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ABSTRACT 

Sparked by anecdotal accounts of boat noise 

i n f l u e n c i n g the c a t c h r a t e s of commercial salmon t r o l l e r s on the 

B.C. c o a s t , a c o u s t i c a l s t u d i e s of both boats and f i s h were 

undertaken. The study was in four p a r t s : 

1. A c o u s t i c a l output of salmon t r o l l e r s : Recordings 

were made of t r o l l v e s s e l s and examined on a spectrum a n a l y z e r . 

Sonic output was predominantly of low frequency, under 300Hz. 

Output l e v e l s at t r o l l i n g speed (l-2m/s) were about 20dB r e l y b a r 

at lmeter from the h u l l . Higher frequency spikes (1-2.5kHz) 

were observed with o p e r a t i o n of h y d r a u l i c pumps f o r a u x i l i a r y 

equipment. Broadband, t r a n s i e n t output (approximately l-6kHz), 

was thought to be c o r r e l a t e d with c a v i t a t i o n from p r o p e l l o r s . 

2. F i s h sounds: Recordings were made of h e r r i n g , 

salmon and rainbow t r o u t swimming r a p i d l y and feeding on p e l l e t s 

i n net pen e n c l o s u r e s . These were examined on a spectrum 

a n a l y z e r . Two types of sounds were e v i d e n t , "knocks" and 

" s c r a t c h e s " . Knocks were c o r r e l a t e d with r a p i d swimming and 

maneuvering and are l i k e l y of hydrodynamic o r i g i n . Scratches 

were thought to be produced by branch i a t e and s k e l e t a l movements 

and were r e l a t i v e l y f a i n t . Knocks were l-2kHz, s c r a t c h e s 

3.5-5.5kHz. The dominant sounds in a c t i v e l y f e e d i n g , subsurface 

salmonids, were knocks. Recordings of feeding schools sounded 

remarkably l i k e t r i c k l i n g water to the human ear. 
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3 . A t t r a c t i n g salmon in net pens: Attempts were 

made to l u r e coho (Oncorhynchus k i s u t c h ) and chinook 

(Oncorhynchus tschawy tscha) as w e l l as rainbov/ t r o u t (Salmo  

g a i r d n e r i ) to a speaker p r o j e c t i n g recorded feeding sounds of 

the t a r g e t f i s h . No responses of any kind were observed to 

output l e v e l s as high as 55dB re l u b a r at lmeter. 

4 . A t t r a c t i n g salmon at sea: Recorded and simulated 

f e e d i n g and swimming sounds of salmonids were p r o j e c t e d w i t h i n 

the gear a r r a y of a commercial salmon t r o l l e r f i s h i n g on the 

west coast of Vancouver I s l a n d , B.C. Catch r a t e s were monitored 

with the t e s t sounds on and o f f . Output l e v e l was 55dB re ILI bar 

at l meter. No s i g n i f i c a n t change in catch rate was observed in 

response to the t e s t sounds. 
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1.0 INTRODUCTION 

1.1 JUSTIFICATION 

There are about 2200 v e s s e l s that f i s h f o r P a c i f i c 

salmons (Oncorhynchus spp.) on the B r i t i s h Columbia coast by 

means of t r o l l gear. In the past coho (0. k i s u t c h ) and chinook 

( 0 . tschawytscha) were the p r i n c i p a l t a r g e t s p e c i e s of t h i s 

f l e e t but d e c l i n i n g stocks of these f i s h have r e d i r e c t e d e f f o r t 

to p ink ( 0 . gorbuscha) and to a l e s s e r extent sockeye (0. nerka) 

and chum (0. keta) salmon. T r o l l e r s f i s h p r i m a r i l y in outside 

waters from the Washington border to Dixon entrance as the f i s h 

must be a c t i v e l y f e e d i n g f o r capture by t h i s gear and salmon 

g e n e r a l l y forego food as they approach t h e i r parent stream. 

