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ABSTRACT 

The index of dispersion is a statistic commonly 
used to detect departures from randomness of count 
data. Under the hypothesis of randomness, the true 
distribution of this statistic is unknown. The accu­
racy of large sample approximations is assessed by a 
Monte Carlo simulation. Further approximations by 
Pearson curves and infinite series expansions are in­
vestigated. Finally, the powers of the individual 
tests based on the likelihood ratio, the index of dis­
persion and Pearson's goodness-of-fit statistic are 
compared. 
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1. INTRODUCTION 

1.1 HISTORY OF THE INDEX OF DISPERSION 

The index of d i s p e r s i o n i s a t e s t s t a t i s t i c o f t e n used to detect 

s p a t i a l p a t t e r n , a term e c o l o g i s t s use to d e s c r i b e non-randomness of 

p lan t p o p u l a t i o n s . Th is i s e q u i v a l e n t to t e s t i n g tha t the growth of 

p l a n t s over an area i s p u r e l y random, or e q u i v a l e n t l y tha t the number 

of p lan ts in any given area has the Po isson d i s t r i b u t i o n . 

Suppose then tha t we randomly p a r t i t i o n some area by n d i s j o i n t 

e q u a l - s i z e d quadrats and make a count , x , of the number of p lan ts in 

each quadrat . Under the hypothes is of randomness, X j , . . . , X n would 

have the Po isson d i s t r i b u t i o n , 

For a l t e r n a t i v e s to complete randomness i n v o l v i n g patches or clumping 

of p l a n t s , we would expect Var(X) > E ( X ) , w h i l e f o r more r e g u l a r 

spac ing of p l a n t s , we would expect Var(X) < E(X) (see f o r example R.H. 

Green (1966)) . 

These p r o p e r t i e s lead q u i t e n a t u r a l l y to c o n s i d e r i n g the 

var iance - to -mean r a t i o as a p o p u l a t i o n index to measure s p a t i a l 

p a t t e r n . An es t imato r of the v a r i a n c e - t o - m e a n r a t i o i s the index of 

d i s p e r s i o n , de f ined as 

P(X=x) = e ' V / x l , f o r x > 0 and x = 0, 1 , 2, ... , 
f o r which E(X) = Var(X) = X . 

1 , i f I = 0 
I = 

I s2/x i f X > 0 

n n 
where X = (1/n) F. X. and S 2 = 

i = l 1 

{ l / ( n - l ) > z ( X . - X ) 2 , the 
i = l 1 
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unbiased estimators of E(X) and Var(X), respectively. (It is natural 
to define I to be 1 if X = 0 because under the null hypothesis, the 
variance-to-mean ratio equals 1.) 

Ever since G.E. Blackman (1935) used the Poisson model for counts 
of plants, the concept of randomness in a community of plants became a 
growing interest among ecologists. Although the index of dispersion 
was introduced by R.A. Fisher (Fisher, Thornton and MacKenzie, 1922), 
it was not until 1936 that it was first used by ecologists for the 
purpose of inference. A.R. Clapham (1936), using a x2 approximation 
for the distribution of the index of dispersion under the null 
hypothesis of randomness, found that among 44 plant species he studied, 
only four of these seemed to be distributed randomly, while 
over-dispersion (i.e. clumping) was clearly present for the remaining 
species. Student (1919) had already pointed out that the Poisson is 
not usually a good model for ecological data and in most cases, 
clumping occurs. This has been termed "contagious" by G. Polya (1930) 
and also by J. Neyman (1939). 

Ever since Clapham's paper, the use of the index of dispersion as 
a test of significance of departures from randomness has been extensive, 
not just for field data, but also in other areas (for example, blood 
counts, insect counts and larvae counts). 

Fisher et al (1922) showed that the distribution of the index of 
dispersion could be closely approximated by the x2 distribution with 
n-1 degrees of freedom. However, if the Poisson parameter, X» is small, 
or if the estimated expectation, X, is smal1, then the adequacy of the 
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x 2 approximation becomes questionable. This is discussed by H.O. 

Lancaster (1952). Fisher (1950) and W.G. Cochran (1936) have pointed 

out that in this case, the test of randomness based on I should be done 

conditionally with given totals , £X.j. Since this sum is a sufficient 

s ta t i s t i c for the Poisson parameter X, conditioning on the total wi l l 

yield a distribution independent of X. Hence, exact frequencies can be 

computed. The conditional moments of the index of dispersion are 

provided in Appendix A1.2. These moments are also given by J .B.S. 

Haldane (1937) (see also Haldane (1939)). 

Several people have examined the power of the test based on the 

index of dispersion. G.I. Bateman (1950) considered Neyman's 

contagious distribution as an alternative to the Poisson and found that 

this test exhibits reasonably high power for n>50 and mjm2^5, where 

mi and m2 are the parameters of Neyman's distr ibut ion. For 5^ns20, she 

found that the power is also high, provided that mim2 is large (in 

particular, mim2^20). Proceeding along the same lines as Bateman, N. 

Kathirgamatamby (1953) and J.H. Darwin (1957) compared the power of 

this test when the alternatives are Thomas' double Poisson, Neyman's 

contagious distribution type A and the negative binomial. They found 

that this test attained about the same power in each of the three 

alternatives. 

F inal ly , in a recent paper, J .N. Perry and R. Mead (1979) 

investigated the power of the index of dispersion test over a wide 

class of alternatives to complete randomness. They concluded that this 

test is very powerful particularly in detecting clumping, and they 
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s t r o n g l y recommend the use of t h i s t e s t . Examination of the power of 

t h i s t e s t r e l a t i v e to other t e s t s of the n u l l may a l so be impor tant . 

1.2 PURPOSE OF THE PAPER 

The purpose of t h i s paper i s to examine the d i s t r i b u t i o n of the 

index of d i s p e r i o n and compare i t s power to the power of o ther t e s t s of 

randomness. We examine the p r o p e r t i e s of the index of d i s p e r s i o n and 

through these p r o p e r t i e s , attempt to answer such quest ions a s : 

"How do we dec ide whether a given sample i s s i g n i f i c a n t l y 

d i f f e r e n t from a Poisson sample?" and "How good i s t h i s t e s t 

i n d e t e c t i n g departures from randomness r e l a t i v e to other 

(perhaps r e l i a b l e and w e l l - s t u d i e d ) t e s t s ? " 

Answers to the f i r s t quest ion could be based on c o n s t r u c t i n g a 

r e j e c t i o n reg ion R, where i f I e R, we would tend to f a v o r some other 

a l t e r n a t i v e . For example, i f we wished to t e s t the n u l l hypothes is 

aga inst a l t e r n a t i v e s i n v o l v i n g c lumping , then l a r g e va lues of I would 

prov ide evidence aga ins t the n u l l h y p o t h e s i s , and the r e j e c t i o n reg ion 

would presumably be of the form I > C. For two s ided a l t e r n a t i v e s , we 

would be i n t e r e s t e d i n both l a r g e and smal l va lues of t h i s s t a t i s t i c , 

say I < Cj or I > C 2 . We would a l s o want to examine the chances of 

wrongly r e j e c t i n g the n u l l which i n s t a t i s t i c a l te rmino logy i s c a l l e d 

the p r o b a b i l i t y of making a type I e r r o r or the s i g n i f i c a n c e l e v e l (or 

s i z e ) of the t e s t . The constants C, Cj, and C 2 are c a l l e d c r i t i c a l 

v a l u e s , and i t i s through these c r i t i c a l values tha t the r e j e c t i o n 

reg ion w i l l be c o n s t r u c t e d . 



5 

We then rephrase the question as: 
"Is there a method of determining the r e j e c t i o n region R at 
a given l e v e l of s i g n i f i c a n c e a ? " 

As the true p r o b a b i l i t y d i s t r i b u t i o n of I i s unknown, we f i r s t 
attempt to solve the problem through large sample approximations which 
lead to asymptotic c r i t i c a l values. We w i l l show that the asymptotic n u l l 
d i s t r i b u t i o n of I i s normal with mean 1 and variance 2/n. We can then 
use the c r i t i c a l values from the normal and determine how accurate 
these c r i t i c a l values are. T h i s study i s done through a Monte Carl o 
sim u l a t i o n . S i m i l a r l y , the x 2 approximation to the d i s t r i b u t i o n of I 

i s a l s o examined. We also examine c r i t i c a l values obtained from 
approximating the n u l l d i s t r i b u t i o n of I by Pearson curves and 
Gram-Charlier expansions. 

To assess the "goodness" of the index of d i s p e r s i o n , we might be 
i n t e r e s t e d i n determining how often we would c o r r e c t l y r e j e c t the n u l l 
in repeated sampling. This i s c a l l e d the power of the t e s t , the 
complement of t h i s being the p r o b a b i l i t y of making a type II e r r o r . 
With the negative binomial as an a l t e r n a t i v e to the Poisson, the power 
of I i s then compared to the power of the L i k e l i h o o d Ratio Test and 
Pearson's Goodness-of-fit t e s t . 
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2. LARGE SAMPLE APPROXIMATIONS 

2.1 THE JOINT DISTRIBUTION OF X AND S 2 

Suppose we choose a random sample of n disjoint equal-sized 

quadrats and make a count, X.., of the number of plants in the i ^ 

quadrat. Let X̂  X̂  be independent identical ly distributed 

random variables with mean y and variance a 2 . Let = ECCX^-p)^] 

and suppose that vk<*. In particular, u\ - 0 and y 2
 = ° 2 - As a 

consequence of the Central Limit Theorem, we have 

/n" (x-y) NCo,M2). (2.1) 

/?, (S 2 -y 2 ) N ( 0 , y i t - y 2
2 ) . (2.2) 

These results can be found in Cramer (1946, pp. 345 - 348). 

Similar ly , the Multivariate Central Limit Theorem implies that 

/n(X-p) and /n(.S2-y2) converge jo int ly to a bivariate normal 

distr ibution with mean vector JD and variance-covariance matrix (l/n)E, 

where 

11m nC0V(X,S2) 

lim nC0V(X,S2) 
n -*• « 

yit - V24 

l .e. •^n(X-y) 

^ ( S 2 - y 2 ) 
N(0,E) (2.3) 



Assuming that y = 0, we have 

C0V(X,S 2) = E (X -S 2 ) 

= (n/(n- l ) ) {E(XU 2 ) - E ( X 3 ) } 

where U 2 = ( l / n ) E X ? . Hence 

E ( X U 2 ) = ( l / n 2 ) E { E X . 3 + E E X . X . 2 } 
1 i f j 1 J 

= y3/n , since by independence, the double 

sum has zero expectation. Simi lar ly , 

E ( X 3 ) = y 3 /n 2 

from which i t follows that 

C0V(X,S 2) = y3/n + 0(l/n 2) . \2A) 

From (2.3) and (2.4) we have for large n that 

N -

^2 

, (1/n) 

V2 ^3 

V3 Vii-V2' 

2.2 THE ASYMPTOTIC DISTRIBUTION OF I 

We compute the asymptotic distr ibution of S2/X using the "delta 

method". It wi l l be seen that the asymptotic distribution of I is 

the same as that of S2/X\ 

Let g(x,y) = y/x, so that S2/X = g(X,S 2 ) . Assuming that 3g/8x 

and 8g/3y exist near the point (y ,cr 2 ) , (note that this requires the 

assumption that y > 0) , we can expand g(X,S2) in a Taylor series about 

(y,o 2) and have 

g(X,S2) = g(y ,o 2 ) + (X-y)g x (y ,o 2 ) + (S 2 -a 2 )g y (y ,o 2 )+ . . . 

Let U(n)'=(5(,S2) and b = (y .a 2 ) ' . Then 

(i) u(n) -P—b ; ( i i ) /n"(U(n)-b) N ( 0 , E ) . 
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The result of the delta method (see, for example, T.W. Anderson 

(1958, pp. 75 - 77).). is that 

/n"((S2/X) - (a 2 /p)) - 1 N(0 , 

where <|>b' = (8g/8x,3g/8y) evaluated at ( p , a 2 ) . 

Under the stated assumptions, we have for large n, 

S2/X * N ( a 2 / p , ( l / n j ^ ' z ^ ) . (2.5) 

After some matrix calculations, we get 

• b ' z + b = v i 3 / ^ - 2y 2 y 3 /y 3 + hk-V22)/v2~. (2.6) 

So far , a l l of the results hold regardless of the underlying 

distribution of the X's. If we now assume that X j , . . . , X ~ P(x), then 

v = E(X) = X , 

p 2 = Var(X) = X , 
P3 = X and 

Pit = 3x2 + X . 

Substituting these into (2.6), we have that 

• b ' J : * b = ( 1 A ) - ( 2 A ) + C(3X2+X) - x 2]/x 2 

= 2, 

and hence from (2.5) that 

S2/X » N ( l , 2/n) . 

The asymptotic null distr ibution of I is easily seen to be the 

same as that of S2/X since 

P{|I-(S2/X)| > e} = P{X=0) = e " n X for any e>0. 

This probability approaches 0 as n —*• » , and hence 

I « N( 1 , 2/n) . 
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Note that the 0(.l/n) approximation to the variance of I is inde­

pendent of the parameter X. This would be useful in practice because 

the source of error in estimating X by the maximum likelihood estimator 

t would not have to be introduced. We should note however that the 

inclusion of higher order terms wi l l introduce this dependence. 

2.3 DESCRIPTION OF THE MONTE CARLO SIMULATION 

To answer the question of how well the asymptotic c r i t i c a l values 

work, we perfromed a Monte Carlo simulation when the underlying d i s t r i ­

bution of the X's is Poisson. Fifteen thousand samples of n Poisson 

random variables were generated for n = 10,20,50,100 and for X = 1,3,5,8 

and fifteen thousand indices of dispersion were computed for each pair 

n and X. The 1%,2.5%,5% and 10%. quantiles for each pair n and X are 

given in Table A2 . With such a large number of samples, these c r i t i ca l 

values may be regarded as exact and they assist in assessing the accuracy 

of the asymptotic c r i t i ca l values. 

Given a nominal significance level a , two-sided rejection regions 

were constructed with a/2 in each t a i l . Using the asymptotic normal 

c r i t i ca l values, the rejection regions used were the following: 

R. 0 1 = {I*: |I*| > 2.58} 

R. 0 5 = {I*: |I*| > 1.96} 

R. 1 0 = {I*: > 1.64} 

R. 2 0 = (I*: |I*| > 1.28} 

where I* = (I-1)//(2/n) and where R̂  denotes the rejection region at the 

nominal significance level a . To test the accuracy of the normal c r i t i ca l 

values, we merely count the number of I*'s that fa l l in R This 
a 
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would then give us an estimate p, of the true significance level p. 

Now, p = C# of I*'s e R )/15,0Q0. Since the number of I*'s e R 
a a 

is binomi'a-1 l y distributed (with parameters N=15,000 and p), the 
A 

standard error of p is 

SECp) = / p(.l-p)/15,000 . 

We then might conclude that the distribution of I is well approximated 

by the normal i f p is within one standard error of the nominal s i g n i f i ­

cance 1evel a . 

To assist the reader in interpreting the results, we supply a l i s t 

of how many I*'s would be expected in each t a i l of the rejection region 

i f the true significance level corresponding to each ta i l was identical ly 

equal to a/2 , one-half the nominal significance leve l . 

Table 1: Expected Number of I*'s 

a ' {a/2 ± SE(a/2)} • 15,000 

0.01 75 ± 9 

0.05 375 ± 19 

0.10 750 ± 27 

0.20 1500 ± 37 

The results, summarized in Tables 2(A-D), are shown in the following 

pages. The entries in the "I<L" and "I>U" columns are the number of 

I*'s that l i e to the le f t and right of the lower and upper normal c r i ­

t ical values, respectively. 

We immediately notice that the normal approximation is very 

poor even for n as large as 50. The lower c r i t i ca l values are much 
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NORMAL APPROXIMATION 

Table 2A ( a = O.Ol) 
X 

1 3 5 8 

I <L I>U j KL I>U : KL I>U I <L I>U I 

10 0 342 1 0 293 0 . 286 0 276 I 

20 0 280 0 243 0 227 0 
2 1 3 § 

50 9 220 
9 

197 13 175 12 182 

100 
1 9 

184 27 145 22 134 26 

Table 2B (a = 0.05) 
X 

1 3 5 8 

n K L 1>U : K L I>U K L I>U 1 K L i>u 1 

10 
8 

713 3 645 o 670 2 646 1 

20 50 678 74 633 . 76 607 72 587 1 

50 148 587 1 183 546, ] 199 533 197 515 I 

100 I 199 538 1 248 506 244 490 
1 2 " 

481 I 
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Table 2C ( a = 0.10) 

] L 3 8 

n 1 [-• K L I>U f; K L I>U ' K b I>U K L I>U i 

10 114 951 ' 142 974 145 1011 149 1007 | 

20 ' 283 1010 368 964 345 983 359 986 I 

50 457 962 519 909 527 938 541 903 

100 554 943 570 872 

• 

570 

-

859 592 862 

Table 2D ( a = 0.20) 

n I K L I>U I K L I>U I K L I>U K L I>U 

10 ' 596 1520 I 962 1571 • 953 1633 958 1607 

20 1008 1447 |a 180 1627 11212 1643 1221 1648 

50 1216 1612 1.1338 1589 |,1334 1587 1324 1584 

100 1386 1528 I 1377 1522 I 1322 1576 1355 1564 
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too l i b e r a l . For the cases ns5Q, the total number of I*'s in the re­

jection region is close to the total number we would expect to be 

rejected, hut the significance level in each t a i l is nowhere near a/2. 

