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ABSTRACT

The index of dispersion is a statistic commonly
used to detect departures from randomness of count
data. Under the hypothesis of randomness, the true
distribution of this statistic is unknown. The accu-
racy of large sample approximations is assessed by a
Monte Carlo simulation. Further approximations by
Pearson curves and infinite series expansions are in-
vestigated. Finally, the powers of the individual
tests based on the likelihood ratio, the index of dis-
persion and Pearson's goodness-of-fit statistic are

compared.
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1. INTRODUCTION

1.1 HISTORY OF THE 1NDEX OF DISPERSION

The index of dispersion is a test statistic ofteh used to detect
spatial pattern, a term ecologists use to describe non-randomness of
plant populations. This is equivalent to testing that the growth of
plants over an areavis purely random, or equivalently that the number
of plants in any given area has the Poisson distributfon.

Suppose then that we randomly partition some area by n disjoint
equal-sized quadrats and make a count, x, of the number of plants in
each quadrat. Under the hypothesis of randomness, Xy, ... , anou1d
have the Poisson distribution,

P(x=x) = e™\*/x! , for A >0and x =0, 1, 2, ... ,
for which E(X)‘=‘Var(X) = A. )
For alternatives to complete randomness invo]viﬁg patches or clumping
of plants, we would expeCtFVar(X) > E(X), while for more regular
spacing of plants, we would expect Var(X) ? E(X) (see for example R.H.
Green (1966)) .

These properties lead quite naturally to considering the
varian;e—to—mean ratio as a population index to measure spatial
pattern. An estimator of the variance-to-mean ratio is the index of
dispersion, defined as

1 ,if%X=0
I = _ )
: s2/%  , ifX>0

"

. n n
where X (1/n)_z Xi and S2 ='{1/(n—1)}.z

(Xi-X)Z, the
i=1 i=1



unhiased estimators of E(X) and Var(X), respectively. (It is natural
to define I to be 1 if X = 0 because under the null hypothesis, the
variance-to-mean ratio equals 1.)- |
Ever‘since G.E. Blackman (1935) used the Poisson model for counts
of plants, the concept of randomness in a community of plants became a
growing interest among ecologists. Although the index of dispersion
was introduced by R.A. Fisher (Fisher, Thornton and MacKenzie, 1922),
it was not until 1936 that it was first used by ecologists for the
purpose of inference. A.R. Clapham (1936), using a x2 approximation
for the distribution of the index of dispersion under the null
hypothesis of randomness, found that among 44 plant species he studied,
only four of these seemed to be distributed randomly, while
over-dispersion (i.e. clumping) was clearly present for the remaining
species. Student (1919) had already pointed out that the Poisson is
not'usua11y a good model for ecological data and in most cases,
clumping occurs. This has been termed "contagious" by G. Polya (1930)

and also by J. Neyman (1939).

Ever since Clapham's paper, the use of the index of dispersion as
a test of significance of.departures frém'randomness has been extensive,
not just for field data, but also in other areas (for example, blood
counts, insect counts and larvae counts).
Fisher et al (1922) showed that the distribution of the index of
dispersion could be closely approximated by the y2 distribution with
n-1 degrees of freedom. However, if the Poisson parameter, A, is small,

Aor if the estimated expectation, X, is small, then the adequacy of the



x2 approximation becomes questionable. This is discussed by H.O.
Lancaster (1952). Fisher (1950) and W.G. Cochran (1936) havé pointed
out that in this case, the test of randomness based on I should be done
conditibna11y with given totals, ZX;. Since this sum is a sufficient
statistic for the Poisson parameter A, conditioning on the total will
yield a distribution independent of A. Hence, exact frequencies can be
computed. The conditional moments of the index of dispersion are
provided in Appendix Al.2. These moments are also given by J.B.S.
Haldane (1937) (see also Haldane (1939)5.

Several people have examined the power of the test based on the
index of dispérsion. G.I. Bateman (1950) considered Neyman's
contagious distribution as an alternative to the Poisson and found that .
‘this test exhibits reasonab&y high power for n>50 and mim,25, where
my and m, are the parameters of Neyman's distribution. For 5<n<20, she
found that the power is also high, provided that mym, is large (in
particular, mymy220). Proceeding along the same lines as Bateman, N.
Kathirgamatamby (1953) and J.H. Darwin (1957) compared the power of
this test when the alternatives are Thomas' double Poissdn, Neyman's
contagfous distribution type A and the negative binomial. They found
that this test attained about the same power in each of the three
alternatives.

Finally, in a recent paper, J.N. Perry and R. Mead (1979)
investigated the power of the index of dispersion test over a wide
class of alternatives to complete randomness. They concluded that this

test is very powerful particularly in detecting clumping, and they



strongly recommend the use of this test. Examination of the power of

this test relative to other tests of the null may also be important.

1.2 PURPOSE OF THE PAPER

The purpose of this paper is to examine the distribution of the
~index of disperion and compafe its power to the power of other tests of
randomness. We examine the properties of the index of dispersion and

through these properties, attempt to answé? such questions as:
"How do we decide whether a given sample is significantly
different from a Poisson sample?" and "How good is this test
in detecting deﬁartures from randomness relative to other
(perhaps reliable and well-studied) tests?"

Answers to the first qhestion could be based on cohstructing_a
rejection region R, where if I ¢ R,‘we would tend to favor some other
alternative. For example, if we wished to test the null hypothesis
against alternatives involving clumping, then large values of I would
provide evidence against the null hypothesis, and the rejection region
wou1d-presumab1y‘be_of the form I >C, For two sided a1terna£ives, we
would be interested in both large and small values of this statistic,
say I « Cy or I >C,. We would also want to examine the chances of
wrongly rejecting the null which in statistical terminology is called

- the probability ofVmaking-a type I error or the significance level (or
size) of the test. The constants C, C;, and C, are called critical
values, and it is through these critical values that the rejection

region will be constructed.



We then rephrase the question as:

"Is there a method of determining the rejection region R at
a given level of significancea?"

As the true probability distributibn of I is unknown, we first
attempt to solve the problem through large sample approximations which
lead to asymptotic critical values. We will show that the asympfotic null
distribution of I is normal with mean 1 and variance 2/n. We can then
use the critical values from the normal and determine how accurate
these critical values are.“ This study is done through a Monte Carlo
simulation. Similarly, the 2 approximation to the distribution of I
is also examined. We also examine critical values obtained from
approximating the null distribution of I by Pearson curves and
- Gram-Charlier expansions.

To assess the "goodness" of the index of dispersion, we might be
interested in determining how often we would correctly reject the null
in repeated sampling. This is called the power of the test, the
complement ofvthis being the probability of making a type II error.
With the ﬁegative binomial ;s an alternative to the Poisson, the power
of I is then compared to the power of the Likelihood Ratio Test and

Pearson's Goodnéss—of-fit test,



2. LARGE SAMPLE APPROXIMATIONS

2.1 THE JOINT DISTRIBUTION OF X AND S2

Suppose we choose a random sample of n disjoint equal-sized
quadrats and make a count, Xi, of the number of plants in the ith
quadrat. Let Xl’ ey Xn'be independent identically distributed
random variables with mean p and variance o2. Let Mg = EE(Xi-u)k]
and suppose that w,<e. In particular, u; = 0 and yp = 2. As a
consequence of the Central Limit Theorem, we have
 (Fw) o Nowms) s (2.1)
/7 ($2-up) Lo N(0,uy0y2) . (2.2)
These results can be found in Cramer (1946, pp. 345 - 348).
Sjmi]ar]y, the Multivariate Central Limit Theorem implies that
/n(X-u) and /n(S2-u,) converge jointly to a bivariate normal

distribution with mean vector 0 and variance-covariance matrix (1/n)z,

where
T w Tim nCOV(X,S2) |
n+e
L = ’

14m nCOV(X,S2) ny - up?
n+o

S —

i.e. /n(X-u) d
: _ — N(0,z), (2.3)

/ﬁ(Sz-uz)



,
Assuming that u = 0, we have
E(¥%.S2)
(n/(n-1)}{E(XU2) - E(X3)}

cov(X,s?)

where U, = (l/n)zX% . Hence

E(XU,) (1/n2)E{zX 3 +1z X, X 2}

1#3 J

u3/n , since by independence, the double
sum has zero expectation. Similarly,
£(X3) = ug/n2

from which it follows that |

COV(X,S?) = wa/n + 0(1/n2), (2.4)
From (2.3) énd (2.4) we have for large n that

X B | M2 M3
» (1/n)

52 M2 - H3 My -t

]
=

2.2 THE ASYMPTOTIC DISTRIBUTION OF I

- We compute the asymptotic d1str1but1on of 32/X using the "de]ta
method". It will be seen that the asymptotic distribution of I is
the same as that of S2/X. .

Let é(X;Y) = y/x, so that $2/X = g(X,52). Assuming that 3g/ax
and_ég/ay exist near the point (v,02), (note that this requires the
assumption that u > 0), we can expand g(X,52) in a Taylor serie; about
(n,02) and have

-9(X,5%) = glu,0?)+(X-u)g; (u,0%)+(5%-0%)g (u,0%)+ ...

Let U(n)'= (X,s?) and b = (u,02)'. Then .

| (1) u(n) Lb 5 (i1) Ai(yn)-p) 4, No.).



The result of the delta method (see, for example, T.W. Anderson

(1958, pp. 76 - 77)) is that
AS2/R) - (o2/) 2 N(0 , 0, P4, ),
where ¢b' = (3g/5%,3g/9y) evaluated at (u,0?).

Under the stated assumptions, we have for large n,
S2/X ® N(o2/u » (1/n)sp'ze, ). (2.5)

After some matrix calculations, we get
bp'Top = u23/u* - 2upua/u® + (uy-up?) /w2 (2.6)

So far, all of the results hold regardless of the underlying

distribution of the X's. If we now assume that SIS S P(»), then

v = E(X) =, -
up = Var{X) =2,

pus = A and

uy = 322+,

Substituting these into (2.6), we have that

¢b'z¢b (1/2) = (2/x) + [(3228) - a2I/a2
=2,

and hence from (2.5) that

S2/X ® N(1, 2/n) .
The asymptotic null distribution of I is easily seen to be the
same as that of S2/X since

PL|I-(S2/%)] > €} = P{X=0} = "™

for any e>0.
This probability approaches 0 as n — « , and hence

I=N(1,2/n).



Note that the 0(1/n) approximation to the variance of I is inde-
pendent of the parameter A. This would be useful in practice because
the source of error in estimating A by the maximﬁm likelihood estimator
X would not have to be introduced. We shou]d note however that the

inclusion of higher order terms will introduce this dependence.

2.3 DESCRIPTION. OF THE MONTE CARLO SIMULATION

To answer the question of how well the asymptotic criticaf values
work, we perfromed'a Monte Carlo simulation when the underlying distri-
bution of the X's is Poisson. Fifteen thousand samples of n Poisson
random variables were generated for n = 10,20,50,100 and for » = 1,3,5,8
and fifteen thousand indices of‘dispersion were computed for each pair
n and A. The 1%,2.5%,5% and 10% quantiles for each pair n and A are
given in Table A2 . w1tﬁ such a large number of samb]es, these critical
values may be regarded as exact and they assist in assessing the accuracy
of the asymptotic critical values.

Given a nominal significance level d; two-sided rejection regions
were constructed with a/2 in each tail. Using the asymptotic normal

critical values, the rejection regions used were the following:

R.01 = {I*: lI*l > 2.58}
R.ps = {I*: [I*] > 1.96}
R.lo = {I*: ‘I*[ > 1.64}

i

R.pg = {I*: |I*] > 1.28)

where I* = (I-1)//TZ7n) -and where Ra denotes the rejection region at the

nominal significance Tevel a. To test the accuracy of the normal critical

values, we merely count the number of I*'s that fall in R'. This
s
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would then give us an estimate 5, of the true significance level p.
Now, p = (# of I*'s ¢ R_)/15,000. Since the number of I*'s ¢ R
is binomially distributed (with parameters N=15,000 and p), the

standard error of B is

SE(p) = ¥ p(1-p)/15,000
We then might conclude that the distribution of I is well approximated
by the normal if B is within one standard error of the nominal signifi-
cance level «a. |
To assist the reéder in interpreting the results, we supply a list
of how many I*'s would be expected in each tail of the rejection region
if the true significance level corresponding to each tail was identically

equal to «/2, one-half the nominal significance level. -

Table .1: Expected Number of I*'s

o | {a/2 + SE(a/2)} - 15,000
0.01 | 75+ 9.
0.05 | 1375 £ 19
0.10 © 750 = 27
0.20 1500 + 37

The results, summarized in Tables 2(A-D), are shown in the following
pages. The entries in the "I<L" and "I>U" columns are'the number of
I*'s that 1ie :to the left and right of the lower and upper normal cri-
tical values, respectively.

We immediately notice that the normal approximation is very

poor even for n as large as 50. The lower critical values are much
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NORMAL._APPROXIMATION

Table 2A (o = 0.01)

1 3 5 8
n o f o | Du 1L | o L | U
108 o 342 0 | 293 0 | 286 0 276
20 0 280 B 0 | 243 0 [ 227 0 213
50 § o 220 9 | 197 13 | 175 12 | 182
100 19 184 27 | 15 22 | 134 26 | 136
Table 2B (a = 0.05) |
A
1 3 5 - 8
n # I U I<L DU f I U kL | DU
10 8 713 3 645 o | 670 2 | 646
20 § s0 678 § 74 633. 1 76 607 72 587
50 g 148 587 K 183 | 546, ¥ 199 533 f 197 | 615
100§ 199 533 f 2a8 | so6 f 208 | a0 W 262 | 48
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Table 2C {(« = 0.10)

A » |

1 3 s 8
o | o 1 | oo §Fa | oo KL | DU
114 | 951 ;j'142 o7a N 15 |1om 149 | 1007
283" | 1010 ;1 8 | o4 § 35 | o83 359 | 986
457 962 519 | 909 ;3 527 | 938 541 | 903
554 | 943 E} 570 | 872 }} s70 | ss9 I sz | ss2

Table 2D (a = 0.20)

o R %5 KL | Du 1w | ou KL | DU
10 'f; 596 | 1520 ff 962 | 1571 }}:953 1633 # 958 | 1607
20 ii 1008 | 1447 5;1180 1627 Ei1212 1643 51221 1648
50 ; 1216 | 1612 ;}1338 1589 ;;1334 1587 { 1324 | 1534
100 § 1385 | 1528 521377 1522 2}1322 1576 ?1355 1564
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too liberal. For the cases n25Q, the total number of I*'s in the re-
jection region is close to the total number we would expect to be
rejected, hut the significance level ih each tail is nowhere near o/2.
The probability of falsely rejcting the null would be too low in the
lower tail and too high in the upper tail. There is obviously a prob-
lem of skewness in the distribution. Too. many observations lie in the
right tail implying that the distribution of Iis positively skewed.
Notice that for fixed A and increasing n, the number of I*'s rejected
in each tail becomes more equal. However even for n=100, the lower
critical values are still conservative in all significance levels
while the upper critical values are too liberal. For fixed n and in-
creasing x» on the other hand, no such pattern is obvious. ‘Thus, it
appears that the normal approximation is really only satisfactory for
n>100 and this will not suffice for practical work.

