effects of differing initial conditions. Finally
the energy of the particle is related to physical parameters
of the laéer.

Choosing the z axis of the lab frame as the direction
of propagation of the e.m. field is realized by setting
k=(w,0,0,w). For the purpose of illustration f can be
chosen as the plane wave f=a@m$ and €* for linear
polarization as €4=(0,1,0,0). Therefore the laser fields

have the usual characteristics

FFeo —— 1B1=18]
F*F*=0 —— E.B =0
§ ﬁ =i§~§ =0

F#vﬁu =0 —8—

We choose the 1lab frame initial conditions %(0)=v(0)=0,
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then U(0)=(1,0). The Lorentz equation II.1 becomes

o

o . k3
a)dz = Wy co3 § U, ) ji =0

= WV LS Y

b) _‘:_ll%lz.wvmg (vs +Us) | d) i‘f‘:
11.2

where v==%% is a parameter giving the strength of the

interaction relative to the mass of the electron.
Comparison of 1I.2a) and d) gives 0%= U ie. v° - U =C , @a
constant, which equals 1 from initial | conditions,
Substituting this and U +U; = VU°-U3 into 11.2b allows it
to integrated. With U' now, equations a) and d) can be

integrated. Using the initial conditions II1.2 becomes

a) U= -%; aniwe + 17
b) U = -V ainmwr
C) v = o

dj 3 = V2
Zz
The 4-momentum is

e) P=mU= mYV
11.3

Inspection of shows that it can be written as
- —-e
U= U("o) _r'nA +C
vhere U (o) is a constant depending on initial conditions,
: et K. . '
%%A is a component parallel to A, and C=-I§A21;a is an
oscillatory part perpendicular to A . This decompositioh is
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unigue since the initial conditions of the particle, and the
directions of polarization and propagation of the laser

flux, are all fixed input parameters. Thus the action
S =-fLdt
- L (m Ut+2eA-0)dt

= -m U(vo)-'x + ff_i_\-% (e AU+% /‘)z)

I1.4
This is a wuseful expression to compare to the quantum

mechanical solution to come,

To better wvisualize the motion, E}Hs that is, in the

laboratory frame, we must integrate P from 1I1I.3e over the

lab frame time t., 1I1I.3 can be used to solve for 7 in terms

of t. To wit:

dT
b L .
S t= BtV ¢ - V. aonawz
4 Fw

I11.5

: . _ &+VE
By inspection we see that £ = 7—Tt is an asymptote of
11.5 and in fact that the two intersect twice per period

y4+92 I

with period Ww for T , or period 7w for t . Thus T

is well approximated by

- M 4 4+ gip 2w
T= 5 (1 i em 5 t)
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Figure 2 depicts this.

gt 4
4 v
t

-

w
T

Figure 2 - LAB TIME AND PROPER TIME

We then notice that momentum from I1I.3 has half the

frequency of the figure and thus integrations over integral

numbers of periods w.r.t. T or t are -equivalent for
finding the Fgyug .
y? ve Y2
(|+ Lo+ 3 )
= Y
F;ms m iz

I1.6

One can check that P&, =m?.

In any frame other than that in which the particle

starts at rest we have

B, = ¥(p=-2"¢)
= e (ol (1 )

I11.7
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where ‘6'=(1-/3"')“'I'~ ,and '=9(0), the initial velocity of
the electron. Thus in any frame the motion of the electron
is a constant plus oscillating terms. Though we have not
included reracdiation effects, the electron achieves a
guasistationary momentum state. This is attributable to the
oscillatory nature of the Lorentz force in the z direction,
or one may regard the onset of the e.m. field as
contributing a net impulse to the electron in the 2z
direction. Our approximation of not including electron
field effects is vindicated by comparing the magnitudes of
the radiation damping force to the acting external force.

The radiation damping force from energy conservation

considerations® in the lab coordinates is

2 L2y
Fmd = —3_6 ,V

The acting force is the Lorentz force

'ﬁ_ = my
a

} . w . . .
The ratio of the two is of order enq which in our units

is about 2x10-%/137 or 10-%.

To relate these calculations to real conseguences we
must relate the experimental laser power to the parameters
here. To ensure confidence, the Poynting vector that has
been used with great experimental success® to represent the
energy flux of the e.m. fields 1is rederived 1in the

following combination of natural and Gaussian units. We

Jackson, ref. 16, p784
See Feynman Lectures, ref. 11, II 27-4 "Ambiguities of the
Field Energy".
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have already used h=1=c to reflect the freedom of choice of
units. Including sources 1in Maxwell's -equations, and
choosing the Coulomb's 1law and Ampere's law constants

appropiately gives the Maxwell's equations in the form

o) ©-

mL
]
£
N
Y

b) T«xB -
11.8

The rate that work is done on a charge e when 1t

PR

responds to a field E with a velocity ¥ is P=E.ev=E.J .

Conventionally J is replaced from I1.8b

s 1 ,2=.2_g.dE "’
— = -3 =] J_JEz
= 1 (V- ExE + B-(PxE)- 4 )
. -_ - Jd (e*+8Y)
- £ = ﬁ;-f? (ExB)-% (‘*—éfg———)
E*+B? ) ) .
Then is 1identified as the rate of loss of

gw
energy from the e.m. field and v (ExB) /41w as the flow

of énergy out of a point. If 3=0 then one says that
S=BxB/4 1 is the energy flux 6f the e.m. field. As
mentioned earlier the ¢truth of this assertion 1is its
experimental success, but our purposes have been served as
we now have Poynting's vector, 8, in our units. Time
averaging the magnitude of 3 using the previous definitions

of the field tensor gives
I = <131y = a*w? /3w
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For a laser of I1=10'8W/cm2?2, and W =2eV, we have

a* = 3.922 X 107 [ MV -¢-4*

Thus
y* = €lal = 2%
and "
v = .530
From 11.6
ams = 1.07 m
and for V =1

Recall that the mass of the electron is measured in natural
units, Mev.

2.2 Volkov Solution

Governing Egquation

The original conception was to use the wave function of
an electron in a plane electromagnetic field in the beta
decay transition amplitude. This wave function 1is the
Volkov solution (ref. 21, 1935) to the Dirac equation with
a minimal coupling interaction. It 1is now rederived and
then compared to the classical solution to see that it is
reasonable.

The Hamiltonians of classical mechanics involve
canonical, or standard, variables which are replaced by
canonical operators in the succesion to gquantum mechanics.
Ordinary qhantum mechanics uses these operator Hamiltonians
as the generators of time translations (Schrodinger's
equation). Incorporating special relativity (by finding
Lorentz covariant equations) into quantum mechanics was
accomplished by using relativistic Hamiltonians. Originally

proposed to overcome problems of interpretation related to
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the Klein-Gordon Hamiltonian or its sqguare root, the Dirac
Hamiltonian was found to imply the fermion spin-statistics
connection (ref. 5).