The probability of falsely rejcting the null would be too low in the 

lower t a i l and too high in the upper t a i l . There is obviously a prob­

lem of skewness in the distr ibution. Too many observations l i e in the 

right ta i l implying that the distribution of I is positively skewed. 

Notice that for fixed x and increasing n, the number of I*'s rejected 

in each t a i l becomes more equal. However even for n=100, the lower 

c r i t i ca l values are s t i l l conservative in a l l significance levels 

while the upper c r i t i c a l values are too l i b e r a l . For fixed n and i n ­

creasing X on the other hand, no such pattern is obvious. Thus, i t 

appears that the normal approximation is really only satisfactory for 

n>100 and this wi l l not suffice for practical work. 

An examination of the probability plots and histograms (see 

Appendix 2.1) provides more deta i l . 

One might hope to find an improvement to this approximation and 

one approach taken to improve the approximation is through in f in i te 

series expansions (e.g. Edgeworth, Gram-Charlier, Fisher-Cornish 

expansions). The trade-off for having such an improvement is the 

requirement of higher order moments; and these higher order moments 

wi l l surely have a dependence on X. More of this wi l l be seen in 

later chapters. For the moment, we abandon the normal approximation 

and move on to another simple large sample approximation. 
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2.4 THE x 2 APPROXIMATION 

As seen in section 2.2, the probability under the null that I 

and S2/X di f fer by an amount bigger than E(E>0) is e n X which approaches 

0 as n — • » . It is therefore suff ic ient to consider an approximation 

to the distribution of S2/X. 

At a f i r s t glance, we might suspect that S2/X has some relat ion­

ship with the x 2 d ist r ibut ion, for i t is well known that i f X j , • 

is a random sample from the normal distr ibution with mean y and variance 

a 2 , then 

(n- l )S 2 /a 2 ~ x 2 . 
n-1 

In our case, the X's are Poisson and Var(X) is only approximated-

by 5 2 = X. However, i t would not be surprising that the null d ist r ibu­

tion of (n-l)S2/X could be well approximated byx 2
n ^ for large n. A 

clearer motivation of this is outlined below. 

Consider the following one-way contingency table: 

X2 • • • Xn X. 

E.: X 
J 

X — X nX* 

The entries in the cel ls of the f i r s t row are just the observed 

counts themselves, having row total X. , and the entries in the second 

row are the estimated expected counts, X. (Note that this contingency 

table differs from the ordinary contingency table where observations 

are free to f a l l in any one c e l l . In our contingency table, we have 
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one cel l for each count. However, i f we considered only those sampling 

experiments that produced the same order of experimental results in add­

it ion to the same marginal totals , the methods of the ordinary contingen­

cy tahles s t i l l apply.) The goodness-of-fit s ta t i s t i c is formed by 

summing up over the columns, the square of the difference between the 

observed and the expected values and dividing this by the expected value. 

This gives us 

" CX.-X)2/X" , 
i=l 1 • 

which is precisely (n-l)S 2/X. Providing the E.'s are not too small 
J 

(for example, E.>5 for a l l j ) , the distribution of the goodness-of-fit 
J 

s tat is t ic might be expected to be well approximated by x 2
p ^ for large n. 

This motivation is due to P.G. Hoel (1943). In his paper, he 

approximated the moments of S2/X under the null hypothesis by power 

series expansions, correct to 0( l/n 3 ) , and showed that the f i r s t four 

moments of (n-li)S2/X were in close agreement with those of the x 2
n j 

d istr ibut ion. 

2.5 DISCUSSION 

Returning now to the simulation study, we recall that since the 

normal distribution is symmetric, i t could not account for the skew-

ness of the distribution of I. On the other hand, since the x 2
n _| 

distribution is skewed, one might expect i t to perform better than 

the normal approximation. 

So as not to obscure the comparison of the two approximations, 

the same 15,000 samples generated for each case were used. The 

results are displayed in Tables 3(A-D). 



16 

X 2 APPROXIMATION 

Table 3A ( a = 0.01) 
X 

1 2 1 5 8 

n I ' KL I>U j I>U I KL I>U J K L I>U 

10 j 44 72 1 5 9 81 77 . 83 77 60 

20 39 100 69 93 63 76 | 66 78 1 
50 • 50 93 69 93 73 9b 75 

: 
82 

100 50 102 72 72 72 

• 

67 77 69 . 

Table 3B 

] 

(a = 0.05) 

L. 3 
X 

5 8 

n 
• 

.' KL I>U K L IMJ K L I>U K L I>U 1 

10 182 342 . 356 354 379 356 385 360 

20 213 408 336 385 1 340 365 359 360 

50 : 285 408 350 405, ." 363 380 - 373 365 1 
100 ; 309 419 349 396 : 359 373 |: 370 367 9 
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Table 3C (ct = 0.10) 

K L 

10 B 587 

I>U KL 

713 i 633 

I>U KL 

707 730 

I>U 1 K L 

733 1 777 

I>U 

720 

20 1 537 741 9 725 

50 I 607 

100 I 676 

774 

807 fl 729 775 

796 B 693 757 

704 791 I 750 

708 

684 

752 I 765 

738 R 709 

756 

756 

733 

Table 3D (a = 0.20) 

5 

n K L I>U K L IMJ | K L IMJ IMJ 

10 968 1083 1383 1429 1 1464 1478 : 1489 1469 

20 - 1225 1350 : 1478 1504 1- 1468 1507 1517 1539 I 

50 1463 1534 1448 1528 : 1457 1505 1468 1495 1 

100 1 1440 1489 
t 

1432 1472 1411 1508 I 1454 1502 1 
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The x 2 approximation clearly gives a better f i t to the null 

distribution of I than the normal. Most of the entries in the cel ls 

fa l l within the range of values that one would expect to see. Notice 

that these tables display a similar pattern, namely that symmetry be­

tween the "I<L" and "I>U" columns becomes more apparent with increasing 

n and fixed X (and with increasing X and fixed n). This pattern appears 

with increasing a too. However, there seems to be more room for improve­

ment for the cases n̂ 20 and x<3. In fact, even for n=100 and x=l, the 

lower c r i t i ca l values tend to be too conservative while the upper c r i t i ­

cal values tend to lead to rejection too often. (In the ecological con­

text however, this would cause no serious problems. One can simply take 

larger quadrats to ensure that the mean number of plants in each quadrat 

is larger than 1.) For the cases n̂ 20 and X^3, the x 2 approximation i 

gives a very reasonable approximation to the null distribution of I, and 

leads to a pleasantly simple method of constructing rejection regions. ' 

As stated in the previous section, one way of improving these large 

sample approximations is through an in f in i te series expansion of the 

true density of I. Another technique commonly used is approximations by 

Pearson curves, which wi l l require the f i r s t four moments of I. 
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3." PEARSON CURVES 

3.1 THE THEORY OF PEARSON CURVES 

The family of distributions that satisf ies the differential 

equation 

d(log f)/dx = (x-a)/(b0+b1+b2x2) C3.1) 

are known as Pearson Curves. Under regularity conditions, the constants 

a.bo.bj and b2 can be expressed in terms of the f i r s t four moments of the 

distribution f ; see Kendall and Stuart(1958, vol . 1, p. 149). Karl 

Pearson (.1901) identif ied 12 types of distributions each of which is 

completely determined by the f i r s t four moments of f. 

It is convenient to rewrite-the denominator as 

B0 + Bi(x-a) + B 2 (x-a) 2 

for suitably chosen constants B Q . B J and B 2 , and hence (3.1) may be 

written as 

d(log f)/dx = (x-a)/{B0 + B^x-a) + B 2 (x-a) 2 . (3.2) 

As in (.3.1), the constants in C3.2) are functions of the f i r s t four i 

moments of f(.x). By integrating the right-hand side of (3.2), an ex­

p l i c i t expression can be obtained for f (x) . 

The cr i ter ion for determining which type of Pearson curve 

results is obtained from the discriminant of the denominator in (3.2). 

This cr iter ion is given by: 

K = Bi/4B 0 B 2 . (.3.3) 
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Defining 5i = V3/V2 and B2
 = VH/V2> where the y . ' s are the 

central moments for f (x ) , the constants Bo.Bi and B2 can be ex­

pressed in terms of 3i and B 2 . The cr i ter ion K then becomes 

K = 6 1 (3 2
+ 3) 2 /{4(2e 2 -3Bi-6)(43 2 -3Bi)} . (3.4) 

For example, a value of K<0 gives Pearson's type I curve, also 

called the Beta distribution of the f i r s t kind. In this case, 

f (x ) = k x ^ U - x ) ^ 1 , for 0 < x s 1, 

where the constants k,p and q are functions of the f i r s t four mo­

ments. 

If 1<K<«, then we get Pearson's type VI curve, also known as the 

Beta distribution of the second kind. Here, 

H x ) = k x p - 1 / U + x ) p + q , for 0<x<°°. 

The following is a summary of the steps one would take when 

approximating by Pearson curves. ' 

Let g(X_) be a s ta t i s t i c whose null distribution we wish to 

approximate by Pearson curves. The f i r s t step is to compute 

the f i r s t four moments of g(X) which wi l l depend on the para­

meters of the null distr ibution of the X's ( i f the parameters 

are not specified, they may be estimated by the maximum l ikel ihood). 

Then &i and 6 2 • can be computed from the moments. 

From here, either one of two routes can be taken. If c r i t i c a l 

values are a l l that are required, then the Biometrika tables pub-
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1ished by Pearson and Hartley (1966) can be used. The c r i t i c a l va l ­

ues are tabulated for a wide range of values of /Bi and 8 2 , and i f 

necessary, l inear interpolation along rows and columns is suf f ic ient . 

We should note that when using c r i t i c a l values from the Biometrika 

tables, one should keep in mind that those c r i t i ca l values are a l l 

standardized. So i f X denotes the ot level c r i t i ca l value from the 
ct 

tables, then the. appropriate a level c r i t i ca l value to use for the 

test is 
x = (/M!)X + ji. a a H 

The other alternative is to compute K from (3.4) and determine 

the type of Pearson curve to be used. If the resulting distribution 

is not too uncommon, the parameters of the distribution can be com­

puted. The text by W.P. Elderton and N.L. Johnson (1964, pp.35-46) 

gives an excellent treatment of this situation. Once the Pearson 

curve is completely determined, c r i t i ca l values can usually be ob­

tained from the computer. In particular, the IMSL l ibrary provides 

c r i t i ca l values for a wide class of distributions. 

3.2 TWO EXAMPLES 

Before applying Pearson curves as an approximation to the null 

distribution of I, we discuss brief ly two of the examples from the 

paper by H. Solomon and M. Stephens (1978), where the accuracy of 

c r i t i ca l values obtained from a Pearson.curve f i t is examined. 
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n 2  

Example 1: Let Q (c,a) = E c.(X. + a.) , 
n i=l 1 1 1 

where c = (c 1' • • • 9 c )' and 

a_ = ( a j , . . . , a n ) ' 

are vectors with constant components, and the X. 's come from a 

standard normal distr ibut ion. 

The exact moments of this s ta t i s t i c are known to any order. In 

fact, the rth cumulant < . is 

There is a long l i terature on obtaining the c r i t i ca l values for d i f ­

ferent combinations of n,c_ and a/. These c r i t i c a l values are tabula­

ted in Grad and Solomon (1955) and in Solomon (1960). Much mathema­

t ical analysis was used to obtain.these c r i t i c a l values and an exten­

sive amount of numerical computations were made so accurately that 

a l l the c r i t i ca l values can be regarded as exact. 

Pearson curve f i t s were obtained for different values of the 

constants and c r i t i c a l values were obtained by-quadratic interpola­

tion from Biometrika tables. The results were that the Pearson 

curve c r i t i ca l values agreed very closely with the exact c r i t i ca l 

values for the upper t a i l , but there was no close agreement at a l l 

between the two c r i t i ca l values in the lower t a i l of the distr ibu­

t ion. 

Now, Pearson curves can also be obtained when the f i r s t three 

moments and a l e f t endpoint of the distribution are known. (See for 

r 

n r 2 

( r -1) : E c . ( l+ra.) . 
i = l 1 1 
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example, R.H. Muller and H. Vahl (1976) and A.B. Hoadley (1968) ). 

Solomon and Stephens proceeded to do this three-moment f i t and found 

that the f i t in the lower t a i l was improved considerably, but this 

approach made the f i t in the upper ta i l less accurate. They point out 

however that whenever four moments are available, then these four mo­

ments should be used for the f i t as i t is the upper ta i l of the d is ­

tribution that is usually of more importance in practice. Of course, 

in our case, depending on whether we are concerned with clumping or 

regular spacing of plants, either t a i l of the distribution might be 

of interest. 

Example 2: Solomon and Stephens considered the s ta t i s t i c U = R/S, 

where R is the range and S the standard deviation of a sample from 

the standard normal distribution. ' For n=3, the density of. U is known: . 

f(u) = (3/TT){1-(U 2 /4)}~ ( 1 / 2 \ for /3~< u < 2. 

The Pearson curve turned out to be a Beta distribution of the f i r s t 

kind and had the form 

g(u) = 0 .9573/{ (u -1 .7324)°- 0 1 0 1 (2 .000-u) 0 - 4 9 7 0 } , 

for 1.7324 £ u < 2.000. 

First we notice that while the true distribution of U is b e l l -

shaped, the Pearson curve is U-shaped. However, notice that the 

Pearson curve f i t gave the correct le f t and right endpoints of the 

distr ibut ion, at least to three decimal places. F inal ly , Solomon and 

Stephens found that the Pearson curye c r t i c ia l values agreed very well 

with the exact c r i t i c a l values in both the lower and upper ta i l s of 

the distr ibution. Given that the Pearson curve is U-shaped, the accu­

rate f i t obtained in both t a i l s of the distribution is extremely sur-
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prising' 

These two examples i l lus t rate the usefulness of Pearson curves 

as a means of approximating perhaps not so much the distr ibut ion, but 

the c r i t i c a l values. 

3.3 THE FIRST FOUR MOMENTS OF I 

Computing the f i r s t four moments of I is no easy task since I 

involves a random variable in i ts denominator, namely X. However, 

we can express the expectation of I , for k = 1,2,3,4, as the expec-
n 

tation of the conditional expectation given the total X. = E X. 

(or given X). Now 

jk J \ ^ x = o 
(S 2/X) k i f X > 0 

If follows that 

E(Ik|X.) = \ 
1 i f X. = 0 

E{(S2/X)k|-X.} i f X. > 0 
UX.=0} + E{(S2/X)k|X.} i {X.>0}, 

where i{A} is an indicator function equalling 1 i f A is true and 0 
otherwise. Hence 

V - E d " ) 
= E{E(Ik|X.)} 

= P(X.=0) +l=l E{(S2/X)k| X.=j}-P(X.=j) 

= P(X.=0) + E +{Er(S 2/X) k!xJ> (3.5) 

where E + denotes an expectation over the marginal distribution of X. 

restricted to the positive values of X. . Thus we may write the kth_ 
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moment of I as 

u k ' = PtX.=0) +E +(Cl/X) k.EC(S 2) k | X]}. (3.6) 

Hopefully, the conditional expectation,.which wi l l depend on X, 
-k 

might cancel ,off the X in the denominator, and hence computation of 

the unconditional expectation wi l l be relatively easy. 

Another d i f f i cu l t y arises in computing the conditional expec­

tation i t s e l f , which involves expanding 

k n k 
(S 2 ) K = { [ l / C n - l ) ] E (X.-X) 2}\ for k = 1,2,3,4. 

i=l 1 

The. conditional expectation of this random variable wi l l involve 

moments and product moments of (X^.X^,. . . ,X n)|X. up to the eighth 

order, and hence i f we choose to compute moments from the moment 

generating funtion, we would require mixed partial derivatives of 

the moment generating function of (X^.Xg,....^ )|X. up to the eighth 

order. Fortunately, when the underlying distribution of the X.. 's is 

Poisson, the distribution of (X^.Xg x
n ^ X * h a s a ^ a r i V ' v simple 

form, reducing to a multinomial distribution with parameters X. and 

p.. = 1/n, for i=l , 2 n; 

i . e . (X 1 ,X 2
 x

n ) l x - ~ Mult (X. ,1/n, . . . ,1/n) . 