T r o l l v e s s e l s use a r t i f i c i a l l u r e s and b a i t s rigged to r o l l , 

f l u t t e r or dodge as they are p u l l e d through the water a t 1-2 

m/s. A high degree of s k i l l i s r e q u i r e d in the p r e p a r a t i o n and 

p r e s e n t a t i o n of l u r e s , p a r t i c u l a r l y to l a r g e r , o l d e r coho and 

s p r i n g salmon to tempt them to b i t e . The b a s i c f i s h i n g r i g of a 

t r o l l e r i s shown i n F i g . 1 - 1 , while some l u r e s are shown i n 

F i g . 1 - 2 . 

Anecdotal evidence suggests that sound has an 

i n f l u e n c e on the catch r a t e of t r o l l e r s . Experienced fishermen 

b e l i e v e that components of the boats d r i v e t r a i n and s t e e r i n g 

gear can a f f e c t f i s h i n g s u c c e s s . Care i s taken to ensure that 

engine and s h a f t alignment i s true and that intermediate and 

s t e r n bearings are t i g h t and w e l l l u b r i c a t e d . P r o p e l l e r s are 

examined r e g u l a r l y to ensure they are undamaged and balanced. 

Many t r o l l e r s p r e f e r a four bladed p r o p e l l e r to a three bladed 
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FIGURE 1-1. The standard gear array of a B.C. salmon tr o l l e r . The 
vessel fishes two of each line shown, a set from each 
pole. 
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FIGURE 1-2. Some terminal lures used in the British Columbia t r o l l 
salmon fishery. A. Flasher and hootchie. B. Plugs. 
C. Spoons. 



one, f e e l i n g they are q u i e t e r and thus " f i s h i e r " . T i g h t rudder 

stock bearings are a l s o thought necessary for best r e s u l t s . 

Some t r o l l e r s f e e l that gas engines f i s h b e t t e r than d i e s e l s 

because of smoother, q u i e t e r performance. O f t e n , fishermen 

monitor the c a t c h r a t e of the l u r e s c l o s e s t to the boat as an 

index of t h e i r v e s s e l s s o n i c performance. There i s no agreement 

whether these p r e c a u t i o n s guard a g a i n s t p r o d u c t i o n of r e p u l s i v e 

sounds or ensure output of a t t r a c t i v e ones. The range of 

a l t e r n a t i v e e x p l a n a t i o n s f o r a boat with the " r i g h t " sounds 

o u t f i s h i n g one with the "wrong" sounds i n c l u d e : 

1/ An i n c r e a s e i n the p r o p e n s i t y of f i s h , otherwise 

aware of the gear, to a t t a c k i t through a s s o c i a t i o n of the boat 

sounds with a fe e d i n g o p p o r t u n i t y . This might be due to 

s i m i l a r i t i e s between boat sounds and b a i t f i s h or feeding 

sounds. 

2 / An increase in the area of i n f l u e n c e of the gear; 

that i s , f i s h t h a t would not otherwise have sensed the gear's 

presence becoming aware of i t by homing on the sound source. 

3 / both of the above. 

4 / Absence of f r e q u e n c i e s or p a t t e r n s in the boat's 

s o n i c output that cause i n h i b i t i o n of feeding a c t i v i t y amongst 

f i s h in the path of the gear. Such sounds might resemble those 

of salmon p r e d a t o r s . 

5 / Absence of f r e q u e n c i e s or p a t t e r n s causing a c t i v e 

r e p u l s i o n of f i s h from the v i c i n i t y of the gear before they can 

otherwise sense i t ' s presence. 

6 / Both 4 and 5 . 



The feeding behavior of salmon at sea suggest that 

sound may be important in prey l o c a t i o n and c a p t u r e . Spring 

salmon i n p a r t i c u l a r , but a l s o coho, are o f t e n taken at 

c o n s i d e r a b l e depths (100fathoms). These salmon feed p r i m a r i l y 

on small s c h o o l i n g s p e c i e s such as h e r r i n g (Clupea harengus), 

and sand lance (Amnodytes hexapterus). In the t u r b i d c o a s t a l 

waters of B.C. l i g h t p e n e t r a t i o n i s r e s t r i c t e d by dense phyto 