An examination of the probability plots and histograms (see
Appendix 2.1) provides more detail.

One might hope to find an improvement to this approximation and
one approach taken to improve the approximatfon is through infinite
series expansions (e.q. Edgeworth, Gram-Charlier, Fisher-Cornish
expansions). The trade-off for having such an improvement is the-
requirément of higher order moments; andvthese higher order moments
will surely have a dependence on A. More of this will be seen in
“later chapters. For the moment, we abandon the normal approximation

~and move on to another simple large sample approximation.
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2.4 THE x2 APPROXIMATION

As seen in section 2.2, the probability under the nu11 that I
and $2/X differ by an amount bigger than e(e>0) is e"™ which approaches
0 as n — =, It is therefore sufficient to consider an approximation
to the distribution of $2/X.

At a first glance, we might suspect that $?/X has some relation-
ship with the x2 distribution, for it is well known that if X, ....X_

is a random sample from the normal distribution with mean yu and variance
02 , then
(n-1)$2/02 ~ x2

n-1
In our case, the X's are Poisson and Var(X) is only approximated-

by 82 = X. However, it would not be surprising that the null distribu-
tion of (n-1)S2/X could be well approximated by)(zn_1 for large n. A

clearer motivation of this is outlined below.

Consider the following one-way contingency table:

0 % l vfz l . | X l 3
er X | X | | % | ok

The entries in the cells of the first row are just the observed

counts themselves, having row total X., and the entries in the second
row are the estimated expected counts, X. (Note that this contingency
table differs from the ordinary contingency table where observations

are free to fall in any one cell. 1In our contingency table, we have
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one cell for each count. However, if we considered only those sampling
experiments that produced the same order 6f experimenta] results in add-
ition to the same marginal totals, the methods of the ordinary contingen-
cy tables still apply.) The goodness-of-fit statistic is formed by
summing up over the columns, the square of the difference between the
observed and the expected values and dividing this by the expected value.

This gives us

which is precisely (n-1)S2/X. Providing the Ej's are not too small
(for example, Ej25 for all j), the distribution of the goodness-of-fit
statistic might be expected to be well approximated by.xzn_1 for large n.
This motivation is due to P.G. Hoel (1943). In ﬁis paper, he
approximated the moments of $2/X under the null hypothesis by power
series expansions, correct to 0(1/n3), and showed that the first four
moments of (n-1)S2/X were in close agreement with those of the in-l
distribution.
2.5 DISCUSSION
Returning ﬁow to the simulation study, we recall that since the
normal distribution is symmetric, it could not account for the skew-
ness of the distribution of I. On the other hand; since the in-

1
distribution is skewed, one might expeét it to perform better than
the normal approximation. )

So as not to obscure the comparison of the two approximations,
the same 15,000 samples generated for each case were used. The

results are displayed in Tables 3(A—D).
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N

x2 APPROXIMATION

Table 3A (o = 0.01)

A
1 3 5 8
n KL | pu I>U KL | DU KL | 1
10 § 72 81 77 | 8 77 60
20 § 39 100 - 93 . 63 76 66 78
50 50 93 93 73 9% § 75 82
100 50 102 72 H 72 67 69
Table 3B (o = 0.05) ,
_ R
1 3 5 - 8
n Riae |ou § o | oou L | uog o | o
10 ¥182 |32 § 356 364 § 379 | 356 385 | 360
20 §213 a0 J 336 385 B 340 | 365 359 | 360
50 § 285 |a08 B§- 350 05, § 363 | 380 § 373 | 365
100 § 309 |[a19 389 | 396 § 359 | 373 @ 30 | 367
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‘Table 3C (a = 0.10)

2
1 3 5 8
KL | U Ik | U U IL | Du
587 | 713 633 | 707 733 § 777 720
537 741 725 774 791 750 756
8 607 807 729 | 775 752 765 756
676 | 796 693 | 757 738 B 709 733
Table 3D (a = 0.20) |
j R
1 3 5 - . 8
n 1w |ou Booa | v § o | DU KL | Du
10 § 968 | 1083 § 1383 | 1429 [ 1468 | 1278 [ 1489 | 1469
20 1225 | 1350 § 1478 | 1504 [ 1468 | 1507 Q 1517 | 1539
50 1463 | 1534 B 1448 | 1528 § 1457 | 1505 § 1468 | 1495
100 1440 | 1489 J 1432 | 1472 § 1411 | 1508 § 1454 | 1502
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The x2 approximation clearly gives a better fit to the null
distribution of I than the normal. Most of the entries in the cells
fall within the range of values that one would expect to see. MNotice
that these tables display a similar pattern, namely that symmetry be-
tween the "I<L" and "I>U" columns becomes more apparent with increasing
n and fixed A (and with inéreasing A and fixed n). This pattern appears
with increasing a too. However, there seems to be more room for improve-
ment for the cases ns20 and 3<3. In fact, even for n=100 and A=1, the
lower critical values tend to be too conservative while the upper criti-
cal values tend to lead to rejection too often. (In the-ecological con-
text however, this would cause no serious probiems. One can simply take
larger quadrats to ensure- that the mean number of plants in each quadrat
is 1afger than 1.) For the cases n220 and 123, the x2 approximation N
gives a very reasonable approximation to the null distribution of I, and
Teads to a pleasantly simple method of constructing rejection regions.

As statéd in the previous section, one way of improving these large
sample approximations is through an infinite series expansion of the
true density of I. Another technique commonly used is approximations by

Pearson curves, which will require the first four moments of I.
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3. PEARSON CURVES

3.1 THE THEORY OF PEARSON CURVES
 The family of distributions that satisfies the differential
equation
d(log f)/dx = (x-a)/(bg+by+bsx?) (3.1)

are known as Pearson Curves. Under regularity conditions, the constants

a,bd,blAand b, cén be exbreséed in terms of the first.four moments of the
distribution f; see Kenda}] and Stuart(1958, vol. 1, p. 149). Karl
Pearson (1901) idehtified 12 types of distributions each of which is
completely determined by the first four moments of f.
It is convenient to rewrite'the_dénominator as
Bo + By(x-a) + Bp(x-a)?
for suitably chosen constants By,B; and By, and hence (3.1) may be
written as
d(log f)/dx = (x-a)/{By + By(x-a) + By(x-a)? . (3.2)
As in (3.1), the constants in (3.2) are functions of the first four .
moments of f(x). By integrating the right-hand side of (3.2), an ‘ex-
plicit expression can be obtained for f(x).
The criterion for determining which type of Pearson curve
results is obtained from the discriminant of the denominator in (3.2).
This criterion is given by:

2
K = 81/4.8052.' . (3.3)
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, 2 3 2
Defining By = uz/uz and 8, = uy/uz, where the ui's are the
central moments for f(x), the constants By,B; and B, can be ex-

pressed in terms of 8; and B,. The criterion « then becomes

2
K = B1(Bz+3) /{4(282-331-6)(482-381)]. (3.4)

. For eXamp]e, a value of k<0 gives Pearson's type I curve, also

called the Beta distribution of the first kind. In this case,

f(x) = kxPl(1-x) 971 , for 0 < x <1,
where the constants k,p and q are functions of the first four mo-

ments.
If l<k<o, then we get Pearson's type VI curve, also known as

Beta distribution of the second kind. Here,

f(x) = kxp-l/(1+x)p+q , for 0<x<w,
The following is a summary of the steps one would take when

approximating by Pearson curves.

Let g(X) be a statistic whose null distribution we wish to
approximate by Pearson curves. The first step is to compute
the first four moments of g{X) which will depend on the para-

meters of the null distribution of the X's (if the parameters

the

are not specified, they may be estimated by the maximum 1ikelihood).

Then B1 and 87 - can be computed from the moments.
From here, either onc of two routes can be taken. If critical

values are all that are required, then the Biometrika tables pub-
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lished by Pearson and Hartley (1966) can be used. The critical vé]-
ues are tabulated for a wide range of values of /B, and B85, and if
necessary, linear interpolation along rows and columns is sufficient.
We.shou1d note that when using critical values from the Biometrika
tables, one should keep in mind that those critical values are all
standardized. So if Xa denotes the o level critical value from the
tables, then the appropriate a level critica]vva1ue to use for the
test is
X, = U)X+

The other alternative is to compute « from (3.4) and determine
the type of Pearson curve to be used. If the resulting distribution
is not too uncommon, the paraméters of the distribution can be com-
puted. The text by W.P. Elderton and N.L. Johnson (1964, pp.35-46)
gives an excellent treatment of this situation. Once the Pearson
curve is completely determined, critical values can usually be ob-
tained from the computer. In particular, the IMSL library provides

critical values for a wide class of distributions.

3.2 TWO EXAMPLES
Before applying Pearson curves as an appfoximatidn to the null
distribution of I, we discuss briefly two of the examples from the
paper by H. Solomon and M. Stephens (1978), where the accuracy of

critical values obtained from a: Pearson.curve fit is examined.
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: | -
Example 1: Let Q (c,a) = = ci(Xi + ai) .
n r

i=1
= '
where ¢ = (cy,...,c )" and
a=(ag,....a)
are vectors with constant components, and the Xi's come from a
standard normal distribution.

The exact moments of this statistic are known to any order. 1In

fact, the rth cumulant Kpo 15

. n
e = 2" (o) g

r N
i=1

r- , -
ci(1+rai).

There is‘a Tong literature on obtaining the critical values for dif-
ferent combinations of n,c and a. These critical values are tabula-
ted in Grad and Solomon (1955) and in Solomon {1960). Much mathema-
tical analysis was used to obtain.theSe critical values and an exten-
sive ahount of numerical computations were made so accurately that
'611 the critical values can be regarded as exact.

Pearson curve fits were obtained for different values of the
constants and critical values were obtained by:quadratic interpola-
tion from Biometrika tables. The results were that the Pearson
.curve critical values agreed very closely with the exact critical
values for the upper tail, but tHere was no close agreement at all
between the two critical values in the lower tail of the distribu-
tion. |

Now, -Pearson curves can also be obtained when the first three

moments and a left endpoint of the distribution are known. (See for
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example, R.H. Muller and H. Vahl (1976) and A.B. Hoadley (1968) ).
Solomon and Stephens proceeded to do this three-moment fit and found
that the fit in the lower tail was improved considerably, but this
approach-made the fit in.the upper tail less accurate. They point out
however that whenever four moments are available, then these four mo-
ments should be used for the fit as it is the upper tail of the dis-
tribution that is usually of more importance in practice. Of course,
in our case, depending on whether we are concerned with clumping or
regular spacing of plants, either tail of the distribution might be
~of interest.
Example 2: Solomen and Stephens considered the statistic U = R/S,
Where R is the range and S the standard deviation of a sample from
the standard normal distribution.” For n=3, the density of U is known:
f(u) = (3/ﬂ){1-(u2/4)}'(1/2), for /3 s u < 2.
The Pearson curve turned out to be a Beta distribution of the first

kind and had the form

. 0.497
)0 0101( ) 0

g(u) = 0.9573/{(u-1.7324 2.000-u 1,
for 1.7324 s u < 2.000.

First we notice that while the true distribution of U is bell-
shaped, the Pearéon curve is U-shaped. However, notice that the
Pearson curve fit gave the correct left and right endpoints of the
distribution, at least to three decimal places. Finally, Solomon and
Stephens found that the Pearson curyeé crticial values agreed very well
with the exact_critica] values in both the lower and upper tails of

the distribution. Given that the Pearson curve is U-shaped, the accu-

rate fit obtained in both tails of the distribution is extremely sur-
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prising!
Thése two examples illustrate the usefulness of Pearson curves

as a means of approximating perhaps not so much the distribution, but

the critical values.

3.3 THE FIRST FOUR MOMENTS OF 1

Computing the first four moments of I is no éasy task since I

involves a random variable in its denominator, namely X. However,

we can express the expectation of Ik, for k = 1,2,3,4, as the expec-

S

tation of the conditional expectation given the total X. = I Xi
i=1
(or given X). Now

o[ 1 if X=0 | L
(/%)% if X >0
If follows that
" 1 if X. =0
E(I"]X.) = o k.. .
E{(S2/X)"|'X.} if X. >0
= A06=0) + EC(S2/DNX) 1 0xLs01,
where i{A} is an indicator function equalling 1 if A is true and 0O
otherwise. Hence
[N E(Ik)
- k
= E{E(I7|X.)}

Mk

= P(x.=0) +) EC(s2/X)X] x.=53 - P(X.=5)
= p(X.=0) + EX(EC(sZ/X)K|x. 1} (3.5)
where E+ denotes an expectation over the marginal distribution of X.

restricted to the positive values of X. . Thus we may write the kth
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moment of I as-

we' = P=0) +E(/RREL(s2)* | R0 (3.6)

Hopefully, the conditional expectation,.which will depend on X,
might cancel off the')"(k in the denominator, and hence computation of
the unconditional expectation will be relatively easy.

Another difficulty arises in computing fhe conditional expec-

tation itself, which involves expanding

(s2)% = (C1/(n-1)7" ¢

i

L1 o =]

(Xi-i)z} , for k = 1,2,3,4.

1
The: conditional expectation of this random variable will involve
moments and product moments of (Xl’XZ”':’Xn)IX' up to the eighth
order, ahd hence if we choose to compute moments from the moment
generating funtion, we would require mixed partial derivatiQes of
the moment generating function of (X15X2"'“xn)lx' up to thé eighth
order. Fortunately, when the under1ying distribution of the Xi's is
Poisson, the distribution of (xl’XZ""’Xn)IXi has a farily simple
form, reducing to a multinomial distribution with parameters X. -and
p. = 1/n, for i=1,2,...,n;

1

i.e. (X).X .,Xn)lX. ~ Mu]tn(X.,I/n,...,l/n).

