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Abstract

A mathematical model describing nearshore ocean currents is
examined. The motivation for the problem is discussed and a
derivation of the model equations présented. The model
equations consist of a pair of coupled, noniinear, parabolic
partial differential equations. A numerical method, the
Crank-Nicolson finite difference scheme, is presented for
solving the corresponding linear eqguations, and the convergence
and stability of the method discussed. Methods for dealing with
the nonlinear terms, and their effects on accuracy and
stability, are examined. The initial and boundary conditions of
the model equations present special problems, and we describe
methods to solve them, A more efficient finite difference
scheme for our equations, based on the Crank-Nicolson formula,
is introduced, and its advantages discussed. A computer program
incorporating these methods 1is developed to solve the model
equations, and results for test data presented. We conclude
with - recommendations for additions to the program to model the

currents more accurately.



1ii

Table of Contents

AbStraCt L A L R R R I R S O I O A N R R T T T S Y 4 s 060 2 0 0 0 0 0 » s 0 85 8 0
List Oof FiQUIeS ittt inreneenonneeeennonnnenoonnes
Acknowledgements .....eceeeeuvennn ceerecoannas cesenen

I.
II.

-~ 2.1 Derivation Of The MoOGel .t eerereeeeconeensness
2.2 The Domain Of The Model ....vveeeeennennss Ceeen

ITI

Iv,

V.

INTRODUCTION 4 iittinetnnnnroosesoocenonennnnnss
CHAPTER1 *® 6 5 & ¢ 8 8 & 0 5 0P e P e s e ® & & 2 0 s 0 0 0 s e s e e

2.3 Boundary Conditions ........ Ceceesarrraseanans
2.4 Initial Conditions ..eeeeeeeeeen.. cees e e
2.5 How The Model Will Be Used C e s e et et e e e .
CHAPTER 2 ...... c et e s s e eeens c et eersses e e e
1 FoR o= o o) o N

Consistency, Stability And Convergence .......
Variable Coefficients ..uiiiiineeeeneeneenennns
Stability Of Boundary Conditions ......eeeeene
NONlinear TerMS +uueeerreeronesonnononneennnns
Solving The EQUAtioNs t.iveeeeeeerinenenenenens
CHAPTER 3 it iiiveenesoonnoons S e e s et s s e e e es e

WWWwwwWww-
SOOI WN) -

4,1 Introduction TO ADI i iieeeessooccecnonnnnss e

4.2 Accuracy And Stability ...... Cesettaenena ceee
4.3 Computational Details And Sample Problems N
4.4 Applying ADI To The Model EQUations ..........
CHAPTER 4 ... iievevnasoennans te e ettt nes e
Preliminary Tests ....vevee.. Ceecersesasecnsaae
Initial Conditions At The Land Boundary ......
Finding H On The Boundaries ............ ceeee
Boundary Condition FOI S ...iieeeerncnnnnnenss
Tests Of The Model EQUAtions ..ueeeeeeeeneeoans
Interpretation Of Results ....... ceereeaas oo
Recommendations For ProceedinNg .....eeeeeees. .

. o

Ctoror OOt Ot AN
NN W N =

BIBLIOGRAPHY +.vvuvnnnn.. ettt e e e

Finite Differences .cuueeeeeeeceoeeooosonoonnsss

ee..33

ceeee37
RN ¥
cee..d4
I X
P 1<%
Y

eee..53
R X



—

1

1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3

3

QWO NO U WN) —

1 L]

3.
4.
5.
6.
7.
8.
9.
0.
1.
2.
3.
4.
5.
6.
7.
8.
9.
0.
1.
2.
3.
4.
5.

Domain of
Domain of

Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test

ee ve oo oo

ee oo oo

ITITNNONIIIT IO I I I LI IILI T T I TnN0NnNnnnnnn
V)]
o

SO 38 66 CF 40 e 4 G0 20 S B SO F S0 % B8 S8 e

at
at
at
at
at
at
at
at
at
at
at

NN NN NN

nnnnnununwm

Do
o of ot ot ot

at

time
time
time
time
time
time
time
time
t ime
time
time
time
time
time
time
time

at
at
at
at
at
at
at
at

time
time
time
time
time
time

time
time
time
time
time
time
time
time

iv

List of Figures

step 20
step 30
step 40
step 50
step 2

step 5

step 10
step 15
step 20
step 30
step 40
step 50

step
step
step
step
step
step
step
step

step 20
step 30
step 40
step 20
step 30
step 40

e e o0 0 0 00

e s 0 0

LI A S

2 i coee
5 ittt
10 teveiienennns
=
20 it
30 ciiiiii e
40 teseeesaaas
50 ... ceen

H2S at time step 20
HZS at time step 30 vuvvervennenns
H?S at time step 40 .....vvvuuu..

the Coastal Circulation Model ..
the Numerical Model ...
step 2
step 5
step 10
step 15

¢« ® 8 e & & o

.

cer e e aen 11
P
N )
cereesabl
ceesesabl
I -
......... ..62
P
I X

ettt s e et ...64

.IC..OI.64

ceeeseaessb65
P -1+
B Y <
B <1 &
B Y
N Y
I 1

ceeenes «...68
ceeeesee.69

B Y
cececeeeaasal0
cesesseaess’0
cesreeeanaall
A
.......... .72

A 1=

DR S
‘.......‘.'77



Acknowledgement

The completion of this thesis has depended on the good advice,

given over many hours, from Jim Varah, the multitude of

suggestions from Paul Leblond, and the original idea of Bill

Emery; and from all, a great deal of patience.



I. INTRODUCTION

Studies of ocean currehts in coastal regions have shown
that fresh water run-off is an important factor in large scale
c1rculat10n (see [6] for several examples). While these studies
consider the effect of large rivers on the coéétal ocean, the
influence of >run—off over a large coastal region has not been
closely examined. Dr. .Paul LeBlond and Dr. William Emery of
the Department of Oceanography at the University of British
Columbia have undertaken a study of river run-off and salinity
distribution off the coast of southern British Columbia and
northern Washington State in an effort to wunderstand their
effects on alongshore currents.

One aspect of the study has been the development of a
mathematical model to describe those coastal currents created by
river run-off. The model consists of a set of eqguations that
describe nearshore hydrodynamics in terms of changes ‘in
salinity, and thus can be used to measure the impact of coastal
run-off. The main purpose of this thesis is to determine a
numerical method to solve the equations defining the model, and
to develop a computer program implementing the method.

As well as being of interest from a physical oceanographic
point of view, it is hoped that the results from the model may
be wused to gain an wunderstanding of offshore fisheries. 1In
particular, it has been observed that in most years a large
percentage of Fraser River salmon migrate via the Strait of Juan

de Fuca, while the remainder return through Johnstone Strait at

the northern end of Vancouver Island. 1In some years, however, a



majority return through Johnstone Strait. The reasons for this
are not known, but it is likely that the large-scale coastal
circulation plays a large part in which route is chosen. An
understanding of these mechanisms may lead to an explanation for
this behavior.

Chapter One contains a discussion of the derivation of the
problem, leading to the equations to be solved. Definitions of
the variables and parameters follow, and the boundary and
initial conditions are specified. A description of how the
model is to be used concludes the chapter.

In Chapter Two, the notation to be used to describe finite
differencé schemes is introduced. The conCepts of consistency,
accuracy and stability, as they relate to application of the
Crank-Nicolson differencing of a linearized form of the
equations, are discussed. The boundary conditions are then
specified in terms of finite differences and their effects on
stability examined. The nonlinear terms in the model equations
are discussed and methods of dealing with them presented.

In Chapter Three, we examine the systems of linear
equations produced by the Crank-Nicolson scheme, and discuss
methods to solve them. More efficient difference schemes for
the equations are the alternating direction implicit, or ADI,
methods. They are described and the concepts of Chapter Two are
extended to one of these, the Peaceman-Rachford ADI scheme, for
a linear equation. Methods of treating the additional problems
presented by the model equations, including lower order space

derivatives, variable coefficients and nonlinear terms, are



examined, and tested by solving sample problems with known
solutions. Results from computer runs are shown and the
accuracy and stability of the solutions discussed. Finally, we
diséretize the full equations in terms of the Peaceman-Rachford
scheme,

In Chapter Four, the ADI method is applied to the model
equations with simplified boundaries to ensure the difference
scheme satisfies basic physical properties. The discontinuous
nature of the initial conditions is discussed, and we show how
this problem is dealt with. The land boundary condition for the
thickneés layer is examined and the problems and methods we use
to handle them are explained. Next the formula required by the
ADI method for calculating the salinity defect boundary
conditions is presented. Sample runs and their results for the
full model equations are given, with brief physical
interpretations. Recommendations for proceeding with the model

conclude the chapter. N



II. CHAPTER 1

2.1 Derivation Of The Model

The primary concern of this thesis is the set of numerical
problems presented by the mathematical model of coastal
circulation. The derivation that follows is brief and includes
little justification, from a physical oceanography viewpoint,
for the assumptions and accomodations made in formulating the
final -equations. A complete derivation and discussion of the
implications of the model is available in [6]. Our derivation
is a condensation of that information.

