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ABSTRACT

Optical character recognition requires that data acquired
from a camera device first be reconditioned into a suitable form.
This thesis presents a design study of a preprocessor intended to
accomplish this task wunder the constraints of real-time,

autonomous operation as part of a reading machine for the blind.

The preprocessor contains three components: a filter to
reduce the influence of noise and enhance the text seen; a
binarization stage to identify the character and background
pixels by a single bit; and a segmention system which isolates
individual characters for delivery to the recognizer in proper

causal order.

Filtering of the acquired video information is performed
with the Laplacian of a Gaussian, V2g, edge detection operator
developed by D. Marr. This filter is shown to locate the char-
acter edges and to control the amount of detail seen optimally.
Developed from models of the human visual system, this filter
promises that the preprocessor could attain a human text
resolution capability. Binarization is also reduced to a simple
thresholding of the filter's output. To achieve optimal
enhancement of print structures of known dimensions a filter
design strategy is presented incorporating two periodic edge
models. Since the filter must be digitized, the design method is

further extended to include an analysis of the effects of
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sampling the continuous filter and quantizing its coefficients

for a direct-form finite impulse response implementation.

To validate the claim that this filter's performance is
superior to other edge detéction methods, a chapter is devoted to
quantitative evaluation of V2?g filtered test images. The results
are compared to others published and found superior, as well as

remarkably noise immune.

Segmentation of the binarized text is accomplished with a
technique adapted from the binary-image description method of
C.T. Zahn. The text images are reduced to a hybrid chain-
code-and~coordinate description of all internal and external
boundaries concurrent with the 1incoming raster-acquired data.
No more than two image scan lines need be stored. All closed
borders within the text are detected immediately as they occur
by monitoring the 1local changes in the image's Euler number
during a scan, and verifying global closure by following pointers
through a 1linked-list data structure. A simulation of an
implementation of the segmentation system, operating on fifty Vvig
filtered test images, indicated that the real-time performance
objective can be achieved through a combined serial and parallel

architecture.
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I. INTRODUCTION

This thesis presents a design study preliminary to the
development of a digital image preprocessor for optical character
recognition. As a design study, the objective of this thesis is
to exahine a number of approaches to the development of a
preprocessor, and then endorse a particular configuration. The
operational parameters incorporated in this configuration are
then studied to facilitate the final assembly and adjustment of
the preprocessor. No attempt i made to address the problem of
optical character recognition (OCR). The dominant reason for
this is that this system was envisioned to complemént an existing
OCR system developed by Dr. M.P. Beddoes of the Department of
Electrical Engineering at the University of British Columbia as
part of a reading machine for the blind. However, the pre-
processor design is kept as general as possible so that it may

serve as an input to most other OCR systems.

The purpose of an OCR device is to accept a description of a
machine-printed or handwritten character as input and then make a
decision as to the identity of the character. The purpose of an
OCR preprocessor is to accept the raw video information from an
imaging device as input and then transform it into a form the OCR
device can accept. Among the tasks performed by the preprocessor
are noise removal (filtering), identification of character and
background pixels (binarization), and T"packaging" of the
characters into individual wunits (segmentation). Not all OCR

preprocessing 5ystems perform all of these tasks, but the system



2
proposed in this thesis does. Figure 1.1 illustrates these

operations in the order they will be performed.

the the

@% - (il binari-
R are VN camera 1lter .

3 ;,23. E zation |(OJ="0"
e .:vv1n

i

tiihie

segmen-

» OCR

tation

Figqure 1.1 Preprocessor block structure

Since the first OCR system was commercially marketed in 1954
by the Intelligent Machines Research Corporation, the literature
has come to abound with material related to OCR. Comprehensive
surveys of the early machines and the problems they encountered
were published by the British Computer Society [1], Auerbach [2],
and Harmon [3]. More recently Ullmann [4], [5], [6], has
presented several surveys of the field spanning the developments
of the past decade. The current state of the art is reviewed by
Schirmann [7]. These surveys 1illustrate the diversity that
exists among OCR systems. Not only do many systems choose to
organize the preprocessor differently from Figure 1.1, but some
systems choose to omit one or more of these stages. Indeed,
purely optical systems, utilizing the principles of laser

holography, may do away with the entire system altogether.

This diversity 1in designs is largely a consequence of the

diversity of OCR applications. These range from magnetic ink
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character readers, employed to identify bank cheques, for which
binarization and segmentation 1is trivial, to hand-printed-
document readers for which preprocessing and particularly
recognition is very difficult. Most of these systems require the
input material to be presented in a suitable and sometimes
rigidly fixed format. This includes characters hand-printed at
fixed locations on the document, or machine-printed characters
organized into well defined lines without the interspersion of
non-text material, However, modern research is making progress
towards relaxing the restrictions on the input to permit variable
text formats, and random placement of illustrations (Wong et al.
[8]). This added sophistication requires the addition of more
components to the preprocessing system of Figure 1.1 to locate

the text regions and to direct their acquisition.

' The system developed here is targeted to sServe as a
component of a reading machine for the blind. This imposes
certain constraints on its operation. Blindness 1is frequently
accompanied by various motor disabilities. This demands the
system's operation to require little or no manual dexterity. In
order to produce a natural reading pace, real-time operation is
réquired. Lastly, since the complete system is envisioned to be
operated autonomously by a single wuser, it must be robust.
Deviations in print gquality, or minor operator errors must not
generate a Situation requiring intervention by a second party.
Of course, the preprocessing system alone cannot be responsible
for fullfilling all these constraints; these are issue$ that must
be addressed by the OCR system as a whole. However, to be

acceptable, the preprocessor must be compatible with these



constraints.

The image acquisiton device, or camera, can take on many
forms. These inciude flying sport scanners, vidicons, laser
scanners, and charge-coupled device (CCD) arrays. The System
currently 1in use by Dr. Beddoes utilizes a 64 element linear CCD
array. This device is readily amenable to handheld or simple
machine-directed operation. Therefore, the preprocessor was
designed to accomodate a linear-array-type acquisition device.
Vidicon and other two-dimensional acquisition systems are also
suitable. These permit the camera to remain stationary while the
document 1is scanned electronically, requiring less dexterity and
training on the part of the blind user. The primary constraints
on the camera are pixel resolution, and field of view. Ullmann
[5] notes that the optimal pixel size for most print  styles
covers 130um, though Schiirmann [7] claims 50um is neceéSary for
book print. The field of view must, of course, at least include

the largest character expected.

The noise filtering and binarization stages are frequently
arranged in a different order from Fiqure 1.1, and sometimes
combined into a single operation. Binarization reduces the
original pixel data representation to a single bit with character
pixels receiving value "1" and background the value "0". The
reasons behind this operation are 1largely economic. Binarized
images require less Storage space, and allow both segmentation

and recognition to be performed with simple boolean operations.

Binarization always involves some form of thresholding

operation. The success of the preprocessor correctly identifying
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the character pixels depends on the proper setting of this
threshold. In the majority of systems reviewed the threshold is
applied directly to the input data without an intervening filter.
The simplest such operation is to pick a fixed threshold
intensity level and apply it throughout the image. Ullmann [4]
notes that this is not a very useful operation since background
and character intensity levels vary continually making it
impossible to selecﬁ a satisfactory level for all circumstances.
An alternative approach is to adopt a floating threshold level
adjusted according to local grey-level measurements. One of‘the
most sophisticated such methods was developed by Bartz [9] for
the IBM 1975 optical page reader. The threshold was not only
influenced by 1local grey-level averaging, but also by the
character 1line widths seen. Furthermore, a noise analysis
revealed that typewritten and machine printed documents differed
substantially in their noise content. Therefore, two different,
user selectable, thresholding algorithms were applied. This,
however, is inconsistent with our autonomous operation
constraint. Another, le$s common, threshold selection procedure
requires analysis of the document's grey-level histogram. This
requires selection of an optimal partition to separate the
distribution modes identified with character and background
pixels. Such a method was outlined by Otsu [10], and Vapplied
successfully by Tou et al. [11]. However, the method wa& not
considered suitable here because the grey-level statistics are
accumulated by prescanning the entire document causing the method

to be insufficiently sensitive to local contrast variation.

Since all of the above binarization techniques operate
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directly on the input image without an intervening noise filter,
a certain amount of extraneous detail invariably receives an
inappropriate label. This may take the form of stray dark pixels
in the background, light holes within the character regions, or
rough character outlines. Removal of this noise is considered
sufficiently important that almost every developer of an OCR
system employing this form of binarization has included a noise
cleaning stage. A general study of this procedure was published

by Rosenfeld and Park [12].

In view of the unsatisfactory performance of most
binarization procedures, it was felt that an alternative
approach, founded on the principles of edge detection, was
justified. Edge detection procedures have the advantage that
their primary objective 1is the detection of local intensity
variations while maximizing noise rejection. The intensity
variations of interest are, of course, those caused by the
presence of printed characters. Use of edge detection in OCR
preprocessing 1is uncommon, but not new. The flying spot Scanner
used by Greanias et al. [13] sensed the local discontinuity at
character edges to direct a contour trace, and the BCS [1]
discuss another flying spot scanner control method where the
gignal difference between a focused and defocused beam (an
approximation to a Laplacian) located character edges. Recent
edge detector research has developed a class of edge filters
which simulates the operation of the lower levels of the human
visual system. Such a filter holds a particular attraction
because the range of detail resolved and noise rejection achieved

would be similar to that of a human reader. Therefore, any



2
document that a human could read, a machine'incorporating such an
edge filter should be able to read also. Even though edge
detection was not developed for 1image binarization, it was
observed that this new filter class could readily be modified to
do this. Furthermore, this modification simply involves the
application of a fixed threshold. This new edge filter class is
called the optimal edge detection filters, and forms the subject

of the next two chapters.

Chapter 2 introduces these optimal edge filters and
defines the nature of their optimality. The rest of the chapter
will address the design of the filter to render it suitable for
any given image processing task. It will be seen that optimal
filter resolution depends on at least one parameter. Since the
filter must be capable of resolving all character detail while at
the same time rejecting unwanted noise, considerable attention
is given to the resolution response and noise sensitivity of the
filter under variations of this parameter. Aléo, since the
filter is initially specified as a continuous two-dimensional
point spread function, it must be digitized before installation
into the preprocessor. Digitization takes the form of spatial
sampling and coefficient quantization. These operations are
therefore also examined at length to determine the necessary

sample spacing and coefficient word size.

Chapter 3 will attempt to substantiate the claims made
in Chapter 2 that the performance of an optimal filter will
exceed that of all other edge filters in common use. To achieve
this objective, a purely quantitative edge detector evaluation

method will be applied to an optimal edge filter. When compared



8
to published evaluation scores, the optimal filter's superior
performance, and hence suitability for the preprocessor, is

clearly seen.

The binarized image serves as the input to the segmentation
stage of the preprocessor. Segmentation is viewed as necessary
because it separates the individual characters from the remainder
of the image for analysis and recognition. 1In this way, the
recognition system can be reasonably certain that the data it has
received represents a single character. However, not all
researchers agree on the need for segmentation. Clayden, Clowes
and Parks [14], maintain that segmentation is neither necessary
nor desirable since it requires a certain degree of position and
orientation control over the input. Instead, they applied a mask
matching recognition technique directly to the running text
without prior segmentation. While it 1is true that some
positional control is necessary, it 1is also true that this
necessity 1is largely a response to the need for the camera to
consistently follow a given line of text. They also claim that
correct segmentation may not always be possible. However, direct
recognition did not seem to offer a useful alternative since
their own results show recognition accuracy to deteriorate as
character spacing decreases, a situation in which most
segmentation schemes also break down. 1In an attempt to avoid the
difficulties posed by variable spacing and touching characters,
the 1IBM 1275 reader [15] places the binarized data into a series
of shift registers which in turn are connected to a template
correlation-type recognizer. The shift registers then move the

characters to every possible vertical and horizontal position
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within the correlator as though mounted on a rotating drum.
Ullmann [5], [6] notes two shortcomings with this approach. It
has difficulty with certain types of close characters such as
"rn" which can be confused with "m". Also, this method 1is slow

and costly to implement.

Chapter 4 will préSent a review of a number of seg-
mentation methods and then describe the method endorsed for
this system, Segmentation can be both a complex and
time-consuming process. For this reason, the real-time
constraint will have its greatest impact on this system
component. In an attempt to estimate both the hardware
requirements and expected processing delay times, a software
simulation is performed on the segmentation system with fifty
binarized images serving as input. The problem of separating
touching characters is, however, addressed only lightly. This is
seen as a complex problem, but suggestions for further work in

this area are presented.
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II. Optimal Edge Detector Design

2.1 Introduction

Recently a new approach to the problem of edge detection has
appeared. This approach involves an image filter whose response
was derived to optimize the enhancement of edges in a clearly
defined way. Two such filters have been published. The first,
developed by D. Marr and E. Hildreth [16], shows, through an
heuristic argument, that the local response and range of spatial
variation can optimally be minimized through application of a
Gaussian filter, followed by a Laplacian operation to facilitate
edge detection. The second, first published by Dickey and
Shanmugam {17], is more rigorous in its definition of an edge and
criteria for optimality. By defining an edge as a step
discontinuity between adjacent regions of differing, but
individuaily uniform, intensities, they show that the ideal
bandlimited filter to optimally localize its response about the
edge is given by a prolate spheroidal wave function. It will
later be shown that the Marr filter is essentially an
approximation to the Dickey filter; its simpler form also makes

it more amenable to application and study.

The primary difference between these operators and the many
others published is that they were developed from a narrow set of
assumptions describing the response desired, which then
constrained the filter to a form necessary to provide this
response. Most edge operators, however, begin by making certain

observations about the properties of edges in the input image and
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then seek to isolate pixels with these properties from the
background. A large <class of edge operators start with the
assumption that edges are signified by maxima in the gradient of
the input image. This idea stimulated the development of the
simple gradient operator which largely owes its ancestry to
Roberts [18]. However, owing to the well-known noise énhancement
properties of the pure gradient, it soon became apparent that
some sort of smoothing operation must be included to reduce
spurious edge detail. Rosenfeld and Thurston [19] wused the
difference between the average intensities in adjacent square
regions, whose spatial dimensions were powers of two, to estimate
the gradient at a pixel between them. The final size and
orientation of the regions was determined dynamically according
to the greatest absolute difference. Macleod [20] avoids the
wideband response and the resultant "ringing" characteristic of a
square region average by differencing image areas smoothed by
superimposed displaced exponentials windowed by a Gaussian. For
both edge opefators smoothing large areas of the input image
reduces the amount of image detail seen in the output image.
This reduces noise detail, but little control is provided over

the exact amount of true image detail that can be resolved.

A different approach from the gradient methods is to model
the 1ideal edge as an intensity step; then formulate a series of
templates that will produce a maximum response when centered on
an edge. Perhaps the most sophisticated of these was developed
by Hueckel [21], [22] where up to nine templates, representing a
set of orthogonal basis functions over a circular region, are
applied. After combining the response of the templates into a

measure of the Hilbert distance from the image sample to the
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ideal edge, a decision as to the presence of an edge 1is made.
Like the gradient methods, the template approach also suffers in
the presence of noise or non-ideal blurred edges. The problem of
choosing the template size to prevent undesirable smoothing of
edge detail also remains. However the greatest problem of both
the gradient and template methods is seen in the results; the
edges are generally disconnected and irregular regardless of
whether generated by objects or noise. To combat this
shortcoming, most authors provide some form of relaxation or line
fitting technique to connect the edge segments into closed
regions. The optimal edge detector, it will be shown, does not
have this shortcoming. It naturally encloses image regions in

unbroken edge boundaries.

Another objection is that the spatial frequency response is
seldom considered in edge detector development. One exception is
when the detector is to act as a matched filter for a particular
edge or line feature, e.g. Halé [23]. Fourier transforms of some
of these operators, particularly those involving local averaging
over discontinuous fields like the Rosenfeld - Thurston, reveal
high frequency passbands extending well beyond the principal
passband. As a consequence, high frequency noise is not entirely
suppressed. Also, additional features not present in the input
image, such as the "ringing" of certain edges, appear. To remove
these unwanted features careful attention 1is given to the
selection of a threshold 1level to be applied against the

resultant operator output.

In contrast, the optimal edge detectors were designed

primarily in the frequency domain. The Marr and Hildreth filter
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evolved from a model of human vision. The lowest levels of
mammal vision were observed to include bandpass spatial frequency
channels to filter image detail at various degrees of resolution
[24]. After Wilson and Giese [25] showed that the frequency
response of these bandpass channels can be approximated by a
difference of two Gaussian distributions, Marr and Poggio [26]
showed that each channel could detect edges through the zero
crossings it produced. Further considerations as to what
constitutes the best form of an edge filter lead Marr and
Hildreth to the Laplacian of a Gaussian which they show to be the
limiting condition of the difference of two Gaussians as their
variances converge. The Dickey and Shanmugam filter, on the
other hand, was developed in a more direct, analytical manner,
but again involved serious consideration of the form of the
frequency response. The fact that a prolate spheroidal wave
function optimizes the edge filter results in paft from strictly

bandlimiting the filter to control noise at the outset.

Another distinguishing feature of optimal edge filters is
‘that the form of their response is not fixed. Instead it is
controlled by the standard deviation of the Gaussian in the case
of the Marr and Hildreth filter, and by the bandwidth and the
resolution-bandwidth product in the case of the Dickey and
Shanmugam filter. This differs from many other edge detection
filters which are specified as a mask of fixed form. The two
optimal filters will be combined into one with the form of the
Marr-Hildreth filter through.choice of a common bandwidth and
adopting an asymptotic approximation to the Dickey-Shanmugam
filter. This will leave only one parameter, a standard

deviation, to determine the form of the filter. The choice of



14
the appropriate standard deviation and the resultant consequences
for the filter's accuracy constitute the principal design problem
addressed here. Neither Marr and Hildreth nor Dickey and
Shanmugam provide  much guidance in this matter. Marr and
Hildreth claim that parallel edges could not be resolved
accurately when the filter's central wavelength exceeds twice the
edge spacing. The Dickey and Shanmugam filters, on the other
hand, 1involved specification of a resolution interval within

which it is unlikely another edge feature will be found.

To improve on this state of affairs four étages of filter
design will be considered. The first two will involve selection
of an appropriate filter standard deviation to meet specified
edge resolution requirements according to the structure of the
input image and accuracy in the presence of noise. This will be
done by examining the response to two periodic edge models
blurred with a Gaussian distribution. Latér, the positional
accuracy of an isolated zero crossing in the presence of additive
Gaussian noise will be considered. The result will be a set of
design rules outlining the maximum filter standard deviation
necessary to resolve an image which, in part, resembles one of
the edge models. The expected accuracy to be achieved with that
standard deviation is then presented, as well as the minimum
tolerable signal to noise ratio in the input image. The
remaining two design stages will address the problems of digital
implementation: sampling the continuous filter; and quantizing
the resultant coefficients. It will be seen, however, that the
filter 1is wvery robust under both these operations allowing a
comparatively coarse sample spacing and a quantization word size

to match most image acquisition systems.
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This design methodology should provide a comprehensive guide
for the selection and implementation of a filter designed at the
outset to be optimal at the task of resolving edge features.
First we will review how the form of the optimal filter can be

found.
2.2 The Case for Optimality

Marr and Hildreth, and Dickey and Shanmugam have independent
arguments to substantiate their respective claim of having found
an optimal filter. Each is rooted in a different cost function.
That used by Marr and Hildreth measures the localization of the
filter's influence in both the spatial and frequency domains.
Dickey and Shanmugam, on the other hand, adopted the proportion
of the filter's energy within a specified resolution interval
about an edge feature. We will now examine each of these
approaches in turn and then combine the results into a single

near-optimal filter.
2.2.1 Marr Optimality

Marr and Hildreth avoided committing themselves to a
rigorous mathematical model of an edge preferring instead to draw
attention to the variety of natural phenomena giving rise to
intensity changes in the visual world. These 1include
illumination changes such as shadows, the orientation of visible
surfaces, and changes in surface reflectance. One observation is
that intensity changes are spatially localized rather than
extended and wavelike. Furthermore, these changes occur over a
wide range of scales, i.e., spatial frequencies. In order to

identify the processes responsible for the image details within
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this range the optimal filter must have a restricted bandwidth

corresponding to a certain edge resolution in the output image.

The constraints placed on the edge filter are therefore
conflicting. To restrict the range of scale in the filtered
image the filter must possess a minimal bandwidth of standard
deviation Aw. To localize edge positions accurately the filter's
influence must be concentrated about those positions with minimal
standard deviation Ax. The cost function to be minimized by this
optimal filter, therefore, is the product of these two standard
deviations, AxAw. Only a filter in the form of a Gaussian

- distribution, g(x,y), can minimize this product [27].

However, filtering an image with a Gaussian function alone
is only a smoothing operation reducing the range of detail by
blurring the original. The position of the'edge is defined to
coincide with 1lines of steepest gradient in the filtered image.
This indicates that an edge is characterized by a zero crossing
in the Laplacian of the filtered image if intensity variation
near and parallel to the line of zero crossings is locally linear
(Marr and Hildreth's condition of linear variation). If linear
variation does not hold, the position of the zero crossing will
be displaced to one side of the true edge (i.e. gradient

maximum).

There are a number of advantages to using the Laplacian for
edge detection. It is an orientation independent operator,
therefore producing only a scalar value for each pixel in the
final image. The zero crossings produced form closed curves for

edge phenomena totally enclosed by the image. This 1is an
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important consideration should subseguent region or object
segmentation schemes be applied. Finally, the Laplacian can be
combined with the Gaussian to condense the image filtering

_ process into one step:
Vi[g(x,y) * 1(x,y)] = Vig(x,y) * I(x,y) . (2.1)

Therefore, Marr and Hildreth argue, the optimal edge
detection filter to apply is the Laplacian of a Gaussian point
spread function with the resulting zero crossings defining the

image edges:

Vigx,y) = -[1 - (x? + y?)/207] expl-(x? +|¥?)/202)/(no*). (2.2)

The spatial frequency response of this filter is bandpass as

described by
G"(u,v) = -47%(u? + v?) exp[-272(u? + v2)g2] . (2.3)

The filter's half power bandwidth is 1.2 octaves. This almost
meets the one octave requirement of Logan's theorem [28] which
claims that a one octave bandpass signal is completely determined
by its zero crossings. Marr, Ullman and Poggio [29], however,
have féund experimentally that this bandwidth requirement can be
relaxed considerably with little introduction of error.
Therefore image detail 1in the resolution band of interest is
fully described by the edges found on application of the V2g

filter.

This bandpass character of the V?g filter would seem to
weaken its claim to optimality by the previous argument since it

was found that a 1lowpass, Gaussian filter was of the correct
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form. Furthermore, since nothing has been said ¢f the exact form
of the edge features being sought, little can be said of the
suitability of this filter for highlighting specific edge
structures. These criticisms arise largely because of the
heuristic nature of the arguments wused in this filter's
development. In fact the following argument will show that the
Vg filter is asymptotic optimal up to a predetermined cutoff

frequency.
2.2.2 Dickey and Shanmugam Optimality

By defining an edge as a unit step feature in image space,
Dickey and Shanmugam derived an edge filter that optimized a very
different measure’ of local influence. The optimal filter was
defined as maximizing the proportion of output image energy in
the wvicinity of the edge 1location for given bandwidth and
resolution requirements. In one dimension this translates into
maximization of the following cost function:

1/
S |g(x)]|2dx
*I/2
vy = (2.4)
S lg(x)|?dx

where g(x) is the step spread function of the optimal filter, and
I is the resolution interval centered on the step edge. The
filter is also constrained to be bandlimited to radian frequency

Q.

With this information Dickey and Shanmugam were able to show

that the optimal filter transfer function is given by
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Kiwy,(c,wI/20), |w|<f
H(w) = (2.5)

0 elsewhere,

where K, 1is a real constant, Y, is the first degree zero order
prolate spheroidal wave function and ¢ is the resolution -

bandwidth product, defined by

c = Q1/2 . (2.6)

Note that ¢ is similar in concept to the resolution - bandwidth
product minimized in Marr's derivation. However, H(w) does not
seek to minimize c. Rather, ¢ is specified by the filter
designer and relates to the maximum +v attainable as given in
Table I. Observe that Dickey and Shanmugam's approach provides a
sharper measure of concentration of g(x) and H(w) than that of
Marr and Hildreth because integrations are now restricted to a

finite interval in space and frequency.

c , 0.5 | 1 l 2 ' 4 , 8

Tmax(C) | 0.00858 | 0.06279 | 0.35564 | 0.91211 | 0.99988

Table I. Values of maximum ¥

Representing the filter as given in (2.5) makes for a number
of problems when 1its practical implementation is considered.
Vi(c,x) must either be numerically computed or referenced from
tables [30]. Also spatial convolution systems would require that

either the two dimensional form of H(w) be transformed to the



20
spatial domain with the discrete Fourier transform or that the
line spread function of H(w), the derivative of a rescaled
y,(c,x), be converted to a point spread function through the Abel
transform [31, p. 210]. These are cumbersome processes which do
not admit well to an analysis of the filter's performance given a

more realistic edge detection problem.

Addressing these difficulties, Shanmugam, Dickey and Green
[32] attempted to replace y;(c,x) with a closed form asymptotic
approximation. The resultant form of the filter was much more
amenable to analysis than (2.5). Lunscher [33], however, pointed
out that the applied approximation was improperly scaled and that

the correct form of the asymptotic optimal filter is given by

K w? expl(-cw?/202%), |w|<f
H(w) = (2.7)

0 elsewhere,

valid on |w| < Q¢ '7°".

Note that in the region |w| < & the form of H(w) 1is that
of the Laplacian of a Gaussian distribution. Furthermore, since
H(w) is an even function and the step edge model is an odd
function, the resultant filter response, g(x), 1is also an odd
function. Therefore, the edges in an image filtered by the two
dimensional extension of (2.7) are indicated by zero crossings in

the output image.

From these results, it can be concluded that wup to a
suitable cutoff frequency, &, the Marr and Shanmugam filters are

identical.  Therefore the V2?g filter is actually suboptimal in
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the sense of maximizing the filtered image energy about step-like

edges and bandlimiting the range of scales passed.
2.2.3 Unifying the Filters

By the Paley-Wiener Criterion [34, pp.16-20] neither H(w)
nor G"(w) are physically realizable because the high frequency
cutoff falls to zero faster than exponential order. Particularly
in the case of H(w) , the sharp cutoff would be smoothed somewhat
by the act of windowing the spatial filter or input image. The
result of implementing the filters, then, is to force their form
into closer agreement. The filters can therefore be related by
agreeing upon a high cutoff frequency on G"(w) which will
correspond to Q. By standard convention the 3 db half power

point is chosen. It will later be shown that this occurs at

Q = 270.325/0, . (2.8)
G"(w) and H(w) are therefore equivalent in form when

of = c/Q? = 1/2Q, (2.9)

resulting in

c = Qzale (2.108)
1/2

Qo2 . (2.10b)

Substituting (2.8) into (2.10):

o = 4,17,
1/2

2,040, .

Table I shows that this value of c¢ corresponds to 91% of the

filtered image energy being concentrated within the resolution
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interval I; This implies a very low probability of encountering
another zero crossing within 2¢, of the main edge feature. This
observation is supported by the probability analysis of Vg
filtered white noise of Grimson [35], later corrected by Clark
[36]. This would also imply that if image edges are part of a
periodic structure such as a square wave, then if the edge
spacing is less than 20, , the structure would be poorly seen, if
at all. These performance gquestions are addressed in a more

rigorous manner in the next section.
2.3 Predicting Filter Performance

It has been established that the V?g filter maximizes
filtered image response about step-like edge structures, and
controls the range of detail of these structures through its
bandpass response. Furthermore, this passband being about one
octave wide, the zero crossings in this image provide a complete
description of the image detail passed. However, beyond the
prediction that zero crossing spacing is unlikely to be narrower
than 2¢; no quantitative measure of the expected range of detail
is evident. It can be arqued that the frequency response,
G"(u,v), provides this measure; but, as Marr and Hildreth
correctly point out, real images do not consist of smooth
sinusoidal variations 1in intensity. Rather, they consist of
abrupt changes occurring over a variety of periods. Furthermore
these intensity changes rarely exhibit the ideal abruptness of a
step function. Processes such as diffraction of light, diffusion
of 1ink and additive noise tend to blur such detail. The extreme
case of the spacing of detail resolved in randomly structured

images with respect. to o, was examined by Grimson, and Clark.
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However nothing was said of the magnitude of the resultant

response against edge spacing in the original image.

Since real images do exhibit some form of measurable
structure, what is needed is a method of relating the filter
standard deviation, o, , to the magnitude of response seen at the
edges of these structures. With these results the degree of
invisible detail for ¢ can be identified. Also, since the Vg
filter was originally modeled on the human visual system,

predictions could be made concerning human visual performance.

The method chosen to predict the filter's performance was to
observe its response when presented with two sets of periodic
non-ideal edge structures. The result permits a process of
filter design through the choice of a suitable o, for resolving

image structures of a known regularity.

