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ABSTRACT

The cost minimization of a machining operation can be
described as a non-linear constrained optimization problem.
Geometric Programming (GP) 1is a relatively new technigue
well-suited to this class of problems. 1In this thesis, three GP
methods are described that are practical for real-time
microprocessor controllers; numerical examples are presented
based on three machining operations.

For high volume production, several machines can be
serially 1linked with buffers in between to form an Automatic
Transfer Line (ATL). The minimization of the combined costs is
'accomplished in a new way by modelling the cost of each machine
as a polynomial function of cycle time, the machining time per
workpiece. A neﬁ control strategy is deséribed that dynamically
re-assignsA the cycle times of working machines when others in
‘the ATL fail. To implement this strategy, a two level hierarchy
is proposed with a  1local controller associated with each
machine, and a single supervisory controller.

Simulation of soﬁe typical ATL configurations is used to
compare the performance of this strategy with the strategy of no
change in cycle time. For the cases studied, modest savings . in
cost and substantial savings in mean in-process buffer level are
obtained when the machines are arranged in the appropriate

order.
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'CHAPTER 1: Introduction

From humble beginnings in the 1%40's, programmable
automation has come to dominate modern manufacturing industries
[1]. The early Numerical Control (NC) machines used paper tape
programs and simple digital computers for precise automatic
positioning and cutting of metal workpieces. Modern NC systems
have dedicated or shared controliers that transform simple
operator statements in a command language into ‘'optimal'
trajectories for the cutting tool and workpiece.

For high volume production of relatively simple items,
several NC work stations (NC machine + controller) can be
sequentially linked with a workpiece handling system to form an
Automatic Transfer Line (ATL). Each work station typically
performs a different machining operation. In most cases,
‘in-process' buffers are added between stations for temporary
storage of partly finished workpieces. A typical three stage
ATL is sketched in Figure 1.1.

One important development in NC machine tool systems is
Adaptive Control (Acf [2 to 11]. As shown in Figure 1.2, AC
allow§ the control action to optimize some performance metric in
accordance with the monitoring of secondary variables such as
tool temperature. Note that there remains separate clo;ed loop
control action based on primary variables such as cutting speed.

There are three common forms of optimization: minimizing
cost per workpiece, maximizing the rate of cutting (metal

removal), or maximizing productivity, usually defined
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as the average number of workpieces produced per unit time. For

example, according to a recent survey [12] of NC systems,

"Productivity gains achieved by the use of

adaptive control vary from 20% to as high

as 100% for additional system costs of 5%

to 20%. This has come about from the ad-
vances in sensor reliability, the develop-
ments in control strategies, improved
reliability of hardware and software systems,
and the dramatic improvements in micro-
electronics and computer technology." [p.194]

It is well known that the production cost per workpiece
will change over time as the cutting tool becomes dull, and as
the workpiece characteristics vary. This has encouraged the
introduction of AC and the modelling of the machining process in
a mathematical form. 1In this thesis, we will concentrate on
cost minimization. For a single work station, this is called
the Machining Economics Problem (MEP), and belongs to the class
of constrained non-linear optimization problems. In Chapter 2,
a relatively new optimization technique called Geometric
Programming (GP) is described to solve the general MEP. Three
GP methods are discussed, and a numerical example is presented
for each one, based on MEP formulations for turning, drilling,
and milling operations.

In Chapter 3, the MEP is examined in a new way by modelling
cost as a function of cycle time, the machining time per
workpiece. This is an indirect relationship, since both cost
and cycle time are non-linear functions of the ~control

variables. Pairs of (cycle time,cost) 'points' are generated

from the MEP using GP and then a polynomial curve is fitted to



the data. Cost is then easily minimized by locating the minimum
of the curve. It is shown that the constraints in the MEP set a
lower limit on cycle time. As before, some numerical examples
are presented.

In Chapter 4, we proceed from optimizing 1isolated work
stations to optimizing a set of stations arranged as an ATL.
Because the stations are serially linked with buffers of finite
sizé, we must ensure that their cycle times are equal. 1If this
is not the case, a faster machine would eventually empty its
upstream buffer or overflow its downstream buffer and be forced
to shut down and wait. To obtain a single cycle time that
minimizes the total ATL cost, the cost versus cycle time curves
of the component stations are summed, and the minimum ‘of this
new curve is then found.

At this point, we begin to discuss machine failure. A new
optimization idea for an ATL is described based on the cost
modelling of Chapter 3. In the Dynamic Cycle Time (DCT)
strategy, the cycle times of working stations are dynamically
changed when other stations fail, so that contiguous sub-sets of
the ATL always operate to minimize cost. A two level control
hierarchy is proposed to accomodate this sophisticated on-line
optimization. 1In the Fixed Cycle Time (FCT) strategy, the cycle
times are not changed when stations fail.

Computer simulations of some typical two station ATL's
based on turning and drilling operations are used to compare
these two strategies. Performance is measured in terms of mean

cost/workpiece, mean in-process buffer 1level, and % machine



utilization.

In the first simulation, the stations are arranged Turning
-> Drilling, and in the second simulation, the order is
reversed. The results 1indicate that when the operations are
properly ordered, the DCT strategy leads to modest cost savings
and a substantial reduction in mean buffer level when compared
to the FCT strategy, for a slightly lower machine utilization.

In Chapter 5, some conclusions are presented along with
suggestions for future work.

There'are four appendices. In Appendix A, control details
are presented for turning, drilling, and milling operations.
Appendix B is a brief description of the computer program used
for the GP analysis and ATL simulation. Appendix C is a short
note on using simulation to model stochastic processes. 1In
Appendix D, an expression for the GP dual function is developed

for primal constraints of the form g>=1.



CHAPTER 2
PART 1: THE MACHINING ECONOMICS PROBLEM
AND GEOMETRIC PROGRAMMING

The Machining Economics Problem [13] can be described as
the minimization of a cost objective function subject to a set
of metal-cutting constraints. The cost function has two parts:
one is associated with the actual machining performed, and the
other with the wear and subsequent replacement of the cutting
tool. Typical constraints relate to machining power, final
surface finish of the workpiece, and absolute limits on the
control variables. The probleﬁ then is to find optimal wvalues
for the control variables (typically cutting speed, v, and
feedrate,f) that minimize cost and satisfy the constraints.
Mathematically, the MEP can be described as follows:

min (total) Cost = Machining cost(v,f) (2.1)
v, f + Tool change cost(v,f)
subject to
Cutting power(v,f) <= Kp
Surface finish(v,f) <= Kf
v <= vmax
f <= fmax

In general, the Machining cost, Tool change cost, Cutting
power, and Surface finish terms are all non-linear functions of
v and f. Thus, the MEP represents a non-linear optimization
problem with non-linear constraints.

Geometric Programming (GP) is a relatively new mathematical
technique well suited to this kind of problem. The first
~comprehensive text [14) appeared in 1967 and since then, the

original theory has been greatly extended for many applications

[15,16,17].



Before reviewing the relevant theory, 1t is worthwhile
placing GP in context. There are many different techniques
available for non-linear optimization problems, as shown in
Figure 2.1 [18].

With most 'indirect' methods, the Lagrangian L(x,}) is
formed to create an unconstrained problem. Then optimality
(Kuhn-Tucker) conditions are wused to obtain a set of
simultaneous equations in x and . At this point, 'primal'
methods focus on x, while 'dual' methods key on A.

'Direct' methods search for the solution in x space bounded
by the constraints. Convergence behavior depends upon the
stafting position and the techniques used to determine step size
and search direction at each iteration. 'First order' methods
work with a Taylor expansion of the objective function to first
order (Qradient) while 'second order' methods use a qQuadratic
expansion. In general, the second order methods will have
faster convergence since they are better at selecting the best
search direction, but they also require more computation.

As a rule, these direct and indirect methods are not
suitable for real-time microprocessor applications. Except for
very simple problems of low order, there 1is much computation
_required. In addition, these methods use complex algorithms and
often need heuristic information to improve performance.
Nonetheless, some researchers have tried standard non-linear
programming fechniques to sblve the MEP. For example, a
conjugate gradient method was described in [4] that required a

logarithmic transformation to linearize the constraints.
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Other authors wused the c¢lassical gradient approach [9], the
Golden Section search [2], variable transformation plus direct
search, and the penaity function method [5]. The intent was
off-line optimization, using mini or mainframe computer systems.
We will now proceed with a different approach that is much more
promising.

Geometric  Programming is a special kind of indirect
optimization procedure with both primal and dual formulations.
The following review is mainly drawn from [14] and [18]. To
introduce some GP terminology, consider the following
unconstrained optimization problem:

min go(x) = ul(x) + uz(x) + ..t um(x) (2.2)
where x is a control vector of dimension n.
The single terms {uii in the objective function are non-linear
functions of x ca;}eg 'mongmials', with the general form

a ai ay
i"‘ Cixl 2... Xn (2.3)

u
(Note that the 'k' in airepresents a superscript.) A sum of
monomials is called a 'posynomial', When the monomials are not
strictly additive, the name 'signomial' is used.