The model considers the nearshore ocean as having two
layers; a lower layer of constant density, and hence salinity,
and an upper layer of varying density and thickness. The motion
of this upper layer is described by the two-dimensional momentum
and conservation equations. If we consider a time scale greater
than five days, 1local accelerations can be ignored, and the
motion described is primarily geostrophic. 1In addition, we want
only waves with a Rossby number much less than one; that |is,
Uof/Ax << 1, where U, 1is the speed scale and f the Coriolis
force. The space scale, Ax, must therefore be much greater than
1 km. We assume at this point that a value of Ax > 10 km. is
sufficient. |

Under these assumptions, the momentum equations for the
upper layer are

(1) -fv = (-1/p,)3p,/0x - Fx
(2) fu = (-1/p,)dp,/0y - Fy



where:
(u,v) = (ulx,y,t),v(x,y,t)) = components of velocity;
P:1 = pressure in the upper layer;
py = density of the upper layer;

(Fx,Fy) = components of friction.
Since the lower layer is éssumed to be at rest, and wusing the
assumption that the surface height 1is much 1less than the
thickness of the upper layer and can therefore be neglected, (1)
and (2) can be integrated over the upper layer to yield

(3) ~fv = -g/2 (HzAp/p1)x - Fx

(4) fU = -g/2 (H28p/p1)y - Fy
where,

(u,v) = (U(x,y,t),V(x,y,t)) = U = components of transport,

where transport 1is velocity integrated over the upper

layer;

H = H(x,y,t) = the thickness of the upper layer;

density of the lower layer;

It

b2

Ap = p, - py = density difference between layers;

g = gravity;
In the equétions above, we have adopted the usual notation for
partial derivatives; they are indicated here and thropghout this
thesis bf 3 /ox (for example) as in equation (1) or by
subscripts of the independent variable.

In terms of transports, the volume and salinity
conservation equations are

(5) Hg + YU = We

(6) (HS, )y + Y-US = WS,



where:
Su = Su(x,y,t), salinity in the upper layer;
Sy, = a constant lower layer salinity;
We = the entrainment velocity;
Vs = the divergence operator.

Density can be considered a function of salinity, with an

equation of state given approximately by

(7) Ap = p,a(T) Su
where a 1is a function of temperature, T, and 1is assumed
constant for the range of temperatures encountered.

Introducing S(x,y,t) = Sy(x,y,t) - S, (x,y,t) , the
difference in salinity between lower and upper layers (so
S(x,y,t) > 0), and wusing (7) to relate density to salinity,
equations (3) through (6) can be rewritten as

(8) -fv = -(ga/2p,) (H2S), - kU
(9) tU = -(ga/2p,) (HZS)Y - kv

(10) Hy + VU= W

(11) (HS)y + V,US =0
Here we have taken friction components (Fx,Fy) to  be
proportional to the components of velocity (u,v), with k the
friction coefficient, and integ;ated over the upper layer to
produce transports. Multiplying (8) by k and (9) by f and
combining gives

(12) (£2 + k%) U = -(ga/2p,) ( £(H?s), + k(HZS), )

(13) (£2 + k2 ) V = -(ga/2p,) ( -£(H?S), + k(HZS)), )
Substituting (12) and (13) into (10) yields, with

C = gak/(2p,(£2%2+k?))



(14) Hy = W, + CV2( H2S ) .

Similarly, substituting (12) and (13) into (11) gives
(Hs), = C (kSV?(H2S) + fJ(S,H?S) + kVS-V(HZS))

or

(15) s, = C/H (kSV?(H2S) + £J(S,H2S) + kVS V(H?S))

- (S/H)Hy

where V? 1is the Laplacian operator, J is the Jacobian operator
in terms of x and y and V 1is the gradient operator. The
function H?S represents the distribution of the density mass
field; we expect fresh water run-off to create gradients in H?2S,
causing currents in the model domain. Both (14) and (15) are
nonlinear, parabolic partial differential equations and are the
governing equations for our model of the coastal circulation.
Solving (14) Yields H(x,y,t), the thickness of the upper layer,
while solving (15) gives S(x,y,t), the salinity defect, the
difference between S, and S,.

The parameters and constants in (14) and (15) are defined

and assigned values as follows:

g = 9.8 m/sec?

f = 1.1E-4 sec™'
k = 0.25E-4 sec™'
a = 0.77 ppt'
pi = 10° ppt

WQ = 6.0E‘5 FZV
where
F? = Froude number = (U2 + V2)/(gaSH?)/p,

v = surface velocity = (U? + V2 )”L/H



Further discussion of parameters k, a, W and justification for
the wvalues chosen can be found in [6]. The components of
transport, (U,V), and hence the velocity v, <can be found

algebraically from (12) and (13).

2.2 The Domain Of The Model

The domain of the equations 1is an area bounded by open
ocean to the north, west and south, and on the east by the coast
from the Olympic Peninsula to the Queen Charlotte 1Islands (see
Figure 1), The coast is broken between the Olympic Peninsula
and Vancouver Island by the Strait of Juan de Fuca and north of
Vancouver 1Island by Queen Charlotte Sound. It is through these
two passages that river run-off enters coastal waters.

For the purposes of a numerical model, the domain has been
idealized to a square, with x designating the east-west axis and
y the north-south axis, as illustrated by Figure 2. The origin
for this domain is the southwest corner of the square. The land

boundary is therefore taken to be parallel to the y-axis.

2.3 Boundary Conditions

The eqguation for the salinity defect, (12), requires that
the gradient on all boundaries be zero; that is,

(16) 3Ss/an = 0
where 3 /dn is the normal derivative. This is the usual form of
the no-flow condition across a boundary. Where the 1land
boundary is broken, representing fresh water flow into the

domain, S is prescribed from historical data.



The boundary conditions for H are a little more difficult.
It 1s assumed that near the open ocean boundaries, H does not
change rapidly and can therefore be approximated from those
values within the domain that are near the boundary. The actual
method for finding H on these boundaries will be presented when
the numerical scheme has been explained. On the land boundary,
the x-direction transport must be zero, as there can be no flow
across land, and therefore, froﬁ equation (12),
f£(H?S), + k(HZS), = 0
Expénding the derivative terms yields
2fSHH, + szSY * 2kSHHy + kH?S, = 0
or
(17) Hy = -(fHSy + 2kSHy + kHSy)/2fS
To find H on the 1land boundary, we note that Hy <can be
abproximated numerically and Sy is knowﬁ from the solution of
(15). Thus, (17) is a first order initial value ordinary
differential equation of H in y, with the initial value for the
equation being the value of H given at the river discharge

regions of the boundary.

2.4 Initial Conditions

The solution of (14) and (15) requires initial conditions
H(x,y,0) and S(x,y,0). Since the model is intended for use with
historical river run-off data, some historic average of
thickness and salinity data will eventually be considered as
initial values. For the purposes of our initial computer runs,

constant field wvalues will be used for both H(x,y,0) and
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S(x,y,0).

2.5 How The Model Will Be Used

Equations (i4) and (15), with boundary conditions as
specified, describe the effect of river run-off on coastal
circulation. The purpose of the model 1is to try to closely
approximate actual currents and salinities by using collected
data in boundary conditions. To that end, river discharge data
has been collected for the coasts of Washington State, B.C. and
Alaska. From these values, surface velocities (and hence
transports) at the inflow regions were calculated and .a weekly
time series produced to be used as boundary values for the model
equations. Similarly, daily surface salinity readings, recorded
at lighthouses along the coast, have been smoothed to a weekly
series for wuse as salinity boundary values. Upper layer
~thickness values have been approximated from transports and
surface salinities.

A period of approximately twenty vyears of actual or
interpolated weekly transport and surface salinity records are
available to be used as boundary conditions for the model. The
aim of the study is to approximate the coastal circulation for
that length of time, and to compare the results with the known
salmon migration data. From this it 1s hoped that some

inferences can be drawn about the relationship between the two.
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ITI., CHAPTER 2
3.1 Notation

To solve the partial differential equations

(1) Hg = CVZ(H2S) + We

(2) s¢

C/H (kSV2(H2S)+£J(S,H?S)+kVS V(H2S)) - (S/H)H,
numerically, the domain 1is discretized by overlaying a
rectangular grid. Initially, this domain will be a simplified
version of that shown in Figure 2 by considering it to have just
a single discharge point. The model equations are valid‘ over
the region represented by this grid, which has grid spacings of
Ax and Ay in the x and y directions. Coordinates on the grid
are specified by (iAx, jAy), with i=1,...,L and j=1,...,M, and
LAx = MAy = 600 km. The time direction is also discretized by
dividing the time domain in N equal time stéps of size At. A
specific time is represented by nAt.

The solutions of (1) and (2) will be approximated at any
grid point by the discrete solutions H(iAx,jAy,nAt) and
S(iAx,jAy,nAt), respectively. For ease of notation, Athe
approximate solutions are simplified to H% and SG .

To specify each of (1) and (2) in discrete terms, the
partial derivatives must be approximated in some way. ’Finite
element or finite difference methods are used most often for
finding numerical solutions to partial differential equations.
There are a number of finite element methods for approximating

(1) and (2), but they are for the most part difficult to program

and in general are computationally expensive to solve. Finite
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differences, in addition to being easier to program and less
costly to solve, approximate derivatives using divided

differences which are more suited to our rectangular domain.