To describe a charged particle in an external
electromagnetic field, classical correspondence can be
invoked to justify the use of the conjugate momentum p-eA
in place of p in the first order equation, the Dirac
equation. The same result can be found from the canonical
guantization procedure utilizing a Lagrangian. The
Lagrangian is formed from a term calculated to lead to the
Dirac equation for the electron, a term to describe the
electromagnetic field, and an interaction term. As in the
classical case the charged particle's own field may be

neglected. The Lagrangian density is

L= ) (F-m) &) — 4 Fed - e P Ak V&)
and the Euier Lagrange eguations of motion involving the
particle are
B=(P-ef-m¥E=0

11.10
Lﬁs{”éu , " denotes operators, and T is implicit) Further
justification (if it is needed) for this governing equation
is that it is required by the necessity of invariance of the
Dirac equation under 1local gauge transformations. These
transformations involve the addition of the gradient of a
function é, 6(x) to the vector potential and the
simulataneous multiplication of the wave function by a phase

ce 8x) A . A
factor e whose argument is that gauge function. g -eaA
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is the covariant derivative for this group of
transformations,
Solution

After the models of Landau and Lifshitz and Itzykson
and Zuber we solve for ¥ by first 1looking for a second
order egquation. To this end we multiply by ﬁ—ey +m aﬁd
find

i -eA ¥*) -m1¥=0

C XV‘KV(L'},- eﬂp)([%,—e/%/)'fsz

¥*¥has a symetric part G#Y and an antisymetric part om
(eq. A.6). ¢#Y projects to the antisymmetric subspace of

its range. That antisymmetric part of the above operator is

FLi( -l dy-ehy) - (Fdy- AYNcd, —ehy) ]

and is an additional term to that which results from the
minimal substitution into the Klein-Gordon equation. It
represents a spin interaction with the e.m. field. Thus we
have

[(cd-eAV -2 es* Fuy -m*1¥=0

IT. 1

Now, as in the analysis of the classical case, we

choose an eléctromagnetic plane polarized plane wave

Ap = €uf(kx)
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where

The spin term becomes
- y L
-}e“’/“’av"“—’w‘ K. Ay
Using A.6 and 7 this can be rearranged to
l #V — I’ -1
S e F/AV—LC(Kﬁ' k-A’)
and since
K-A'= K, e¢*+'(kx)
this is
l v - ’
e T F., = ve k&

The momentum term (L'J—eﬂ)" becomes

(L‘g_c,q)" —.= -O-20eAd +e? A4*

since we can choose the gauge a/uﬂ/‘:o (Lorentz gauge).

The Dirac equation II.11 has now been transformed into

[-0-2cehd tetA-mi-cleka’l¥=0

I1.12

and we can look for plane wave solutions of the form

X '
Y&) = e @(kx)
I1.13
Since the §=kx dependence is contained in @ , which is
yet to be determined, we are free to extract factors of c‘Ak*
from @ . Thus we may use a redefined constant vector

p= ,p'-l')‘k that lies on the mass shell: P‘ =mi
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in II.13 Upon substitution of I1.13 into II.12 we find the

first term is
Wt = -ip 4iel o'5) k,
3/“%,"‘1*1__—_ _L& (_ L'Fa“ Y+ ctp-x 4)/6) k,“)

_.L‘pu et'f-x ?/(5) k/“ 4 CL'/'X?,/K:.
K' =o

OWY=p'¥ -2(p-keP*o/(s)

II.H%
The second term is
20e A= 2eA* (L g ¥4 e P 00 (c) k)
= 2¢Apy
I1.15
Thus II.12 becomes
(pr-m*) ¥- 2eApy + e1A'Y- e KA'Y +20pk e ol =0
I1.16
Using p?=m? and dividing out the phase yields
[ ’ZCA'P + ezAz-iekA"J ¢(S) +1LPk ¢/(f)=o
11.17

This can be integrated to give
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P6) = o, exp[f e?ﬂ‘—zeA'F—c'ebf?'o/f/] U

-2p Kk
= @ exp[ [ €24 -2e80 Jp] B v

I1.18
where @, is an integration constant. ) is a Dirac spinor
as can be seen by substituting it back into the governing
equation.

First, eq. A.2 gives that (K #)=0 for rZ1.. and we
can rewrite the second exponential of ¢ as
€ %%%% - e kaq
=1+ S
Thus the Volkov solution is

Y, =@ > 1+ EL)U

— ‘ e2pAt —2ehp /
‘S..—,ox-tf 2Pk i I1.19

where S has been so named because it is the classical action
(see section 1.1). The factor in brackets and U results
from the spin interaction term. The rest would have
resulted from the use of the Klein-Gordon equation from the
outset. Normalization, @ =1, is found by lettinga-> 0 lead

S has the effect

to the plane wave solution. The factor et
of giving the most constructive probability amplitude
superpositions to those trajectories for which &§S=0 . That
is, the «classical trajectory 1is the most likely one, as

expected.

Checking now for the conditions on U we have
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By= (p- Eyp (e -20p-ieKA)K-ef-m)
(1+ £E4 ) e U

‘1p-k
Dropping terms with WK=0 and using A.1,2,3 to commute

xE
1+ Zpn to the left allows the continuation

. : P71 S
B o SEE - mghe + SRR S28015%

which reduces to

A ¢S
By = (1v FEEN(p-me U

I11.20

A
Thus D VY=0 implies that (P-m)VU =0 , i.e. that U is a
Dirac momentum eigenspinor.It is normalized the same way
(ref. 5). These results are corroborated by letting A-»
O . The Dirac equation is recovered;plane wave solutions
are recovered; and normalized Dirac momentum eigenspinors

are also recovered.

Thus the Dirac equation 1including electromagnetic
interactions has been solved in closed form. Usually the
state of a system of wunperturbed Hamiltonians evolves in
Hilbert space covering a parameterized trajectory when

interactions are included in the Hamiltonian. Our solution


http://eigenspinor.lt

23

which looks asymptotically® like a momentum eigenstate 1is
such a trajectory Writing our Dirac equation as ([%,-
%)Y =0 shows that we have not found the stationary states
(eigenstates) of : we readily see that W, are eigenstates
of 6 , 6 and ﬁ +ﬁ with eigenvalues p , p. and p +p

1 A ° 3 ) k! [ 3
respectively. Each trajectory Wﬁ,(x)= Y,oo has a
characteristic x and y momentum and for each the difference
of energy and z-momentum is a constant. However energy and
z momentum do vary around average values, as seen for the
classical motion.

To compare with the calculations of Becker et ‘al a
circularly polarized 1laser e.m. field is used. This is a
linear combination of plane polarized plane wave solutions
to the wave equations, that differ in their phase by a
constant fr/2. We have

‘(,Q"")::.a.(o)ms) Q‘MS,O) , =11
Ap = a( Ren§ + T pasns)

= ap, m.(f-q")

I1.21

where ¥ is the azimuthal angle of P. Thus

- ~ aé , -
S = -px + % b om(s -5 ¢)

> The difference of the functions decreases faster than any
power function as we look to infinity for the argument.
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~ etal .

where P=p+ 2p K . p, 1is the component of momentum

perpendicular to k (and to i); p-k=pmu is the parallel

component. It can be seen that Y, involves e‘s, that is,
VoL

sinusoidal variations modified by trigonometric functions in
the frequency. This is reminiscent of Bessel functions. 1In

) »(E-T¥ ) .
fact eLGm.g ) has a Fourier Bessel seriesS®

. . o0 )
CLEM(?'TV) = { ecn(f-c“’) Jp(;)
Nz-00
In this case z= vPLMis a dimensionless parameter dependent

fw
on the laser strength and the perpendicular e- response, and
we have
(-] ~r .
: ; -nk)x -inT@®
e”s— < e"('p e J, @)

Ne —o0

11.22
The summation index n can now be interpreted as the number
of photons of energy w that have been emitted or absorbed
by the electron with a probébility amplitude that is
proportional to J,(z). As well the x dependence is amenable

to integration when the transition amplitude 1is calculated

later.
The dependence of W%, on the factor 1+ Si;gé can be
removed to an exponent as follows
Let ‘
X" = -
then
1+ ekqd _ ]+ Ea l;((¢’,mi+¢z¢m;»‘f)
ziwk z,rk

= 1482 w[@ive) etF 1 (s iTdi)eT]

¢ puff and Naylor, ref. 9, p300
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v o . .
PR N (s _ % 1) el (P- (n11)k) X invy
N -od
=7 5@ e PR ey
we have

o ; " nk)- .
Lf”,s(x):f e~ (P nk)-X e‘"wv,,(,o)u

n= -eo
Vale) = Tu@) + €K [ b cagn)el 1,6

+ (@ +:vf) e LT T, R ]

This form of the Volkov solution agrees with Becker et al

(ref. 2, equations 2,3)

11.23

A modification useful for a later argument is to define

YE Pk [(8. cTe, )eLqW’\T”,,(E) 1t ve) CLV‘PJ;-N(Z')]

and note that

also that, as 4-vectors

Y.k

il
o

then
V, (p) = .2+ KX

and

I1.24

11.24 o)

I1.25



26

! +
V, P)= ¥V, ¥° 11.26
As a check we see again that a =0 causes the arguments of
the Bessl functions to vanish. Because of A.,6 and 7, only

J,(0) =0,and the plane waves are found again.
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III. INDUCED BETA DECAY

3.1 Beta Decay Hamiltonian

The Lagrangian formulation of classical field mechanics
requires that the coordinates ¥ and momentum Tf) be real or
complex valued fields defined on the fouf parameter space
known as space-time. The mathematics that developed on this
subject was first applied to wave phenomena, the propagation
of disturbances in elastic media. Later it was found to
play an important role in some dramatic achievements of this
century, the theories of relativity and guantum mechanics.
In special ~"relativity the finite wvelocity for the
propagation of signals éuggests that forces operate 1locally
as contact phenomena between the neighboring points of
space; the field formalism for forces embodies this concept.
In gquantum mechanics a complex valued probability amplitude
field k) was used in a new correspondence between the
objects of Mathematics and the objects of Physics to
successfully account for many wave-like préperties of
matter. This new correlation was drawn from the objects of
the Lagrangian formalism in Physics and Hilbert space in
Mathematics.