9o

This result, the derivation of which is provided in Appendix Al.1l,
facilitates the derivation of the conditional moments E{(Szli)klx.=x.}

for x.>0. These are provided in equations (Al.3)-(A1.6) of Appendix
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Al.2 and lead via (3.5) to the following. expressions for the first

four raw moments of I, the index of dispersion:

ul o= P(X.=0) + P(X.>0) =1

P) ‘ P(X.=0) + {(n+1)/(n-1)}P(X.>0) - (2/n(n-11E(1/%)

'L p(X:=0) + {(n+1)(n3)/(n-1)21P(X.>0) + {1/(n-1)2}-

=
w
1]

C{(-a/m)1-(6/n)1EV(1/RR) - 201+(13/n)1ET(17%)}

''= p(X.=0) + {(n+1)(ﬁ+3)(n+5)/(n—1)3}P(X.>O)
+ {1/(n-1)3}{4n[1+(5/n)101-(17/n) JE(1/%)
- (4/n2)(2n2+53n-261)E " (1/X2) -

=
£
[{]

_ (8/n3)(n2-30n+90)ET(1/X3)} . (3.7)

From these expressions, we see that we have not overcome the problem

of evaluating the expectation E+,(1/Xk) for k = 1,2,3. We have taken
two approaches in evaluating these expectations. The practical

approach is to express these expectations as integrals, and evaluate
these integrals by asymptotic expénsions. This is done in Appendix
Al1.2; the resulting expressions for the raw moments, correct to O(l/n“),

are provided in equation (Al.7). The central moments, correct to
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0(1/n*), are then immediate:

1 (exact),

=
[}

2/n + (2/n2){1-(1/X)} + (2/n3){1-(1/x)-(1/x2)}
+ (2/0%){1-(1/3)-(1/22)-(2/23)} + 0(1/n%),

l

U2

uz ~ (1/n2){3+(4/2)} + (1/n3){16-(24/1)}
+ (1/n%){24-(52/1)-(8/32)-(4/x3)} + 0(1/n®),

12/n% + (1/n3){(72+(72/%)+(8/22)}

2

Hy
+ (1/n%){180-(240/1)-(228/22)+(15/A3)} + 0(1/n%). (3.8)

Using the definition of81 andB; , we can also express these in

a similar expansion:

By ~ (2/n){2+(1/2)}% + (2/n?)14-(16/2)-(3/A2)+(3/23)
+(2/n3){4-(16/3)-(7/22)-(17/33)+(7/2%)+ ...}.  (3.9)

8y ~ 3+ (2/n)(6+(12/2) + (12}
+ (2/n2){6-(36/2)-(5/22j+(4/23)} + ... (3.10)
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The accuracy of these approximations can be assessed by computing
- the moments "exactly". By this, we mean computing the moments to
a.reasonable degree of accuracy. To do this, we can approximate the

infinite series in the expressions for the exact moments by Nth partial

sums, SN’ where N, the number of terms in the partial sum, is chosen
so that the difference between the true and approximated values is
no bigger than 1076, say. A geometric bound on the error is shown

below.

Let S = (1/n)e¥(1/%) = (1/k)e %% /k!

k

nes 8

1

lthere 8 = nx, We want to determine N such that S.—SN < 1976, Now,

(1/k)e~%oK /K
N+1

7

(%)

]
w8

1 8

-6 k/yl
N+1

- IA
S
n ™

(a8 N+1

J(M+1Y {1400 /(M+2)] +002/(N+2)(N+3)]
+ [83/(N+2) (N+3)(N+4)] + ...}

e N+1

A

{e /(N+1) 11 1+(o/N)+(o/N)2+(a/N)3+ ...}

-eeN+1

= {e J(N+1)'}{i/[1-(e/N) 1}, if e<N.
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We therefore want to choose N so that
(i} N> mx and
(ii) S—SN <1076

We note that this same value of N can be used for E'(1/X2) and
E+(1/X§) since conVérgence is faster in these cases. .

The importance of a good asymptotic expansion fs clear; one
would not want to compute partial sums when fitting by Pearson
curves. Yhile computation of "exact" moments may be relatively
inexpensive for small values.of 6, it can get quite expensive for
larger values of 8, and furthérmore, over-flow problems will occur
in these cases. The accuracy of the asymptotic expansions is dis-
cussed in the next section. _

3.4 DISCUSSION

Using the known values of X, we can compute exact and asymptotic
moments and hence obtain two Pearson curve fits for the simulated
data. The Pearson curves obtained are the following:

i) Using asymptotic moments (up to the fourth order) a type
1V fit was obtained for the case x=1 (for all n) and a
type VI for all other cases.
ii) Using éxact moments, the same types were obtained
except for the case n=10and =1 where the fit turned
out to be a type VI.
The type IV Pearson curve is not a common distribution. - f(x)

has the form

f(x) = k{1+(x2/a2)} " exp{-b arctan (x/é)}.
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Since the critical values from this distribution cannot be obtained
from the IMSL library, all the type IV critical values were obtained
from Biometrika tables (Pearson & Hartley, (1966)). However, the
critical values from a type VI curve can be obtained from IMSL. The
algorithm for determining thé form of the density is outlined in

“Appendix Al.3.

Using the same 15,000 samples for a given n and » , a Monte Carlo
study was done to assess the Pearson curve fits. The reults of the

study are presented in Tables 4(A-D) and Tables 5(A-D).

As seen from the tables, the number of Eejeétions froma Pearson
curve fit-are close indeed to the ideal number of rejectioné Tisted
in Table 1. The cases of main concern (n<20 and-a<3) seem to be
éatisfactofy except for the case n=10 and =1 whére théucritical
values tend to reject too often. However, a definite improvement
from the 2 approximation is clearly present for these cases.

While the Tower x2 critical values tend to be too conservative,

the Pearson curve fit has corrected for this - however,.it has over-
corrected, as now, the lower critical values of the Pearson

curves tend to be too liberal! This is apparent in all the
significance levels considered.

Note how similar the tab]és obtained using exact and asymptotic
moments are. This indicates that the asymptotic expressions - for
the moments, wheﬁ used up to the:fourth order, are fairly
accurate. The excellent performance of the asymptotic maments is
indeed éncouraging for its use in applications. Even for n as
low as 10, the asymptotic values of ﬁz,ug and ﬁu were correct to

the first 4,3 and 2 decimal places, respectively,
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PEARSON CURVE FIT WITH EXACT MOMENTS

Table 4A (a = 0.01)

A
1 3 5 8
KL | Dy gj:I<L 1>V KL | DU KL | Dy
109 72 59 77 69 | 74 76 59
67 64 71 82 70| 75 69 | 76
87 63 85 84 79 84 82 79
64 | 75 84 | 63 79 | 5 § 79 | 67
Table 48 (a = 0.05) |
A
1 3 | 5 8
n ik {ou §ora | ooy g- It | Du it | 1
10 587 410 384 399 384 376 391 | 365
20 401 207 § 384 372 @ 364 362 381 | 360
5o § 401 [371 B 383 | 307, § 383 | 3 384 | 352
100 389 | 393 366 | 380 379 | 368 380 | 364




Table 4C - (a = 0.10)

1
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n KL | ou E{ KL | Dy f: <L I>U§?AI<L 1>V
lo § s96 | se1 | 758 | 747 780 | 760 i 790 | 744
20 682 | 785 K 786 | 778 769 | 792 ;» 779 | 763
50 751 795 761 770 733" | 762 774 755
100 ;v 759 | 763 %i 728 | 749 :§,7°3 735 726 | 730
Table 4D (o = 0.20)
1
n | pu f? e | oo | D KL | 1
10 ; ;535 1514 §;1578 1510 f 1549 | 1519 %Z 1519 | 1508
20 ;:1424 1447‘ ,Efiszo 1534 ; 1547 | 1537 %x 1535 | 1543
50 ;§1575 1561 ,;;1531 1538 ; ;476 1511 ? 189 | is05
100 3;1502 1489 ;;147ol 1477 § 1426 1511_ §;1467 1502
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PEARSON" CURVE FiT WITH ASYMPTOTIC MOMENTS

Table 5A " (o = 0.01)

1
n i (v B | ov B ora | oou KL | Dy
10 § 44 72 59 77 77 75 87 | 59
20 4 67 | 61 é, 7 82 70 75 1 6 76
50 § 84 3 85 84 79 | s R 82 81

10 § 7n 74 8 | 63 7§ 65 '%~ 79 67

Table 58 (a = 0.05)
1
n ?; KL DU ?* 1L DU It DU I DU
0 § 384 a0 § 3es | 399 397 374 %E 405 369
20 B a01 | 407 i{ 384 372 B 368 | 361 ? 381 360
50 ?; 401 | 381 383 | 397, § 383 | 371 'ﬁ 386 ‘352
100 § 300 | 384 366 | 388 ?] 383 | 368 v; 379 364




Table 5C (q = 0.10)

34

1
1<L I>U U B o1 I>U I<L I>U
596 821 747 - 780. | 756 806 744
683 785 778 763 | 792 782 765
744 796 770 733 | 762 778 755
759 | 761 726 K 703 | 734 730" | 733
Table 5D (q = 0.20)
L
n I<L DU B o1c I>U I<L >0 <L I>U
10 § 1636 2233 1578 | 1510 M 1547 | 1516 § 1519 | 1500
20 Wis2a | 1427 § 1520 | 1530 @ 1547 | 1537 f 1533 | 1502
50 H§1576 1573 1531 | 1538 § 1478 | 1511 M 1480 | 1505
N ' a L" i .
100 §1511 1489 ¥ 1470 | 1468 [ 1422 |1507 § 1468 | 1501
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The critical values obtained using exact and asymptotic moments
may be found in Tables A3 and A4: respectively. With Pearson curve

-critical values now available, two issues come to mind:

(i) While the approximate values obtained from Pearson curves .
‘clearly improve upon those obtained4with the x2 approximations
for n<20 and/or A<3, is it worthwhile going through the Pearson
curve atgorithm, ;omputing asymptotic moments, |
determining the Pearson curve and then obtaining the critical
values, as opposed to simply going to x2 table and reading
off the critical values?
(i1) Are the Pearson curves still better when we replace A
.by,the maximum 1ikelihood estimator A=X?
No attempt wés made to examine the second questfon, although
for large sample sizes, we would expect that Pearson curves would
still be better. In answer to thé first question, if accuracy
of critical values is of primary importance, then we might
favor Peafson curves. The'asymptotic eXpressions for the moments
are now known to be accurate, ana once the moments are computéd‘
from these expressions (to the fourth order), 8, and 8, are deter-
mined and. the Biometriké Tables (Pearson and Hartley (1966)) provide
us with the critical values. If on the other hand, the éritérion n.
given in (3.4) results in a not too uncommon di§tribution, then'fhe
critical values may be obtainéd from the computer. We reiterate
that in this case, the explicit form of the density has to

be derived. Alternaffvely, given the values of n and i; one can

obtain critical values through interpolation from the tables
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provided in the appendix. -Although the accuracy of interpolating
from these tables has not been assessed, the Pearson curve
algorithm is smooth and presumably, a simple linear interpolation

will suffice.
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4. THE GRAM-CHARLIER SERIES OF TYPE A

4.1 THE THEORY OF GRAM-CHARLIER EXPANSIONS

In mathematics, a typical procedure for studying the properties
of a function is to express the function as an infinite series. Two
types of series that immediately come to mind are Taylor series

“(or power series) and Fourier series. While these two series express
a function as a sum of powers of a variable or as a sum of trigono-
metric functions, we will instead consider expanding the true
density of I as a sum of derivatives of the standard normal density.
One can then think of such an expansion as a correction to the normal

approximation that was examined in Chapter 2.

Lét'¢(x) be the standard normal density.

o(x) = (1//2r) exp(-x2/2),
Then A '
o' (x) = -x¢(x)
o' (x) = (x2-1)¢(x)
$(3)(x) = -(x3-3x)(x)
$(4)(x) = (x*-6x243)4(x)
In general,
¢(j)(x) = (-l)jHj(x)¢(x) for j = 0,1,2,... (4.1)
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The polynomials Hj(x) of degree j are called the Tchebycheff-

Hermite polynomials. By convention, ¢(0)(X) = o(x), f.e. Hy = 1.

Some important properties of these polynomials are that

(i) 'Hs(X) = jHj_l(x) |
o 0, kej

(1) #5008, (e (dx = ,
k! , k=j

i.e. the Tchebycheff-Hermite poloynomials are orthogonal.

(iii) _2 Hj(x)¢(x)dx = -H,

J_1(X)¢(X).

The proof of (i) involves expanding
¢(x-t) = ¢(x)expltx-(t2/2)}

in a Téy]or series about t = 0, This yields the equation

expta-(82/2)) = 3 (/50K 500).
J=
Substituting in the series for the exponential term and redefining

the index of the summation gives the:desired result.
(i) follows from (i) by substituting in the expression for Hk(x)

(k)

from (4.1)n terms of ¢ (x) and performing successive integration
by parts. (iii) follows immediately from (4.1).
Suppose then that a density function f(x) can be expanded in an

infinite series of derivatives of ¢ (x):

f(x) =';; chj(x)¢(x). | : (4.2)

J=0
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The conditions for this series'expansion to be valid can be found

in a theorem by Cramer (1926). The conditions are that:

[e -]

(i) s (df/dx)exp(-x2/2)dx converges, and

-00

(i1)  f(x) —> 0 as X —> o

To find the coefficients cj, multiply equation (4.2) by Hk(x)

and integrate from -~ to = and use the orthogonality property.

_i f(x)H (x) dx = ;i jio chj(x)Hk(x)¢(x)dx

) .E »?w chj(x)Hk(x)¢(x)dx

~ (interchanging the sum and the integral is justified since p(x)-¢(x)
is always bounded, for any polynomial p(x) of finite degree.) -The cj's
can then be expressed in terms of the moments about the origin. We

list the first five coefficients below.

Co =1
Cy = ¢
¢ = (1/2)(up'-1)
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= (1/6)(ng" )

()
w
I

(1/28) (uy '-6u, ' +3).

Cy

For the purpose of computing critical values, it is convenient
to express the cumulative distribution function (CDF) F(x), in

a similar series.
X
F(x) =/ f(x) dx

= %o (x) + T c.H.(x)e(x)} dx
-C0 j:l J J

=o(x) - % chj_l(x)¢(x), where ¢ is the standard

norma1‘CDF. This series ‘is called the Gram-Char1ier series of

type A (Kendall and Stuart (1958), vol. 1, pp. 156-157).
Let X = (I-1)/Yu;. Then c;= c3= 0, and the Gram-Charlier series
of type A for the CDF of X is given by
F(x) = e(x) - ¢(x){caHa(x) + cyHz(x) + ...}

where c3 = (1/6)uj’
= (1/6)E((1-1)3/u, /%)
= (1/6)us hp 12
= (1/6)/8, .
Similarly,

cy = (1/28)(82-3).

Now consider using partial sums of the Gram-Charlier series as
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- an approximation to F(x). (Note that the one-term approximation is
merely the normal approximation.) In particular, suppose we use the
first two terms of the series to approximate F(x).

F(x) = o(x) - (1/6)(V81)(x*-1)¢(x) = G(x)
Then the corresponding approximate critical values can be computed
for any significance level a, by solving the equation G{x) = a. Of
course, this equation has to be solved jteratively (by the Newton-
Raphson method, say).