3.2 Finite Differences

-

We will wuse centred differences for the first and second
order space derivatives and the first order time derivative.
They will be defined using linear operators D, and D2 for the

first and second order x-direction derivatives, and tgy and D2

°Y
for the y-direction derivatives.
For some function u, u=u(x,y,t), let
Doy Uy = (u“,‘3 Uia,; )/240x
and
Doy Uiy = | Ui,y T 2u ¥ Ui )/(ax)?
From Taylor series expansion of u((i+1)Ax,jAy,t) and

u((i-1)Ax,jAy,t), it is easily seen that
Uy = Doy u + 0((Ax)?2) and
Uxx = Ddx u + 0((Ax)?)
where O((Ax)?) is the order of the remainder term. The D,y and
DI« linear operators are said to be second order accurate
approximations. Similarly, D,y and Dgy

the y-direction derivatives and are accurate to O((Ay)?).

are linear operators for

Dgx , D,,y and D,zy , finite

difference methods can be constructed to approximate the

Using the linear operators Doy »
derivatives in (1) and (2). The solutions H and § are found by
marching ahead in time 1in some fashion; the solutions at

t=(n+1)At depend on values at lower time levels.
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If Hand S are found individually, wusing values from
previous time levels, the method is said to be explicit. While
computationally very simple, explicit methods are restricted to
some maximum size of time step used to advance in time. Using a
time step greater than this maximum, which depends on Ax and Ay,
results in solutions that grow exponentially. Avoiding such
instabilities by using a time step less than the maximum
severely restricts the choice of Ax and Ay. As was mentioned in
Chapter 1, wvarious assumptions used 1in deriving the model
equations put constraints on the size of Ax and Ay. An explicit
method is therefore not appropriate for finding solutions to our
equations. |

A finite difference method is implicit if the values of the
dependent variable at points at the next time level are
interrelated. Implicit methods thus require solution of a
system of linear equations at each time level. While naturally
taking more computing time than explicit methods, implicit
methods generally do not place restrictions on the time step,
beyond that required for accuracy.

" A well-known implicit method for solving parabolic
equations is the Crank-Nicolson method. 1In terms of the linear
operators defined above, the simple two-dimensional diffusion

equation

Up = Ugy * Uyy
is approximated by the Crank-Nicolson <(or CN) method at
(iAx,jAy, (n+1/2)At) by

UW“ - u% = At(DZ, ( UG‘ + uﬁ ) /2 + D% ( uﬁ* + uG )/2)
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The difference scheme is centred about t=n+1/2 to preserve the
second order accuracy in time, and 1is a two-level difference
equation, solving for t=n+1 from values at t=n.

The discussion in the remainder of the chapter which
concerns finite difference equations and their application to
(1) and (2) will be limited to the CN method.

Before applying the CN scheme to equations (1) and (2), we
must decide how the spatial derivatives are to be expanded. The
equations have derivatives of products of the dependent
variables which must be expressed as difference equations.
‘Consider as an‘exémple the second order x-direction derivative ,
(H?S)yx » in equation (1). Applying the product rule in the
usual way yields

(3) 2HSHy, + 2H7S, + 4HH,S, + HS,
while considering (H2S) as a product of functions (HS) and H
gives

(4) (HS)H,, + 2(HS) H, + H(HS),,

Upon discretization, these expressions are clearly unequal,
except for fortuitous values of H and S. Obviously, the
solutions of both (1) and (2) will depend on which way the (H2S)
derivatives are expanded.

We are solving equation (1) for H, and it seems reasonable
that those functions multiplying H should be considered as
single, separate functions. That the derivatives should be
expanded as (4) above was confirmed by experimental computer

runs (as explained in Chapter 4).

Expanding equation (1) therefore yields
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(5) Hy = C((HS)VZH +2(HS), H, + 2(HS),H, +HVZ(HS)) + W,.
The HV?(HS) term may be treated as the other terms in (5); that
is, V?(HS) 1is considered the coefficient of H. It is usual
([12], p. 195) to assume that inhomogeneous terms involving the
dependent variable are known. (5) becomes

(6) Hy = C((HS)V?H + 2((HS) H, + (HS)y Hy)) + £,
where £, = HVZ(HS) +We.

The equation for § alsovcontains derivatives of (H2?S), but
since we are solving for S, their expansion must be different
than that outlined for H. Treating H? as a single entity was
found to work best, and thus, for (H?S )., the appropriate
expansion is

H2Sy, + S(H? )y + 25, (H?),

Expanding equation (2) gives

(7) sy = C/H (kS(H2V?S + 2VH?.-VS + SV2H2?) +

£SJ(S,H?) + k (SVS.V(H2)+H2(VS)2) - (S/H)H,

Just as for H, terms not involving derivatives of S are treated
as forcing functions, and (7) becomes

(8) S¢ = C/H (kS(H?V2S+2VH2-VS) + £SJ(S,H?) +

k(SVS+V(HZ)+H2(VS)?) + f, -

where f, = (CkS/H)(SV?H?) -(S/H)H,.

While the method of expanding the derivatives has been
determined, the coefficients of the derivatives that result are
obviously functions of the dependent variables; both equations
are nonlinear. - Discretization of such equations produces

nonlinear systems of equations which would require some kind of

iterative scheme for solution, such as Newton's method. Since
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iterative methods for nonlinear equations are in general
computationally very expensive, we approximate further by
linearizing the equations.

Although we leave the computational details until later in
Chapter 2, the result of linearizing (6) and (8) are equations
having variable coefficients. The equations can be simplified
to

+ a,H, + £,

x

Ht = a1Hxx + azHyy + a3H Y

and
S't = b1Sxx + szyy + b;Sx + buSy + fz
where a;, b, i=T,..,4, are functions of x, y and t. In terms

of the linear operators defined earlier, the CN discretization

is
arl " _ wr'fe ney FRY
(9) HU Hi = At (a D2, H;j + azDng;J =+ a 3 DpHij -
. + aquHar%? £,)
and
\ n
(10) i - s3 = At(b,DE ST™+ b,D3 I+ byn, 55"
+ buDOYS?)?"”'+ £,).

It should be noted here that evaluating the coefficients of
each derivative of the eguations shows that, for representative
values of H and S, and using the constants defined in Chapter 1,
both equations are strongly diffusive. This is 1important in
determining the difference scheme because it 1is well known
([12], p. 26) that central differences are poor approximations
to convective terms if their coefficients are large relative to

those of the diffusion terms. While the convective terms are

not insignificant, the primary moving force is produced by the
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diffusion terms.

3.3 Consistency, Stability And Convergence

Finite difference equations are naturally only
approximations to differential equations. It is necessary to
show that the finite difference solution is a 'good'
approximation to the exact solution. Briefly, this means that
we reéuire the difference equation to tend to the differential
equation for Ax,At -> 0; that the solution of the finite
difference scheme yill give a bounded solution (assuming the
same for the exact solution); and that the finite difference
solution will approach the exact solution as Ax,At -> 0. These
properties are called consistency, stability and convergence.

The standard theory for stability and convergence of
initial value problems generally assumes constant coefficients,
and does not consider the effect of either boundary conditions
or variable coefficients. We will assume for the moment that
the model problems meet these criteria, and consider later in
the chapter the effect on our analysis of variable coefficients
and boundary conditions.

To simplify the presentation of these concepts for the CN
scheme, we consider the one dimensional ~version of the model
equations. What follows is easily extended to two dimensions.
For u = u(x,t), let

(11) u, = auy, + buy + f(x,t)
with a and b constant, and with initial condition

u(x,0) = g(x).
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Much of the analysis that follows is based on the notation
and definitions of Kriess and Oliger ([5], p. 29). Applying
the CN scheme to (11) yields '

(1 - adtDZ - bAtD,)v(x,(n+1)At) = (1 + aAtDZ +

bAtD, )v(x,nAt) + Atf(x,nAt)
with initial condition

v(x,0) = h(x),
where v(x,t) is the solution to the finite difference equation.
For any x, the discretization of (11) produces linear
combinations of v(x,(n+1)At) and v(x,At). We can simplify these
using matrix notation; (11) can be expressed as

(12) Q,v(x,(n+1)At) = Quv(x,nAt) + Atf(x,nAt)

Definition The difference scheme 1is accurate of order

(gdy1,92) for the particular solution wu(x,t), if there 1is a
constant ¢ and a function C(t), bounded on every finite interval
[0,NAt], such that for all sufficiently small At, Ax

| |Qiulx,t+At) - Qoulx,t) - Atf]] < C(t)(AxT + Ath ) and

| |h(x) ~ g(x)]] < c(ax¥ + atf+)
where ||.|| is the 1, norm.

We have seen that the 1linear operators, Dx and D ,
approximate 3/9x and 92/3x% with accuracy 0((Ax)?), and that the
CN approximation of 3/8t is accurate to O((At)2?). Assuming that
h(x)=g(x), that the initial condition 1is known exactly, the
scheme is accurate of order (2,2).

The error 1in the scheme, caused by truncating the Taylor
series in our approximations to the derivatives, is called the

truncation error. For the CN scheme, the truncation error is At
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times the accuracy, or O(At? +AtAx?). Note that this is the
local error, the error in thé solution from one time step to the
next.

If the difference equation converges to the differential
equation -being approximated, the method 1is said to be
consistent. For the CN scheme, consistency follows directly
from the definition of accuracy. Since C(t) is assumed to be
bounded, and g,,q, > 0,

c(t) ((ax)¥ + (at)¥™ ) —> 0 as at,ax -> 0
and the scheme is consistent.

While the difference solution approximates the exact
solution with the order of accuracy given above, the exact error
depends on the size of the partial derivatives multiplying the
(Ax)? and (At)? terms in the Taylor series expansion. In
practice, these of course are unknown. To minimize the error,
several steps are taken when actually finding a numerical
solution. First, the size of the time step is chosen to be
about the same size as the 'space step; thus (At)?® will be
roughly equal to At(ax)?2, Second, it 1is conventional to
nondimensionalize the equations. This requires the equations to
be scaled so that 0 < x,y £ 1. The time scale now depends on
the spatial resolution used.