Special relativity and gquantum mechanics have been
merged in Relativistic Quantum Mechanics and Quantum Field
Theory. In the latter the wave particle dualty afforded by
quantum mechanics to matter is ¢omplemented by quantizing
the force field, giving it particle characteristics. For

example the quanta of the Coulomb force are photons and the
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guanta of the Weak force are the vector bosons. In QFT the
coordinates Wk and momenta Tk are operator valued fields
that satisfy canonical commutation relations (for bosons and
anticommutations relations for fermions). States of a
system are reprsented by rays in Hilbert space. They can be
defined wusing the eigenvalues of complete sets of commuting
observables {(or "good" qguantum numbers if the Hamiltonian is
in this set) as indices. Convenient bases for the Hilbert
space are often found in the eigenvectors of the position X,
momentum P, or number N, operators. It should be remembered
that Hilbert space can often be a tensor product of
subspaces on which these operators are elementary.

Previous experience with quantum mechanics leads us to
write a quantum field theory Hamiltonian both in terms of
the coordinate fields @& and M), and in terms of the
creation and destruction operators of guanta of the field.
This technigue has been useful in the oscillator and rotor
problems 7 . For the simple case of a real K.G. field, the
expressions are

W=+ fal3x(- m2@ix) +92 ¢() +rix) )

III.1

74: Jifa[3k UJ(C?‘E'Q; + a; 4;1)

I11.2

where k—k=mé and k, =w. From these and the canonical

{
i

7 Cohen-Tannoudji, ref. 7, sections VB,and VIA,.
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commutations, we can derive the Fourier transform expression

- 1 3 —C k- Ck-
Px)= (zn)zleé\ff_ﬁ— (e ky“k + e kxa:)

I1II.3
These relations are often presented in a different order,
but from this presentation, it should be clear that if
instead of a K.G. Hamiltonian in I1I11.1, we had started with
the Dirac Hamiltonian with an e.m. interaction, as we did
for the Volkov solution, then in the expression I1II1.3 we
would find the Volkov solutions in place of the
D'Alembertian eigenfunctions, eik* , and an additional spin
sum giving®
3 a
ver= e £, f-olﬁ_f—-(%(i‘,s)as(ﬁh he.)

II1.4

To calculate a beta decay transitibn amplitude, terms
leading 4to the governing eqguations for the particles
involved are included in the Lagrangian. Since nuclear g2
decay is modelled by the decay of a nucleon within the
nucleus, the particles involved are protons, neutrons and
neutrinos. These are coupled to the guanta of the weak
interaction, the vector bosons; as well the electrically
charged particles are coupled to the external e.m. field.

Both protons and electrons should couple to the external

Formally, the Fourier transform 1is a distribution or
functional on the vector space of "test" functions. It is a
map from the vector space to the "field" named in the vector
space axioms (usually the complex numbers). Here the map is
between operator spaces, S0 these are not usual Fourier
transforms, though this is what they are called.
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field, but the'response, or energy transfer for the proton
is expected to be reduced in proportion to the mass of the
particle by analogy with collisions in classical mechanics.
As well the proton remains in the isolated environment of
the nucleus. Therefore, as a first approximation, the term
JeA 1s added to the Lagrangian only for the electron. This
coupled current form of the interaction has been previously
discussed. It 1is not ammenable to perturbative techniques
since in the present application A is large and higher order
processes may not be neglected. However, Volkov coordinate
fields are the exact solutions for Dirac particles and
electromagnetism. So the weak interaction terms alone may
be regarded as a perturbation.

Thus we expand 3 decay transition amplitudes in power
series for the weak coupling constant, g. For each term of
a particular power, Feynman diagrams with a fixed number of
weak interaction vertices can be used to picture mechanisms
by which the decay is effected. 1In perturbative expansions
the amplitude for each process is added in accordance with
the principle of superposition. Each such amplitude is the
product of amplitudes for the components of the Feynman

diagram (in momentum representation® ) in analogy to the

In position representation, this product takes the form of a
convolution of Green's functions for the propagation of
impulses. This is noteworthy because in making an algebra
out of a vector space of functionals, the convolution plays
the role of vector product. (the 4§ functional is the
identity; the Green's function is the kernel of the Green's
functional which is the inverse of a differential operator.)
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multiplication of conditional probabilities. The amplitude
for a weak interaction boson to propagate is the "inverse"
of the K.G. operator. Since the bosons have a mass of 84
GeV (ref. 6)and and the energies that concern us are only
Kev, the K.G. operator and its inverse are dominated by the

constant mass term

9 9

e = —>
Kigmz = 0m E

This constant can be absorbed into a redefined coupling
constant; then the transition amplitude involves a point
coupling of thé fields and takes on the form of the Fermi
theory of beta décay proposed in 1934 (ref. 6).

Nuclear , decay is then described by the decay of a
nucleon within a nucleus. The binding energy differences
between the nucleon and products along with angular momentum
considerations have largely accounted for spectra variations
and the wide range of »4 decay half lives. This success 1is
included 1in the "universality" of the theory. To learn the
basic techniques of 2 decay calculations, the decay rate
for a neutron was calculated without Coulomb corrections.
From published data (ref. 8) of particle masses and weak
coupling constants the half life was found to be about 640
seconds;in agreement with experimental results(ref. 6,
pi34). The calculation and relevant weak interaction theory
can be found in many sources (eg: ref. B8) and is only
outlined here. First we need to develop 52 further.

Our primary interest will be in °H decay which 1is a

neutron decay. To describe neutron /3 decay
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n—p*+e -+ 9V
the 1lowest term of the perturbation expansion is 0 and we

are left with the first order term pictured as

™

v

5

and written as

S=<n(kesSu) INal e (kese), PT(Kpsp), Vikyrsy)
111.5

where %% is a product of the field operaters for the

particles involved. As such it actually involves
5@,,(7;,%, . ' for the production of the proton, electron

and antineutrino and the destruction of a neutron. These
are operators on a Hilbert space where the spinor and charge
characters of these particles are expressed in 4 components.
That 7% is hermitian ensures the unitarity of the scattering
matrix S and the conservation of probability density.
General considerations will provide some information
about ,»4 decay, but further detail can only be obtained from
experiment. We expect that the interaction Hamiltonion that
governs reference frame independent processes should be
Lorentz scalars, and with our four fields written each with
4 components, there would seem to be many ways to construct

these 1invariants. By analogy with the coupled current

'% Another common practice is to denote the fields and the
particle by the same symbol.
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interaction of electromagnetism J-A, we could construct
lepton and hadron probabilty density currents and couple
them, or we could generalize, creating couplings of
different geometrical objects and forming a linear
combination.