Since exact and asymptotic moments.are available, c3 and cy can
be computed likewise. Note that from (3.9) and (3.10), c3 ~ 0(1v/n)
and ¢, ~ 0(1/n). If we choose to do the.two-term approximation, then

we would be neglecting cy, and hence neglecting terms of 0(1/n).
‘Therefore, c3 can be approximated by terms whose orders are less

than 1/n. In this case,

6cy ~ Y27 {2+ (1/x)}
and the approximation becomes
F(x) ~ o(x) - (1/6)/T271{2+(1/2)} (x2-1)¢(x),

In the case of a three-term approximation, we would be neglec-
ting cg. The fifth moment is unavailab]e; but we might anticipate
that cs ~ 0(1/n3/2). If this is the case, then up to the order-
of neglected terms,

~6c3.~ YTZR) 2+(1/2) )
24¢y, ~ (2/n) ®B+(12/1) +-(1/x2)};
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and the approximation becomes
F(x) ~ o(x) - {(1/6/(2/nJ{2+(1/2)} (x2-1)
+ (17281 (2/n)06+(12/2)+(1/22)1(x3-3x) 3o (x).

4.2 DISCYUSSION

Since the results with the asymptotic moments were virfua]]y
the same as those with the exact moments (as it was with Pearson
curves), we only Hisp1ay the table for the two- aﬁd three- term fits
with exact moments.{see Tables 6(A-D) and Tables 7(A-D) ).

 Me can immediately see that the series expansion has improved

the normal approximation. We point out some interesting results
arising from the comparison of the two series approximation. First,
while the Tower critical values from the three-moment fit tend to be-
too conservative, those from the four-moment fit are slightly
liberal. This appears to be the case of a 2 0.05. In general,
the four-moment fit seems to be adequate at the lower tail, except
for the usuaI cases of contern n £ 20 and » < 3. On the other hand,
the upper critical values from the three-moment fit tend to
be adequate for most cases, but the inclusion of the fourth moment
has made the upper critical values very conservative. The four-
momeht fit is only satisfactory for n = 50 and » > 3.

Obviously, the Gram-Charlier approximation ié not recommended
since the much simpler x2 approximation is even better. However,
it is interestinglfo note that a three-term partial sum approximation
of the true density of I improves the normal approximation consider-

ably. The critical values obtained from this approximation may be
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GRAM-CHARLIER THREE-MOMENT FIT (EXACT)

" Table 6A. (a = 0.01)

. k N
1 . 3 5 8
n I<L DU E‘ I<L DU IdL I>U I<L U
10 109 | 140 32 125 22 | 132 B 26 106
20 B 105 | 123 79 115 66 | 101 § 66 106
50 101 93 96 98 86 | 98 90 94
100 85 | 96 89 74 W ss 69 § 84 76
Table 6B (a = ,
_ A
1 3 5 8
n KL | pu B oaa | pu U KL | DU
10 190 | 381 176 | 364 352 [ 199 347
20 305 370 § 304 354 B 384 | 284 330
. 50 354 363 358 384 , 363 B 352 | 345
100 384 | 377 356 | 370 362 § 368 354




Table 6C (a = 0.10)

1
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n I<L U E; IQL >U I<L >y I<L U
10  ser 551 i 482 626 297 | 628 515 626
20 537 678‘ 659 687 638 | 709 ? 633 680
50 668 | 726 723 731 683 | 721 727 720
100 735 | 733 707 727 ?' 678 713 703 714
Table 60 (a = 0.20)
1
n fa 1€L U I<L I I > 1<l U
10 ‘;974 1083 § 1104 | 1291 ; 1240 | 1328 %f 1248 | 1312
20 3.1297 1350 § 1352 | 1426 ; 1402 | 1404 %, 1389 | 1448
50 §f1517 1471 }1435 1472, f 1430 | 1450 ? 1439 | 1453
100 i714sé 1455 § 1432[ 1442 | 1398 | 1485 1238 | 1486




GRAM-CHARLIER FOUR-MOMENT FIT (EXACT)
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Table 7A (a= 0.01)

1

—-7;—_ KL | DU I<L ISU la KL | U KL | D
10§ 109 |81 16 89 0 89 5 "7o
20 39 | 7s 36 82 30 75 32 77
50 s | 6o 62 83 ;  59 | 83 12 115
100 59 | 74 72 o2 f 71 63 70 67.

Table 7B (@ = 50.05)
)

n w {ou §ora | oo | o KL | D
10 'l§87 212 305 | 262 - & 275 | 259 267 | 264
20 § 201 | 246 4 57 | 203 ?f 303 | 284 293 | 283
50 § 358 303 1 350 355 :{ 341 335 228 | 429

100 § 377 {342 i; w9 | 359 § 356 | 3 %» 365 | 342




Table 7C (a = 0.10)
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X
1
n I<L PUR L | U B It | DU 1<t
10 968 426 774 504 738 502 732
20 839 532 761 655 707 663 77
50 744 687 746 | - 725 713 713 747
100 759 733 720 725 695 | 712 709
Table 7D (o = 0.20)
1
n I<L LU f 1<l I>U I<L IsU @ I<L I>U
10 ¥ 2147 | 2233 1824 | 1733 B 1667 | 1695 1665 | 1630
20 1672 | 1678 1619 | 1587 § 1600 | 1579 1580 | 1589
50 1628 | 1598 1538 | 1554 f? 1520 | 1522 1508 | 1515
100 1536 | 1499 1499 | 1483 § 1429 | 1514 1469 | 1504
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found in Tables A5 - AS.

Other types of series expansions could also be examined. Two of
the more common one§ are Edgeworth expansions, which are known to be
equivalent to the Gram-Charlier series of type A, and Fisher-Cornish
expansions, which are‘derived from Edgeworth expansions. Treatment
of these can be found in Kendall and Stuart (1958, Vol. 1, pp. 157 -

167).
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5. THE LIKELIHOOD RATIO AMD GOODNESS-OF-FIT TESTS

In the previous chapters, we examined various approximations to
.the distribution of the index of dispersion for the case that the
data is distributed as Poisson in order to obtain approximate
critical values. We compared the performances of critical values
obtéined from large sample approximations, series expansions and
Pearsdn curve fits, and found that Pearson curves seemed to give
the most accurate critical values. |

The one kemaining\quesfion we will attempt to answer is:
“How good is the test based on the index of dispersion
relative to other tests of the null hypothesis that
the data is distributed as Poisson?"

Two well-known methods of testing the adequacy of the model
under the null are
(i) The Likelihood Ratio Test and
(i1) Pearsoﬁ‘s.Goodness-of—Fit (GOF). -

To assess the performance of the test based on the index of
dispersion, we can examine the power of these.three tests against
appropriate alternatives. In testing for over-dispersion, ecologists
have used the negative binomial (Fisher, 1941), Neymann's conta-
gious distribution Type A (Neymann, 1939) and Thomas' double
Poisson (Thomas, 1949) as alternatives to the Poisson distribu-
tion. P. Robinson (1954) has pointed out that the Neymann distri-
butidnvmay have several modes (leading to non-unique estimates

when estimating by maximum Tikelihood) and that a basic assumption
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of the double Poisson may not be satisfied by the distribution of
plant populations. The negative binomial distribution is perhaps
the most widely applied alternative to the Poisson. Letting the

parameters of the negative binomial be k and o (k>0,e>0), we may write:

X

f(x,k,8) = (k“'l) {1/(e+1)}k{e/(e+1)}x,
where x=0,1,2,... . Frdm this, we have that

ke and

E(X)

Var(X) = ke(1+) = E(X)(1+8) > E(X).

For alternatives involving under-dispersion, we can test the null against
the positive binomial (although it will be noted that the maximum
1ike1ihood‘estimator of n, the ﬁumber of Bernoulli trials, may not be

unique).

5.1 THE LIKELTHOOD RATIO TEST

Let n = (k,0) be a two-dimensional vector of parameters and let
f(x,g) be the probability mass function of the negative binomial. It
is shown in Appendix Al.4 that as k + = and ¢ + Q in such a way that
ke =, a constant, then the 1%miting distribution arrived at is the
Poisson with parameter A which has probability mass function f(x,\).
Let o, and © be the space of values that the parémeters A and n may
take on, respectively. The GQF problem then is to test -

Hy: n € 99 |

H12 n € 0-9j
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The 1ike1iﬁood ratio statistic for testing Hg against Hp is
A= sup L(x,n)/sup* L(x,n), |
where L{x,n) is the likelihood function for a sample Xl""’xn' Here,
"sup" indicates a supremum taken over ©p while "sup' " indicates a
supremum taken over 0. Note that this impiies that A<1.
In general, the distribution of the likelihood ratio statistic
is unknown. However, undpr regularity conditions (Kendall and Stuart
-(1958), vol. 1, pp. 230-231), as n + =, it is known that asymptotically

-2 InpA® x2
p-q

where p and q are the dimensionalities of the parameter spaces under
the alternative and the null, respectively.
We now compute the MLE'S of A,k and 9. The 1ikelihood functions

of the Poisson and negative binomial are respectively,

n
L{x,A) = 1 A e'A/XI'
i=1
x. =m, "’ '
= A" "e /1 xil , and
i=1
n [kx.-1 . X; k

L(x,k,8) = ™ Vo fes(140) TH1/(140)) . (5.1)

i=1\ x.

j :

Let To(x,x) and 1;(x,k,8) be the corresponding 1og-1ike1ihood
functions. Then
n

19(x,2) = x. InA -n) - X ln(xi!)' (5.2)
| | i=1



)

1,(x,k,8) "
1(x,k,0) ='£1 1n((k+xi-1)! / [xii (k=1):1} + x. 1ns
‘l:
- {x. + nk) In (148)
n _ : n
=% 1In {(k+xi'1): / (k=1)!} = £ 1n (x.')
i=1 i=1 1
o+ X, Tn e - (x.+nk) 1n (1+48).
But |
n
z 1n‘{(k+xi-l)l/(k-1)l}
i=1
=[x + £ 1 1n {(k+xi—1)!‘/ (k-1)'}.
{i:xi=0} {i:xi>0}
Since the summation over the zero values of X3 is zero,
n ‘ FI
z ]n{(‘k+xi-1)_'./(k-l)!} =3 'ln{(k+x1.-1)i/(k-1)1},'
i=1" i ‘

+ . . .
where £~ denotes a summation over i such that x.>0. This sum can be
i
written as,

X i
st tiin(k+3-1),
i 3=l
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and hence,

11(x,k.8) = x.1n6 = (x.+nk)In(1+e)+ £¥ &' Tn(k+j-1)
1 |

1 e B4
[y

J

nets

1n(xi!), - (5.3)

i=1

To obtain the MLE of A, (5.2) must be maximized with respect to A
while the MLE's of 8 and k are obtained by maximizing (5.3) with
respect to 8 and k s1mu1taneously Thus,

31, /% = (x./A) - n |

Setting this derivative to zero.and solving for A yields § , the

MLE of A as,’
x =X, | (5.4)
Similarly,
31,700 = (x./6) -{(x.+nk)/(1+8)}
31,70k = st z {1/(k+3 1)} -n 1n(1+e)

i j=1

Setting the derivatives to zero, the first equation can be
explicitly solved for 8 to yield
= X/k. ~ (5.5)
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4

Substituting this value into the second equation leads to

+
L
i

n o~ X

T /(k+3-1)1 - 0 Indl+(X/K) ) = 0. (5.6)
1 .

J
Levin and Reeds (1978) give a necessary and sufficient condition
for the uniqueness of the MLE of k. “This criterion can be stated as:
"k, the MLE of k, exists uniquely in [0,°) if and only if
n n n- ,
T X2 - zX.>(zx xi)z/"' : (5.7)
i=l v 4=l sl
The right-hand side of thié criterion is simply nX2, and so

(5.7) can be rewritten as

n _ n
r (X.-X)2>zX., or
j=1 ! i=1 !

(1/n).g (X.-X)2 > X.

1

n - n
Since §2 = {1/(n-1)} ¢ (Xi-X)2 > (1/n) 2_(XifX)2
i=1 ' i=1

n
provided that =

i=1 N
terion is that a unique k exists in [0,~) if the index of dispersion

(Xi-f()2 >0, a consequence of Levin and Reed's cri-

is greater than 1.

" Thus, subject to Levin and Reeds' criterion, the solution to
(5.6) can be obtained numerically. Once ﬁ, the MLE of k, is obtéined,
 substitution into (5.5) yields 8; the MLE of 8. (The case Qhere the cri-

terion is not satisfied corresponds to k=, and is discussed in more
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detail in section 5.4.)

Continuing with the 1ikelihood ratio test, we have

Tn A ]o(i, X) - L‘[(iaiaé)

" A~ . - N x' A
x.{(In k)-11 + (x.+nk)In{1+(3/k)} - = 2 1n (k+j-1).
o i j=1

This is the form of thev1ikelihood ratio test. The asymptotic result
is that as n » =

-2 1n A R g2,
1

5.2 PEARSON'S GOODNESS=OF-FIT TEST

A test that assesses goodness-of-fit is the well-known x2 test

that was proposed by Karl Pearson (1900). The GOF statistic is:

2 * - 2
X2 = 3% ("j AL) /xj,

j=0 J , -
where "j is the number of timés that the integer j is»qbserved in a
sample and'xj = nP{X=j) where X ~ P(1), is the expected number of times
the integer j will occur under the null.
The asymptotic result is that as n + =,
X2 % x5
where v is the number of cells. (Note that one degree of freedom is
Tost since the probabilities cbmputed uner the null are subject to the
constraint that they sum wup to 1. Also, in the simulation that follows,
the value of A is specified and hence no further degree of freedom is
Tost.)

This approximation has been known to work well particularly if the

expected number of observations, xj, in each cell is
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at least 5. Now, for sample sizes of abouf 10 to 20, this rule of
thumb may not always be satisfied. The rule that has been implemented
is that the expected number of observations in each cell is at least 3.

As will be seen, the x2 approximation was still satisfactory in this case.

5.3 POWER COMPUTATIONS

We now have three tests whose power we wish to compare. Since the
" index of dispersion and the test based on X2 do not depend on explicit
alternative hypotheses, we might expect the Tikelihood ratio test to be
superior of thé three. Because of computational difficulties that may
arise when using the'TikeTihood r;tio test (these are mentioned Tater on
in this section), it is not recommended for use in practice. We use it
here only to provide a baseline for the assessment of the power of the
test based on the index of dispeésibn. Since the index of dispersion is
devised to test for the variance being different from the mean, it will
be geared towards a1ternativevhypotheses which have this property and so
we might expect the index of dispersion to perform better than the test
based on X2. Note that while a one-sided test was imp1ementéd for the
test based on the index of dispersion (and necessarily for the likeli-
hood ratio test), the test based on X2 is necessarily two-sided. This
should be taken into consideration when éomparing the power of the tests.
Let us recall the hypotheses we are testing:

Hot XpaXpsotnX ~ P(a)

Hy: XI’XZ""’Xn ~ NB(k,8).
Through simulation studies, we are goingAto compare the power of the -
three tests. However, as the nu]T hypothesis does not specify a par-

ticular value of A, it is not clear how to choose k and 8 for the
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simu]ation.‘ To do this, we argue as follows:
‘Since the Poisson distribution with parameter A is a limiting case of
fhe negative binomial with parameters k and 6, we can specify A and
choose k and 6 so that k8 = A. Now we also want to choose k so that
the tests exhibit reasonable power. .For instance, we do not wish to
generate data that yields power that is very close to 1. We would like
to choose values of k so that the range of the power covers the unit
interval [0,11. |

To get a good idea of what k should roughly be, we can examine
the asymptotic power of thé index of dispersion test. To do this, we
need the first four moments of the negative binomial which can be
found in Kendall and Stuart (1958, vol. 1, p. 131). Letting v, v,,vs,

and v, denote the central moments of the negative binomial, we have

v = ke,

vp = ko (e+l),

vy = ka(e+1)(20+1), and

vy, = ke (6+1)(1+68+562+3ke+3ke2),

Substituting these moments into equation (2.6) in Chapter 2, we

have that
I = N(148 , (1/n)v2)

where v2 = 2(1+6)%2 + (1+8)(2+30)/k. Notice that by 'setting k=1/e’and

letting 6 -+ 0, we obtain the aysmptotic null distribution of the
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index of dispersion for the Poisson case, namely
I = N(1,2/n),
This result was seen in Chapter 2 where the performance of the
asymptotic normal critical values was assessed. Hence the asypmtoticv

power of I can be computed from the set of hypotheses:

H:@®9 =20
0
HI:B =91>0_
Let u{e) = 1+8 and o2(8) = ii/n)vz, where v2 is defined as above.