Stability requires that the solution to the difference
equation, v(x,t), at t=nAt, is bounded as At,Ax -> 0.

Definition The difference approximation (11) is stable for a

sequence At, Ax -> 0 if there are constants a,, Kg such that for

t 2 0, the estimate
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[ [v(x,t) ] = [|S(t,0)v(x,0)|| < Rgexplagt)||v(x,0)]]
holds. |
Here S(t,0) is a solution operator with
§{(0,0)=1, S(t,,0)=S(t,,t;)S(t,,0); t,>t,20.
For t=nAt, (12) is
(13) Q4v(x,(n+1)At) = Qov(x,nAt) + Af(x,nAt)
and S(nAt,0) can easily be found. For Q = Q7'Q,,

v(x, (n+1)At)

Qv(x,nAt) + Q7'Atf(x,nAt)

Q(Qv(x,(n-1)At)+Q7'Atf(x,(n~1)At) +

Q,"Atf(x,nAt)

oMV(x,0) + Atfi (Q** Q7 'f(x,iAt))
tzo o
S(nat,0)v(x,0) + At 3. S(nAt,iAt)f(x,iAt)

t=o

fl

It 1is evident that the right side of the stability
condition in the definition above should include the
contribution from the forcing function, f. That is, the bound
should include upper limits on AtiﬁS(nAt,iAt)f(x,iAt). However,
this only increases the bound, anéofor simplicity, we let the
definition stand as is. It is clear that we have to show that
| 1o| [*' is bounded for stability to hold.

Assume first that a Fourier transform of wv(x,t) exists.
For every frequency, w, we must show that the amplification
factor is not greater than one. That 1is, stability requires
that from one time step to the next the amplitude of every

frequency does not increase, except to allow truly increasing

solutions. This is the von Neumann necessary condition for
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stability ([12], p. 70).
Applying Fourier transforms to (13) requires only the

transform of the 1linear operators D and Q&. As shown in

ox
([9], p. 37), they are
Dix = 1 sin(g/Ax)
(14)
D5 = -4 sin?(B/2)/(ax)?,
and G, the amplification factor, is (from [8], p. 196),
1 - 2asin?B + i(b/2)(aAt/a) sin(28) + Atcft

1 + 2asin?B + i(b/2)(aAt/a) sin(28)

i

with a = aAt/(Ax)? and B = kAx. Simplifying G leads to an
equation with

(1 + 2asin?pB)? + (b?/4)alt/a sin?(28)
in the denominator; it is clearly greater than 1 for any 8. So

G < (1 - 2asin?g + i(b/2)(aAt/a) sin(28) + Atcf)

(1 + 2asin?pB - ib/2(aAt/a)sin2p)

In modulus, the amplification factor can be given by

(15) |G| £ (1+h,(B)At+h, (B) (At)2+h;(B) (At)3+h, (B) (At)*)

= 1 + 0(At),

where h,;(8), h,(B), h;(8) and h,(f8) are bounded functions. The
0(At) term allows exponential growth that may exist in the true
solution because of the forcing function. The inequality above
satisfies the von Neumann condition, which 1is necessary for
stability; it 1is known ([12], p. 72) that for all two-level
difference schemes for scalar equations, the von Neumann

condition is sufficient as well.

This shows that the solution from one time level to the
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next 1is bounded. |Is(t,0)v(x,0)|| must therefore also be
bounded, and the CN scheme meets the regquirements of the
stability definition. It is clear that |G| is bounded for any
values of of At and Ax, and the scheme is said to be
unconditionally stable.

If the difference between the solutions to the differential
and difference equations tends to ‘zero as At, Ax -> 0, a
difference scheme is said to be convergent. From [5], p. 31, we
have the following:
Theorem Assume that for fixed At and Ax the definitions for
accuracy and stability are valid. Then for all t = nAt, n 2 1,

| Julx,t)-v(x,t)|]| < Ksexp(ast)(AxV +atht )c
Since it was shown, for the CN scheme, that (q:,92)=(2,2) and
that stability is unconditional, there is no restriction on the
way At, Ax -> 0. Therefore the right side tends to zero as At,

Ax -> 0, and convergence is proven.

3.4 Variable Coefficients

As was mentioned, the analysis above assumes a differential
equation with constant coefficients, a condition the model
equations clearly do not meet. While the accuracy is unaffected
by variable coefficients, assuming of course that there are no
errors in their calculation, it is quite possible that the
stability condition may change.

One method of ensuring stability is to look at the problem
in terms of 'local stability'. That is, the coefficients are

evaluated at each grid point in the domain and tested separately
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for stability. While this does not guarantee convergence, it is
usual that instablities in ‘the approximate solution start
locally ([12], p. 91). However, to apply von Neumann's method
to a large number of points presents obvious difficulties. | One
practical way to test for stability of variable coefficient
problems is to perform computer runs of sample problems. This
was carried out for several problems, and the results are given

in Chapter 3.

3.5 Stability Of Boundary Conditions

To determine the effect of the boundary conditions on
stability, we must examine the system of linear equations
produced by the CN scheme for the 1initial value problem, and
check that the‘inﬁroduction of boundary conditions do not add to
the matrix Q any eigenvalues z with |[z]| > 1.

The strategy 1is fo assume that such an eigenvalue z is
introduced by the boundary condition, and shéw that this leads
to a contradicti§n; In particular, we want to show that this
" occurs for the boundary conditions of the model equations.

As specified in Chapter 1, the boundary conditions for H
are prescribed on all boundaries. The boundary conditions for S
are prescribed at the inflow regions, and the no-flow condition
elsewhere. Assuming smoothly changing functions of H and S (and
thus no-boundary'layer problgms), prescribed boundary conditions
do not change the eigenvalues of the corresponding initial value
problem, and so only the no-flow condition will be analysed.

We consider the sample equation (12), with no forcing
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function, and 0 < x < 1, It is known that for parabolic
problems, stability of the 1left boundary condition implies
stability for both boundaries [18], and so only the effect of
the value at u(0,t) will be considered. 1In terms of u(x,t), the
second order accurate approximation to the no-flow condition at
the left boundary is

u(0,nAt) = (4/3)u(Ax,nAt) - (1/3)u(2Ax,nAt)

We have seen that the amplification matrix, Q = Q7'Q,, must
have eigenvalues not greater than one for v(x,(n+1)At) to be a
bounded solution. Let g = (g,,.;.,g“) be an eigenvector of @,
so that
Qg = zg or
z2Q,9 = Qég
with 2z an eigenvalue. Q, and Q, can be expressed as sums of

their coefficients, so in terms of g and z,

w n
z2 c;9; = ;’axgi or

[

(16) ﬁi(zci - a;)g; =0.
=0 )

From [18]), (16) is a 1linear difference equation with
constant coefficients, and the solution takes the form,
g = Falr(2)
where the Tj(é?qare the roots of (16). .Substituting this into
(16) gives
(17) T2 - 28T + 7/9 =0
1/(1+8x)+((z-1)/(z+1)) /(A (1+4x))

N/2 - AAx/2

where B

~‘
]

N/2 + AAx/2

3
]
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and X\ = At/(Ax)?

For |z| > 1, (17) can be shown to have roots T, and T,

with |T,(z)|

A

1, |T,(2)] > 1. So

(18) g; a,Ti (z)’

and, to be an eigenvector, g; must also satisfy the no—flowN
boundary condition. Thus, we require that
go = (4/3)g, - (1/3)g, .

Substituting this expression into (18) gives

(19) a;( 1 - (4/3)T,(z) + (1/3)T1(z) ) = 0
The boundary condition will produce an unstable solution if, for
z, with |z|>1, an eigenvalue, the corresponding root of (17) is
also a root of (19). The roots of (19), however, are 1 and 3,
contradicting our finding that one of the roots of (17) is less
than one. Thus z, with |z|[>1, is not an eigenvalue; the no-flow
boundary, approximated to second order accuracy, does not affect
stability.

3.6 Nonlinear Terms

To avoid having to solve our nonlinear equations directly,
it is necessary to linearize the coefficients of the derivative
terms. Linear equations are, of course, much easier to solve,
but the linearization procedure yields only an approximation to
the true coefficients.

To examine this effect on the accuracy of the system, we
note first the equations are quasilinear, since the coefficients
of the second derivative terms involve only first derivatives or

the function itself. Although the CN difference scheme can be
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modified to produce predictof—corrector formulae [8], the
truncation error estimate is  O(AtAx?2+At™*) rather than
O(atAx?+At?) which the CN scheme (for linear equations) yields.
Lees [8] has shown that by estimating the quasilinear
coefficients using extrapolated values from the ‘two previous
time steps, the trucation error remains O(AtAx2+At3®). Since the
CN scheme 1is centred about t=n+1/2, the coefficients of each
term must be calculated at that time. 1In particular, if the HS
terms in the coefficients of the second order partial
derivatives of (9) are approximated by

Hs™'= = 1,5 HS" - 0.5 HS™!
an error of O0((At)?) is added to to the truncation error, which
thus remains O(AtAx?+At?3).

We see that the coefficients of 3H/3x and 3H/dy, which
involve 9(HS)/3x and 3(HS)/dy terms, can be approximated in the
same way. For (HS) at point (i,j), the derivative at time n+1/2

can be approximated by

(HS)y ( (HS); (HS);

+ ,:\ -\ "3

]

) / (24x) and
( (HS)(}‘.‘ - (HS);O,‘ ) / (24y)

where all the (HS) values are calculated at t=n+1/2 as specified

(HS)Y

above. This method can also be applied to the S? and S, terms
that appear in the eguation for S. One of each of the
derivatives can be treated as the coefficient of the other, and
approximated by extrapolating to time n+1/2 ([2], p. 141).