The two periodic edge models used were an ascending
staircase, and a square wave pulse train. To model non-ideal
edges blurred by various processes, these structures are
convolved with another Gaussian of variable standard deviation
Oy . Gaussian blur of this kind is the kernel of the diffusion
equation [37, pp.113-117] and so most accurately describes
deterioration of edges through diffusion of dye through paper or
exposed grains through photographic emulsion. Some success has
also been reported on applying this model to blur found in
industrial X-ray radiographs [38]. Shanmugam et al. examined
the influence of blurring an ideal edge with essentially a first
order approximation to a Gaussian. Their conclusions, translated
in terms of a Gaussian, show that the filter retains optimal

performance if the resolution interval is greater than w0, /V2,
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i,e., I/2 = 20, > 1.110,. The following analysis will show this

result to be too optimistic.

The edge models presented will be considered dependent on
only one spatial wvariable. This will simplify the analysis

through use of the filter line spread function:
v2g, (x) =yfw\729, (x,y)dy
= -(1 - x%/0?) exp(-x2/202)/(V2mw0?) (2.11a)
with Fourier transform

G"(f) = -472f? exp(-2n2f202) . (2.11b)

Edge magnitudes will be defined by the slope of the output signal

at the zero crossing.
2.3.1 Staircase Edge Response

The edge model used to represent a blurred infinite

staircase of ascending magnitude is,
esr (x) = g, (x) * I u(x - nT) | (2.12)
where

g,(x) = Gaussian blur function = exp(-x¥202)/vV27n0Z. (2.13)

The result of filtering eg,(x) with VZg(x) is,

esrol X) Vi[g, (x) * eg;(x)]

Vg, (x) * g,(x) * T 6(x - nT), (2.14)

nz-o0

with Fourier transform

Esrolf) = j27f2Z n exp(-272n2f2(02 + 02)] 6(f - nf; ), (2.15)

N--oo
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where f, = 1/T.

Normalize the edge spacing T and the blur standard deviation

with respect to the filter standard deviation:

Op= ao, , (2.16a)

T = Bo, . (2.16b)
Substituting into (2.15):

Eerd£) = 321/(B207)T nexpl-2n2n2(1+ a?)/g216(£ - nE).  (2.17)

The magnitude of the slope of the zero crossing at the origin

will define the edge magnitude:

|Vesro(x=0) | = |327] fEqo(£)Af|

8172/(1330,3)3_? n?exp[-272n%(1 +q2)/p2%], (2.18)

The result is plotted in Figure 2.1 in db normalized to peak

magnitude against a and 8.

Observe that for small a (a < 0.2) the 3 db turn on spacing

is f = 2.75. At large a the 3 db of peak region is at @ = 0.51
for B 2 5.5 . Outside the 3 db level bordering the plateau the
response decays linearly in db per decade a, and at a higher rate
per decade f. Therefore it is expected that the edges are fully
resolved in this image for

o, < 0.51 o,

T 2 5.5 0, and in the case of negligible blur

T 2 2.75 o, .
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| Vesro(0) |

Staircase edge model magnitude response

Figure 2.1
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It can be readily shown that there is another zero crossing
between the steps at ( n + 1/2 )T of magnitude decreasing with
increasing 8 for f> 5. The existence of this zero crossing may
confuse the process of edge detection for these types of image
structures. A method will be discussed 1later to resolve this

problem using multiple filters of differing bandwidths.
2.3.2 Square-Wave Edge Response

A more common image structure is one of periodically rising
and falling intensity. In its simplest form it can be modeled by

a blurred square wave,

eso{x) = g, (x) * u(x)u(T-x) * T &§(x - 2nT) . (2.19)

Nz eoco

Here T represents the spacing of the edges of the square wave
rather than the period of the sqguare wave itself. After

filtering with V2g, (x) the result is

esaol X) Vi[g, (x) * esq(x)}

vg, (x) * g,(x) * { £ [&(x - 2nT) -

Nz =00

§(x - (2n+1)T)] } (2.20)
with Fourier transform,

Esod £) = j27f2Z n[1 - exp(-jnn)]

ng=

exp[-27?n2f2(02 + 02)] 8(f - nf,) (2.21)
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where f, = (2T)-'. Substituting the normalizing factors, (2.16):
Esad £) = jn/(ZﬁzaflE n{t - exp(-jnn)]
exp[-72n2(1 + a?)/282] §(f - nf,) . (2.22)

The magnitude of the slope of the zero crossing at the origin is

|Vesad0)| = |327f £ Bogo(£)at]|
- ﬂZ/(;saae)n"é n2(1 - cos(nm))
expl-72n2(1 + a?)/282 ] . (2.23)

This result is plotted in Figure 2.2.

Note that the response 1is more complex and sensitive to
narrow spacing than in the case of the staircase model. The
strong 5.3 db peak above steady state at 8=1.81 for small a
indicates that the edges are most strongly enhanced at the brink
of wvisibility. The response reaches 3 db below the small
a - large B plateau at f=1.15 for small a (a < 0.2). For large a
this level of response is first reached for a=0.51 and g821.36.
Note that this 3 db maximum blur level is identical to that of
the staircase model. Finally, unchanging steady state response
is achieved for a<0.51 and $25.00. Again it 1is seen that the
response falls off 1linearly in db per decade a, and at a much
higher rate per decade B. Therefore it can be concluded that a

blurred square wave image is fully resolved for

IA

o 0.51 o,

T 2 1.36 0,, and in the case of negligible blur

T 21015 af°
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Figure 2.2 Sqguare wave edge model magnitude response
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2.4 Performance in Additive Noise

The forgoing analysis has succeeded in providing a guide as
to when certain edge structures can be expected to become visible
given o, . However, since the signal models used were perfectly
deterministic} the filter performance in the presence of additive
noise remains to be resolved. To address this problem, retain
the one-dimensional signal models used thus far, and corrupt them
with additive white Gaussian noise of power spectral density

ﬂo/zv

The first question to arise concerns the accuracy of the
zero crossings as a measure of the true edge ‘positions.
Consider an isolated filtered edge signal, yo(x), centered on the
zero crossing with filtered Gaussian noise, n(x), added. Being
a random process, nothing can be said of where exactly
n(x) + yo(x) will cross the =x-axis nearest x=0. Instead, a
statistical description in the form of the standard deviation of
the =zero crossing aboutvthe‘origin, o, , must be sought. To make
the problem manageable, assume a linear model for both the signal

and the noise at the origin. The signal then becomes

yi(x) = Ax (2.24a)
and the noise, with y-intercept n, and slope n,, becomes

y2(x) = Ngx + n, (2.24Db)

Clearly this assumption of linearity has a limited range. For
the signal, this range is bounded by the signal peak at lx|] = A.
For an 1ideal step edge, corresponding to ideal staircase and

square wave edges with 8 > 5, this occurs at |x| = o¢,. Plausible
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values of o0, should therefore be bounded by o, /2 for at least
85.4% of the zero crossings to be contained in the linear region.
This in turn will lead to a lower bound on the signal to noise
ratio in both the filtered and unfiltered 1image for which the

filter can be expected to yield accurate results.

The most straightforward approach to determining ¢, involves
solving the variance of the x-intercept of the sum of y, and vy,,

i.e.,

yi(x) + y,(x) = (A + ng)x + no = 0,
yields an x-intercept of

Xo = —Nno/(A + hy).

The variance of x, forms the variance of the zero crossing

estimate, o2:
02 = E[ng/(A + ng)2] - Elng/(A + ny)l2. (2.25)

Since a random variable and its derivative are uncorrelated (39,

p. 245], and uncorrelated Gaussian processes are independent

NE E[n2] E[(A + fy)-2] - E[ny,]2E[(A + ng)-1]2

E[n2] E[(A + ngy)-2]. (2.26)

where E{n,} = 0 since the filter does not pass dc. Therefore,

writing the variance of n, and n, as n and a2,

(2.27)

nZexp(-nZ/2n)dn, /’exp( h2 /202 )dn,
(A + n, y2/27R2 .

The first integral simply yields n2..  However, the second



32
integral cannot be directly evaluated because of the singularity
at ny, = -A. This singularity implies an intercept at infinity
which underscores the limitations of the 1linear model applied
here. In fact any ne, which, together with n,, produces an
intercept outside |xy|=0, violates the linearity assumption. By
integrating n, only over the region which maintains Xo within the
bounds of |xo| < 0, , slopes outside of this region can be
effectively ignored as highly improbable. However, this solution
is not satisfactory for the simple reason that slopes about

No = -A are perfectly reasonable since the filter obviously

passed the signal with that slope.

A more workable approach is made possible by estimating o,
from the x-intercept of the noise standard deviation bounds about
the signal near the zero crossing. This time, assume a linear
model only for the signal within |x| < A, and add to this the
noise, n(x):

y(x) = Ax + n(x).

Since the noise 1is assumed stationary, y(x) has a constant

variance of n? and standard deviation

0o = V/AZ (2.28)
centered on the signal. The x-intercepts of the lines passing
through the upper and lower bounds on y(x) as defined by o, will
be wused to estimate og,. Figure 2.3 shows these lines
superimposed on the signal model. The line defined by the lower
bound is |

y, {x) = Ax - oo (2.29)

with x-intercept

Xog = Uo/A. (2'30)
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in the presence of noise
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The x-intercept of the upper line is obviously of equal magnitude
and opposite sign. Being the intercept, or zero crossing, of the
standard deviation bounds of y(x), X, will serve as the estimate

of the standard deviation of the zero crossing, 0,.

Before proceeding, it is necessary to evaluate do. The

filtered noise power spectral density is given by

Sno (£) = [G"(£)]2S, (£) (2.31)

where, from equation (2.11b),

|G"(£)|? = 167" f exp(-4n2E2g2). (2.32)
and

Sn(f) = no/z.

Since n(x) is an ergodic process the filtered noise variance is

given by the output noise power,

2
Ng

_:f: Sno (£)df

o0
16n“nog f“exp(—4ﬁ2fzaf).

3no/(16V705) . (2.33)
Substituting HE into (2.28) and (2.30), the estimate for the zero

crossing standard deviation becomes

G, = — | — (2.34)
A \16VmoS

The magnitude of the slope at the zero crossing, A, was
determined earlier for the periodic edge models. Substituting

(2.18) and (2.23) yields 0, for
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The staircase model:

-1

0, = 3ﬂo% e = E T n?ex [-272n2(1+a2)/82]
zsT 6n97 2 PERE p (2.35)
The square wave model:
3p 172 -
o~ - [ 276 , 1 9 2¢4_ —_2o 2 2 2
Gysq = (16n9’2) pt Z n?(1-cosnm)expl-n2n?(1+a?)/2p42]
(2.36)

As was observed earlier, these models converge on ideal step
edge performance for a << 1, 8 > 5. To simplify further analysis
assume these conditions to be true. 1In this case the terms in
the parenthesis of (2.35) and (2.36) are all equal to

{ ... } =4.0421 % 10-2,

Therefore for the case of fully resolved edges,

t/7 2
3700

16."9/ 2

o, = 24.74 ( (2.37)

Cleaély this estimate predicts that the standard deviation
of the zero crossing in the presehce‘of noise varies as the root
of the filter standard deviation. Therefore in order to achieve
a more accurate measure of the edge position the narrowest filter
available should be used. This seems intuitively correct since
the smaller o, , the more spatially local the filter influence.
However a wider filter would be more effective in smoothing the

noise and would therefore be tolerable of lower signal to noise
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ratios.

To test this hypotheéis and establish the lowest bound on
the signal to noise ratio given ¢, , a limit must be placed on g .
As illustrated earlier the linear model used in the derivation of
0, breaks down for o, > A. For the fully resolved edges used to
find (2.37), A = o, . Therefore the distribution of zero crossings
must largely be contained within a filter standard deviation

which, to 95.4% probability, implies

a, 37, 172
— = 24.74 —_—— < 0.5 (2.38)
O 167°7 24,

Since ideal square waves can be resolved with an edge spacing as
little as 1.150, the above criteria could be made even more
restrictive to guarantee meaningful edge positions. However,
such adjustments can be readily made to (2.38) as needed. o, and

no are therefore bounded by
o, /n0 > 2448 [3/(167w°72)] = 2.66 . (2.39)

This result can be used to establish the minimum signal to
noise ratio in the filtered resolution interval, and initial
image for the 0, estimate to be valid. As was shown by Lunscher
[33], refined from Shanmugam et al. [32], the signal to noise
ratio within the resolution interval of an ideal step edge after

filtering with the asymptotic optimal filter is
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£
Y [ wlexp(-cw?/Q?%)dw
SNR, = ° — (2.40)
' C no [ w'exp(-cw?/Q%)dw .

Since the V?g filter is not sharply bandlimited to , as the
filter used to derive (2.40), the integration limits may extend
to infinity. By fixing @ to the 3 db high cutoff frequency, it
was shown earlier that +=0.91. Therefore, substituting for 7,

and (2.8) and (2.10a) for Q and c, (2.40) becomes

1.4 fowzexp(-afwz)dw
SNRO = Ow
TO 7, J w'exp(-0fw?)dw
= 2.80, /(3717,). (2.41)

representing the signal to noise ratio within 20, of the V2g
filtered zero crossing. Substituting inequality (2.39) into this

result,
SNR, > 2.8(2.66)/(37) = 0.79 (2.42)

provides the minimum signal to noise ratio about the zero
crossing for §; to be meaningful. Clearlylthis is a very low SNR
figure by most image processing standards. Furthermore, since
(2.41) shows SNR, increasing directly with ¢, , limit (2.42)

simply bounds the narrowest usable filter.

Of greater interest than the signal to noise ratio of (2.41)
is that of the unfiltered image, SNR;. The ideal step and square

wave image models yield identical signal power of
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S, = linf(1/2T)f u(t)2dt] = 0.5 . (2.43)
S -7

Since the noise spectrum was assumed to be white, the input noise
power is ideally infinite. However, since image processing is
generally done on a sampled image the 1initial image must be
lowpass filtered with a maximum bandwidth of half the sampling
rate to avoid aliasing effects. The noise power passed is

clearly finite with a maximum value of
No = 2(no/2)(2T) (2.44)

where T is the sampling period. Normalize T to the filter

standard deviation with
T = 80; . (2.45)

Substituting (2.45) into (2.44) produces the normalized noise

power,
No = no/(280,) . (2.46)
Together with S this shows the input signal to noise ratio to be
SNR; = S; /Ny = 80; /0o - (2.47)

Substituting (2.39) it is found that the range for which &,< 0,/2

is
SNR; > 2.666 . (2.48)

As the filter width increases, § decreases lowering the required
signal to noise ratio. To establish the maximum lower bound on
SNR; note that the highest frequency edge feature possible in the

sampled 1image would be a square wave or pulse train of period 2T
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with effective edge spacing of T. Since such a feature is highly
aliased, and therefore poorly represented by the act of sampling,
the filter sensitivity expected would correspond to that of a
somewhat blurred square wave. The initial detection spacing for
such a feature is about 1.250; . Therefore, with this ¢, , the

maximum § is 1.25., Substituting into (2.48):
SNR; (8=1.25) > 3.325 . (2.49)

This establishes the most pessimistic lower bound on the input
signal to noise ratio. This figure is higher than that required
within the filtered image, (2.41), but is still remarkably low
and seen to decrease without limit as o, is increased. Of céurse
increasing o, decreases the level of detail that can be resolved,
and, by increasing §,, decreases the accuracy of the edge

position.

When SNR; satisfies (2.48) it can be wused directly to

estimate 0, . Substituting (2.47) into (2.37) gives

(2.50)

3502 y/z

0, = 24.74
16737 2SNR;

L4

On adopting the pixel spacing, T, as the unit of measure,

80, = 1. Therefore,
30 1/ 2
o, = 24.74 _t (2.51)
167°7 25NR, /.

The edge position accuracy is therefore improved by increasing

signal to noise ratio, as expected.
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The foregoing analysis has addressed the questions of the
zero crossing accuracy and signal to noise ratio within the
resolution interval. The question remains as to the image
quality outside the resolution interval. Since this region can
be quite large in the case of large features and a narrow filter,
the quality can best be addressed through the signal to noise
ratio there, SNR}. For the case of the ideal step edge model
extending to infinity the signal energy outside the resolution
interval is (1 - v ). The signal power is therefore zero. To
render the problem more realistic place this edge centrally
within a large image of finite diameter D much larger than
I = 20,. In this case SNRy is simply found by replacing ¥ with
(1 -7) 1in (2.40), and multiplying by I/(D-I). Allowing the
integration limits to go to infinity as before and substituting
for ¢ and @ gives:

4(1-7)g2 4(1-7)g?

SNR, = = (2.52)
3(D_I)T[o 3D Mo .

Clearly SNR; is less than SNR,. Also, as this region becomes
more removed from the zero crossing by increasing I, 7 rapidly
approaches unity because ¢ increases. Therefore the signal to
noise ratio approaches zero for regions far removed from the zero

crossing.

Intuitively this conclusion can be generalized to the
previous edge models when fully resolved. Without repeating the
details here, it was found that SNR! decreases inversely with g

for staircase and sguare wave edges. The presence of blur serves
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to decrease SNR), and SNR,, further by 1/a for a > 0.51. The
expected result, then, on filtering a noisy, periodic image with
a large B filter is an essentially noise free area about 20, to
either side of the true edge positions surrounded by wide areas
filled with random noise edges. Since any edge structures closer
than 1.150; cannot be resolved, these noise edges will have
dimensions commensurate with those of the minimum resolvable

image detail.

This noise analysis has served to point out again the
conflicting nature of the demands placed on the performance of an
edge detector. Ideally the edge detector should reject all noise
detail, enhancing only the edges of known image objects. From
the foregoing, this requires forcing the resolution intervals
about these edges to overlap through selection of the widest
filter possible. The edge models analyzed will serve as the
guide for this selection. However, the edge detector should also
pinpoint the edge positions with maximum accuracy. As was seen,
this is best achieved with the narrowest filter possible, hence

the conflict.

One way to resolve this conflict is to filter the image with
a narrow filter and then threshold the resultant edges at some
suitable level. The premise behind this procedure is that the
edges generated by noise would generally have a lower gradient
magnitude than those generated by image objects. However,
because of the statistical nature of the noise there must be
incidences where the noise edges will exceed the threshold, and
likewise incidences where weak or corrupted object edges fall

below. Therefore, though there are a variety of threshold
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selection techniques that can be applied [46], their performance
can only be statistical at best, resulting in an image of broken
edge segments. This is unfortunate siﬁce the Vg filter 1is
guaranteed to produce élosed loop edges for fully contained
objects. To restore the image to this condition a
post-processing algorithm must be applied to screen out the

smallest edge segments and repair the larger ones,

Another approach, founded on the same premise as
thresholding, 1is to apply relaxation techpniques to the filtered
image. Again there are a vériety of relaxation techniques
available [41], <and they can be adapted to insure closed edges.
The basic concept here is to examine the magnitudes of the edge
segments on a pixel by pixel basis and assign a confidence value
to each segment. 1In successive iterative passes over the image,
edges of low confidence are progressively eliminated while those
of high confidence are formed into closed structures. Though
relaxation would filter out noise while retaining closed object
edges, it does so at the expense of requiring another image-size
array to store the confidence measures. Processing time may also
increase considerably since a ‘small algorithm must be executed at
each pixel 1in the 1image: over the course of a number of
iterations. The performance 1is also influenced by the
qualitative selection of certain parameters such as the magnitude

of the confidence level increment [42].

Both the above techniques are subject to another failing.
If the observation of gross image detail is desired and a narrow
filter chosen for the purpose of precisely locating that detail,

then fine object detail will also appear. Furthermore, as seen
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in the square wave response plot, this fine detail can produce a
substantially larger response than the gross detail when its
dimensions coincide with the peak after turn-on. The net result
is that these edges would certainly be given high confidence

during post-processing, thereby obscuring the gross detail.

The approach to solving this conflict, while avoiding the

previous difficulties, is multiband filtering.
2.5 Multiband Filtering

The idea of multiband filtering is simple; Initially filter
the image with the widest filter appropriate to the level
of detail desired and note the edge positions. Then filter
the image with progressively narrower filters retaining only
those edges 1in close proximity to the 1initial edges. This
process is terminated when the desired level of edge precision

is attained.

This method of refining edge positions hierarchically
through stages of differing resolution characterizes a class of
techniques known as processing cones [43]. Often this approach
involves three stages of processing at each level of resolution.
A typical example is given by the pioneering work of Kelly [44]
where the 1images of 1low resolution ére produced by 1local
averaging of the original image. A simple edge detector was
then applied followed by a relaxation procedﬁre to remove

extraneous detail.

In contrast, the V2g filter performs this operation
in essentially one step. Use of a wide filter matched to

the gross image detail smooths out fine image features.
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Furthermore, since it contains no peaks in the frequency
response above , it performs this operation better than local
averaging which does possess such peaks. The act of edge
detection is limited to a search for zero crossings, and since
these crossings are guaranteed to be closed no relaxation stage

is necessary.

The remaining structure of the processing cone depends on

the objective of the imaging system.

If the objective is precise measurement of the dimensions
of gross image detail then the following method would be applied.
Begin with an estimate of the size of the image object of
interest and the degree of blur present. Depending on which of
the edge models suits this image best, figures 2.1 and 2.2 -will
supply the minimum g for wo,, to just resolve the image. If
possible, also estimate the signal to noise ratio which, with
equation (2.51), provides 6,. After filtering, the zero crossing

positions are noted.

The next level of detail 1is. determined by a filter of
width o;,=7,, The search for the new edge position is performed
within one o¢;, resolution interval about the o0ld o,, edges.
This interval is 40;,, wide. Since the zero crossing
locations - were assumed Gaussian distributed, with 95.4%
confidence, subsequent edges will be located within 25,, of the
crossing. Therefore the width of the search interval should
be 40,,= 40;,. After locating the edges 1in this interval
this process 1is repeated until the desired level of
precision 1is attained or until G,, > 6/, in which case the

extra precision is lost in noise.
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On the other hand, if the objective of the imaging system
is to examine and classify all levels of image detail, or if
0. is too difficult to estimate, then a set of filters must
be applied which together span all practical spatial
frequencies. Since the Vg filter is bandpass with a
bandwidth of 1.2 octaves, minimum overlap 1is achieved if
successive bands are separated by 1.2 octaves. However to
make some allowance for error and ease of implementation a one
octave spacing 1is preferred. Therefore, after choosing a
suitably large o0¢1, successive filter widths are simply halved
until the maximum precision is attained. A method similar to
this was used by Grimson [35] to control vergence for the
determination of depth from the binocular disparity information

in stereograms.

One additional, important application of multiband filtering
is the elimination of the pseudo-edges in staircase type
images. You will recall that when considering the staircase
edge model it was po{nted out that another zero crossing was
located exactly half way between the true edge positions. Unlike
the true-edge zero crossing, however, the magnitude of this
pseudo-edge decreases with increased edge spacing. The presence
of this pseudo-edge can confuse an imaging system using
the V?g filter. To eliminate it, it 1is noted that in any
practical system the V2g filter attains a finite size before
falling below the minimum quantization level, and that this
size decreases with o, . Consequently a pseudo-edge that is
well established for one filter size will eventually bifurcate

into two parallel edges for progressively narrower
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filters. Further progression will cause these two edges to
diverge from the original low resolution pseudo-edge position, a
behavior exactly opposite to that of true edges. Inclusion
of provisions for the detection of this divergence, would allow a

multiband system to ignore these false edges.
2.6 Sampling the V2g Filter

To this point 1in our discussion the V?g image filter has
been represented in its continuous form. This has proved useful
because it permitted analytic derivation of its performance
under various circumstances. However, with the exception of
optical signal processing, image processing involves
sampled data signals. Such discrete signal processing requires
that the filter be sampled and quantized. In this section
the act of sampling will be considered, and ih the next,
guantization. The objective will be to determine a minimum
sampling rate before aliasing effects become excessive in a

discrete convolution implementation.

Recall that the VZ2g two dimensional point spread function

is:
Vig(x,y) = -[1-(x%+y?) /202 lexp[-(x%+y?)/202]1/(no*) (2.53)
with frequency response:

G"(u,v) = -4n?(u?+v?)exp[-272(u?+v?)g?] .

To ideally sample V2g multiply (2.53) by

T T §(x-mT,y-nT), (2.54)
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which, on substituting T = b0, , yields

vVig(m,n) = -[1—(m2+n2)62/2]egp[-(m2+n2)62/2]/(nof) (2.55)
with frequency response,

G"(u,v); =G"(u,v) * [8,(u)s,;(v)]/T2 (2.56)

where
m, for x=u

8:(x) = T §(x-k/T), k =
ko= n, for x=v.

Because G"(u,v) is not bandlimited, the frequency convolution
causes a certain degree of aliasing between the harmonics of
G"(u,v)y. The aliasing with the baseband ( |u|, |v| < (2T)-' )
is most severe along the u, v éxis where the harmonics
are most closely spaced. For the time being let's assume that
the contribution from off-axis harmonics is negligible, and that
the worst case sampled response can be adequately represented
albng a single axis. Label this the f axis, for
consistency with previous sections, and set the other spatial
frequency component to =zero. The simplified sampled response
then becomes
_4”2f2

G"(f)y = ——— exp(-27%£202) * T s(f-n/T) . (2.57)
T ’ Te 0O

To investigate the degree of aliasing, let us examine
the spectral energy density of the baseband harmonic:
& (f) = -16n*flexp(-472£292)/T" . (2.58)

Most of the aliasingeffects come as a result of overlap with the
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first harmonic centered at £ = 1/T. To estimate = the
degree of this overlap, the amount of aliased filter energy
will be found by integrating £'(f) from f = (2T)-' to
infinity, ie.,

> oo (27! :
&= [ € (£)af = of &' (£)df - of g'(f)df_ . - (2.59)

(2!

A perhaps more useful measure is the fraction of aliased energy

with respect to the baseband energy,

27! .

= 1 - § & (£)AE/f & (£)df
o 0
27’

J'f“exp(°4w2fzq2)df

= 1 - (2.60)
g flexp(-4n2f2¢2)df .

Normalize (2.60) with f = (80, )" ' so that T = §g0,
(255)"
J 8 Yexp(-472/62)ds-!
(o]
£F= L

J 8 %exp(-4w2/62)ds-!
(o]
256 (28)"

=1 - = w”i{ 6~ ‘exp(-4n2/02)3s-1 . (2.61)

The remaining integral . was evaluated

numerically and the resultant €., was plotted in Figure 2.4
together with £'(f) also normalized with f = (80,)-' and unit
peak, Figure 2.5. Note in Fiqure 2.5 the key points of the
frequency response: peak at f = y2/(2m0,), and half power
points at £ = 0.139/¢, and 0.325/0, . The latter leads to the

previous choice of Q.

Figure 2.4, then, illustrates how the energy of figure
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2.5 1s distributed. Note that for é,= 1 leading to T = ¢, only
0.14% of the filter energy is contained in frequencies above
f£s/2 = 0.5/0, . Aliasing can be considered to become extremé
when 10% of the filter energy is above f,/2. This is seen to
occur at $=2.92, leading to a sample spacing of 1.460,. As
- shown earlier, the maximum filter resolution desirable would be
one pixel wide for square wave or pulse edges. At such a
sample spacing, these edge spectra would be so aliased as to
consist of only impulses at f = (2T7)-'. If the filter is
sampled to just resolve such a feature, then T=1,250,. &5
therefore is 1.25. On examining Figure 2.4, it is seen that only
2.7% of the filter energy lies above f./2 = 0.4/0,. Therefore,
even for the narrowest filter desirable, the degree of aliasing

is slight.

What of the previous assumption that off-axis harmonics
and second or higher on-axis harmonics have negligible effect?
The next greatest 1influence beyond the on-axis first harmonic
would come from the first off-axis harmonic. From the
foregoing, the nearest of these 1is centered at least 0.8/0,
frequency units away from the axis, ie., & =1.25. From Figure
2.4, it 1is clear that the amount of filter energy above 6=1.25
is negligible, therefore confirming the previous assump-

tions.

In conclusion then, filter response can be considered ideal
for filters with § < 1, and even for the narrowest desirable
filter, 6=1.25, the degree of aliasing in the filter response
is slight, compared to that of the finest edge models considered

resolvable.
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2.7 Coefficient Quantization

Sampling is the first step for digital representation of a
filter. The second step 1is quantization of the resulting
coefficients. The limit of quantization is determined by the
processing system to be used and can range from 64 bits for large
mainframes, to 16 or 8 bits for minis and micros, or even 6 bits
for special systems intended to match typical video resolution
[45, p. 114]. Again a direct form discrete convolution
implementation will be considered. The objective of this
analysis will be to examine the influence of the quantization
error on the filter spectrum and thereby develop a strategy for
the selection of the minimum word size necessary to keep the

error within acceptable bounds.

The analysis of the quantization errors in one-dimensional
direct form finite impulse response (FIR) filters was first
performed by Chan and Rabiner [46]. Their techniques have been
adapted here for two-dimensional filters in general, and the Vi2g

filter in particular.