This result , the derivation of which is provided in Appendix A l . l , 
faci l i tates the derivation of the conditional moments E{(S2/X) |X.=x.} 

for x.>0. These are provided in equations ( A l . 3 ) - ( A l . 6 ) of Appendix 
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A1.2 and lead via (3.5) to the following, expressions for the f i r s t 

four raw moments of I, the index of dispersion; 

P(X.=0) + P(X.>0) = 1 

P(X.=0) + {(n+l)/(n-l)}P(X.>0) - {2/n(n-l)}E +(l/X) 

P(X.=0) + {(n+l)(n+3)/(n-l)2}P(X.>0) + { l / ( n - l ) 2 } -
{ ( -4/n)[l - (6/n ) ]E +(l/X 2 ) - 2[l+(13/n)]E+(l/X)} 

P(X.=0) + {(n+l)(n+3)(n+5)/(n-l)3}P(X.>0) 

+ {l/(.n-l) 3}{4nCl+(5/n)][l - (17/n)]E +(l/X) 

- (4/n2)(2n2+53n-261)E+(l/X2) -

- (8/n3)(n2-30n+90)E+(l/X3)} . (3.7) 

From these expressions, we see that we have not overcome the problem 

of evaluating the expectation E (1/X ) for k = 1,2,3. We have taken 

two approaches in evaluating these expectations. The practical 

approach is to express these expectations as integrals, and evaluate 

these integrals by asymptotic expansions. This is done in Appendix 

A1.2; the resulting expressions for the raw moments, correct to 0(l/ n ' » ) , 

are provided in equation (A1.7). The central moments, correct to 

i 
^3 

i 
Pi* 



27 

OU/n 1*), are then immediate: 

u = 1 ( e x a c t ) , 

u 2 ~ 2/n + C2/n 2){l-(l/x)} + (2/n 3){l-(l/x)-(l/x 2)} 

+ (2/n£M{l-a/A)-(l/X2)-(2/X3)} + 0 ( l/n 5 ) , 

y 3 ~ (l/n2){3+(4/x)} + Cl/n3){16-(24/x)} 

+ (l/n\K24-(52/x)-(3/x2)-(4/X3 )} + 0( l/n 5 ) , 

MK ~ 12/n2 + (l/n3){72+(72/x)+(8/x2)> 

+ ,(l/nlt){180-(240/x)-(228/x2)+(15/x3)} + 0 ( l/n 5 ) . (3.8) 

Using the d e f i n i t i o n o f - S i a n d B 2 , we can a l s o express these i n 

a s i m i l a r e x p a n s i o n : 

~ (2/n){2+UA)} 2 + (2/n2){4-(16/X)-C3/X2)+C3/X3) 

+ (2/n3){4-(ie/x)-(7/x2)-(17/X3)+(7/xl*)+ . . . } . (3.9) 

B 2 ~ 3 + (2/n){6+(12/x) + U/X 2 ) } 

+ (2/n 2 ) {6 - ( .36/x ) - (5/X 2 )+ (4/X 3 ) ) + (3.10) 
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The a c c u r a c y o f t h e s e a p p r o x i m a t i o n s can be a s s e s s e d by computing 

the moments " e x a c t l y " . By t h i s , we mean computing t h e moments to 

a r e a s o n a b l e degree o f a c c u r a c y . To do t h i s , we can a p p r o x i m a t e t h e 

A. L 
i n f i n i t e s e r i e s i n the e x p r e s s i o n s f o r the e x a c t moments by N ' p a r t i a l 

sums, S ^ , where N, t h e number o f terms i n t h e p a r t i a l sum, i s chosen 

so t h a t t h e d i f f e r e n c e between the t r u e and a p p r o x i m a t e d v a l u e s i s 

no b i g g e r t h a n 1 0 ~ 6 , s a y . A g e o m e t r i c bound on t h e e r r o r i s shown 

b e l o w . 
oo 

L e t S = ( l / n ) E + ( l / X ) - E ( l / k ) e ~ 9 e k / k ' . 
k = 1 

Where 6 = nX. We want to d e t e r m i n e N such t h a t S - S . . 5 1 0 ~ 6 . Now, 
N 

OO 
S - S . . = z ( l / k ) e " e e k / k ' . 

, N k = N+l 
co 

<; E e " 0 e k / k ' . 
. k <= N+l 

= { e" e8 N + 1/(M+l)'.}{l+ C e / ( N + 2 ) ] +[e 2 /(N+2)(N+3)] 

+ Ce3/(N+2)(N+3)(N+4)] + . . . } 

^ { e ' 0 e N + 1 / ( N+l):}{l+ ( e / N ) + ( e / N ) 2 + ( 0 / N ) 3 + . . . } 

= { e " e e N + 1 / ( N + l ) : } { i / [ l - ( e / N ) ] } , i f e<N. 
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We th e r e f o r e want to choose N so that 
( i ) N > nx and 

( I i ) S-S N <; IO" 6 

We note that t h i s same value o f N can be used f o r E + ( l / X 2 ) and 
E + ( l / X 3 ) s i n c e convergence i s f a s t e r i n these cases. 

The importance o f a good asymptotic expansion i s c l e a r ; one 
would not want to compute p a r t i a l sums when f i t t i n g by Pearson 
curves. While computation o f "exact" moments may be r e l a t i v e l y 
inexpensive f o r small values o f e, i t can get q u i t e expensive f o r 
l a r g e r values of e, and furthermore, over-flow problems w i l l occur 
i n these cases. The accuracy o f the asymptotic expansions i s d i s ­
cussed i n the next s e c t i o n . 
3.4 . DISCUSSION 

Using the known values o f X, we can compute exact and asymptotic 
moments and hence obtain two Pearson curve f i t s f o r the simulated 
data. The Pearson curves obtained are the f o l l o w i n g : 

i ) Using asymptotic moments (up to the fourth order) a type 
IV f i t was obtained f o r the case x=l ( f o r a l l n) and a 
type VI f o r a l l other cases, 

i i ) Using exact moments, the same types were obtained 
except f o r the case n=10andx=l where the f i t turned 
out to be a type VI. 

The type IV Pearson curve i s not a common d i s t r i b u t i o n . f(.x) 
has the form 

f ( x ) = k { l + ( x 2 / a 2 ) } " m exp{-b arctan (x/a)}. 
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Since the c r i t i c a l values from this distribution cannot be obtained 

from the IMSL l ib rary , a l l the type IV c r i t i c a l values were obtained 

from Biometrika tables (Pearson & Hartley, (1966)). However, the 

c r i t i c a l values from a type VI curve can be obtained from IMSL. The 

algorithm for determining the form of the density is outlined in 

Appendix A1.3. 

Using the same 15,000 samples for a given n and x , a Monte Carlo 

study was done to assess the Pearson curve f i t s . The reults of the 

study are presented in Tables 4(A-D) and Tables 5(A-D). 

As seen from the tables, the number of rejections from a Pearson 

curve f i t are close indeed to the ideal number of rejections l is ted 

in Table 1. The cases of main concern (n^20 and x<3) seem to be 

satisfactory except for"the case n=10 and x=l where the c r i t i c a l 

values tend to reject too often. However, a definite improvement 

from the x2 approximation is clearly present for these cases. 

While the lower x2 c r i t i c a l values tend to be too conservative, 

the Pearson curve f i t has corrected for this - however, i t has over-

corrected, as now, the lower c r i t i ca l values of the Pearson 

curves tend to be too l i b e r a l ! This is apparent in a l l the 

significance levels considered. 

Note how similar the tables obtained using exact and asymptotic 

moments are. This indicates that the asymptotic expressions for 

the moments, when used up to the ;fourth order, are fa i r l y 

accurate. The excellent performance of the asymptotic moments is 

indeed encouraging for i ts use in applications. Even for n as 

low as 10, the asymptotic values of ^ 2 ^ 3 a n c l m» w e r e correct to 

the f i r s t 4,3 and 2 decimal places, respectively. 
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PEARSON CURVE FIT WITH EXACT MOMENTS 

Table 4A (a = 0.01) 

X 
1 3 5 8 

n K L I>U I I < L I>U KL I>U K L I>U 

10 • 109 72 59 77 69 74 • 76 59 

20 j 67 64 71 82 70 ' 75 69 76 

50 : 87 63 85 84 «• 84 82 79 

100 64 75 84 63 79 65 79 67 

Table 4B 

] 

(a = 0.05) 

L 3 
X 

5 8 

n K L I>U 1 K L I>U K L I>U K L I>U I 

10 587 410 : 3 8 4 399 384 376 391 365 1 

20 ' 401 407 : 384 372 364 362 1 381 360 I 

50 ; 401 371 383 397 , | 383 371 384 352 1 

100 \ 389 
-

393 366 380 379 368 - 380 
I 

364 1 
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Table 4C (a = 0.10) 
X 

1 3 5 8 

n K L I>U I K L I M J : K L I>U I M J 

10 . 596 821 .. 758 747 I 780 . 760 790 744 

20 t 682' 785 786 778 - 769 792 779 763 

50 : 751 796 761 770 733 762 774 755 

100 759 763 :. 728 749 703 735 724 730 

Table 40 (a = 0.20) 

1 3 
X 

5 8 

n l K L I M J : K L I M J : K L I M J K L I M J I 

10 , 1636 1514 • 1578 1510 j : 1549 1519 1519 1504 

20 . 1424 1447 [1520 1534. [ : 1547 1537 1535 1543 

50 • 1576 1561 1531 1538 . 1476 1511 1489 1505 

100 .. 1502 

• 

1489 1470 1477 ' 1426 1511 j 1467 1502 
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PEARSON CURVE FIT WITH ASYMPTOTIC MOMENTS 

Table 5A ( a = O.Ol) 
X 

1 3 5 8 

KL I>U KL I>U I KL I>U | KL I>U 
• 

10 44 72 59 77 77 . 75 1 87 59 
j 

20 67 ' 61 I 71 82 70 75 • 69 76 

j 

50 84 64 . 85 84 79 84 ; 82 81 ' 

100 71 74 - 8 4 63 79 

: 
65 79 67 

Table 5B ( « = 0.05) 
X 

1 3 5 8 

n : K L I>U K L I>U I>U K L I>U 
I* 

10 J 384 410 j 384 399 [ 397 374 405 369 

20 ; 401 407 1 384 372 . '•: 364 361 381 360 

50 f 401 381 I; 383 397, . 383 
; 

371 ; 386 '352 

100 : 394 384 1 366 384 383 368 
: 3 7 9 

364 1 



Table 5C ( a = 0.10) 
X 

1 3 5 8 

n . ,' K L I>U r KL IMJ j: J<L I>U K L I>U 

10 • 596 821 758 747 780. 756 806 744 I 

20 I 683 785 786 778 763' 782 765 1 
50 i* 744 796 . 761 770 I'" 733 762 778 755 1 

100 [ 759 761 : 728 744 " 703 734 730 733 I 

Table 5D ( a = 0 . 2 0 ) 

1 3 
X 

5 8 

n K L I>U 1' K L I>U I>U K L I>U B 
10 1636 2233 1578 1510 i 1547 1516 1519 1500 

20 " 1424 1447 1; 1520 1534. ) 1547 1537 : 1533 1542 

50 •1576 1573 . 1531 1538 j ; 1478 1511 ; 1489 1505 
\ 

100 1511 1489 
1 

1470 1468 . 1422 1507 Jf 1 4 6 8 1501 
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The c r i t i ca l values obtained using exact and asymptotic moments 

may be found in Tables A3 and A4 respectively. With Pearson curve 

c r i t i ca l values now available, two issues come to mind: 

( i) While the approximate values obtained from Pearson curves . 

clearly improve upon those obtained with the x 2 approximations 

for n<20 and/or X<3, is i t worthwhile going through the Pearson 

curve algorithm, computing asymptotic moments, 

determining the Pearson curve and then obtaining the c r i t i ca l 

values, as opposed to simply going to x 2 table and reading 

off the c r i t i c a l values? 

( i i ) Are the Pearson curves s t i l l better when we replace X 

by the maximum likelihood estimator x=X? 

No attempt was made to examine the second question, although 

for large sample s izes, we would expect that Pearson curves would 

s t i l l be better. In answer to the f i r s t question, i f accuracy 

of c r i t i c a l values is of primary importance, then we might 

favor Pearson curves. The asymptotic expressions for the moments 

are now known to be accurate, and once the moments are computed'" 

from these expressions (to the fourth order), $i and B2
 a r e deter­

mined and the Biometrika Tables (Pearson and Hartley (1966)) provide 

us with the c r i t i c a l values. If on the other hand, the cr i ter ion K 

given in (.3.4) results in a not too uncommon distr ibution, then the 

c r i t i c a l values may be obtained from the computer. We reiterate 

that in this case, the exp l ic i t form of the density has to 

be derived. Alternatively, given the values of n and X, one can 

obtain c r i t i c a l values through interpolation from the tables 
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provided in the appendix. Although the accuracy of interpolating 

from these tables has not been assessed, the Pearson curve 

algorithm is smooth and presumably, a simple linear interpolation 

wi l l suff ice. 
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4. THE GRAM-CHARLIER SERIES OF TYPE A 

4.1 THE THEORY OF GRAM-CHARLIER EXPANSIONS 

In mathematics, a typical procedure for studying the properties 

of a function is to express the function as an in f in i te series. Two 

types of series that immediately come to mind are Taylor series 

(or power series) and Fourier series. While these two series express 

a function as a sum of powers of a variable or as a sum of trigono­

metric functions, we wi l l instead consider expanding the true 

density of I as a sum of derivatives of the standard normal density. 

One can then think of such an expansion as a correction to the normal 

approximation that was examined in Chapter 2. 

Let <f>(x) be the standard normal density. 

• Cx) ( 1 / ^ ) expC-x2/2), 

Then 

+ '(x) -x<(. Cx) 

• "(x) (xMHCx) 

<J>(3)(x) -Cx3-3xH(x) 

* ( l t ) ( x ) 6x2+3)*(x) 

In general, 

» • • (4.1) 
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The polynomials H.(x) of degree j are called the Tchebycheff- 

Hermite polynomials. By convention, <l>^(x) = <f>(x), i . e . HQ = 1. 

Some important properties of these polynomials are that 

( i ) HV(x) = jH.^Cx) 

'0 , k*j 

Cii) 2 Hj(.x)Hk(x)cbCx).dx =j 

k'. , k=j 
v. 

i .e . the Tchebycheff-Hermite poloynomials are orthogonal. 

Ciii) _/ Hj(xHCx)dx = -hVj^UMx). 

The proof of ( i) involves expanding 

cp(x-t) = cbCx)exp{tx-Ct2/2)} 

in a Taylor series about t = 0. This yields the equation 

exp{tx-U2/2)} = ~ Ct j/j : )H.(x) . 

Substituting in the series for the exponential term and redefining 

the index of the summation gives the desired result.; 

( i i ) follows from (i) by substituting in the expression for H^(x) 
(k) 

from (4.1) in terms of <|> (x) and performing successive integration 

by parts, ( i i i ) follows immediately from (4.1). 

Suppose then that a density function f(x) can be expanded in an 

in f in i te series of derivatives of • (x): 

f(x) =' i c .H.CxH(x). 
j=0 J J 

(4.2) 
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The conditions for this series expansion to be valid can be found 

in a theorem by Cramer (1926). The conditions are that: 

co 

( i ) / (df/dx)exp(_-x2/2)dx converges, and 

( i i ) f(x) — * 0 as x —>• ±°> . 

To find the coefficients c , multiply equation (4.2) by H.(x) 
J K 

and integrate from -°» to » and use the orthogonality property. 
CO CO CX> 
/ f(x)H (x) dx = Y z c.H.Cx)H. tx)*Cx)dx 

K .» j=o J J K 

OO OO 

= tloc.H.tx)Hk(x)*(x)dx 

(interchanging the sum and the integral is just i f ied since p(.x)«<j>(xl 

is always bounded, for any polynomial pCx) of f in i te degree.) The c 

can then be expressed in terms of the moments about the or ig in . We 

l i s t the f i r s t five coefficients below/. 

c 0 = i 

Cj = u 

c 2 = Ll/2)(ix2'-l) 
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c 3 = (i/eKiia'-y) 

ch = ( l/24)( y i +
 , -6u 2

, +3) . 

For the purpose of computing c r i t i c a l values, i t is convenient 

to express the cumulative distribution function (CDF) F(x), in 

a similar series. 

F(x) = / X f(x) dx 
—CO 

= /x{c{>(x) + ? c.H.(xHCx)} dx 
j=l J J 

= $(x) - Z c .H. ,(x)<f>(x}» where $ is the standard 
j=l J J _ i 

normal CDF. This series is called the Gram-Charlier series of 

type A (Kendall and Stuart (1958), vo l . 1, pp. 155-157). 

Let X = ( I - l ) / ^ . Then Ci= c2= 0, and the Gram-Charlier series 

of type A for the CDF of X is given by 

F(x) = $(x) - <Kx){c3H2(x) + c^Cx) + ...} 

where c 3 = (l/6)p3* 

= Cl/6)E{(I-l)3/n2
3/2} 

= (l/6)y3/M2 3 / 2 

= (l/6)/3T . 

Similar ly , 

c u = (l/24)(.B2-3). 

Now consider using partial sums of the Gram-Charlier series as 
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an approximation to FCx). (Note that the one-term approximation is 

merely the normal approximation.) In particular, suppose we use the 

f i r s t two terms of the series to approximate F(x). 

FCx) * *(x) - Cl/6)(/Bl)(x 2-lH(x) = G(x) 

Then the corresponding approximate c r i t i c a l values can be computed 

for any significance level a, by solving the equation G(x) = a. Of 

course, this equation has to be solved i terat ively (by the Newton-

Raphson method, say). 

Since exact and asymptotic moments are available, C3 and ĉ  can 

be computed l ikewise. Note that from ( 3 . 9 ) and ( 3 . 1 0 ) , c 3 ~ 0(l/n) 

and ĉ  ~ 0(l/n). If we choose to do the two-term approximation, then 

we would be neglecting ct, , and hence neglecting terms of 0(l/n). 

Therefore, c 3 can be approximated by terms whose orders are less 

than 1/n. In this case, 

6c3 ~ /27n (2+ ( 1 A ) > , 

and the approximation becomes 

F(x) ~*Cx) - a/6)/(^{2+(lA)}(x2-l)<>(x). 

In the case of a three-term approximation, we would be neglec­

ting C5. The f i f t h moment is unavailable, but we might anticipate 

3/2 

that c 5 ~ OCl/n ' .). If this is the case, then up to the order 

of neglected terms, 

6c 3 .~ /r?7n1 (2+(lA) > 

24c, ~ (2/n){6+(12A) + ( 1 A 2 ) >. 
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and the approximation becomes 

FCx) ~ »(x) - (Cl/6/[27nl{2+(lA)}(x2-l) 

+ (l/24){C2/n)[6+(.12A) + ClA2)3(x3-3x)}(i>(x). 