and zooplankton blooms in the "mixed l a y e r " as w e l l as suspended 

m a t e r i a l from r u n o f f . T h i s i s p a r t i c u l a r l y so i n the s p r i n g and 

summer. Salmon o f t e n feed most a c t i v e l y at dawn and dusk when 

the l i g h t f i e l d i s f u r t h e r attenuated. V i s i o n can be u s e f u l 

o n l y at s h o r t range under these c o n d i t i o n s . Considerable 

turbulence i s a l s o a f e a t u r e of c o a s t a l waters, as a r e s u l t of 

t i d a l (5-8m range) and wind generated c u r r r e n t s d r i v i n g water 

masses across rugged underwater topography (Thompson 1981). 

Thus the f i s h e s o l f a c t o r y sense i s l i k e l y u n r e l i a b l e 

d i r e c t i o n a l l y f o r l a c k of a smooth c o n c e n t r a t i o n g r a d i e n t . 

Another common o b s e r v a t i o n of t r o l l fishermen i s that catch 

r a t e s o f t e n suddenly i n c r e a s e (and subsequently decrease) over a 

l a r g e area (20 n a u t i c a l miles or more) almost i n s t a n t a n e o u s l y ; 

the f i s h "come on the b i t e " i n the j a r g o n . The occurrence of 

t h i s phenomenon i s e s t a b l i s h e d through r a d i o communication 

between boats. P e r i o d s of high catch r a t e are o f t e n a s s o c i a t e d 

with high and low s l a c k water in inshore waters, however t i d a l 

c u r r e n t s over o f f s h o r e banks do not stop, then reverse d i r e c t i o n 

i n a simple manner (Thompson 1981). F u r t h e r , such p e r i o d s often 

occur at the same time each day f o r s e v e r a l weeks in c e r t a i n 

areas (Boyes p e r s . obs.) while t i d a l c y c l e s advance an hour or 
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so each day. A c o u s t i c a l s t i m u l i nay be r e s p o n s i b l e f o r the 

t r a n s m i s s i o n of t h i s "feeding f r e n z y e f f e c t " over these 

d i s t a n c e s i n such a s h o r t time. Although concrete evidence f o r 

P a c i f i c salmon responding to sound i s l a c k i n g , there are many 

accounts of other f i s h , p a r t i c u l a r l y predatory s p e c i e s , doing 

so. Examples are found in the f o l l o w i n g s e c t i o n . 

1.2 LITERATURE REVIEW 

Man has long used sound f o r a t t r a c t i n g , and 

f r i g h t e n i n g f i s h i n o r d e r to c a t c h them. Accounts on f i s h 

responding to sound can be found in the works of A r i s t o t l e and 

P l i n y ( c i t e d i n Moulton 1963). Parker (1918), von F r i s c h 

(1936), Kleerekoper and Chagron (1954), Moulton (1963, 1964), 

Protasov (1965), Tavolga (1971), Popper and Fay (1972), and 

Hawkins (1973) have reviewed the modern l i t e r a t u r e . Sounds that 

a t t r a c t (or r e p e l ) f i s h must have s i g n i f i c a n c e , e i t h e r learned 

or i n n a t e , to the animal. U s u a l l y there i s an a s s o c i a t i o n with 

f e e d i n g or r e p r o d u c t i v e behavior. Hook and l i n e f i s h e r i e s 

r e q u i r e sounds that represent feeding o p p o r t u n i t i e s to t a r g e t 

f i s h . These are most o f t e n in the form of prey sounds or the 

c h a r a c t e r i s t i c n oises of a t t a c k and feeding behavior by 

p r e d a t o r s . Following are a number of examples from the 

l i t e r a t u r e of a c o u s t i c a t t r a c t i o n or r e a c t i o n in a v a r i e t y of 

f i s h both c a p t i v e and w i l d . 

Moulton (1960) played recorded sounds of the 

e n g r a u l i d ( A n c h o v i e l l a choerstoma) to young, c a p t i v e j a c k s 

(Caranax l a t u s ) , a n a t u r a l predator of the anchovy. The jacks 
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showed "quickened swimming movements of a n o n - d i r e c t i o n a l type". 