Since after decay the remaining heavy particle 1is
nonrelativistic, we take the nonrelativistic limit for the
nucleon Dirac spinors contained in these terms. The
pseudoscalar coupling vanishes; the axial vector together
with the vector, and the scalar togetherv with the tensor
each reduce to

mom, ( C, xf‘,‘ Xy, CaXy T %.) Lya
and

Moy (¢ XFT°Xn, C, %5 T X ) Loy
where «q°=1,, and L, , and L, are the lepton current 4-
vector cofactors. 1In further analysis some of these fac;ors
cancel so it is convenient here to give them the shorter
symbols used in the literature (eg: ref. 5)

Mg = %! o,

i .
M‘T = -X; T xn

and define

M= (c M., Cyh ’%T) I11.6
The Pﬁ-and the Firterms are called Fermi and Gamow-Teller
coupling respectively. The corresponding .nuclear spin
changes are 0 and +1 or 0.

For these nuclear spin changes the emitted lepton spins
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must oppose or align to conserve angular momentum. That the
helicities «.p of the leptons helicities are opposed is
characteristic of the V-A interaction.'' The spin and
helicity determine the emitted lepton momenta to be
correlated in the aligned sense or the antialligned sense
respectively for the two couplings. This is born out by -
neutrino angular correlation experiments and so the S-T
terms may be discarded. The last consideration for the form-
of 7ﬂ3 is that the relativistic limit of the lepton Dirac
spinors are Pauli helicity 2-spinors. The mixture of vector

and axial vector parts for L,, is then

- — 7 yM =¥s
L= L,, = 0¥ ﬁ—'i)' Yy

I111.7
in order that the correct relativistic 1limit of the
helicities be obtained. The factor 1-¥5 is now

2
understood as the projector for right handed antineutrino

chirality.

3.2 Beta Decay Rate

To find the differential /3 decay rate to a region of

" phase space, we must multiply the probability density, which

is the 'square' of the probability amplitude S, by the
number of states accesible, the density of phase space.

To find S2? we first substitute expressions 11I1.4 for

the fields into III.5. We can easily evaluate the momentum

integrals and spin sums because of the delta function

~

11 This is shown algebraically with little difficulty,
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contributions from the inner products with the creation and
destruction operators. The integral over the coordinates x
of the exponential factors then results in the energy
momentum conservation 4  function. The factors (,T,;)?;are
replaced by vﬁﬁ; in the transition to box normalization.

The nucleon masses have cancelled and using 111.6 and II1I.7

we have

am! L) 6y

S = %%: 3
2 Jqu&uw V%
I1I1.8
Squaring we fina'®
.f-
ML = & MMTLLT
I11.9

MM* looks 1like a projector for which a closure-like
relation ~might exist. Since we are looking for the
unpolarized rate we sum an element of MM* over initial and

final spins to find (no sum on u,y)

(MM)*Y = €€ %) o X, X' T4,

sn Sf
= th TraY

I1I1.10
If instead of Pauli spinors we had the polarization states

of a higher angular momentum basis in the above expression,

'2 paraphrased: the square of an inner product is the inner
product of a square, and this just reflects the
commutativity of the inner product defined in the
introduction.
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as would arise in a more general ,B decay, then the
summations would still give that MM* is diagonal and that
the (MM* ) are equal for,p=1;2,3. An argument from symetry
would suffice for this result. “An immediate consquence 1is
that there is no interference between Fermi and Gamow-Teller
terms. The spin summed MM* is not the identity because of
the constants and the reduced matrix elements of the Wigner-
Eckart theorem found along the diagonal.

Since MM* is diagonal we need only the diagonal
elements of LL* in 1II11.9 . Since we have included
projectors for the antineutrino helicity we here also sum on
polarizations to find Dirac projectors. Then we let the

neutrino mass approach O, a standard technigue. A diagonal

element of LL* is developed then, (no summation implied
again)
= 1=¥s v* g =X
L) = ¢ v, 2= Y el =2V
Se 5/4.
— 1- Y o yre
=Y (Ftm) X (me) &

=2 b P xr et
= 8({2- Rv/LfﬁlL-'f%'ﬁ; é;ﬂ%‘)

ITI.N

Putting ;his and III1.10 in I11.9, ahd the result in the

square of II1I1.8, and using (Mg, )2=4MZ, gives

L

2 4 .Zﬂf ¥ E - 2
- g (el 13k i, (-4 BR)]

IIT.12
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It is now convenient to replace the square of the d
function by 4°(0) J*(€P) and then (21)* §%(0) by the
size of the 4-box VgT on which Hilbert space is defined (see
appendix A). Then an integfation over the undetected
nuclear recoil 3 momentum is easily performed evaluating the

3 (¢p) . Further simplification is achieved by
integrating over the unobserved momentum of the neutrino
¢J3Pv = cuv‘ J(»v oLﬂ
Then the angular integral eliminates the neutrino momentum
dependence and contributes am. The radiél integral
evaluates the last 4 function. Collecting these changes

II1.12 1s now

s 2 2
St= g* (27)" 27T Ci. MF:L + C Mm] Wt
. L T+! vg"

IIT1.13
where W, 1is the mass enerqgy difference of the decaying
nucleus, W, =W,-W,, and now all masses from normalizations
and field operators have cancelled. The factor in square
brackets is called the nuclear part(NP).

The "marginal probability" of a decay with 4-momentum
P, , P¢ =m?, is the product of S? with the density of states
in the phase space. This density is finite 1if the
coordinate space is delimited to a box. It |is V’B/(Zﬂ')3
for each of the 3 final particles and so all reference to a
finite coordinate space cancels from the probability

expression
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2 27T 2 3
dw'= £ G (we-we)” NP Lpe

IT1.14
The decay prébability per unit time 1is dw =dw'/T .
Integrating the directions of the electron simply
contributes 4T . The radial part can be written as

ollf_’;llpela‘ = Jwﬁ-—m" We alu)e

II1.15

giving

2 NP G a
dw= 3 (we - wo) ,f we-mM*  We ow,

2m3 23+l

The total decay probability is

Wy
w = _4; dw

The half-1life is 1ln2/w and when the numerical constants are
inserted and the simple Fermi and Gamow-Teller neutron
transition amplitﬁdes (from 1I11.10) are inserted, the
neutron decay half 1life 1is recoverred (to about 1%
accuracy).

The energies of the 1leptons are (Wweé€ [m,uy] and

w,€e[0,w,-m].

3.3 Induced Beta Decay Rate

The modified rate can be calculated rather easily now
that the rate calculation has been set up as in the 1last

section, Using 11.23, S (II1.8) is modified to

_a am* AT 1
S= = v;m,é,w‘r({")“"

IIT.16

where



39

L': = edhwl Ue Vn' ‘("Lﬂi‘;’g)uv
ITI1.17
and §p= P, + %, -nk+f-Pincludes extra terms from the Volkov
solution. In squaring S, eqg A7 can be used to show that
only the diagonal terms of the double sum on n do not
vanish. As before, the nuclear spins sums determine MM' to
be diagonal also, and the task is to evaluate

F 2 I (M) VXM P Y,
Z

III1.18

where u is not summed in this expression,
Using the integral
- -
we integrate the angular part of the neutrino momentum to
find .
i [
T = 47wy B (Fotm) V, XP0-X) X 47V,
2 111.19

Since V, and V,) have even numbers of ¥ 's, the term

proportional to m vanishes. FCommuting the Y*s towards

each other gives
(1+¥5) ¥#¥° ¥~
(1+¥5) (2 6= ¥ ¥/) ¥

(e ¥ Vi

I

Y& (1-x¥5) ¥°¥¥

I

I

Here we see that the Fermi and Gamow-Teller contributions

remain in the same proportions as for the no laser case. Now

we have T = ¥r w o ,zé, V,,' (HxS?b”V,,
‘ a
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or, reinserting 11.23 for V, and collecting similar terms

Ta =20 wy [ T2 Fe(+¥5)¥°

T b P (X R0+ (+x)Y° K Y )
+ 4 7 fKQHS)W ky |

=arw, [ T+Ta+7y ]

111.20
The first term is easily

evaluated using the standard
trace theorems as

T =4 3, we

I1I1.21
The second term is evaluated by using these theorems and the

algebraic formula A6 and recalling that Y-k=Y¥.k=0. We have
- .A' S S - o , *

T, =43, (P-Y'Wwt Wl V+iBxk¥Y=i(Y?xP K)

The triple product 1is «cyclic.