If we let I 1+€1/(?7E), where Z. is the upper critical value
of the standard normal distribution at significance level a, then
the asymptotic power of I is

Power =/¢(-wa), where w_ =3{Iaru(61)}//57T§;7.

The asymptotic power of I is presented in table 8 for the case

n =20 and a = 0.05.

Table 8: ASYMPTOTIC POWER OF THE INDEX OF DISPERSION TEST
(n = 20, « = 0.05)

| K
A =ke 3 5 7. 10 SIZE
1 .352 224 166 125 .05

3 w739 .560 425 .309 .05

5.  .873  .752 663 .484 .05
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Thus, the Qalues of k = 3,5,7 and 10 sggm to be adequate. Notice
the pattern in this table. The power decreases with increasing k and
decreasing 8. This 1is not surprising because as k-increases and @
decreases, the negative binomial approaches the Poisson, and
hence it would be much harder to detect dffferences between the null

and the alternative with k Targe and o small.

We now proceed with the Monte Carlo simulation. A total of 500
samples of n = 10, 20 and 50 negative binomial random variables were
generated for k = 3, 5, 7 and 10. The three statistics , —2 Tna, I
and X2 were computed using the negative binomial data. While the
computation of I and X2 are very easy on the computer, some
problems may occur in computing the likelihood ratio statistic, as
mentiong@ previously. First, the computation of the double .sum in
(5.6) at each jteration will incréase the cost of running the computer
program. This will be more evident for large n and/or large A.
Second, for some of the samples, a negative value of k was obtained
at some point in the jteration péocess. This may create a prob1em
in tomputing Tn {1+(X/k)} in (5.6). Barrihg all ' difficulties however,

- the Newton-Raphson Algorithm achieved convergence in about 5 or 6

iterations.

Continuing with the simulation, an attempt is made to treat each
test as equal as possible by using x2 critical values in each case.
However, a problem may still occur in the power comparison. Since all
these tests are based on asymptotic critical values, the asymptotic

approximations may not treat each of the three tests exactly the same.
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For example, for a given sample size, it may be that X2 is befter
approximated by xZ than I, which in-turn may be better approximated by
x2 than -21n A. This may make the conclusions on the power comparison
unreliable.

Proceeding with the power computations, the number of statistics
which fell in the rejection region were counted for each of the three
tests (Recall that a one-sided rejection region was formed for the
" tests based on A and I while a two-sided rejection region is necessary

for Xz).

The power of each test is displayed in tables 9-10 (A-D).

Each cell in this table contains the power of the 1ikelihood ratio

test, the index of dispersion test and the GOF test, jn that
order. To provide a handle on the accuracy of the x2
approximation for each of the three tests, the estimated size
of each test is also displayed in each tablg. If the approx-
imation were good for a particular test, then the estimated size
of that test should be close to the specified significance level.
As mentioned above, the x? approximation may not treat these
three tesfs equally. This in fact is the case when n = 10. The
critical values for the 1ikelihood ratio test are too conservative
as can be seen from the estimated size of the test. For examb]e,r
when o = 0.05, thé estimated size of the 1ikelihood ratio test is
slightly less than 0.01. On the other hand, the estimated size
of the test based on_X2 is very close to the true signifiéance
level for all a, while the test based on the index of dispersion

tends to be intermediate. Thus we could infer that if exact
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POWER OF TFSTS BASEN ON A,I AND X2 (n=10)
Table 9A: a = 0.01

K

A=ko 3 5 7 10 ST7E

.028 .016 .012 .008 0
1 .068 .044 032 028 .008
.010 .008  .006 .006 .008

.148 .058 026 018 0
3 252 .138 .086 056 .002
-156 .096 .086 072 .010
.356 .148 . 086 .042 .002
5 478 .276 .180 114 .004
1290 1192 1128 102, 024

Table 9B: « = 0.05
K

A=ke 3 5 7 10 SIZE
.064 .048 .038 .032 .008
1 162 114 1092 074 034
.062 068 -060 -054 .055

.270 146 .098 .058 0
3 -444 272 224 ‘152 .038
.242 .174 .136 112 .050
.486 .286 .182 122 ,006
5 648 464 1332 .252 .036

.388 -~ .268  .208 .166 .068
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Table 9C: o = 0.10.

k

A=k9 2 5 7 10 SIZF
_ .118 .066 . .052 .048 .020

1 222 .174 .130 .110 .046
.086 096  .092 .088 .094

- .344 .198 .150 .098 .012
3 .566 .384 .310 242 .070
,272 .204 .156 .136 .090

.570 .752 .250 .178 .006

5 .752 .588  .448 .342 .082
.516 .384 .312 .264 .136

Table 9N: « = 0.20
| k

A=ko 3 5 7 10 SIZE
.166 . .108 .086 .072  .036

1 .366 .294 .256 .236 .124
.224 .206 .200 .196 .182

.452 .286 .232 .178 .040

3 .688 .546 .466 .398 - .158
.424 .332 .266 .244 .184

.656 .470 .356 .258 .040

5 .848 .718 .618 .504 .160

.582 .456 .382 .326 - .216
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POWER OF TESTS'BASED 0N A, AND ¥2 (n=20)
Table 10A: o = 0.01 -

k
A=k8 3 5 7 10 SIZE
.044 .016 .012 .010 0
1 .102 .050  .034 .024 .010
.048 .038 .030 ©.030 .016
.314 142 .076 .034 .002
3 .450 .228 ,150 .098 .012
.266 136 .096 .062 .024
©.664 .334 .190 112 0
5 770 472 312 1190 .008
.558 296 .202 .140 .022
Table 102: o = 0.05
k
A=ko 3 5 7 10 SIZE
.104 .050 .042 .032 .010
1 214 .140 .100 .082 .046
.078 .056 .052 .050 .040
502 - .258 .164 .104 .012
3 666 416 .298 218 .032
.410 .266 .206 .156 .056
.804 534 .342 .208 .008
5 .898 .706 526 .366 .042

.686 .408 .314 .224 .074
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Table 10C: o = 0.10

k

A=ke 3 5 7 10 STZE

172 104 076 .054 .020

1 .316 .228 174 .148 .086

.148 .128 .110 .104 .098

.594 .336 232 .158 .020

3 .780 .544 .420 .320 .086

.498 .328 268 - .210 .110

.872 .620 452 .290 .020

5 .936 .796 .650 .436 .086

’ .760 514 .408 .298 112
Table 10D: zq = 0.20

| K

A=k 3 5 7 10 SIZE

.246 .164 .124 .104 .054

1 .492 .388 .328 272 172

.226 .202 .174 .174 .166

.704 460 .326 .246 .032

3 .882 714 .604 476 .196

.614 462 .382 .308 .194

.916 .746 578 - .396 .046

5 .966 .886 .792 .662 .182

- .834 .652 .542 .422 .220
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critical values were employed, the power of the 1ikelihood

ratio test would be considerably Targer than indicated in the tables.
Similarly, the critical values for the index of dispersion test are

- s1ightly conservative and hence we would expect the power of this

test to increase if exact critical values were used. The power of

the test based on Xz,.however, would be pretty much what the tables

indicate.

Turning to n = 20, the same prob]gm still arises for the
likelihood ratio -- very conservative critical values. On the
other hand, while the asyﬁptotic critical va1ugs used for
the index of dispersion are still s1ight1y conservative, the
approximation has clearly imprdved and the estimated size of
the index of dispersion test is closer to the true significance
level. In fact, the estimated power of the index of dispersion

is close indeed to its asymptotic power.

Although it is not clear that the 1ikelihood ratio test is more
powerful than the test based on the index of dispersion, we can make

one additional observation if we compare tables with the same size

(for instance, the 20% table for the 1ikeljhood ratio and the 5% table
for the index of dispersion when n = 20), we see that in each cell,
the estimated powér of the 1ikelihood ratio test is indeed higher
than that of the index of dispersion - however, only marginally. This
is an indication of what we might expect to see if the sample size
were large enough so that the estimated size of the test is close tb

the true significance level.
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Thus, the results displayed in tables 9 and 10 seem to suggest the
following order in termSOf the power of each test.
Likelihood Ratio, Index of Dispersion and GOF based on X2.
A fufther attempt to compare the power of the likelihood ratio and
the index of dispersion, tests are displayed in table 11 (A-D) for a
sample size of n = 50. As before, we may 6ompare the 20% table for the
likelihood ratio with the 5% table for the index of dispersion to

conclude that the likelihood ratio test is only slightly more powerfuyl

than the test based on the index of dispersion.

5.4 THE LIKELIHOOD RATIO TEST REVISITED

At the time when this thesjs was first being written, no obvious
explanation could be made about the conservatism of the critical values
of the 1ikelihood ratio test. Subsequently, the explanation became
clear: For the situation under consideration, the null distribution of
—21n A does not converge to that of a xi;jbut rather to that of a mix-
ture of a xf and a zero random variable, each with probability 1/2.
This is an example of the general results of Chernoff (1954). The
reasoning goes as follows:

If'the MLE (5,@) for the negative binomial occurs at ﬁ=w, then Azl

and -21Tn A= 0. Levin and Reeds (1977) have established that this occurs
if and only if (n-l)S2 < nX. Thus, under the null hypothesis, we have
P((n-1)s% < o1}

P{n(SZ-X) - 52 s 0}

P(-21n A= 0)

PL/RE(SZ-2) = (X-2)1 - (1/7R)S% < 0)
P{/ﬁ[(Sz-i) - (%-2)1< 0}, for large n.

n
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POWER OF TESTS BASED ON A AND T (n=50)

Table 11A: o = 0.01

k
A=ke 3 5 7 10 SIZE
. .094 .034 .016 .010 .004
166 .068 .050 .032 012
3 744 376 - .172 .082 .002
.842 .510 .304 .152 .010
5 .984 .762 .500 .270 .002
.990 .844 636 - .400 .008
Table 118: « = 0.05
k
A =ke 3 5 7 10 SIZE
. 224 .098 .060 .034 .014
.354 .222 .156 .106 046 |
; .886 572 .374 .206 018
.936 .724 532 .354 .046
; .996 .890 .714 452 .014

.998 .950 .818 .622 .N40




Table 11C: o« = 0.10
x=ko 3 5 7 10 STZE
. .314 .178 .120 .080 .028
522 .318 .234 .178 .106
3 .922 .668 .482 .296 .032
.960 .810 .642 .484 .096
5 .998 .942 .778 .564 .034
.998 .978 ' .896 .722 .098 -
Table 11D: o = 90.20
A=ke 3 5 7 10 SIZE
) .430 .268 .198 .152 .066
.664 .484 .380 .308 .216
3 .950 .770 .600 422 .076
.984 .910 .784 .638 .192
. .998 .968 .876 .676 .070
1.000 .988 .956 .848 .188
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From sections 2.1 and 2.2, we have that
/R (%-2)
/n(S2-2)

4 N(Q,z),

where ¢ = .
B} A+ 22

- Letting f(x,y) = y-x so that f (X,S2) = $2-X = (S2-2) - (X-1),

we have, as a consequence of the delta méthod, that
/m(s2-2) - ()% N(0,202).
Thus for large n, we have that
P(-2 Tn A = 0) = 1/2;
i.e. =2 In A = 0 approximately half the time. Thus under the null, we

have the following result:

(5.8)

4 { O with probability 172 _
-2 In A — {

X2 with probability 1/2 '
As a supplement to (5.8), the first 500 Poisson samples from the 15,000
previously generated were again used in order to check if half of these
500 samples would give a value of -2 In A = 0. Table 12 displays the

number of samples out of. the ‘500 which led to -2 1n A = 0.

~Table 12: Number of Times (n-1)S2 < nX

n
) 10 20 50
1 367 337 304
3 340 317 302

5 338 307 293
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The fact that the entries in the table decrease as ngets large is
indeed encouraging and re-affirms our position that the null distri-
bution of -2 1nA converges to a mixture of distributions.

What effect then does (5.8) have on the power computations? In
the previous compﬁtations, we have been assuming that

a=P(-21nAz2 Ca),
where Ca is the upper critical value corfesponding to a xf’distribu-
tion. Letting Z be a standard normal random variable, we have instead
that
P{-2 Tn & 2 Ca}

R

(1/2)P1g2C_}+ (1/2)P(Z°C }
(1/2){1-P[22<Ca]}
1—@([6‘ ) ’

o

where Iy = 0 with probability 1 and ¢ is the standard normal CDF. But,-

2
o P(Z ZCa) |
1-P(-/C <7Z<+/C)
a a

2{1-¢>(/5a) .

and hence,
P(-2 Tn A 2 Cu) = a/2,
instead of the anticipated value of a.