The spatial frequency response for an arbitrary, non-causal
(2N-1) X (2N-1) two-dimensional FIR filter with point spread
function h(m,n), symmetrical about the origin, is given by,

jlq jbig _ N-IN- jW w2
H(e'™",e'™2) = Z Z h(m,n)ee
n 2(N-1) mz(N-1)

N-1 N-{
= h(0,0) + 2% h(m,0)cosw,m + 221h(0,n)cosw2n +

N-1 N-1
4Z Z h(m,n)cosw;m cosw,n . (2.62)

m=1n=l

On quantization the coefficients differ from the ideal by an

error term e(m,n):
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h*(m,n) = h(m,n) + e(m,n) (2.63)

where

-Q/2 < e(m,n) < Q/2 . (2.64)

The error in the frequency response at (w,;,w,) resulting from

guantization is represented as

E., (eiw1 ,eiwz)

H* (e ,ei“’z) - H(ei% ,eiwz)

N-1 N-1
e(0,0) + 22 e(m,0)cosw,;m + 2§ e(0,n)cosw,n +

N-1 N-1
4Z I cosw,m coSw,n . (2.65)

mz1nz=t

The upper bound on this error can be found by maximizing all

of the components in (2.65) including |e(n,m)]|,,, = Q/2.

L . N-1
[E (e, el“) | < (Q/2)[1 + 2Z |coswim|  +
N-t m N-1 N-1 .
2L |cosw,n| * 4L |cosw,;m cosw,n| ]
naj mzinz
= Q(2N-1)2/2 . (2-66)

This error bound is excessively pessimistic, reflecting only the

extreme limit of the error distribution at the frequencies

A more useful model for error response prediction can be
formed by assuming statistical independence of each error
coefficient. This assumption, coupled with the fact that the
e(m,n) are uniformly distributed over a finite interval,
satisfies the Lindeburg condition [47, pp. 262-264] of the
central limit theorem <causing E. , a sum of many e(m,n), to be
essentially Gaussian. Therefore a complete statistical
description of E. is possible through 1its mean (=0), and

standard deviation. To find this standard deviation, first
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evaluate the ensemble mean square of E, :

R A N-1
EZ (e, e'2) = (Q2/12)[1 + 4L cos?w,m +
N-{ : N-1 N-1
az cos?w,n + 162 L cos?w,m cos?w,n] . (2.67)

Defining:

N-{ N~y
(4N-3)-'[1 + 4§ cos?w,m + 4L cos?w,n +
N Nt ms nsq
16 Z cos?w,m cos?w?Zn]'”?

m=1 n=21

Wylw,,w,)

N-1 N~1
= (4N-3)"'"[1 + 4Z cos2w,m]'’2[1 + 4§ cos?w,n]'’?

m=1

Wulw )Wylw,), M= 2N -1 (2.68)

where Chan and Rabiner have found
Wulw) = [1/2 + (2M-1)-"(sinMw/sinw - 1/2)]1'72 . (2.69)

Substituting (2.68) into the square root of (2.67) provides the

expression for the standard deviation of E, :

fBE(w,,wz)]"z

UEL(w1:wz)

(4N-3)QWy (w,, w5 ) /(2V/3) . (2.70)

Wn (wy,w;) attains a maximum value of unity at w, = w, = km, ie.,
multiples of half the sampling frequency. It can also be shown

that

&irin'(w,,wz) = 1/2, 0 < wy, wg < 7 . : (2.71)
Therefore o, is bounded by

oe, < (4N-3)Q/(2/3), (2.72)

but for large N,

lim of, (w,,02) = (4N-3)Q/(4V3), 0 < wy, wy, < 7 . (2.73)

N—+ oo
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Since equation (2.72) represents a definite bound on o,, over all
frequency bands, it will be used to estimate gg, in the remainder
of this section. However, equation (2.73) shows that the results
may be pessimistic by up to a factor of two in some bands of

interest,

og. represents an absolute measure of the error statistics
that can be expected for an arbitrary filter quantized with level
spacing Q. To be useful, this result must be formulated in terms
of the error expected for a specific filter in a certain band of
interest, bx. Since Q will be seen to specify N for the Vig
filter, the coefficient word size can be designed from this error

bound.

Prior to quantization, the baseband response of the Vg
filter peak scaled to unity magnitude (ie., V2g(0,0) = -1) is

given by
G"(wy,w;) = -mof (w? + w?)exp[-(w? + w2)02/2]1/T? (2.74)

This will represent the model for the ideal V2g frequency
response. The error resulting from aliasing into the baseband
represents the first deviation from the ideal response, G". The

aliasing error in band, by, at frequency o is defined by

max |G" (e'“1,e") - G"(w,,w;)] = &y . (2.75)
wWe by

After quantization, the error in the resultant response, G*",

increases:
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|G*" (e, eh) = G"(wy,w;)| € |G*" (e, ei%s) - G" (e, eits)| +
|G™ (eiwr | giws) - G"(w,,wsy) |
< max |E_ (e/*r,ei%) | + oy .
WE by
(2.76)

Since E, is Gaussian distributed, to 95.4% probability,
|[E (e, el2)| < 20, < (4N-3)Q/V3 . (2.77)

Given that VZ?g(m,n) is peak scaled to unity, with a t-bit word
size, excluding sign,

0 =2", (2.78)
Therefore, on substituting (2.77) and (2.78) into (2.76), the

total error including quantization is bounded to high probability

by
|G*" (!, &) - G"(wy,w.)] < 27 (4N-3)A3 + &, web, .
(2.79)
Define the maximum in-band error after quantization as
€, = 27" (4N-3) V3 + 5, , (2.80)

the 1ideal sampled filter, G", must now remain within a tolerance

of
|G (i, eiws) - G"(w,,w;)| < e - 27" (4N-3) /Y3 (2.81)

if the quantized filter is to maintain an error bound of €, to
G"(w,,w,) in band b.. This essentially provides a new §, about

which to design the precisely sampled filter.

A more common representation of the response error is in

terms of in-band rejections in decibels, defined for the
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guantized and unquantized filters in b, as,

DL} = -20log,[max|G*" (ei®!, ei%) - G"(w,,w,)]|] (2.82a)

DL

-2010gw[max|a:(ef“,e“%) - G"(w,,w,)|] . (2.82b)

The quantized in-band rejection can now be predicted from the
original in-band rejection, DL,, and the quantization error by

substituting (2.75) and (2.79) into (2.82a):

DL* > -20log,[6, + 27" (4N-3)/¥3]

DLy/20

= -20log, [10 + 27 (4aN-3) V3] . (2.83)

The minimum bound on (2.83), DL*m,, for a given DL, is

established by the minimum word size

tmin = -log, [¥3(10°5™W2- 1020 /(4N-3) ]
= tw - log, (1 - 104%%), (2.84)
where
t e = {DL*m, + 20log,[(4N-3)/¥y3]} / (20log,2) (2.85)
and |

Ay, = DLy - DL*m, .
t - represents the lowest bound possible on the word size,
attained when §, approaches zero (ie., DL, —>oc0 ). Since the Vg
filter 1is wunbounded 1in the frequéncy domain, tmin Serves as a
more realistic estimate of the neéessary word size, at least for
small o;,. For fixed N and Ak, tmin 1is seen from (2.84) and
(2.85) to increase linearly with DL*m, at a rate of one bit per
6 db, representing a halving of the quantization-induced error.
Likewise, it is also seen from Figure 2.6 that an increase in
min of one bit over tw produces a change in in-band rejection,

A¢, of 6 db, ie., the total error is only double §,.
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4
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bits
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0 T 1 L 1 1 1 1
0 4 8 12 16
Ak, db

Figure 2.6 Additional bits, At, required to produce a given
in-band rejection change, A., due to guantization
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The filter implementation design path is now clear. From
the selection of ¢, the maximum degree of aliasing in band by
from the first harmonic determines DLg. The acceptable decrease
in 1in-band rejection for bx also determines A. Finally,
substitution into (2.84) yields the required word size to
guarantee A¢ to 95.4% probability. On the other hand, if the
system available is of a fixed word size t, then it 1is easier
simply to use equation (2.83) to determine if the resultant DL*m,

is acceptable.

The design approach just outlined ignored one crucial
parameter, the filter halfwidth N. The existence of N in the
right-hand side of many of the -equations in this section
complicates matters somewhat. This is because N is dependent on
both t and the filter qguantization period do, . The quantization
period, 1in turn, also determines DLy . The solution of equations
(2.83) and (2.84) suddenly requires further knowledge of the
filter. Chan and Rabiner recognized this difficulty and provided
a method of approximating N for low-pass optimal filters.
However, since the explicit point spread response of the Vig

filter is known, N can readily be determined numerically.
In peak-normalized form:
vig(m,n) = -[1 - (m? + n?)82/2)exp[-(m? + n2)62/2) . (2.86)

Since the filter 1is symmetrical about (0,0), and we are

interested in the extent along the axis, set m = 0:
VZg(n) = -(1 - n?82/2)exp(-n2§2/2) , (2.87)

Rounding of (2.86) will be wused to determine the filter
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coefficients. Therefore N is determined from the value of n

where (2.87) first drops below Z'" as N = np..+ 1. This point

is most readily found by substituting r = n26%/2 into (2.87) and
solving

(1-r)exp(-r) + 2" =0 . ' (2.88)

Given t, r can be solved numerically. N being an integer, the

truncated value of n,,, found through (2.88) is used to give
N = TRUNC (V2r/8) + 1 . (2.89)

Table II lists the values of r and y2r for t = 2 through 15 found

by solving equation (2.88) by the Newton-Raphson method.

The curves of equation (2.89) plotted against § for the
four most popular word sizes of 4, 8, 12, and 16 bits, including
sign, are shown in Figure 2.7. The results of Table II and
equation (2.89) can now be used in the solution of equations

(2.83) and (2.84).

Solving DL*m in equation (2.83) 1is straightforward.
Knowing t and &, either refer to Table II and equation (2.89), or
figure 2.7 for N, Substituting N, t and DL, produces DL*m,.
Some representative curves for DL, = 20, 40, 60, and 80 are shown
in Figure 2.8. The 1inverse process of solving for tmin given

DL¢, DL*my and § is more complex but still straightforward.

This process 1involves two steps. First it must be
recognized tﬁat tmin is a descrete integer variable and can
therefore only change in discrete steps. The extreme minimum
representation of tnin is teo which therefore should also be
represented as an 1integer. The consequence of these two

observations is that tmin - te = At can realisticly only change in



t r Var

2 2.4532 2.2151
3 3.8034 2.7580
4 4.8010 3.0987
5 5.7082 3.3788
6 6.5693 3.6248
7 7.4017 3.8475
8 8.2144 4,0533
9 9.0125 4,2456
10 9.7993 4.4271
11 10.577 4,5994
12 11.348 4.7639
13 12.112 4,9217
14 12.871 5.0738
15 13.626 5.2204

Table II. r and v2r against unsigned word size t
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Figure 2.7 Filter half-width, N, resulting from normalized
sample spacing &6, for 4, 8, 12, and 16 bit
coefficient word sizes
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80
(a) DLy=20dd (b) DL,=40db
60 1
40
20
E' 1
5 4]
Q
(c) DLy= 80dd { () OLy,= 80 db
60
4
40
20
]
] 3 [} 9® 12

Figure 2.8 Quantized in-band rejection resulting from unsigned
word size t for unguantized in-band rejections of (a)
20, (b) 40, (c) 60, and (d) 80 db
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integer amounts. Therefore, the first step 1is, given DLx and
DL*my, calculate Ax then look up At on Figure 2.6, rounding up to
the nearest integer unless Ax is so large as to be effectively

infinite in which case At=0.

Equipped with At, the next step involves reference to an
appropriate plot of equation (2.84). These plots appear in
Figure 2.9 calculated by substituting the appropriate Ay into
equation (2.84) for At = 0, 1, 2, 3 and 4. On choice of the
appropriate plot, reference DL*m¢ to the abscissa, & will select
the appropriate curve from which t can then be read. For a
fractional t round up to the next integer. The total word size,

including sign, is then t + 1,

This indirect, graphical approach to solving tmin is
necessary largely because N appears on the left-hand side of
equation (2.84). Since N is a function of t, direct solution of
(2.84) is not possible. 1Instead the approach chosen was solution

of the inverse problem,
DL*my = 20{(tmin -At)log,2 - log,[(4N=3)/V/3]} (2.90)

for the previous At and tmin = 2,...,15. In this case tmi, and N
appear on the same side of the equation so solution of DL*m, is
straightforward. These results were then plotted as shown in

Figure 2.9, ignoring DL*m, < O,

Since a great deal of rounding of intermediate values is
involved in this procedure, it méy prove valuable to substitute
the tmin found, and the other parameters into equation (2.83) as
a ;check on DL*my. It may even be discovered that the tmin found

was too conservative and may be reduced by a bit and still
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(a) At=0
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(b) At=1
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DL mk

Figure 2.9 Minimum unsigned word size required given the
quantized in-band rejection for At of (a) 0, (b) 1,
(c) 2, (d) 3, and (e) 4
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Figure 2.9 ( continued )
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maintain an acceptable in-band rejection.
2.8 Filter Design Example

We will now consider an example in the application of the
previous techniques to the design of an appropriate filter word
size. To choose an extreme case, it 1is desired that the
unguantized in-band rejection be as small as possible. This
implies a maximum of aliasing which was pointed out.earlier to
occur for the smallest o, chosen for the system. If this o, is
chosen to produce a minimum of one pixel resolution then, with
unit pixel spacing, it was found o, = 0.8. Therefore the pixel

spacing is 1,250, giving §=1.25.

From the aliased energy plot 2.7% of the baseband energy is
aliased at this 8. To determine the resulting in-band rejection
examine an arbitrarily narrow high pass-band, b,, cut off at Q.
Being the highest frequency band of concern, it experiences the

greatest degree of aliasing. Recall
@ = 2n(0.325)/0, .

To estimate the magnitude of the aliased response at €, consider
only the contribution of the first harmonic along either axis.

This contribution at @ corresponds to the baseband response at
w = 2n(1 - 0.325/0, ),
which when substituted into (2.74) w,=w and w,=0 gives

6k = 4m*[of(1 - 0.325/0, )]%exp[-272(g - 0.325)2]

0.208

for o, =0.8. Therefore, the unguantized in-band rejection is:
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DLx = -20109,(0.208) = 13.62 db.
The ideal baseband response at £ is

|G"( Q)] = 47%062(0.325)2exp(-2720.3252),

].042.
DLy, therefore, represents a 20% 1increase in the response

" magnitude at & over the ideal.

Since DL, is already quite large, permit only another 5%
increase in response magnitude, Iie. 25% of tﬁe ideal, after
guantization. Therefore

G*"(Q) < 1.303,

and ex < 0.261,

giving DL*m, -20log,,(0.261) = 11.67 db.

Therefore, A 13.62 - 11,67 = 1,95

which must be rounded down to 1.16 to correspond to At=3. On
referencing Figure 2.9 for At=3 and curve §6=1.25, t for
DL*m, = 11.67 is about 7.5 which must be rounded up to 8 bits.

Therefore a total word size of 9 bits is necessary for at least

11.67 db in-band rejection at @ for ¢, =0.8.

From Table II and equation (2.89), N 1is found to be 4
causing the filter to occupy (2N-1) X (2N-1) = 7 X 7 pixels. To
verify DL*m,, substitute DL,, t=8, and N=4 into equation (2.83).
The result 1is DL*m, = 12.49 db. Therefore, through these
successive rounding operations, the predicted error has improved

by 0.82 db.

A 9-bit word size is non-standard. If an 8-bit system were
to be adopted instead, N would still be 4 but DL*m, would
decrease to 11.48 db, for which ¢,=0.267. Therefore, the

additional penalty of the lost bit is only 0.19 db, producing a
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25.6% increase in response magnitude over G"(Q).

n.

3{1/0/l0]o0

2112/ 7110 ’
x____

1|43{15/ 7 | 0 128

0l128{-13| 12| 1

O 1 2 3 m

Figure 2.10 V2g(n,m) filter coefficients for sample spacing
6 = 1.25 and 8-bit total word size

To test this prediction of ¢, for the 8-bit system, evaluate
the response of the filter at @ for t=7. One quadrant of the
point spread response of V2g(m,n) from equation (2.86) for
6 = 1.25 and truncated to seven bits plus sign is shown in figure
2.10. Substituting these values into equation (2.62) for w,=9
and w,=0 gives

|G*" (ei® | ei® )| = 1,232.
The actual error, ¢, is 0.190, or 14.42 db. Therefore, the

7-bit prediction is actually pessimistic by 2.94 db.

As a final exercise, let's compare the- in-band rejections
just found to those of the filter with the next octave lower
passband, ie., o, =1.6, §=0.625. The total 8-bit word size of the
0,=0.8 filter will be retained, but now 8=1/1.6=0.625, which
gives N=7. The magnitude of the aliased response at @ is again
found by substituting o, into (2.74), this time resulting in
6z5.983 X 10" '? for which DLy = 224.5 db which for all intents
and purposes here can be considered infinite. This reaffirms the
earlier observation that aliasing effects for o; greater than
unity can be ignored. The expected 1in-band rejection after

guantization therefore simplifies to
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DL*m,= =-20log,[ 2' (4N-3)//3 ]
= 18.96 db

corresponding ‘to ¢ =0.113, Since the ideal magnitude response at
€ now is 4.169, ¢, represents a 2.7% response change at Q.
This represents a nearly one magnitude improvement in accuracy
over the next highest octave case. Therefore, if the word size
of the filter is designed to meet the tightest in-band rejection
constraints for the narrowest filter of interest, it will meet at

least those constraints for the other, wider filters also.
2.9 Test Image Examples

To provide examples of the design principles discussed, one
of the tightly-controlled test images of Kitchen and Rosenfeld
[48] were chosen. Kitchen and Rosenfeld had used two kinds of
test images on which to evaluate various edge detectors: a series
of concentric rings; and a single step edge. The rings 1image
will be explored here since it is more complex and permits
systematic study of the filters' behavior. The 1image was
constructed originally as a 512 by 512 image consisting of only
two levels of brightness: 115 (dark) and 140 (light). The image
contains a dark circle of radius 64 at its center surrounded by
six concentric rings of width 32 and alternating light and dark
intensity. The impression 1is that of a "bull's eye" of dark
background and center. The final image is 128 X 128, produced by
replacing each 4 X 4 pixel block by a single pixel having the
average grey level of the block. To 1include the effects of
noise, independent =zero mean Gaussian noise was added with a
variance to produce a SNR of fifty. SNR is defined in the manner

chosen by Kitchen and Rosenfeld:
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SNR = h?/g2

where h is the edge contrast, given here as 25.

The ring structure of this image has the advantage of being
exactly periodic along the radius while at the same time being
bounded in extent, and primarily two-dimensional in structure.
This permits conclusions to be drawn concerning applicability of
the previous unbounded one-dimensional models to more realistic
two-dimensional structures. The primary periodicity of the test
image 1is the edge spacing of the rings. 1In the 128 X 128 image,
this period is eight pixels. The result of V2g filtering this
image should be most closely predicted by the square wave edge
model of edge spacing T = 8. If the edges were ideal steps, the
filter just able to resolve them with maximum noise rejection
would have a 8 of 1.15 resulting in a standard deviation of

o, = T/B = 6.96.

However, since the final image was reduced from a larger one by
local averaging, there 1is some blur present. Though not
Gaussian, this blur has a standard deviation of about 0.29.
Clearly this 1is a great deal less than 0.510, =3.55 for which
seriously degraded performance 1is expected. However, in
recognition of the overall non-ideal naturé of the image, a

somewhat more conservative f of 1.25 is chosen, producing o, =6.4.

Reference to figure 2.2 shows that no response to a periodic
structure is expected for f=0.5. Therefore, only the gross
structure of the 1image 1is expected to be revealed, and little
noise, on filtering with ¢, =16. It is also seen that for minimal
blur, the steady state response is established at $=5. A filter

of o =1.6 is therefore expected to fully resolve the ring edges.
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Furthermore, it is expected to do so to the highest precision but

the poorest noise rejection of these three filter sizes.

The test image was therefore filtered by the peak scaled Vig
filter with standard deviations of 16, 6.4, and 1.6. The results
are shown in Figure 2.11. The filtering was done through fast
convolution using a double precision floating-point 2-D FFT. The
filter coefficients were also represented to double floating
-point precision. The edge pixels are marked by the Freeman
direction numbers [49] pointing in the direction of maximum
gradient. The actual edge positions are chosen to coincide with
the positive side of the zero crossing between horizontally or
vertically adjacent pixels. This also corresponds to the borders

of the test image dark regions.

From Figure 2.11a, it is readily apparent that only the
gross detail of the test image is resolved. The fine structure
of the rings is not detected,.but the extreme inner and outer
borders are. Since the central dark circle was 32 pixels wide,
giving a B of 2, and the ring stfucture was 40 pixels wide,
giving a B of 2.5, this behavior is expected. Note the complete
absence of any extra noise detail. With a resolution interval of
20, =32, the entire image lies within the overlapping resolution

intervals of the edges seen resulting in perfect noise removal.

The filter o, of 6.4 predicts full resolution of the ring
structure with maximum noise rejection. Figure 2.11b validates
this claim. Note that there 1is no noise within the ring
structure. Noise, however, does appear in the form of extraneous
edge structures beyond the outer edge. The closest of these

structures lies 11 pixels from the outer ring which is close to



(a)

(b)

(c)

Figure 2.11 1Ideal V?g filtered rings image with o of (a)
(b) 6.4, and (c) 1.6

16,

73
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the 20, noise free resolution interval predicted.

The o, =1.6 filtered image should resolve the test image but
have poor noise rejection. Figure 2.11c indeed clearly shows the
ring detail resolved as well as a great deal of noise. Most of
the noise resides in the space beyond the outer and within the
inner rings. Only one noise feature appears within the ring
structure in the third ring. The closest approach of the noise
edges to the ring edges is two pixels. This lies one third of
the way within the expected 3.2 pixel resolution interval but
exactl} on the two pixel search interval to be used in multiband
systems. However, it is seen that most noise structures remain
beyond three pixels from the rings so the 1incidence of errors
caused by unacceptably close approaches in multiband systems is

expected to be low.

In general, the expected increase in edge position precision
with decreasing o, is also observed. In fact, for 0, =1.6, the
dark image boundaries are located to the best precision that can
be expected for a quantized image. The 0, =6.4 image, though
fully resolved, is however quite inaccurate, tending to expand
the bright regions while contracting the dark ones. For
instance, the central dark region has contracted by four pixels
while the outer 1light ring has widened by three pixels.
Interestingly, the two rings resolved in Fiqure 2.11a differ in
accuracy. The outer border remains within 2.5 pixels of the
correct position but the inner border is too wide by up to six
pixels. Perhaps: this behavior 1is attributable to the more
gradual curvature of the outer ring which thereby more closely

resembles a one-dimensional step. Also note that all edges form
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closed curves. The only seeming violation of this occurs among
the noise regions of Figure 2.11c. However, in actuality, this
indicates the formation of one pixel wide dark regions after
filtering. Since the edge pixels are associated with dark region

boundaries, the result is apparently broken edges.

The previous results were generated with essentially
infinite precision coefficients. Figures 2.12 and 2.13 show the
results after the teét image was filtered by the same set of
filters, but with the coefficients quantized to eight and six
bits respectively. The expected 1in-band rejection for these
images at ? are listed 1in Table 1III. When expressed in
proportion to the ideal filter magnitude at &, it is seen that
the change 1in response is expected to range from 0.26% for

0,=16.0 at eight bits up to 9.1% for ¢, =1.6 at six bits.

In Figures 2.12a and 2.12b, a 1loss of precision in edge
position is evident. However, the correct precision 1is
re—éstablished in Figure 2.12c¢ for 0 =1.6, but there is increased
noise present within the ring structure. Figure 2.12b shows the
beginning of a phenomenon that has become well-established in the
results of Figure 2.13. In the dark corners beyond the. outer
border, there run an extra set of edges to the image sides. If
the 1image sides are considered circularly-connected, then these
edges form a closed region of negative response. The reason for
this region 1is the combined finite extent of the fiiter and- the
presence of a strong dc offset in the frequency response. The
presence of this offset was predicted earlier in equation (2.70)
where Wy(w,,w,;) has a peak magnitude at dc of twice the mean

midband amplitude. The result of this offset is an expansion of



(a)

(b):

Figure 2.12 8-bit V2g filtered rings image with o, of (a)
(b) 6.4, and (c) 1.6
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16,



(a)

(c)

Figure 2.13 6-bit V?g filtered rings image with ¢, of (a)
(b) 6.4, and (c) 1.6

17
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DL*my ( DL*my - |G"(w)|db )
o, |G"(w) |db
8-bit 6-bit 8-bit | 6~-bit
16 -52.4 -0.868 -11.85 51.5 40.6
6.4 -36.5 -7.18 -3.71 43,7 32.8
1.6 -12.4 -18.96 -8.43 31.4 20.8
Table III. Expected in-band rejections at  for

6- and 8-bit quantized Vg filters
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the regions with the same sign as the offset, and the creation of
islands of this sign in large regions normally of the opposite

sign.

In each of the examples of Fiqure 2.13, the result of the
offset and smaller filter size is more pronounced. The outer
boundary of 2.13a is so distorted it merged with its circular
images and no longer forms a ring about the center. Figure 2.13b
no longer fully resolves the ring structure. Instead, many of
the edges associated with dark rings have broken into narrow
island crescents. Interestingly, the ring structure of Figure
2.13c is intact. However, the precision of the edge positions
has evidently diminished somewhat, though in the mean they are
correctly placed. It is also interesting to note that in Figure
2.12c and especially 2.13c there is a reduction in the number of
noise edges over those in Figure 2.11c. Evidently the magnitude

of the noise regions is less than that of the dc offset.

Since dc offset effects have dominated the quantized
coefficient examples, 1little can be said of the effects of the
decreased in-band rejection. The offset was therefore removed
and the tests repeated. To remove the offset, it was first
measured by summing all the quantized coefficients. The offset
was then subtracted out of the filter by at most one unit per
coefficient. This subtraction was begun at a filter radius
where it was felt that deviation from a simple rounding process
would have the least effect on the filter response. This radius
corresponds to the location where the <cross-section of the
filter's point spread function has the greatest slope. Here a

one wunit change in that coefficient would generally still agree
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with the filter magnitude within half a pixel of that point. For
the two-dimensional V?g filter, the radius of greatest slope is
0.790, . The subtractions are performed alternately about the
center of the filter along axis that are mutually perpendicular
until the four axis at 22.5° to the horizontal and vertical are
reached. If the offset is odd, one further subtraction is done
on the central peak so that the others remain symmetrical about
the origin. The radius at whiéh the subtraction is performed is
then alternately increased and decreased by one pixel, as the
eight perpendicular axis are exhausted. Fortunately the amount
of offset is much smaller than the filter area so this process

does not greatly distort the filter.

The results after removal of the filter offset are shown in
Figures 2.14 and 2.15. Note that qualitatively there is very
little difference in the two sets of images. Even the degree of
noise present is about the same. Also, the edge positions are
indicated to comparable accuracy in both sets of images.
Interestingly the edges are of about the same accuracy of those
of the infinite precision coefficients- of Figure 2.11. The
0, =1.6 images are almost identical in all cases. It can be
concluded therefore that the decreased - in-band rejections
resulting from coefficient quantization right down to six bit
video resolution does not have a significant effect on the
resulting edge positions and noise rejection after the dc offset

is removed.



(a)

(b)

Figure 2.14 Unbiased 8-bit V2g filtered rings image with
(a) 16, (b) 6.4, and (c) 1.6
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(a)

Figure 2.15

Unbiased 6-bit VZg filtered rings image with
(a) 16, (b) 6.4, and (c) 1.6

o,
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2.10 Design Summary and Conclusions

The foregoing analysis has established the dual optimality
of the D. Marr V2?g edge filter, and has provided a comprehensive
design strategy for the selection of a filter standard deviation
and coefficient word size appropriate for the edge detection task
contemplated. The performance 1in additive noise was examined
with the result that minimum input signal to noise ratio bounds
were established. Also, it was seen that in order to resolve
many levels of detail, or locate edges embedded in noise
precisely, a multiband system must be employed where the
individual passband spacing is at least one octave. It was
found that the tightest contraints on the filter standard
deviation, input signal to noise ratio, and quantized word size,
apply only to the highest frequency passband. The remaining

bands satisfy these constraints automatically.

To review, the filter design process follows a number of
distinct stages. First it 1is important to identify the edge
features to be resolved and to determine the scale of any
periodicity in these features. Selection of the ideal edge model
which most closely resembles the feature 1in question follows.
Estimate the degree of blur present through 1its standard
deviation, o0,. This step may require some guesswork, but is
necessary 1if the edges are to be resolved at the 3 db point of
the ¢, chosen. The importance of resolving the edges at the
filter 3 db point 1is a result of the region of maximum noise
rejection coinciding with the resolution interval, which in turn
increases directly with o, . Therefore, the greatest noise

rejection follows from the selection of the widest allowable o .