Equation (10) has quasilinear coefficients which are functions
of SH?, H?, H,, Hy, Sk and Sy. All of these are estimated in

the same fashion as outlined above, without altering the order
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of the truncation error.

The effect on stability of applying this extrapolation
procedure to all the terms in each equation is not known. Varah
[19], however, has shown that for an equation involving
nonlinear terms in the first spatial derivative Qf the function,
and the function itself, the stability of the CN scheme with
extrapolation depends on the relative size of the coefficients
of the diffusive and convective terms. For equations which are
not highly convective, the CN scheme was found to be
conditionally stable. Since both model equations are highly
diffusive, it seems likély that stability will be maintained.
While we can provide no stability analysis, the results of
preliminary computer runs (described fully in Chapter 4) show
that, for chosen space and time steps, this linearization

produces results which appear to be conditionally stable.

3.7 Solving The Equations

To solve the model equations, we note first that they are
coupled, in that the two independent variables are present in
the two equations. While the Crank-Nicolson difference scheme
could be applied to solve for H and § simultaneously, the only
new terms to be solved directly rather than approximately are
the forcing functions. Since they are nonlinear as well, one of
either H or S would have to be approximated in any case. Little
would be gained from this approach.

Instead, assume, as was mentioned 1in Chapter 1, that S

varies slowly from one time level to the next. If equation (9)
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is solved first, HS has to be estimated (by extrapolation). If
S 1is in fact slowly varying, the error of approximation will be
small (at least smaller than that caused by estimating H?, as
solving equation (10) would require). As we have seen, the
addition to the error is 0((At)3?), which, will only cause a
small increase in the overall error of approximating H.

Once H has been calculated, the average of H“'and H"

14

H*"Y2 | can used in evaluating the coefficients of equation (10),

rather than an extrapolated value. Solving for s"™! , it is
possible to repeat the process, using the new values of H™' and
then S™' to calculate new approximations for H™'™ and g™,
Each step may be considered an lteration of a
predictor-corrector method. We can lessen the effect of the
interaction of H and S by alternating the order of solution from
one iteration to the next. In practice, it 1is possible to
continue iterating until the solutions from one iteration to the
next change by only some arbitrary (small) amount. For smoothly
changing values of H and S, the sblutions will converge, it is
hoped, in only a couple of iterations.

Applying the CN difference scheme to the' model equations
produces two systems of linear equations that must be solved at
each time step. If some method of iteration is used, which will
change the coefficients of the matrices, each iteration will
require the systems to be solved again. It seems likely that
the majority of computation time will be spent in solving linear

equations, particularly as we increase the resolution to obtain

better accuracy. The consequences are discussed in the next



chapter.
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IV, CHAPTER 3

We now consider the structure of the matrices we must
solve, the possible methods of their solution énd the
computational effort, in terms of operation counts, each would
need. The structure of the matrices for equations (9) and (10)
of Chapter 2 depend on the linear operators and the way the H#“
and Sﬁ” are ordered in the vector of unknowns. The linear
operators involve only grid points one grid spacing away in each
spatial direction; that is, to solve for (i,j) involves (i+1,3),
(i-1,3), (i,j+1), (i,j-1) as well as (i,j). The conventional
approach is to order the grid points by row with the resulting
matrix being banded with half bandwidth L+1, where L is the
number of grid points in the x-direction. For our equations,
both matrices are nonsymmetric.

A banded, nonsymmetric matrix can be solved using either a
variant of Gaussian elimination or any number of iterative
methods. The former has the advantage of reliability, but the
latter can be considerably faster. The rate at which iterative
methods converge, and thus the number of iterations they
‘require, depends on the condition number of the matrix. For an
ill-conditioned matrix iterative methods will often converge
slowly, if at all. Noting that the coefficients of our matrix
are the result of approximations to nonlinear terms, and vary
with x, y and t, there is 1little we can say about how
well-conditioned the matrices will be. (We assume of course.

that they remain nonsingular.) This being the case, Gaussian

elimination would appear to be the best method.
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To calculate the amount of computational effort required,
we need only look at the order and the half-bandwidth of the
matrices. If L is the number of grid points in each direction
(so Ax=Ay), the order is L? and the half-bandwidth L+1.
Although the matrices initially have zeros between the elements
on the edge of the band and the diagonals, Gaussian elimination
"fills in" these =zeros. When calculating the amount of work,
these elements must be considered as nonzeros. For such a
matrix, having order L2, the operation count (the number of
multiplications) necessary to reduce it to triangular form is
O(L*). However, difference schemes exist for equations with the
same form of the model equations which produce matrices which
can be solved 1in only O(L?) operations. They are called
alternating direction implicit methods, and are the subject of
the next section.

4.1 Introduction To ADI

Alternating direction implicit, or ADI, methods are
perturbations of differeﬁce methods formulated directly from the
difference approximations to derivatives. ADI methods most
often arise by adding difference operators to a
multi-dimensional difference scheme in a way that does not
affect the accuracy of the scheme but allows an easier solution.

To illustrate the derivation of a particular ADI method,

the CN scheme for u, = u

+
t Uy

Xx y + 18, using the linear

operators introduced in Chapter 2,

(1) (1 - a2 - ADZ, Jutt = (1 + XD& + ADZ, )un
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where A=At/2. If the operator A?DZ D%, is added to the
difference operator on both sides, (1) becomes

(2) (1 - \D& - m}r + A?DZ D& )u™ =

(1 + XD, + ADZ, +A\?DZ D:,"), yun .

Factoring (2) in terms of D& , D3 gives

(3) (1 =AD& )(1 = ADZ Ju™ = (1 + ADZ ) (1 + ADZ Ju* .
If we introduce an intermediate time level between n and n+1,
say n+*, (3) can be 'split' into two equations, namely

(1 = ADg, Ju™* = (1 + ADZ Ju”

(4)
(1 = XDZ )u!

(1 + ADZ, June~.

The variable u™*is a dummy variable in the sense that the value
of u™* is not an approximation to the solution at any particular
time. The method of splitting used in (4) is called the
Peaceman-Rachford formula ([9], p. 60). Although there are many
methods for splitting a two-dimensional parabolic equation like
(4), this formula will hereafter be referred to as the ADI
scheme,

The advantage of (4) is that the solution at the next time
level (either u™' or u™*), is found along lines parallel to
either the x- or y-axis. The matrix to be solved thus only
involves points immediately adjacent to the point ‘being found;
that is, the matrix is tridiagonal. The computational effort
required to solve a tridiagonal system of eguations 1is small
compared to that for the CN scheme. For an L2 by L? system, the
tridiagonal matrix requires only O(L?) multiplications, compared
to O(L*) required by the CN scheme.

This considerable savings in computation time will not come
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at the expense of accurécy of stability of the difference
method. As we will show, the Peaceman-Rachford scheme, like the
CN scheme, has a truncation error of 0O((At)3+At(Ax)2) and is
unconditionally stable, for a sample problem similar to that
analyéed in Chapter 2. Note that in calculating the truncation
error, we have assumed that Ax=Ay. For the rest of the thesis,

this will be the case,

4.2 Accuracy And Stability-

To calculate the accuracy of the ADI scheme, we first
‘consider an equation of the same form as our model equations,
namely, for u=u(x,y,t),
(5) u, = auy + buy, + cu, + duy ,
where a,b,c and d are constant coefficients. Factoring (5)
using the ADI scheme in the same manner as above, gives
(6) (1 - XaD2Z - \cD,, ) (1 - xbngy - >\dD‘,7 yurtt =
(1 + N\aDZ, + AcD,, ) (1 + AbDZ, + AdDoy yun

where A is as above. Splitting (6) we get

(7)(1 = AbDZ, - AdDey Ju"** = (1 + AaDZ + \cDg, )u"
(1 - XaDj, - AeD, Ju™' = (1 + AbDZ,  + AdD,, Ju't¥

To calculate the error, we see first that the operators

added to the CN scheme for (5) are (xzcd)D@(Day, (kzbc)Dm(Q§ ,

(D\Zad)D,), Dox and (A?ab)Dg, Djr . These terms do not result from

Taylor series expansion of the derivatives, and the errors they
produce can be added directly to the truncation error found for

the CN scheme. Since each operator is applied to both u“ and

net |

u » the errors can easily be found by expanding u*! in a
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Taylor series. Examining just one of these terms, (\?cd)D D ,
we have

(A2cd)D D (u +Atu +0((At)?) = (A2cd)D D u .
Cancelling u on both sides, we see thaf the addition to the
truncation error of this term is O((At)3). The contribution to
the error from the other operators is similarly found to be
o((Aat)?), so the truncation error for ADI is of the same order
as the CN scheme discussed earlier; the added terms leave the
overall accuracy unchaﬁged. Consistency follows in the same way
as shown for CN in the last chapter.

Stability for the ADI scheme can be seen by again comparing
with the CN scheme. Looking at the amplification factor, G, for
CN applied to eguation (5), we have

1-2(a;S,+a,S,;)+i((b/2) (a,At/a)S;+(d/2) (a,At/d)S,)
(a5 ras80) 71 ((5/2) (ar80/2)802(a/2) (ardtydrse)
where S,;=sin?g, S,=sin?7y, Sg=sin26, S4=sin2n and a, = aAt/(Ax)?,
a; = bAt/(Ay)?, B = k,Ax and n = k,Ay ([12], p. 196) .