Further simulations were not done és enough information can be
gathered from the previous results. In particular, using the correct
asymptotic critical values for the 1ikelihood ratio test, for each
fixed n, the previous results for a = 0.10 are the appropriate results
for o = 0.05 and the previous results for a = 0.20 are the appropriate

results for a = 0.10. These are displayed in Tables 13,14 and 15 (A-B).
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POWER OF TESTS BASED ON A,I AND X2 (n=10)
Table 13A: o = 0.05 |

K
A=ke 3 5 7 10 SIZE
.118 .066 052 .048 .020
1 1162 114 1092 074 .034
.062 -068 1060 -054 .056
.344 .198 .150 .098 .012
3 444 272 S224 1152 .038
| 242 174 136 112 -050
570 .752 .250 178 .006
5 648 464 1332 .252 1036
1388 1268 208 1166 . 068
Table 13B: a = 0.10
]

A=K 3 5 7 10 STZE
166 .108 .086 072 036
1 1222 174 1130 110 046
.086 -096 -092 1088 .094
452 286 232 178 .040
3 566 "384 1310 282 1070
272 1204 156 136 1090
656 .470 356 .258 .040
3 1752 588 448 342 .082
516 J384 1312 1264 136




Table 14A: o« = 0.05

POWER OF TESTS BASED ON A,I AND X2 (n=20)

71

A=ko 3 -5 7 10 SIZE
.172 .104 .076 .054 - .020
1 214 .140 .100 .082 .046
.078 .056 .052 - ,050 .040
.594 .336 .232 .158 .020
3 .666 416 .298 .218 .032
.410 .266 .206 .156 .056
.872 .620 452 .290 .020
5 .898 .706 .526 .366 042
.686 .408 .314 224 .074
Table 14B: o = 0,10
A=k8 3 5 7 10 SIZE
.246 .164 .124 .104 .054
1 .316 .228 174 .148 .086
.148 .128_ .110 .104 .008
704 .460 .326 ,246 .032
3 .780 .544 .420 .320 .086
.498 .328 .268 .210 .110
.916 .7458 .578 .306 .046 .
5 .936 .796 .650 .486 .086
.760 514 .408 .298 112
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POWER OF TESTS BASED ON A AND I (n=50)

Table 15A: o = 0.05

k
A=k 3 5 7 10 SIZE
. .314 .178 .120 .080 .028
- .354 222 .156 .106 .046
3 .922 .668 .482 .296 .032
.936 724 .532 .354 .046
; .998 .942 .778 . .564 .034
.998 .950 .818 .622 .040°
Table 158: o« = 0.10
k
A=ke 3 5 7 10 SIZE
1 .430 .268 .198 .152 .066
.522 .318 .234 .178 .106 -
3 .950 .770 .600 422 .076
.960 .810 .642 .484 .09
. .998 .968 .876 .676 .070

.998 .978 .896 P.722 .098
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The correction to the asymptotic null distribution of -2 1n A has
certainly created a better picture. The estimated size of the likeli-
hood ratio test is closer to the nominal significance level than it was
when the xf approximation was employed. However, the critical values
for the likelihood ratio test are still very conservati?e. Hence, the
power of-the 1ikelihood ratio test would be greater than that displayed
in these tables.

As before, we may compare tables with approximately the same
estiméted size. For example the power of the fest based on the index
of dispersion from Table 13A might be compared to the power of the
likelihood ratio test from Table 13B and similarly, Table 14A to 14B.
We see that for n=10 and 20, the likelihood ratio test is only margin-
~ally better than the test based on the index of dispersion. For the
case n=50, no reasonable comparison can be made, but we would expect the

same behavior from both tests.
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6. CONCLUSIONS

As mentioned in Chapter 1, the index of dispersion is a statis-
tic often used to detect departures from randomness. As the null dis-
tribution of the iﬁdex of dispersion is unknown, large sample approxi-
mations were used as a preliminary fit. The asymptotic nui] distribu-
tion of I was seen to be normal with mean 1 and variaﬁce 2/n. Asymp-
totic critical values from this distribution were then employed and
assessed by a Monte Carlo simulation. The results were that the nor-
mal approximation was very poor fér sample sizes typically encountered

in practice and that this approximation only becomes satisfactory for

a sample size'ofvabout 100 and A > 5. A further attempt to improve
the normal approximation was made by an infinite series expénsion of
of the true null distribution of I. We saw that a three-moment fit
from the Gram-Charlier expansion improved the.normal approximation
enormously, but that this approximation was only satisfactory for

n = 50.

The x2 approximation on the other hand seemed to be fairly accurate
for n>20 and A>3. This is certainly encouraging because of one important
reason -'fhe x2 approximation is simple to apply.

To further improve the x2 approximation (particularly for the cases
n<20 and "A<3), Pearson curves were utilized. We found that except for
the case n=10 and A=1, Pearson curves definitely improved the

approximation.
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Two issues still remain unanswered:
(i) wWhat should be done in the case n=10 and A=1?
(i1) How well will the approximétions remain when we
replace A by \=X?

For the second question, we.expect that the Pearson curve approxima-
tion will still perform well. As for the first question, let us
"keep in mind the suggestion put forth by Fisher (1950) and Cochran
(1936) -- that the test based on the index of dispersién should be
carried out conditionally, particq]ar1y when the Poisson parameter
A is small, for then exact frequencies can be computed.

Finally, the comparison of the powers of the tests based on the
l1ikelihood ratio, the index of dispersion and Pearson's X2 statdistic
showed that the test based on the index of dispersion exhibits reason-
ab]e power when the hypothesis of randomness is tested against over-
dispersion. This supplements the‘results obtained by Perry and
© Mead (1979).

From the basis of accurate critical values and reasonably high
power, we conclude that the indek of dispersion is highly recommend-

able for its use in applications.
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APPENDIX

Al.1 THE CONDITIONAL'DISTRIBUTiON OF A POISSON SAMPLE GIVEN THE TOTAL

Let Xl""’xn be independent identically distributed Poisson

random variables with parameter A. Then the sum of the Xi's
n
X. = I X. ,
i=1 !

is distributed as Poisson with parameter ni.

Consider the joint distribution of X ..,Xn given the total

. 1’.
X.. Since
fypx.(x) = fy(x)/fy (x.)
noX, :
= (.HIA'1e'A/xi!)/{(ni)X'e-nA/(X-)l}
. .

. n
. (x.)(1/m*/ m Xt
. =1

the desired result follows,
i.e. (xl,...,anx.) ~ Multn(X.,I/n,lln,l/n,...1/n).

- The distribution of a vector of independent and identically
distributed Poisson random variables conditioned on the total is a
multinomial with parameter m = X. and equal cell probabilities 1/n.
This conditional distribution is independent of the Poisson parameter
A since X. is a sufficient statistic fora.

The moment generating funtion of the multinomial is
{pyexp(ty) + ... + pnexp(tn)}m.
In our case .this becomes

M(t) = {(1/n)lexp(t;) + ... + exp(tn)]}x’.
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Al.2 THE FIRST FOUR MOMENTS OF 1

From (3.5), we see that we require the evaluation for x.>0 of
E{(SZ/X)klx.=x.},
for k=1,2,3 and 4. Now for k=1 and x.>0, we have

. - . n -
(n-1)X-E{S2/X|X.=x.} = E{ (Xi-X)le;=x.}
i=1

. n -
= E{ £ X.2 - nX2|X.=x.}
=1 !

n
I E{X;2[X.=x.} - nX2
i=1

h{Var(XiIX.=x.) + EZ(Xi[X.=x.)}-nX2

n{x.(1/n)[1-(1/n)3+(x./n)2} - nX2
(n-1)X .

It follows that for x.>0, we have
E(S2/X | X.=x.} = 1. C(AL.3)

For k=2 and x.>0, we begin by noting that

L
(151 (xR
1:

]
nes

(X.-X) +1 1 (xi-X)Z(x.-i)Z.
i=1 ! e J

Upon ‘expanding these powers of (Xi-i) and evaluating the required
conditional expectations through the moment generating function of

(X[sXys e ,Xn)IX., we have, for x.>0, that
E{(SZ/WZBiX.=x.} = (n+1)/(n-1) - (2/n(n-1)}(1/X).  (A1.4)

It follows that for x.>0
Var(s2/X[X.) = {2/(n-1)}{1-(1/nX)}.
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Considerab]y.more algebraic effort is required in the cases

k = 3 and 4. For x.>0, we‘obtain

(n+1)(n+3)/(n-1)2 - 2{1/(n-1)2}
{E1+(13/n)3(1/%) + (2/n)01-(6/n)2(1/%2)}
(A1.5)

- E{(S2/X)3]X.=x.}

E{(S2/%)*]X.=x.} = (n+1)(n+3)(n+5)/(n-1)3 + {2/(n-1)3}~
{2n[1+(5/n)j[1-(17/n)J(1/X)
- (2/n2)(2n2+ 53n - 261)(1/X2)
- (4/n3)(n2-- 30n +90)(1/X3)}. (Al.6)
Equations (A1.3)-(Al1.6) agree with those provided by Haldane
(1937). Substitution of these conditional moments into (3.5) yields
exact expressions for the first four raw moments of I which are given
in (3.7). To obtain the central moments from these raw moments is a
matter of using the formulas given in Kendall and Stuart (1958, vol. 1,
p. 56). We should mention that the algebré involved in computing
these conditional expectation was checked by UBC's symbolic manipula-
tor, documented in "UBC REDUCE". Expansions of powers and the compu-
~ tation of the partial derivatives of the moment generating function

were all checked on the computer.

It remains to evaluate E+(1/XJ), for j = 1,2 and 3. Now,

EF(1/X) = nE*(1/X.)

n (1/k)e_eek/k! , where o=n).
k=1
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If we let
£6) = z (1/k)e~PoX/k!,
k=1 .
then
fF1(0) = -f(8) + £ e %K1/
, o k=1
or

F(e) + flo) = e®(ed-1)/8.
Since the so]utidﬁ to this differential equation is
fe) = e‘efgf{e‘-l)/t}dt,
it follows that
e (/%) = ne'efi'{(et-l)/t}dt.
Similarly,
EH(1/%2) = n2(e™1n os® et-1)/t1dt
e*s% (in t)0(et-1)/t1dty,

and .
EY(1/%3) = n30(1/2)e™® (1n 0)2 fz{(et-l)/t}dt
-e®moe fg (In t){(et—l)/t}df

+ (1/2)e™® fg (Tn t)2{(et-1)/t}dt 1.

None of the above integrals can be evaluated explicitly, and so
u2',uz' and uy' would either have to be approximated by numerical

integration or by an asymptotic expansion. We illustrate this by ex-

panding the integrals for large 6. Let

(1/n)ET(1/%) = £(0),
(1/n2)E¥(1/%2) = g(e) and :
(1/n3)EY (1/%3) = n{e).
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Under the transformation t=6x, we have

8 1 ,
fle) = e ® fo{(eex-l)/x}dx

- 1 - 1
e®1n x (eex-l)l0 -ed g (In x)8e®Xdx

- 1 -
-6e 9 fo 1n(1-z)ee(1 Z)dz, where z=1-x.

Now,
-1n(1-z) =z + z2/2 + 23/3 + ...,

and so
. 1 -6z
fle) = fo (z + 22/2 + 23/3 + ...)oe Y%dz.

~For 5 =1,2,3,..., let

1 -
Ij(e) fo zJee 8242
. j - 1
= -z ezl
0

We then have an expression for Ij in terms of Ik, k<j:

.1 Jo1 -
+J fon 1e ezdz.

Ij(e) - e ® (j/e)Ij_l(e), where Io(8) =1 - e .

For j21, fhis recursive formula yields
2(e)}
- -8 ctaVa"0 4rsfs 2 =0 /.
=-e - (j/8)e + {j(j41)/82}{-e +E(J-2)/eJIj_3(e)}

1,(e) = e+ (jre)-e® 4 [(5-1)/9315_

j‘./ej + O(e—e)
~ j!/ej
Therefore, '
£(6) ~ kgokt/e""l +0(1/8M2) as N e |

and the asymptotic expansion for E+(1/X) is

E'(1/%) ~ n(1/6 + 1/62 + 2/63 + ...).
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Notice that the first term approximation of E+(1/i) is n/e = 1/E(X),
which would be the naive appfoximation to this expectation.

The asymptotic expansions for g(6) and h(6) are obtained in a
similar fashion, except instead of expanding In(1-z), we would need to
expand {1n(1-z)32 and {In(1-z)}3 for g(6) and h(8) respectively. The

results are
EY(1/%2) ~ n2(1/62 + 3/63 + 11/6% + ...),

EY(1/X3) ~ n3(1/03 + 6/6% + 35/65 + ...).
Alternately, these same expansions could be obtained by repeated
applications of L'Hospital's rule. . _
Substituting these expansions intov(3.7) yields theAraw moments,

correct to 0(1/n"*):
]J1'~1a

' ~ 1+ (2/n) + (2/n2)L 1 - (1/2)] + (2/n3)L 1 - (INA) -
(1/22)1 + (2/n*)L 1 - (1/3) - (1/22) - (2/23)1,

ug' ~ U+ (6/n) + (2/n2)L 7 - (1/2)1 + (2/n3)[ 11 - (15/2)
- (3/32)1 + (2/0%)0 15 - (29/2) - (7/32) - (8/33)1,

uy' ~ 1+ (12/n) + (84/n2)0 14 + (1/AY1 + (4/n3)[ 37 - (9/2)
- (1A2)1 + (4/n%)0 72 - (115/7) - (68/32) - (6/33)] .

(A1.7)
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Proceeding in the same way as Hoel. {1943), we can also assess the
accuracy of the x2 approximation to the null distribution of I by
examining the ratio of the asymptotic moments of I with the moments
of [1/(n-1)]x;_1. The behavior of these_rétios as n and/or X increases,
will indicate when the x2 approximation is satisfactory. The first

four moments of a random variable distributed as-[l/(n-l)]xi_1 are:

1,

wl,' =

wp' = (n+l)/(n-1) ,

wy' = (n+1)(n+3)[(n-1)2 .

oy = (n+1)(n43)(n+5)/(n-1)3 ,

(see Mendenhall and Scheaffer, 1973, p.138). _
Notice that the moments of [1/(n-1)]x$'_1 approximate the moments of a
Multn(x.,l/n...,lln), correct to 0(1/n).

Let R, = ui'/wi', for i = 1,2,3 and 4 (note that R,=1 for all n
and*\). Using the asymptotic .expressions in (A1.7), these ratios are
computed for n = 10,20,50 and 100 and 3 = 1,3,5 and 8, and entered in
Table Al.

The asymptotic moments of the index of dispersion agree very
well with those df the X;-i distribution for n220 and 221, In fact,
this is also apparent for n210 and A2 5. As n and/or X increases,
RZ’R3’ and R4 all approach the limiting value 1.. This is indeed

encouraging and compliments the results obtained in section 2.5.
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TABLE Al: The Ratios of the Moments of I and Xi-l

(for each cell, the ratios RZ’R3 and R4 are entered in
that order)
A
n 1 3 5 8
0.9797 . 0.9937 0.9962 0.9977
10 0.9631 0.9887  0.9932 0.9957
0.9724 0.9921 - 0.99483 0.9962
0.9950 0.9984  0.9990  0.9994
20 0.9925 0.9976 0.9986 0.9991
1.0003 »1.0002 . 1.0001 1.0001
0.9992 0.9997 0.9998 0.9999
50 0.9991 0.9997 0.9998 0.9998
1.0009 1.0003 1.0002 1.0001
’ 0.9998 0.9999 0.99996 0.99998
100 0.9998 0.9999 0.99998 0.99998
1.0003 1.0001 1.00004

0.99996
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A1.3 THE TYPE VI PEARSON CURVE

We rewrite the differential equation given by (3.1) as
d{log f(x)}/dx = (x-a)/{by(x-A;)(x-As)}, (A1.8)

where A; and A, are the roots of the quadratic by + byx + byx2.
Kendall and Stuart (1958, vol. 1,p.149) give the formulas for a,bg,
by and b, as functiong of 81,B, and ﬁ2.~ When using these formulas,
one should keep in mind that the formulas were obtained assuming the
origin at the mean.