84

The selection of the filter variance on the basis of the
above information is now possible. After reference to Figures
2.1 and 2.2 for the most suitable model with edge spacing T, the

3 db filter standard deviation falls in the range:

IA

Staircase Edges - T/5.5 < o T/2.75;

IA
{73

Square Wave Edges - T/1.36 A T/1.15;

The lower limits of all these models presume the presence of the
maximum degree of blur of 0.510, beyond which filter response
remains below 3 db of steady state. Reference to Figures 2.1
and 2.2 shows that blur ceases to assert a significant influence
below 0.20,. Therefore, if o, falls within ¢,/0.51<0, <0,/0.2

a certain amount of iteration may be necessary before the

appropriate o, is found.

On selection of o, a number of further constraints determine
if it is practical. These depend largely on its relation to the
sample spacing T , where, normalized, T ='60,[. It was found that
8§ > 1.25 1is not practical on two grounds: the 3 db point then
corresponds to edge structures that are undersampled; and the
aliased filter energy exceeds 2.7%, becoming rapidly excessive.
For 6§ < 1.0 the aliased energy drops below 0.14%. Undersampling
of the filter is therefore not a problem since it is unlikely
that one would choose a o, matched to an wundersampled image
structure. However, 6 doeé play a role in the minimum signal to
noise ratio permissible in the original image. Derived on the
basis of square wave edges, the permissible range of the signal
to noise ratio was found to be SNR; > 2.666. This is a very
liberal range, and since & decreases with increasing o, this

bound only constrains the narrowest filter in a multiband system.
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Once o, has been selected the expected standard deviation of
the zero crossing about the true edge can be determined if an
estimate of the noise power or signél to noise ratio can be made.
This accuracy is given by equations (2.37) and (2.51) which show
that the standard deviation of the zero crossing increases as the
square root of o, . To attain the accuracy associated with a
narrow filter, but retain the noise rejection of a much wider
filter it was suggested that a multiband system be used. Two
such systems were proposed, one requiring explicit knowledge of
the image signal to noise ratio, and the other, not. Since it is
rare that the signal to noise ratio is always known in advance,
and uniform for all the images to be processed by a given system,
or even uniform across an image, the latter system is
recommended. In such a system, the frequency bands are spaced
one octave apart ranging from the largest details of interest
down to the highest level of precision desired. Such an approach
can also be used to classify the full range of detail present in
an image according to the edge model 3 db point for each band.
Multiband systems can also remove the pseudo-edge zero crossing

which occurs between the true edges in the staircase edge model.

When final 1implementation into a hardware system is
considered, the filter coefficients must be quantized. The
influence of this was considered for the direct form finite
impulse response implementation. The influence of quantization
was shown to be a Gaussian error in the frequency reponse. The
error standard deviation was not uniform across the spectrum but
peaked in amplitude at integer multiples of half the sampling

frequency. Twice the standard deviation of the peak error, in
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db, was considered the minimum expected in-band rejection after
guantization, Dﬁ*mk. The quantization word size is determined,
in large part, by fixing this quantity at an acceptable value in
advance. Furthermore, selection of a frequency band, b,, within
the filter response where DL*m, is most tightly constrained is
required. In the example given, this was chosen to be near @
since the filter behavior is largely determined by the high
frequency cutoff. Within by the 1ideal in-band rejection due
solely to aliasing with infinite precision coefficients, DL,,
must also be calculated. It was shown through example that for §
less than 0.625, DLy is so large as to be essentially infinite.
With this information and the normalized sample period, §, a
simple two-step procedure was outlined for determining the
minimum unsigned quantized coefficient word size, tmn . Since,
of necessity, a certain amount of rounding takes place during
this process, equation (2.83) can serve as a check on the result-

ant DL*m, .

A series of test image results substantiated many of the
ideas presented in this chapter. It was shown, for example, that
the predicted 3 db o, for square wave edges matched to the
difference in radii of a finite series of concentric rings will
resolve such an image even fhough its only resemblance to a
square wave lies in a portion of the cross-section along the
radius. It was also seen that the accuracy of the zero crossing
increases with decreasing o, while the noise rejection decreases.
On qguantization of the filter coefficients, the most notable
eifect was the appearance of a strong dc offset predicted by
Wn(wi,w;). The offset served to decrease the edge position

accuracy, and, in some cases, to break the edges into fictitious



87
closed regions. After subtracting out the offset, the quantized
filters performed almost as well as the precise filters, even at
six bits. Only the noise rejection decreased slightly. An
important observation of all the test images is the fact that all
the edges formed closed regions without any spurious breaks.
This was particularly evident when the filter was matched to
image detail. This implies that there is no need to apply a

further relaxation post-processing stage to repair edge segments.

When D. Marr and E. Hildreth first published the V2?g edge
detector, their arguments and examples made it clear that this
should be the detector of choice for unambiguously resolving edge
detail. However, no clear procedure was outlined for selecting a
o, appropriate for the task at hand. It was felt that this was a
major disincentive to applying the V2g filter 1in a general
manner. This chapter's object was to remedy this situation by
providing a systematic design methodology for the selection of
o, and final filter implementation. One remaining objection to
the final implementation of the Vg filter is its size. At eight
bits, the previous o, =6.4 filter requires 49 X 49 pixels.
However, for facilities not operating in real-time and performing
fast convolution using a two-dimensional FFT, the filter size is
no object. Where real-time video rate processing is reguired,
new technology is rapidly providing the means for performing
direct convolution using such large filters ([50], ([51].
Therefore, it is felt that the V?g edge detection filter will

prove suitable for a wide variety of image analysis tasks.
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III. OPTIMAL EDGE DETECTOR EVALUATION

3.1 Introduction

‘ In the previous chapter the claim was made that the Marr and
Hildreth V2g filter was more rigorously designed to detect edge
feétures than most other edge detectors. It was also claimed
that edge magnitude thresholding was an unreliable method of
isolating preferred object edges from the background noise. 1If
these claims are true then the V2g filter should outperform other
detectors in a controlled comparision, but lose its advantage
after thresholding. The object of this chapter is to perform

this comparison and substantiate these claims.

To facilitate edge detector comparison a series of
experiments must be designed incorporating a common set of test
images and fixed evaluation measure(s) to be applied to all edge
operators tested. Before embarking on these experiments one 1is
faced with a choice: whether to design a new edge evaluation
procedure, or whether to adopt a published one that has already
proved successful. It was the latter course that was chosen
here. Besides there existing an established base of procedures
to choose from, this appfoach has the advantage that the
literature would already contain the evaluation scores of most of
the popular edge detectors, so this work need not be repeated.
The evaluation procedure that will be the focus of thig section
is that developed by Kitchen and Rosenfeld [48]. Before
presenting the reasons behind this choice, let us first review a
number of other edge detector evaluation schemes published.

Y
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The earliest quantitative evaluation of edge detector
performance was that of Fram and Deutsch [52], [53]. The test
image consisted of a 36 X 36 pixel array containing feature
regions. These were arranged as three vertical panels the right
and 1left of which contained Gaussian intensity statistics of
differing mean but a common standard deviation of 24. A center
ramp, six columns wide and found by interpolating between the
other two regions, constituted the edge feature. The Gaussian
intensities were truncated to six bit precision. Ninety-seven
such test images were generated by adopting ten different levels
of contrast (differing means in the right and left panels), and
approximately ten images per contrasf level. After filtering,
the resultant output was thresholded to produce a binary image
which was then evaluated using two parameters, P, and P,. P, was
something of a signal to noise ratio involving the proportion of
pixels generated due to the presence of the edge feature to a
weighted sum of all the edge pixels found in the image. P, was a
continuity measure representing the fraction of rows within the
center panel which contained signal pixels. These evaluation
scores range from zero for totally random edge features uniformly
distributed over the output image to unity if all the pixels'
output fall within the center panel with at least one pixel per
row. Later, [53], the orientation bias of edge detectors was
investigated by rotating the central edge panel 15°, 30°, 45° and

60° with respect to the vertical.

Only three edge operators were examined: the Hueckel,
Macleod, and Rosenfeld-Thurston. The threshold for each of these

operators was chosen heuristicly by inspecting a small sample of
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outputs from the test images for each operator and then selecting
a level at which the number of pixels above threshold produce a
"well found edge". This is perhaps the greatest difficulty with
the Fram and Deutsch approach. Though they claim their method ig
unbiased, this thresholding procedure does require a qualitative
judgement by the user concerning acceptable edge quality which
does not facilitate total automation of the procedure and makes

comparison of the results between researchers difficult.

Abdou and Pratt [54] later develbped a more comprehensive
edge detector design and evaluation methodology. The edge
evaluation component of their paper consisted of three parts: an
edge detector sensitivity analysis, a comparison of the
probabilities of correct and false edge detection, and a figure
of " merit computation. The sensitivity ahalysis involved a
deterministic measurement of the edge filter output amplitude
when applied to an ideal edge at differing orientation and
locations with respect to the filter center. Ideally an edge
operator should show no orientation bias and a rapidly declining
response with displacement from center. The above analysis was
performed in the absence of noise. The conditional probabilities
for correct and false edge detection were evaluated by assuming
an ideal step edge corrupted with additive zero mean white
Gaussian noise. The results were also used to formulate a Bayes
minimum error decision rule for the selection of threshold to
maximize the probability of making a correct decision as to

whether a given output pixel constitutes an edge or not.

The evaluation procedure of principle interest here however

is the figure of merit comparison. To perform this evaluation
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the edge operator is applied to an N X N test image containing a
vertical step of fixed height h smoothed to a ramp by inclusion
of a single column of height h/2 at the step, and corrupted by
the addition of white Gaussian noise of varying standard
deviation, o. The output is thresholded to produce a binary

edge map. The figure of merit is defined as
: Ia .
F = max{ I;, I, }-'Z [ 1 + a d2(i) ]
i=1

where I, and I, are the ideal and actual edge points, d(i) is the
distance of the 1ith edge pixel detected to the ideal edge
position, and a 1is a scaling constant emperically set to 1/9.
Cléarly if all the image edgesv fall only on the ideal edge
position F=1, This technique was also extended to diagonal
edges. The intent of this figure of merit is similar to P, of
Fram and Deutsch which is to estimate the proportion of signal
pixels present near the edge. However, d(i) adds a more explicit

goodness of fit aspect to F, than the fixed panel width of P,.

The class of edge operators examined was the enhancement/
thresholding type which included the differential operators of
Roberts [18], Prewitt [55] and Sobel [56, p.271], and the
template operators of Prewitt [55] (compass gradient), Kirsch
[57] and 3- and 5-level template masks. The figure of merit
evaluations were plotted against the signal to noise\ratio which

was defined as
SNR = (h /o )% . (3.1)

These exact same operators were also evaluated by Kitchen and

Rosenfeld who, however, adopt a very different figure of merit.



92
The principal drawback of the Abdou and Pratt evaluation measures
is that edge continuity is never considered. Thus there is no
analogy to P,. In fact, Peli and Malah [58] report that F can
produce a higher score for broken, thick edges than for perfect
but thick edges. They claim that the problem is that F does not

take the distribution of edge points along the edge into account.

Peli and Malah have also undertaken a study of edge detector
evaluation. Indeed their approach is the most comprehensive of
those published, even though only a small subset of their results
were presented. Two basic test images were used: a square, and
a circle, both of grey-level 15 superimposed on a background of
grey-level 0. The dimensions of the images were not given.
Three methods were separately applied to corrupt the test image:
the ideal inténsity step between object and background was
replaced by a five point ramp; binary "salt and pepper" noise was
added at 5%, 10% and 20% probability to simulate texture; zero
mean Gaussian noise of standard deviation 3, 6, 9, and 12 was
added with the resultant intensities clipped at 0 and 15. The
performance measures devised were grouped into two broad
categories: quantitative, and qualitative. Though seven
quantitative measures were considered the results of only two
were presented: Abdou and Pratt's figure of merit; and the
variance of a detected edge point from the ideal edge. The ideal
edge position was defined to a single pixel coinciding with the
ideal step discontinuity before smoothing to a ramp. The
qualitative measures, on the other hand, 1involved such
observations as the type of edge contour produced (perfect,

broken, perfect but broken), single or double edge, and
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distortion through shift of the edge. The qualitative measures
succeed in filling the gap between rigid evaluation scores and
the subjective impression of image quality. Edge detection
operators were selected which did not require a prior knowledge
of the image structure. On this basis, the Roberts [18], Halé
[23] and Rosenfeld-Thurston [19] operators were chosen, though no

system for thresholding the results was given.

Generally, the approach of Peli and Malah parallels and
extends that of Abdou and Pratt. For instance, by considering a
circular object the effects on the evaluation measure of edges at
all possible orientations can be observed. Also by including a
qualitative aspect to their evaluations, such observations as the
poor continuity sensitivity of the Abdou and Pratt results could
- be noted. Regrettably they chose only one operator in common
with that work. However the quantitative aspect of the Peli and
Malah approach is also its greatest drawback. A fully automatic
approach, amenable to comparison with similar work, is certainly

preferable.

Shaw [59] presented a fairly simple edge detector
evaluation. This included the change of output signal to noise
ratio and change in edge orientation produced by va distorted
image when compared to the ideal image. Compared to the other
methods examined, this approach was not very useful, It provided
little information on the goodness of fit or the continuity of

the edges found.

Three basic failings in all of the above edge evaluation

schemes were noted by Kitchen and Rosenfeld. With the exception



94
of Shaw, they all required prior knowledge of the true edge
position. While this provides the opportunity to make definite
statements concerning spatial precision, similar techniques are
not applicable to real world images where the edge positions are
unknown. Another failing, also noted by Mero and Vassy, is the
general lack of a continuity measure. Edges that are fragmented
but consistently displaced from the true edge, receive similar
scores from Abdou and Pratt as perfectly continuous but similarly
displaced edges. Finally, none of these schemes used consistency
in the direction of the detected edges 1in their evaluation
scores. Only Shaw noted edge directions, but only to compare the
change in direction of edge segments between noisy and noise-free
images. 1Ideally the edge gradient di;ection should be everywhere
perpendicular to the edge and in a manner consistent with

adjacent edge pixels.

To address these criticisms and the earlier ones concerning
the wundesirability of human intervention, Kitchen and Rosenfeld
developed a fully automatic edge evaluation technique based on

the idea of local edge coherence.
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3.2 Kitchen-Rosenfeld Evaluation

The concept of 1local edge coherence 1is founded on the
premise that ideally edge features should locally be line-like.
Edge coherence has therefore two components: edge pixels should
be adjacent and therefore connected; and they should be thin like
a line, ideally one pixel wide. Kitchen ahd Rosenfeld therefore
chose to incorporate these two components into one edge
evaluation scheme. The first component, continuation, measures
the degree to which adjacent pixels agree in their determination
of the local edge direction. The thinness component §imply
measures the local edge density. No knowledge of "true" edge

position is ever required.

This approach holds two attractions. 1In general terms, it
permits adjusting edge operator | parameters to optimize
performance in images about which 1little 1is known. The key
parameter of interest is often the proper edge detector threshold
setting. Threshold selection 1is a major theme underlying this
evaluation technique, and Kitchen and Rosenfeld propose that the
optimal threshold setting is that which maximizes the edge
evaluation measure. Of more specific interest in the evaluation
of the V?g edge detector is the claim, frequently made in the
previous chapter, that the V2g filter returns only perfectly thin
and continuous edges. This edge evaluation approach is therefore
well tuned to the strengths of the V2g filter, and therefore
facilitates comparison with similar strengths in other filters.
Also, because the V?g filter cleans noise to 20, from the object
edge, there 1is some concern that an evaluation measure, such as

that of Abdou and Pratt, which scores any noise clutter found
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near the true edge highly would penalize the V2g filter for its

merits. The Kitchen-Rosenfeld scheme can show no such bias.

The Kitchen-Rosenfeld evaluation examines every 3 X 3 pixel
neighbourhood in the thresholded edge filtered image. Each pixel
in this image must contain information as to whether or not an
edge is present and what direction the gradient of that edge has.
This direction is signified by radians in #/4 increments. If the
central pixel in the 3 X 3 neighbourhood is an edge pixel the
eight pixels surrounding it are called the edge neighbourhood.
Pixels in the edge neighbourhood are identified by their
direction numbers relative to the central pixel. = Fiqure 3.1

shows an edge neighbourhood and the pixel labeling system.

3|2|1
4X|0
5|67

Figure 3.1 Edge pixel neighbourhood

Scores for continuation and thinness are first computed
separately over this neighbourhood and then combired into a
single evaluation measure whose value ranges from 0 for a poor
edge to unity for a perfect edge. The continuation score 1is

given by
C = ( L(k)max + R(k)max )/2 14 k = 0;1,000’7 L] (3.2)

L(k) and R(k) measure how well the pixel at location k continues
the edge to the left or right of the edge at the central pixel.
These functions are zero if no edge is located at position k, and

are given explicitly by:
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a(d,dg¢)a(nk/4,d+n/2), if k is an edge pixel
L(k) =
0, otherwise; (3.3a)
{' a(d,dy)a(rk/4,d-7/2), if k is an edge pixel
R(k) =
0, otherwise; (3.3b)
where

ala,B) = (v - |a - B|)/m,

and do, 4y, ..., 4y edge gradient direction at neighbour k;

d

edge gradient direction of the center.

a(a,B) measures the agreement between the angles a and 8 in terms
of the minimum arc separating them. When they are equal, a=t;
when they differ by = radians, a=0. Therefore, if neighbour
pixel k has an edge direction identical to the central edge pixel
then -a(d,ds) will drive L(k) and R(k) to a perfect score.
However, the premise that an edge should be locally 1line-like
requires weighting neighbours perpendicular to the central edge
higher than the rest. This weighting 1is provided by the
a(nk/4,d3tn/2) term, where 7k/4 is the direction to neighbour k
and d+n/2 1is the left- or right-ward direction perpendicular to
the center. Only the three pixels to the immediate left and
right of the central gradient direction are involved 1in the
evaluation of L(k) and R(k) from which the maximum values,

L(Kk)max and R(k)max , are chosen.

The thinness score, T, is simply defined as the fraction of
the pixels in the neighbourhood that are non-edge pixels. Since
a perfectly thin edge has only two or less pixels adjacent to the

center edge, this fraction is given by



98
T = max{ 6, no. of non-edge pixels } / 6 . (3.4)

C and T are then combined into the evaluation measure for

the central pixel:
E=+C+(1-y)T, (3.5)

where y is a weighting coefficient adjusted to give E a suitable
balance of thinness and coherence. Various values of 4 ranging
from zero to unity will be examined. Fortunately selection of «y
is the only qualitative aspect to this evaluation process, and is

performed after all the other results have been compiled.

Finally, E is averaged over all the edge pixels found in the

image to provide an evaluation score for the image as a whole.

Three test images were explored by Kitchen and Rosenfeld.
One was the "bull's eye" ring image already introduced in the
last chapter, another was the single vertical step ramp image
used by Abdou and Pratt, and the last was an image of pure noise.
To review, the ring image was originally constructed in a
512 X 512 array. It consisted of a central dark circle of grey
level 115 surrounded by a series of five rings alternating
between light (grey-level 140) and dark (grey-level 115) of width
32 pixels on an overall dark background. The image was reduced
to 128 X 128 by replacing each 4 X 4 pixel block with a single
pixel of grey-level equal to that of the block. This image was
proposed for study because its rings of differing radius provided
an excellent means of Subjecting the edge operators to edges in
every conceivable orientation but which remain approximately

locally 1line-like with similar contrast to the Abdou and Pratt
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image (due to the block averaging).

The vertical step image consisted of a 64 X 64 pixel array
where the 1left half was given grey-level 115 and the right half
grey-level 140. To simulate the ramp discontinuity of Abdou and
Pratt the single column at the junction of the discontinuity was

given an intermediate grey-level of 128.

The final random noise image was also 64 X 64 pixels but
contained only independent Gaussian random noise of mean 128 and
standard deviation 16. This allowed inspection of edge detector
performénce in an image containing no well-formed edges, in a

sense simulating some real world images.

To study the influence of noise, independent =zero mean
Gaussian noise was added to the rings (after reduction) and
vertical step images. The standard deviation of the noise, o,
was adjusted to provide seven signal to noise ratios
logarithmically spaced with values: 1, 2, 5, 10, 20, 50, and 100.
Abdou and Pratt's signal to noise ratio definition, equation
(3.1), was adopted where the intensity step height, h, is 25.
However, note that this signal to noiSe ratio is exactly double
that derived in the previous chapter where the signal power was

shown to be h?/2 for a single step image.

The exact same edge detection schemes used by Abdou and
Pratt were investigated by Kitchen and Rosenfeld also. This
permitted direct comparison of the results, and conclusions about
the relative merits of the evaluation schemes to be drawn.
Basically, their findings were in accordance with those of Abdou

and Pratt in showing largely the same merit ordering of the edge
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detectors tested. However, the Abdou and Pratt scores all show a
convergence at high and 1low SNR, whereas the spread of the
Kitchen-Rosenfeld scores tends to remain fairly constant. This
seems to indicate that local edge coherence is a more individual
attribute of an edge detector than the Abdou and Pratt figure of
merit. In a sense this is not suprising since E is a $§tructural
measure monitoring, locally, how well-formed the edges are,
whereas F is more of a statistical measure indicating an overall

goodness of fit to the ideal edge.

An important quantity used thfoughout is the edge pixel
fraction (epf) representing the proportion of the image pixels
examined that are edges. This can serve as an indication of how
well the test edges are resolved, and the degree of noise
present. The ideal epf for the rings image is difficult to
evaluate analytically. However, by counting the nearly perfectly
resolved edge pixels of Figure 2.11c, the ideal epf can be
estimated. The total ring circumference i§ 1218 pixels. With a
total 1image area of 1282 pixels the ideal epf 1is found to be
0.074. For the vertical step image the 1ideal epf 1is simply
64/(64X58) = 0.017 (excluding the six columns centered on the

ideal edge at the image sides to remove its influence).

One drawback of the Kitchen-Rosenfeld approach i§ that it
has an inherent bias against curved edges. This i§ a result of
the premise that ideal edge features should be locally line-like.
However, this premise acts against the rings test image reducing
high scores when the test edges are perfectly resolved. To
illustrate, consider the minimally curved neighbourhood of Figure

3.2 below.
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Figure 3.2 Minimally curved neighbourhood

The arrows 1indicate the edge gradient directions. The leftward

pixel is at k=3 with direction n/4 gives leftward measure

L(k=3)

a(d,d;) a(kn/4,d+n/2),
a(0,#/4) a(3n/4,n/2),
0.75 X 0.75 = 0.5625 .

The rightward pixel is at k=6 with direction 0 in agreement with

the center pixel giving rightward measure

R(k=6)

a(d,d¢) a(kn/4,d-n/2),

a(0,0) a(3n/2,-n/2),

1.0 X 1.0 = 1.0

The continuation measure of this neighbourhood is therefore:

@]
"

( L(k) + R(k) )/2 = ( 0.5625 + 1.0 )/2,

0.78125 .,

Given a v of 0.8 (the preferred value) and T=1 (this
neighbourhood is perfectly thin), the final evaluation score for
this neighbourhood would be E=0.825. The rings test image curves
sufficiently gently so as not to be dominated by sSuch curved
neighbourhoods, but they do form a substantial fraction of the
neighbourhoods present. This fact should be kept in mind when

analyzing the rings image Scores.
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3.3 Evaluation Experiment Procedures

Since Kitchen and Rosenfeld published the complete
evaluation scores of ten edge operators, little value was seen in
reproducing all of these results for comparison to the Vig
results. However, it was considered prudent to fully re-evaluate
at least one of the given operators to act as a reference and
indicate that the technique had been properly understood and
coded. Only the three-level template matching operator could be
chosen for this task since the complete set of evaluation
experiments were only published for this operator. Kitchen and
Rosenfeld designed these experiments in part to explore the
process of threshold selection and to determine the ideal choice

for «.

The reproduction of the three-level template evaluation
experiments produced results in excellent agreement with those
published. It was therefore concluded that the implementation of
the Kitchen-Rosenfeld evaluation method was eSsentially correct.
Evaluation of the V2g filter could then proceed with confidence

- that the results could be compared directly to those published.

The Marr and Hildreth VZ2g filter was applied to the test
images of the previous section through use of fast convolution
via the two-dimensional fast Fourier transform. The filter
coefficients were represented to double precision floating-point
resolution across the entire image array. The filter standard

deviations chosen were exactly those of the last chapter.

The V?g filter was designed for the detection of edges

through the zero crossings it generates. However, this
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evaluation scheme also requires that a magnitude and direction be
assigned to each edge pixel. To fulfill this requirement, the
conventions of the previous chépter were retained. The magnitude
and direction of a =zero-crossing segment was defined as the
magnitude and direction of the gradient at the segment. Though
this is a straight-forwa:d concept in a continuous two-
dimensional plane, in a discrete array certainv- special
accomodations must be made. First, a =zero crossing 1is a
transition of intensity from positive to negative between
horizontally and vertically adjacent pixels. As such, it is not
inherently associated with any pixel in the output array. In
lieu of «creating another set of arrays of size 2N X 2N to
explicitly represent the junctions between pixels in the output
array (size N X N), a convention was adopted to assign edge
magnitudes and directions to pixels of the output array. This
convention was to assign the edge attributes to the pixel on the
positive.side of the zero crossing. The result of this 1is that
edge information will be associated with the borders of dark

objects in the input image.

Since a border pixel may have up to four junctions with the
negative background, an unconventional approach to solving its
gradient attributes was taken. Once such a border point was
formed, the gradient was calculated in the following manner.
First the slope of all the zero crossings adjacent to the border
pixel was calculated using a simple two point difference of the
intensities across the =zero crossing. This calculation was
chosen because of its simplicity, and because its frequency

response reasonably approximates that of a derivative across the
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V2g passband. If two junctions are found immediately adjacent in
a clockwise or counter-clockwise sense, the magnitude of the
diagonal gradient between them is estimated with the Pythagorean
theorem. Finally the gradient attributes adopted by the border
pixel will be that of the gradient calculation returning the
greatest magnitude. This provides up to eight possible gradient
directions which are identified in the subseqguent output images

by their Freeman direction numbers.

The above approach proves ambiguous only when very narrow
object features, one pixel in width, are produced in the output
image. In this case, the border pixels could be bounded by two
or more legitimate edges of which only one can be recorded. Aé a
consequence, the continuity measure can be expected to suffer.
However, as was seen in the last chapter, such thin features only
occur for very low standard deviation filters and so are not

expected to be a general problem.

The choice of filter standard deviations, 0, , will parallel
that of the last chapter. The reasons are similar; to observe
the influence of filters which are too large, properly matched,
and too small. Therefore, the evaluation trials will be applied
to the filtered rings images of Figure 2.11, where g =16, 6.4,

and 1.6.

For the vertical test.image, only two standard deviatons
were applied, o,=6.4, and 1.6. ¢, =16 was rejected since it is
hopelessly too large (its zero crossing occurs at a radius of 32
and the 1image is only 64 X 64). Actually, a single step edge

should be resolvable by any filter width. However, the expected
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decrease in -ﬁoise rejection with decreasing o, should be
reflected in the evaluation scores. Because of the circular
connection of the image borders by the convolution method used,
the filter actually sees this image as an infinite series of
vertical stripes of alternating intensity and edge Spacing of
T=32. The matched filter size for this spacing would be ¢ =25.6
which is even more impractical than ¢, =16. interestingly, the
0,=6.4 filter applied to a square wave of T=32 has a § value of
five which was shown to be the smallest 8 for which the filter
can produce an ideal step edge response for this kind of image.
o0, =1.6 would correspond to a f of 20 and a resolution interval,
I, of 6.4 indicating that most of the image is isolated from the

optimum noise rejection influence of the test edges.

To maintain compatibility with the above experiments, the

pure noise image was also filtered with o =6.4, and 1.6.

The evaluation trials performed paralleled those published
by Kitchen and Rosenfeld for the three-level template operator.
This facilitates a detailed analysis of the continuity and
thinness of the edges produced as well as the sensitivity to a

changing signal to noise ratio.
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3.4, Evaluation Results
3.4.1 Rings Image Evaluation

Figures 3.3 through 3.5 display the results derived from
filtering the rings image at the three standard deviations. The
test image has zero mean Gaussian noise added to produce an SNR
of fifty. Analysis of the results follows; reference will be

made to the unthresholded edge images of Figure 2.1t1, chaptér 2.

o, =16:

The edges produced, seen in Figure 2.11a, correspond only to
the extreme inner and outer boundaries of th test pattern. The
detailed ring structure and noise are totally smoothed away. It
is therefore expected that the edge pixel fraction always remain

low, and that thinness scores perfectly.

The histogram of edge magnitudes, Figure 3.3a, indicates a
nearly wuniform distribution of pixels above 54% maximum grey
level. The absence of low intensity pixels 1is consistent with

the absence of noise induced edges.