Recalling
complex parts of Y gives

I1.24 for the

T

2

—eu T [w P V47*) + i (F-VIx BR ]

—_43"” eaw

g ——

2 K-Fo [ @t T )+ (T, - TH,)]I’Z-(Z‘T;,‘VV)

o)

I11.22
The third term is first modified using

K 0+¥s)Y° k = (-¥S) gy =0—r5)(2w-?°'f<)k<

(-¥) 2wk

"

since k- k=0, to find
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7.001?1.7( Y*("Ys) 27

TwE¥ K Y*'Y-— L We Y*x k-Y-L'w)ZxY?Y)
Pw (P Kk YV —C PxV¥(weR-wk) )

But YxY* has only a third component which is multiplied by

(We K ~wp ), = wew-wp,

= B -K
Thus

l3= Pw

P,k (Y7 - F"7h')z )

Once again using 11.24 for Y gives

A’_’—‘_ eta? 2 2
Y Y— ‘f (pe )9- (T"+,+3_,)
and
elal T2 2 7
L(Y)(?) 4t (p ;‘)l (J;HI - In-l)
Thus

.]-3- za w[( nrn+T )+¢(hﬂ n,,]

I11.23
Substituting III.21 to 21 i

into II1I.20 gives
Ta= §wuf w, -;"‘;k Tl(Fnt ) T ) B (?V)
2al 1w 2
t R (5, 432) 1935, -T0) ]

, - 111,24
This agrees with John Hebron's Thesis (ref 14, eq 4.3.8.)

Now recall that V¥

is the azimuthal angle of the e-
mbmen;um. The ™ vector (¥, aln ¥, o )
direction . of

flux.

is just the
the component of P perpendicular to the laser
Thus the Y dependence is artificial
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- [ca?) = PL=Jstt am& m
e oln
o

where © 1is the polar angle. Further notational conformity
and simplicity is achieved by defining energy measures as

~proportions of the e~ mass

€= Ue/p ) o = We /,,

and Ag€
£-K=-wwe — P | Weemd =wm(g-Jgi-l £026) = WmbE

and laser strength parameter

= ga
v 144

It is convenient for the present purposes to average
over left and right circular polarizations of the laser

whereupon the @ dependent terms cancel. We have

p 2 o2 2
Te = ¢ w,m[tr,.zf -— %?—::% T(T,, t ,,“)-f' E-KE(J”H TJ;-:)]

Then wusing the Bessel function identity A.9 and noting that

z= ?—- PL (11.22) we have
e

2
TY‘ - 8WuM[_Tz(£-n— + ‘l/jbi ( ntl f:yﬂz—l)] 111.25

As in the 1last section the integral over the recoil
momentum evaluates J’(i p) in S? from 1III.14, And the
integral over the neutrino momentum's radial component
evaluates & (§w) . The factor g2/8fr* arises from
normalizations, the coupling constant, and the neutrino

angular integral as it did in II11.14 . We have
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2 i NS 2
MY . 2T J
2 ' v? 2 2V|de d
L3, (e-n%) + m(’jnﬂ t J"")] 111.26
where
yim T.=57 )
Wy= Wy =W = —— ThWw m m
v ° 2h€ 111,27

and the 6 function gaurantees that >0, a physical condition.
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IV. NUMERICAL DECAY RATE

4.1 Summary

A computation was performed for the case of °32H decay
with the laser characteristics that have already been used
in chapter 2, namely w=2eV 'and V=1. The ratio of decay
rates with and without the laser was 1.00+.01 . The error
was introduced mainly by the use of asymptotic formulae for
Bessel functions. Other approximations used to shorten the
computation were devised to not contribute significantly to
the error.

The computation was accomplished on the U.B.C.
computing center's Amdahl computer (MTS operating system)
using UBC's current version of Fortran. The Disspla
graphics package supported at the center was used to picture
various stages of the calculation, namely the Bessel
functions of 1large argument and order, the summand of
expression IV.10 and the differential decay rate.

The program that calculates the differential decay rate
and the total decay rate was then used to explore other
laser parameters. The results are displayed in table II.
Some trends were noticed that could be verified by hand
calculations. For example it was noticed that the both the
decay rate and the differential decay rate did not depend on
the laser frequency " and this was subsegquently verified
analytically from the formula IV.10 . It was also noticed

that the number of photons absorbed, the range of n , was
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independent of ) and W and this was also verified
directly. As well the ratio of decay rates with and without
the laser was seen to be independent of the laser
characteristics, consistent with the proposition of no
enhancement. The range of the neutrino energy was shown to
be unaffected computationally and algebraically. The
differential decay rate was seen to be a smooth featureless
function of its parameters.

Finally the enhancement factor for beta deays other than
3H, characterized by other decay energies W, was seen to be
unaffected as summarized in table 1I1I.

4.2 Kinematic Domain

The differential decay rate for an wunpolarized 1laser,
obtained by averaging left and right circular polarization

expressions from II1.26, is

o0 2
AW = g._———;;:j AE olﬂ— f e(wy) \,‘ %) wl)z [(i -n %In) 3-n1 #7:',:{ (J:HI *an-l )]
o0

ne=-
Iv.1

where
pE= € - Jgiq con®
J, = T.2)
2 = ealfr _ pym JEIT 0in®

-

7K w X3

2 w
wy = M(Eo’gvgn *”—’7))

€, as before is the energy available to the decay products

from the nuclear process. It is the difference of nuclear
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energies, so that for °3*H (as for the no laser case),

€. =1.0364 .

Inspection of 2z shows that it is a very large number
due to the ratio %} , representing approximately the number
of photons absorbed. This shows that asymtotic formulae for
the Bessel functions will be needed. From these formulae it
can be seen that the Bessel functions vanish very rapidly
for n>z , which establishes an upper limit of n=z for the
summation in IV.1 . Above this 1limit there is neglible
contribution to the sum; an error estimate will be presented
below, Also the Heaviside function, guaranteeing that the

neutrino energy is positive, establishes a minimum for the

summation

a -
N>, = 5 (e-t + 25,)

Iv.2
Thus n,,;, is also a large number.
For each entire summation to be nonneglible we also
require n,;,, to be less than z , giving constraints on the
kinematic domains in «»® and € that we need to consider.

We have from this condition

-2¢6(6-€)+ V2 + (€o-€) €020 L V ot ©

2 Jex-1

Now set

= -2 €(6-£)tV*
T a e

Since np, >0 , both sides of the inequality are positive

and we may square both sides to find
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A= v+ 2A(5o-¢) e 4 ((€o—€N +V)en?o <O

Iv.3
Since the quadratic expression 1is that of an upright

parabola, the range of co& is between its roots

cor6 el AG-Ot V@ - vV -AT J/((%-5)t tV?)
For these roots to be real the discriminant must be greater
than 0. After some algebraic cancellations we have for the

discriminant

4
—elage, 21V -(6 +y+ )20

Iv.4
and € lies between the roots of this inverted parabola
€ ef e, (1+ %) iv&%tfl)(ioz‘l) J IV.5

Plots of these domains for various values of y are in
fig. 3. From these plots some of the effects of the laser
are already evident. For low laser intensities given by low
V the available energies for the electron are still low and
the decay is still almost isotropic. But for larger laser
intensities the /3 decay becomes more probable 1in the
forward direction and the energy increases in magnitude and
extent. The higher energy electrons are more closely
aligned with the direction of the laser flux.

The neutrino energy domain can also be found.

Substituting n<z in II1.25 for €, gives
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2 .
g, & go_g_-z%-{ + YV Jer-] ane
Since the Bessel functions are maximized for z=n this upper

limit also represents the most probable §, . From the
analysis outlined in appendix C we find

0L g, < E,-1
as in unmodified decay.

To show conclusively that there is no enhancement we
will have to integrate the differential rate. The first
step in accomplishing this 1is to evaluate the sum in
expression IV.1 . As already noticed N,, and 2 are both
very large; the reguired asymptotic expressions for the
Bessel functions are now presented.