Primal methods use a procedure called 'condensation' to
approximate the posynomial g,(x) by a single monomial q)(x,ﬁ).
This allows us to linearize (2.2) by taking 1logarithms of all
terms and making the variable substitution z=1ln(x). At this
point, the new problem can be tackled by various linear
programming methods to solve for z. Finally, we use x = exp(z)

to obtain the desired answer.

The condensed monomial 1is defined by the original
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posynomial and a trial solution . It will be shown that

condensation is in fact a linear approximation transformation in

Z space.
A A 61 Gm
go(x,X) = go(x) u,(x) u (x) (2.4)
u, (%) up(X)
1 2 n
8. a¢ ac
= CoXy X ,eee Xp (2.5)

(where subscript ¢ denotes condensed.) It can be shown that the
condensed monomial serves as a lower bound on g,. When 2 = x*,
we have equality.

i.e. g, (x) >= go(x,g)

Now let gB= 1n go(x,ﬁ)

= 1n c .+ alln x, + ... + acln x, (2.6)

so that . 1

. . 1 n
min gy<=> min g, = aczl+ see * BcZ (+1nc.) (2.7)
Thus, (2.2) becomes the following linearized problem:

min g; (2.8)
z

Note that the solution of (2.2) using condensation is iterative.
A trial solution % defines go(x,ﬁ)‘ which allows (2.8) to be
solved for z and hence x. This x then serves as the X for the
next iteration. 1In many cases, x converges rapidly to x*

Dual methods use special optimality conditions that

relate the exponents of the monomials in (2.2) through a dual

‘ T
§ = [61 Sy onn sm]

(where T denotes transpose). Practically, 6; represents the

vector

relative weight of uj in the objective function g,. We require

that 6 >= 0. The new optimality conditions are as follows:



1"

Normality condition: § 48+ ... +8=1 (2.9)

m

Orthogonality conditions:

1 1 ’
+ ... + § = .
a s, a 8 =20 (2 10)_
n n
S+ ... + § =
al 1 amm 0
or more simply, AS§ =0 , where A is the nxm matrix of

monomial exponents.

There are n orthogonality conditions plus 1 normality
condition to yield (n+1) equationé in m unknowns. We define the
'degree of difficulty’

dod = m - (n+1) (2.11)
It should be clear that when dod=0, s* can be directly obtained
from (2.9) and (2.10). Clearly, we must still solve for x* once
§* is known. Dual methods also use the dual function

¥ (8) = (e /8) %1 (e /8) %n (2.12)
It can be shown that?t (§) serves as a lower bound on g, and in
most cases,

min go(x) <=> maxV (6)
X )

However, we will see later in this chapter that this
relationship does not always hold. At optimality, we must have

go(£5 = W(85
and this important fact can be used to obtain iffrom 6*using

u (£ =8t v (3) i=1,...,m (2.13)

Condensation can also be used to solve the dual problem and

establish the mapping between x and § i.e. between the primal
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and dual spaces. For problems with dod=0, (2.9) plus (2.10)
immediately yield the solution §*and we have
go(xS = ?(g)
For problems with dod+0, we can use (2.4) to replace g, by a
condensed objective function and obtain a new ‘'condensed'
problem with dod=0. Then we have the important relation
g,(0) >= g (x,5) =y (§) (2.14)
The idea is to use trial solutions { X } to obtain dual vectors
{ 51 and iterate to find x that minimizes g, - More will be
said of this in Part 1I of this Chapter.
Now let us 1look at constraints in Geometric Programming.
All the original GP developménts dealt with inequality
constraints of the form
g, =u; *+ ... tu <=1 (2.15)

k

where each term u, is a monomial in x. For the dual problem, we

i
associate 04.>=0 with uy to obtain a new normality condition:
01+ o e 0 +G = 1 ‘ (2.16)
k

Thus, 01 plays the same role in g1 as<5i in g,- We can also
associate a Lagrange multiplier X*; with g, such that

A, =0 -> constraint is slack

A1 > 0 -> constraint is tight

Now consider the following constrained problem

min g (x) = u; +...+ uy ' (2.17)
X subject to
= u +...+ u <= 1
g1 m+1 P

(Note that the monomials are numbered sequentially for later

notational convenience.) Define an extended dual vector
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where 6§;= 04 for i=m+1,...,p (2.18)
P P
Note that I8, =x-Lo,= A (2.19)
femt1t 1 g 1 1
We also have thatsi >=0 for i=m+1,...,p (since o, 1}y >=0).

We can now re-write the dual function as follows:

o s, P 8 A
¥(6) =T (c /)41 (cj/Gj) § oAl

i=1 j=m+1
_m s 5
= T (e /ey 1-? (eg M 1 8° (2.20)

The presence of the constraint in (2.17) also means that

there are additional elements in the exponent matrix:
- / \

/ N\ 1 1
A= [A(gy)f = a; -+ a_ (2.21)
a(g.) no n
Gy I S 0
1 ' 1
2+l ap
n n
§ &+l ) ap
As before, we have A & = 0. ‘ (2.22)

The problem degree of difficulty is now
dod = p - (n+1)
I1f dod=0, we can solve (2.17) directly using the orthogonality
conditions (2.22) and the normality condition (2.9).
Other problems occur with constraints of the form

g1 = U p * e tu g >= 1 (2.23)

We now expect 1A; <=0 so that

§, =0, N <=0 for i=m+1,...,p (2.24)

To ensure positivity of the dual vector, let

vy = =) and §, = o, V1 (2.25)

i i
It is shown in Appendix D that the dual function becomes
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vie) = B st e mi/epTy (2.26)
i= ‘

The dual gormulationj for primal problems with several
constraints can be easily obtained by generalizing this review.
Most research has focused on primal methods. Attempts to
develop generalized procedures for the dual problem have not met
with much success. This is unfortunate sincé the dual vector
offers special insight into the wunderlying structure of the
problem.
In the next part of this chapter, three dual methods will be pre-
sented using numerical examples of the Machining Economics Problem (MEP).
The examples are adapted from Appendix A, with the following changes in
notation:
X, € Vv x, ¢ f
gg ¢ Cost objective function
g, € Cutting power constraint
g, € Surface finish constraint

gq ¢ vmax constraint

g, * fmax constraint
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PART II: METHODS OF SOLUTION

Let us examine the objective function of (2.1) more closely,

using notation from [13].

where Cm = X Tm

Cr = (Tm / TXX Tr + Ct )
and Cm = Machining (cutting) cost (%)
Cr = Tool change cost (s)

X = Machine plus Operator overhead ($/min)

Tm = Machining time (min)

-3
"

Taylor tool life (min)

Tr

Tool change time (min)
Ct = Tool cost (§)

The ratio Tm/T represents the proportion of Tool change cost
assigned to each workpiece. The expressions for T and Tm are
themselves functions of various cutting parameters. The
expression for Ct might be the cost of a new tool if the tool is
a throw-away type, or include the cost of re-sharpening for a
re-usable tool.

In most constrained optimization problems, the solution
lies on a boundary in x space. When there are many constraints,
we expect one to be tight and the rest to slack at the optimum.
The 'decomposition' method to be presented here is designed to
exploit this. The original problem P0 is Split into a set of

sub-problems each defined by the objective function plus one
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constraint. If a solution xI to sub-problem Pi exists and if it
does not violate the other constraints, we add it to the set of
. . i :
feasible solutions {x }. Once all sub-problems have been
* *
analyzed, we obtain g; and x wusing
* . i
go(x ) = min { g (x*) } (2.27)
i 0
To illustrate this method, consider the following MEP example

for a drilling operation:

-1 -1 8.8 3.9
PO: min g5 = 0.111 x %Q + 2.53E-9 X, x, (2.28)
X 1X, subject to
g, = 1.25E-5 x1£§8<= 1 g, = 13.3 x5 <=1
g3 = x1/88 <=1 9, = x2/0.30 <=1

In Figure 2-2, the problem in x space is sketched.

. 2
Let us examine sub-problem P more closely:

2
P 'y _1 -1 ?oB .9

t min gg= 0.111 x7hol 42,5389 208 o
subject to

gr= 13.3 x2<=1

The dual probiem has degree of difficulty zero (three eqguations

in three unknowns). Since g has just 1 term, we have
2

¢ =1 and 83 = As
61+ 62= 1 (2.30)
"61+ 3.9 S+ 63-‘- 0
with the following solution, corresponding to point B:

8
90

In this example, sub-problems P! and P® have no solutions;

0.898 s,

0.102 s, = 0.500 (2.31)
0.0935 x,

17.6 x,= 0.075

nou
nn
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Drilling Example of a MEP
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in each case, at least oné dual Qariable.is negative, The solution to
Pu corresponds to point A. Since there is only a feasible
point, the solution to Pq is just B.

The decomposition method can become very involved when
there are many constraints, when x is of large dimension, and
especially when the sub-problems { Pi } cannot. be easily solved.
However, it is simple and fast for problems of low order.