Figure 3.3b shows that the evaluation measure below 54%
threshold remains above, and approximately including, 0.9 for all
7. For =0, E remains constant at unity, which i§ consistent
with the observed edge thinness. The maximum epf value of this
region, Figure 3.3c, of 0.027, about one third of that expected,
reflects the scarcity of edge detail. Above 54%, the remaining
curves drop in a complex manner reflecting the loss of continuity
on breakage of otherwise perfect edges. Note that the

continuity-only curve, y=1, peaking at 0.9, reflects the inherent
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Figure 3.3 o =16.0 V2?g filtered rings image: (a) edge magnitude
histogram; evaluation measure against (b) threshold
level; (c) edge pixel fraction
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level; (c) edge pixel fraction
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Figure 3.5 o, =1.6 V?g filtered rings image: (a) edge magnitude
histogram; evaluation measure against (b) threshold
level; (c) edge pixel fraction
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bias of this method against curved edges.

o, =6.4:

The edge 1image, Figure 2.11b, indicates that the full
structure of the rings pattern was detected. Within the pattern,
no noise is seen. A small amount of noise in the form of closed
patches is seen 1in the image corners. All edges are perfectly

thin,

The histogram, Figure 3.4a, reveals the beginnings of a
bimodal distribution with an empty band between 9% and 50% of
maximum level. The onset of the small mode below 9% is an

indication of the presence of noise.

The evaluation scores of Figure 3.4b have $pread slightly
but still remain above 0.88 up to 56% threshold. The perfect
thinness of the edges is again reflected in the constant unity
value of the y=0 curve. The noise seemed to have 1little effect
on the low threshold regime of the evaluation measures. Finally,
the epf value found just after thresholding out the noise was
almost exactly that expected at 0.0741 despite the error in many

of the edge positions.

o, =1.6¢
The edge image of Figure 2.11c shows the full ring pattern

resolved to high accuracy but embedded in a field of noise.

Reflecting the pervasive noise, the histogram, Figure 3.5a,
has become strongly bimodal with the peak pixel count now in the
noise mode at 9%. The many zeros in the histogram are a result

of all the edge magnitudes having integer values between 0 and 62



which do not map to every level between 0 and 100%.

The evaluation scores of Figure 3.5b peak over the range of
38% to 44% threshold with y=1 returning the lowest peak score of
0.865. Thinness is seen for the first time to drop below 1.0,
below 18% threshold, attaining a minimum of 94%. Interestingly,
the peaks coincide with the valley between the histogram mode a
result consistent with that found . in Kitchen-Rosenfeld's
three-level template evaluations. Figure 3.5¢c dramatically
illustrates this peak occuring at epf=0.075 just above that
expected from the rings themselves. Clearly the conclusion here
is the same as that of Kitchen and Rosenfeld: if the image must
be thresholded, the optimal 1level <coicides with the peak

evaluations.

In general, it is observed that the evaluation scores at low
threshold remain high for all y in contrast to the divergence
seen in the three-level template results. It can therefore be
concluded that the V2g filter edges exhibit a local continuity

quality comparable to their thinness.

The next series of tests compared the scores against
threshold setting for seven differenct signal to noise ratios (1,
2, 5, 10, 20 50, 100). This required choosing a fixed v
setting. The setting chosen was ¢=0.8, the same as that used by
Kitchen and Rosenfeld. Compatibility with published results was
a factor in this choice, but not a dominant one. The principal
reason was that the edges were observed to be perfectly thin.
The thinness component of the score therefore provided little new

information and would tend to upwardly bias the continuity
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component. Continuity, however, was of serious concern
particularly for the applications envisioned which require
continuous edges for region segmentation. The pure continuity
score does, however, have a curved edge bias. A vy of 0.8 was
therefore felt to compensate for the bias, acknowledge the
general edge quality, and provide good indication of the degree

of edge continuity.

SNR variation:
These images were only thresholded to the level where epf
dropped below 0.02, at which point the test images are quite

thoroughly broken.

Figure 3.6a shows the results for o,=16. The evaluation
scores are Seen to be largely SNR independent exhibiting similar
shape and small vertical variation. Since the epf range was the
same for all the curves, beginning at 0.027 the same level of
edge detail was resolved at each SNR. This noise imunity is
expected because the resolution interval, I, of 64 about the two
resolved rings covers the entire image. The maximum evaluation
measure was roughly constant at 0.925 and was attained at maximum
epf. The max. E versus SNR curve of Figure 3.6b reiterates the

noise immunity found.

The o0,=6.4 results of Figure 3.7a are &till seen to be
largely SNR independent in both shape and vertical spread, though
some divergence occurs at low epf. The increase in edge detail
is responsible for increasing the epf range. The peak scores all
occur about epf=0.74 produced by the rings. The max. E curve,

Figure 3.7b, displays this SNR independence by remaining flat at
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Figure 3.6 o, =16 V?g filtered rings image evaluation results:
(a) SNR= 1, 2, 5, 10, 20, 50, and 100 (from bottom
curve to top), 6=0.8; (b) peak evaluation scores
against SNR
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curve to top), 6=0.8; (b) peak evaluation scores
against SNR
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about 0.9.

When o, was decreased to 1.6 in Figure 3.8a, the SNR
independence vanished. Instead, the curves now show a broad
horizontal and vertical spread. The high SNR curves show a
definite 1increase and peak about the critical epf at 0.074.
However, the observation that the low SNR curves peak at high epf
indicates that the noise has a sufficiently wide range of
magnitudes as to render thresholding ineffective in removing it
without also damaging the rings' Structure. The max. E versus
SNR curve reflects the new SNR dependence by ranging 0.77 at
SNR=1 to 0.90 at SNR=100. As with Figure 3.5 these results are
also beginning to resemble those of the three-level template

operator.

It 1is generally seen that if the o, is matched to the edge
structure of the image, then the noise rejection can be very
high. If, however, o, is smaller than required, then
thresholding can only safely remove the noise if the SNR is high
as witnessed by the evaluation peaks near the critical epf.
However, it is also seen that if the noise level is high and the
filter too narrow, then it 1is perhaps impossible to select a
general threshold that will remove the noise and also guarantee

edge continuity.
3.4.2 Vertical Step Evaluation

The principal interest in processing the vertical edge is
that it should be devoid of the curved edge bias present in the
rings tests. This permits perfect continuity and thinness scores

for perfect edges. Since decreasing o, increases the influence
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of noise on the filter response which in turn produces curved
edges, it is expected ﬁhat the curved edge bias will dominate
over the small vertical edge for small o;,, high noise images.
Tests analogous to those of Figures 3.4 to 3.6 where SNR is held
constant at fifty and both y and the threshold level changed were
not performed. Having concluded that the optional v is 0.8, it
is adopted here also permitting the signal to noise ratio trials

to proceed immediately.

o, =6.4:

The printout of the edge positions and directions (before
threshold), Figure 3.9, for all SNRs reveals an image almost
devoid of noise. The two edge features always stand out
perfectly thin and connected. Only for SNR=1 1is there an
auxillary feature in the form of a small edge "island" 1in the
middle of the left panel. For all the other images, only the
edges are present. The principal influence of the noise appears

to be on the straightness of the edge.

The plot of E against epf, Figure 3.10a, shows that for
SNR=5 and greater, the evaluation plots are nearly identical each
reaching a peak of 0.994 at the maximum epf of 0.018. The score
is not perfect due to the slight winding of the edge observed.
The curve of SNR=1 deviates markedly from the rest due to the
presence of the noise island but still attains an excellent score

of 0.958 at epf=0.018.

The max. E versus SNR plot of Figure 3.10b shows a near
ideal evaluation for all SNR. Clearly, the elimination of the

curved edges bias 1is responsible for this much improved
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Figure 3.9 o =6.4 V?g filtered
vertical step edge
for SNR = (a) 1, (b) 2,
(c¢) 5, (&) 10, (e) 20,

(£) 50, and (g) 100
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performance.

o,=1.6:

The results here are markedly different from those of
o, =6.4. The edge image printout, Figure 3.11, shows the absence
of a discernable vertical edge below SNR=5 to the untrained eye.
This 1is substantiated by the noise ahalysis of the previous
chapter. By equation (2.48), the lowest tolerable SNR for o;=1.6
is 1.6625, or 3.325 by the definition used here. For SNR25, the
edge becomes increasingly isolated from the background noise, and
straighter. However, even at SNR=100, this background noise
remains significant and approaches to within two pixels of the

edge, but generally stays beyond three pixels.

The plot of evaluation measure against epf, Figure 3.12a,
shows a great diversity of scores. Below SNR=10, the &cores are
seen to decline wuniformly from a maximum of 0.77. This is
consistent with the poor image quality seen in Figure 3.11. The
three highest SNR curves show that the act of thresholding is
effective in performing a noise cleaning operation. The peak
scores are quite high, up to 0.978, and occur at epf=0.018, about
that for an ideal edge. The max. E versus SNR curve of 'Figure
3.12b also approach that of the three-level template operator
with a score of 0.77 at SNR=10 and steadily climbing to 0.978 at

SNR=100.

In general, it was observed that the absence of a curved
edge bias has resulted in generally increased scores approaching
1.0. Even though the o,=6.4 filter was not ideally matched to

this edge image, it produced almost total noise imunity for all
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SNR. The principal influence of the noise on the edge was to
contort it from a pure vertical line. Only for 0,=1.6 at ' SNR=1

was the test edge observed to be broken.

Even though it was outside of the experiment, the side edge
was particulariy interesting to observe. Being a pure step, it
matched the original model used to design the filter. It is not
surprising then to observe that this edge is particularly strong
and readily isolated from the background. It is seen to become
isolated at a lower SNR and, unlike the test edge, becomes
perfectly straight even at intermediate SNR values for both

filter variances.
3.4.3 Pure Noise Evaluation:

It was noted by Kitchen and Rosenfeld that even in a pure
noise image, there will be a certain occurence of well-formed
edges arising due to statistical fluctuations in image density or

accidental alignments.

The émoothing property of the Vg filter has already been
observed. A tendency has also been noted to clump noise into
random regions of diameter on the order of o, . These edges are
highly curved. They therefore present an opportunity to measure
the filter's performance in natural images where borders may not

be clearly defined, e.g. in remote sensing.

g, =6.4:
As for the rings image, the curves, Figure 3.13a, tend not
to overlap with changing o,. They, however, peak early at

maximum epf. The perfect score at y=0 indicates perfect thinness
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throughout. The decline with epf of the remaining curves
indicate the breakage of edge features with thresholding. Note
that there 1is no optimal threshold point indiéated here, the
declining scores indicate that all the edge features are equally

well-formed.

g, =1.6:

Again, the curves, Figure 3.13b, do not overlap with
changing v, but they do converge somewhat at high epf. This 1is
due to the 1loss of thinness, previously observed with this o,
aﬁove epf=0.01. At high y, the curves once again peak at the-
maximum epf level. Here walso, then, there 1is no optimal
threshold indicated. All of the edges are equally well-formed,

though perhaps a bit cluttered before thresholding.

In general, from the high initial scores for all y at large
~epf, it is apparent that this filter does produce well-formed
regions in pure noise,. From the decline in maximum epf with
increasing o, it is clear that the widest regions are produced by
the widest filter. Also, all the scores exhibit gimilar
tendencies such as an increase in thinness and decline in
continuity as the threshold level is raised. However, there is
no indication of an optimal threshold level because of the
absence of any peaks in the evaluation measure after thresholding
is applied. This substantiates the claim of the 1last chapter
tﬁat when confronted with an arbitrary image whose properties are
not well-known, or are nearly random, then it 1is best not to

apply any threshold at all after filtering with the chosen o, .
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3.5 Comparison to other Edge Operators

Figure 3.14 shows the results of this chapter superimposed
on the evaluation results of Kitchen and Rosenfeld. The plots
show all of the curves produced by the V2g filter riding well
above the others. The near-ideal response seen when the filter
standard deviation most closely matches the image details to be
resolved, o,=6.4, 1s not approached by any of the other
operators. However, the fact that the o¢,=16 curve scores the
highest shows that the good results of the ¢, =6.4 curve are not
so much the result of an ideal match to image detail, but rather .
are attributable to the noise cleaning influence of those wide
filters and the general 1local line-like character of the test
image edges. It is interesting to note how closely the o,=1.6
curves match the general shape of the others. Evidently, the
shape and amplitude of the noise response curves published is a
characteristic of all narrow edge operators. It appears
reasonable to predict that further reduction of o, will produce
further agreement with the results of the other operators,
indicating that the V?g filter offers 1little or no advantage
where extremely fine resolutions are concerned. However, where a
match to image detail of edge spacing greater than two pixels
(0, 21.6) 1is desired, the performance of the V3?g filter 1is

outstanding.
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Figure 3.14 Superimposition of the V?g maximum evaluation scores
upon those of Kitchen and Rosenfeld : (a) rings;
(b) vertical step.
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3.6 Conclusions

This chapter sought to prove two assertions: .that the V2g
filter provides superior performance over the majority of other
edge operators used; and that thresholding 1is an unnecessary
operation that may simply degrade the performance of the Vig
operator. The superiority over other edge operators was clearly
seen in the comparisons of the last sections. This superiority
may be lost where resolution below two pixels is sought. The
evaluations of the ring and step edge images show that an optimal
threshold point can be found where the evaluation scores peak.
However, the o, =16 filtered rings evaluatioﬁ and both noise image
evaluations showed this peak to occur at maximum edge pizxel
fraction without threshold. In general, therfore, there is no
guarantee that an optimal threshold point can be found that will
not disrupt the V?g filter's strongest asset, the formation of
closed edge segments. Thresholding is therefore not recommended
as a noise cleaning method. Multiband filtering which takes
advantage of the 40, wide noise clean strip predicted and

observed about strong edge features would be more effective.

Kitchen and Rosenfeld note that their edge evaluation method
should not be considered the 1last word in judging an edge
operator. There is a certain value in understanding the accuracy
with which an edge operator localizes an edge about its known
position, In the context of the V?g operator sSuch a measure
would serve to confirm the predicted distribution of the zero
crossing, o,. However, instead of adopting the approach of Abdou
and Pratt, or Peli énd Malah, which weigh every edge pixel in the

image to judge the overall goodness of fit, a more restrictive
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test is recommended which recognizes that the test edge is
usually fully resolved and isolated from the background sea of
noise. This more sophisticated method would search for the
output object edge near the true edge position and then follow it
about the image, keeping to within 20, of the true edge. The
standard deviation of the edge data will then serve as an
indication of the precision of the edge operator. Such a method,
left to future work, combined with the results presented here
should serve to complete the picture of the Vig filter

performance.
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IV. FAST BINARY-IMAGE SEGMENTATION

4.1 Introduction

The purpose of the V?g filtering stage was to reduce the
range of scale found in the 1input 1image and enhance those
features whose edge spacing exceeds the design minimum. Rather
than isolate the edges of the output image, as was done 1in the
previous chapters, a more useful operation is to use the result
to binarize the 1image 1into "black" and "white" pixels,
Binarizing the output image essentially uses the zero level to
threshold the filtered image for translation of positive "black"
regions to unity, and negative "white" regions to zero. Since
printed characters correspond to dark objects on a light
background, they will appear as regions of unit magnitude on a
background of zeros. The purpose of this chapter is to present a
system to separate, or segment, the individual characters seen
from the background. 1In the process, a description of those

characters will also be produced to facilitate their recognition.

This description will take the form of positional and
relational information of the external and internal borders of
the character objects found. A binarized image, as opposed to an
edge 1image, is essential to unambiguously distinguish between,
and process, these borders. The task of segmentation can be
defined as the operation of identifying those individual regions
represented by "1"s in the image. To be considered segmentable,
the complete object mugt be present in the image, separated from

the image boundaries by at least one row or column of zeros.
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Segmentable objects will also be referred to as closed since

their outer borders form closed loops.

A number of constraints will be considered to be in force in
~ this system. The foremost 1is that all processing be done in
real-time. That is,_closed borders must be detected, and their
description relayed .to the recognition system, concurrent with
the image raster-scan. Those borders found not segmentable must

be totally ignored.

The raster-scan will be considered to proceed along the
local vertical of the printed page, advancing from left to right.

For example:

N

(9}
Sy
'\

s,
TS,

—ee [

The direction of the scan proceeds along ¢, with new rows
advancing along r. This scanning method and coordinate system
was chosen for consistency with a CCD image scanning device, one

of the acquisition methods seriously considered. The vertical
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extent of ¢ currently stands undefined. However, 64 columns,
spanning about th character heights, will frequently be used,
again to be consistent with the CCD device considered. It is
also possible that the extent of ¢ may 1include more than one
print line. However, only the case of a single line per scan
will be considered here. Also note that there 1is no bound
implicit in the row-wise extent of the scan. c¢ is clearly
finite, however r may extend indefinitely. The solution is to
define a moving image window and bound r to the fixed dimensions
of the window. For example, bound r between 0 and N. Then at
different periods of the scan, the window and its row coordinates

would have the appearance of:

N

el V&

0 0 N/2 0 N 0 N/2

IO

Obviously r is recycled modulo N+1. The extent of r chosen is a
flexible design decision. However, it will be shown that it must
at best equal the extent of ¢ for the segmentation method to be
outlined to operate correctly. Generally, it will be assumed

that the extent of r and ¢ are equal.

Before proceeding further, some of the terms used rather
loosely to this point, such as "border", must be rigorously
defined. With a solid understanding of this image analysis
terminology, we turn to a review of past work and then address

the segmentation methods endorsed for this system.
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2,2 Preliminary Concepts
4.2.1 Connectivity

Define a binary digital picture as an integer array of
points (i,3). Each of which may assume only the value 0 or 1,
It is generally understood that in such a binary picture, 1s
represent object points and 0s belong to the background.
Rosenfeld [40), [60], has studied, at great 1eng£h, the
properties of such images. His definitions describing the
interconnection properties among object and background points are
now used widely 1in the field of picture analysis. Those
definitions and properties most relevant to the ideas presented

in the body of this paper will be outlined here.

Let A =1{ (i,, j¢),...,(i,,3,) } be a set of (i,j)s where

A can be defined as one of the following two paths:

4-path - if for each r, 1 <r < t, | ic - di,.¢] +* | 3. = 3, 41|
< 1, In other words, that ( i,,,, j,.y) either -equals
( ir, j, ), or is one of its horizontal or vertical neighbours.
Such points are called 4-neighbours and are said to be 4-adjacent

as illustrated below.

Z 2
)

4-neighbours of (i,73)
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8-path - if for eachr, 1 <r < t, we have max ( | i, - i,,,],
3¢ = dean|l ) < 1. That is, (i,,,, j,.:) either équals
( i, j¢) or is one of its eight horizontal, vertical, or
diagonal heighbours. Such points are called 8-neighbours and are

said to be 8-adjacent as shown below.

///%/
%657
% /%

8-neighbours of (i,79)

Let S be a subset of picture elements. Define (h,k) and
(m,n) of S as being:
4-connected - if there exists a 4-path with (h,k) as the first
term and (m,n) as the last, having all its members in S;

8-connected - if a similar 8-path exists between (h,k) and (m,n).

The dark object points of an image are considered to belong
to S and are considered 8-connected. The Dbackground therefore
belongs to S and is defined as 4-connected. All points of S that
are not connected to'thg-border of the picture are called holes
in S, If S is connected and has no holes, it is called simply

connected.

The principal advantage in wusing different types of .
connectivity in S and S is that this prevents S from being
connected across a thin diagonal of S. For example, consider the

following image array:
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0700
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If S were defined as B-connected, regions A and B would be
considered as connected by virtue of the two 8-adjacent diagonal
points. Therefore B could not be considered to be a hole inside
the similarly 8-connected region S. However, if S is defined as
4-connected, B would then become a hole inside S, disjoint from
A. This is in keeping with our intuitive notion of holes in

images.
4.2.2 Borders and Edges

The outline of an object can be described through two
features: its border, or its edge. A border will be defined as
a simple, bounded, closed 8-path in the object S, which is
everywhere 4-adjacent to S. For very thin objects, one pixel

across, the border and object may be one and the same.

An edge was defined by Rosenfeld [60] as a pair of
4-adjacent elements, one in S and the other in S. The defintion
applies regardless of the connectivity of S. When all adjacent
edge elements are linked into a simple closed curve, they form
the edge of an object. An edge is distinct from a border in that
it lies neither within S nor S but rather at the junction between
those regions. This results in the rather desirable property
that all edge points aré uniquely defined. This 1is not always

the case with border points.
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4.2.3 Chain Codes

Once the border points of the picture objects are found, the
question femains as to how best to represent these points for
storage in' memory. Freeman [49] proposed the use of a simple
chain code for the efficient coding of arbitrary shapes, or
curves. The method, as applied to a rectangular image array, is
fairly simple. Each 8-connected curve point is overlaid with the

following 3X3 rectangqular array:

aldlw

21
X|0
6|7

Chain Code Array

The numbers inside the squares, representing the points in
the 8-neighbourhood of X, are called direction numbers. These
direction numbers quantize the directions of the line segments
between next points into 45° increments. Since each curve point
can be quantized in this manner, only the coordinates of the
first point of the curve need be recorded. The remaining points
can then be specified by their direction numbers. The list of
connected direction numbers so derived forms a chain code. This
representation is more compact than straightforward coordinate
storage since only three bits are needed to represent each point.
Further reduction 1in storage can be realized if the curve is
known to be slowly varying. 1In this case, only changes in the
chain code of, say, +45° need be recorded, requiring only two

bits per point.
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4.2.4 Trace Direction

A concept that will be employed in finding borders 1is the
idea of an edgein and edgeout as defined by Zahn [70]. Consider

a point P on the border (or edge) of an object S:

P_x» direction of trace

If a global, sequential method was used to find P, and later to
proceed from P, we must define a direction for this trace. A
right-handed, clockwise direction, as shown above, will be used.
Now the edge or border point from which this trace arrives at P
will be defined as the edgein to P. Likewise, the next point to
which the trace proceeds from P will be defined as the edgeout
from P. Freeman direction numbers will be used to describe the

locations of the edgein, edgeout points.

You may notice that the term "edge" is used rather loosely
here. This is to maintain consistency with the definitions of
Zahn. 1In fact, these edgein(out) points will later be defined to

lie on the object's border.
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4.3 Review of Past Work

In the simplest character segmentation systems, the concepts
of border, edge, and connectivity play little role. Some systems
such as that of Mason and Clemens [61] simply scan the image, in
a pattern similar to that proposed in the introduction, searching
for blank scan rows. Object points found bounded between two
such rows are transmitted to the recognition circuitry completing
the segmentation process. In the more sophisticated method of
Hoffman and McCullough [62], it is recognized that characters may
touch or overlap causing a failure rate of up to 35% in a Mason
and Clemens-type segmentation approach for 12 pitch sherif-type
fonts. The solution was to develop two techniques to optimally
sever character assemblies if a blank column is not found when
expected. However, the net result is the same: to produce a pair
of partitioning columns between which the desired character
information lies. Column-wise transmission of this information

completes the segmentation process.

These approaches are not satisfactory for two reasons. The
first is that they do not address the problem of unsegmentable
object points in the image window. These can readily occur when
portions of characters from adjacent print lines protrude into

the window. For example:

&
Z)

If all columns containing the "a" are to be transmitted, the
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protruding ascender and descender must be transmitted as well.
This problem must be dealt with by subsequent processing stages,
or by narrowing the vertical extent of the scan and precisely
guiding the scanner along the print line. Since it is desirable
to place all responsibility for character segmentation into one
stage, and to relax hardware or operator tracking proficiency
requirements, neither of these solutions is satisfactory. A
second objection to column-wise segmentation is that it cannot

deal satisfactorily with overiapping characters. For example:

2

The "a" and "t" are clearly segmentable. However, no column can

separate them without 1losing information from at least one of
those characters. A solution to the shortcomings of column-wise
segmentation 1is to search the image window for closed boundaries

instead.

The approaches for acquiring border information fall into

two broad categories: sequential border, or edge, following
techniques, and non-sequential border, or edge, processing
techniques. The former involves storage of the 1image in a

randomly addressable array, a search for boundary pixels, and
then execution of an algorithm to systematically follow the curve
of each boundary found. The latter method 1involves recording
each border, or edge, point found during the raster scan,

followed by linkage of those points into closed borders during,
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or after, the raster scan. Neither of these approaches, however,
address the issue of the separation of touching characters.
Hoffman and McCullough show this to be a complex issue, so it

will not be discussed until much later in this chapter.

The sequential border following methods are the older of the
two categories, and those most often seen applied to character
segmentation. Their most notable feature 1is their simplicity.
Once the first border point has been acquired, a multitude of
methods can readily be conceived for acquiring the next point
adjacent to it and so on around the border to produce a

right-handed trace.

A pioneering application of this idea was explored by
Greanias et al. [13]. They devised a largely analog method for
the control of a flying spot scanner to first locate a potential
handwritten character boundary, and then follow its outline with
tight circular arcs centered on the light-dark boundary
transition. Later, Clemens [63] proposed a purely digital method
for character segmentation through border following. The search
for adjacent border pixels was guided by a set of simple
recursive arithmetic expressions. Beddoes and Lunscher [64]
explored this segmentation technique and found its principal
shortcoming to be an inconsistent view of border connectivity.
Borders were considered 4- or 8-connected depending on which of
the two possible diagonal directions was under consideration. As
a consequence, not all thin, one pixel wide, diagonal lines could

be followed.

Both border and edge following methods for 4- and

8-connected borders were presented by Rosenfeld [60]. The edge
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follower examined a simple 2X2 pixel area to locate successive
edge points along a border. The border follower required a
larger 3X3 pixel neighbourhood, the center pixel of which was the
current border point. The right-handed trace requires the outer
eight pixels to be examined in a clockwise manner to search for
the next border pixel. Rosenfeld and Kak [40] modified this
method to include the labeling of the border pixels found. This
permitted the known borders of an image to be ignored during a
rescan in search of new borders. Unfortunately, this 1labeling

process requires an extra two bits per pixel of memory.

Sobel [65] developed a novel, fast border following
technique which involved applying a 3X3 operator over the binary
image to produce an eight-bit neighbourhood code which in turn
-replaced each pixel of the input.image. This neighbourhood code
described the arrangement of object pixels adjacent to the
central pixel. After recoding of the image is complete, the
neighbourhood codes are read and a table lookup technique is used
to quickly guide the method along any borders present, and
produce a chain code description as output. The two—pasé,nature
of this technigue could possibly be modified to make it suitable

for real-time applications.

There are a number of evident drawbacks common to all
sequential techniques. Foremost is the requirement to store a
complete copy of the input image and provide random access to all
of the pixels. This obviously increases the memory requirements
of the system, especially when a Sobel-type system is employed.
However, memory management also becomes more complex when the

moving window of a dynamic image is considered. Clearly some
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form of two-dimensional circular list must be employed to store
the window which 1in turn requires communication of the current
top and bottom of the list to the border following system. The
methods cited operated on static images so memory management was
never a consideration. Because of the frequent memory references
involved in the search for border pixels, frequently guided by a
small sequential algorithm, there is some cohcern as to whether
these techniques could meet the real-time speed constraint.
However, D'Amato et al. [66] report a 100 character per second
recognition rate in a system that uses a sequential border
follower of an unspecified type. Evidently, therefore, these

systems can be adapted to our needs.

The non-sequential border finding methods operate very
differently. They address the above mentioned memory management
problems by simply storing no more than 2 lines of the input
image at a time. 1In fact, the method of Pavlidis [67] stores
only one line. To encode the image data, the end coordinates of
runs of object-points in the current line are entered into a line
adjacency graph (LAG). On completion of an image scan, the LAG
data is mapped into a connected string of boundary points which

completely describes the input image.

The idea of using a special data structure to connect border
points found non-seqguentially was also explored by Chakravarty
[68]. He proposed that the 1input image be scanned by a 3X3
operator, a procedure requiring storage of at least two image
rows, to search for 8-connected object pixels that can be linked
into straight line segments. These line segments are stored in a

special 1list data structure. Concurrent with the scan, these
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lists are linked together through the use of pointers to form a
description of all borders and lines present in the form of a
chain code. No effort, however, 1is made to achieve closed
borders since the method stores thin lines as unique line
segments. A true border follower would multiply define the 1line

segment pixels as it traced its way around them.

The opposite problem is found in the approach of Batchelor
and Marlow [69]. A 3X3 window is also applied to the input image
as it is raster scanned, but this time thin lines are ignored by
the system. This is because the system seeks to process object
borders found in the 3X3 window with special purpose hardware in
real-time, and thin lines represent an ambiguity that had not
been resolved. During the scan, the chain code of the border
points found is stored in a RAM memory addressed by the points'
coordinates. Therefore, even though only two rows of the input
image are stored, the initial memory advantage of this system is

subsequently lost.

All of the above systems, in addition to the shortcomings
cited, are two pass in operation. During the first pass, the
image 1is scanned and processed. During the second pass, the
image border description is generated. This is unacceptable in a
dynamic image incorporating a moving window. Border descriptions
must be produced "on the le" concurrent with the raster-scan.
Modifications to the techniques cited may remove this and other
drawbacks; but it was felt the answer lay elsewhere, in a system
that inherently detects all borders and presents no barriers to

generating their description on the fly.