Playback to C. l a t u s of i t s own pharyngeal tooth rasps "appeared 

to i n i t i a t e f e e d i n g r e a c t i o n s " and r e s u l t e d i n the j a c k s 

a c t u a l l y n i b b l i n g at the t r a n s d u c e r . H a b i t u a t i o n to the 

s t i m u l u s was apparent a f t e r a few minutes. 

Sharks have been known to appear as i f from nowhere 

durin g f i s h i n g o p e r a t i o n s where there are wounded, s t r u g g l i n g 

f i s h on l i n e s or i n n e t s . I t appears that an a b i l i t y to 

p e r c e i v e and home on sounds from t h i s a c t i v i t y allows them to do 

t h i s . S t u d i e s by Hobson (1963), Nelson and Gruber (1963), 

Nelson (1967), Banner (1968, 1972), Nelson et a l (1969), 

Myreberg _et_ _al (1969 , 1975 , 1970 ), Myreberg (1972), and Nelson 

and Johnson (1972, 1975) have shown that a v a r i e t y of sharks i n 

both the A t l a n t i c and P a c i f i c are a t t r a c t e d to sources of pulsed 

low-frequency sound. These may be the recorded sounds o f 

s t r u g g l i n g or r a p i d l y swimming f i s h or s i m u l a t i o n s e l e c t r o n i c 

a l l y generated. Nelson and Johnson (1975) observed t h a t 

r e s i d e n t sharks i n Rangiroa a t o l l , near T a h i t i responded q u i c k l y 

and d i r e c t i o n a l l y to the sounds of speared, s t r u g g l i n g r e e f f i s h 

from s e v e r a l hundred meters away. The sharks e v e n t u a l l y came to 

a s s o c i a t e the noise of a d i s c h a r g i n g speargun with a p o s s i b l e 

meal whether or not a f i s h was h i t . 

Hashimoto and Maniwa (1966, 1971), and Maniwa (1975), 

have had success i n a t t r a c t i n g carp, y e l l o w t a i l , mackerel, sea 

bream, squid and even crab (no s p e c i e s names given) with 

playbacks of sounds these animals make durin g f e e d i n g . Carp 

could a l s o be a t t r a c t e d simply by "tapping the si d e of a boat 

with a p i e c e of s t i c k " . 
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S t e i n b e r g et^ al_ (1965), using an underwater v i d e o 

camera monitoring a speaker noted that y e l l o w t a i l snappers 

(Ocyurus chrysurus) were c o n s i s t e n t l y a t t r a c t e d to a source of 

p u l s e d 20Hz s i g n a l s . 

Iverson (1966, 1967), c o n d i t i o n e d c a p t i v e y e l l o w f i n 

tuna (Thunnus a l b a c a r e s ) and f a l s e a lbacore (Euthynnus a f f i n i s ) , 

to a food reward upon p l a y i n g a pure tone s t i m u l u s . A sudden 

noise or a r a p i d i n c r e a s e i n volume of a s i g n a l e l i c i t e d speedy 

withdrawal from the source and i t i s suggested that sound n i g h t 

thus be used to hold tuna in a seine while the net i s c l o s e d and 

pursed. 

Richard (1968), using remote video monitoring of an 

underwater speaker near B i m i n i , Bahamas, was able to a t t r a c t and 

i d e n t i f y e i g h t s p e c i e s of t e l e o s t s and three s p e c i e s of shark. 

Pulsed, pure-tone s i g n a l s , 25-50Hz were the s t i m u l u s . Notably, 

o n l y demersal predatory f i s h were a t t r a c t e d although herbivorous 

r e e f f i s h were common around the t e s t s i t e . 