It is easily shown that |G| < 1, for At,Ax->0. In
calculating the amplification factor for ADI, we note that tﬁe
additional terms of the ADI scheme are Fourier transformed to
real valued terms involving products of sin?(g8), sin?(p),
sin(28) and sin(27p). But these terms are added to both the
denominator and the -numerator of (7): the inequality is
unchanged. Thus, the amplification facﬁor for ADI is also
bdunded by one and ADI is unconditionally stable for equation

(5). Using the results from Chapter 2, convergence for ADI is

guaranteed by the accuracy and unconditional stability of the
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scheme.

4.3 Computational Details And Sample Problems

We have assumed that the coefficients of (5) are constant,
as required for the analysis to hold. To examine accuracy and
~stability for wvariable coefficients, and to test the effect of
various extrapolation schemes for nonlinear terms, a series of
equations with known solutions and of similar form to the model
equations were solved using the ADI method. The Fortran code
developed for this testing. was also found to be useful when
coding the program for the model equations.

Before discussing the sample problems, we must determine
how to evaluate variable coefficients and forcing functions so
the ADI equations remain consistent. In addition, the
requirement of the ADI scheme for boundary values at t=n+* must
be considered, since our eguations do not have boundary
conditions defined at intermediate time levels.

To see how to incorporate variable coefficients into the
ADI scheme, consider equation (5), with a, b, c and d functions
of x, y and t. The Peaceman-Rachford formula is the same as (6)
and it is conventional([9], p. 68) to evaluate the coefficients
at t=n+1/2., This is consistent with the CN difference scheme,
which is centred about t=n+1/2. The accuracy of the ADI scheme
is unchanged from the constant coefficient case, assuming the
coeffients are known exactly.

The addition  of a forcing function to an equation poses a

different problem. The forcing function itself must be split in
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some way to maintain the <consistency of the ADI formula.
Considering as an example,.

Up= U, *+ U + F(x,y,t) ,

vy
we note first that F(x,y,t) must be evaluated at t=n+1/2. Using

(1=ADZ)u"** = (1+ADZ)u" + F(x,y,(n+1/2)At)/2
(9)

(1-ADZ2)u™ (1+ADZ)u™*+ F(x,y, (n+1/2)At) /2
and solving for u"™ , we find that

(10) u"™ = (1-AD2) ~'((1+AD2)u" . F™Y2/2)
where F™Y2 = F(x,y,(n+1/2)At). Substituting (10) 1into the
second split equation gives

(1-2D3) (1-aDZ)u™! = (1+2DZ) (1+ADZ)u" +
((1-AD2)+(1+ADZ) )F ""/2
| = (14AD2) (1+ADZ)u" + P
which shows that (9) is consistent.

When solving either Peaéeman—Rachford equation,
time-dependent boundary values at the intermediate time level,
t=n+*, are needed. However, this time level does not correspond
to any particular time. The values could be approximated by
averaging values at t=n+1 and t=n, but the overall accuracy of
the scheme would not be maintained ([15]). It 1is possible to
find u"*'* explicitly in terms of the values at u” and u™' ; the
formula follows from equation (7). Adding the split equations
gives

((1-AD2

by~ \Dey) + (1+ADZ+AD,, ) Ju™™ = (1-ADZ-AD, )u™  +

(1+XD2+AD,, )u"
which is just

™t = ((1_7\Dozx_>\Dox)um.| + (1+)\D’2)‘+)\D’K)u")/2 .
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We require u™* on the x-direction boundaries, and it is easily
seen that the difference operators involve values only on those
boundaries. This formula ensures that calculation of the
bbundary values preserves the order of accuracy of the method.

We can now apply the ADI scheme to a series of sample
problems. The problems we have chosen are intended to show that
ADI has the accuracy predicted for the constant coefficient
problem and that, although not as accurate for variable
coefficient and nonlinear problems, the method appears to be at
least conditionally stable.

The sample problems all have the general form

(11) up = auy,, + bu,, + cu

Yy
where the exact solution u and the coefficients are chosen to

x T duy

produce the various problems of interest. We use the exact

solution on the boundaries except at the intermediate time

levels, where the boundary 'conditions are calculated as
explained above. The results, consisting of the max imum
absolute error at the interior grid points at time = 1.0 for

various values of At and Ax, are given in Table 1.

For the constant coefficient problem, we set a =b = 0.5
and ¢ = d = 1.0, which has exact solution u = exp(-x~-y-t). The
results are given 1in Table 1 under (I). The. errors vary
according to the truncation error of the method, which is
o((At)3*+At(Ax)?). We see that the errors are smaller than the
truncation error would indicate, which is 1likely due to
cancellation of errbr terms, whose coefficients are various

“higher derivatives of exp(-x-y-t).
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To test a variable coefficient problem, (11) is solved with
a=0.5/(y+.1)%, b=0.5/(x+.1)5, c=1/(y+.1) and d=1/(x+.1), which
has true solution u=exp(-(x+.1)(y+.1)-t). The results are given
under. (II1) and are much the same as the constant coefficient
case. For both these cases the error becomes constant after the
first ten to twenty time steps (for some cases, errors were
checked for 200 time steps), indicating stability of the -method
for the time and space steps given in the table.

One of the nonlinear terms both model equations contain is
the square of the convective terms. As described in Chapter 2,
these are approximated by discretizing one derivative and
treating the other as its coefficient. The sample equation is
solved with a and b as for the variable coefficient problem,
c=-Tx/(ux(y+.1)) and d=-Ty/(uy(x+.1)), where Ty, Uy are
approximated by extrapolation and Ug, Uy are known exactly. The
exact solution is the same as for the variable coefficient
problem,.

Case III in Table 1 contains the results found by
approximating UTx by Degu™ and ﬁy by Doyu"™ and case IV the
results with approximations Dox (1.5u"-0.5u™") and
Doy(1.5u“—0.5um*). The two-point extrapolation is slightly more
accurate, although not as much better as expected. For several
runs with this extrapolation, however, the solution is unstable
at later times, oscillating and finally blowing up. This is
apparently caused by a parasitic solution introduced numerically
by linking three time 1levels together. (That the one-point

extrapolation did not blow up would seem to confirm this.) Since
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the solution with At=.05, Ax=.10 did not blow up, it appears
this problem can be avoided by a careful choice of time and
space steps.

Since the two-point extrapolation requires solutions from
two previous time levels, a solution for time=At is necesséry.
We compared the effect of approximating this solution by a
Taylor series expansion with using the exact solution and found
no difference in the errors for the test values of Ax and At.

To test the effect of nonlinear coefficients of the
diffusion terms, we solve (12) setting a=.5u/((y+.1)2G),
b=.5u/((x+.1)%U) and ¢ and d as for the variable coefficient
problem. Here U = 1.5u"-0.5u™"' and fhe exact solution is again
u=exp(-(x+.1)(y+.1)-t). The solution at time=At was found
approximately by Taylor series expansion.

The results are given under (V). All the examples except
At=.05, Ax=.10 blow up at later times; the scheme is obviously.
no longer unconditionally stable. As for the previous example,
this may be due to the presence of parasitic solutions. To find
the convergence rate for this problem, several other runs were
made with At and Ax chosen to produce stable results. These
solutions are not only less accurate than the corresponding
variable coefficient problem, but do not converge at the rate we
expect; the errors changes only as At. The reasons for this are
not clear but seem to be due to the form of the nonlinear
problem.

We conclude from these sample problems that the ADI scheme

and the methods chosen for handling nonlinear terms produce



acceptable solutions., The larger errors and conditional
stability for the nonlinear eguations are due 1in part to the
specific solution and the fact that the equations have
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coefficients which contain exact solutions or exact derivatives.

The error that results from the approximations

will

always

be

i

to

these

terms

n the same direction, which is certainly not

necessarily the case for truly nonlinear equations.

be noted

coefficients of the convective terms is of little concern

as

It should

well that the error produced by extrapolating the

since

the model equations are highly diffusive; the convective terms
will have only a small contribution to the overall solution.
At Ax (1) (11) (111) (1v) (v)
.05 .05 1.5E-5 4.1E-6 5.5E~4 3.3E-4 1.6E-4
.05 .10 5.8E-5 1.5E-5 5.7E-4 3.4E-4 1.3E~4
.10 .05 1.9E-5 5.9E-6 1.1E-3 1.3E-3 2.1E-3
.10 .10 6.2E-5 | 1.6E-5 1.1E-3 6.4E-4 2.9E-4
.20 .20 2.5E-4 6.7E-5 2.3E-3 4,.8E-3 3.9E-4
Table 1. Results of ADI solutions of sample problems.

4.4 applying ADI To The Model Equations

The final form of the ADI scheme for the model equations is
found by applying the procedures discussed in this

(9)

chapter to

equations and (10) of Chapter 2. The split equations for

(9) are
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( )(1—}\a2D,,2y “Aa,Dgy JH™® = (1+Xa,DZ +\a,D, )H"+ Atf,/2
13

(1-Aa D2 -Aa;Dy )H™ YH"F Atf, /2

i

(1+ka2D§ +kaﬂ%y

and for (10) are

(1-2b,D ~Ab,De, )S™* = (1+Ab D2 +Ab,D, )S"+ Atf,/2
(14) '
(1-AbyD -AbsDuy )S™' = (1+AbyDZ +\b,D,, )S™ Atf,/2

where the coefficients, £, and f, are defined as in Chapter

and evaluated at time=n+1/2,
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V. CHAPTER ¢

In the first part of this chapter, several preliminary
numerical tests of the model equations are discussed. They
involve simplifying the boundary conditions to produce a closed
system, allowing us to verify that the approximate solutions are
conserving. We also discuss the computational details of both
sets of initial and boundary conditions, neither of which, it
was found, could be applied in a straightforward manner. | The
next section 1is devoted to testing the model equations with
these initial and boundary conditions using various time series
of input wvalues. A .physical interpretation of the plotted
results follows. We conclude with recommendations for continued
work on the model, both with steps which might be taken to more
accurately represent the physical system being modelled and with

improvements to the numerical methods used.