C.T. Zahn [70] devised a binary-image description procedure
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founded on the detection and linkage of all edge-points present.
The result was a complete, chain code description of ‘any
two-dimensional patterns seen. A preliminary method was even
provided to show how the object patterns could be reconstructed
from the description. Though no suggestion as to the method's
suitability for real-time border processing was made, it was felt
that this description method incorporated enough flexibility to
meet this objective. 1In the subsequent sections, Zahn's method
will be presented and its application to closed-object

segmentation explored.
4.4 Zahn's Binary-Image Description Method

C.T. Zahn developed a method of formally describing
binary-image patterns which is readily adapted to segmenting such
images in a non-sequential way. This technique 1is based on
identifying the edge points between an object and its background
and assigning them an edgein-edgeout direction pair consistent
"with a right-hand trace. Through simple arithmetic relationships
this information can be processed to provide a complete
description of the borders, both external and internal, of any
object totally contained within the image. This description can
be provided immediately after a raster scan line admits the
complete object into the <current image window. Furthermore,

explicit storage of no more than two image lines is required.

As already defined, edge points are located between picture
elements. To detect the edgein-edgeout directions, Zahn centers

each edge point on a 2X3 window:
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D1 D2 D3 Civy
(n)
O/

D4 D5 D6 r;
Ci

The edge-point at A occupies the coordinates (c; ,r, +0.5).

By examination of the window, the edgein-edgeout directions
can be readily found using elementary boolean functions. These

were found by ‘Zahn to be:

neighbourhood edgein neighbourhood edgeout
D5AD1AD2A D4 1 D3IAD5SAD2 __ 1
D2AD6/ADS 3 D2AD1AD4/AD5 3
D2AD3/\D5/\D6 4 D1/AD2/\D4 AD5 4
D2 AD3IADSAD6 5 D2/AD4AD5 5
D1 ADSAD2 7 D5/AD2/\D3A D6 7
D4ADSADIAD2 0 DSAD6/AD2AD 0

It should be noted thatvthis particular window cannot detect
edges along directions 2-6. To remedy this, an additional window

is overlain near A similar to that above but rotated 90°:

D2 D3 L. 1
D5 <§> D6 r
D7 D8 L.
of Cy 4

This time the edge-point 1is centered on B at location
(c;+0.5,r, ). For this window, a new table of boolean functions

defines the edgein-edgeout directions:
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neighbourhood edgein neighbourhood edgeout
D6AD7ADS 1 D6 AD3AD2AD5 1
D6 A D8ADSAD7 2 D3AD6A D2 ADS 2
D6/\D8/\D5AD7 3 D6/AD2AD5 3
D3IADSADE 5 DSA D6/ D8A D7 5
D2AD5AD3IAD6 6 D5AD7/\'D6/\ D8 6
DSAD3IADEAD2 7 D8 A D5A D6 7

o+
%

Since the o windows together cover all of the possible
edge directions, the two windows can be combined into a single

window of the shape:

D1 D2 D3
(»)
O/

D4 b5 (8) Dé
D7 D8

The positioning of the B point between D5 and D6 will later be
seen to be necessary to achieve dynamic 1linkage of edge-points

during a raster scan.

The principal advantage of Zahn's approach lies in the fact
that edge-points are wuniquely defined. This simplifies the
processing of detected edges and implies equal processing time
for every edge-point. The principal disadvantage here is that an
extra bit is reguired to store the one half coordinate difference
marking the edge position. Since Zahn advocates only the storage
of curvature points (edgein # edgeout), this may not be
significant in light of the storage saved. Another objection is
that 90° corners resulting from the intersection of horizontal
and vertical object sides are not detected directly. These
corners are represented by two 45° corners. Therefore, these and
sharper corners are essentially smoothed into a rounded-edge

contour not entirely representative of the border shape. This is
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illustrated in the following example:

As well as the rounding effect, it is also seen that corners of
any type cause the detection of more edge-points (black dots)

than border points.

The last objection 1is 1largely an aesthetic one. This
technique does not generate border points which, at heart, is
really what is wanted. A simple modification, however, can

accomplish this.

The modification is to associate the edgein-edgeout
directions generated not with the between-pixel edge-points, but
with the nearest object border point. This initially causes some
multiple detection of <certain border points, but that's
acceptable. The border points are still only detected two at a

time.

As an example, consider the following neighbourhood:

003

D6

Here, edgein = 4 and edgeout = 5 and these values will be
associated with the pixel at D2. On the other hand, the

following neighbourhood,
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77 7
/m/ D2 D3
/] "y
7/// 7
D4 D5 D6
4 // (A7
associates the edge directions with pixel DS5. A similar

modification would be done with edge-point B. The net result is
that the edge directions become associated with border points

allowing the original coordinate word lengths to be maintained.

That some redundant border point detection occurs can be

seen in the following example. Consider the image segment:

47,
DI

“ / /
/%2//;_3//
122;2 ‘(/

A

The edgeout chain code genérated for this edge curve would

@

read:

22217775586,
with pixels 1 and 3 being recorded three times. A border
following scheme would record each pixel once and generate the
code:

222756 .
Brief examination shows that only the first edgein and the last
edgeout need be stored at each pixel. Also, it is seen that the
net result of these multiply defined borders is that a pixel ends

up pointing at itself via its edge directions and linkages.

Before proceeding, it would be expedient to take a brief

look at how the above windows would be implemented in hardware.
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Assume, first of all, that the binary image data is being
delivered in serial fashion. Also assume, for illustration, that

the video image is 64 pixels wide and at least 3 tall.

The proposed implementation would consist of two types of
shift registers. One of which would be 64 bits long; two of
these would be used. The other would be three bits long and
provide access to all three bits; three of these would be used.

The basic implementation would then be:

~3-bit shift regs. 64-bit shift regs.
Z1 Dt | D2 | D3 Binary Video In
S S —_,
Z2 D4 | DS | D6 64 |63 » » o 3 2 1 S1
: . .
Z3 D7 | D8 64 |63 ¢ » » 3 2 1 +—] S2
: I

Non-sequential Hardware

All of the shift registers are clocked at the video bit
rate. The three-bit shift registers hold the current window, or
neighbourhood of points to be examined. The Zahn-based method
would access eight of the bits in this window. The two 64-bit
shift registers delay the video data by two rows. This
configuration results in a 3X3 window sweeping across the image
from left to right. Clearly, no true image frame buffer is
maintained. The following border point 1linkage procedure will
make extensive wuse of the order in which this scanning window

detects the border points.
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4,5 Border Linkage and Closure

The Zahn border point detection method just outlined
consists of a local operator applied to every pixel in the image.
However, it was shown by Minsky and Papert [71] that a collection
of local operations could neither determine connectedness nor
closure of simple curves. Some further, global processing was
needed. The necessary global information for this is provided in
the border point coordinates and the edgein-edgeout directions.
In this section, a method will be presented for using this

information to determine both connectedness and closure.

It is important to note that in the coordinate system used,
r points up in the direction of new image rows which also
coincides with the direction of the 1local horizontal of the
character lines. ¢ is directed to the right along a row and

represents the character's local vertical.
Linkage:

Using the available r, c, edgein, and edgeout values, pairs
of connected border points, (r,, c,), (r,, cs), can be properly

linked by using the following properties observed by Zahn:
(1) edgeout.= edgein, between all connected points.

(2) ry,y 2 r; for constant ¢, and c,,, 2 ¢, for constant r.
This 1is a statement of the nature of the scanning process,
ie., new border points are always detected at progresssively
larger coordinate values. This property will be central to

the proper ordering of linked points.

For successively detected border points, (r,, c,y) and
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(ry, c3), with edgeout,= edgein, along the following

directions:

(3) 0-4: ry=r, and there can be no other point in this row with
¢c; such that cy<c;<c,. Therefore, consecutive occurences of

such points along the same row are automatically linked.

(4) 1-5: ry,-c,=r,-c, and there can be no other point (r;, c;)
with the same difference such that r,<r;<r, and C1<C; <C5.
Therefore consecutive occurences of the same differences are

automatically linked.

(5) 2-6: c,=c, and there can be no other point on this column
with r; such that r,<r,<r,. Therefore, consecutive
occurences of such points in the same column are

automatically linked.

(6) 3-7: ry+c,=r,+c, and there can be no other point (r,, c;)
with the same sum such that r,<r; <r,, €;1<Cc;<Ccz. Therefore,
consecutive occurences of the same sum are automatically

linked.

Condition (1) simply states the fact that each border point
points to the next border point in succession. Conditions (3) to
(6) provide the means for detecting when a given pair border

points succeed one another along the same border.

The process of linking all the border points into a closed

curve is accomplished through a series of lists.

Conditions (3) to (6) are implemented through a set of eight
tables which perform the pairing of 1linked points. Note that

explicit wuse of condition (2) is made throughout, ie., that new
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points arrive with ascending coordinate values.

Direction 0-4:

edgein = 0 = edgeout edgein = 4 = edgeout
2nd entry 1st entry 1st entry 2nd entry
L2, C2 Ly, Cy Ly C, L., C

These points are automatically sorted by the virtue of ¢
increasing while r 1is constant in this direction. Therefore,

these tables need contain only one entry each.

Direction 1-5:

edgein = 1 = edgeout |difference | edgein = 5 = edgeout
2nd entry 1st entry r-c 1st entry 2nd entry
-m ~m -m -m . ~m —m ~m -m
r, , C, Ly » €y —min ry , Ca r. , C,
: : . : :
4 . * » .
o ] o o
r. , €2 Ly ,» €, 0 ry , C2 r- , cy
- ] ® (4 »
. L : * [ 3
m ° m m ° m m e m m ° m
r. , ¢, s » Cy max ry , €2 r, , €,

These points are automatigally sorted on consecutive’
occurences of the same difference. Since these directions point
to or from new rows (i.e., data not yet arrived), they must be
accumulated 1in tables much larger than the 0-4 direction. One
slot is provided for each possible difference. It will be shown
that these differences must be subject to modular arithmetc with
the modulo determined by the image width. Therefore, even for
the largest of images, such a table is comparatively easy to
manage. Also, access to the wentries 1is possible through

hash-coding, 1i.e., wusing the difference result as the address to

the table entries.
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Direction 2-6:

edgein = 2 = edgeout c edgein = 6 = edgeout
2nd entry 1st entry coord. st entry 2nd entry
rg,cg r?,c‘} 0 l‘?rC? fgrcz
r3 , c3 r? , c? C max r? , c7 r7 , c%

These points are automatically sorted on consecutive
occurences of the same c values. Like the 1-5 tables, these too
have many entries. This time, the number of entries corresponds

to the maximum number of ¢ values.

Direction 3-7:

edgein = 3 = edgeout sum edgein = 7 = edgeout
2nd entry 1st entry r+c , 1st entry 2nd entry
rz; , €3 ry , ¢ -min ry ., €7 rz , €3
o ' _o o " o it o o ° _o
rz , C: £y , Cy 0 L1 , Cy rz , Cz
: . . . .
ry , €7 ry , c} max ry , c? r7 , c%

This case is similar to the 1-5 direction, only here the
entries are ordered according to their coordinate sum. Again,
consecutive entries are automatically sorted. The table would

also have to contain as many slots as the modular range of sums,

There are a number of implicit assumptions underlying the
construction of these tables. The most fundatmental is that the
r-coordinate is limited to the same range of values as the
c-coordinate. However, r represents an unrestricted number of

new rows of image data. r must therefore be recycled in a
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modulus at least eqgual to the maximum ¢ value. It will be shown
that all of the previous linkage relations, particularly along
1-5 and 3-7, still ’hold for a modular r. Another important
assumption is that points detected at B in the window are entered
first. This is necessary because B values lie farther down in
the image and therefore test older points than does A. Also, B
coordinates and edges along +45° diagonals lie between A points
and so must be linked into the border first to guarantee proper
linkage of A points. B was positioned between D5 and D6 to
ensure correct linkage along directions 3 and 7. Finally, the
representation of the given tables is somewhat deceptive. In a
full implementation, the information stored in the slots may be
of a very different character. For instance, pointers for lists
to be discussed next may be stored instead. Also, some of the
information shown 1is redundant; for instance, since the 2-6
direction is stored in increasing c values, there is no need to
store r, and since all these data structures provide automatic

sorting, there is really no need to store the second entry.

Concurrent with the entry of points into the linkage tables,

two other lists are maintained:

list-1 - This 1list would'contain r, ¢, edgein, and édgeout data
for later acquisition and processing. This is the primary store
for detection data until the border points and/or chain codes are
transmitted to the next processor after closure detection. Data

in this list is simply stored in sequential order as it arrives.

list-2 - This 1list can be considered a horizontal extension of
list-1 since it has the same number of entries, each of which is

intimately associated with one list-1 entry. List-2 is a list of
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pointers, the pointers befng addresses to other list-1-list-2
entries representing successive border points as they would be
linked in a right—hahded border trace in the image. By tracing
through these pointers, this entire approach achieves global

closure detection.

The physical structure of these lists is therefore:

Address list-1 list-2
1 Lvy C1, €, € —> entry a
2 L2, C2, € , € —> entry b
3 s, Ci, €, € —> entry ¢
N IN, Cny €, € —> entry x

where "—>" refers to "pointer to". It will be assumed that a 0
in 1list-2 signifies a null pointer (i.e., the linkage has not
been resolved). This is why the list addresses are started at

1.

The entries of list-2 are generated by the linkage tables.
In fact, only the list-1-1list-2 address need be stored in the
linkage tables since 1list-1 is wused to store the general
information on border points as they arrive. Also, some of the
information in 1list-1 may be redundant. For instance, in
generating and processing a chain code, only one of edgein,
edgeout is really needed (usually edgeout). The necessary size
6f these lists is indeterminate, and depends on the size ofv the
image and the complexity of the objects contained. An attempt
will be made to address this question empirically later. When

the end of these lists is encountered, the address counter will
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simply cycle back to 1 causing old entries to be overwritten. 1In
this way, objects that could not be segmented would simply be

forgotten.
The complete processing sequence can now be outlined:

(1) Before acquiring image data, clear all linkage table entries
and 1list-2 pointers to 0. This serves as a general reset

preventing false detection of closed borders.

(2) On detection, enter the border points into 1list-1 and the

list-1 addresses into the appropriate linkage tables.

(3) When a 1linkage is flagged, place the list-1 address of the
edgein point into the list-2 slot of the edgeout point.
When the edgein point is the first entry, its list-1 address can
be found in the linkage table. When it is the second entry, the
address of the list-2 slot of the edgeout point is found in the

linkage table.

(4) On anticipation of closure (a process defined later), trace
through the two lists under the direction of the list-2 pointers.
If the trace ends at a null pointer, the current border is not
closed. If the trace ends at its starting point, the border is

closed and transmission of its points may now take place.

A number of points concerning this processing sequence

deserve special attention:

(a) Step 4 is a very much streamlined border tracing method. By
following pointers in memory, this approach achieves global
closure detection at a speed proportional to the border perimeter

and the memory reference rate. This 1is " also the only
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substantially sequential procedure in the entire processor and so

may be the most critical in determining its overall speed.

(b) To ensure that unlinkable objects (i.,e., those which touch
the "sides" or original "bottom" of the image) are not seen,
special conventions must be invoked when the Zahn window 1is at
the image extremities. The scanning circuitry must flag
instances when these extremities are reached. A preferred
convention is that when the window is positioned with the A point
on the extreme right or left column of the image, or below the
first row (at start up), set those window pixels overhanging the
image to black. This will cause unlinkable objects to merge with
the 1image borders, and will provide the detection circuitry with
consistent information for edge direction decisions. However, to
prevent the extreme right column from logging the image boundary
and wasting list memory, when on the right column, disable
detection of the B point. The net result is that those border
points which touch the sides will always point to, or from, null
entries. Therefore, if 1list-2 entries are always cleared on
transmission, unlinkable borders can never be detected in step 4.

E‘Q' 4

untraceable could be accidentally linked
if list-2 entries are not
first cleared

In the long run, the unlinkable borders simply get overwritten as



158

the finite list slots are recycled.

(c) On a similar note, however, all linkable, or closed borders
are seen immediately when complete. This follows from the fact
that closed borders leave no null entries in list-2,
Anticipating when a border 1is likely to be closed will be the

topic of the next section.

(d) Due to the recycling of the 1list-1-list-2 memory slots,
there 1is a remote possibility of entering an infinite loop while
tracing through 1list-2. This can occur even though 1list-2
pointers are cleared with new entries and during border
transmission. If an object is unclosable or of such an extent
along r that it cannot be closed before recycling of the lists,
the pointers at its deepoest level may point to more recent
entries. If these recent entries form a closed border on the
current scan the trace will encounter an infinite 1loop with no
way of stopping. To prevent this, a counter can be maintained in
parallel with the trace, and incremented on each trace step.
Should the counter value exceed the list length, the trace has
entered an infinite loop and can be stopped without closure being
flagged. 1In practice, this was observed to have occurred once in
6400 scan lines of 128 pixels in width with a 1list-1-list-2

length of 10,000 entries.

On verification of closure, the border points must be
transmitted to another circuit for reconstruction of the object
and/or recognition. Transmission 1is a simple matter of again
tracing through list-2 as outlined in step 4, except that the
list-1 coordinates and direction numbers are also read and

transmitted, and list-2 entries are cleared immediately on being
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réad. It is here that redundant border points can be removed. A
simple comparison circuit or test can be applied to determine if
any border point coordinates are repeated. If they are, all but

the last repeated will be ignored in the transmission.

It will now be shown that if modular arithmetic is employed,
the pairing of border points along the 1-5 and 3-7 directions is
assured. Lines along these directions are 1linked together
through common coordinate difference, r-c, and sums r+c. If the
register lengths available were infinite, these trivial
calculations would pose no problem, but this is not the case. 1In
our tentative implementation, the c¢ dimension would be 64 pixels.
To maintain symmetry in the coordinate word lengths, the r
dimension will therefore be forced to cycle at modulo 64. The
question now arises: can topologically linked border points along
the above two lines, but falling on rows r=+31 and r=-32, still
be linked by the same simple expressions? The answer is yes. To
show this, we will use an arbitrary modulo M (preferably a power

of 2) and Figure 4.1.

The figure will be used to illustrate the behavior of the
line r+c=K. The region squared off in bold 1is the region
physically seen by the camera scanner. All points outside this
region map back onto points within it by virtue of modular
arithmetic. For example, points in region 5 share a one-to-one
correspondence with points in region 6. Therefore, unscanned
portions of characters presently residing in region 5 will

subsequently be written into region 6.

For the equation r+c=K, there will be certain regions in the

plane where overflow errors would occur because the numbers are
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Figure 4.1 Modular image representation
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too large (labelled ?C//Zain the figure). These regions are

defined as:

In region 1:

r +c > M/2 -1, The resultant sum here would
be represented as a negative
number,

In region 2:

r +c < -M/2, The resultant sum here would
be represented as a positive
number.

Careful examination of these regions reveals that the sums
generated in region 1 are exactly those generated in region 4
with a one-to-one mapping; and sums generated in region 2 are

exactly those generated in region 3, again by one-to-one mapping.

Therefore, points on the overflowing line segment of line A
in region 1t will map exactly onto the non-overflowing line
segment of 1line B in region 4, and yet both lines will satisfy
the relation r+c=K by virtue of modulo M. Furthermore, points in
region 5 which represent the continuation of the lines outside
 the positive modulus limit will map into region 6 and again
directly onto line B. Therefore, even ignoring overflow, points
which lie on the line r+c=K in region 1 will still satisfy the

equation r+c=K in region 5.

Also it might be supposed that if a line segment, B, already
exists and is currently unlinked, it may inadvertantly be linked
to a new line segment, A. This will in fact happen under only
special, tolerable circumstances. Since lines A and B are
parallel, of slope -1, and separated in both dimensions by the
modulus M, line B will always be completed, or 1linked, before

line A 1is first detected. This is because line B leaves the
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visible region at r=X 1if it is not first connected, and line A
also can start no earlier than r=X because of the above

mentioned constraints on the lines.

The only exception to the above is the special case where
there are two unlinkable objects present: one at the top of the
image (using the currently depicted orientation) and one at the
bottom, and the bottom one has an edgeout along line B at r=X and
the top one has an edgein along line A also at r=X. However,
this is not a serious situation because, since both polygons are
clearly unlinkable, at worst, the algorithm will link them into
one large unlinkable object. (This 1is gquaranteed if list-2
entries are cleared as new edge points are entered.)
Furthermore, since the length of the two lists is finite and also
modular, a large unlinkable object will become overwritten in

time like any other and be forgotten.

In summary then, modular arithmetic can be used in the
labelling and processing of border points. Overflow errors or
flags can be ignored in the calculation of r+c and r-c (the
argument is the same as above by symmetry) for determining border

point linkage, and yet correct results are assured.
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4,6 Closure Detection

Actual detection of border closure requires the list-2 trace
outlined in step 3 previously. However, since this step 1is
time-consuming, some reliable method must supplement this trace
to anticipate if closure detection is likely. The discussion of
two such techniques forms the topic of this section. The first,
a "region. counting" technique, physically labels or colors all
object regions seen. When a certain label is no longer seen on a
scan it is assumed closed.and a list trace is done. The second
approach 1is less sophisticated and less reliable, but easier to
implement. Called the Euler number approach, it strives to
detect probable closure by detecting local changes in image
topology within a given row, Both techniques operate

non-sequentially.
4.6.1 Region Counting Approach

This techniqﬁe was given its name because it could be used
effectively as a means of counting the number of connected object
regions in the 1image. It was adapted from a method for
determining region connectiveness by Rosenfeld and Pfaltz [72].
However its very ability to count regions requires that it is
able to detect closure, and it is in this connection that it is

applied here.

The technigue requires the maintenance of a small image map
(no larger than the two shift registers needed for non-sequential
detection) of a certain fixed depth, say four bits per pixel. a
cross reference table with as many entries as levels in the image

map (16 in this case) 1is also needed and a pair of flags per
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level entry. The method operates in the following manner:

1.

On startup a counter is initialized to some number, say i=0.

Image points enter the image map in shift register form as
before but now the image is also viewed through the following

2X3 window:

r
L A <—
B C c
<— indicates the source of new image points.
Point A is considered the current point. Now examine the

last point, L:

(a) If L=0 and A#0, a new object point has been detected.
Examine B and C:
(i) I1f B and C=0, increment i and store it in the
shift register at A. Also look up the value of i in
the cross reference table and set a pair of region-seen
and region-active flags.
(ii) If B or C€#0, give A the number found in B or C
and set the region-seen bit for that number in the
cross reference table.

(b) 1f L#0, set A to the value of L and also examine B and
C:
(i) If B and C=0, carry on.
(ii) I1f B or C#0#L, look up B or C 1in the cross
reference table and set their region-seen flag. Also
set the C or D cross reference flags alongside A in the
table and A's flag alongside C or D. This identifies

both numbers as belonging to the same region.
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On the completion of the scan of a row, the cross reference
table is systematically examined to locate which fegions were
seen during the séan. When a set region-seen flag is found,
a trace is conducted through 1its cross references to set
their region-seen flags true also. Caution must be exercised
to prevent infinite loops during this trace. When complete,
the entire set of region-seen flags is again examined to
determine if any of the previously active regions were not
seen 1in this scan, as indicated by a true actiye—region flag
but false region-seen flag. If this is the case, then a
trace through the list-2 entries is made to find the closed
border. On completion, clear the cross reference table

entries that were now found to be closed.

Continue the image scan. On incrementing the region counter,

i, observe a certain modulo (in this case 16), however, skip

'i=0 since this is the null label.

The operation of this technique is perhaps best seen with an

example. Consider an- image with at most four possible, and cross

referenceable, regions:

1.

One row of image date (1s) first enters the image:
Cross

| 111 [ Region Ref. Seen Active
1|X000| 1|1
210X 00/|0j0
31]100X0]|0}j0
41000ZX1]0}0
Image Cross Reference Table

At a later time, another region row appears in the image:
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Cross

111 TZIZ' Region Ref. Seen Active
1! 11X 000 1|1
210X 00f 11
3{00X0} 00
41000Xj0]0

Image Cross Reference Table

3. With the arrival of new image data, region 1| is seen to merge

with region 2:

Cross

IEERERERE Region Ref. Seen Active
iy 22 11X 100/ 1]1
! 211 X200 1)1
31]00XxX0]0i0
4000X]|0]|0
Image Cross Reference Table

The merger of region 1 with 2 is recorded by cross referencing

region 2 and setting its "region-seen" flag.

4. The object now breaks away from the top image border forming

a closed, simply connected object:

Cross
Region . Ref. Seen Active
HEE RSN 11X 100 0f1
! 2|2 211 X000 01
o 3/!00x0]| 00
41 0002X]| 0f0
Image Cross Reference Table

Having broken away, no regions are seen on this scan, causing: the
"region-seen" flags to remain reset. A subsequent examination of
this table by the processor will reveal that two active regions,
linked by a cross reference, were not seen. A trace through

list-2 will then be ordered to find the closed border.

The main attraction of this method is that it immediately
flags the arrival of a closed object. When implemented properly

and thoroughly, there is no ambiguity about closure.

The principal disadvantage of this technique is its

complexity. To be workable with real character images, many more
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features will have to be implemented than have been shown here.
- On the surface, we see that there is a need to utilize a number
of shift registers for storage of the region numbers. There is
also the need to store and maintain the cross reference table and
region counter. Tracing through the <cross reference table to
find which active regions were not seen is a sequential
operation, and therefore time-consuming. Provision must also be

made to prevent infinite loops during a trace.

There are also a number of disadvantages which are not
immediately obvious. It is difficult to fix a modulus for i, the
region counter. In a sufficiently complex, distorted object with
background noise, the number of counted and merged regions can
become quite large. This, in turn, would force the crosé

reference table to become quite long.

Since detection of closure is not confirmed until a full row
has been scanned, there 1is no optimum way to search list-2 to
find the connected outer border and the borders of any holes it
may contain. This necessitates scanning all of 1list-2 and
keeping a third, binary 1list to record those 1list-2 entries

already examined.

To circumvent these many implementation problems another,
somewhat less reliable, method was developed. However, what it

lacks in reliability it gains in simplicity.
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4.6.2 The Euler Number Approach

An Euler number is a topological property of binary images
and is one of the few such properties that is locally countable,
A very thorough discussion of Euler number evaluation can be
found in Gray [73]. Basically, an Euler number, E, represents
the difference between the number of objects in an image, B, and
the number of holes, L. ie.,

E=8B-1L.,

This number can, however, also be found using readily
countable image elements. ie.,

E=no_n1+n,2

where: n, the number of vertices,

jo]
[}

the number of line segments,

o]
Y]
]

the number of object regions contained by the

line segments.

The vertices are defined as places where two or more line
segments meet. The following two examples should clarify the
concept:

Eg. 1:

v - vertex
l - line
r - region

E=7=-10+ 4 =1

Since there 1s only one object, without a hole, E=1 as

expected.
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Eg. 2:

A L
)

ng = 23, n, = 35, n, = 12

E =23 - 35+ 12 =0
Note that line segments do not criss-cross holes.

The Euler number is a locally countable property and can be
found for a complete image by summing the contributions from all
mutually exclusive image segments. It is known that the Euler
number, like any locally countable property, cannot detect the
individual values of B or L. However, the change of the Euler
number, AE, in a dynamic image can be readily determined locally.
This information can, in turn, then be used to signal that a new

closed object or hole may have appeared in the image.

To implement AE detection, two approaches have been
developed for this dynamic image case. In method A, 1s topped,
the image is considered to be framed in 1s regions from which the
object appears as droplets that later break free. 1In method B, 0
topped, the top of the image is considered to consist of a row of
Os below which the object appears from "nowhere". These methods

are illustrated in Figure 4.2.

Setting the two left and right sides of Figure 4.2 to 1 is
done to prevent objects which touch the 1image sides from

influencing the Euler number. This is because such objects are
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Method A Method B
1 topped 0 topped
E=-0 [ E=0
g g
| %)
E-——O T E:1
] %

ANAN

g = ’ ’
10E=1 | E=0 [ HPe-0 [ A He=

4 ~e < j : 7 |1

] 5 1 |1

. . g
ATt ' [~ =
[T lEe Wl giEs OIS g

/5 L 1 [ A ] // g

Figure 4.2 Euler number variation 1in 1s topped and 0 topped
image representations
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considered unlinkable. Examination of the Euler number at the
various steps in the example shows that the two methods do not
behave the same. The 0 topped method B, for instance, only
detects the appearance of a new feature, body or hole, but does
not detect its separation into the frame. The 1s topped method
A, however, detects the first appearance of a new hole, and the
separation of a new body into the image frame. It also detects
the merger of an interior hole with the outside in a similar way

as it detects separation.