A second GP method uses condensation to approximate the
posynomial objective function by a monomial to reduce the
problem degree of difficulty to zero. The method of solution is
iterétive, and each solution 1is wused to re—calculéte the
condensed monomial to start the next iteration. The following
MEP example for a turning operation will be used to illustrate

this dual method.

.15

PO: min g, = 2.76 xllxzh-s 78E-5 x? x; (2.32)
p 4 subject to
g1 0.46 xlxg 76<-1

g2 71.4 %7 <=1
As stated, P 0 has dod=t1 and the dual problem cannot be solved
directly. To obtain a trial solution, we can assume that the
constraints are tight:

A

X1 = 55.7 . Xa2=0.014 (2.33)

Now condense the objective function, using (2.4):
A A A
u1(x) = 3.54 w (x) = 6.24 go(x) = 9.78
31 = u1/go = 0.36 32= u2/go = 0.64

go(x,%x) = go(%) . _ul_Lx)_ ) u,(x) (2

u, (%) uz(x)
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2.19 0.374
= 7.09E-3 x1 X, (2.34)
So the condensed primal problem (with dod=0) becomes:

1 . .
P min g, subject to g;,g, <=1
X

The dual problem follows directly:

2,19 51+6,= 0
0.374 61+ 0.76 62 + 83= 0
Since we require that 6>=0, (2.35) represents an inconsistent
set of equations. One way out is to let &, = 0, 1implying that
g, is slack. With this assumption, we can modify PO by deleting
2
g, to form a 'reduced' problem P with dod=0 that can be

immediately solved:

2 f
P : min g, subject to g, <=1 (2.36)
x

The dual formulation is

51t 6, = 1 (2.37)
-51+ §, = 0
-5 * 1.%552+53= 0

which yields

]

= 0.80 §» = 0.20 63 = 0.5 (2.38)
X1 =

I

6.53
In fact, (2.38) is the solution to (2.32), proving that g1 is
slack and g 'tight as assumed. However, we might have fried
setting 83=0 (g, slack) in Pl, but the reduced problem with g
deleted has no solution.

The third GP method [19] is a hybrid of primal and dual
formulations. Iteration in x space is based on iteration in a
'‘reduced' dual space of dimension egqual to the problem dod.

Each iteration involves the determination of a trial dual
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vector, a trial primal vector, and then a new dual vector. To

illustrate this method, a MEP example for milling wil be used.

0
. - .82 _o0.
P : min go = 96 x21+ 24 x% 8 xg 212 (2.39)

X subject to

-0.556 _0.751
g; = 6.02E-3 x;, " x, <

= 1.21 x-l<=1
g5 1 ‘

1

The dual problem is then
=0
where A = 0 1.82 -0.556 -1 and
' -1 0.212 0.751 0
Note that dod=1 (3 equations in 4 unknowns).

In row echelon form, we have

A =1|1 0 -0.816 -0.116 . _ (2.41)
0 1 -0.305 -0.549

from which we can establish a basis for the kernel of A:
k;= (0.816 0.305 1 0] T k= [0.116 0.549 0 q T(2.42)

Let 6= ¢c k1 + r ko represent a'general vector in the
ker(A):

i.e. § = |0.816 ¢
0.305 ¢

0.116 r (2.43)
Using the normality condition,

81+ 8= 1 -> 1,21 ¢ + 0.665r = 1 (2.44)
- => ¢ =0.892 - 0.593 r

With this expression for ¢, (2.43) becomes

8 = [0.728 - 0.368 r (2.45)
0.272 + 0.368 r
0.892

0.593 r

"t

Now we can use the positivity conditieon § >=0 to
establish bounds on r:

0.728 - 0.368r >=0 =-> r <= 1.978 (2.46)
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0.272 + 0.368r >=0 -> r >= -0.739

Without additional information, we are free to choose the
mid-point, r = 0.619. Using (2.45) and (2.12),

§ = [0.500 0.500 0.525 o.s19]T and

v (8) = (96/0.5)°°(24/0.5)°%(6.02E-3"1.21)° %% (2.47)
= 7.376
Since &>0, the constraints are tight so that
x1=1.210 and x2= 1042.043 (2.48)
and from (2.39),
uy = 0.092 u, = 148.140 and gp= 148.232 (2.49)

Using (2.13) and (2.45), we can solve for new §;, §,and new r:
8 = 0.001 §, =0.999 -> r = 1.976 (2.50)
" At this point, we have bounded go by (2.47) and (2.49):
7.376 <= gp <= 148,232
With the new r from (2.50) in (2.45),
§ = [0.001 0.999 -0.280 1.976] T (2.51)
Since we require that § >=0, we must set 6§3=0; this means that
the constraint g; is slack at optimality. We can now return to
the ofiginal dual problem Po minus g, (with dod=0) and directly

solve for §:

*

5 = ‘[0.175 0.825 1.502]T (2.52)
and using (2.12), ‘
¥ (8 = 64.76 (2.53)
Since 8§30, we must have
ga(x) =1  =-> x5 = 8.47 ~ (2.54)
and using (2.53) and (2.13),

us = ¥ 6 - X1 o= 1.21 (2.55)
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With problems of higher dod, the scalar r becomes a vector
and a step size must be determined along with a search direction
at each iteration. In the next section, we will derive an
expression for the optimum step size «, Consider the general

problem of (2.17) once more:

min go{x) = uj1+ ... + up
X | subject to gl(x) = Upyp *oees v Uy <=0
Using (2.20), we obtain the dual function
= 8 ém Sm+1 Sp
v (8) (c1/81)° e (e /8 ) 77(e 1 A /8 ) mHL, (cp n/.sp) (2.56)
Let V(§8) = 1n v( ¢ (2.57)

[6;1n(c,/8; ) + ... +5plnlcn/n)]

+[ 8 Inle 42y )+ .. +6p 1n(cp11) ]

Now we approximate (2.57) using a Taylor expansion to second
order:

I _
V(s) =V + V. a5+ 1/286TV.- as r (2.58)
6/ 66 2 2 2 )
where V; = 3V/381]  and Vg =|2V/38) - 29/2618

av/aé8
/ p

] /

(The bar superscript denotes expansion at a trial solution.) Let

2/96 & 29/36-
av/3 3V
p ! P

~ /

s represent the new search direction in r space, and o the step
size. After each iteration, we use the 'old' r to obtain a
trial dual vectorﬁ" and then a trial solution ao from which a

'new' r is calculated.

Let s =newr -o0ldr (2.59)
Now once we determine a , we can establish a 'newest' r
value to begin the next iteration,

i.e. newest r =o0ldr + Ar vhere Ar = a-s (2.60)
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Now recall from (2.45) that 6§ can be separated into a
constant part and variable part.

BAr - (2.61)
Ba-s

i.e. 6§ = A+ Br -> AS

To simplify notation, let h = Bs.
Using (2.61) in (2.58), we obtain
V=V + Vi(ha) + 1/2 (h'a) Vg ha ) (2.62)

—_ 2
=V + czVGTh + 1/2a bW

seh

To minimize V with respect to a, we set the first partial
derivative to zero and simplify, yielding:

a= [ Vgh )/ D0 (- v,

Earlier in this chapter, we remarked on the relationship

) h ] (2.63)

between the primal and dual problems. In most posynomial cases,

we have
min g ,(x) <=> max v (s5) . (2.64)
X $

However, this is not always true and has been the source of much
confusion among GP researchers. In fact, all we can say in
general is that

min g (x) <=> dg,/dx =0 | <=> dy /ds =0 (2.65)

and ylg) may be a minimum, maximum, or a saddle point. 1In this
next section, we will present a counter-example for which

min g,(x) <=> min ¥(s)

X 8 :
Consider the following primal problem (see Figure 2-3):
2 2 .
min go = x; + x2 subject to g1 = x1 + x2 >= 1 (2.66)

x
(By inspection, we can see that the solution is just



Let vi= - A >=0, and then define
53: vy 03 and 8§y, = vy oy

Note that v; = 6z3+68, . The dual problem is simply

61"’62 = 1
A s =0 where A=12 0-1 0
0 2 0 -1
From row echelon form, we obtain the following basis

for the ker(a):

ki= 1 o:eo]T ke = (0 1 oz]T (2
Let 6= ck, + rk, = [c r 2c Zﬂ (2
Now use the normality condition to obtain c in terms
§y 6 =c +r=1 -> c=1-r (2
and with this value in (2.70), we have
5 = [1-r r 2(1-r) Zr] T (2
From the positivity condition §>=0, we obtain bounds

§>=0 -> 1 - r>=0 =-> r <=1 (2
§o>=0 -> r >=0

Using (2.26), the dual function has the form
w(s) = a/60%01/6)%2 (vi/65)7%3 (vy/ 8% (2

Let V= 1nY¥ = &§1n(1/81) + 821n(1/82) (2
- 83 In(vy/63) = 84 In(vy/8y)

Using (2.72) and simplifying, we obtain

V = 1n(1-r) - r 1n(1i-r) + r 1ln(r) (2
Finally, V = dv/dr = 1lnr - 1ln(1-r) (2
At the endpoints of r 'space', we have

limV = - and limV = +=
r->0 r->1

This situation is sketched in Figure 2-4, and we can
see that in this example,

min g, (x) <=> min Y(9)
X 8

(2.67)

(2.68)

.69)
.70)
of r:

.71)

.72)
on r:

.73)

.74)
.75)

.76)
.77)

Of the three dual methods presented, decomposition

24



Figure 2-3 Primal Space for Counter-Example
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Figure 2-4
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is the most suitable for solving low order optimization problems
using small computers. Because the MEP's of this thesis fall
into that category, this was the method finally chosen for the
computer pfogramming analysis. Note that the decomposition
method also guarantees that the true cost minimum will be found
since it is algorithmic instead of iterative.