5.1 Preliminary Tests

The purpose of these tests is to ensure that applying the
ADI scheme and the nonlinear approximations to the imodel
equations conserve mass, as measured by H, and total salinity,
as measured by the product of H and S. We consider the
equations over the = specified domain, but impose ciosed
boundaries. By maintainiﬁg constant values of Hand S on all
boundaries, and setting the velocities u and v to zero on the y-
and x-direction boundaries respectively, it is clear that the
mass and total salinity in the system should remain constant.

For initial conditions we use constant values of H and S
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everywhere except at a single grid point. At this point, which

is in the center of the domain, H or S or both is set to a value

larger than the constant field. Three runs were made with

constant values of 20 meters for H and 2 p.p.t. for S, and step

sizes of Ax=Ay=At=0.1. The results are given in Table 2 below.

Mass and HS are calculated simply by summing over the grid
points.
H(6,6) S(6,6) Mass HS Mass HS
t=0 t=0 t=0 t=0 t=100 t=100
22.0 2.0 2422.0 4844.0 2420.2 4840.4
22.0 2.5 2422.0 4855.0 2422.9 4840.7
28.0 2.5 2428.0 4870.0 2421.4 4840.9
Table 2. Results of Conservation Tests
The method appears to conserve both quantities very well,
with an error over 100 time steps of less than .1 percent for
the first case, and slightly larger for the other two. For the
crude 11 by 11 grid used, this is very good. The results of the
second and third tests also indicate, not surprisingly, that the
larger the point sources, the less accurate the spatial
derivatives are approximated, and the larger the overall error

in terms of conservation.
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5.2 Initial Conditions At The Land Boundary

For purposes of testing, constant field values were
assigned as initial conditions to both the height of the upper
layer, H, and the salinity defect, S. The values chosen were
20 meters for H and 2 ppt for S, except at the river discharge
point, Here the values we assigned to H and S depended on the
time series we were testing.

To test the problem created by a value of S at the
discharge point larger than those nearby, we used a weekly
series with S equal to fi§e. The nearly-discontinuous nature of
the function at the initial time 1level resulted in extremely
unlikely values of the solutions at time At for both H and S at
grid points near the dischargé. These results persisted despite
several iterations, and there was no indication that the
solutions for H and S would converge.

The problem stems from having to find the solution of
equation (14), from Chapter 1, which is

(1) Hy = -(fHSy + 2kSHy + KkHS,)/2fS .

Due to the large gradients of S created by a large input value,
(1) produces large values of H. To avoid the effect of this
near-discontinuity, we assume [7] that S at the discharge point
has aﬁ immediate effect on points in the region; that 1is, the
impact of large changes in salinity defect is smoothed over the
region. We arbitrarily chose five grid points 1in either
direction along the land boundary, two grid points into the
domain, and varied S linearly over these points.

We also want to find a value of H at the discharge point
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such that H2?S is initially in equilibrium with nearby values of
H?S. To find such an H, we use the following procedure [7]. It
is assumed that the discharge region consists of only one grid
point, but includes the region up to but not including the grid
points immediately north and-south. The land boundary condition
for U is

U/C = -(£(H?S)y + k(HZS),) ,
with U given at the discharge point and U = 0 elsewhere. The
gradient of H?S across the region 1is negative, due to the
Coriolis force, and we approximate it using
(H2S)e,, = (H?S), - &(H?S)

(2)

(H2S),., = (H2S)g + 8(H?S)

where the discharge point (LAx,KAx) is denoted by the subscript
K, the first grid point to the north by K+1, and the first to
the south by K-1. &(H?S) is the increase in H2S from point K to
K-1. We see from (2) that a second order approximation to
(H?S)y is

(H?S)y = &(H?S)/Ax
To find 6(H?S), we note that U = 0 at all grid points except
point K, and so

-£(H2S)y = k(H2S)y
at these points. Denoting the initial constant field value by
(H%S)ee , we can approximate -f(H?S) on the boundary north of
the discharge point by

-f((H?S)oo - (HZS)MH )/54x .
If we assume further that (H?S), has the same value at the

discharge point and at the five grid points north and south, we
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have

K(H2S)x = -£((H2S)eo - (H2S),., )/5Ax

K1
and so at the discharge point,

) /5Ax

~U/C = £8(H?S)/Ax - £((H?S)ee - (H2S),,,

or

(3) -vax/(Cf) = 1.26(H?S) - 0.2((H?S)oe - (H2S)y)

We also require that the grid point inside the domain
adjacent to the discharge point be equal to (H2?S)pe . Since this
point is ((L-1)Ax,KAx), H2S can be expanded in a Taylor series
in the x-direction about LAx, which is, to 0(Ax),

H2S((L-1)Ax,KAx) = H?S(LAx,KAx) - Ax(H2S(LAx,KAx))

or

(4) (H?S)oe = (H%S)y + (£/5k)((H2S)ee - (H2S)y ~ &(HZ2S))
We know S everywhere along the boundary, U at the discharge
point, and (H?S)se , our initial condition, so the only unknowns
in equations (3) and (4) are §(H2?S) and (H2S)g . Two equations
with two unknowns are easily solved, and once 6§(H?S) and (HZS),
are known, H(LAx, (K+1)Ax) and H(LAx,(K—1)Ax) can be determined
from (1). H(LAx,(K+i)Ax), i=1,...,5 , are found by assuming HZ?S
is linear from (HZ?S)(LAx,(Kt1)Ax) to (H2S) . Finally, using a
first order difference approximation for (H2S) , the values for
H((L-1)Ax, (Kti)Ax), i=1,...,5, are easily determined from (2).

The result of all this is simply to smooth large initial
values of S, and to provide a method of finding H at the
discharge region so that initially an equilibrium in (H2S) is
maintained. When incorporated into the model, this procedure

smoothed the results sufficiently to produce reasonable results.
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5.3 Finding H On The Boundaries

In Chapter 1, we mentioned only that the boundary

conditions for H were prescribed on both the ocean and land

boundaries. The computational details are given 1in this
section,
On the open ocean boundaries H is unknown. It is

reasonable to assume, however, that H does not change rapidly,
‘and that any changes that do occur are due to gradients of H
(and hence S) within the domain. Except at the first time
level, where H is set to the values used initially, we calculate
H on the ocean boundaries by extrapolating from values at the
two previous time 1levels wusing the extrapolation formula
discussed in Chapter 2. After the model equation for H has been
solved at the current time level, H on the boundary is further
modified by extrapolating from the two nearest interior points
on a grid line. That is, we use

H.

io 2H

- Hi_?_ ,

1
at point (iAdx,0), for example. The values on the ocean boundary
thus reflect more closely what is occurring within the domain.
For H on the land boundary, we must solve equation (1) from
the previous section with as an initial value the input value of
H at the river discharge point. Since the discharge point is in
the middle of the land boundary, (1) must be solved in each
direction. When solving it for the southern portion of the
boundary, the signs of the y-derivatives must be reversed.

In the process of finding a solution to equation (1), a

number of difficulties were encountered. One was the effect of
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the salinity defect values chosen as ihput at the river
discharge point. For test purposes, we assigned input values to
S that were large compared to adjacent boundary and interior
points. Even with the smoothing procedure described in the last
section, this led to a large gradient, Sy, in each direction and
produced a stiff equation that was difficult to solve near the
discharge point. Integration methods using Ax as a step size
only produced physically impossible results.

It is necessary therefore to use an integration step size
much smaller than Ax, which requires values for S and U at
points between our grid points. For S, this is accomplished by
a fitting a cubic spline through S at the grid points and
evaluating the curve at the required points. For U, which is
zero at the grid points corresponding to the land boundary, but
nonzero between the discharge point (JAx,KAx) and grid points
(JAx,(K+1)Ax) to the north and (JAx,(K-1)Ax) to the south, we
need some function which describes its behavior. We chose an
exponential curve with a large negative exponent, such that
U(JAx,KAx) is the input discharge value and U(JAx, (K+1)Ax),
U(JAax, (K-1)Ax) are very nearly zero. This, it is hoped, is a
reasonable approximation to U at the "river mouth". To include
these nonzero values of U in equation (1), we must reintfoduce
the term -U/(2fSCH) on the right side of (1), and the ODE
becomes

(5) Hy = -(U/(CH) + fHS, +2kSHy + kHS,)/(2fS)

A further problem arises when evaluating the x-derivative

terms. Approximating H and S with the second order difference
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equation detailed earlier involves values at grid points inside
the domain. Unfortunately, these interior points must be at the
same time level (say time=n+1) we are solving equation (5) for:
values either at the interior points or on the land boundary
must be estimated in some way. Rather than extrapolating from
previoﬁs time levels to provide approximate values at the
interior points, we first solve the model equations for H and S.
The boundary values for H on all boundaries are extrapolated
from the two previous levels in the usual way. Once solved, we
have interior values for H and S at time n+1, H and S can now
be approximated, and equation (5) solved. This results in new
boundary values for H which replace the extrapolated values.