4.2 DISCUSSION 

Since the results with the asymptotic moments were v i r tual ly 

the same as those with the exact moments Cas i t was with Pearson 

curves), we only display the table for the two- and three- term f i t s 

with exact moments.(see Tables 6CA-D) and Tables 7(A-D) ). 

We can immediately see that'the series expansion has improved 

the normal approximation. We point out some interesting results 

arising from the comparison of the two series approximation. F i rs t , 

while the lower c r i t i ca l values from the three-moment f i t tend to be -

too conservative, those from the four-moment f i t are s l ight ly 

l i b e r a l . This appears to be the case of a > 0.05. In general, 

the four-moment f i t seems to be adequate at the lower t a i l , except 

for the usual cases of concern n £ 20 and x <• 3. On the other hand, 

the upper c r i t i c a l values from the three-moment f i t tend to 

be adequate for most cases, but the inclusion of the fourth moment 

has made the upper c r i t i c a l values very conservative. The four-

moment f i t is only satisfactory for n a 50 and \ > 3. 

Obviously, the Gram-Charlier approximation is not recommended 

since the much simpler x 2 approximation i s even better. However, 

i t is interesting to note that a three-term partial sum approximation 

of the true density of I improves the normal approximation consider­

ably. The c r i t i ca l values obtained from this approximation may be 
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GRAM-CHARLIER THREE-MOMENT FIT (EXACT) 

Table 6A (a = O.Ol) 
X 

1 3 5 8 

n K L I>U K L IMJ KL IMJ K L I>U | 

10 109 140 32 125 : 22 132 26 106 

20 •; 105 123 79 115 ] 66 101 66 106 1 
50 I 101 93 96 98 86 98 1; 90 94 

100 85 96 89 74 . 88 69 84 76 I 

Table 6B 

] 

(a = 0.05) 

L 3 
X 

5 8 

n K L IMJ • K L IMJ K L IMJ K L IMJ 1 

10 190 381 176 364 ' 192 352 • 199 347 1 
20 : 305 370 304 354 . j • 287 • 344 284 330 I 

50 ; 354 363 358 384, 1 345 363 ••• 352 ' '345 I-

100 384 377 
i 

. 356 370 . 359 362 368 354 1 
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Table 6C (a = 0.10) 

X 
1 3 5 8 

n j K L I>U K L IMJ KL I>U K L IMJ 

10 587 551 482 626 ; 497 628 515 626 E 

20 537 678 659 687 638' 709 : 633 680 B 

50 668 726 723 731 683 721 727 720 

100 735 733 : 707 727 678 713 703 714 1 

Table 6D (a = 0.20) 

1 3 
X 

5 8 

n K L IMJ : K L I>U IMJ K L I>U 9 

10 974 1083 - 1104 1291 • 1240 1328 ; 1248 1312 B 

20 1297 1350 : 1352 1426 .. : 1402 1404 1389 1448 
• 

50 1517 1471 ' 1436 1472, ; 1430 1450 '• 1439 1453 

100 • 1468 1455 1432 1442 1398 1485 1438 1486 

3 



GRAM-CHARLIER FOUR-MOMENT FIT (EXACT) 

Table 7A (.'<*= O.Ol) 
X 

1 3 5 8 

n 1 K L I>U 1 KL I>U 1 KL I>U I K L IMJ J 
10 I 109 81 89 0 . 89 1 5 70 1 

20 39' 74 36 82 ; 30 : 32 77 I 
50 54 69 62 83 59 83 12 115 

100 1 59 74 1 72 62 71 63 . 70 67 . 1 

table'7B ( a = .0.05) 
X 

1 3 5 8 
• 

n K L I>U 1 K L IMJ K L IMJ | K L I>U 8 

10 587 212 305 262 275 259 267 264 

20 401 246 317 293 • 303 284 293 283 

50 358 303 350 355 , i;: 341 335 I 228 429 

100 . 377 342 | 349 359 I 358 344 I 3 6 5 342 
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Table 7C (• o = 0.10) 
X 

1 3 5 8 

n , K L I>U I<L I>U j I>U \ Ul I>U 

10 968 426 774 504 • 738 502 732 515 

20 839 532 761 655 707 663 7 7 639 

50 744 687 746 725 

• 

713 713 747 718 

100 759 733 720 725 695 712 709 713 1 

Table 7D ( a = 0.20) 

1 
X 

3 5 8 

n I<L I>U I<L I>U I<L I>U I I<L 
I 

I>U 

10 2147 2233 1824 1733 1667 1695 1665 1630 

20 1672 1678 1619 1587 1600 1579 1 , 1580 1589 

50 1628 1598 1538 1554 I I 1520 1522 j 1508 1515 

100 1536 1499 1499 1483 J 1429 1514 1469 1504 
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found in Tables A5 - A3. 

Other types of series expansions could also be examined. Two of 

the more common ones are Edgeworth expansions, which are known to be 

equivalent to the Gram-Charlier series of type A, and Fisher-Cornish 

expansions, which are derived from Edgeworth expansions. Treatment 

of these can be found in Kendall and Stuart (1958, Vol . 1, pp. 157 -

157). 
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5. THE LIKELIHOOD RATIO AND GOODNESS-OF-FIT TESTS 

In the previous chapters, we examined various approximations to 

the distribution of the index of dispersion for the case that the 

data is distributed as Poisson in order to obtain approximate 

c r i t i c a l values. We compared the performances of c r i t i c a l values 

obtained from large sample approximations, series expansions and 

Pearson curve f i t s , and found that Pearson curves seemed to give 

the most accurate c r i t i c a l values. 

The one remaining question we wi l l attempt to answer i s : 

"How good is the test based on the index of dispersion 

relative to other tests of the null hypothesis that 

the data is distributed as Poisson?" 

Two well-known methods of testing the adequacy of the mo.del 

under the null are 

( i ) The Likelihood Ratio Test and 

O'i) Pearson's Goodness-of-Fit (GOF). 

To assess the performance of the test based on the index of 

dispersion, we can examine the power of these three tests against 

appropriate alternatives. In testing for over-dispersion, ecologists 

have used the negative binomial (Fisher, 1941), Nermann's conta­

gious distribution Type A (Neymann, 1939) and Thomas' double 

Poisson (Thomas, 1949) as alternatives to the Poisson d is t r ibu ­

t ion. P. Robinson (1954) has pointed out that the Neymann d i s t r i ­

bution may have several modes (leading to non-unique estimates 

when estimating by maximum likelihood) and that a basic assumption 
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of the double Poisson may not be satisf ied by the distribution of 

plant populations. The negative binomial distribution is perhaps 

the most widely applied alternative to the Poisson. Letting the 

parameters of the negative binomial be k and 9 (k>0,e>0), we may write: 

where x=0 , l ,2 , . . . . From t h i s , we have that 

E(X) = ke and 

Var(X) = ke(.l+e) = E(X).(.l+e) > E(.X). 

For alternatives involving under-dispersion, we can test the null against 

the positive binomial (although i t wi l l 6e noted that the maximum 

likelihood estimator of n, the number of Bernoulli t r i a l s , may not be 

unique). 

5.1 THE LIKELIHOOD RATIO TEST 

Let r± = (k,e) be a two-dimensional vector of parameters and let 

f(x,_n) be the probability mass function of the negative binomial. It 

is shown in Appendix A1.4 that as k + » and e 0 in such a way that 

ke =X, a constant, then the l imit ing distribution arrived at is the 

Poisson with parameter X which has probability mass function f (x ,x ) . 

Let 0 O and 0 be the space of values that the parameters X and n_ may 

take on, respectively. The GOF problem then is to test 

H 0 : n e 0 O 

Hj: n_ e 9 -9 0 
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The l ikelihood ratio s ta t i s t i c for testing H0 against Hi is 

A = sup Lfx.nJ/sup* L(x,n), 

where L(x.,n) is the likelihood function for a sample X j » . . . , X . Here, 

"sup" indicates a supremum taken over Q Q while "sup" " indicates a 

supremum taken over e. Note that this implies thatA< l . 

In general, the distribution of the l ikelihood ratio s ta t i s t i c 

is unknown. However, under regularity conditions (Kendall and Stuart 

(1958), vo l . 1, pp. 230-231), as n -> °>, i t is known that asymptotically 

where p and q are the dimensionalities of the parameter spaces under 

the alternative and the n u l l , respectively. 

We now compute the MLE's of X,k and 9. The l ikelihood functions 

of the Poisson and negative binomial are respectively, 

-2 ln A * x 2 

p-q 

L(x,X) 
n x i -x n x 1 e A/x ' 

i=l 1 

n ' 
= xx* e" n V n x.'. , and 

i=l 1 

L(x,k,e) = n 1 / (e/U+ejr'WU+e)} 
i=l\ x. / 

(5.1) 

Let l0(> ,̂x) and I j ^ . k . e ) be the corresponding log- l ikel ihood 

functions. Then 

n 
l 0 (x ,X) = x. InX -nX - X In(x.l) 

i=l 1 

(5.2) 
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But 

M x . k . e ) = £ in{(k+x.- l) ! / Cx '. (k-1)!]} + x. lne 
1=1 1 1 

- (x. + nk) In (1+6) 

= E 1 n {(k+x.-l)! / (k-1)!} - Z In (x. l ) 
i=l 1 1=1 1 

+ x. In e - (x.+nk) In (1+e). 

z In {(k+x,-l):/(k-l)'.} 
i=l 1 

= C £ + E ] .In {(k+x.-l): / (k-1).} 
{i:x.=0} {i:x.>0} 1 

Since the summation over the zero values of x. is zero, 

n + 
E ln{(k+x,-l ) l /Ck-l) : } =.E ln{Ck+x,- l ) : / (k-l ) : } , 

1=1 1 i 1 

where E + denotes a summation over i such that x.>0. This sum can be 
i 

written as, 

z + zMnCk+j-l), 
i j=l 
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and hence, 

l i U . k . e ) = x . l n e - ( x . + n k ) l n ( l + e ) + E E 1 l n ( . k + j - l ) 
i J=l 

n 
- 2 l n ( x ' ) . (5.3) 

i=l 1 

To obtain the MLE of X, (5.2) must be maximized with respect to x 

while the MLE's of e and k are obtained by maximizing (5.3) with 

respect to 6 and k simultaneously. Thus, 

3lQ/8X = (x ./x) - n . 

Setting this derivative to zero.and solving for X yields X , the 

MLE of X as, 

X = X. (.5.4) 

Similar ly , 

ali/ae = (x./e) -{(x.+nk)/(l+e)} 

ali/ak = E E 1 {l/Ck+j-1)} - n ln(l+e), 
i j=l 

Setting the derivatives to zero, the f i r s t equation can be 

expl ic i t ly solved for e to yield 

6 = X/k. " (5.5) 
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Substituting this value into the second equation leads to 

E + Z1 U / O j - 1 ) } - n lnU+(X7k)} = 0. (5.6) 
i j=l 

Levin and Reeds (1978) give a necessary and suff icient condition 

for the uniqueness of the MLE of k. This cr iter ion can be stated as: 

"k, the MLE of k, exists uniquely in CO,00) i f and only i f 

n n n 
E X 2 - E X. > ( E X.) 2 /n. (5.7) 

i=l 1 i=l 1 i=l 1 

The right-hand side of this cr iterion is simply nX 2 , and so 

(5.7) can be rewritten as 

n n 
E (X. -X) 2 > E X. , or 

i=l 1 i=l 1 

(1/n) z (X. -X) 2 > X. 
i=l 1 

Since S2 = {l/(n-l)> E (X. -X) 2 > (1/n) E (X. -X) 2 

i=l 1 i=l 1 

provided that E CX.-X) >0, a consequence of Levin and Reed's c r i -
i=l 1 

terion is that a unique k exists in C0,«) i f the index of dispersion 

is greater than 1. 
Thus, subject to Levin and Reeds' c r i ter ion , the solution to 

(5.6) can be obtained numerically. Once k, the MLE of k, is obtained, 

.... A 
substitution into (5.5) yields e, the MLE of 9. (The case where the c r i -

terion is not sat isf ied corresponds to k=», and is discussed in more 
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detail in section 5.4.) 

Continuing with the likelihood ratio test , we have 
A A A 

In A. = l 0 ( x , X) - l i( .x,k,e) 
x. 

= x'.{(ln k)-l} + (x.+nk')ln{l+(X/k)} - r
+ I1 In (k+j-1). 

i j=l 

This is the form of the likelihood ratio test. The asymptotic result 

is that as n -> °° 
-2 ln A ~ x 2 . ' 

5.2 PEARSON'S G00DNESS;0F-FIT TEST 

A test that assesses goodness-of-fit is the well-known x 2 test 

that was proposed by Karl Pearson (1900). The GOF s ta t i s t i c i s : 

X2 = f (n . - x . ) 2 /X. , 

where n. is the number of times that the integer j is observed in a 
3 

sample and x . = nPCX=j) where X ~ P ( x ) , is the expected number of times 
3 

the integer j wi l l occur under the n u l l . 

The asymptotic result is that as n -> » , 

v2 ss Y2 
* V l 

where v is the number of c e l l s . (Note that one degree of freedom is 

lost since the probabilit ies computed uner the null are subject to the 

constraint that they sum up to 1. Also, in the simulation that follows, 

the value of X is specified and hence no further degree of freedom is 

lost . ) 

This approximation has been known to work well particularly i f the 

expected number of observations, X . , in each ce l l is 
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at least 5. Now, for sample sizes of about 10 to 20, this rule of 

thumb may not always be sat is f ied . The rule that has been implemented 

is that the expected number of observations in each cel l is at least 3. 

As wi l l be seen, the x 2 approximation was s t i l l satisfactory in this case. 

5.3 POWER COMPUTATIONS 

We now have three tests whose power we wish to compare. Since the 

index of dispersion and the test based on X2 do not depend on expl ic i t 

alternative hypotheses, we might expect the likelihood ratio test to be 

superior of the three. Because of computational d i f f i cu l t ies that may 

arise when using the l ikelihood ratio test (these are mentioned later on 

in this section), i t is not recommended for use in practice. We use i t 

here only to provide a baseline for the assessment of the power of the 

test based on the index of dispersion. Since the index of dispersion is 

devised to test for the variance being different from the mean, i t wi l l 

be geared towards alternative hypotheses which have this property and so 

we might expect the index of dispersion to perform better than the test 

based on X 2 . Note that while a one-sided test was implemented for the 

test based oh the index of dispersion (and necessarily for the l i k e l i ­

hood ratio test) , the test based on X2 is necessarily two-sided. This 

should be taken into consideration when comparing the power of the tests. 

Let us recall the hypotheses we are testing: 

Ho* X j ,X2» . . . ,X ~ P(.X) 

H I : x 1,x 2,...,x n ~ NB(k,e). 

Through simulation studies, we are going to compare the power of the 

three tests. However, as the null hypothesis does not specify a par­

t icular value of x, i t is not clear how to choose k and 9 for the 
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simulation. To do th i s , we argue as follows: 

Since the Poisson distribution with parameter x is a l imit ing case of 

the negative binomial with parameters k and 9 , we can specify X and 

choose k and 9 so that ke = X. Now we also want to choose k so that 

the tests exhibit reasonable power. For instance, we do not wish to 

generate data that yields power that is very close to 1. We would l ike 

to choose values of k so that the range of the power covers the unit 

interval [0,1]. 

To get a good idea of what k should roughly be, we can examine 

the asymptotic power of the index of dispersion test. To do th is , we 

need the f i r s t four moments of the negative binomial which can be 

found in Kendall and Stuart (1958, vo l . 1, p. 131). Letting v, v 2,v 3, 

and vt, denote the central moments of the negative binomial, we have 

v = ke, 
v 2 = ke(e+l), 

v 3 = ke(e+l)(2e+l) , and 

v h = ke(e+l)Cl+6e+6e 2+3ke+3ke 2). 
Substituting these moments into equation (2.6) in Chapter 2, we 

have that 

I ~ N(l+e , (l/n)v 2) 

where v2 = 2 ( 1 + 6 ) 2 + (l+e)(2+3e)/k. Notice that by setting k=X/e-and 

lett ing e + 0, we obtain the aysmptotic null distribution of the 
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index of dispersion for the Poisson case, namely 

I « N(l,2/n). 

This result was seen in Chapter 2 where the performance of the 

asymptotic normal c r i t i c a l values was assessed. Hence the asypmtotic 

power of I can be computed from the set of hypotheses: 

H :9 = 0 o 
Hj. :9 = 9j > 0 . 

Let u(e) = 1+e and o2(e) = .(l/n)v 2, where v2 is defined as above. 

If we le t I = 1+z /(.2/n), where z is the upper c r i t i c a l value a a a 
of the standard normal distribution at significance level a, then 

the asymptotic power of I is 

Power = *(-w a), where W q = U a - y C^i )}//o i 5(e 1). 

The asymptotic power of I is presented in table 8 for the case 

n = 20 and a = 0.05. 

Table 8: ASYMPTOTIC POWER OF THE INDEX OF DISPERSION TEST 

(n = 20, a = 0.05) 

k 
x = ke 3 5 7 • 10 SIZE 

1 .352 .224 .166 .125 .05 

3 .739 .560 .425 .309 .05 

5 .873 .752 .663 .484 .05 
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Thus, the values of k = 3,5,7 and 10 seem to be adequate. Notice 

the pattern in this table. The power decreases with increasing k and 

decreasing e. This is not surprising because as ik-increases and e 

decreases, the negative binomial approaches the Poisson, and 

hence i t would be much harder to detect differences between the null 

and the alternative with k large and e small. 