Of all the basic metal-working opefations, turning is the
only one to attract the attention of early GP researchers [20 to
25]. In these papers, the number of constraints in the MEP was
limited to one or two and the degree of difficulty was =zero,
one, or two. All of the authors described the dual formulation;
examples with dod+0 were solved by maximizing the dual function
over one or two selected dual variables. This required
differential calculus or direct search; None discussed

condensation.
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CHAPTER 3: MODELLING COST AS A FUNCTION OF CYCLE TIME

A typical Automatic Transfer Line (ATL) is shown in Figure
3-1. There are three work stations, fwo in-process buffers,
plus input and output buffers for unworked and finished items.

Define the 'cycle time' of a work station to be the
machining time per workpiece. With in-process buffers of finite
size, we require that the cycle times of all the work stations
be nearly equal. To see why, consider Figure 3-1 once more. If
M1 cycled more quickly than M2, buffer B2 would eventually
overflow, forcing M1 to stop and wait for M2 to catch up; in
this situation, M1 1is said to be 'blocked'. 1If M2 cycled more
guickly than M1, buffer B2 would eventually be emptied, forcing
M2 to stop and wait; in this situation, M2 is said to be
'starved’'. The ‘'starved' and 'blocked' machine states are
sometimes together called 'forced down' states. When a machine
faiis (and is undergoing repair), it‘is said to be 'down’'. An
ATL 1is ‘'balanced' if all 1its work stations have equal cycle
times; otherwise it is 'unbalanced'.

In Chapter 2, several GP methods were presented to solve
the MEP associated with a single work.station. Now when looking
at a transfer line, we really want to minimize the combined cost
of all the work stations. Consider the ATL optimization problem
to be definéd as follows:

min (total) Cost

VireoosVy

fl""’fN

Cost; + Costz + ... + Costy (3.1)
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subject to  Cutting power (vj,f3j) <= Kpj j=1,.¢.,N
Surface finish (vj,fj) <= Ks;
V§ <= vmaxj
fy <= fmaxj
Cycle time; = Cycle time, = ... = Cycle time y
where
N = Number of machines in the ATL
vy,f4 = control variables for machine j
Chm; = Cutting cost for machine j
Cry = Tool change cost for machine j

Intuitively, one might expect that the behavior of some machines will
change when we operate to minimize total cost instead of individual costs,

More will be said about this later in the chapter,

To date, the literature about ATL optimization has focused
on production efficiency [eg. 26 to 33]. Given some
probabilistic models for machine failure and repair, the
transfer line efficiency can be maximized by judicious sizing of
the in-process buffers. Because the analysis 1is so complex,
most author§ rely on simulation or approximation techniqueé.

Problems like (3.1) have not been discussed.
Traditionally, transfer lines were designéd'to operate with one
fixed cycle time based on expected product demand. Slower
operatiéns would require two identical stations in parallel to
keep up. Once the 1line is operational, the cycle time would
only be varied to respond to changes in market demands (and
sometimes not even then. Some shops use a smaller batch
production line to correct for market variations so that the
high volume ATL can run unchanged). The idea that the cycle
time of the transfer line itself can be optimized to minimize
production cost seems to be new.

In the remainder of the chapter, we will show how (3.1) may
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be solved using GP. ,Firsi we need an alternative format for the
cycle time equality. let us introduce a constant T (as yet
unknown) so that

Cycle time(vj,fj) =T j=1,...,N (3.2)
and then 'hide' the constraint by expressing fj in terms of V.
Now we can re-phrase (3.1) as follows:
min Cost = (Cm;+ Cr;) + ... + (Cmg+ Cry) (3.3)

VireeesVy

subject to Cutting power (VJ) <= K j=1,.¢.,N

Surface finish (v4) <= E%
vy <= vmax

Since we associate one dual variable with each monomial
term, this represents a GP problem with 5N dual variables in
(1+N) equations with dod=(1+4N). Note that the problem becomes
impossibly difficult for N 1large; even for N=3, dod=13. More
importantly, the solution of (3.3) does not indicate how the
minimization 'trades-off' an increased cost at one station for a
decreased cost at another. 1Indeed, just one control vector v is
obtained for each cycle time T chosen. It appears that some
iterative method would be required to solve (3.3) by selecting
various values for T.

In this thesis, an entirely different approach is developed
that does provide real insight into the cost minimization
problem. The key to this approach is the modelling of cost
versus cycle time at each station. The relationship between
cost and cycle time 1is an indirect one, since both are

non-linear functions of the control pair (v,f). To see this

more clearly, consider Figure 3-2,



Figure 3-1
A Three Station ATL
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A typical cost versus cycle time relationship is shown.
The sub-cost Cm increases with time (longer cutting) while
sub-cost Cr decreases with time (slower tool wear). For t<t* ,
the increase in Cr is greater than ﬁhe decrease in Cm so cost
rises. similarly, for t>t*i, the increase in Cm is greater than
the decrease in Cr so cost rises. Moreover, Figure 3-2 also
indicates how gquickly cost changes as t moves away from t*, S0
that the relative 'penalty' paid by t#t* can be easily seen. If
the curve is fairly flat in the neighbourhood of t*, most any
cycle time could be selected without seribusly changing cost.
If the curve rises steeply from the minimum, then the selection
of a t#t” could represent a substantial penalty.

Another important aspect of modelling cost as a function of
cycle time t is the emergence of a lower bound on t imposed by
the constraints associated with the MEP. This is not apéarent
from the sketch in Figure 3-2 which suggests that cost might
continue to increase as t is decreased. Recall that the MEP
associated with each work station has four constraints, each of
which is a non-linear function of the two control variables.
Thus we can obtain wvalues for v ,f , and cycle time t by
assuming that any two constraints are tight. Using this
procedure, we can determine a set of values_for t ; the lover
- bound would theh be the smallest one. For a MEP with n
constraints in the variables v and f, the number of possible
distinct pairings is n!/[2(n-2)!]. To illustrate these ideas,
we will look again at the MEP examples from Chapter 2.

The turning operation example is sketched in Figure 3-3
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(not to scale). The intersections of pairs of constraints are
labelled pt to p5. Isotime curves (curves of equal cycle time)
are only shown for the two feasible points p2 and p5. The true
minimum cycle time corresponds to p2, the intersection of

Cutting power and Surface finish constraints.

cycle time = 7.86 vttt
@ P2 = 10.1 minutes
@ p5 = 21.3 minutes

The drilling operation example is sketched in Figure 3-4
(not to scale). Here there is only one feasible point p1 from

the intersection of Surface finish and vmax constraints.

1.96 v gl

0.30 minutes

cycle time
@p1

The milling operation example is sketched in Figure 3-5
(not to scale). Note that cycle time is a function of f only so
that just one isotime curve passes through both feasible points
p! and p2.

200 £°1
1.16 minutes

cycle time
@ p1,p2

Thus far, no mention has been made of an upper bound on

cycle time. In fact, there 1is none arising from the MEP
formulation of Chapter 2. This is because the constraints
impose no lower limits on v and f. (Strictly speaking, there
are always lower bounds for any NC machine, but most authors
ighore them to simpiify the MEP formulation.) The need for a
useful upper bound to define the cycle time interval for our

cost modelling will be discussed later in this chapter.
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Figure 3-3

£ Turning MEP

0.02 fmax

0.017 Surface

finish

p5

I \\2_1:3 min

Cutting power

Figure 3-4
Drilling MEP

| 0.30 fmax

0.075 Surface finish

Cutting power

A 4

feasible region
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We can now describe a new approach to solving (3.3). If
the cost of each work station can be modelled as a function of
cycle time, then the total ATL cost can be minimized by summing
the individual cost functions and 1locating the miniﬁum using
simple differential calculus.

Recall that cost ¢ and cycle time t vary indirectly; we
need to start with a control pair (v,f) to obtain a 'data' pair
(t,c). To obtain c as a continuous function of t, we can fit a
curve to a set of (t,c) points.

There are two fundamental aspects of any curve fitting: the
kind of curve used, and the number of data points needed to
obtain a reasonable fit. After some consideration, polynomial
curve fitting was selected. The chief attraction was
simplicity. The polynomial degree can be easily changed to
obtain the desired goodness of fit. In addition, the
derivatives of a polynomial are easy to compute.