A solution to equation (5) is found using the UBC GEARB
subroutine, which 1is an 1iterative method using a backward
differentiation formula as a predictor and the chord method as a
corrector. The reader should consult [10] for a more detailed
explanation.

We note here that since H must be extrapolated, and since H
can change rapidly making the extrapolation 1less accurate, we
wish to avoid having to find land boundary values at the
intermediate time level, which does not correspond to an actual
time. We do this by splitting the equation such that we solve
for H first in the y-direction, then in the =x-direction. Land

boundary values are thus only required for times n and n+1.
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5.4 Boundary Condition For S

The boundary condition for the salinity defect is the
no-flow condition, which requires setting the first derivative
to zero. Using a first order accurate approximation to the
derivative has one major advantage; when it is discretized, the
matrix equations remain tridiagonal. As we have noted, the
salinity defect changes rapidly on the land boundary,
particularly near the river discharge region (depending on the
input values used). For such cases, it 1is very important to
approximate the boundary condition here with at 1east‘the same
accuracy as the ADI scheme.

A second order accurate approximation to the no-flow
condition is wusually centred about the grid point on the
boundary, requiring a value for S outside the domain. On the
open ocean boundaries, this is a reasonable approach, but on the
land boundary, such a value has no physical meaning. Instead we
use a difference formula invblving only interior points; for the
western boundary, for example, this is

e)
Similar equations apply on the other boundaries.

(6) Su - 48 /3 + Sy /3 =0, 3j=1,...,L.

Incorporating (6) into the ADI matrix equations for §, we
see that each row corresponding to the boundary contains. two
elements to the right of the diagonal; the tridiagonality of the
system 1is lost. Rather than try to solve a system with a
half-bandwidth of three instead of two, a row reduction is
performed on each of these rows before solving the whole system,

For example, the first two rows of the matrix equation for § at
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t=n+* are

1 -4/3 1/3 0 cevnnn

as; as,, ass 0 .o
This can be reduced to

(1-a,:/(3a,3)) (~4/3-a,,/(3a,3)) 0 ....

dazn as, 823 eeses

Reducing each such row for both 1left and right boundaries
returns the system to tridiagonality, and 1increases the

operation count by only O(L).

5.5 Tests Of The Model Equations

Incorporating these methods for 1initial and boundary
conditions into the FORTRAN program tested in the first section
of this chapter, we can proceed with tests of the full model
equations. Input to the program consists of test data at the
inflow, which was considered to be a single grid point located
‘at the midpoint of the x=LAx boundary. For each time step, the
salinity defect, S, and x-direction velocity, wu, corresponding
to this point are input. The thickness of the upper layer, H,
is calculated as explained in section 4.3 so as to be in
equilibrium with these values of S and u at time t=0.

Input' for the first experimental run consists of a pulse
inflow, with S=5.0 ppt, u=0.3 m/sec, and the correspbnding
equilibrium value for H, which is H=17.66. 1Initial conditions
are S=2.0 ppt and H=20.0 m throughout the domain. The inflow
values are introduced into the model at time t=0, and remain the

same until the final time step, t=50.
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Based on the results of the first run, the second
experimental run is identical with the first wuntil t=15. At
this point the boundary conditions at the inflow are changed to
u=0 and dS/dx=0, corresponding to shutting off the supply of
fresh water into the model. H is found by extrapolating from
the two previous time steps in the usual way. This run 1is

continued until time step 40.

5.6 Interpretation Of Results

The results are presented in Figures 3 to 35 and consist of
contour plots of H and S and a contour plot of H2?S (representing
the pressure field) overlayed with a vector plot of velocity.
The vector plot is normalized to the largest velocity at the
time level, whose value in m/sec is printed on the figure. The
point source of fresh water is at the midpoint of the right
y-axis, at x=600 km, y=300 km.

Due to the algorithm used for contouring, a number of plots
have regions of unusual looking contours. The areas where this
occurs have values that are all approximately the same, and the
contouring program cannot produce accurate contours. On all
plots the results for the western half of the domain should be
ignored; the accurate contours are always smooth curves.

The Figures for t=2 reflect numerical difficulties created
by the initial large gradients of §S. Despite the smoothing
procedure used, these gradients induce wunlikely values of H
around the inflow point. By using a large number of iterations

over the next few time steps, values for H are smoothed, as can
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be seen by t=5.

The region of low salinity moves slowly north, due to
Coriolis force, growing larger as more fresh water flows in the
system. This is accompanied by an increase in the thickness of
the wupper layer in this region; to the south, H decreases. The
figures for the pressure term H?S and velocity show the flow to
be primarily northwards. That the velocities do not lie exactly
along the H2S contours reflect the effects of friction; the flow
is pushed to the left of these contours.

By time step 15 this pattern is well established and
Figures for later time steps show only an iﬁcrease in the upper
layer thickness and a spreading by advection of the fresh water
along the surface. As noted in [6], increasing amounts of fresh
water move west and south as well due to diffusive effects.

By time step 30, the limits of the domain and the boundary
conditions in force there begin to have an affect on both upper
layer thickness and flow. It appears that the flow is being
"reflected" away from the northeast corner, causing flow back
into)the domain. A possible cause is the extrapolation scheme
for H, which may give too large a value for H on the boundary in
this area.

While the results are not shown, the same boundary
conditions were used until time step 100. The reflecting flow
increases along the northern boundary, but otherwise the results
change very little from those at time step 40.

Being identical to the first test until t=15, the results"

for the second experimental run begin at time step 20 (Figures
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27, 30 and 33). At t=16, the fresh water flow into the model is
"turned off"; we would expect the values to slowly return to
their initial conditions. As can be seen in Figures 27-35 this
is in fact what happens, as the gradients of S and H decrease
due to advection and entrainment of saltier lower layer water
into the upper layer. These values decrease from one time step
to the next until at t=40 the maximum value of S 1is about
3.6 ppt while that of H has decreased from a high of about
28 m, to about 22 m.

The region of highesf salinity defect moves south pushed by
the flow, whose speeds (the maximum of which is given on the HZ2S
figures) diminish rapidly. The flow continues to the left of
the H?S contours. There appears to be an eddy (Figure 35) just
to the south of the inflow point, perhaps due to the
"reflection” in the northeast corner of the domain.

Both these experimental runs show that the numerical model
produces reasonable results with no sign of any instabilies.
The second run also shows that a given physical sitﬁation, the
system returning to rest, is adequatedly modelled.

Two other tests were carried out which serve to illustrate
further difficulties with solving the model equations. Both
produced unstable solutions, so no figures are available.

The first used the boundary conditions of the first test
discussed above until time step 40. Thereafter, the velocity u
remained the same, but S was slowly decreased over time to.S=2.
The values of H were those found to be in equilibrium. This

models the effect on the system of a flow of varying salinity.
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The salinity defect was decreased at the rate of as little
as 0.1 ppt per time step; even at this rate the model quickly
developed instabilities in the values of S (soon followed by H).
Iterating a large number of times showed the solution for S to
be actually diverging.

The other unsuccessful test involved the wusual bounaary
conditions, but with a spatial mesh size 6ne quarter of that
indicated above. Instabilities resulted within two or three
time steps. Increasing the number of iterations again led to a

diverging solution.

5.7 Recommendations For Proceeding

There are several shortcomings in the model equations and
the numerical methods we have chosen to solve them that should
initially be considered when improving the model. The numerical
difficulties must be dealt with before any changes can be made
in the equations, so they will be discussed first.

The most obvious problem is illustrated by the two tests
discussed at the end of the last section. In both cases, the
instabilities seem to be caused by large gradients near the
coastal boundary. In the first , it resulted from reducing the
input salinity defect from 5.0 ppt after reaching a near-steady
state solution. The input salinity defect dropped below S at
surrounding grid points producing gradients that apparently
created ihstabilities in equation (5), the 1land boundary ODE;
the resulting values of S on the coast increase to values larger

than any entering the model at the inflow.
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Results from the second indicate that the same problem
results from a decrease in mesh size. Since the right-hand side
of (5) depends on x-direction derivatives of H and S which are
approximated by difference equations, these values become larger
(assuming adjacent values of H and S are approximately the same)
and (5) gets even stiffer as the resolution increases. Again
the solution blows up along the coastal boundary, even when
increasing the accuracy of the derivative approximations to
fourth order. A method of solving this problem is not readily
apparent, although a variation of the averaging scheme used for
the initial conditions might be considered.

Another numerical problem as yet unresolved is created when
the true domain is considered; the land boundary now contains
two segments of the coast where run-off enters the model. To
ﬁhe nofth of the northern segment and to the south of the
southern segment, equation (5) can be solved as usual. Between
these segments, however, the initial value problem (IVP) becomes
a boundary value problem (BVP), as the values for H at both ends
are fixed. Considering the difficulties encountered in solving
(5) as an IVP, it seems likely that it will present further
problems as a BVP, probably having boundary layers at both ends.

To more accurately reflect the physical processes of the
model, a number of additions should be considered. First, a
realistic set of initial conditions for H and 8 are needed,
involving perhaps some sort of historical average. We should
also overlay a geostrophic current field, both initially (the

model is presently considered at rest), and at each time level.
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As noted in the previous section, some method of more accurately
reflecting behavior on the open-ocean boundaries is required,
particularly at the intersection of the coastal boundary. Last,
the model equations should include advection current terms and
wind forcing, and wind-induced mixing should be added to W , the

entrainment term. The effects of these changes on the numerical

methods for the simplified model would have to be determined.
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