For the type VI case, both roots of the quadratic are real and
have the same sign. Without loss of generality, assume that A;>A;.
Then, by partial fractions, we can write

d{log f(x)}/dx = (1/b){Cy/{x-Ay) + Co/(x-Ay)},

where €y = (a'Al)/(AZ‘Al)_= (a-A;)/8,
C, = (Az-a)/(Ax-Ay) = (Az-a)/d and
§ = Ar-Ay. ’

For x>A,, we -can: integrate equation (A1.8) with respect to x to get
Tog f(x) = (Cy/by)Tog(x-Ay) + (C2/by)10g(x-A;) + C
where C is the arbitrary constant of integration.

Transforming back to the true origin, i.e. replacing x by x-1, yields

log f(x) = (Cy/by)log(x-a;) + (C2/by)Tog(x-a,) + C

- where a; = 1+A; and a; = 1+A;, and hence
| -, . Q2
f(x) = k(x-a;) (x-az) (A1.9)
where gy = -Cy/by, g = C2/b, and k is:a normalizing constant.

Since Ay > Ay (and hence a; > a;) and q; and g, are real

numbers, it follows that type VI Pearson curve defined in (Al1.9) is
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~a distribution defined on [a,,»). If we Tet y = x-a;, then

-q - q,
ky (y+a;-a,) =~ , for y>a

fy) -a,>0,

2 1

-q1 q2
ky (y-8) , since 6§ = A2 - A1 = a2 - a1.

Now let z = &/y so that dy/dz = -8/z2. Then

-4 q
f(y) = k(s/2) ((s/z)-81 |dy/dz|

q2-q1+1 q;-2 a2
ks z [(1-2)/z]

q1-Gp-2 a2
k'z (1-2) , for O<z<l.

This last form of the density of the beta distribution is what is

required when using the IMSL library to compute critical values.

Al.4 A LIMITING CASE OF THE NEGATIVE BINOMIAL

The negative binomial distribution with pafameters k and o
approaches different distributiors depending on the 1imiting operation.
In particuiar, let k + »« and 6 - 0 in such a way that ke = A, a constant.
If X ~ NB(k,0), then the moment generating function of X is
M () = tp/(1-aet ),

- where p = 1/(e+1) and q = o/(e+1). Hence,
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{01/(8+1)1/C1- (e /e +1) etk

M, (t)

L0k (k) I01- (07 (k) YeF 1 K

Tt/ (1-efy + kK

-yt (81.5)

But as k = =, the 1imit of the right-hand side of (Al.5) is

t
el(e -1)’ which is precisely the moment of generating function of

the Poisson distribution.
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INTERVAL
NAME

= 240000
*, 360000
*=,480000
* . 600000
*. 720000
* . 840000
* . 960000
*1.08000
*1.20000
*1.32000
*1.44000
*1.56000
*1.68000
*1.80000
*1.92000
=2.04000
=2, 16000
»2.28000
*2.40000
~2.52000,
*2.684000
*2.78000
*2.88000
*3.00000
=3.12000
*3.24000

FIG. A2 HISTOGRAM OF I (1000 samples, n = 10, A= 5)

SYMBOL COUNT MEAN ST.DEV.
X 1000 . -0.981 0.447 .
EACH SYMBOL REPRESENTS 1 OBSERVATIONS
S 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
T T S e L LT T S e T e et 4
+HXXXXXXXXXXXXXX

FXXXXXXXXXXXXXXXXXXXXKXXXX XXX XX XXX XXX

FXXXXXXXXXXXXXXXXXXXXKXXXX XXX XX KXXXXKXX XXX XXXXXXXXXXXXXX XK XXX XX XX

FXXXXXXXXXXXXXXXXXXKXXX XXX XXX KKK XXX XX XXX LXK XK XXX XXX XXX XXX XXX XX XXX XXX XK XX KX X*

FXXXXXKXXXXXXXXXXXRXX XXX XXXXXKX XXX EXKXKXXKX KX R KKK KX XXX XX KKK XX XXX XXX XXX XXX XK XXX KKK *

FXXXXXXHXXXXXXXXXXXXAX KKK XXXKXLXLXKXXXXXXXXXK KKK XX XXXK XXX XXX XXXX XXX KX XX XXX XXX K *

FXXXXXXXXKXXEXXXXXXX XXX XXK XXX X XXX K XXXE XXX XXX XXX KXX XXX XX XXX XXXX XXX KK XXX XX XXX KX

FXXXXXXXXXXXXXXXXXXXKKXK XX XXX KKK XXXXX XXX KKK XXX XX KKK XXX XXXXXK XXX XXX XXX XX KX X *

FXXAXXXKXXXXXXXXXXXKX XXX XXXKXXXKXXXX KX XXX XXX KKK XXX KKK XXX XK KX XXX KX XXXXX XXX XK XXX XX XXX *

FXXXXKKXXXXXXXXXX XX XXX XXKXXKXKKXXX XXX XX XXX LKL XK XKXLXKKX XX XXX XXX XXX XXX XXX XXX KX *

FXXXXXEXXXXXXXXXXXXX KX XXX XXX XK XXX XXX XXXX XXX XX XXX XX )

FXXXXXXXXXXXXXXXXKXXXXKXXEKXXXXXXXKKXXXXXXXXX XX

FXXXXXXXXXXXXXXXXXXAXKXXXXXXXXXX

FXXXAXXXXXXXXXXXXXX XXX

+XXXXXXXX XXX

FXXXXXXXXXXXXX

FXXXXX

+XXXXXXXX

+XXXXX

+XXX

-+

-+

+XX

+X

+

-+

B E b et e S Y NS
5 10 15 20 25 30 35 40 45 S50 55 60 65 70 15 80

FREQUENCY
INT. CUM,
14 14
35 49
62 1114
101 212
84 306
116 422
103 525
103 628
96 724
83 807
51 858
43 901
31 932
20 952
11 963
13 976
5 881
8 989
5 994
3 997
O 997
O 997
2 999
1 1000
O 1000
O 1000

PERCENTAGE
INT. CuM,

1.4
4.9
11.1
21.2
" 30.6
42.2
52.5
62.8
72.4
.80.7
85.8
90. 1
93.2
95.2
96.3
97.6
98,1
98.9
89.4
1 99.7
99.7
99.7
99.9
100.0
100.0
100.0

- ol i
OCO=“NOOWUNUWADAWLWAWWN S aNUlb

OO0OO00000000+=«NWHUITROOO«WONW =
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IN
NA

* % % % B

=
E 3
*1
b |

=1

*1.

.1
=1
.1
*q
*q
.1

*2

*2.

*2

*2.
*2.

*2

*2.

*2

*2.

TERVAL
ME

. 300000
. 400000
. 500000
. 600000
. 700000
. 800000
.800000

.00000
. 10000
.20000
30000
.40000
. 50000
. 60000
. 70000
. 80000
.90000
.00000
10000
. 20000
30000
40000
.50000
60000
. 70000
80000

FIG. A3 YISTOGRAM OF I (1000 samples, n = 20, A = 3)

SYMBOL COUNT MEAN ST.DEV.
X 1000 0.998 0.330
EACH SYMBOL REPRESENTS 1 OBSERVATIONS
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
B b R e et R b 2 et T R N et 4
+
FXXXXXXXXXXX

FXXXXXXKRXXXXXAXXXXXXXXXXXX
EXXXXXXXXXXXXXXXXXXXXXXXAXXXXLXXXKXXXXXEXKKXXX XXX XXX XX XXX
HFXXXXAXXRXXAXXXXXXXXXRXXXXXXXKXXXXXX XXX XK XXX KXXXAXRKXXXKXXX XXX KX XAXR XXX XXX XXX XXX *
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FXXXXXXXXXXKXKXXXXXXXXXXXXX XXX XK XX XXXXXX XXX XXX XXXXXX XXX XXX XX XXXXXKX XXX XXX XXX *
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FXXXXXXXXXXXXXXXXXXXXXXXXXXKXXX XXX XXX X XXX XXXKXXXXXXXXXX
FXXXXXXXXXXAXXKXXXXXXXXXXXXXXEKLXXXXXLXXXXXALXXXXXXXXXXXX XXX

FXXXXXXXXXXXXXXXXXXXXXXX

FXXXXXXXXXXX

FXXXXXXXXXXX

+FXXXX

+XXX

+XXXX

+XXX

FREQUENCY
INT. CuM.
o o
1" 1
24 35
64 99
81 190
103 293
114 407
142 549
99 648
98 746
84 830
53 883
55 938
23 961
11 972
11 983
4 987
3 990
4 994
3 997
0 997
2 999
o 999
1 1000
0 1000
0 1000

PERCENTAGE
INT. CUM,

0.
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FIG. A5 HISTOGRAM OF I (1000 samples, n = 50, A = 3)

SYMBOL COUNT ) MEAN ST.DEV.

X . 1000 - 1.003 0.204

EACH SYMBOL REPRESENTS 1 OBSERVATIONS
INTERVAL ’ * FREQUENCY PERCENTAGE
NAME S 10 15 20 25 30 35 40 45 50 55 60 65 - 70 75 80 INT. CUM. INT, CUM,

Lt L Rt T S e S T T T bt L e e s it ettt 4

*.550000 +XXXX ’ : ) 4 4 0.4
* . 600000 +XXXXXX [ 10 1.0
*, 850000 +XXXXXXXXXXXXXXX 15 25 2.5
* ., 700000 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX ) 35 60 6.0
*, 750000 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX ) 35 95 . 9.5
* . 800000 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXHXXXXXXXXXXXXXXXXX 48 143 14.3
* ., 850000 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 67 210 21.0

*.800000 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX* 109 319
*.950000 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXX KX XXX XXX XXX XXX XXXXXXXXXXX XXX XXX XXX XXXXXXXXXXX* 113 432
*1.00000 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXKXXXXXXXXXXXXXXXXXXXXXXXXKXXXXXXXXXKXXXXXXXXXXXXXXXXXX* 105 537
*1.05000 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX* S84 631

i Py

000000+ NNANNNOO+0ONLWW <00

*1.10000 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXKXXXXXX XXX XXX XX XXXXXXXXXX XXX X XXX XXX XXX XXXXX 77 708 . . 70.8
*1.15000 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXKXXXXXXXXXXXXXXXX XX XXX XXXXXXXXXXXXX 75 783
*1.20000 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXRX XX XXX X XXX X XXX XXXXX 67 850 85.0

*1,25000 +XXXXXXXXXXXXXXXXXXXAXXXXXXXXXXXXXXXXXXXXXX 42
*1.30000 +XXXXXXXXXXXXXXXXXXXXXXXXXXXX 28
*1.35000 +XXXXXXXXXXXXXXXXXXXXXXX 23
*1,40000 +XXXXXXXXXXXXXXXX 16
*1.45000 +XXXXXXXXXXXXX ‘ 13 972
*4.50000 +xxxxxxxxxx 10
*1.55000 ,+XXXX 4
*1.60000 "+XXXX 4
*1.65000 +XXXX 4
*1.70000 +XX 2
={.75000 +XXX 3
=1 .80000 +X - . 1
L bRl R bt T R e it e it b R T e O D Rt

S 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

CWNABRROWAWRON NN IERNWDO~N®U LU S
o :
®
w

v6



INTERVAL
NAME

. 480000
. 540000
. 600000
. 660000
. 720000
. 780000
. 840000
. 900000
960000
*1.02000
*1.08000
*1. 14000
*1.20000
*1.26000
*1.32000
*1.38000
*1.44000
*1.50000
*1.56000
*1.62000
*1.68000
“1.74000
=1.80000
*1.86000
=1.92000
*1,98C00

LR I B R R

FIG. A6 HISTOGRAM OF I (1000 samples, n = 50, 3 = 5)

SYMBOL COUNT MEAN ST.DEV.

X 1000 1.001 0.203
EACH SYMBOL REPRESENTS 1 OBSERVATIONS

S i0 15 20 25 30 3s 40 45 50 55 60 65 70 75 80
R R s el R ek Rt R T e et EEL T DL L]
. ,
+XX
FXXXXXXXXXAAXXXX
FXXXXAXXXXXXXX XX
FXXXXXXXXXXXXXXXXLXXXXXX XXX XXX XXX X XXX
FXXXXXXXXXXRXXXXXXX XXX XXLLXXXXXX XXX XXXLXXXXXXXXXXX .
+xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxn
HXXXXAXAXXKXXXXXXXXXXXXXXXXXXXXX XXX XX XXX LXK XXX XXXX XXX XXX XXX XX XXXX XXX KKK XXX XXX X *
FXXXXXXXXXXKXLXXXXXXXXXXOCOEERXXXXXXXRXX XXX XLXLXXXXXXXXXXXXXXX XXX XXXXXXXEAXXXXXXXXX*
FXXAXXXXXXAXXXXXXXKXXXXHXXK XK XXX XXX XXX KX KXXXXXXXKXXXXX XX XXX XXX XXXXX XXX XXX XXX XXXXXX *
&xxxxxxxxxxxxxxxxxXXXxxxxxxxxXxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx-
FXXXXXXXXXXXXXXXXXXXXXXXXXEXK XXX XXX XX XXX XXX XXXXXAXXXXXXXX XXX XXXXXXXX
HXXXXXXXXXXXXXX XXX XXX KX KXKXXXXXKXXX XXX XHXKXXXXXXXXXXXX XX XHXXXX XXX XXX
HXXXXAXXLXXXXXXXXXXXXXXXXXXXXXXXXXXXXEXXXXXXXXXXXXXXXXXXXX
FAXXXXXXXRXXXLXXXXXXEXXXXXXXXXLXXXXX XXX XXX
FXXXXXXXXXXXXXXXXXXXXXXXXX
FXXXAXXAXXXXXXXX XX
FXXXXXXXXXX
FXUAXXAXXX
+XXXX
+XXXX
+X
+
+X
+
+
L bk e N T B e e

5 10 15 20 25 30 3as 40 45 S0 S5 60 65 70 75 80

o

CO=“0-BARONUINONWO NN aNbUNO

Q0000000+ NWUANWNN~OUWw+0

FREQUENCY PERCENTAGE

CUM.