2,

1
= + +
cost ¢ CO Clt Czt

where p 1is the degree of the polynomial.# Of course, the sum of

e o0 + c tp (3.4)
P

functions of the form (3.4) is itself a polynomial of degree p, so that

the ATL cost is easily minimized as follows:

ATL Cost =} Byt | (3.5)
1=1 3=0
=z (fc,)?
3 1
dCost/d S (e 0 (3.6)
Now dCost/dt =4 ALY = .

Thus, the cost minimum of (3.5) corresponds to one of the zeros

of (3.6), which is a polynomial of degree (p-1). More details
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about the curve fitting procedure can be found in Appendix B.
Before data points can be generated for each work station,
an appropriate cycle time interval must be defined. To keep
things simple, it was decided that just one time interval would
be used.for the curve-fitting at all work stations. In general,
for a fixed number of data points, the curve fitting will be
'best' if the time interval is as small as possible. Recall
that the MEP solution yields two pieces of information: the cost
minimum c*' (and the corresponding t*), plus the minimum cycle
time £ (imposed by the problem constraints). Clearly, the

lower bound for all curve fitting must then be

. in .
tmin = max { £} i=1,...,N (3.7)

i
If tmin were smaller, then at least one machine in the ATL could
not operate.
An upper 'bound' on cycle time can be obtained as follows:
tmax = max { tI } i=1,...,N (3.8)
i
In fact, tmax is not a true limit in the way that tmin is, but
it is a useful upper bound. To see this, consider the cost
curves of two stations sketched in Figure 3-6. The minimum of
* % *
the combined cost must occur at some t;< t < tp . In this way,
the tmax value of (3.8) will always bound t .
Once tmin and tmax are defined, the data points for each
work station can be generated by solving a modified MEP:
min Cost = Cr(v) subject to (3.9)

v Cutting power(v), Surface finish(v)
and vmax constraints.
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Note that the term Cm has disappeared from the objective
function. This is because Cm = Overhead x cycle time. Once a
cycle time is specified, Cm is just a constant and has no effect
on the cost minimization. Note too that f has been dropped from
(3.9); this is because the cycle time equality was used to solve
for £ in terms of v, as in (3.3). 'Given a cycle time T, the
solution to (3.9) will yield a control pair (v,f) and a data
pair (T,C). |

Now we can look more closely at how to select an
appropriate value for the degree p of the fitted polynomial. As
p increases, the fit to the data improves but we need to
generate more data points, requiring more computation.
Typical computer methods need (p+3) points to fit a curve of degree p.
Thus, the choice of p is usually a compromise between desired
goodness of fit and available computing power. Let's return to
the numerical examples presented earlier. In Figures
3-7,3-8,3-9, data points and fitted curves of various degrees
are graphed for the three metal-cutting operations. Although
turning and drilling show a good fit for smaller degree, it was
decided to use one value p=6 to simplify the computer program.

In the next chapter, we will develop a new control strategy
to minimize ATL cost when stations are subject to failure (and

repair).
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Figure 3-7
Turning :Data plus fitted curves

Data points generated for curve-
. fitting 1lie along p=6.
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o A Figure 3-8
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Figure 3-9
Milling: Data plus fitted curves

Data points generated for curve-
fitting 1lie along p=9.
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CHAPTER 4: THE DYNAMIC CYCLE TIME STRATEGY

In the previous chapter, the .cost minimization of a
transfer line was described using fitted curves to model the
costs of the component work stations as functions of cycle time. .
What emerged was a single cycle time (to be assigned to each
station) that would minimize total cost.

1f machines never broke down, this would be the end of the
story. However, stations are subject to failure and for high
volume production runs, there could be substantial machine
downtime. To see how this can affect the cost minimization
problem, consider the two stage ATL of Figure 4-1,

As shown in Figure 4-2, the cycle time that corresponds to
minimum total cost does not occur at the cost minimum of either
M1 or M2. Now suppose that M1 fails. If in-process buffer B2
is not empty, M2 can still operate. 1In fact, its cycle time
_could be increased from t:Z to t; (slower machining) to reduce
its cost; this would decrease the production cost of workpieces
now in B2. When M1 is repaired, the cycle time of M2 must

* < .
return to t A similar case can be made for speeding up Mi

12 °
from tlz to t:iwhen M2 fails, as long as buffer B2 does not
overflow. This idea of re-assigning station cycle times in
response to machine failure will be called the Dynamic Cycle
Time (DCT) strategy. The alternative strétegy, to be called the
Fixed Cycle Time (FCT) strategy,‘makes no changes to cycle time

when machines fail.

The implementation of the DCT strategy must satisfy two
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Figure 4-1
A Two Station ATL
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Figure 4-2  Combining Costs of

two Stations
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goals. Firstly, we need to know the status of each work
station, in order to recognize the correct sub-sets of operating
machines within the ATL. Secondly, we must be able to change
the cycle time of each station on-line. To accomplish this, a
two level control hierarchy is proposed, as sketched in Figure
4-3.

A Local controller is associated with each station, linked
to a single Supervisory controller. The Local controller is
responsible for the following activities:

(i) performs adaptive control of the metal-cutting machine
(v,f) based on cycle time information supplied by
Supervisory controller

(ii) monitors the machine status
(iii) gathers statistics (eg. tool wear) for on-line

adjustment of the coefficients in the MEP equations

The Supervisory controller directs the DCT strategy in the

following way:

(i) gathers information about the status and MEP
coefficients from each work station
(ii) models costs as functions of cycle time
(iii) minimizes combined costs for appropriate
sub-sets of the ATL, and determines the
corresponding cycle ;imes and control vectors
This kind of distributed control is in fact a recent

development in modern manufacturing. Here is a quote from a
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1981 conference on machine tool systems [12]:

"Control systems will probably change from being

central processor based to distributed processing

systems. 'Local' processors ... will handle indi-

vidual control functions with a control overseer

system monitoring the 'local' activities and

up-dating the sub-systems as required... Such

systems would have been impractical both econo-

mically and technologically before now." (p.194)

To date, there has been some theoretical discussion of
distributed control architectures in NC manufacturing [34,35].
In fact, this would just represent the lowest 1level in the
Computer-Aided Manufacturing hierarchy - [1]. Although
information on installed systems is not available, there are NC
implementations that could be refined to provide the kind of
cost minimization suggested here.

When there are many stations in the ATL, the opportunity to
re-assign cycle times occurs more frequently. Consider the
three stage 1line sketched in Figure 4-4. When Mi fails, the
cost of M2 might be minimized with the cost of M3 or by itself,
depending upon the status of M3. There are really six groups of
adjacent stations within the ATL for which we can determine
optimal cycle times:

Mt alone (when M2 and M3 are down)
M2 alone (when M1 and M3 are down)
M3 alone (when M1 and M2 are down)
M1 + M2 (when just M3 is down)

M2 + M3 (when just M1 is down)

M1 + M2 + M3 :

There is a simple formula to determine the number of such
sub-sets of an ATL with N stations:
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Figure 4-3 Proposed Control Architecture
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1 combination of all N stations
+ 2 combinations of (N-1) stations

4 sub-sets

+ ... + N combinations of 1 station
N
= Zi
i=1
=N (N+1 ) / 2 (4.1)

For each sub-set, there is an optimal cycle time that will
minimize the combined cost of the component stations. The cost
minimization is accomplished by summing the appropfiate fitted
cost polynomials (all of degree p) to obtain a new polynomial of
degree p, setting the first derivative to zero, solving for the
(p-1) roots of that polynomial, and then isolating the one that
- corresponds to minimum cost.

In Table 4-1, optimal cost and cycle time data are listed
for the six sub-sets of a three stage ATL based on the numerical
data of the previous chapters. |
TABLE 4-1: Optimal Cost and Cycle Time Data

for the Three Station ATL

Operation(s) Optimal cycle Optimal cost(s)

time (min) ($/piece)
Turning T 14.89 6.53
Drilling D 1.49 0.94
Milling M 23.46 | 64.36
T+ D 12,30 7.10 + 6.95
D+M 11.39 6.34 + 65.64
T+D+M 14.46 6.47 + 8.17 + 65.78

In Figure 4-5, fitted curves are shown for three of the
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sub-sets. They are based on the individual cost curves of
Figures 3-7, 3-8, and 3-9.

To evaluate the relative merit of the DCT strategy, some
typical ATL configurations adapted from [27 to 30] were selected
for simulation. The computer program developed' for the
simulation is detailed in Appendix B.