4.3 Asymptotic Formulae For Bessel Functions

Four different formulae, each with varying numbers of
terms have been used to approximaté the Bessel functions
needed here. They are derived in Watson (ref. 22) and

reproduced here with the following conventions

3 = n(tanspr-2) -~y

tans = | @Y -1
tanhe = fl - &/m)

They are'?® for =z 7n
TLT = S~ By |8+ 4ind (4= 55 <ot ) ntnga .. ]

IV.6

n is wused here in place of the usual VY because of the
discrete sum involved.
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for 2=an
1 . 2
Te0z @)~ L [ B THE)" + @-nenF IE(S) "]

Iv.7

for Z<n

n(tanh o -a)
IGT = T~ € [1-(% -5 AR’ Yntaha t...]

Iv.8

and for the transition region between2?nand z=xn

TTRE Jn@) ~ L fans coo(E +E - S ans) Tyt Ty,)
+ 7 lans am(@ +§ - S aans)- (T, - T, )

Iv.S

where :)—_-f_l/3 = J-i,/‘(%ﬁn\}s)

From these formulae it can be seen that the differences
between T, ,3J, , and J,., for large n are negigible. Thus

further simplification of the differential decay rate gives

2 2
dw = EM e da J7750 (%)3{ - Nz} (Mein =N+ 55 6) T, (2)

4 =n_.
T = Venin IV.10

Figure 4 1is a composite computer drawn picture of a
region of the summand of this expression as a

guasicontinuous function of n using the four formulae
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above., Series of these pictures were generated for
ranging from 4,000 to 8,000,000 and M,=2-500 and N,z 2 -
10000. From these series the location of key features could
be abstracted. Features such as the location of the 1last
maximum or minimum before N = 2 were found to move according
to | y
an, = z-n = bz"

where N, is the value of n for a feature in guestion. For
these features An¢ was typically 20 to 200 and b needed to
be accurate to three digits. This was obtained using
graphical analysis. In table 1 "min, " and "min," are the
location of the minima indicated in fig. 4 The other
features are transition points between the different
formulae in use, though they were notlalways critical. Fig.
4 illustrates that the formulae overlap for an - extended
interval of n . |

Some useful bounds to notice are the ranges of some of
the variables for the case V=1. This facilitates the
determination of the total decay rate and its error. For
V=1, Ze[1.7x10%,3.0x10%]. Then lanB €l0, .34] . For
ne (M, L], tans € [.048,.34].

4.4 The Summation

A better place to truncate the summation in IV.10 was
seen from fig.. 4 to be 2+100 or 2+1.7 2" in general.
Then the remaining interval of n sees a decline of the
Bessel function faster than exponential since the éxpression

n (,(_M «)>0 rapidly changes from a slow initial growth
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to nearly exponential growth itself. An upper bound for the
error incurred by this truncation ié calculated in more
detail in appendix B.

The error incurred by restricting the £026 , & cdomain
to that on which ng,;, <z is calculated in a similar manner.
The complementary condition n,,;, 2z gives the complementary
regions of 4m® and the same bounds on . From the
calculation of appendix B it can be seen that the
contribution to the total decay rate from these regions can
also be neglected. If we had been able to do the complete
sum on n and not had to 1look for the kinematic domain
satisfying ng<z, then the entire ¢ domain would have been
"allowed". Even so inverse exponential factors control the
outlying regions and the summation could be found.

The calculation wused Gaussian integration on the last
two peaks with enough points that the error wés limited by
the accuracy of the asymptotic formulae. This region gives
the largest contribution to the sum because of the square
factor and must be assessed carefully because of the
delicacy of the asymptotic formulae involved.

The main formula that gives the profile of the largest
last peak of the summand is the transition region formula

JTR, IV.9 . This formula has no more ﬁerms but the error

is likely very low according to Watson.'® The relative error

; . 24
18 -.a'/J,,tz) <.ol

'% Watson p252



52

This result led to an effort to achieve 1% accuracy in the
final result. Another region of this peak uses the formula
JLT, 1IV.7 . For 1% accuracy the second term becomes
necessary for

(126 - 25 [ts2s ) /nams = %ol
The maximum of Jam3 =.34 restricts the left side's
magnitude to far 1less than .01 . But near the minimum

Zans =0, the second term dominates and €023 % 1
21 -
Jands = /n e 21/n
2
zz_nz = 21 /3 nY3

~ : - Ys
Z2-n = 21303 /g4n & —=—5— = 3.8 Z

Thus a second term was necessary for the last two peaks
before n=2. A third term 1is necessary for only a short
region within the peak before JTR can be used and thus was
neglected. For the JEQ formula similar arguments were used
to find also that two terms sufficed over the range for its
use. As can be seen from fig. 4 or 5, the match up of the
different formulae was smooth.

In this way a multi-expression function was composedi
and supplied to the U.B.C. library Gaussian integration
routine to sum the last peak. As well two terms of JGT were
supplied for a Gaussian integration of the second last peak.
There were small regioﬁs where 1% accuracy ofb the summand

was not guaranteed, but these were regions on which the
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the summand was relatively small.

The technique for summing the region nﬁh(n<L,, where
L, =2-28n, was arranged to take advantage  of the

guasisinusoidal nature of the summand. The sum in question

from egq. 1IV.10 is
L,

2 2
3 m
I=&) < (n-N) (Men-n+26)7, )
n"nmin IV.113

From IV.6

2 2 Coot

@) ~ Tt g ¢

We may write the sum as an integral since the step size is

relatively small, then arrange the terms in order of size

= (8 E [ hena (e %+ e) Lozt g,

nn\m

-Ne o, n-n, -n)}
= () [ Te e o g g

1

By L[ 1+T 41,4, ]

IV.12
The first two integrals are easily performed'’ and presented

as they were arranged for computation

T = g [(Z+n) ain'l - an” L) 420, ([FLF - /2o nd)
+ ‘%.' ( noV22-no -Ln}i"—hl) ]

'S5 Though tracing suspected inconsistencies in the final
result back to errors in pre-1973 CRC integral tables was
not so easy. CRC edition 52, p A129, integral #220
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I, = 2 [(32-3n') 2t -3 nonfz-n + 5 0t 2o

2

¥

z 3 =~ n
+ 3 (n2™+ n ) e & ]m

We may notice that

L2 % (n-n),., <.o4

Including I;_(which requires double precision arithmetic)
could give no more than-a 4% correction but it was included
to achieve 1% accuracy.'® These expectations were met in the
numerical computation.

I; was evaluated by an " adaptive balancing" technique
It was first noticed that A%"1§=‘Abh@7“ﬁbﬁjﬂ»‘and that the
frequency did not change appreciably over each period, but

rather slowly over larger changes in h. This was verified

analytically using

w= d2nfnsps) o 22 Fmar

on n3

and
T= 2T/w
Then each succesive half period was approximated by

(amplitude)x(period/Z)x“/. L 0o ( ) )

/1 P‘ﬂldd

= (n-n)*(2%-n2) N/ 22

Pairs of such approximations for neighboring half periods
were first combined, then the small contribution left was

accumulated. The period and the amplitude were continually

'¢ Tracing persistent problems to the need for double
precision in the evaluation of I, was also educational.
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reassessed as steps of T were made from L, back to either z-
3000 or n,; for n. From the data available durring the
computation this correction was of order 1%.

The last integral I, was neglected.

4.5 Differential Decay Rate

The differential decay rate for a sequence of laser
intensities from ¥=,3 to 5, w=2eV, is displayed in figs. 6
to 9. The relative sizes of the domains is most easily seen
on the previous plot fig. 3. On these plots the axes are
changed so as to achieve large size. The resolution of the
calculation is indicated by the number of lines in the plot.
The same trends as noticed from fig. 3 are noticed here.