We now proceed with the Monte Carlo simulation. A total of 500 

samples of n = 10, 20 and 50 negative binomial random variables were 

generated for k = 3, 5, 7 and 10. The three stat is t ics , -2 InA, I 

and X2 were computed using the negative binomial data. While the 

computation of I and X2 are very easy on the computer, some 

problems may occur in computing the l ikelihood ratio s t a t i s t i c , as 

mentioned previously. F i rs t , the computation of the double.sum in 

(5.6) at each iteration wi l l increase the cost of running the computer 

program. This w i l l be more evident for large n and/or large X. 

Second, for some of the samples, a negative value of k was obtained 

at some point in the iteration process. This may create a problem 

in computing In {l+(X/k)} in (5.6). Barring a l l d i f f i cu l t i es however, 

the Newton-Raphson Algorithm achieved convergence in about 5 or 6 

iterations. 

Continuing with the simulation, an attempt is made to treat each 

test as equal as possible by using x 2 c r i t i c a l values in each case. 

However, a problem may s t i l l occur in the power comparison. Since a l l 

these tests are based on asymptotic c r i t i c a l values, the asymptotic 

approximations may not treat each of the three tests exactly the same. 
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For example, for a given sample s ize , i t may be that X is better 

approximated by x 2 than I, which in turn may be better approximated by 

X2 than -2 In A. This may make the conclusions on the power comparison 

unreliable. 

Proceeding with the power computations, the number of s tat is t ics 

which fe l l in the rejection region were counted for each of the three 

tests (Recall that a one-sided rejection region was formed for the 

tests based on A and I while a two-sided rejection region is necessary 

for X 2 ) . 

The power of each test is displayed in tables 9-10 (A-D). 

Each cell in this table contains the power of the l ikelihood ratio 

test , the index of dispersion test and the GOF test , in that 

order. To provide a handle on the accuracy of the x 2 

approximation for each of the three tests, the estimated size 

of each test is also displayed in each table. If the approx­

imation were good for a particular test , then the estimated size 

of that test should be close to the specified significance leve l . 

As mentioned above, the x 2 approximation may hot treat these 

three tests equally. This in fact is the case when n = 10. The 

c r i t i c a l values for the likelihood ratio test are too conservative 

as can be seen from the estimated size of the test . For example,, 

when a = 0.05, the estimated size of the l ikelihood ratio test is 

s l ight ly less than 0.01. On the other hand, the estimated size 

of the test based on X2 is very close to the true significance 

level for a l l a , while the test based on the index of dispersion 

tends to be intermediate. Thus we could infer that i f exact 
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POWER OF TESTS BASED ON A.I AND X2 fn=10) 

Table 9A: a = 0.01 

k 

X = ke 3 5 7 10 SIZE 

.028 .016 .012 .008 0 
1 .068 .044 .032 .028 .008 

.010 .008 .006 .006 .008 

.148 .058 .026 .018 0 
3 .252 .138 .086 .056 .002 

.156 .096 .086 .072 .010 

.356 .148 .086 .042 .002 
5 .478 .276 .180 .114 .004 

.290 .192 .128 .102. .024 

Table 9B: ct = 0.05 

k . 

X = k9 3 5 7 10 SIZE 

.064 .048 .038 .032 .008 
1 .162 .114 .092 .074 .034 

.062 .068 .060 .054 .055 

.270 .144 .098 .058 0 
3 .444 .272 .224 .152 .038 

.242 .174 .136 .112 .050 

.486 .286 .182 .122 .006 
5 .648 .464 .332 .252 .036 

.388 .268 .208 .166 .068 
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Table 9C: a = 0.10 

. • k 

A=l<e 3 5 7 10 SIZE 

.118 .066 . .052 .048 .020 
I .222 .174 .130 .110 .046 

.086 .096 .092 .088 .094 

.344 .198 .150 .098 .012 
3 .566 .384 .310 .242 .070 

.272 .204 .156 .136 .090 

.570 .752 .250 .178 .006 
5 .752 .588 .448 .342 .082 

.516 .384 .312 .264 .136 

Table 9D: a =0.20 

k 

X=k.9 3 5 7 10 SIZE 

.166 .108 .086 .072 .036 
1 .366 .294 .256 .236 .124 

.224 .206 .200 .196 .182 

.452 .286 .232 .178 .040 
3 .688 .546 .466 .398 .158 

.424 .332 .256 .244 .184 

.656 .470 .356 .258 .040 
5 .848 .718 .618 .504 .160 

.582 .456 .382 .326 .216 
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POWER OF TESTS'BASED 0*1 • A , T ANH y2 ( n = ? n ) 
* 

Table 10A: a = 0.01 

k  

X=k9 3 5 7 10 SIZE 

.044 .016 .012 .010 0 
1 .102 .050 .034 .024 .010 

.048 .038 .030 .030 .016 

.314 .142 .076 .034 .002 
3 .450 .228 ,150 .098 .012 

.266 .136 .096 .062 .024 

.664 .334 .190 .112 0 
5 .770 .472 .312 .190 .008 

.558 .296 .202 .140 .022 

Table 103: a = 0.05 

k 

X=kO 3 5 7 10 SIZE 

.104 .050 .042 .032 .010 
1 .214 .140 .100 .082 .046 

.078 .056 .052 .050 .040 

.502 .258 .164 .104 .012 
3 .666 .416 .298 .218 .032 

.410 .266 .206 .156 .056 

.804 .534 .342 .208 .008 
5 .898 .706 .526 .366 .042 

.686 .408 .314 .224 .074 
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Table IOC: a = 0.10 

k 

X=ke 3 5 7 10 SIZE 

.172 .104 .076 .054 .020 
1 .316 .228 .174 .148 .086 

.148 .128 .110 .104 .098 

.594 .336 .232 .158 .020 
3 .780 .544 .420 .320 .086 

.498 .328 .268 .210 .110 

.872 .620 .452 .290 .020 
5 .936 .796 .650 .486 .086 

.760 .514 .408 .298 .112 

Table 10D: - a = 0.20 

x=ke 10 SIZE 

.246 

.492 

.226 

.164 

.388 

.202 

,124 
,328 
,174 

,104 
.272 
.174 

.054 

.172 

.166 

.704 .460 .326 .246 .032 
3 .882 .714 .604 .476 .196 

.614 .462 .382 .308 .194 

.916 .746 .578 .396 .046 
5 .966 .886 .792 .662 .192 

.834 .652 .542 .422 .220 
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c r i t i c a l values were employed, the power of the l ikelihood 

ratio test would be considerably larger than indicated in the tables. 

Similar ly , the c r i t i c a l values for the index of dispersion test are 

s l ight ly conservative and hence we would expect the power of this 

test to increase i f exact c r i t i c a l values were used. The power of 
2 

the test based on X , however, would be pretty much what the tables 

indicate. 

Turning to n = 20, the same problem s t i l l arises for the 

likelihood ratio - - very conservative c r i t i c a l values. On the 

other hand, while the asymptotic c r i t i c a l values used for 

the index of dispersion are s t i l l s l ight ly conservative, the 

approximation has clearly imprPved and the estimated size of 

the index of dispersion test is closer to the true significance 

level . In fact, the estimated power of the index of dispersion 

is close indeed to i ts asymptotic power. 

Although i t is not clear that the likelihood ratio test is more 

powerful than the test based on the index of dispersion, we can make 

one additional observation i f we compare tables with the same size 

(for instance, the 20% table for the 1 ikel ihood ratio and the 5% table 

for the index of dispersion when n = 20), we see that in each c e l l , 

the estimated power of the l ikelihood ratio test is indeed higher 

than that of the index of dispersion - however, only marginally. This 

is an indication of what we might expect to see i f the sample size 

were large enough so that the estimated size' of the test is close to 

the true significance leve l . 
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Thus, the results displayed in tables 9 and 10 seem to suggest the 

following order in terms of the power of each test. 

Likelihood Ratio, Index of Dispersion and GOF based on X 2 . 

A further attempt to compare the power of the likelihood ratio and 

the index of dispersion, tests are displayed in table 11 (A-D) for a 

sample size of n = 50. As before, we may compare the 20% table for the 

likelihood ratio with the 5% table for the index of dispersion to 

conclude that the likelihood ratio test is only s l ight ly more powerful 

than the test based on the index of dispersion. 

5.4 THE LIKELIHOOD RATIO TEST REVISITED 

At the time when this thesis Was f i r s t being written, no obvious 

explanation could be made about the conservatism of the c r i t i c a l values 

of the l ikelihood ratio test. Subsequently, the explanation became 

clear: For the situation under consideration, the null distribution of 

-2 1 n A does not converge to that of a x2> but rather to that of a mix­

ture of a x 2 and a zero random variable, each with probability 1/2. 

This is an example of the general results of Chernoff (1954). The 

reasoning goes as follows: 

A A A 
If the MLE (6,k) for the negative binomial occurs at k=°°, then A - l 

and -2 In A= 0. Levin and Reeds (1977) have established that this occurs 

i f and only i f (n-l)S s nX. Thus, under the null hypothesis, we have 

P(-21n A H 0) = P{(n-l)S 2 <; nX> 

= P{n(.S2-X) - S 2 s 0} 

= P(/nC(S2-x) - CX-X)3 - U/^ )S 2 * 0} 

= P(/ii[(S2-x) - (X-x)]^0>, for large n. 
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POWER OF TESTS BASED ON A AND I (n=50) 

Table 1'IA: a = O.Ol 

k 

X=k8 3 5 7 10 SIZE 

.094 .034 .016 .010 .004 

.166 .068 .050 .032 .012 

.744 .376 • .172 .082 .002 

.842 .510 .304 .152 .010 

.984 .762 .500 .270 .002 

.990 .844 ' .636 .400 .008 

Table 113: a = 0.05 

X =ke 10 SIZE 

,224 
,354 

.098 

.222 
.060 
.156 

.034 

.106 
.014 
.046 

,886 
.936 

.572 

.724 
.374 
.532 

,206 
.354 

.018 

.046 

.996 

.998 
.890 
.950 

.714 

.818 
.*52 
.622 

.014 

.040 
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Table 11C: ct = 0.10 

k 

X=k8 3 5 7 10 SIZE 

.314 .178 .120 .080 .028 

.522 .318 .234 .178 .106 

.922 .668 .482 .296 .032 

.960 .810 .642 .484 .096 

.998 .942 .778 .564 .034 

.998 .978 * .896 .722 .098 

Table 11D: cc = 0.20 

X=ke 10 SIZE 

.430 
.664 

.950 

.984 

.268 

.434 

.770 

.910 

.198 

.380 

.600 

.784 

.152 

.308 

.422 

.638 

.066 

.216 

.076 

.192 

.998 .968 .876 .676 .070 
1.000 .988 .956 .848 .188 
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N ( Q , E ) , 

where E = 

From sections 2.1 and 2.2, we have that 

7r7CX-x}" 

"x x 

_x x +-2x£ 

Letting f(x,y) = y-x so that f (X,S 2) = S2-X = (S 2-x) - (X-x), 
we have, as a consequence of the delta method, that 

/h"{(S2-x) - (X-X)}-^ N(0,2X 2 ) . 

Thus for large n, we have that 

P(-2 In A = 0) » 1/2; 

i . e . -2 In A = 0 approximately half the time. Thus under the n u l l , we 

have the following result : 

-2 In A 
( 0 with probability 1/2 

X 2 with probability 1/2 
(5.8) 

As a supplement to (5.8), the f i r s t 500 Poisson samples from the 15,000 

previously generated were again used in order to check i f half of these 

500 samples would give a value of -2 In A = 0. Table 12 displays the 

number of samples out of. the'500 which led to -2 In A = 0. 

Table 12: Number of Times (n- l )S 2 

n 

X 10 20 50 

1 367 337 304 

3 340 317 302 

5 338 ' 307 293 
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The fact that the entries in the table decrease as ngets large i s 

indeed encouraging and re-affirms our position that the null d i s t r i ­

bution of -2 InA converges to a mixture of distr ibutions. 

What effect then does (5.8) have on the power computations? In 

the previous computations, we have been assuming that 

a = P(-2 1n A s C ), a 

where Ca is the upper c r i t i c a l value corresponding to a x 2 d ist r ibu­

t ion. Letting Z be a standard normal random variable, we have instead 

that 

P{-2 ln A s CM * (l/2)P{I0>Ca}+ (1/2)P{Z2>C> 

= (1/2){1-P[Z2<C ]} a 
= 1-*(7C'-), a 

where I0 = 0 with probability 1 and $ is the standard normal CDF. But,-

a = P(Z2>Ca) 

= 1 - P(-/C < Z < /C ) a a 
= 2{l-<»(/C a) , 

and hence, 

P(-2 ln A s C ) « a/2 , a 

instead of the anticipated value of a'. 

Further simulations were not done as enough information can be 

gathered from the previous results. In particular, using the correct 

asymptotic c r i t i c a l values for the likelihood ratio test , for each 

fixed n, the previous results for a = 0.10 are the appropriate results 

for a = 0.05 and the previous results for a = 0.20 are the appropriate 

results for a = 0.10. These are displayed in Tables 13,14 and 15 (A-B). 



70 

POWER OF TESTS BASED ON A,I AND X2 (n=10) 

Table 13A: a = 0.05 

k 

x=ke 3 5 7 10 SIZE 

.118 .066 .052 .048 .020 
l. .162 .114 .092 .074 .034 

.062 .068 .060 .054 .056 

.344 .198 .150 .098 .012 
3 .444 .272 .224 .152 .038 

.242 .174 .136 .112 .050 

.570 .752 .250 .178 .006 
5 .648 .464 .332 .252 .036 

.388 .268 , .208 .166 • .068 

Table 13B: a = 0.10 

k 
i 

X=k9 3 5 7 10 SIZE 

.166 .108 .086 .072 .036 
1 .222 .174 .130 .110 .046 

.086 .096 .092 .088 .094 

.452 .286 .232 .178 .040 
3 .566 .384 .310 .242 .070 

.272 .204 .156 .136 .090 

.656 .470 .356 .258 .040 
3 .752 .588 .448 .342 .082 

.516 .384 .312 .264 .136 
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POWER OF TESTS BASED ON A,I AND X2 (n=20) 

Table 14A: a = 0.05 

k  

X=ke 3 5 7 10 SIZE 

.172 .104 .076 .054 .020 
1 .214 .140 .100 .082 .046 

.078 .056 .052 .050 .040 

.594 .336 .232 .158 .020 
3 .666 .416 .298 .218 .032 

.410 .266 .206 .156 .056 

.872 .620 .452 .290 .020 
5 .898 .706 .526 .366 .042 

.686 .408 .314 .224 .074 

Table 14B: a = 0.10 

k 

X=k8 3 5 7 10 SIZE 

.246 .164 .124 .104 .054 
1 .316 .228 .174 .148 .086 

.148 .128 .110 .104 .098 

.704 .460 .326 .246 .032 
3 .780 .544 .420 .320 .086 

.498 .328 .268 .210 .110 

.916 .745 .578 • .396 .046 
5 .936 .796 .650 .486 .086 

.760 .514 .408 .298 .112 
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POWER OF TESTS BASED ON A AND I (n=50) 

Table 15A: a = 0.05 

k 

X=ke 3 5 7 10 SIZE 

1 .314 
.354 

.178 

.222 
.120 
.156 

.080 

.106 
.028 
.046 

3 .922 
.936 

.668 

.724 
.482 
.532 

.296 

.354 
.032 
.046 

5 .998 
.998 

.942 

.950 
.778 
.818 

.564 

.622 
.034 
.040 

Table 15B: a = 0.10 

k 

X=k8 3 5 7 10 SIZE 

1 .430 
.522 

.268 

.318 
.198 
.234 

.152 
.178 

.066 

.106 • 

3 .950 
.960 

.770 

.810 
.600 
.642 

.422 

.484 
.076 
.096 

5 .998 
.998 

.968 

.978 
.876 
.896 

.676 
: .722 

.070 

.098 
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The correction to the asymptotic null distribution of -2 ln A has 

certainly created a better picture. The estimated size of the l i k e l i ­

hood ratio test is closer to the nominal significance level than i t was 

when the x 2 approximation was employed. However, the c r i t i ca l values 
l 

for the likelihood ratio test are s t i l l very conservative. Hence, the 

power of the l ikelihood ratio test would be greater than that displayed 

in these tables. 

As before, we may compare tables with approximately the same 

estimated size. For example the power of the test based on the index 

of dispersion from Table 13A might be compared to the power of the 

likelihood ratio test from Table 13B and s imi lar ly , Table 14A to 14B. 

We see that for n=10 and 20, the l ikelihood ratio test is only margin­

a l ly better than the test based on the index of dispersion. For the 

case n=50, no reasonable comparison can be made, but we would expect the 

same behavior from both tests. 
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6. CONCLUSIONS 

As mentioned in Chapter 1, the index of dispersion is a s ta t i s ­

t ic often used to detect departures from randomness. As the null d is ­

tribution of the index of dispersion is unknown, large sample approxi­

mations were used as a preliminary f i t . The asymptotic null d is t r ibu ­

tion of I was seen to be normal with mean 1 and variance 2/n. Asymp­

tot ic c r i t i c a l values from this distribution were then employed and 

assessed by a Monte Carlo simulation. The results were that the nor­

mal approximation was very poor for sample sizes typical ly encountered 

in practice and that this approximation only becomes satisfactory for 

a sample size of about 100 and x > 5. A further attempt to improve 

the normal approximation was made by an inf in i te series expansion of 

of the true null distribution of I,. We saw that a three-moment f i t 

from the Gram-Charlier expansion improved the normal approximation 

enormously, but that this approximation was only satisfactory for 

n _ 50. 