83.7

95.5

s8. »
99.0
99.4
99.8
99.9
89.9

100.0
100.0
100.0

56



FIG. A7 HISTOGRAM OF I (1000 samples, n = 100, 4 = 3)

SYMBOL COUNT MEAN ST.DEV,
X 1000 1.001 0.144
. EACH SYMBOL REPRESENTS 1 OBSERVATIONS
INTERVAL FREQUENCY PERCENTAGE
NAME S 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 INT. CUM. INT. CUM.
B N T T T T L ST TR e .
* 640000 +XXX . 3 3 0.3
* . 680000 +XX . 2 5 0.5
*,.720000 +XXXXXXXXX ] i4 . 1.4
*, 760000 +XXXXXXXXXXXXXXXXXXXX . . 20 34 3.4
* . BO0000 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXX X XXX 39 73 7.3
* . 840000 +XXXXXXUXXXXXXXXXXUXHXXXXX XXX XXX XXX XX XXX X XX XX XXX XXXXX XXX XX XXX 59 132 13.2
» . 890000 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 66 198 19.8

-

0000000 4=t WWNNOONOVOMANNWNOOO

*.920000 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXKXXXXXXXXXXXXXXXXXX* 105. 303
*.860000 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXKXXXXXX XXX XXX XXX XXXXXXXXXXXXXXXXXXX® 98 401
*1.00000 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXkaXXXXXXXXXXXXXXXXXXXXXXXXXX‘ 124 525
*1.04000 . +XXXXXXXXXXXXXXXXXXXXXXXXXRXXXXXXX XXX XX XXXXXXXXXXXXXXXXXXX XX XXX XXX XXXXXXXXXXXXXXXX* 108 633
*1.08000 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXAXXXXXXXXXXXXXXXXXXXXXXXXXXXXX* 85 718

PO

o-OOuumnuwwwmmmm»mmmwmowbu
[+ ]
et
N

*1.12000 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXHXXXXXKXXXXXXXXXXXXXXXXXXXXXXX X XXX XXX XX KX 79 797
*1.16000 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXX XXX XXX XXX XXX XXX XXXXXXX XXX 75 872.

*1.20000 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 39 9114 91.1
*1.24000 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX ; ‘33 944 94.4
*1.28000 +XXXXXXXXXXXXXXXXXXX : 19 963 . 96.3
*1.32000 +XXXXXXXXXXXXX _ ' 13 976 97.6
*1,36000 +XXXXXXXXXXXX v 12 988 88.8
*1.40000 +XXXXXX - 6 994 99.4
*1.44000 +XX - 2 996 99.6
*1.48000 "+XXX . 3 999 99.2
*1.52000 + O 993 89.9
*1.56000 + 0 999 99.9
*1.60000 +X 1 1000 100.0
*1.64000 + : ' 0 1000 100.0

Rt R el il et el S R D Rt L R e ik TS

96



INTERVAL
NAME

. 500000
.550000
. 600000
.650000
. 700000
. 750000
.800000
. 850000
.900000
* . 950000
*1.00000
*1.05000
*1.10000
*1.15000
*1.20000
*1.25000
*1.30000
*1.35000
*1.40000
*1.45000
*1.50000
*1.55000
*1.60000
*1.65000
~1.70000
*1.75000

% & % % % B F BB

FIG. A8 HISTOGRAM OF I (1000 samples, n = 100, A = 5)

SYMBOL COUNT  MEAN ST.DEV.
X 1000 1.000 0.141
EACH SYMBOL REPRESENTS 1 OBSERVATIONS

S 10 15 20 25 30 35 40 45 SO 55 60 65 70 75 80 INT. CUM.
T T e S S S T T R e T TR e 3
+ k . o] o]
+ o] o]
+X ‘ 1 1
+X 1 2
+XXXXXXXX : 8 10
FXXXXXXXXXXXXXXXX 16 26
FXXXXXXXXXXXXXXXXXXXXXXKXXXXXXXXXXKK XXX XXX . 42 68
FXXXXXXXXXXXKXXXXXXXXXKXHXXKXXXXXK XX XXX KX XXX XXXXKXKXXX XXX KX XXX KKK XX XX XXX XX 75 143
FXXXXXXXXXXXXXXXXXXXXXKXXXXKXLXXXXXKXXX XXX XXX XXXXXXK XX XXX KXXX XK XXX XXX XXXXXXXXXXXX* 107 ~ 250

FXXXXXXXARXXXXXXXXARXXXXXXXXXHXXA XXX XXX XXX XXXXXXKXXXRXX XX XXX XXX XXXXRXXXXXXXXXX* 128 379
EXXXXKXXKXXXAX XXX XXKXXKXXXEKXXXXXXXXKXXXX XXX KXXXX XK X XXX KX XXX XXX XXX XX XXXXXAXXXXAXX* 152 531

FXXXXXXXXXXKXX XXX X XXX XXX XXX XXX XX XXX XXX XXXKXKXXXXXXXXX XXX XXX XXX XXXXEXXKXXXXXXXXX* 118 649
FXXXXXXXXXXXXXXXXXXXXXXXXXKXXXXXKX KX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXXXXAXKXXXX* 123 772
AXXXXXXXXXXXXXXXXXXXXXXXXXXX XXX XXXXX XXX XXX XXX X XXXAX XX XXX HXX XXX KX XXXXXXXXXXXXXXXX* B2 854
HXXXKXXXXXXXXXXXXXXXXXXXXXXXXXXXXKXXXXXXXXXXXXXXXXXX XXX XXXXX s 911
FXXXXXXXXXXXXXXXXXXXXKX XXX XXX XXX KKK XXXXXXXXXXXXXX ‘ 48 959
FXXXXXXXXXXXXXXXXX : 17 976
FXXXXKXXXXXXXXXXXX 16 992
+XXXX 4 996
+X ‘ 1 997
+XX : ) 2 999
+ . 0 999
+X . : ’ 1 1000
+ 0 1000
+ : 0 1000
+ 0 1000
R e it it et Stk R A et R N R P P P s

S 10 15 20 25 | 30 35 40 45 50 S5 60 €S 70 75 80

[ QS G Y

CO00Q0000QO0+2bUIONAUINONBLO00000

INT.

OO0 =ON BRI NN AN WONOAUNND = 20O

FREQUENCY PERCENTAGE

CUM,

WOAOAON-00

-

©
-
-

-
C)8(ouxm(o«>m(o VN WN
QOVWOOVWWONUI-UIN & WO
QOOWONANPOAOVBNO 0O

100.0
100.0
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FIG. A.12: NORMAL PROBABILITY PLOT FOR I
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FIG. A.14: NORMAL PROBABILITY PLOT FOR I

(1C0C Samples, n = 50, A = 5)
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FIG. A.15: NCRMAL PROEABILITY PLOT FOR
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NCRMAL PROBABILITY PLOT FOR I
(10CC samples, n = 1¢0, A = 5)
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A2.2 EMPIRICAL CRITICAL VALUES
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;3. PEARSON CURVE CRITICAL VALUES
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TABLE A4: PEARSON CURVE CRITICAL VALUES (ASYMPTOTIC)

o

n X .005 .025 .05 .10 .90 .95 .975 995
1 .2169 . 3477 .4216 .5140 1.4443 1.8188 2.0673 2.6¢656
10 3 .1898 .3099 .3832 .4786 1.6108 1.8601 2.0998 2.6431
5 .1928 . 3070 . 3775 .4720 1.6196 1.8692 2.1060 2.6340
8 .1972 . 3046 .3759 .4687 1.6259 1.8726 2,1084 2.6275
1 .3953 35038 .5642 -.6388 1.4114 1.5753 1.7342 2.0988
20 3  .3674 .4789 .5424 .6219 1.4244 1.5828 1.7315 2.0573
5 . 3642 .4747 .5382 .6184 1.4271 1,5845 1.7307 2.0472
8 .3630 .4728 .5366 .6163 1.4297 1.5848 1.7299 2.0398
1 .5786 .6612 . 7062 .7608 1.2621 1.3560 1.4436 - 1.6341
50 3 5627 .6494 .6971 :7548 . 1.2649 1.3545 - 1.4370 1.60938
5 .5599 .6473 .6951 '.7534 1.2650 1.3545  1.4353  1.6044
8 .5587 .6463 .6945 . 7525 1.2653 1.3539 1.4346 1.6014
1 .6856 .7503 .7852 .8270 1.1852 1.2474 1.3042 1.4239
100 3 .6763 . 7440 .7804 .8240 1.1863 1.2459 1.2994 1.4110
5 .6744 . 7429 . 7796 .8233 1.1860 1.2455 1.2987 1.4085

8 6733 +7420 «7794 +8234 1-1862 1-2447 1-4069

1-2981
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TABLE A5:

GRAM-CHARLIER CRITICAL VALUES (THREE EXACT MOMENTS)
Q .

nooa .005 .025 .05 .10 .90 .95 .975 .995
1 .2291 .3078 .3750 L4711 1.6649 1.9223 2.1094 2.4263

10 3 .1618 .2581 .3357 .4433 1.6708 1.9292 2.1257 2.4618
5 .1489 .2489 .3286 .4384 1.6720 1.9300 2.1279 2.4673

8 .1418 .2438 .3247 .4357 1.6727 1.9304 2.1291 2.4703

1 4127 .4855 .5419 .6184 1.4492 1.6200 1.7537 1.9847

20 3 .3713 .4601 .5238 .6076 1.4459 1.6095 1.7437 1.9812
5 .3626 .4550 .5202 .6055 1.4454 1.6075 1.7415 1.9800

8 . .3577 .4521 .5182 .6044 1.4452 1.6064 1.7402 1.9793

1 .5913 .6557 - .6989 .7542 1.2722 1.3683 1.4496 1.5974

50 3 .5694 .6446 L6917 .7505 1.2700 1.3616 1.4407 1.5884
5 .5647 .6423 .6903 .7498 1.2696 1.3603 1.7415 1.9800

8 .5621 L6411 .6894 .7494 1.2694 1.3595 1.4379 1.5852

1 - .6924 .7482 .7822 .8243 1.1887 1.2517 1.3065 1.4097

100 3 .6799 .7423 .7786 .8226 1.1875 1.2480 1.3010 1.4030
5 .6773 L7411 - .7778 .8223 1.1873 1.2473 1.3000 1.4015

8 .6758 .7404 7774 .8221 1.1872 1.2469 1.2994 1.4007

- SANTVA TVITLIYD YITTYVHI-WYYI b°2Y
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TABLE A6: GRAM-CHARLIER CRITICAL VALUES (THREE ASYMPTOTIC MOMENTS)

n A .005 .025 .05 .10 .90 .95 .975 | .925
1 . 2406 .3131 .3770 .4698 1.6848 1.9478 2.1346 2.4506

10 3 . 1940 .2855 .3598 .4630 1.6496 1.9001 2.0898 2.413¢9
5 . 1828 .2792 . 3558 .4615 1.6433 1.8901 2.0799 2.4054
8 L]

1761 .2756 . 3537 .4606 1.6399 1.8845 2.0741 2.4005

4172 .4876 . 5429 .6186 1.4524 1.6252 1.7583 = 1.9%01

1 .
20 3 . 3830 .4698 .5322 .6144 1.4387 1.5999 1.7318 1.9653
5 . 3751 .4658 .5299 .6135 1.4362 1.5948 1.7260 1.9597
8 . 3705 .4635 .5285 .6130 1.4349 1.5920 1,.7227 1.9565
: 1 . 5924 .6562 T 16991 .7542 1.2725 1.3690 1.4505 1.5983
50 3 . 5725 .6471 .6938 .7522 1.2683 1.3592 1.4379 1.5846
5 . 5681 .6451 .6927 .7518 1.2675 1.3573 1,4353 - 1.5816
8 . 5656 .6441 .6921 .7516 1.2670 1.3563 1.4338 1.5798
1 . 6928 .7483 . 7823 .8243 1.1888 1.2518 1.3067 1.4100
100 3 . 6810 .7432 .7793 .8232 1.1869 1.2472 1.3001 1.4017
5 . 6785 .7421 . 7787 .8230 . 1.1865 1.2463 1.2988 1.3999

8 .

6771 .7415 . 7784 .8229 1.1863 1.2458 1.2981 1.3989

011



TABLE A7: GRAM-CHARLIER CRITICAL VALUES (FOUR EXACT MOMENTS)

.10

o

n A .005 .025 .05 .90 .95 . .975 .995
1 .2233 13797 14598 .5573 1.4398 2.0509 2.2601 2.5756
10 3 .1123 .2918 .3868 .5010 1.5637 2.0050 2.2406 2.5873
' 5 L1017 .2764 .3728 .4896 1.5831 1.9941 2.2324 2.5850
8 . 0965 . .2681 .3651 .4832 1.5930 1.9881 2.2272 2.5829

1 .3518 .5031 .5733 ,}6553 1.3862 1.6631 1.8292 2.0707

20 3 .3266 . 4650 .5398 .6289 1.4162 1.6260 - 1.7896 2.0448
5 .3223 .4584 .5336. .6238 1.4208 1.6202 1.7809 2.0375
8 .3209 .4548 .5301 .6210 1.4232 1.6172 1.7759 2.0331
1 .5616 .6562 .7058 .7643 1.2592 1.3733 1.4709 1.6321

5 -3 .5502 .6439 .6951 .7561 1.2634 . 1.3630 1.4515  1.6110
5 .5481 .6415 .6930 .7545 1.2641 1.3613 1.4478 1.6061

8 .4823 .6138 .6919 .7536 1.2645 1.3604  1.4145 1.5670

_ 1 7 .6785 .7474 ..7843 .8280 1.1844 . 1.2524 1.3134 1.4252
100 3 .6715 L7414 .7796 .8246 1.1853 1.2482 1.3045 1.4123
' 5 .6701 .7405 .7787 .8240 1.1854 1.2474 1.3028 1.4095
8 .6693 .7398 L7781 .8236 1.1855 1.2470 1.3018 1.4079

111
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TABLE A8: GRAM-CHARLIER CRITICAL VALUES {FOUR ASYMPTOTIC MOMENTS)

¢

n_ .005‘ .025 .05 .10 .90 .95 .975 .995
1 .2461 .3181 .3815 . .4737 1.6798 1.9409  2.1263 2.4400
10 3 .1651 .2600 .3369 .4438. 1.6728 1.9323 2.1288 2.4644
.5 .1474 .2481 .3281 .4382 1.6712 1.9287 2.1266 2.4662
8 1371 .2412 .3231 .4350 1.6703 1.9264 2.1250 2.4668

1 .4181 .4884 .5436 .6191 1.4517 1.6243 -1.7582 1.9886
20 3 .3724 .4606 .5241 .6078 1.4463 1.6102 1.7445 1.9820
5 .3621 .4547 .5201 .6055 1.4453 1.6072 1.7411 1.9797
8 .3561 .4513" .5178 .6042 1.4448 1.6055 1.7391 1.9782

1 .5924 .6563 .6992 .7543 1.2725 1.3689 1.4504 1.5982

50 3 .5696 .6447 .6918 . 7506 1.2701 1.3617 1.4408 1.5886
5 .5646 .6423 .6902 .7498 1.2696 «  1.3602 1.4388 1.5863

8 .5618 .6409 .6894 .7494  1.2694 1.3594 1.4377 1.5850

1 .6928 . 7483 .7823 .8243 1.1888 1.2519 1.3067 1.4099

100. 3 .6799 .7423 . 7786 .8226 1.1875 1.2481 1.3011 1.4030
5 6772 L7411 .7778 .8223 1.1873 1.2473 1.3000 1.4015

8 .6757 .7404 .8221 1.1871 1.2469 1.2994 1.4006
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