For the purpose of simulation, there are three main
features that characterize the performance of an ATL:

(i) the probability distributions for machine
failure and repair

i.e. Pf[n,T]

probl n failures over a time T ]

Pr[1,T] = probl 1 repair takes time T]
(ii) the number of stations N

(iii) the size(s) of the in-process buffer(s)

Let Time-To-Fail TTF(t) = prob[ waiting time t between
succesive failures ]
This is more useful for simulation work than Pf(n,t). To see
how fhey are related, assume that failure is modelled as a
Poisson process:
i.e. Pfln,T] = e T(AT )%/ n!
Now we can use a negative exponential distribution for the
waiting time [36].
TTF(t) = re F (4.2)
and Mean-Time-To-Fail MTTF = 1/} (4.3)
Machine repair can be similarly modelled:

-ut

Time-To-Repair TTR(t) = u e (4.4)
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and 'Mean-Time-To-Repair MTTR = 1/u (4.5)

The following values were selected for the failure and repair

distributions:
MTTF : 60 machine cycles (worst case)
270 machine cycles (best case)
MTTR : 6 machine cycles (typical case)

Note that all stations in the ATL are modelled with the
same TTF and TTR distributions, although they perform
different metal- cutting operations. This 1is a standard
analytical convenience for simulation work of this kind. New
TTF and TTR values for each station are 'drawn' at random from
the frequency distributions after each machine failure and
subsequent repair.

Before proceeding, let's consider these values selected for
simulation. If MTTR=1 cycle (on average, repair after one
machine cycle), we wquld expect the DCT strategy to show little
cost savings compared to the FCT strategy, since any change to
the station cycle time would only affect at most 1 workpiece;
this would be true regardless of how often machines failed.
However, if MTTR>>1 and MTTF is so large that machines rarely
fail, we would again expect DCT to have 1little effect, since
there would be few opportunities to make changes to the cycle
times of the stations. Thus the values 1listed above are
reasonable choices.

At this point, we need to define the component work

stations of the ATL: the number, and the kinds of operations to
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be performed. Let's look at the possible choices in Table 4-1.
Note that milling costs are an order of magnitude greater than
the costs of turning and drilling. This means that milling
would completely dominate the total cost of a three stage ATL.
This also means that the DCT strategy would not show significant
cost savings compared to the FCT strategy unless the cycle time
changes for milling resulted in substantial cost savings. 1In
fact, this is not the case; the milling cost changes very little
as cycle time changes from 11.39 min to 23.46 min. Because of
this, a two station ATL based on just turning and drilling
operations was simulated.

According to [37], 33% of all ATL configurations in the
West have just two or three work stations (although 55% have
four to six). Moreover, 13% involve turning and 45% involve
drilling (although 61%. involve milling). Thus, this ATL
configuration is a reasonable choice for simulation.

The size of the in-process buffers in an ATL determines the
degree of coupling between adjacent machines. As the size
increases, a buffer can better ‘cushion' the effects of
different cycle times and even machine failures. However, the
extra number of partly finished workpieces in each buffer
represents additional in-process inventory which increases
production cost. The following quote from [38] describes this

trade-off in more detail:
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"In theory, when the size of the buffer storage b is

greater than or equal to 2T/t [ T=MTTR, t=cycle time ],

the workheads [stations] are completely isolated one

from the other and further increases in the size of

b are futile. However, the greatest benefit occurs

with the smaller buffers [compared to no buffers].

So as a practical guide, it is often assumed that

for a good free-transfer [automatic] ... machine

design, b equals T/t." (p.216)

Using T=6 cycles and t=1 cycle, we have b=6. The three values
used in the simulation were 5,10, and 15.

Two important statistics that characterize a production run
are mean unit cost/workpiece and mean in-process buffer level.
When simulating a stochastic process, we must be careful that
the statistics of means properly reflect the process steady
state. In effect, we must run the simulation 'long enough' to
gain the desired statistical confidence. 1It's clear that the
expected improvement in performance (if any) due to the DCT
strategy will be related to the frequency of station failure;
when stations fail more often, there are more opportunities to
re-assign cycle times. Thus it's appropriate to measure the
'length' of a trial in terms of MTTF. After some
experimentation, it was discovered that sufficient statistical
accuracy (90%) could be obtained by averaging the results of
four trials each of ‘'length' 150 failures. This issue 'is
described in more detail in Appendix C.

A third performance variable, the % utilization of M2, was
also recorded. This indicates how much of the time M2 was idle
(starved) because the upstream buffer was empty. The %

utilization of M1 was not recorded because the input buffer (by

assumption) is never empty. In non-adaptive NC systems, idle
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time is a direct measure of performance: more idle time means
lower machine productivity, and extended méchine life. However,
in AC systems, lower machine utilization is not in itself a sign
of poor performance. In fact, if the productivity remains
acceptable, more idle time might be beneficiai by prolonging the
life cycle of the machine.

The following discussion of the simulation work is not
intended to be an exhaustive analysis of transfer line
optimization. The attempt is made however, to describe how the
performance of some sample ATL's changes under the DCT control
strategy when compared to the FCT strategy. It is hoped that
the results will be sufficiently encouraging to confirm the
value of modelling cost as a function of cycle time, and the
value of using GP to solve the associated MEP's. |

First let us return to Table 4-1. Under the DCT strategy,
the drilling station is speeded up by 88% (from 12.30 min to
1.49 min) and its unit cost is lowered by 86% (from §6.95 to
$0.94) when the turning station is down. Similarly, when the
drilling station is down, the turning station is slowed down by
21% (from 12.30 min to 14.89 min) and its unit cost is decreased
by 8% (from $7.10 to $6.53). Thus, we would expect that the
mean level of the in-pfocess buffer to be smaller for a transfer
line arranged as Turning -> Drilling, instead of the other way
around. To better compare the behavior of these two
confiqurations, both were simulated with identical buffer sizes,
TTF and TTR distributions.

Let's look at the results for Mi=turning -> M2=drilling.
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In Table 4-2, data for mean unit cost, mean buffer level, and
The relative changes in each Qariable when comparing DCT to FCT
are shown in Figures 4-6,4-7, and 4-8. In each graph, the
horizontal axis is buffer size.

In general, the DCT strategy 1lowers unit cost and mean
buffer level, and also reduces M2 utilization. Note that these
changes become more significant as MTTF decreases 1i.e. as the
machines fail more frequently, As shown in Figure 4-6, the %
cost savings is small. This is because the mean buffer 1level
under the DCT strategy is small (less than 4) so that there are
few workpieces that 'benefit' from the reduced M2 cost when Mi
is down. It's also true that the M1 cost is lowered when M2 is
down but because M1 cycles so slowly, it does not process many
workpieces at this reduced cost. The cost savings does
increase slightly with buffer size since the mean buffer level
rises.

On the other hand, the % buffer savings is large, as shown
in Figure 4-7. This is because the mean repair time 1is 1long
enough (6 cycles) to allow M2 to substantially reduce the mean
buffer level (while M1 is down) from the FCT value. This also
explains why the % buffer savings is largely independent of
MTTF. |

In Figure 4-8, we see that $ M2 utilization decreases as
the buffer éize increases. We would expect the opposite effect,
since a larger buffer means more workpieces available to M2 when
M1 is down. A glance at Table 4-2 reveals one explanation:

even when the buffer size is large, the mean level under the DCT



MTTF
(cycles)

279

60

Buffer size
(# pieces)

10

15

10

15

TABLE _4-2

Simulation Resluts for the TurningsDrilling ATL

Strategy

DCT
FCT

DCT
FCT

DCT
FCT

DCT
FCT

DCT
FCT

DCT
FCT

Mean unit cost

©)

13.960
14,014

13.923
14,014

13.901
14,014

13.816
14,059

13.656
14,059

13,581
14.059

Mean buffer level

(# pieces)

1.405
1.569

2.797
4,094

3.506
6.733

1.397
1.683

2.678
4,219

3.401
6.855

%7 M2
utilization

96
96

96
97

96
97

82
86

82
87

82
88

V49



A Figure 4-6
7 cost }
savings ¢
4 -
o MITF = 60 cycles
3
2 4
1
1 O/o/___o MTTF = 270 cycles
0 4 ' s ,
0 5 10 15 buffer size
% buffer Figure 4-7
level | savings
0T MITF = 60
40 MITF = 270.
30 ]
20} o
104 o
e + s . .
0 5 10 15 buffer size
Z change .
M2 utili-4 Figure 4-8
zation \
o]0 > 10 15 buffer size
—O- N >
-2 MTTF = 270
4 e ol
-6 d \
| MITF = 60
-8

55



56

strategy is still small, so that the % M2 wutilization cannot
increase. However, this does not explain why it decreases
slightly. In any event, this is a desirable effect. Although
we seem to be 'wasting' more machine resources when utilization

decreases, we are really just interested in the performance of

" the ATL as a whole.

Now let's proceed to the results of the second simulation.
Here we have M1=drilling -> M2=turning. The data is listed in
Table 4-3 and the % changes are sketched in Figures 4-9,4-10,
and 4-11.

In general, the DCT strategy still lowers unit cost but now
the mean buffer 1e§e1 increases and the $ M2 utilization rises
slightly too. Note that the % cost savings shown in Figure 4-9
almost duplicaﬁes the savings shown in Figure 4-6 (for the other
ATL configuration). This is because the real cost savings is
due to the reduced cost of drilling whén the turning station is
down. In fact, the data in Table 4-3 indicates that the reduced
unit costs undef the DCT strategy are almost the same for both
transfer line configurations.