In summary, the Euler number changes as:

AE
1 topped 0 topped

new object appears 0 +1
new hole appears -1 0
hole broken +1 0
hole established 0 -1
object separation +1

2 objects merge 0 -1

In comparison it is seen that the two methods complement
each other. Neither's Euler number changes in the same manner as
the other during an event, and all but only two of the AE pairs
is unique. Unfortunately, it is these non-unique pairs, which
reduce the reliability of the method. Of course, we have not
considered the case of multiple objects entering the image field.
The net result then is that AE can be confused when it is

evaluated one row at a time.

The overall observation 1is that method A 1is useful in
detecting a separated, or possibly separated, object, and method

B is useful in detecting established holes.

To detect these changes in the Euler number, a 2X2 square

local neighbourhood is examined:
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a Vi

A |pB

c [Yp

In each method, the evaluation of AE is done with respect to
pixel A, and the total AE for a row, or portion of a row, is
found by summing all the local wvalues. AE is calculated by
considering if a vertex is present at v, or v,, whether a line is
present at a, b, or ¢, and whether A is 0 or 1. Methods A and B
differ largely in how they consider a and v,. Method A always
considers there to be a line and vertex at a and v,. If A=0,
method B never considers there to be a line at a and considers v,
to be a vertex only if B=1., Occasionally, a line or vertex must

be cancelled in order to avoid being counted twice.

Since there are sixteen possible boolean expressions for
this window for each method, the detailed analysis will not be

presented. The final result, however is:

Method A ( 1s topped )

AE, = +1 for
7
% #
AE, = -1 for 7 7
1 /C/ 22

Method B ( 0 topped )

%

AE, = +1 for

7% Y
AE, = -1 for 2 /

The beauty of the method rests with the fact that all of the
above conditions can be determined with simple boolean tests, and

AE accumulated using a simple up-down counter,



173

Since many objects, or segments of objects, can be detected
on a single row scan, it is best to stop and test the accumulated

AE at certain strategic locations.

For the 1s topped case, this place was chosen as the right

corner of an object's boundary. This would be signalled by

7

This configuration must be present on the right side of a

separated object. If at this point, the accumulated AE,=+1, then

such a separation may be probable.

Likewise for the 0 topped case, AE, would be tested if the

following configuration appears:

7

7

( X indicates don't care). This configuration must appear at the

upper right corner of a closed hole. An accumulated AE, of -1 to

this point indicates that a closed hole is probable.,

Since the two AE counters are bounded to the range of -1, 0,
and +1, provision must also be made to ensure that they are not
incremented or decremented outside of this interval. This can
happen with the presence of multiple unseparated objects or

holes, For example,

1s to d:
ppe 7 %
Uit
A AE, of -1 is accumulated after this unseparated hole

has been scanned;
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0 topped:

VAV///V

A AE, of +1 is accumulated after this unseparated object
has been scanned.

In each of the above examples, the method is working
correctly in that the correct AE per scan will be accumulated.
However, the true objectives of this approach are being
overlooked. That is, accumulate the AE individually for each
object encountered during a scan line to detect closure. To
accomodate the presence of multiple objects provision must be
made to reset the Euler number counters whenever an incomplete
object or hole has been encountered. This will require one more

boolean test for each method.

Method A (1s topped):

Reset AE, for

%

Z

This indicates that an unseparable object has been encountered,

énd that an unseparable hole may be encountered.

Method B (0 topped):

Reset AE, for

7

This indicates that an unseparable object has been encountered.

Before summarizing the complete closure detection procedure,
it would be expedient to show how this method would integrate
with the border detection scheme. The current 2X2 window would

overlap the border detector's window as follows:
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D1 D2 D3
7\
A/
D4 D5 (B) D6
D7 D8

The current window is outlined in bold. The point to be noted is
that each of the two above stop and test conditions occurs when
there is a pixel 4-adjacent to the previous A edge. If either AE
counter indicates the presence of a segmented object or hole,
then it is a necessary condition that this A edge also belongs to
a corner where edgein # edgeout. Consequently, in all of thé
border representations to be discussed later, it will be recorded
in the 1linkage tables and 1its 1list-1 address can be held
available in a register. Therefore, when a closure test
condition is flagged, initiate the trace through list-2 beginning
at the previous A point entry. Since this fast trace is a
sequential process, it may be expedient to keep a short table of
list-2 start points which are to be traced at the end of the row
when more time is available. Either way, we have established a
simple method of 1indicating possible closure, and finding the

point in list-2 where the verification trace is to be begqun.
4.6.3 Euler Number Closure Detection Procedure Summary:

1. On beginning the scan of a new 1image row, clear two AE

counters (AE, = 0 topped, AE, = 1 topped).

2. On scanning the row, test the 2X2 Euler window simultaneous

with border point detection:

(a) on DSADIAD2AD4 true, increment AE,.

(b) On D4AD2AD! decrement AE,.
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(c) On D2ADIAD4ADS increment AE,.
(d) On DIAD5SADE decrement AE,.
(e) On DIAD2 reset AE,.

(f£) On DIAD2ADS reset AE,.

3. Record the list-1-list-2 address of the previous point just

detected at A in a short stack when:

(a) D4ANADIAD2/ADS AND AE, = +1,
(b) DIADSADE AND AE, = -1,
then reset the AE responsible for one of these expressions

returning TRUE.

4. At the end of a row pop the list addresses from the stack
and, one at a time, trace through list-2, Transmit the border

points when closure is detected.

It should now be clear that the principal advantage of this
method is 1its simplicity. The additional hardware required by
this method is two counters of only two bits each, a short stack
of maybe ten entries, and some additional logic. The exact same

window registers used by the border detectors are used here.

One disadvantage of this method is that it cannot guarantee
the closure of the borders it has detected. This is because of
the local nature of the method. It only has a memory for the
topology of the row of points it has seen up to step 3 above. It
can say nothing about the body of the image, or the row points

yet to arrive. A simple example would be the following:
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77
7

9;¢ 7
N V771 7

Gty

The scan here proceeds from left to right. The 1s topped
detector would flag an outer border at pixel X and the 0 topped
detector would - flag an inner border at pixel O. However, it is
obvious that neither border is closed, and so a 1list-2 trace
would fail. It is difficult to say how often such false alarms
would occur per row. An attempt will be made to count the false
alarms produced by a series of test images. However, considering
that many objects are not that complex in structure and in any
case, a list-2 trace can be done very quickly, the delay

resulting from false alarms is not expected to be very great.

There is a possibility that this closure detection scheme
will detect the same closed border more than once in a given row
scan. It is therefore important on transmitting the border
points to not only clear the list-2 entries during transmission,
but also to check whether they are clear before starting
transmission. If they are clear, the transmission algorithm can
proceed to the next closed-border stack entry. Failure to check
for cleared entries may lead to an infinite loop, or erroneous

data being transmitted.

In conclusion, the Euler number closure detection method
provides a cheap and easy method to anticipate whether a given

border is closed.



178

4.7 Border Point Representation

To preserve generality, this discussion has deliberately
avoided the question of how the border points are to be
represented in storage and during transmission. Thus far, the
information associated with border points has been somewhat
redundant, consisting of both coordinates and direction numbers.
In the interests of minimizing memory size and data-channel
bandwidth, a more compact border point representation must be
chosen. Basically, three methods are being proposed as feasible
candidates: coordinate storage, chain code storage, and a hybrid

of the two.

Representing the border points by their coordinates in tﬁe
image window is probably the most obvious approach. Here only
the (r, c) coordinates of each point need be stored in list-1, and
once closure is detected, the closed string of these points is
sequentially filed in a subsequent storage buffer. Thé principal
drawback of this method is the large volume of data involved.
For a 64X64 bit window, each r-c pair would require a twelve bit
word size. Besides being long, this size is intermediate between

the 8 and 16 bit word sizes in common use today.

The 1idea of chain code representation was introduced in the
fundamental concepts. The idea is simple, instead of storing the
r-c coordinates of each point, just store the edgeout diréction
number at each point. This number by definition points to the
next pixel 1in the <chain. At most only the coordinates of the
first point in the chain need be stored. However, this 1is not
really necessary since the Treadout of list-1 can start at any

arbitrary location. Therefore, the start point, for instance, in
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border reconstruction, can be placed at some normalized position.
In either case, the advantage of chain code representation is
that each point is simply characterized by a three-bit direction
number. It can even be argued that if the border 1is gradually
curved only one or two bits is needed to represent the change in
direction number. The net result is that border point storage is
now very compact. At most, only one quarter the memory of

coordinate storage in a 64X64 image is needed.

A further advantage of this approach 1is that certain
transformation operations on the border are greatly simplified.
Translations in the X or Y directions are simply a matter of
moving the chain's anchor (the first point's coordinates) about
by the appropriate amount. Rotation of the border by increments
of 45° simply involves adding 1 to each chain code entry per
increment. However, one should be cautioned that rotations by
increments other than 90° results in spatial distortions of the
border. Coordinate storage, on the other hand, would require
these transformations be done to every point with rotations
involving 2X2 tensor operationsg (though without attendant

distortions).

A combination of the two previous techniques forms the
hybrid representation. This method of border point &storage was
first formulated by Zahn. He observed that borders are
completely defined by those points where edgein # edgeout. These
he called "curvature points". This is because all those points
which have edgein = edgeout lie along a straight vector directed
between curvature points. Therefore, the storage of the

coordinates and the edgeout of all curvature points would
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completely characterize a border. This would require about 15
bits per point, but if the border forms a very angular polygon,
as many characters do, then curvature points would comprise about
one-tenth of the points in a border. This would yield a very
compact 1.5 bits per border point. However, if the border is

noisy or circular, this advantage would be lost.

The transformations applied to this representation would
also be a hybrid of the two preceeding. Translations would be
performed only on the coordinate component of the data, whereas
rotations would be applied to both. Rotations would be
particularly compiex since the coordinate components can be
rotated by a variety of degrees but the direction numbers by only
increments of 45°. This would probably yield very irreqular

borders for non-90° rotations.

The hybrid representation has one strong asset that makes it
the most attractive of the three. The edgein # edgeout decisgion
can be performed at the lowest level by dedicated hardware
monitoring the edge directions found in the 2ahn window. If
edgein = edgeout, no further processing is done and that
edge-point does not get logged in list-1 and the linkage tables.
A great deal of processing time and memory space can thereby be

saved.

Hybrid and chain coding can also provide elementary
topological information about the border Stored. This
information in the form of change in curvature point direction
number with border length could facilitate character recognition.
By providing information on curvature, the degree of bend at

different positions on the border can be calculated and compared



181
to tabulated values from characters, Normalized, such

information would be size and orientation independent.

Structural information such as the area contained within a
border is also obtainable from coordinates of the curvature
points in the hybrid representation. These coordinates are
situated at the vertices of a polygon. When read out in the
linked sequence, the contained area A can be calculated with,

[66]:

A = (I/ng (Ac, ér;, - Ar, éc;)
where:
N = the number of curvature points ,
Az, = z;, - z, ,
6z, = z;, - z,_, .

If area information 1is wvital, dedicated hardware can readily

evaluate the above expression.

In conclusion, it appear§ that the hybrid approach to border
point representation and storage represent$ the most efficient
utilization of memory, and the most useful scheme to sSupplement

optical character recognition.
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4.8 Object Reconstruction

After the detection of an exterior border confirms that a
closed object has been found, the subseguent goal of a binary
preprocessor is frequently to reconstruct that object in an image
buffer. This reconstruction process utilizes the border points
as a guide to restoring the dark object interior points as 1s. A
variety of procedures can be used to implement restoration
depending to a large extent on the border information available,
and the means used to represent this information. The method
presented utilizes both internal and external curves and makes no
reference to any information source other than those curves.
Topological properties of simply connected objects are explicitly
employed and any of the three previous border data

representations can be used as input.

The procedure presented here is intended to supplement
border tracing methods, such as the non-sequential schemes, which
provide complete external and internal border information. Zahn
showed that such information completely characterizes the object
to be reconstructed and so no further reference to the original
image is necessary. Three means were presented in the previous
section for representing the border points. The method to be
presented here was adopted from Zahn's proof and is applicable to
all three, but the chain code representation will be used for

illustration.

The foundation for this reconstruction method is a
corrollary of the Jordan Curve Theorem [74, pp. 13-16]. This
states that if P, is a point enclosed by a curve ' and P, is

some other point 1in the plane, then P, is outside T if a line
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drawn from P, to P, intersects ' an odd number of times.
Likewise, if P, is inside T, such a line intersects T an even

number of times.

To see how this theorem offers a means for object
reconstruction, the corollary 1is rephrased in the following

form:

If P, is external to T and P, is internal to ', then an
odd number of the line segments of the line, 1, between P, and P,
extend from T to P,. If P, is also external to T, then an even
number of line segments of 1 can be drawn from T to P,, an odd
number of which intersect T an even number of times, including

the starting point on T.

A simple example will illustrate how this corollary can be
applied to object reconstruction. Consider a closed, simply
connected object with external contour TI. Also consider two
points P,, P,, both external to T with P, adjacent to T and P,
far displaced from r. A line segment drawn from P, to P,

intersects I an even number of times:
P,

1y

1.

4P2

This line is subdivided into two segments 1,, 1,; 1, totally
internal to T and 1, external to TI. Now cause P, to trace the
outline of T in a clockwise fashion. During this trace, P, must

cross 1 at least once. At this point, the line segment from P,
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to P, is identically 1,. 1If this trace is stopped when P, is
adjacent to but not occupying " its initial position, then the
family of all line segments from P, to P, generated during the

trace will include 1, exactly once and 1, exactly twice.

If now all points in this plane are initially labelled 0, we
can assign an operator to the P,-P, line segment which
complements all those points on the line (i.e. changes 0 to 1
and vice versa). When such an operator accompanies the above
trace, we find that, when complete, 1, points have been
complemented once yielding 1s and 1, points have been
complemented twice and so remain 0. However, these lines are
simply examples of an infinite family of lines generated during
the trace. The net result produced by the operator, therefore,
is to convert all points interior to T to 1 and leave all those
exterior to T as 0. The object points inside T have therefore

been reconstructed.

Note also that if T is a curve internal to some other curve

F; which does not contain P,, then a similar trace about T,
will also complement the points inside it reseting the interior
of r to 0, revealing it to be a hole inside the larger object
outline, T,. This then will be the mechanism for reconstructing

objects from border information.

The previous example fixed the line from P, to a stationary
anchor at P,. In fact, the theorem and its results apply just as
well if P, 1is permitted to move freely along, say, the bottom
edge of the image in such a way that the lines from P, are all
parallel and vertical downward. 1In this way, all points below T

in the reconstruction window are complemented. This permits a
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feasible proposal for object reconstruction. As the object
outline is written into the reconstruction buffer, following the
right-handed trace convention, complement all of the buffer
points below each 'new point until border reconstruction is

complete.

Before proceeding, however, there are two problems in
adapting the theorem ignored in the example, which must first be
resolved. - In the example, T was considered part of the object
and P, part of the background. The convention was adopted that
all points on the line, 1, excluding P, were complemented. On
close examination, we now find the curious result that when P, is
between T and P, intersecting 1,, it encounters points that will
be complemented an odd number of times (ie., set to 1). The ‘net
result 1s that points on 1, adjacent to T are transformed to
object points, essentially thickening T by one point over these
regions. In the event that Py is complemented along with all
pints of 1, then the thickening is simply transferred to the top
portions of I. If P, was allowed to ride on T, the result
would be that only pertions of T would be transformed to object

points. There is no consistent way to remove this behavior.

This problem was ignored in the example because P, was
simply considered an infinitesimal point. However, when points

become pixels, the problem cannot be ignored.

The other problem was that P, was never considered to follow
a path parallel to L. That is, a path where T forms a straight
line parallel to 1. This implies that points on 1 should be
complemented an infinite number of times as P, moves along r.

The result of this operation is indeterminate.
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Both problems can be solved by imposing a set of rules to
guide the reconstruction. The nature of these rules is readily
visualized when using chain code border representation. Consider
the following example displayed alongside our coordinate and

direction number conventions:

c 0
7 ‘ AU /77//// 7
e 2 —
L Vi
r . 3 /% i
4

To reproduée the image segment on the right by complementing

downwards, apply the following rules to the current border point:

For external borders:

complement the current point if edgeout = 1 to 4,

do not complement the current point if edgeout = 5 to 0.
For internal borders:

do not complement the current point if edgeout = 1 to 4,

complement the current point if edgeout = 5 to 0.

The policy is reversed for internal borders because the

borders still belong to the object and not the hole.

The above cures the T thinning problem. The problem of
moving P, along a straight 1line manifests 1itself here as a
problem of moving the trace along a vertical border segment.

This is best illustrated with the following example:
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— T,

/)

Those pixels marked in bold correspond to the places where 1

is tangent to T at a line. These are places that either already
are or will be complemented by a trace following the upper
boundary. I' can be further subdivided into two problem areas:

r, representing convexities, and r, corresponding to

concavities.

To eliminate the problem in the vertical 1lines, don't

complement when:

]
(=]

edgein 0 AND edgeout

edgein

L}
1=y

4 AND edgeout

The ', concavities pose a special problem since they are
already complemented from above. The interiors of the vertical
lines will be dealt with by the previous method, however, to
prevent complementing below the corner points in the concavity,

don't complement when:

edgein = 5, 6 AND edgeout = 4
edgein = ¢4 AND edgeout = 2, 3
edgein = 1, 2 AND edgeout = 0
edgein = 0 AND edgeout = 6, 7

Internal borders are processed using the exact same rules.

Since all of these rules are simple boolean expressions, they can
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be readily implemented in hardwired logic. The only additional
memory burden is the storage of the old edgeout to be used as

edgein above.

When reconstruction in a finite, physical buffer is
considered, the problem of where to start the reconstruction
traces arises. For an outer border in hybrid representation,
this is not a serious problem., Thé buffer need only be designed
to accomodate the largest expected character, and the characters
are reconstructed upper-left-justified in that buffer. Two
pieces of information are required. These are the column
position of the trace start point supplied by the closure
detector and the 1left-most column position encountered during -
transmission of the curvature points. The difference in these
values will give the column position in the upper row from which

reconstruction may start.

Since internal borders are detected before outer borders,
two complications arise. The first is where to position them.
This is best solved by storing internal border information wuntil
an external border arrives. The external border can then be
reconstructed followed by the internal border(s) which start at a
position determined by  the difference 1in initial trace point
cooridinates. The second problem arises when the internal border
is inside an object which cannot be segmented. In this case, the
correct outer border will never arrive. To avoid thig internal
border being added incorrectly to a subsequent object, the values
Of its extreme upper, lower, left and right coordinates must be
compared to those of the outer border. If they all fall within

the outer border's extreme points, then reconstruction can
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proceed normally. Otherwise, this 1internal border must be
discarded. Situations can be envisioned where this technique may
fail. However, in character 1images, these situations are
expected to be too rare to justify the cost of a more

sophisticated method.

How the reconstructed image 1is handled now 1is up to
subsequent processors. For instance, a recognizer may perform a
template match on the image data and then find it satisfactory
and so clear it when finished. On the other hand, it may decide
something more is needed, eg., the body below the dot on an "i",
and leave the image to have other parts added later, or it may
order some transformation on the image such as rotation or

scaling.

Since dedicated hardware can be devoted to reconstruction,
the operation promises to be fast. However, many more points in
the buffer must be referenced to perform complementing than there
are points inside the object. Therefore, it may be essential
that the time interval between successive closed objects be very
much larger than the memory reference period. Fortunately in

optical character recognition, this seems to be the case.

Further details concerning implementation of the reconstruc-
tion procedure will not be presented. Since such a system was
not investigated through simulation, it was felt that such a
discussion would be too speculative, adding little to what has

been presented already.
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4.9 Touching Characters

A serious investigation of the segmentation of touching
characters did not form a part of this thesis research. However,
" since Hoffman and McCullough [62] reported up to 40% incidence of
touching characters in experiments involving 12-pitch type, it
was felt that the matter does deserve some discussion. Rather
than attempt an exhaustive examination of possible methods to
separate touching characters, only one possible solution will be
presented instead. This will demonstrate that a solution to the

problem could be incorporated into the preprocessor design.

A hierarchical approach is proposed for the segmentation of
the text 1in a line. The first level of this hierarchy will
address the segmentation of words, the second level, the
segmentation of characters. This is a major departure from the
concentration on characters that has dominated this chapter.
However, the segmentation of words as a unit produces at least
two notable benefits. First, words, not characters, are the
elemental semantic components of language. It is the words on a
page that a reading machine must articulate accurately.
Secondly, the segmentation~ of words provides a set of
measurements whereby to group and parse the characters found at

the high resolution level.

Compared to characters, words are easy to segment. Even in
the handwritten case, words are set apart by a clear space. The
size of this space for typewritten text is at least one
character-space. Therefore, there 1s no question of the
foregoing segmentation scheme being able to segment words as a

unit provided that all internal details could be forced to blend
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together. From qualitative experience, it is noted that the
spacing between characters within a word, and disconnected
components  within a character (e.g., the dot on "i"), are of a
distance comparable to the average limbwidth of a character.
Therefore, if the standard deviation of the V2g filter is chosen
to resolve a minimum of, say, twice this spacing, all details
within the word are blurred together; but words as a unit,

separated by more than two limbwidths, would be resolved.

When processing this blurred image, the segmentation system
may ignore internal borders, retaining only the external borders.
When a closed external border is detected, the recognition system
is signalled to indicate that all of the characters found by the
high resolution system since the last closed border now
constitute a word. The primary usefulness of this information is
that the characters found can now be grouped with confidence into
word units. Such a system could, for instance, distinguish
between a solitary "I" representing the first person singular
pronoun, and an "I" occurring in the first position of a word
such-as "International". Also, positional errors arising during
the separation of touching characters will be prevented from
accumulating beyond word boundaries. This filtering and
segmentation of words must be done by a dedicated system
operating in parallel with a similar system dedicated to

resolving characters.

As the character boundaries are found by the high resolution
system, they are passed on to the recognizer. In the event
touching or poorly resolved characters occur, the recognizer

should indicate a low recognition confidence. Those borders are
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then stored for later processing. When a word is flagged, the
spatial ordering of the characters found within it immediately
becomes known. In the case of poorly resolved characters, this
knowledge could be used directly or coupled with di- or trigram
statistics to improve recognition confidence. Similar knowledge
could also be applied to assist in the parsing of touching

characters.

This parsing could proceed in the recursive manner outlined
by Casey and Nagy [75]. For the case where the characters are
reconstructed in a buffer, successive trials are made to split
the characters at a column and send each segment to the
recognizer in turn, If the result scores high confidence,
including the positional and statistical information, for both
characters then thé segmentation is accepted. However, if low
confidence is indicated, then the column is moved to increase the
window on one character and decrease it on the other, and the
recognition process is repeated until one of the <characters is
parsed too narrowly. 1In this case, the best guess must be taken.
If more than two characters are connected, then some estimate of
expected character width must be employed to select the multiple
parsing columns. The method would then continue as before with,
however, one column at a time being shifted to determine the

optimal position.

This segmentation approach is subject to the same <criticism
that was directed at Hoffman and McCullough. There is no optimal
way to segment overlapping characters. To address this
criticism, the reconstruction step 1is abandoned in favor of

operating on the border representation directly. The outer
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border can readily provide the extreme horizontal and vertical
dimensions of the character cluster. With this information, a
variation of the Casey and Nagy method can be invoked. The row
coordinate at a suitable division point (usually the width of
the narrowest character from the left or right) 1is noted. The
outer boundary of the cluster is then scanned to find the nearest
point with row coordinate greater than or equal to this value.
Once found; a second search is made for a similar point, but for
which the trace is proceeding in the opposite direction. This is
indicated by the edgein-edgeout pair being directed into opposite
half-planes from those of the first point. If the distance
calculated between these points is sufficiently close to a
limbwidth then these points represent a good guess for
segmentation. Should they be too far apart, then this
segmentation row guess is not near the touching point and so must

be shifted..

To complete the segmentation, the compound outer border is
split into two smaller borders. This is done by "splicing”
together the two close points just found by placing them at the
head and tail of two new border point lists repfesenting the
borders on opposite sides of the splicing region. These new
borders are then transmitted to the recognizer to be assigned a
confidence measure. This process 1is outlined in Figure 4.3

below:
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Parse row After splice

Figure 4.3 Touching character separation

If the segmented result is rejected by the recognizer, then
the operation must be performed again, but with the 1initial row
guess moved. For this reason, it is important that only a copy
of the outer border data is spliced and the original left intact
for subsequent trials. Note, however, that not as many
recursions are expected from this approach because some
prescreening already takes place 1in the judgement of suitable

closeness between the two points to be spliced.

In the event that the characters touch at two widely
separated and vertically displaced places, the above technique
will reject all trial splicing pairs. An internal border will
probably form 1in the gap between the two touching areas. This
internal border must therefore be included in a subsequent repeat
attempt at segmentation. This time, splicing at both places

simultaneously is required.

The above has been merely a preliminary glimpse at how to
address the touching character problem. It is hoped that it will
serve as a fruitful starting point for further research. No
doubt a more rigorous investigation, including simulation trials,

will produce refinements, or replace these suggestions entirely
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with a superior method.
4.10 Segmentation Summary

The complete binary-object segmentation procedure advocated

in this chapter can now be summarized in the following steps:

(1) Before scanning the input, initialize all of the linkage
tables, all of the list-2 entries, and the Euler number counters
(AE,, AE,) to zero. The two image-data and the three Zahn-window
shift registers are 1initialized to wunity to frame the image
bottom and sides with object points. Also, initialize the

current list-1-list-2 address to unity.

(2) Réster scan the 1image from left to right shifting the
binarized pixels into the two sets of shift registers. Begin
processing the image data only after shift register St is filled.
Maintain a count of the row and column coordinates at pixels D2,
D5, and D6 with the row count cycling at a modulo at least equal
to the image width. Also maintain a set of flags to indicate
when the first or 1last image column enters D2. For the first
column, black out (set to unity) D1 and D4, at the last column,

black out D3, D6, and D8, and disable detection of a B point.

(3) Using the modified 2ahn border point detection procedure,
log the coordinate and edgeout value of all points where edgein ¢
edgeout into list-1, simultaneously clearing the list-2 slot. B

points are processed before A points.

(4) Log the 1list-1 address of the current point into the
appropriate linkage table where it 1is designated as a first

entry.
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(5) If a linkage is flagged as a result of the current point
also being a second entry, then if the first entry being linked
to is an:
(a) edgeout - log the current point's list-t address in the
list-2 slot pointed to by the first entry.
(b) edgein - log the 1list-1 address found 1in the first
entry into the list-2 slot of the current point.

Clear the linkage table slot just flagged.

(6) Increment the list-1-list-2 address when processing of each
A or B point is complete. When the available addresses are used

up, cycle back to unity.

(7) Perform the closure anticipation operations on D1, D2, D4,
and D5 to alter the Euler number counters and/or detect possible

closed-border points.

(8) I1f a possible closed-border point 1is 1identified, then
retrieve the last A point found from its delay buffer and push it
onto a trace stack. It may be appropriate to maintain separate

stacks for internal and external borders.

(9) When processing of the current Zahn-window is complete,
place the current A point's (if there is one) list-1 address

into the special delay buffer used in (8).

(10) Continue shifting the pixels and repeating steps (2) to (9)

until the flag indicates the last column has been processed.

(11) At the end of the scan, pop the trace stack entries and use
each to initiate a trace through list-2. Maintain a count of the

number of entries traced. Iff
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(a) the trace leads to a null pointer, then discard the
current trace stack entry.
(b) the trace leads back to the 1initial address, the
current border is closed. Push this trace entry onto a
transmission stack.
(c) the counter exceeds the maximum list-1-list-2 address,
then the trace is caught in an infinite loop. Discard the

current trace entry.

(12) Pop the transmission stack entries and trace through list-2
again. This time retrieve and transmit the information in list-1
to the recognition/reconstruction circuitry while also clearing
the list-2 pointers. If the list-2 pointer is found to be null
before the transmission is complete, abort the transmission and

flag the error.

(13) On reception, the border information can be buffered and the
object reconstructed when its outer border arrives, or the border

information can be processed directly for recognition.

(14) Continue scanning the document until complete. Then
(a) Terminate the shifting of image data to ensure that any -
remaining unclosed objects are not closed accidentally.

(b) Return to step (1) to perform a complete system reset.

At first sight, this segmentation procedure may seem
excessively complex to attain raster-rate performance. However,
the complexity 1is reduced by observing that a number of these
processing stages are mutually exclusive and thereby admit to
parallel execution. Furthermore, this entire procedure consists

largely of simple logic operations and data transfers which are
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ideally suited to implementation on fast, dedicated hardware.

Once the system has begun to deliver 1image data, the
processing of the Zahn window can be represented by the following

state diagram:

edge-point closure

detection detection

and linkage

Figure 4.4 Segmentation state diagram

The edge-point detection and linkage, and closure detection
sequences, are the most clearly parallel operations. There is no
sharing of memory or processing resources between them. Within
the edge-point detection and linkage branch, the operations of
logging the edge data in list-1, (3), and logging of the list-1
address 1into the 1linkage tables, (4), can also proceed
concurrently. What the dashed line attempts to show is that if
both an A and a B edge is present in the current window, steps

(3) to (6) must be performed twice in succession.