A set of plots (not included) for a seguence of
w=.2,1,2,83 eV showed no differences, arousing suspicions
that the photon energy didn't matter. Indeed this is easily
verified. ' Starting with the expression 1IV.11 , we let
n'=wn. Then n,, =wn_.and z'=wz are independent of w . 1In
transforming the sum we divide by the new 1length between

summation points, w

/ 2
I =-33 ! Y '2

/

(=1} (i =W+ €) Tt (@)

m 4
n':nm:'n
But for 1<<n'<z'
Tt @) ~ 2w w03 (g (Tanps'-5') -1y )
w mn! tans’ w 7 b4
where
fans' = [FoE_7
= 2W
AEIER) -1
Thus

I;_, )~ wIl ')
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Therefore the w cancels, the n' may be relabelled, and we

have '

; min ) (( 1 Yim +£.) T (@)
I= "n%'i 2 ‘(n" Y’m.'n) (( Ppmin—NIiM + 0) n
N=Mpin

IV.13
independent of W .

Additionally, the 1981 article by Becker et al shows a
doubled peaked spectrum for V =.3 and a shoulder in the
spectrum for V =,5 (ref. 2) This is reproduced here as fig.
10. For comparison a high resolution plot has been obtained
from our study, also for V=.3 . This is fig. 11 and 12,
wherin no complications at the scale size indicated by
Becker et al can be observed.

4.6 Total Decay Rate

From III.14 and 15 the total decay rate for /3 decay

without a laser 1is

w, =f2°fqrr gim® Oy ({o—{)liolf Jn

% B

2 .5 2 £,2- 1) 2 - 'FT.']
— % r;) [ (¢ ‘f‘f)( ') - _‘L’ £ J ta-) —‘l; E‘,L\, (&€ 7)
LLg 30 p
. N

where NP stands for the nuclear matrix element factor.
Using doub1e4 precision arithmetic and the value of
T, = %%==1.0364 corresponding to Q=18.60KeV for 3H decay, we
find

2 g -
Wy = Q"m° 2.013 x167¢
213
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For the 1laser irradiation case we use the expressions
IV.10 and IV.11 for the differential decay rate
dw = -9:—:;\/?1——:'[4154/12.
Therefore the total decay rate is
w = .ﬂf_ﬁfrffJTT:T I Jdede

43
and from the computer calculation we obtained

2 mS _
w = L™ 402 + .04 xi07¢
g3
The ratio of rates is R=Wtaser -1,00+.01 and there is
Wno Laser -

clearly no enhancement due to the laser irradiation.

Table 3.2 contains the ratio of rates for different
values of Y ,w ,and €, also. Without the further wuse of
double precision, the limits of were determined above by

Nmin and z attaining 8 digits for U =5 and 9 digits for » =9

. The limit below was reached when n,; became close to ©0
or negative for VY=.3 .Then the asymptotic formulae were no
longer valid.

4,7 Program Notes

This section contains a brief summary of the 1larger
organization and features of the main programs involved in
this thesis.

The main program reads the § and «o06 resolution
along with the input parameters V ,w , and £, , and the
£026 bounds, and a format code for output from an input
file. The desired resolution and the /€08 bounds were
based on the researcher's experience for any given run. 1f
the K028 bounds chosen were too narrow the program

encountered negative square roots in calculating the
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summation 1limits n,, , and z, and 'crashed'. If they were
too wide computer time (mainly in plotting) was sacraficed.

Thus a procedure evolved wherein first a coarse grained
calculation with large «® bounds was performed, followed
by a finer grained one with narrower «e»e bounds. This
procedure was combined with a succesive inclusion of terms
from 1IV.11 to show the rate calculation converge on the
numbers presented in table 3.2

The program itself was modular, each module having been
tested separately before the entire program was assembled.

The output of the program included the total cross
section and the differential cross section data. This data
was plotted in the perspective plots included by another
program that <called Disspla plotting routines (ref. 24).
Because Disspla identifies the coordinates of a function
value by its position in an array and Fortran does not fill
overdimensioned multiparameter arrays contiguously it was
'important to reserve the exact dimensions for the
differential rate data array. These numbers depended on the
resolution desired and this was most useful as input for a
calculation. Thus the trick of execution time dimensioning
of arrays using system commands available through the system
general library was invoked. Anofher option would have been
to supply the data and its dimensions as parameters to a

subroutine that does read into the array properly.
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7 - DIFFERENTIAL DECAY RATE
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8 - DIFFERENTIAL DECAY RATE
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Figure 9 - DIFFERENTIAL DECAY RATE
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Figure 10 - ENERGY SPECTRUM OF BECKER et al
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FIG. 2. Logarithmic plot of the electron spectrum of
34 decay for ¥=03, 0.5, 0.8, 1.0. The inset at the
lower right shows the values for 1 €¢ €1 1 with doubled
scale of the abscissa.
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Figure 11 - DIFFERENTIAL DECAY RATE
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Figure 12 - DIFFERENTIAL DECAY RATE
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IMWewt) | V | € wev) R=yEs

3x107 |.3 | L0334 | 2 |.004

4 x 10'% | |. 005

9x 10! | 5 1.012

2 x10°°] 7 l. 000

y x 10'%| 1 | l.olo0 2 1,002
l.1000 l.003

y x 108 | | 10364 8 1.006
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V. CONCLUSION

The main result of this thesis is that the total decay rate
for A decay is unchanged by the presence of even intense
laser fields . The numerical calculations show this for a
range of the laser intensity parameter v e [.3,7] and
energies we[2,8]ev and a range of , decay energies
Q€[5,50]KeVv. Furthermore the differential decay rate is
found to be independent of w and the limits of the neutrino
energy- spectrum are found to be unchanged (analytically and
numerically) by the presence of the laser. These results
were the subject of chapter 4.

In chapter 3 the differential decay rate was derived as
a function of the electron energy and polar angle for 3 -
decay in the presence of an wunpolarized intense optical
laser field. The transition amplitude was derived using the
Volkov eiectron wave function. Although the weak
interaction and electromagnetic effects after creation of
the electron are inseparable in these expressions the above
results suggest that the laser field is not affecting the
decay process itself, but is only affecting the subsequent
e~ motion. This assertion 1is appealing because it is
consistent with the simple argument concerning the mismatch
of energies (wavelengths) presented in the introduction.

Additional evidence for this assertion 1is the
similarity (calculated) between the modification of a free
electron's motion and a B decay electron's spectrum. In

chapter 2 an electron initially at rest € =1, 1is found
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(classically) to attain an energy, ¢ =1.26 under the
influence of a plane-polarized 1laser field with bV =t,
Ww =2eV. The corresponding modification of the energy range
in the® 4 spactrum (calculated quantum mechanically) is
from [1,1.0364] without a laser to £€[1.25,1.85]) in an
unpolarized laser field also with V=1, w=2eV, The
agreement between the free € case and the case where the g
electron has been appdrtioned a minimum of energy is good;
however, clarification of this similarity would be achieved
by an effort to compare the laser modified 4~ spectrum with
a calculation of the effects of a 1laser field on the
statistical ensemble of free e~ trajectories arising from
ordinary s decay.

The neutrino energy limit result, although already more
persuasive of the assertion that the laser affects only the
postcreation electron motion than the above e- spectrum
discussion, also might be augmented. One would examine 1if
the detailed neutrino spectrum (not just its limits) is
unchanged by the presence of the laser field.

These further studies certainly seem worthwhile for the
sake of the basic physics involved. At what intensity will
laser light affect nuclear process? Have they been affected
at VY =1 but so as not to change , decay rates? 1Is the
simple explanation from relative magnitudes of the energy of
the laser .field and the ,»4 decay the best? These are open

guestions.



10.

11.

12.

13.

14,

15.

16.

73

BIBLIOGRAPHY

Bailin, D. "The Theory of Weak Interactions in
Particle Physics" Rep. Prog. Phys. 34 pg. 491,
1971

Becker, W. et al. "Laser Enhancement of Nuclear
Decay". Phys. Rev. Letters 47,pgs. 1262-1266,
Nov. 198t1.
Becker, W. et- al. "Becker et al. Respond:". Phys.
s

Rev., Letters 48, pg. 653. Mar, 1982,

Becker ,W. et al "A Note on Total Cross Sections and
Decay Rates in the Presence of a Laser Field" Physics
Letters S94A, pg. 131, Mar., 1983.

Bjorken,J.D. and Drell, S.D. Relativistic Quantum
Mechanics. McGraw-Hill, New York, 1964.