York (1972) has demonstrated a t t r a c t i o n of s k i p j a c k 

(Katsuwonus pelamis) and a l b a c o r e (Thunnus alalunga) to sounds 

of s u r f a c e s c h o o l i n g anchovies ( E n g r a u l i s a u s t r a l i s ) . I t was 

found that the s p l a s h i n g sounds of the anchovies and the d i v i n g 

b i r d s (gannets, Sula bassana s e r r a t o r and shearwaters, P u f f i n u s  

g a v i a g a v i a ) , p r e y i n g on them were the predominant component of 

the a t t r a c t i v e r e c o r d i n g s . 
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Chapman (1975), showed that three s p e c i e s of 

p i s c i v o r o u s t e l e o s t s , the cod (Gadus morhua ( L . ) ) , the s a i t h e 

( P o l l a c h i u s v i r e n s (L.)) and the l y t h e ( P o l l a c h i u s p o l l a c h i u s 

( L . ) ) , r e s i d e n t i n Loch T o r r i d o n , S c o t l a n d , could be a t t r a c t e d 

by low frequency pure-tone s t i m u l i . The f i s h a l s o developed a 

strong p o s i t i v e response to the sounds of d i v e r s o p e n - c i r c u i t 

scuba gear. T h i s was thought to be a s s o c i a t e d with the s t i r r i n g 

up of feed by the d i v e r s a c t i v i t i e s on the bottom. 

E r i c k s o n (1979), found a r e l a t i o n s h i p between the 

a c o u s t i c spectrum of a l b a c o r e t r o l l e r s and t h e i r catch r a t e . 

A n a l y s i s of v e s s e l r e c o r d i n g s with r e s p e c t to w i t h i n f i s h i n g 

group r e l a t i v e catch r a t e s brought out a negative c o r r e l a t i o n 

between f i s h i n g success and sound output above 1500Hz. Spectrum 

peaks above t h i s frequency were a t t r i b u t e d to worn or dry 

p r o p e l l e r s h a f t b e a r i n g s , damaged p r o p e l l e r s and i n one case a 

supercharger. I t i s i n t e r e s t i n g to note that a l b a c o r e 

fishermen, l i k e salmon t r o l l e r s , have long held that boat and 

gear sounds i n f l u e n c e d catch r a t e s (the boats e l e c t r i c a l output 

was thought to be important a l s o - see Nomura 1980), but that 

t h i s study i s the f i r s t to s u b s t a n t i a t e i t . 

There are few accounts in the l i t e r a t u r e of salmonid 

response to sound. As f a r as I am aware onl y three r e l a t e to 

P a c i f i c salmons. D i s l e r (1960) observed that f i n g e r l i n g chum 

salmon "perceived the d i r e c t i o n of a source of v i b r a t i o n s caused 

by thumping on the ground at a d i s t a n c e of 1.5-2meters". 

VanDerwalker (1966), reviewed some attempts to guide down 

m i g r a t i n g rainbow (Salmo g a i r d n e r i ) and brown (S. t r u t t a ) t r o u t , 
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and chinook salmon past t u r b i n e intakes with sound f i e l d s . 

S t a r t l e r e a c t i o n s to low f r e q u e n c i e s (up to 280Hz) could 

g e n e r a l l y be obtained but r a p i d h a b i t u a t i o n was apparent, even 

at very high sound i n t e n s i t i e s (82dB re l u b a r ) . Stober (1969), 

i n v e s t i g a t e d sounds made by c u t t h r o a t t r o u t (Salmo c l a r k i ) and 

t h e i r response to playback of these sounds. The predominant 

sound made was a "thump", a s s o c i a t e d with a sudden t a i l beat. 

The p r i n c i p l e frequency of a thump was at 150Hz. C u t t h r o a t were 

shown to hear up t o 650Hz, with a t h r e s h o l d o f -35dB re lubar at 

150Kz. R e l a t i v e l y high ambient and equipment noise makes the 

t h r e s h o l d l e v e l and maximum frequency u n c e r t a i n . Abbott (1972), 

c o n d i t i o n e d pond reared rainbow t r o u t to feed at the source of a 

150Hz pure tone. About 90% of the f i s h were c o n d i t i o n e d a f t e r 

45 t r i a l s . The f i s h responded to a 300Hz tone but not to a 

600Hz tone. K o l ' t s o v a ^t_ _al_ (1977) using both c o n d i t i o n a l 

r e a c t i o n s and e l e c t r o p h y s i o l o g i c a l monitoring of inner ear 