The x 2 approximation on the other hand seemed to be fa i r l y accurate 

for n>20 and X>3. This is certainly encouraging because of one important 

reason - the x 2 approximation is simple to apply. 

To further improve the x 2 approximation (particularly for the cases 

n<20 and;x<3), Pearson curves were u t i l i zed . We found that except for 

the case n=10 and X=l, Pearson curves definitely improved the 

approximation. 
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Two issues s t i l l remain unanswered: 

( i ) What should be done in the case n=10 and X=l? 

( i i ) How well wi l l the approximations remain when we 

A 
replace X by X=X? 

For the second question, we expect that the Pearson curve approxima­

tion wi l l s t i l l perform wel l . As for the f i r s t question, let us 

keep in mind the suggestion put forth by Fisher (1950) and Cochran 

(.1936) — that the test based on the index of dispersion should be 

carried out conditionally, particularly when the Poisson parameter 

X is small, for then exact frequencies can be computed. 

F inal ly , the comparison of the powers of the tests based on the 

likelihood rat io , the index of dispersion and Pearson's X2 s ta t is t ic 

showed that the test based on the index of dispersion exhibits reason­

able power when the hypothesis of randomness is tested against over-

dispersion. This supplements the results obtained by Perry and 

Mead (.1979). 

From the basis of accurate c r i t i c a l values and reasonably high 

power, we conclude that the index of dispersion is highly recommend-

able for i ts use in applications. 
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APPENDIX 

A l.l THE CONDITIONAL DISTRIBUTION OF A POISSON SAMPLE GIVEN THE TOTAL 

Let X j , . . . , X be independent identical ly distributed Poisson 

random variables with parameter X. Then the sum of the X. 's 
n 1 

X • — E X • ) 
i=l 1 

is distributed as Poisson with parameter nX. 

Consider the joint distribution of X ^ , . . . , X n given the total 

X.. Since 

fx|x.(-) = fx^)/fx.(x-) 

= ( n x V V x ')/{CnX)x-e"nV(x.):} 
i=l 

= ( x.:)(l / n ) x 7 n x . l , 

the desired result follows, 

i . e . (xx , . . . , X n |X . ) ~ Mult (.X.,1/n,1/n,1/n,...1/n). 

The distribution of a vector of independent and identically 

distributed Poisson random variables conditioned on the total is a 1 
multinomial with parameter m = X. and equal cel l probabilities 1/n. 

This conditional distribution i s independent of the Poisson parameter 

X since X. is a suff icient s ta t i s t i c forx . 

The moment generating funtion of the multinomial is 

{PiexpUi) + . . . + p n exp( t n ) l m . 

In our case this becomes 

M(t) = {(l/n)[exp(t!) + . . . + exp(t n ) ] } X ' . 
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A1.2 THE FIRST FOUR MOMENTS OF I 

From [3.5), we see that we require the evaluation for x.>0 of 

E { ( S 2 /x ) k |x .=x.}, 

for k=l,2,3 and 4. Now for k=l and x.>0, we have 
n 

(n-l)X-E{S2/X|X.=x.} = E{ z (X . -X) 2 | X.=x.l 
i=l 1 

n 
= E{ z X 2 - nX2|X.=x.} 

i=l 1 

n 
= Z E{X.2|X.=x.} - nX2 

i=l 1 

= n{Var(X.|X.=x.) + E2(X. |X.=x.)}-nX2 

= n{x.(l/n)[l-(l/n)]+(x./n)2> - nX2 

= (n-l)X . 
It follows that for x.>0, we have 

E{S2/X | X.=x.} = 1. (A1.3) 

For k=2 and x.>0, we begin by noting that 

{(n-l)sY= ( ^ ( X . - X ) 2 ) 2 

= • Z (X.-X)1* +.z z (X . -X) 2 (X . -X) 2 . 
i=l 1 lVj 1 3 

Upon expanding these powers of (X^-XJ and evaluating the required 

conditional expectations through the moment generating function of 

(X^.X^, . . . ,X )|X., we have, for x.>0, that 

E{(S2/X)2 j x . = x . l = (n+l)/(n-l) - (2/nCn-l))(1/X). CA1.4) 

It follows that for x.>0 

Var(S2/X|X.) = {2/(n-l)}{l-(_/nX)}. 
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Considerably more algebraic effort is required in the cases 

k = 3 and 4. For x.>0, we obtain 

E{(S2/X}3|X.=x.} = (n+l)Cn+3)/Cn-l)2 - 2{l/(n-l)2}-

{[l+Cl3/n}]Cl/X) + (2/n)[l-(6/n)](.l/X2)} 

(A1.5) 

Ef/(S 2/xT|X.=x.} = (n+l)Cn+3)Cn+5)/Cn-l)3 + {2/(n-l)3>-

{2n[l+C5/n)][l-(17/n)]Cl/X} 

- (.2/n2)(2n2+ 53n - 261)(1/X2) 

- (4/n 3 l ( .n 2 - 30n +90)(1/X3)}. CA1.6) 

Equations (Al .3) - (Al .6) agree with those provided by Haldane 

(.1937). Substitution of these conditional moments into (3.5) yields 

exact expressions for the f i r s t four raw moments of I which are given • 

in (3.7). To obtain the central moments from these raw moments is a 

matter of using the formulas given in Kendall and Stuart (1958, vo l . 1, 

p. 56). We should mention that the algebra involved in computing 

these conditional expectation was checked by UBC's symbolic manipula­

tor, documented in "UBC REDUCE". Expansions of powers and the compu­

tation of the partial derivatives of the moment generating function 

were a l l checked on the computer. 

It remains to evaluate E+(l/X^), for j =1,2 and 3. Now, 

E+(.l/X) = nE+(l/X.) 
-fl k 

= n £ (l/k)e e /k! , where 9=nX. 
k=l 
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If we let 

then 

or 

f(e) = E (l/k)e' 6e k/k:, 
k=l 

co 

f ( e ) = - f (e) + E e" 8 e k _ 1 /k! 
k=l 

f ' (e) + f(e) = e" e (e e-l )/e. 

Since the solution to this dif ferential equation is 

f(e) = e~8/8 {e t-l)/t)dt, 
o 

i t follows that 

E+(l/X) = ne" 9/ 6 { (e^D/t ldt . 
o 

Simi1arly, 

E+(l/X2) = n 2 (e" e ln e/8 [(e t-l)/t]dt 
o 

- e~V (In t ) [ (e t - l )/t ]dt>, 

and 

E +( l/X 3) = n 3C(l/2)e* 6(ln e) 2 fQi{et-l)/t}dt 
0 

- e" 8 ln 6 fQ (In t){ (e^D/tldt 
o 

+ (l/2)e" 8 / 8 (In t ) 2 { (e t - l ) / t )d t ] . 
o 

None of the above integrals can be evaluated exp l i c i t l y , and 

P 2 ' . V 3 1 and ]ik' would either have to be approximated by numerical 

integration or by an asymptotic expansion. We i l lust rate this by e 

panding the integrals for large 6 . Let 

(l/n)E +(l/X) = f ( 6 ) , 

( l/n 2 )E + ( l/X 2 ) = g(6) and 

( l/n 3 )E + ( l/X 3 ) = h ( 6 ) . 
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Under the transformation t=9x, we have 

f(6) = e ' 8 /{ (e 8 x - l )/x}dx 
o l l 

= e" 8 ln x ( e 8 x - l ) | - e"8 / (In x)ee 8 xdx 
l f 0 

= -ee" 9 / l n ( l - z ) e 8 ^ 1 _ z ^ d z , where z=l-x. 

Now, 

and so 

o 
For j = 1 , 2 , 3 , . . . , let 

•ln(l-z) = z + z2/2 + z 3/3 + 

f'(e) = / (z + z2/2 + z 3/3 + . . . ) e e " 0 z d : 

U e ) = / z j ee" 8 Z dz 
J o 

3 - e z , 1 , * J - l - e z . 
= -z e + J / z e dz. 

o o 
We then have an expression for I j in terms of II . , k<j: 

I .(e) = - e ' 8 + (j/e)I ._ 1(e), where I 0(e) = 1 - e " 8 . 

For j ^ l , this recursive formula yields 

I j (e) = - e - 8 + (j/e){-e~8 + _(j - l )/e_l (e)} 

" f l - (j/e-)e"e• + { j ( j - l )/8 2 } { -e- e
+ C(j -2)/e]l .(e)} -e 

= -e 

= j'./eJ + 0 ( e - 8 ) 

~ j I/ej 

Therefore, 

f(e) ~ _ k'./e k + 1 + 0(l/e N + 2 ) as N 
k=0 

and the asymptotic expansion for E+(l/X) is 

E+(l/X) ~ n(l/e + l/e2 + 2/e3 +...). 
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Notice that the f i r s t term approximation of E + ( l / X ) is n/e = 1/E(X), 

which would be the naive approximation to this expectation. 

The asymptotic expansions for g(e) and h(e) are obtained in a 

similar fashion, except instead of expanding l n ( l - z ) , we would need to 

expand ( l n ( l - z ) l 2 and ( I n(l - z ) } 3 for g(e) and h(e) respectively. The 

results are 

E + ( l / X 2 ) ~ n 2 ( l / e 2 + 3/03 + l l / e 4 + . . . ) , 

E + ( l / X 3 ) ~ n 3 ( l / 6 3 + 6/e* + 35/65 + ...). 

Alternately, these same expansions could be obtained by repeated 

applications of L'Hospital's rule. 

Substituting these expansions into (3.7) yields the raw moments, 

correct to 0(l/ n t * ) : 

P i ' ~ 1 , 

vi' ~ 1 + (2/n) + (2/n2)[ 1 - (1/x)] + (2/n3)[ .1 - (1/x) -

(1/X2)] + (2/n-)C 1 - (1A) - (1A 2 ) - (2/x3)] , 

y 3 ' ~ 1 + (6/n) + (2/n2)[ 7 - (1A)1 + (?/n3)[ 11 - (15A) 

- (3/X2)] + (2/nMC 15 - (29/x) - (7A 2 ) - ( 8 A 3 ) ] , 

y i t ' ~ 1 + (12/n) + (4/n2)[ 14 + (l/x) 1 ] + (4/n3)[ 37 - (9/x) 

- ( 1 A 2 ) ] + (4/nMC 72 - (115A) -.(68/x 2) - ( 6 A 3 ) 1 . 

(A1.7) 
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Proceeding in the same way as Hoel. (1943), we can also assess the 

accuracy of the x2 approximation to the null distribution of I by 

examining the ratio of the asymptotic moments of I with the moments 

of [l/(n-l)lx 2 The behavior of these ratios as n and/orX increases, 

wi l l indicate when the x2 approximation is satisfactory. The f i r s t 

four moments of a random variable distributed as [l/(n-l)lx 2 ^ are: 

V = 1 . 

oiz ' = (n+l)/(n-l) , 

103' = (n+l)(n+3)/(n-l)2 , 

c V = (n+l)(n+3)(n+5)/(n-l)3 , 

(see Mendenhall and Scheaffer, 1973, p.138). 

Notice that the moments of Cl/(n-l) lx 2 j approximate the moments of a 

Mult (x. ,1/n.. . ,1/n), correct to 0(l/n). 

Let Ri = V j ' / u i f ' . for i = 1,2,3 and 4 Cnote that R ^ l for a l l n 

and'X). Using the asymptotic expressions in (A1.7), these ratios are 

computed for n = 10,20,50 and 100 and x = 1,3,5 and 8, and entered in 

Table A l . 

The asymptotic moments of the index of dispersion agree very 

well with those of the x 2 _j distribution for n^20 and X ^ l . In fact, 

this is also apparent for n^lO and X^ 5. As n and/or X increases, 

R 2 ,R 3 , and R̂  a l l approach the l imit ing value 1. This is indeed 

encouraging and compliments the results obtained in section 2.5. 
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TABLE A l : The Ratios of the Moments of I and x 2 i 

Cfor each c e l l , the ratios ^2*^3 a n d R4 a r e entered in 

that order) 

X 

n 1 3 5 8 

0.9797 0.9937 0.9962 0.9977 
10 0.9631 0.9887 0.9932 0.9957 

0.9724 0.9921 ' 0.9948 0.9962 

0.9950 0.9984 0.9990 0.9994 
20 0.9925 0.9976 0.9986 0.9991 

1.0003 1.0002 1.0001 1.0001 

0.9992 0.9997 0.9998 0.9999 
50 0.9991 0.9997 0.9998 0.9998 

1.0009 1.0003 1.0002 1.0001 

0.9998 0.9999 0.99996 0.99993 
100 0.9998 0.9999 0.99998 0.99998 

1.0003 1.0001 1.00004 0.99996 
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Al.'3 THE TYPE VI PEARSON CURVE 

We rewrite the dif ferent ial equation given by (3.1) as 

dClog f(x)}/dx = Cx-al/IbzCx-Aj)Cx-A2)}, (A1.8) 

where Ai and A2 are the roots of the quadratic b0 + b xx + b 2 x 2 . 

Kendall and Stuart (1958, vo l . I ,p.l49) give the formulas for a , b 0 , 

bx and b2 as functions of 8 i , B 2 and y 2 . When using these formulas, 

one should keep in mind that the formulas were obtained assuming the 

origin at the mean. 

For the type VI case, both roots of the quadratic are real and 

have the same sign. Without loss of generality, assume that A2>Ai. 

Then, by partial fractions, we can write 

dllog f(x)}/dx = U/bzUCi/Cx-A!) + C2/(x-A2)}, 

where C2 = (a-Ax )/(A 2-Ai) = (a-A^/S, 

C2 = (A 2 -a)/(A 2 -A!) = (A 2 -a)/c> and 

5 = A 2 - A i . 

For x>A2, we can integrate equation (A1.8) with respect to x to get 

log f(x) = (C1/b2)log(.x-A1) + (C 2/b 2)log(x-A 2) + C 

where C is the arbitrary constant of integration. 

Transforming back to the true o r ig in , i . e . replacing x by x - 1 , yields 

log f(x) = (A/bzJlogfx-ai) + (C 2/b 2)log(x-a 2) + C 

where ai = 1+Ai and a 2 = 1+A2, and hence 

-Pi Q2 

f(x) = k(x-a!) (x-a 2) (A1.9) 

where qi = -C i/b 2 , q 2 = C2/b2 and k is a normalizing constant. 

Since A2 > Aj (and hence a 2 > aj) and qj and q 2 are real 

numbers, i t follows that type VI Pearson curve defined in (A1.9) is 
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a distribution defined on [ a 2 , » ) . If we let y = x-al , then 

-qi q 2 

fly) = ky (y+a^a,,) , for y ^ - a ^ O , 

-qi Q2 

= ky (y-s) , since 6 = A2 - Ai = a2 - ai 

Now let z = S/y so that dy/dz = - 6 / z 2 . Then 

f(y) = kC«/z) q i CC5/z)-5] q 2|dy/dz| 

q 2 - q i +l q i - 2 q 2 

= kfi z [Cl-z)/z] 

q i - q 2 - 2 q 2 

= k'z U-z) , for 0<z<l. 

This last form of the density of the beta distribution is what is 

required when using the IMSL l ibrary to compute c r i t i c a l values. 

A1.4 A LIMITING CASE OF THE NEGATIVE BINOMIAL 

The negative binomial distribution with parameters k and 8 

approaches different distributions depending on the l imit ing operation. 

In particular, le t k -> <» and e -> 0 in such a way that ke = x, a constant. 

If X ~ NB(k,e), then the moment generating function of X is 

M x(t) - {p/(l -qe t )} k , 

where p = l/(e+l) and q = e/(e+l). Hence, 
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M x(t) = {Cl/(e+l)]/[l-(e/9+l)e t]}k 

= {[k/(X+k)][l-(x/(A+k))et]}k 

= (k/CxCl-e*) + k]} k 

= {l+[X(l-e t)/k]}" k (A1.5) 

But as k ->• » , the l imi t of the right-hand side of (A1.5) is 

gX(e -1)^ w( 1 1 - c n j s p r e C i S e l y the moment of generating function of 

the Poisson distr ibut ion. 
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FIG. A2 HISTOGRAM OF I (.1000 samples, n = 10, X = 51 

SYMBOL COUNT MEAN S T . D E V . 
X 1 0 0 0 0 . 9 8 1 0 . 4 4 7 

E A C H SYMBOL R E P R E S E N T S 1 O B S E R V A T I O N S 
I N T E R V A L F R E Q U E N C Y P E R C E N T A G E 
NAME 5 10 15 2 0 2 5 3 0 3 5 4 0 4 5 5 0 5 5 6 0 6 5 7 0 7 5 8 0 I N T . , C U M . I N T . C U M . 