Byrne, J. "Weak Interactions of the Neutron", Rep.
Prog. Phys. 45 pg. 115, 1882

Cohen-Tannoudji, Diu, Laloe, Quantum Mechanics John
Wiley & Sons, New York, 1977

deShalit, A. and Feshbach, H. Theoretical Nuclear
Physics Volumel: Nuclear Structure. John Wiley &
Sons, New York, 1974.

Duff and Naylor, Differential Equations of Applied
Mathematics, John Wiley & Sons, New York, 1966

Enge Introduction to Nuclear Physics Addison Wesley,
Toronto, 1966.

Feynman, R.P. The Feynman Lectures on Physics Addison
Wesley, Toronto, 1965, '

Feynman, R.P. Theory of Fumdamental Processes W.A.
Benjamin, Massachusetts, 1961

Gersten, J.I. and Mittleman, M.H. "Comment on 'Laser
Enhancements of Nuclear decay'". Phys. Rev,
Letters 48, pg.651. Mar. 1882.

Hebron, J. "Laser Enhancement of Nuclear Beta Decay"
M.Sc. Thesis, UBC, 1982.

Itzykson, C. and Zuber, J. Quantum Field Theory.
McGraw-Hill, New York, 1980.

Jackson, J.D. Classical Electrodynamics 2nd Ed. John




17.

18.

19.

20.

21.

22.

23.

24.

74

Wiley & Sons, New York, 1975,

Landau, L.D. and Lifschitz, E.M, Relativistic
Quantum Theorv,Course of Theoretical Physics, Vol.4,
part 1. Pergamon Press, Oxford, 1971.

Reiss,H.R. "Laser Enhancement of Nuclear Decay".
Phys. Rev. Letters 48, pg. 652. Mar. 1982

Reiss, H.R. "Nuclear Beta decay induced by intense
electromagnetic fields: Basic Theory " Phys. Rev,
C27, pg. 1199 Mar. 1983

Ternov, I.M. et al "Change in the Beta Decay
Probability due to the action of an Electromagnetic
Wave." JETP letters, 37, pg. 343 Mar. 1983.

Volkov, "Uber eine Klasse von Losungen der Diracschen
Gleichung", Z. Physik 94 pg. 250, 1935

Watson G.N. Bessel Functions Macmillan, Edition 2,
New York, 1944

Standard Mathematical Tables Edition 21, The Chemical
Rubber Co. Cleveland, 1873,

DISSPLA User's Manual, Integrated Software Systems
Corp., San Diego, 1981.




75

APPENDIX A - NOTATION AND CONVENTIONS

Mechanics For units we set h=1=c . For a basis of space-
time we use ép , m ={0,1,2,3}., Then we have contravariant
coordinates x=(t,x)=k#)and the flat space covariant
derivative d,=3/3x* The 4-vector velocity is
u= %% =(¥ ,¥V) , but the lab frame velocity is v= éi (1,v)
which is not a Lorentz vector. The metric is
»Y -1 0

(e/,_.ev).-. (G/Av)=(‘.5 ) = O-'—I

The inner product, tr(X,Y*), for scalars is xy*, for vectors

. ' 13 -
is x.y=x°y%-xy%, and for matrices is gﬂvY"f

Electromagnetism The electric field E=E(x) and the magnetic

field B=B(x) can be arranged into an array

0 —E' "'Ey 'Ez
(F’“v)r. R
Ey 8, o -8,
Ea "By B’ o

known as the e.m. field tensor because experimentally it is
found to behave as a skew-symetric tensor under Lorentz

transformation.

The Hodge dual is
' g\ MY _ Y
(F** )" = § err,

Dirac Equation The energy momentum operator in coordinate

representation is

pr=cd = (i3, -iv)"
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For Lorentz covariance of the Dirac equation we find

[¥#,¥'], = y*vV+ ¥¥x# = 26/

Al
Define T as
L R
A.2
In Feynman representation these are
yo = [t 0 y=1° ¢ ¥5= ooy rty®
“\o -t -¥ O
Define ¥ as
ﬂ:A”L
For a spin '2 particle
(P+m) v(p,s) =0
and antiparticle
(P-m) vips) =0
Define
0= o*¥°
Some useful results are
pug= ¥ 85 n¥A
= (26*—¥Vy) N P ¥4,
= anp f-¥"(267°-¥¥*)nAs B,
= 2nph -2vApt AP A3

Aq

i

LG S ke
( GHV- ¢pV) A,oﬂv
— Rl A.4
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A.5

- -
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Mathematics One useful property of the delta function is

shown here. First , the set of 'test' functions, C%®
functions that vanish outside of a finite region R of space-
time, form a vector space. The distributions form the dual
space. In particular the 4§ functional has the property
SCLFMY = [ o0 £ede= £e)
We define the identity test function I as unity on R. Then
| x e R
[e) = {o else

For test functions defined on space-time we are interested

in
' | lo-x
St 1) = S (0P = §70) = g [0 dx = WT
. @n)?
also
VT _
fJ"(x) J"(Hy)ol"' =J"(y) - i}—)—"- y=o
(@) else
A.7

' Some useful Bessel function identities are (ref.22)
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J, @) = )T, @)

T +7 = 22 J,@2)

n-t{ N+l
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J
K

APPENDIX B - ESTIMATE FOR JGT INTEGRAL

The integral is

an(tavh «-a)

o

2 (4
[ [0 - 2 ) S
l.oooG 2

2 Pmi%) A, 1
( 5:0 r’(’/z) (g b,l,d)m)]dn

« € [O, "°]

where jszx=,h-=%@ ,rne[z,«ﬂ ’ jZdeeﬁzﬂ . Break this
A

into two integrals

].oo2#
I*Iz = f -+ fw

l.ooo& 2 l.oo2 2

A trapeziod approximation for the first gives

For the second use the boundary value as a maximum for the
exponential factor. A change of integration variable n-

1.002z2=x gives gamma functions and the estimate

I, = 1xio¥

Therefore the error, including the ¢»® range and the ¢

range 1is

- w 3 ~ -9 gl <
Ecor © (') (S)(M) (Il'fra) X 3Ix10 " x ;_1_7.’ m

or 0l %.
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APPENDIX C - NEUTRINO ENERGY

Finding the maximum of the neutrino energy both facilitates
understanding laser induced A decay and provides a check of
the numerical work. From IV.6 the dimensionless neutrino
energy (€,="Ym) has a maximum of
€my = Eo—€ = Vae + Zw/m
The requirement £,>0 gave n,;.%:i—g;%’;—} and so we see that
) omaxy = 2 (2 Nein)

Thus a maximum of ¢, is also a maximum of z-n_, .

The analysis is outlined as follows. For a stationary

point of €, we have

d €y

Y5 =©° — Jero ,o()ue—"/z':-,co’fé AE
wn

de€ .
Tiv =0 —— YV = \}fz—l Me
From these equations a quadratic in cose is found for which

one root is acceptable

-1/
Jei—i

This gives that BA€=1 and € =1+ V/2 . We have immediatly

Co00 =

that 0<€&,<€-1 and z-n,;, < B (€,-1) 9300. The latter fact was
noticed first from inspection of the computational

differential cross section data.
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The analysis of section 4.2 can be generalized to
include and verify the results of appendix C for the
neutrino. Starting with the domains allowed by physical

considerations
-1 ¢ <6<l €7l €,)20

we seek to find the smaller domains on which the differential
decay rate is nonnegligable. Setting n<z from (IV.1),

defining -2 £(g.-€y-<) +V?

2Jgi-1
and squaring to find a gquadratic inequality in cosg, we find
~Alg,~-€y-¢) £ -f,-¢)t — Q2 +y?
.60996[ AlEo-Ey-2) 2 VJ(,-€,-<)? —42+V

- (fo-ty —£)* +v? :
For these limits to be real the argument of the radical must

A=

be positive. The guadratic inequality in € gives
¢ el G-¢)u+va) t v +((E-e)T-T) ]
Again for these limits to be real we find
(€5 -€,) ~1 o
which has one admissable solution