Although the % cost savings has not changed, the curves in
Figures 4-10 and 4-11 are almost mirror images of Figures 4-7
and 4-8. Since the cycle time of M2 substantially increases
under the DCT strategy when M1 is down, the mean buffer level
rises as shown in Figure 4-10. Also note that the increase is
largely unrelated to MTTF since M2 can only process a few

workpieces while M1 is under repair.



TABLE 4-3
Simulation Results for the DrillingsTurning ATL

MITF . Buffer size Strategy Mean unit cost Mean buffer level % M2
(cycles) (# pieces) % (# pieces) utilization

270 5 DCcT 13.964 _ 1.699 96

FCT 14,014 1.532 96

10 DCT 13.926 5.459 97

"~ FCT 14,014 3.911 97

15 DCT 13.905 9,591 97

FCT 14,014 6.229 97

60 5 DCT 13.834 1.904 85

FCT 14,059 1.640 85

10 DCT 13.674 5.578 88

: FCT 14,059 4,012 86

15 DCT 13.576 9.926 89

FCT 14.059 6.300 87

LS
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Finally, the % M2 utilization increases slightly under the
DCT strategy but only for MTTF=60 cycles, as shown in Figure
4-11., This is because % utilization for MTTF=270 cycles is
almost 100% (see Table 4-3); this 1indicates that M2 is very
rarely idle because the buffer is empty. When failures occur
more frequently (smaller MTTF), this idle time is reduced wunder

the DCT strategy since the mean buffer level is higher.
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CHAPTER 5: Conclusions and Suggestions for Future Work

In this thesis, a new control strategy called DCT (Dynamic
Cycle Time) was developed for optimizing the performance of an
ATL (Automatic Transfer Line). The baéic jdea is the modelling
of the cost of each work station as a function of its cycle
time. A Geometric Programming technique called the
decomposition method was used to re-interpret the Machining
Economics Problem as a set of (cycle time,cost) pairs to which a
polynomial curve was fitted. The function that emerges is a new
and powerful description of how cost varies with cycle time and
what the smallest cycle time can be.

To minimize the combined costs of several stations, we sum
the individual cost functions and then locate the minimum of the
sum using simple differential calculus. When stations fail, the
ATL is 're-configured' as sub-sets of operating stations. A new
cycle time 1is then assigned to each sub-set that minimizes the
combined cost of the component stations. For the sake of
comparison, the strategy of no change in station cycle time was
defined and called FCT (Fixed Cycle Time).

To compare the control strategies, some typical two station
ATL's were simulated based on turning and drilling operations.
It was shown that the DCT strategy results in modest cost
savings and a substantial reduction in mean buffer 1level when
the operations are suitably ordered (Turning?>Drilling). In
fact, simulétions of the DCT strategy also indicate that there

is a performance optimal ordering of operations which should be
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used if technically feasible.

It is hoped that the simulation results are sufficiently
encouraging to demonstrate the value of the DCT strategy and and
the value of modelling the MEP as a cost function of cycle time.
It should also be clear tb the reader that Geometric Programming
is a simple and powerful tool for solving constrained non-linear
optimization problems. Ih particular, for problems of low
order, the decomposition method was shown to be a fast and
reliable (algorithmic) technique suitable for real-time-
microprocessor implementations. |

There are many aspects of this thesis that could be

explored furtherf

(i) The DCT and FCT strategies were compared using numerical
data obtainedrfrom separate papers on adaptive turning- and
drilling. It would of course be better to use real data from a
working ATL in industry. This would likely mean extending the

simulation model to three or more stations.

(ii) We have seen that the oréering of operations in the ATL is
a very important consideration.for the DCT strategy. When there
are many operations, it would be hard to anticipate which
ordering would be optimal. Thus, the computer prbgram should be
extended to simulate all N! orderings of the N operations in a

given ATL.

(iii)The performance of a given ATL wunder the DCT strategy

compared to the FCT strategy is dependent on several factors:
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the freguency of machine failure (MTTF), the machine repair time
(MTTR), the size of the in-process buffer(s), and the relative
change in the cycle times of each station across the various ATL
sub-sets it belong to. It would be worthwhile trying to develop
some figure of merit for each of the performance variables (eg.
mean unit cost) based on these factors as an alternative to

simulation studies.

(iv) The DCT strategy could be modified to direct appropriate
stations to shut down (for short intervals) instead of waiting
for machines to fail. 1In this way, the Supervisory controller
could monitor and periodically optimize the in- process buffer
levels. Alternatively, the Supervisory controller could also
anticipate routine maintenance on a given work station by
causing its upstream buffer to be emptied and its downstream

buffer to be filled.

(v) Rather than operate work stations in an ATL continuously
with one cycle time that minimizes their combined cost, it might
be feasible to operate them in 'bursts'; each station would
cycle so as to minimize its own cost and rely on buffer
underflow/overflow to temporarily suspend execution. This
strategy.might be useful when the optimal cycle times of the
stations are very different, and when the in-process buffers are

large.

(vi) After turning, drilling, and milling, the fourth machining
operation is grinding. The MEP formulation for grinding [5,7]

involves a posynomial Cutting power constraint which cannot be
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directly tackled by the decomposition method. This means that
we would need an iterative approach. It would be worthwhile
comparing the condensation and the reduced dual space methods of

Chapter 2 using numerical examples of the grinding MEP.

(vii)In Chapter 3, we modelled cost as a polynomial function of
cycle time. There are other curve-fitting methods that might be

considered eg. cubic splines or Fourier series.
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APPENDIX A: CONTROL DETAILS FOR THE MACHINING OPERATIONS

The basic turning operation is shown in Figure A-1.

D = workpiece diameter (in)

L = length of cut (in)

d = depth of cut (in)

w = rotational speed of workpiece (rev/min)
= feedrate (in/rev)

v = cutting speed (surface ft/min)

wmD/12

Rotation of
workpiece

w

Minor
cutting edge

Tool

point
Machined
Direction ot surtace
tool feed f
Tool shank
Figure A-1 Control Details for
Turning N

The followin equations and numerical data for the MEP were
‘adapted from [20,21,22]. Tm is the machining time (min), T s
the tool life (min), and Tr is the tool replacement time (min).

Tm=Lelfl=L (x D/ 12) vig! (A.1)-

T =( 7.583 / 4 ) v° £2:13 (A.2)

with D = 3.0 in " % = 0.351 §/min
L = 10.0 in Ct = $0.487 (throw-away type)
d = 0.1 1in Tr = 1.0 min

The four constraints for the MEP are as follows:

£ 0.76

23 d v <= 5 HP (A.3)

Cutting power

f <= 0.014 (A.4)

Surface finish

vmax = 600 sft/min fmax = 0.02 in/rev:



The basic drilling oberation is shown in Figure A-2.

D = drill diameter (in)

L = length of cut (in)

£ = tool length (in)

w = spindle speed (rev/min)
f = feedrate (in/rev)

v = cutting speed (ft/min)

wr D/12
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Here, the following equations and numerical data were adapted

from [21,2]:

Tm = Lw-lf Lo x D/ 12) v gt (A.5)
T = 1.32489 v 28 749 (A.6)
with D = 0.5 in : X = 0.565 $/min
L = 1.5 in Tr = 6.0 min
2 = 3,25 in
and Ct = re-sharpening cost

+ new too cost / # possible re-sharpenings
3.90 + 97.44/10
$13.64

The four constraints are as follows:
0.8

Cutting power = ( 0.174 BHN D0'933000 ) v f (A.7)
<= 40 HP /
where BHN = Brinnell Hardness Number of the workpiece,
= 165.0 (cast iron)
0.6
Surface finish = £ <= 0.0175 ( £/ D ) D (A.8)
‘vmax = 88 ft/min fmax = 0.30 in/rev

The third metal-cutting operation considered in this
milling, shown in Figure A-3.

tool diameter (mm)

length of cut i.e. workpiece length (mm)
depth of cut (mm)

number of teeth on cutting tool

width of tool (mm)

spindle speed (rev/min)

feedrate (mm/rev)

HE BZCO
nwnwnuwnn

cutting speed (m/min)
wTD / 1000

is
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Column—]
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I .
sktlw | é§ T
Drill L

works

Table I f l '
e
D

=

Base

Figure A-2 Control Details for
Drilling

Figure A-3 Control Details for
Milling

Rotation of
cutter

N (no.ot teeth)
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?he f?llowing equations and numerical data were adapted from
[21,23}:

-1
™m = L f (A.9)

0.757 1.818 -1.818 _-1.212
v f

T = 3,55E4/N ( 7D/1000 ) (A.10)

with D = 38.4 mm ’ X = 0.480 $/min
L = 200 mm Ct = $38.974 (throw-away type)
d= 1.0 mm Tr = 1.33 min
N =3
W = 30 mm
The constraints are as follows:
Cutting = 1466 wi-1786 40.9128 ¢nf ' v0:336 £0.7509 (4 11
power pl.1713°y 6010.2  [1000
< 7.5 KW
Surface finish = (7 D / 1000 ) v > <= 0.1 (A.12)

vmax = 145 m/min fmax = 173 mm/min
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APPENDIX B: NOTES ON THE COMPUTER PROGRAM

COMPUTER PROGRAMMING NOTES

This thesis work has two main themes: analysis and
simulation. It was therefore important to select a programming
language that could properly serve both needs. SIMULA is a
general purpose simulation language for discrete time event
modelling. It is a super-set of ALGOL 60, and thus encourages
structured programming. Another important feature is the CLASS
declaration which is used to create identical 'processes' via a
single template. Finally, SIMULA is transportable since there
exists just one licensor: The Norwegian Computing Centre of
Oslo, Norway. For these reasons, SIMULA was selected as the

target language for this thesis. More information about
programming in SIMULA can be found in [39,40].