* . 2 4 0 0 0 0 + X X X X X X X X X X X X X X 14 14 1 .4 1 .4 
* . 3 6 0 0 0 0 + X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 3 5 4 9 3 . 5 4 . 9 
* . 4 8 0 0 0 0 + X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 6 2 111 6 . 2 1 1 . 1 
* . 6 0 0 0 0 0 + X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X * 101 2 1 2 1 0 . 1 2 1 . 2 
* . 7 2 0 0 0 0 + X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X * 9 4 3 0 6 9 .4 3 0 . 6 
» . 8 4 0 0 0 0 + X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X * 1 1 6 4 2 2 11 . 6 4 2 . 2 
* . 9 6 0 0 0 0 + X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X * 1 0 3 5 2 5 1 0 . 3 5 2 . 5 
* 1 . 0 8 0 0 0 + X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X * 1 0 3 6 2 8 10 . 3 6 2.8 
• 1 . 2 0 0 0 0 + X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X * 9 6 7 2 4 9 . 6 7 2 . 4 
* 1 . 3 2 0 0 0 + X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X * 8 3 8 0 7 8. . 3 8 0 . 7 
* 1 . 4 4 0 0 0 + X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 5 1 8 5 8 5 . 1 8 5.8 
- 1 . 5 6 0 0 0 + X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 4 3 9 0 1 4 . 3 9 0 . 1 
* 1 . 6 8 0 0 0 + X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 31 9 3 2 3 . 1 9 3 . 2 
* 1 . 8 0 0 0 0 + X X X X X X X X X X X X X X X X X X X X 2 0 9 5 2 2 . 0 9 5 . 2 
* 1 . 9 2 0 0 0 + X X X X X X X X X X X 11 9 6 3 1, . 1 9 6 . 3 
" 2 . 0 4 0 0 0 + X X X X X X X X X X X X X 13 9 7 6 1, . 3 9 7 . 6 
- 2 . 1 6 0 0 0 +XXXXX 5 9 8 1 0 . 5 9 8 . 1 
- 2 . 2 8 0 0 0 +XXXXXXXX 8 9 8 9 0 . .8 9 8 . 9 
' 2 . 4 0 0 0 0 +XXXXX 5 9 9 4 0 . . 5 9 9 . 4 
- 2 . 5 2 0 0 0 . + X X X 3 9 9 7 0 . 3 9 9 . 7 
- 2 . 6 4 0 0 0 + 0 9 9 7 0 . , 0 9 9 . 7 
- 2 . 7 6 0 0 0 + o 9 9 7 0 . 0 9 9 . 7 
- 2 . 8 8 0 0 0 + XX 2 9 9 9 0 . . 2 9 9 . 9 
• 3 . 0 0 0 0 0 +x 1 1 0 0 0 0. 1 1 0 0.0 
- 3 . 1 2 0 0 0 + 0 1 0 0 0 0 . 0 1 0 0.0 
- 3 . 2 4 0 0 0 4 - 0 1 0 0 0 0 . 0 1 0 0.0 

+ + + + + + + ._+ + + +— + + + +—--+ 
5 10 15 2 0 2 5 3 0 3 5 4 0 4 5 5 0 5 5 6 0 6 5 7 0 7 5 8 0 



FIG. A3 HISTOGRAM OF I (1000 samples, n = 20, X 

SYMBOL COUNT MEAN ST.DEV. 
X 1000 0.998 0.330 

EACH SYMBOL REPRESENTS 1 OBSERVATIONS 
INTERVAL FREQUENCY PERCENTAGE 
NAME 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 INT, . CUM. INT. CUM. 

*.300000 + 0 0 0 .0 0.0 
* . 400000 +XXXXXXXXXXX 11 11 1 . 1 1 . 1 
*.500000 +XXXXXXXXXXXXXXXXXXXXXXXX 24 35 2 .4 3.5 
*.600000 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 64 99 6 .4 9.9 
*.700000 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX* 91 190 9 . 1 19.0 
*.800000 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX* 103 293 10 .3 29.3 
*.900000 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX* 114 407 11 .4 40.7 
* 1.00000 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX/XXXXXXXXXXXXXXXXXXXXXX* 142 549 14 .2 54 .9 
•1.10000 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX* 99 648 9 .9 64.8 
* 1.20000 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX* 98 746 9 .8 74.6 
* 1.30000 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX* 84 830 8 .4 83.0 
* 1.40000 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 53 883 5. ,3 88.3 
• 1.50000 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 55 938 5. .5 93.8 
* 1 .60000 +XXXXXXXXXXXXXXXXXXXXXXX 23 961 2 .3 96. 1 
• 1.70000 +XXXXXXXXXXX 11 972 1 . , 1 97.2 
* 1.80000 +XXXXXXXXXXX 11 983 1 , , 1 98.3 
* 1.90000 +XXXX 4 987 0, ,4 98.7 
•2.00000 +XXX 3 990 0. ,3 99.0 
•2.10000 +XXXX 4 994 0, , 4 99.4 
•2.20000 +XXX 3 997 0. ,3 99.7 
*2.30000 + 0 997 0. 0 99.7 
•2.40000 +XX 2 999 0. 2 99.9 
*2.50000 + • 0 999 0. 0 99 .9 
"2.60000 +x 1 1000 0. 1 100.0 
•2.70000 + 0 1000 0. 0 100.0 
•2.80000 + 0 1000 0. 0 100.0 

Co 

5 10 15 20 25 30 35 40 45 50 5S 60 65 70 75 80 



93 

LCI 

II 

o 

CM 

II 

c 
l/> 
CU 

I a. E 
ta 
in 

o o o 

< 3 
I— CJ z 
t u 
CJ • 
CC H 
KJ Z 
0. >-! 

> • 
CJ I 
Z 3 
UJ o 
o • 
ui I-
o: Z 

O + 
to 

O n t in oo o i i n o o v M i i ^ O i i K t n o u i M o g i o o o o 

0 0 ' - t O o » - M r ) t n ' » » - i j ) n i i ) M o c i i o i o ) 0 ) o i o o o o 
^ ^ n v i n i P r - c o c o c o c o c n r o c Q C n c o c o c n o o o o 

CD 
O 

CD 

CD 
CM (/) 

• CO Z 
> • O 
U J O M 

Q I-
< 

I— > 
CO CX. 

L U 
CO 
m 

ro o 
O) 

2 0 ) " -
< • UJ O 

Z O in 
3 O I-o o z 
(J *- u i 

CO 
u l 

_ i o : 
o a. 
co CU 

> 
10 _ l 

o 
m 
s. 
>-
CO 
I o < 

> 
a 
U I U J 
H - E 
2 < 
>-• Z 

X 
X 
X 

+ + 

O O o o o o o o o o 
CM co 

CO *- ( o r o c s^rocMCMOiiooo 
CO (0 co CM o CM 0) I- co CM •r-

*~ 

in co 0) in CO o r- 0) O 10 T 
o co CM CO in cn CO in r» 
*~ CO in CD t> co CO OJ 0) 0) 

CO to CO CM •o: CO CM CM 0) u> 00 
CO 10 to CN o CM 0) r> f- ro CM 

*~ 
« « « « « « 
X X X X X X 
X X X X X X 
X X X X X X 
X X X X X X 
X X X X X X 
X X X X X X 
X X X X X X 
X X X X X X X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 

X X X X X X X X X 
X X X X X X X X X 
X X X X X X X X X 
X X X X X X X X X 
X X X X X X X X X 
X X X X X X X X X 
X X X X X X X X X 
X X X X X X X X X 
X X X X X X X X X 
X X X X X X X X X 
X X X X X X X X X 
X X X X X X X X X 
X X X X X X X X X 
X X X X X X X X X 
X X X X X X X X X 
X X X X X X X X X 
X X X X X X X X X 
X X X X X X X X X 
X X X X X X X X X 
X X X X X X X X X 
X X X X X X X X X 
X X X X X X X X X 
X X X X X X X X X 
X X X X X X X X X 
X X X X X X X X X X 
X X X X X X X X X X 
X X X X X X X X X X 
X X X X X X X X X X 
X X X X X X X X X X 
X X X X X X X X X X 
X X X X X X X X X X 
X X X X X X X X X X X X X X X X X X X X X 

X X X X X X X X X X X 
X X X X X X X X X X X 
X X X X X X X X X X X 
X X X X X X X X X X X 
X X X X X X X X X X X X 
X X X X X X X X X X X X 
X X X X X X X X X X X X 
X X X X X X X X X X X X 
X X X X X X X X X X X X 
X X X X X X X X X X X X 
X X X X X X X X X X X X 
X X X X X X X X X X X X 
X X X X X X X X X X X X X 
X X X X X X X X X X X X X 
X X X X X X X X X X X X X 
X X X X X X X X X X X X X 
X X X X X X X X X X X X X 
X X X X X X X X X X X X X 
X X X X X X X X X X X X X 
X X X X X X X X X X X X X 
X X X X X X X X X X X X X 
X X X X X X X X X X X X X 
X X X X X X X X X X X X X 
X X X X X X X X X X X X X 
X X X X X X X X X X X X X 
X X X X X X X X X X X X X 
X X X X X X X X X X X X X 
X X X X X X X X X X X X X 
X X X X X X X X X X X X X 
X X X X X X X X X X X X X + + + + + + + + + + + + + 

4 O 
oo 

i n 

O 

in 
io 

o 
CO 

i n 
in 

O 
i n 

i n 

O 

in 
CO 

o 
CO 

i n 
CM 

O 
CM 

X 
X 
X X 
x x x 
x x x 
x x x 
x x x 
x x x 
X X X X X X X 
+ + + + + + + + 

o o g o o o o o o o o o o o o o o o o o o o o o o o o o o o o g o o o o o o o o o o o o o o o o 
OOOOOOOOOOOOOOOOOOOOOOOO o o o o o o o o o o o o o o o o o o o o o o o o OOOOOOO^cMCO^inior~coo)0^(Nco^inu)t~ 
•3ini0f-coo> 

' " ' - - - ' ' - ' - " - " - " - " - • • - O I C M C M C M C M C M r M C M 
K o o i n t l t j i K a i i t j i i t l i t a j i t ) . . ! . 



FIG. A5 HISTOGRAM OF I (.1000 samples, n = 50, \ = 3) 

SYMBOL COUNT MEAN ST.DEV. 
X 1000 1.003 0.204 

EACH SYMBOL REPRESENTS 1 OBSERVATIONS 
INTERVAL FREQUENCY PERCENTAGE 
NAME 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 INT CUM. INT. CUM. 

•.550000 +XXXX 4 4 0 4 0 4 
*.600000 +XXXXXX 6 10 0 6 1 0 
•.650000 +XXXXXXXXXXXXXXX 15 25 1 5 2 5 
•.700000 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 35 60 3 5 6 0 
•.750000 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 35 95 3 5 . 9 5 
•.800000 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 48 143 4 8 14 3 
•.850000 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 67 210 6 7 21 0 
•.900000 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX* 109 319 10 9 31 9 
•.950000 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX* 1 13 432 11 3 43 2 
•1.00000 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX* 105 537 10 5 53 '7 
• 1.05000 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX* 94 631 9 4 63 1 
•1.10000 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 77 708 . 7 7 70 8 
•1.15000 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 75 783 7 5 78 3 
• 1.20000 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 67 850 6 7 85 0 
•1.25000 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 42 892 4 2 89 2 
•1.30000 +XXXXXXXXXXXXXXXXXXXXXXXXXXXX 28 920 2 8 92 0 
•1.35000 +XXXXXXXXXXXXXXXXXXXXXXX 23 943 2 3 94 3 
• 1 .40000 +XXXXXXXXXXXXXXXX 16 959 1 6 95 9 
•1.45000 +XXXXXXXXXXXXX 13 972 1 3 97 2 
• 1.50000 +XXXXXXXXXX 10 982 1 0 98 2 
•1.55000 ,+xxxx 4 986 0 4 98 6 
* 1.60000 +XXXX 4 990 0 4 99 0 
•1.65000 +XXXX 4 994 0 4 99 4 
•1.70000 +XX 2 996 0 2 99 6 
-1.75000 +XXX 3 999 0 3 99 9 
•1.80000 +X 1 1000 0. 1 100 0 

DO 

+ + + + + + + + + + + + + j, + + + 
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 
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FIG. A7 HISTOGRAM OF I (.1000 samples, n = 100, \ = 3)_ 

SYMBOL COUNT MEAN S T . D E V . 
X 1 0 0 0 1 . 0 0 1 0 . 1 4 4 

E A C H SYMBOL R E P R E S E N T S 1 O B S E R V A T I O N S 
I N T E R V A L F R E Q U E N C Y P E R C E N T A G E 
NAME 5 10 15 2 0 2 5 3 0 3 5 4 0 4 5 5 0 5 5 6 0 6 5 7 0 7 5 BO I N T . C U M . I N T . C U M . 

-+ 
• . ' 6 4 0 0 0 0 + XXX 
• . 6 8 0 0 0 0 +XX 
• . 7 2 O O O 0 + X X X X X X X X X 
• . 7 6 0 0 0 0 + X X X X X X X X X X X X X X X X X X X X 
* . 8 0 O O O 0 + X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 
• . 8 4 0 0 0 0 + - X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 
• . 8 3 0 0 0 0 + X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 
• . 9 2 0 0 0 0 + X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X * 
• . 9 6 0 0 0 0 + X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X * 
• 1 . 0 0 0 0 0 + X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X j f t ( X X X X X X X X X X X X X X X X X X X X X X X X X X * 
• 1 . 0 4 0 0 0 + X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X * 
• 1 . 0 8 0 0 0 + X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X * 
• 1 . 1 2 0 0 0 + X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 
• 1 . 1 6 0 0 0 + X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 
• 1 . 2 0 0 0 0 + X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 
• 1 . 2 4 0 0 0 + X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 
• 1 . 2 8 0 0 0 + X X X X X X X X X X X X X X X X X X X 
• 1 . 3 2 0 0 0 + X X X X X X X X X X X X X 
• 1 . 3 6 0 0 0 + X X X X X X X X X X X X 
• 1 . 4 0 0 0 0 + X X X X X X 
• 1 . 4 4 0 0 0 +XX 
» 1 . 4 8 0 0 0 * + X X X 
- 1 . 5 2 0 0 0 + 
• 1 . 5 5 0 0 0 + 
• 1 . 6 0 0 0 0 +X 
• 1 . 6 4 0 0 0 + 

+ + + + + + 4. + 4. + + + + 4. 4. 4. 4. 

5 1 0 15 2 0 2 5 3 0 3 5 4 0 4 5 5 0 5 5 6 0 6 5 7 0 7 5 8 0 

3 3 0 . . 3 0 . 3 
2 5 0 . . 2 0 . 5 
9 14 0 . 9 1 . 4 

2 0 34 2 . , 0 3 . 4 
3 9 7 3 3 . 9 7 . 3 
5 9 132 5 . 9 13 . 2 
6 6 198 6 . 6 1 9 , . 8 

105 3 0 3 1 0 . 5 3 0 , . 3 
9 8 401 9 . 8 4 0 . . 1 

124 5 2 5 1 2 . 4 5 2 , . 5 
108 6 3 3 1 0 . 8 6 3 . . 3 

8 5 7 1 8 8 . 5 71 . . 8 
7 9 7 9 7 7 . 9 7 9 . . 7 
7 5 8 7 2 7 . 5 8 7 . . 2 
3 9 911 3 . 9 91 . . 1 
3 3 9 4 4 3 . 3 9 4 , . 4 
19 9 6 3 1 . 9 9 6 . . 3 
13 9 7 6 1 . 3 9 7 , . 6 
12 9 8 8 1 . 2 9 8 . . 8 

6 9 9 4 0 . 6 9 9 . . 4 

2 9 9 6 0 . 2 9 9 . . 6 
3 9 9 9 0 . 3 9 9 . g 

0 9 9 9 0 . 0 9 9 . . 9 
0 9 9 9 0 . 0 9 9 . 9 
1 1 0 0 0 0 . 1 1 0 0 . , 0 

0 1 0 0 0 0 . 0 1 0 0 . 0 



FIG. A8 HISTOGRAM OF I (.1000 samples, n = 100, X = 5) 

SYMBOL COUNT MEAN S T . D E V . 
X 1 0 0 0 1 . 0 0 0 0 . 1 4 1 

E A C H SYMBOL R E P R E S E N T S 1 O B S E R V A T I O N S 
I N T E R V A L F R E Q U E N C Y P E R C E N T A G E 
NAME 5 10 15 2 0 2 5 3 0 35 4 0 4 5 5 0 5 5 6 0 6 5 7 0 7 5 8 0 I N T , , C U M . I N T . C U M . 