p o t e n t i a l s , produced a f r e q u e n c y - t h r e s h o l d curve f o r the pink 

salmon. They found that the f i s h responded to f r e q u e n c i e s from 

30-2600HZ. Hawkins and Johnstone (1978), s t u d i e d the hearing of 

the A t l a n t i c salmon (Salmo s a l a r ) by means of a c a r d i a c 

c o n d i t i o n i n g technique and obtained a t h r e s h o l d curve showing 

s e n s i t i v i t y between 30-400Hz. 

I f salmon use sound i n prey l o c a t i o n and ca p t u r e , the 

no i s e s of prey s p e c i e s and of the salmon themselves are of 

i n t e r e s t . The sounds that f i s h make have been grouped i n t o 

three c a t e g o r i e s by Tavolga (1964). These a r e : s t r i d u l a t o r y -

produced by hard p a r t s such as d e n t i c l e s , t e e t h , f i n rays and 
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bones being rubbed or scraped a g a i n s t one another; hydrodynamic 

- swimming sounds r e s u l t i n g from undulatory p r o p u l s i v e and 

t u r n i n g movements, flow turbulence and a s s o c i a t e d i n t e r n a l 

sounds; swim bladder - sounds a s s o c i a t e d with gas t r a n s f e r to 

and from the gut or with muscular c o n t r a c t i o n s e f f e c t i n g 

rhythmic compression of the b l a d d e r . 

A p r i n c i p a l prey s p e c i e s of coho and chinook salmon 

i s the h e r r i n g which occurs i n l a r g e schools on the B.C. c o a s t . 

The sounds produced by h e r r i n g i n c l u d e ; e a t i n g n o i s e , a 

s t r i d u l a t o r y sound from jaw and operculum movement (Shwartz 

pers.comm.); hydrodynamic sounds, knocks or thumps from r a p i d 

a c c e l e r a t i o n or v e e r i n g ( F i s h 1980, Boyes p e r s . o b s . ) ; and 

c r o a k s , l i k e l y r e s u l t i n g from swim bladder to gut gas t r a n s f e r 

(Boyes p e r s . obs., Shwartz pers. comm.). Probably the l o u d e s t 

sounds from a school of h e r r i n g under the a t t a c k by predators 

are the hydrodynamic or swimming noises a s s o c i a t e d with 

"streaming" ( c o o r d i n a t e d movement of the school) and "veering" 

( r a p i d simultaneous change of d i r e c t i o n of the s c h o o l ) . Koulton 

(1960), found t h i s to be the case with l a r g e schools of 

anchovies, of s i m i l a r s i z e to a h e r r i n g , under a t t a c k by 

p r e d a t o r s . Here, v e e r i n g sounds were the most intense and were 

centered i n the frequency band 500-1500Hz. 

There has been l i t t l e work done on the sounds of 

P a c i f i c salmon and only one paper on hearing t h r e s h o l d s appears 

i n the l i t e r a t u r e . Neproshin (1971, 1974), and Neproshin and 

K u l i k o v a (1975), have s t u d i e d the a c o u s t i c behavior of sockeye, 

pin k , coho and chinook on the spawning grounds. They found that 
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salmon make at l e a s t nine d i s t i n c t sounds, f i t t i n g i n t o a l l 

three of Tavolga's (1964), c a t e g o r i e s . The loudest were 

drumming sounds, measured at about 40dB re l p b a r (see Table 1-1 

f o r sound u n i t c o n v e r s i o n s ) and thought to be produced by 

muscular c o n t r a c t i o n s of the swim bladder. Hydrodynamic sounds 

were a s s o c i a t e d only with f i s h breaking the s u r f a c e and could 

not be d e t e c t e d from the movements of submerged f i s h . Ambient 

noise l e v e l s are not g i v e n but are l i k e l y q u i t e high as salmon 

spawn i n running water, thus masking may account fo r the absence 

of swimming sounds. The s o l e r e f e r e n c e to the hearing a b i l i t y 

of P a c i f i c salmon i s the K o l ' t s o v a _ejt a_l (1977) paper on the 

pink salmon. The very wide range of frequency d i s c r i m i n a t i o n 

r e p o r t e d (30-2600Hz), c o n t r a s t s with those determined fo r f i s h 