The program CLASS hierarchy is shown in Figure B-1. The
FACTORY comprises a Supervisory Controller and three kinds of
Local Controllers, each associated with a different
metal-cutting operation. The fourth class, MACHINE, will be

discussed later.

The Local Controllers use specific workpiece data (eg.
length of cut) with fixed machining data (eg. tool size) to
define the MEP's of specific work stations, as shown in Figure
B.2. The Supervisory Controller then analyzes each work station
separately. First, the MEP is solved using the GP decomposition
method. The dual set of simultaneous equations is solved using
an MTS program called FSLE [41]; this yields the minimum cost
and optimal cycle time. Next, a lower bound on cycle time is
determined from the constraints and an upper bound from the
optimal cycle times of the individual work stations. Finally,
(cycle time,cost) data are generated for the region of interest
and the data is fit to a polynomial curve. The curve fitting
uses an MTS program called DOLSF [42]. .

- At this point, the curves of selected stations are summed
to represent their combined cost, and the minimum is obtained by
setting the first derivative to zero. This requires another MTS
program RPOLY2 [43] that calculates the zeros of a polynomial
(since the derivative of a polynomial is itself a polynomial).
Once minimum cost and optimal cycle time data are obtained for
all appropriate sub-sets of the ATL, the analysis is complete
(Figure B.3). :

The CLASS MACHINE is used to generate a specific transfer
line composed of several work stations with common failure and
repair distributions, a set of buffers, and one Supervisory
Controller (Figure B.4). The status of a station is modelled as
UP (working), DOWN (failed), STARVED (upstream buffer empty),
BLOCKED (downstream buffer full), or JUST REPAIRED.

The interaction of these CLASS's within the two level
hierarchy is outlined in Figure B.5 and Figure B.6. Note that
the Supervisory Controller does not monitor the ATL. When a
Machine is ready to start on a new workpiece, it signals the
Supervisory Controller to review the status of the ATL and
assign the proper cycle time (and cost data) to that Machine.
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FACTORY
r
MACHINE LOCAL CONTROLLER SUPERVISORY
CONTROLLER
TURNING DRILLING MILLING
OPERATION| OPERATION|{ OPERATION
Figure B-1 Program Class Hierarchy

Accept instructions for desired
metal-cutting (eg. length of cut).

Combine with fixed data about
workpiece, tool, and machine,

Calculate coefficients for the
MEP objective function and
constraints.

Figure B-2

Analysis Flow Chart for Class: local Controller
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L

Use specific metal-cutting instructions
to generate a set of work stations
(Local Controllers).

i)

Use the GP decomposition method to solve
each MEP and obtain the control pair and
cycle time for minimum cost.

l

Determine the lower bound on cycle time
for each work station, and define the

fitting.

cycle time interval to be used for curve-

|

(cycle time,cost) to fit the polynomial
curve of desired degree for each work

Generate the required number of data points

station.

N

Sum the fitted curves of appropriate
sub-sets of the transfer line. Obtain
the minimum costs and corresponding
cycle times.

Figure B-3 Analysis Flow Chart for Class

Supervisory
Controller

: Supervisory
Controller

Level 1

Local
Controller

Local Local
Controller Controller
1 #2
Machine #1 Machine #2
Buffer #1 Buffer #2

M
Machine #N
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Level 2

Buffer #(N+1)

Figure B-4 Proposed Control Architecture



Initialization:
Status = UP
Draw values for TTF,TTR
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CUPtime > TTF ﬂ

_/

'Awaken' Supervisory Controller
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«————< Machine JUST REPAIRED ? >
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all others that are DOWN,
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4

YES

NO
[Strategy = FCT|

Figure B-6 Simulation Flow Chart for Class: Supervisory Controller
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This permits a more efficient simulation, and also mimics the
interrupt-driven communications scheme envisioned for the
control hierarchy.

In Chapter 4, the length of a simulation trial was measured
in terms of the number of failures expected F, which is related
to MTTF. However, from a programming point of view, it was more
convenient to use the number of workpieces N in the last buffer.
If we associate one workpiece with one machine cycle, then

N (pieces) = MTTF (pieces/failure) x F (failures) (B.1)
To simplify the program further, the MTTF and MTTR values were
converted from cycles to minutes using a 'mean' cycle time T; %
is the arithmetic average of the optimal cycle times for the
sub-sets of the ATL. For example, for a two station ATL: ‘
—_ * * *
t=1/3 (t,, +t +¢t,) (B.2)

As a final note, the computer plots in this thesis were
obtained using the MTS program package ALGRAF [44].
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APPENDIX C: STATISTICAL ACCURACY IN SIMULATION

In this thesis, transfer line behavior was modelled as a
stochastic process. Two of the measures used to characterize
production were mean in-process buffer level and mean
cost/workpiece. Because these are statistics of means, we must
take care when the simulation is performed.

Statistics can either be obtained from one long trial, or
from averaging many shorter trials. The main advantage of
multiple trials 1is that statistical accuracy can be easily
increased by adding more trials; in this way, the 'new’' data is
simply added to the 'old'. 1If we want to have just one trial,
we must re-run the simulation over and over again with larger
L's; this means that we generate all new data each time, which
is wasteful. To make each trial statistically independent, we
must use unique seeds for the random draws from the probability
distributions. The student's t distribution can be wused to
determine the required length L of a trial and the number of
trials N by using estimates for the mean and standard deviation
of the random variable x [45,46]. Consider a sample of N
trials, each of length L.

: sample mean = (2 xi)/N
true mean i : '
sample standard deviation =]( E(xi—X)z)/(N—1) '

n c
nou.n

We can now use the following procedure to determine whether X is
a reliable measure of u or not.

Select an acceptable confidence interval CI eg. 95%

Determine the t value t* for (N-1) degrees of freedom
from a set of statistical tables.

Compute t= (¥-u)/(s/ N ) ' (c.1)

if t>t*, then accept the hypothesis that ¥ is an acceptable
measure of u with certainty CI; otherwise, L or N or both
must be increased.

w» W N —
e o

When the true mean u is unknown, the numerator of (C.1) can
be replaced by kX, where k indicates how*far away u can be from
X. For example, if k=0.10, then t>to9s means that we are 95%
certain that the true mean u is within 10% of the sample mean X.

For the simulation work of Chapter 4,

CI = 90 N = 4
k = 0.10 L = 150 failures (on average)
t* (3) = 1.64

0.90
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APPENDIX D: THE DUAL FUNCTION FOR CONSTRAINTS g>=1

_ Let's start with the derivation of (2.20) for constraints
of the traditional kind [17]. Consider the following problem:

. m . P

min go(x) = Iy subject to gl(x) = Tug <=1 (D.1)
i=1 i=m+1

The generalized Arithmetic Mean/Geometric Mean inequality states

that if u and A are vectors in R™ with u>0 andx >=0, then

A

T oy = I 8
2wt > " (ci/% Q ia (D.2)
where A = I8, and AS = 0 (orthogonality conditions).
Now applying this to the objective function of (D.1), we obtain
m
Ao = L8, =1 (normality condition) (D.3)
and g (x) = Tu, >=1 (u/8) % (D.4)
0 i=1 i i=1 i i
For the constraint g, we have
P
Moo= 8 >=0 and (D.5)
i=m+l \ . A 5
1 >= glkl =§_u1 1 >=Ti ( ci/ai)si )\11.-:]'1[. (ci )‘1/61) i (D.G)

If we multiply the two inequalities (D.4) and (D.6), we obtain
)
g (x) >=% (c /5% B (e /8,08 (D.7)
0 =1 14 jemtl 1074

which is just (2.20). Now replace g; in (D.1) by the following
constraint: '
P
, =T u, >=i with X,<=0 (D.8)
i=m+l

Rather than dealing with 9, directly, let us define
g, = g;l with  Asz==-22>=0 (D.9)
Then using (D.2), we have

1= g0 = (g3t )= () e W (e pa/8)T 0 (Da10)
i

2
Finally, we obtain (2.26) by multiplying (D.4) and (D.10).
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