* . 5 0 0 0 0 0 + • 0 0 0 . 0 0 . 0 
* . 5 5 0 0 0 0 + 0 0 0 . 0 0 . 0 
* . 6 0 0 0 0 0 + X 1 1 0 . 1 0 , . 1 

* . 6 5 0 0 0 0 +x 1 2 0 . 1 0 . 2 
* . 7 0 0 0 0 0 + X X X X X X X X 8 10 0 . 8 1 . 0 
• . 7 5 0 0 0 0 + X X X X X X X X X X X X X X X X 16 2 6 1 . 6 2 , . 6 
• . 8 0 0 0 0 0 + X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 4 2 6 8 4 . 2 6 . . 8 
• . 8 5 0 0 0 0 + X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 7 5 143 7 . 5 1 4 , . 3 
• . 9 0 0 0 0 0 + X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X * 107 2 5 0 10 , , 7 2 5 . 0 
• . 9 5 0 0 0 0 + X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X * 1 2 9 3 7 9 12 . 9 3 7 . . 9 
• 1 . O O O O O + X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X * 152 5 3 1 15, . 2 5 3 . . 1 
• 1 . 0 5 0 O 0 + X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X * 1 18 6 4 9 1 1 . . 8 6 4 . . 9 
• 1 . 1 O O O O + X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X • 123 7 7 2 1 2 . . 3 7 7 . . 2 
• 1 . 1 5 0 0 0 + X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X * 82 8 5 4 8 . . 2 8 5 . 4 
• 1 . 2 0 0 0 0 + X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 57 9 1 1 5 . , 7 91 . 1 
• 1 . 2 5 0 0 0 + X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 4 8 9 5 9 4 . 8 9 5 . 9 
• 1 . 3 0 0 0 0 + X X X X X X X X X X X X X X X X X 17 9 7 6 1. . 7 9 7 . . 6 
• 1 . 3 5 0 0 0 + X X X X X X X X X X X X X X X X 16 9 9 2 1. . 6 • 99. . , 2 
• 1 . 4 0 0 0 0 + XXXX 4 9 9 6 0 . , 4 9 9 . 6 
•1 . 4 5 0 0 0 +x 1 9 9 7 0 . 1 9 9 . 7 
* 1 . 5 0 0 0 0 + XX 2 9 9 9 0 . 2 9 9 . 9 
• 1 . 5 5 0 0 0 + 0 9 9 9 0 . , 0 9 9 . 9 
• 1 . 6 0 0 0 0 +x 1 1 0 0 0 0 . 1 1 0 0 . , 0 
•1 . 6 5 0 0 0 + 0 1 0 0 0 0 . 0 1 0 0 . 0 
- 1 . 7 0 0 0 0 + 0 1 0 0 0 0 . 0 1 0 0 . 0 
• 1 . 7 5 0 0 0 + 0 1 0 0 0 0 . 0 1 0 0 . 0 

5 10 15 2 0 2 5 . 3 0 3 5 4 0 4 5 5 0 5 5 6 0 6 5 7 0 7 5 8 0 
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FIG. A.9: NORMAL PROBABILITY PLOT FOR I 

(100C Samples, n = 10, X = 3) 

- 3 . 7 S • 

•*••..*....*....*....•....*....*....*....•....•....*....•....*... * • * * 
. 2 5 0 . 7 5 0 1 . 2 5 1 . 7 5 2 . 2 5 2 . 7 5 3 . 2 5 3 . 7 5 " 

0 . 0 0 . 5 0 0 1 . 0 0 1 . 5 0 2 . 0 0 2 . 5 0 3 . 0 0 3 . 5 0 4 . 0 0 
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FIG. A.10: NORMAL PROBABILITY PLOT FOR i 

(1000 Samples, n = 10, X = 5) 

.+....+. 

-3.75 * • 
.•.... + .... + ...+....+,.. . + .... + ..,. + .... + .... + ....•.... + .. ..+....+... • 

• 2 0 . 6 0 1 . 0 1 . 4 1 . 8 2 . 2 2 . 6 3 . 0 
0 . 0 . 4 0 . 8 0 1 . 2 1 . 6 2 . 0 2 . 4 2 . 8 3 . 2 
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FIG. A.11: NORMAL PROBABILITY PLOT FOR I 

(10C0 Samples, n = 20, \ = 3) 

- 3 . 7 5 • 

.... + .... + .... + ....*.... + .... + .... + .... + .... + .... + .... + ....•.... + .... + .... + ....* 
. 4 5 0 . 7 5 0 1 . 0 5 1 . 3 5 1 . 6 5 1 . 9 5 2 . 2 5 2 . 5 5 

. 3 0 0 . 6 0 0 . 9 0 0 1 . 2 0 1 . 5 0 1 . 8 0 2 . 1 0 2 . 4 0 
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FIG. A.12: NORMAL PROBABILITY PLOT FOR I 

(100C Samples, n = 20, \ = 5) 

• * * * 

• • * 

* • • 
• • • 

• • • • 
• * • 

* * * 

.3750 .6250 .8750 1.125 1.375 1.625 1.875 2.125 
2500 .5000 .7500 1.OOO 1.250 1.50O 1.750 2.OOO 
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FIG. A.13: NORMAL PROBABILITY PLOT FOR I 

(1000 Samples, n = 50, X = 3) 
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3.75 * 

FIG. A.14: NORMAL PROBABILITY PLOT FOR I 

(1C00 Samples, n = 50, X = 5) 

* * • * * * 
* • * 

- 3 . 7 5 + 

.630 .810 .990 1.17 1.39 1.53 1.71 1.89 
.540 .720 .900 1.08 1.26 1.44 1.62 1.80 
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3.75 • 

FIG. A.15: NORMAL PROBABILITY PLOT FOR I 

(10CC Samples, n = ICO, X = 3) 

• • a 
* • * 

-3.75 + 
... + .... + ....•.... + .... + ....•.... + .... + .... + ..:. + .... + .... + ....•*•.... + ... . + .... + ... 
.5250 .6750 .8250 .9750 1.125 1.275 1.425 1.575 

.6000 .7500 .9000 1.050 1.200 1.350 1.500 1.650 
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FIG. A.16: NORMAL PROBABILITY PLOT FOR I 

(10CC Samples, n = ICO, X = 5) 

- 3 . 7 5 * 

.5250 .6750 .8250 .9750 1.125 1.275 1 4 2 5 i S7S 
6O00 .7500 .9000 1.050 1.200 1.350 1.500 ' 1 
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A2.2 EMPIRICAL CRITICAL VALUES 

CM r-x O CTl CM CM o CO O CM CO CO o LO CM 
IT) O CO CO r-x o o CO 1—1 LO CTl 0x1 CM o oo r—1 cn oo co­ CO CO r-x r̂  CO 1—1 1—1 r-H o CM o CTl o cn UD co CO LO o o o o CO CO CO CO «xf CO «xT • • • • • • • • • • • • • • • • • 

CM CM CM CM CM CM CM CM r-H 1—1 I-H 1—1 r—l r-H I-H 

t—1 i—1 co CM CTl CO r-- -3" CTl CM i — l CM oo -3- "xT "xT 
LO i—1 i—1 CO oo i—1 o CM CO CM xj-CTl CO o CO LO r-x i—1 i—I o CTl LO CO CM CM x* "xt CO CM o o CTl CTl cn i—1 r—1 I—1 o r-x r-x r-x r-x •xT -xT «3- <xt" CO CO CM CM • • • • • • • • • • • • • • • • 

CM CM CM CM I-H 1—1 1—1 T—1 
1—1 r-H 1—1 I-H I — l 1—1 t—1 

CO 
1 QL in CO co o CM LO 1—1 CO CTl oo co CO CO •xT o r-x CTl cn I—l LO 1—1 CM CO 1— CO LO r-x. LO CTl LO CO CM LO co LO r-x CO 00 CTl CTl oo CO LO LO LO x3- x* x3" CO oo 00 co oo LO LO LO LO CO CO CO CO CM CM CM CM • • • • • • • • • • • • • • •• • • 

o i — i I-I 1—1 i-H 1—1 T—1 1—1 1—1 1—1 I-H 1—1 1—1 I-H 1—1 T—t o o 
c IO 
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LO­ • • • • • • • • • • • • • • • • • CO 
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UJ •xt r-- LO oo CO o CTl co r-x o CTl LO CTl CO CTl => CM LO CO r-x. CO LO CM CO LO r-x I-H CO I—l CO o _J IT) CO rx. CO CO CO CO CO o CTl CTl CTl 00 oo 00 00 <: O CO CO CO LO LO LO LO r-x CO CO CO r-x r-x r-x r-x > • • • • " • • • • 

i 
•a: 
c_> 
t—t CO CO LO CO co l-x r-x LO «3- oo CO LO r-x CTl CO CO 1— LO CO I—l CTl CO LO CO r-~ o 00 CO CO CO "xT CM I — l 
• — I CM CO o CTl CTl CTl r-x r-x r-x LO "xt x3- xfr -3" or O CO ro CM CM «3- "xT CO CO CO co r- l-x, l-x. r-. c_> • • • • • • • • • • • * • • • 

_ i 
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DC cn CM r—i LO co LO CTl i — l «3" CM CO cn fxx LO CM oo o 
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A2-3 PEARSON CURVE CRITICAL VALUES 

ID 
i n r-l ri o rH r-l c n o r- co 

ID vo r o VD r-l in 1— rH o rH 
O i I O r o r o cn i n r r -r CO rH o o O l VD VO VO VD o o o o VD VD vo vo • • • • • • • • • • CN CN CN CN CN CN CN CN rH rH rH rH 

in CN O r ~ r~ r» in VD rH O l VO in CN O i n CO CN rH O O VD in r- r- O o o ro ro ro ro ro ro ro CT> o rH rH rH r- r-• • • • • • • * • • • • * CN CN CN CN rH rH rH rH rH rH rH rH 

CN cn CN VO CO ro rH in r- •ST rH 
in in cn i-» CN CN in VD -r -3* -r in CN in VD r- r- CO co CO in in in in cn CO CO CO CO in in in in ro ro ro ro • • • • t • • • • • • • • rH rH rH rH rH rH rH rH rH rH rH rH 

o CO CO in ro in ro O -1* r- CN VO VD O CO ro rH >> cn CN in m o r~ rH rH CN rH CN CN CN VD VD VO VO 
cn in VO VO VD -r CN CN CN CN • • • • • • • • • • • • • rH H H H rH rH rH rH rH rH rH rH 
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TABLE A4 : PEARSON CURVE CRITICAL VALUES (ASYMPTOTIC) 

n X .005 .025 .05 .10 
a 

.90 .95 .975 .995 

.1 

« I 
8 

.2169 

.1898 

.1928 

.1972 

.3477 

.3099 

.3070 

.3046 

.4216 

.3832 

.3775 

.3759 

'.5140 
.4786 
.4720 
.4687 

1.4443 
1.6108 
1.6196 
1.6259 

1.8188 
1.8601 
1.8692 
1.8726 

2.0673 
2.0998 
2.1060 
2.1084 

2.6656 
2.6431 
2.6340 
2.6275 

20 

50 

1 .3953 Z5038 .5642 .6388 1.4114 1.5753 1.7342 2.0988 
3 .3674 .4789 .5424 .6219 1.4244 1.5828 1.7315 2.0573 
5 .3642 .4747 .5382 .6184 1.4271 1.5845 1.7307 2.0472 
8 .3630 .4728 .5366 .6163 1.4297 1.5848 1.7299 2.0398 

1 .5786 .6612 .7062 .7608 1.2621 1.3560 1.4436 1.6341 
3 .5627 .6494 .6971 .7548 - 1.2649 1.3545 1.4370 1.6093 
5 .5599 .6473 .6951 '.7534 1.2650 1.3545 1.4353 1.6044 
8 .5587 .6463 .6945 .7525 1.2653 1.3539 1.4346 1.6014 

100 
1 .6856 .7503 
3 .6763 .7440 
5 .6744 .7429 
8 .6733 .7420 

.7852 .8270 1.1852 

.7804 .8240 1.1863 

.7796 .8233 1.1860 

.7794 .8234 1-1862 

1.2474 1.3042 1.4239 
1.2459 1.2994 1.4110 
1.2455 1.2987 1.4085 
1-2447 1-2981 1-4069 



•TABLE A5 : GRAM-CHARLIER CRITICAL VALUES (THREE EXACT MOMENTS) 

a 

10 

X .005 .025 .05 .10 .90 -95. .975 .995 

1 .2291 .3078 . .3750 .4711 1.6649 1.9223 2.10.94 2. 4263 
3 .1618 .2581 .3357 .4433 1.6708 1.9292 2.1257 2. 4618 
5 .1489 .2489 .3286 .4384 1.6720 1.9300 2.1279 2. 4673 
8 .1418 .2438 .3247 .4357 1.6727 1.9304 2.1291 2. 4703 

20 

50 

1 .4127 .4855 .5419 .6184 1.4492 1.6200 1.7537 1.9847 
3 .3713 .4601 .5238 .6076 1.4459 1.6095 1.7437 1.9812 
5 .3626 .4550 .5202 .6055 1.4454 1.6075 1.7415 1.9800 
8 .3577 .4521 .5182 .6044 1.4452 1.6064 1.7402 1.9793 

1 .5913 .6557 .6989 .7542 1.2722 1.3683 1.4496 1.5974 
3 .5694 .6446 .6917 .7505 1.2700 1.3616 1.4407 1.5884 
5 .5647 .6423 .6903 .7498 1.2696 1.3603 1.7415 1.9800 
8 .5621 .6411 .6894 .7494 1.2694 1.3595 1.4379 1.5852 

iob 
1 .6924 .7482 
3 .6799 .7423 
5 .6773 .7411 
8 .6758 .7404 

.7822 .8243 1.1887 

.7786 .8226 1.1875 

.7778 .8223 1.1873 

.7774 .8221 1.1872 

1.2517 1.3065 1.4097 
1.2480 1.3010 1.4030 
1.2473 1.3000 1.4015 
1.2469 1.2994 1.4007 



TABLE A6: GRAM-CHARLIER CRITICAL VALUES (THREE ASYMPTOTIC MOMENTS) 

a 
n X .005 .025 .05 .10 .90 .95 .975 .995 

10 

20 

1 . 2406 . 3131 .3770 .4698 1.6848 1.9478 2.1346 2.4506 
3 . 1940 .2855 .'3598 .4630 1.6496 1.9001 2.0898 2.4139 
5 . 1828 .2792 .3559 .4615 1.6433 1.8901 2.0799 2.4054 
8 . 1761 .2756 .3537 .4606 1.6399 1.8845 2.0741 2.4005 

1 . 4172 .4876 .5429 .6186 1.4524 1.6252 1.7593 1.9901 
3 . 3830 .4698 .5322 .6144 1.4387 1.5999 1.7319 1.9653 
5 . 3751 .4658 .5299 .6135 1.4362 1.5948 1.7260 1.9597 
8 . 3705 .4635 .5285 .6130 1.4349 1.5920 1.7227 1.9565 

50 
1 . 5924 .6562 
3 . 5725 .6471 
5 . 5681 .6451 
8 . 5656 .6441 

:6991 .7542 1.2725 
.6938 .7522 1.2683 
.6927 .7518 1.2675 
.6921 .7516 1.2670 

1.3690 1.4505 1.5983 
1.3592 1.4379 1.5846 
1.3573 1.4353 1.5816 
1.3563 1.4338 1.5798 

100 
1 . 6928 .7483 .7823 .8243 1.1888 1.2519 1.3067 1.4100 
3 . 6810 .7432 .7793 .8232 1.1869 1.2472 1.3001 1.4017 
5 . 6785 .7421 .7787 .8230 1.1865 1.2463 1.2988 1.3999 
8 . 6771 .7415 .7784 .8229 1.1863 1.2458 1.2981 1.3989 



TABLE A7: GRAM-CHARLIER CRITICAL VALUES (FOUR EXACT MOMENTS) 

a 

10 

X .005 .025 .05 .10 .90 .95 .975 .995 

1 .2233 -.3797 '.4598 .5573 1:4398 2.0509 2.2601 2.5756 
3 .1123 .2918 \3868 .5010 1.5637 2.0050 2.2406 2.5873 
5 .1017 .2764 .3728 .4896 1.5831 1.9941 2.2324 2.5850 
8 .0965 .2681 .3651 .4832 1.5930 1.9881 2.2272 2.5829 

20 
1 .3518 .5031 
3 .3266 .4650 
5 .3223 .4584 
8 .3209 .4548 

.5733 .6553 1.3862 

.5398 .6289 1.4162 

.5336. .6238 1.4208 

.5301 .6210 1.4232 

1.6631 1.8292 2.0707 
1.6260 1.7896 2.0448 
1.6202 1.7809 2.0375 
1.6172 1.7759 2.0331 

50 
1 .5616 .6562 

.3 .5502 .6439 
5 .5481 .6415 
8 .4823 .6138 

.7058 .7643 1.2592 

.6951 .7561 1.2634 

.6930 .7545 1.2641 

.6919 .7536 1.2645 

1.3733 1.4709 1.6321 
1.3630 1.4515 1.6110 
1.3613 1.4478 1.6061 
1.3604 1.4145 1.5670 

100 
1 .6785 .7474 
3 .6715 .7416 
5 .6701 .7405 
8 .6693 .7398 

.7843 .8280 1.1844 

.7796 .8246 1.1853 

.7787 .8240 1.1854 

.7781 .8236 1.1855 

1.2524 1.3134 1.4252 
1.2482 1.3045 1.4123 
1.2474 1.3028 1.4095 
1.2470 1.3018 1.4079 
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TABLE A3: GRAM-CHARLIER CRITICAL VALUES (FOUR ASYMPTOTIC MOMENTS) 

n X .005 .025 .05 .10 .90 .95 .975 .995 

1 .2461 .3181 .3815 • .4737 1.6798 1.9409 2.1263 2.4400 
1 n 3 .1651 .2600 .3369 .4438 1.6728 1.9323 2.1288 2.4644 
XU 5 .1474 .2481 .3281 .4382 1.6712 1.9287 2.1266 2.4662 

8 .1371 .2412 .3231 .4350 1.6703 1.9264 2.1250 2.4668 

1 .4181 .4884 .5436 .6191 1.4517 1.6243 1.7582 1.9886 
?n 3 .3724 .4606 .5241 .6078 1.4463 1.6102 1.7445 1.9820 
*cu 5 .3621 .4547 .5201 .6055 ' 1.4453 1.6072 1.7411 1.9797 

8 .3561 .4513 .5178 .6042 1.4448 1.6055 1.7391 1.9782 

1 .5924 .6563 .6992 .7543 1.2725 1.3689 1.450.4 1.5982 
50 3 .5696 . .6447 .6918 .7506 1.2701 1.3617 1.4408 1.5886 

5 .5646 .6423 .6902 .7498 1.2696 1.3602 1.4388 1.5863 
8 .5618 .6409 .6894 .7494 1.2694 1.3594 1.4377 1.5850 

100 
1 .6928 .7483 
3 .6799 .7423 
5 .6772 .7411 
8 .6757 .7404 

.7823 .8243 1.1888 

.7786 .8226 1.1875 

.7778 .8223 1.1873 

.7774 .8221 1.1871 

1.2519 1.3067 1.4099 
1.2481 1.3011 1.4030 
1.2473 1.3000 1.4015 
1.2469 1.2994 1.4006 