When processing of the window is complete, the buffering of
the A point, (9), and the shift of image data, (10)-(2), can also

proceed concurrently.

When a given row scan is complete, the system must dedicate
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itself to the wverification of boundary closure and its
transmission, (11) and (12). It appears unavoidable that these
steps must be executed sequentially. It may be possible to
overlap these operations with those of processing the Zahn window
through interleaving of the list-t1-list-2 references. However,
this has the one serious drawback that closed boundaries found
during step (11) may become overwritten before or during
transmission in step (12). It therefore appears that sufficient
delay must be allowed between row scans to permit steps (11) and
(12) to run to completion. What constitutes sufficient delay
depends on the size of the 1image array, the length of

list-1-1list-2, and the speed of the technology employed.

The processing of border data in step (13) is an operation
totally exclusive of all the others. It essentially constitutes
the second processor in this image analysis pipeline, with stages
(2) to (12) constituting the first. Since this stage involves no
reference to the memory resources of the earlier stages, and
since it is expected that there are less segmentable objects
present than image  rows., processing can proceed at a more
leisurely pace than before. If new border data 1is transmitted
before processing or reconstruction of previous data is complete,
then it can simply be buffered until it 1is needed. The exact
timings of this stage depend on the implementation of the border
analysis/reconstruction system and on the expected complexity of

the objects to be processed.



200

4,11 Segmentation Simulations

Throughout this chapter, discussion of the segmentation
system's hardware requirements has been purposely vague. Partly
this is due to the fact that these issues are implementation
dependent. That is, they depend on the input image width, the
maximum scan rate, and the bandwidth of the technology employed.
However, it is also due to the fact that the complexity and size
of the objects scanned can have a major influence on the system's
requirements. Because So many contributing factors are present,
it is difficult, if not impossible to analytically predict what
those requirements are. Some empirical insights, however, may be
gained through simulations. In this section, such gimulations
will be performed by implementing the segmentation system in

software, and then applying it to a set of binarized images.

The simulation involved implementing the segmentation
procedure, excluding reconstruction, in PASCAL to accept 128X128
binary images as input and produce a list of all segmented-border
curvature points as output. Since this simulation was designed
to measure such quantities as the necessary list-1-1i§t-2 memory
slots, and stack depths required by these images, these resources
were made exceptionally large to ensure that they would not
overflow, 1In the case of 1list-1-1ist-2, ten thouSand memory
slots were made available. The stacks were each given thirty

slots.

Concurrent with the segmentation-related activity, the

following statistics were also gathered:

(a) Total number of A points, B points, and simultaneous
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detections of A and B points.

(b) Total number of anticipated outer and 1inner borders, the
verified number of outer and inner borders which together
provides the number of false alarms.

(c) Total number of closed border points transmitted.

(d) Image statistics: total image area; total edge points
present.

(e) Record of the occupancy (number of memory slots used) of
list-1-1ist-2 at the end of each row scan.

(f) Histogram record of the number of points traced while
testing for closure at the end of each row.

(g) Histogram record  of the number of segmented points
transmitted at the end of each row.

(h) Histogram record of the occupancy at the end of each row of
the three stacks used: stack of anticipated outer borders;
stack of anticipated inner borders; and a stack for verified

closed borders to be transmitted.

The choice of test images 1initially presented some
difficulty. Foremost, these images were to present as general a
set of objects as possible to provide a comprehensive
understanding of the segmentation method's operation. Further-
more, these images were also to be indicative of the range of
scale and image quality expected of the VZ2g 6perator. This last
point required that the V2g operator be applied to binarize the
input image, which 1in turn left open the question of the
appropriate filter standard deviation. Since this system was
designed to process character 1images, these 1initially seemed
suitable. However, printed characters come in many shapes and

sizes, so choosing any one would bias the results, and choosing a
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wide selection of fonts, including all characters and a range of
print sizes, would generate a vast number of test images, more
than would seem necessary. for the issues addressed here.
Besides, it would be desirable if the results could reflect the
system performance for any kind of image, including real world
scenes. In the interests of generality, then, the test images
should contain a complex set of borders enclosing objects of a
~variety of sizes, but with no particular bias to any particular
class of images. Only pure noise binarized by a range of Vig

filters appeared able to meet these requirements.

Fifty such binarized noise images were generated for these
simulations. These were produced by initially generating ten
128X128 images containing independent Gaussian noise of mean 128
and standard deviation 16. These noise statistics were chosen
simply to be compatible with those wused during the evaluation
trials of the last chapter. Five V?g standard deviations, o, ,
were applied to binarize the images: 0.8, 1.6, 2.4, 3.2, and 4.0.
Referencing the square wave edge model, these filters will
resolve edge detail with a minimum spacing (fbr B=1.25) of:
1.0, 2.0, 3.0, 4.0, and 5.0 pixels. These edge spacings present
as wide a range of object sizes as can be expected in character,
or real-world images. Since these images are derived from random
noise, it was observed that these spacings are in fact close to
the average values obtained. Therefore the results produced
during segmentation can be classified as arising from five

distinct levels of input image complexity.

Figure 4.5 reproduces two representative candidates from

each of these five test image classes. The severe complexity of
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the o0,=0.8 1image 1is immediately apparent. This complexity far
exceeds that expected in text images, and exceeds that of most
real-world images. At the other extreme, the o;,=4.0 image
contains far larger, less structured objects than expected in
text images, but it 1is consistent with certain low resolution
real-world 1images. The o¢,=1.6 1image 1is probably the most
representative of the object complexity expected in text and
real-world images. Though the amount of detail present is still
much higher than text images are likely to produce, it contains
object limb widths and boundary curvatures similar to those which

compose printed characters.

Together, these five test image classes present 6400 lines
of image data to the segmentation algorithm. The statistics will
be grouped according to <class with each grouping therefore
representing the results seen in 1280 image lines. The results
of the number of points traced and transmitted, and the stack
occupancies at the end of each row will be combined to provide an
indication of the system operating requirements across all levels

of input image complexity.

Before examining the results of the simulation experiments,
let's examine the system requirements imposed by a worst-case
situation. Such a Situation would be produced by a checkerboard

image at the pixel level as shown below for even N:
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Figure 4.6 "Checkerboard" worst-case image

Even though this image has no closed outer borders, it contains a
maximum density of holes, and 1inner borders. A number of

observations can be made immediately:

(1) Every junction of two pixels is an edge point with edgein #
edgeout, so all Zahn window positions, except at C=N, produce
both an A and a B point to be logged. Therefore 2N-1 points are

logged into list-1-list-2 at the end of each scan.

(2) Every hole, except at C=N, is detected as a possible inner
border; therefore the internal-border trace-stack contains a

maximum of N/2 entries at the end of a row scan.

(3) With four border points per hole, an average of ( 2N - 2.5 )
points would have to be traced and 2N-4 points transmitted at the

end of each row.

A maximally detailed 1image <containing only closed outer
bofders would be less dense than the above worst case, but the
densest rows will contain the same number of closed borders and
border points as (2) and (3) above. It is important to note that
it is readily possible that a given row scan in another image may

close a border that contains more points to be traced and
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transmitted than indicated in (3). Substituting N=128 will
permit comparison of this worst-case for the results actually

obtained.

Table IV presents some of the results obtainéd alongside
those of the worst-case situation. The decreasing image
complexity with increasing o, is reflected throughout the table,
most notably in the decrease of edge points despite a nearby
constant dark image area. The worst-case is revealed throughout
to be an unrealistic model about which to design the system. It
is also seen that the o0,=0.8 1image class is sizably more

demanding of the system than the other classes.

It is observed that 1in general, the A and B points occur
with approximately equal incidence at a combined rate ranging
from 0.58 points per column (ppc) down to 0.08 ppc. Simultaneous
occurence of A and B points also declines from 24.8% of the
points seen down to 3.2%. These results stand in contrast to the
worst-case figures where 2 ppc are produced with essentially 100%

simultaneous occurence.

The curvature point arrival rates suggest that there may be
some merit to pipelining the edge-point detection and linkage
process. In the first stage of such a pipeline, the curvature
points would be detected and logged in 1list-1, In the second
stage, the 1list-1 addresses of the curvature points would be
buffered for linkage processing. Provided that this system could
process an average of about 0.5 ppc (or one point every two
pixel shifts), all points sSeen should be properly linked shortly
after the end of the row scan, minimally delaying the subsequent

closure verification stages. Such an implementation would permit
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Worst g =0.8 1.6 2.4 3.2 4.0
-case
area 8192 8186.6 8196.7 8191.,1 8190.9 8153.2
edges 32512 14645.,7 7710.7 5229.0 3930.9 3183.1
edges/row 225 114,420 60.240 40.852 30.710 24.868
A pts 128 37.275 15.194 9.009 6.238 4.905
B pts 127 36.887 15.156 9.094 6.433 4,921
Total 255 74.162 30.350 18.103 12.671 9.827
A AND B 127 9.198 1.759 0.648 0.291 0.159
anticipated 0 2.438 1.144 0.588 0.347 0.242
outer
anticipated 63.5 6.038 1.369 0.672 0.377 0.255
inner
actual 0 0.271 0.186 0.096 0.044 0.043
outer
actual 63 3.484 0.347 0.105 0.046 0.030
inner
false 0.5 4,720 1.980 1.059 0.634 0.423
alarms
closed pts 252 56.796 10.670 3.932 2.053 1.963
transmitted
unclosable 3 17.366 19.680 14,171 10.618 7.863
pts
Table IV. Segmentation simulation results including

"checkerboéard"

worst—-case
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use of slower hardware and would be more suited to cope with

those few instances where A and B points arrive simultaneously.

The results for the closed borders anticipated by the Euler
number closure detection method show that the o,=0.8 image class
exhibits a 2.5:1 bias in favor of internal borders. This may be
a statistical anomaly since the bias rapidly disappears for the

other classes.

It is observed that there is an almost order of magnitude
decrease in the borders anticipated per row from the worst-case
(63.5) to o0,=0.8 (8.5) followed by a further order of magnitude
decrease by o,=4.0 (0.50). Of the borders anticipated, the
percent that can actually be closed and transmitted rahges from
44% (0,=0.8) to 15% (0,=4.0) in contrast to 99% for the
worst-c55e situation. It would appear that the efficiency of the
Euler number closure anticipation method declines markedly with a
decrease in image complexity. However, this apparent decline
could also be attributed to the increase of unclosable curvature
points in proportion to those forming closed borders with
increasing o, . This causes a decrease in the number of closed
border points to total curvature points ranging from 76.6%
(0,=0.8) to 20.0% (o, =4.0) which lends support to the premise
that the method's efficienqy is not strongly related to the

image's complexity.

The largest data structure in the system 1is the dual
list-1-1ist-2 array. It is important that this array log all the
curvature points 1likely to be -encountered in an image window
before recycling. Otherwise, segmentable objects within that

window may become over-written before being detected as closed.
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A record of the occupancy of list-1 at the end of each row for
all of the test 1images is shown in Figure 4.7. There are two
important points to note about this plot. The individual points,
representing the results of a given image, scatter very narroﬁly
about the lines representing the average occupancies per class.
The average occupancy, therefore, serves as a reliable indicator
of the list-1-list-2 requirements of a given resolution class.
Secondly, the occupancy shows an almost exactly linear dependence
on the row count for a given class. This implies that for a
given image complexity class, the list-1-list-2 size requirement
scales directly with the image area. Therefore, a 64X64 image
window needs only one quarter of the list-1-list-2 memory space

of the 128X128 images.

The maximum values attained in Figure 4.7 represent the list
size requirement for that image class. It does not mean,
however, that objects are present with a size that extends across
the entire 1length of the image. Rather, it means that if such
objects were present, these 1list sizes represent the minimum
required to guarantee their segmentation. Thé requirements
extend from about 9500 memory entries at o,=0.8 to 1300 entries
for o,=4.0, with 3900 entries for that expected from printed
characters at ¢, =1.6. The requirements for the worst-case equal
that of the number of edges present at 32,512 entries. The
choice of which list size to adopt must be motivated largely by
cost. That 1is, the cost of the memory hardware, as compared to
the cost of losing the occasional segmentable object. It is
evident from the narrow scatter of the results in Figure 4.7
about their average values that the o, =0.8 requirements represent

a maximum that 1is wunlikely to be exceeded. Indeed, even the
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worst-case requirements are deceptive Ssince the image is
dominated by single pixel holes, so that segmentation is actually

guaranteed after only 383 entries.

The efficiency of logging only curvature points as opposed
to all edge or border points is evident on comparison of the
maximum values of Figure 4.7 to the total edges present in these
images as given 1in Table 1IV. As a percentage, the curvature
points range from 65% of the total to 41%. This indicates that,
in general, the intermediate storage requirements of this form of
border representation are about one half those of a more complete
representation that logs every point. Consequently, also, half
the delay while verifying closure and transmitting borders can be

expected.

In order to estimate the delay incurred at the end of each
row scan, the number of points traced and transmitted at the
completion of each row were recqrded. The results are presented
in histogram form in Figures 4.8 through 4.13. Since the closure
verification trace and border transmission operations occur in
sequence, the Steps taken in these operations should be summed to
provide a basis for a delay estimate. The maximum sums Seen
range from 1122+581=1703 for o,=0.8 to 298+130=428 for o, =4.0 .
Interestingly, the steps counted for o, =1.6, 1177+411=1588, are
not much different from the otherwise more complex o =0.8 image.
The worst-case values of 255+252=507 are misleadingly small due
to the edge-points being produced by a 1large number of single

pixel holes rather than extended features.

Examination of the histograms reveals that the maximum trace

and transmission counts are rare events of a magnitude far above
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Figure 4.8 o, =0.8 histogram: (a) number of points traced per
row; (b) number of points transmitted per row
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Figure 4.10 o =2.4 histogram: (a) number of points traced per
row; (b) number of points transmitted per row
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Figure 4.11 o =3.2 histogram: (a) number of points traced per
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row; (b) number of points transmitted per row
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traced per row; (b) number of points transmitted per
row
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the mean values. In fact, the mean values are generally less
than 10% of maximum. This is most succinctly illustrated in the
histograms ‘of Figure 4.13 which combine the results of all the
image classes. The maximum count of points traced after a row
was found to be 1177 but the mean was 64.5, 5% of the maximum.
Similarly, the maximum points transmitted was 581 but with a mean
of 15.1, only 2.6% of the maximum. However, the processing
algorithm presented required that all points be traced and
transmitted at the end of a given row scan. This requires
designing the system Solely about the maximum points expected to
be encountered at the end of a given row scan. These simulations
suggest that to be 1177+581=1758 or, with a safety margin,
approximately 2000 points. The hardware employed must therefore
be capable of processing 2000 memory references in the time

between single row raster scans.

An alternative approach allows advantage to be taken of the
much lower mean values by abandoning the requirement to complete
the closure verification and border tranémission tasks between
scans. This approach must, of course, involve concurrent
execution of these tasks with the curvature-point detection and
linkage task. As a result, the system architecture 1is further
pipelined. The earlier observation that at most 0.5 curvature
points will be detected per raster shift permits parallel
execution of tracing and transmission with detection and linkage
since list-1-1ist-2 memory references can be interleaved. The
principal objection of this approach was that the entries being
traced or transmitted could be overwritten and lost due to new
points entering 1list-1-list-2., However, the list-1-list-2 size

requirements are now understood, and seen to be very predictable
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for a given 1image complexity class. Increasing the list size
above what is required for this class can prevent unwanted data

loss during parallel execution.

For example, the o =1.6 image class was seen to require at
least 3900 list-1-list-2 memory positions with about 30 positions
being filled per row scan. Even though the maximum points traced
and transmitted per .row was 1177+411=1588, the means were
85+11=96. Therefore even if the trace-transmit system averaged
only one memory reference per shift, with no processing between
scans, it would generally complete its task during the subsequent
row scan. However, the rare maximum case would require
1588/128=12.4 raster scans. Therefore, to accomodate this
eventuality the list-1-list-2 size needs to be increased by
12.4X30=372 entries, or about 10%. Since the single memory
reference per raster shift may be unrealistically slow, and there
may be time for processing between scans, the actual memory
increase may be much less. Therefore, the cost saving of such a
fully parallel system as associated with slower hardware and
greater assurance that all operations will run to completion

without conflict may be considerable.

The only serious side-effect resulting from parallel
execution of tracing and transmission is that the stacks storing
the péinters to possible internal or external borders need to be
referenced by both the tracing and closure-anticipation systems.
Since, even for the o, =0.8 image class, new entries for these
stacks arrive relatively infrequently memory reference conflicts
pése no serious difficulty. - The difficulty arises from the

tracing system requiring access to the oldest points on the
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(3) Replace the stacks with a set of circular lists. The
closure anticipation system will now place new pointers on the
top of each list while the closure verification system removes
old pointers from the bottom. The causal order of borders traced
and transmitted will remain correct and the system used to
control the lists is similar to a stack except that two pointers
are maintained for the top and bottom of the 1lists, and these
must be cycled in a finite block of memory. The amount of memory
required for each list would be determined by the product of the
mean occupancy of its corresponding stack and, as before, the
number of image rows scanned while processing the row with the
maximum points to trace and transmit, plus a suitable buffer to
accomodate large deviations from the mean. For example, if the
mean occupancy was 2 and the row count, for o,=1.6, was 12.4, the
requirement would be about 25 entries. Including a buffer of 10
gives a total size of 35 entries. Clearly, this is not a very

demanding memory requirement.

The drawback of this system lies in maintaining the correct
causal relationship between internal and external borders.
Internal borders generally belong within the temporally next
closed outer border. The reconstruction or analysis system may
rely on this causal ordering to correctly process the borders.
When tracing and transmitting all points between scans, this
ordering was guaranteed. However, to ensure this ordering using
circular lists, the system must monitor the values of the
pointers stored in those lists. The most recent pointers have
the highest list-1-list-2 addresses, cycling at a fixed modulus.

The circular list for internal borders must therefore be read
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first until the next pointer found exceeds the pointer of the
next external border pointer. The external border list will then_
be processed wuntil the next pointer exceeds the pointer of the
next internal border, and so on. The closed borders will then be
detected in the «correct order for transmission. Unlike the
previous cases where closed-border pointers were stacked to await
transmission, after the <closure verification stacks had been
read, this system can transmit the borders as soon as closure 1is
verified. This is because these circular lists cannot be fully
read in a guaranteed interval of time since new pointers are
always being added. Also, immediate transmission of closed
borders provides extra assurance that the data in 1list-1-list-2
will not become overwritten. This simplified transmission system
may cancel out the extra'complexity required by the verification

system.,

Which of approaches (2) and (3) is favored depends largely
on the relative cost of ‘the hardware employed. Approach (3)
seems- the most elegant, and the immediate transmission of closed
borders is very attractive. However, system (2) is basically a
simple extension of the eariier stack processing method, but the
necessary waste of memory it would entail may cause it to be
economically unattractive. The amount of memory required by each
of these systems can be estimated by the stack occupancies found

during the simulations,

The simulation wused a stack each for anticipated inner and
outer borders and a single stack to store pointers to verified
closed borders. Each stack was read and emptied after each row

scan and the number of entries found recorded. The result was a
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record of the stack occupancy 1in terms of the number of rows
generating a given, number of entries within each image class.
The results are shown in histogram form in Figures 4.14 to 4.19.
The most remarkable observation is that none of these stacks 1is
very 1long. The worst-case example would have required up to 64
internal-stack positions and 63 transmission-stack positions.
However, the worst case in the simulations, o, =0.8, Figure 4.14,
requires only a maximum of 14 positions for the internal-stack
and 13 for the tranmission stack. The o, =4.0 findings, Figure
4.18, show only three positions to be necessary for each of the
three stacks. This small memory requirement for the stacks in
any realistic situation is not worth optimizing. To declare a
minimum of twenty entries to be needed for each stack would
certainly prove adequate and provide a comfortable safety buffer

for unexpectedly complex input images.

For a simple three stack system without parallel processing
of verification and transmission, these stacks would only occupy
60 memory locations. For a parallel system with multiple stacks,
case (2), the example given would require 780 locations.
Optimization could now be considered, but this memory size is
still not serious. Design of the circular 1list structures
required an estimate of the average stack memory requirements.
Figure 4.19 presents the combined occupancy results for all image
classes. The means for the internal-, external-, and
transmission-stacks was found to be 1.8, 1.0, and 1.0. These
results are roughly comparable to the o,=1.6 results but less
than the o0, =0.8 results. Rather than adopt the overall mean, for
illustration the af=0.8 figures will be wused, but with the

external-stack mean equal to the internal-stack mean since their
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(c) transmission stack
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difference may be a statistical anomaly. With a 20 entry safety
margin, the previoﬁs calculation will require 12.4 X 6.1 +
20 = 95.64 or about 100 locations for the internal and external
circular lists. Since no transmission stack is used, the total
memory requirement is only 200 locations. Therefore, this system
produces an almost 4:1 memory advantage over the multiple stack
system. However, regardless of the implementation chosen, it is
clear that the list-1-list-2 data structure will dominate the

memory requirements of the system.

The simulations of the segmentation system have achieved
their primary goal of providing empirical insight into the
operation and hardware requirements of the system. The
observation that the segmentation system can accomodate further
parallelism was unexpected, but welcome. The net result may be
a more reliable system in terms of reduced 1loss of segmentable
borders which at the same time is less demanding of hardware
technology. Since all the test images were derived from noise,
it 1is not guaranteed that the system will operate in a similar
manner on application to other images. However, the complexity
of the test images within each resolution class suggests that
these images were more demanding of the system than most real

applications will be.
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4.12 Conclusions

The objective of this chapter was to develop a method for
the detection and isolation of closed borders within a dynamic
image 1in real time. The proposed system processed binary-image
data in parallel with the input raster scan in order to meet the
real-time performance objective. It also took advantage of the
dynamic nature of the image in the 1linkage of detected border
points, and 1in the detection of possible closed borders by

monitoring the local change in Euler number.

The overall design recommended for implementation wuses a
modified Zahn curvature point detector coupled to a multilist
data structure to link the curvature points into a closed border.
Closure of a border 1is detected (but not guaranteed) by an
Euler number closure detection system which files the pointers to
the expected borders on two stacks, one each for internal and
external borders. Closure verification occurs at the end of the
row scan. Verification of border closure employs the global
method of following pointers within the 1list-1-1ist-2 curvature
point storage 1in search of cyclical linked 1lists. On discovery
of a closed border, the curvature points, 1including their
coordinate position and edgeout direction, are transmitted to a
subsequent processor. Though the nature of the subsequent
processor is not of concern to the segmentation system, a
reconstruction procedure was investigated to show how the
segmented objects detected could be reconstructed from the border
information alone. In addition a preliminary procedure was

outlined for the separation of touching characters.

Statistics gathered from a software simulation of the
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complete system provided the necessary data to facilitate the
prediction of memory requirements and estimate the time required
to complete each processing stage. The £final configuration of
the system will be governed largely by the incoming video data
rate and the image width in pixels. However, the simulations
underscored the fact that much flexibility is possible in the
system architecture. It is envisioned that the final
implementation will include a rich blend of parallel and serial

processes acting in concert.
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V. DISCUSSION AND CONCLUSIONS

This thesis has presented the design details of the edge
filtering, binarization, and segmentation components of a

proposed digital preprocessor for optical character recognition.

After the camera device has acquired the image data, it is
to be filtered with the two-dimensional V2g optimal edge
detection filter. This edge filter was shown to be optimal in
the sense of maximizing output signal energy about the character
edges. This resulted in a large degree of noise rejection within
two filter standard deviations of the edges. The smoothing
aspect of the filter also removed any roughness from the
character boundaries. Both of these features eliminated the need

for an additional noise cleaning stage after binarization.

The resolution response of the V2g filter was determined for
two edge models. The square wave model is most suitable for
predicting when the edge spacings within characters like "m" or
"s", or horizontally between multiple characters like "ﬁn", can
be resolved. The staircase model is not as useful, but it does
predict that words locally highlighted by a different color (a
practice common in print advertizing) are resolvable. However,
it also predicts formation of a psuedo-object associated with the
highlight background. If segmentable, this psuedo-object may

confuse the recognizer.

The necessary filter width for optimal noise rejection, but

matched to the character detail, has a o, equal to the observed
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edge spacing in pixels divided by the appropriate §g. For
Dr. Beddoes' CCD scanner, the edge spacing was generally observed
to be two pixels. Allowing for moderate blurr, the square wave
model predicts a minimum B of 1.25., Therefore, the best o, is
2/1.25=1.6. It was further found that the sample spacing should
be 1less than 1.250,. For o,=1.6, the maximum spacing is two
pixels; clearly, there ié no danger of undersampling. The filter
was also found to be 1largely insensitive to coefficient
quantization down to at least a low of six bits per word
excluding sign. However, it was seen to be important that any
resultant dc bias be removed. Since the implementation
envisioned will incorporate at 1least an eight bit total word
size, underquantization 1is wunlikely to be a problem. Bias
removal proceeds by adding or subtracting a wunit from the
coefficients near the maximum filter slope at a radius of 0.8¢,

until all coefficients sum to zero.

The implementation of this filter is a subject which merits
further study. However, some suggestions can be made at this
point. The most obvious implementation is a sSimple direct-form
discrete convolution. Special purpose hardware is certainly the
only means to achieve this at video acquisition rates. To supply
a growing demand for this type of operation, sSpecial purpose CCD
convolution integrated circuits have been manufactured able to
support up to a 26X26 operator [76]. With the current image data
held in a similar CCD line such a system could readily accomodate
a Vég filter with o, as large as 3.2 at eight bit resolution. An
interesting alternative approach was developed by Orbach [51]

incorporating hybrid digital-analog circuitry. The video delay
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line was implemented with digital RAM memory to achieve a faster
data transfer rate than was possible with a CCD line. However,
the convolution 1is performed with multiplying digital to analog
converters (MDACs) whose output is then summed by an operational
amplifier. The particular attraction of this system is that the
output signal is carried on a single 1line whose sign can be
determined with a comparator for binarization. This contrasts

with the eight line digital output of an eight bit system where

all but the sign bit line are subsequently discarded.

Once the 1image has been filtered, binarization i§ a simple
matter of labling the positive pixels (dark regions) "1", and
the negative pixels (light background) "0". The result is then

passed to the segmentation stage.

The segmentor's task was to separate characters from the
background provided they do not touch the image window sides, and
are surrounded by "0" background pixels. Border pixels were
detected through boolean operations performed on a 3X3 window
convolved over the binary image at the video rate. To achieve
the real-time performance requirement, the border pixels found
were logged into 1linked 1lists immediately on detection.
Simultaneously, an Euler number based technique recorded those
pixels suspected of pointing to closed borders. Verification of
closure involved following the pointers linking the stored border
pixels at the end of each row scan. On closure confirmation, all
external and 1internal borders were subsequently transmitted to

the reconstruction/recognition circuitry.

The simulation trials performed indicated that, even for the
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most complex images that could reasonably be expected, the
processing load is light enough to allow new-found points to be
processed in parallel with closure verification and border
transmission. Any resultant memory reference conflicts were seen

as unlikely to result in serious delays.

After transmission, a method was outlined whereby the
binarized image of the segmented characters could be
reconstructed from the border data. However, it should be noted
that this is not the only avenue to recognition that could be
taken. Since the border data fully describes the character it
contains, it could be analyzed directly without the intervening
reconstruction step. Some specific algorithms to perform such
shape analysis from chain coded borders were presented by
Pavlidis [77, pp. 185-215] and Freeman [78]. Both these authors
have also published general surveys detailing the progress in
feature extraction and shape recognition from border descriptions
[79], [80]. The major attraction of this approach 1is that the
border data, processed to remove redundant points and normalize
the pixel positions, could prove a fully scale- and
rotation-invarient representation. That it can also be fast and
efficient is dembnstrated by the 100 character per second
recognition rate feported by D'Amato et al. [66] where shape
matching against features extracted from a chain code facilitates

recognition.

The design of the OCR preprocessing system is by no means
complete; considerable opportunities remain for further work.
The need was already outlined for a system component to

accurately parse touching characters. However, at the other end
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of the resolution scale, an accurate, autonomous method is needed
for the tracing of print lines. This will guide the correct
causal acquisition of words and characters from a current print
line, and, subsequently, the correct acquisition of gramatically
connected text lines. A method of signaling and/or ignoring
non-text material such as illustrations may also prove necessary.
Both these methods would require filtering the image at lower
resolutions, choosing o, so that print lines would be resolved as
a unit, blurring the component words. Illustrations would
represent non-segmentable objects at this low resolution level.
The character tracking and acquisition stages could then be
signalled to 1ignore the high resolution data generated by
non-text input. Such an expanded system would seem to favor new
imaging devices capable of acquiring more than a single text line
per scan. All of these extensions however would still include
the same system components outlined in this report: a Vg filter
to highlight the desired level of detail; and a non-sequential
object-border segmentation method to acquire the necessary image
information. Since these components have, in this thesis, been
shown capable of real-time, autonomous operation, it is 1likely
that such an expanded preprocessor will also operate

satisfactorily.
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