of a s i m i l a r form and a u d i t o r y morphology such as the A t l a n t i c 

salmon (30-400Hz). E x t r a p o l a t i o n of these r e s u l t s to other 

P a c i f i c salmon, p a r t i c u l a r l y the coho and s p r i n g salmon targeted 

by t r o l l e r s must t h e r e f o r e be c a u t i o u s . 

1.3 THE MORPHOLOGY AND ACUITY OF HEARING IN FISH 

Although there has been l i t t l e work done on the 

a u d i t i o n of P a c i f i c salmons, much i n f o r m a t i o n e x i s t s on the 

h e a r i n g of other f i s h . The inner ear of t e l e o s t f i s h i s 

g e n e r a l l y homologous to that of mammals, having three 

s e m i - c i r c u l a r c a n a l s and three or more o t o l i t h s . There i s 

c o n s i d e r a b l e s t r u c t u r a l v a r i a t i o n between s p e c i e s : reviews of 

f i s h l a b y r i n t h morphology i n c l u d e Grasse (1958), Moulton (1963), 

and Lowenstein (1971). 
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The superorder O s t a r i o p h y s i ( f a m i l i e s C y p r i n i d a e , 

C h a r a c i n i d a e , and S i l u r i d a e ) , have a s m a l l e r and more complex 

s a c c u l a r o t o l i t h r e l a t i v e to the lagenar o t o l i t h and an 

endolymphatic connection between the two (the t r a n s v e r s e c a n a l ) , 

not seen i n other s p e c i e s (Moulton 1963). The O s t a r i o p h y s i 

f u r t h e r have a d i r e c t connection between the swim bladder and 

inner ear v i a the Weberian o s s i c l e s . This l i n k i s thought to 

account f o r the acute hearing of these f i s h , the swim bladder 

a c t i n g as a r e s o n a t o r and t r a n s m i t t i n g v i b r a t i o n s to the inner-

ear (Poggendorf 1952, Kleerekoper and Roggenkamp 1959). 

Audiograms of three o s t a r i o p h y s a n f i s h appear in Fig.1-3 

i l l u s t r a t i n g the wide range of s e n s i t i v i t y and low t h r e s h o l d s 

g e n e r a l l y found i n t h i s group. A number of other f i s h seem to 

have swim b l a d d e r - i n n e r ear connections of one kind or another 

(see the review of Hawkins 1973), and experimental evidence 

suggests that many of these have r e l a t i v e l y good hearing. 

Non-ostariophysan f i s h l a c k i n g an a l t e r n a t i v e method 

of swim b l a d d e r - i n n e r ear l i n k a g e , or l a c k i n g a swim bladder 

e n t i r e l y such as the Elasmobranchii g e n e r a l l y have poor he a r i n g , 

with r e s t r i c t e d frequency range and high t h r e s h o l d s . Fig.1-4 

shows audiograms f o r the lemon shark (Negaprion b r e v i r o s t r i s ) , 

the pink salmon ana the A t l a n t i c salmon. As noted in s e c t i o n 

1.2, the high frequency d i s c r i m i n a t i o n (above 1000Hz or so) 

r e p o r t e d f o r the pink salmon by K o l ' tsova _et a l (1977 ) i s a 

s u r p r i s i n g r e s u l t and may be a r t i f i c i a l l y high as a r e s u l t of 

the experiments being done in a small tank ( P a r v u l e s c u 1964, 

Hawkins and Maclennan 1975). Audiograms f o r the y e l l o w f i n and 
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FIGURE 1-3. Auditory thresholds of three ostariophysine species. A/ 
Mexican cave fish (Astyanax mexicanus), Popper 1970. 
B/ Catfish (Ictarulus nebulosus), Poggendorf 1952. C/ 
Carp, (Cyprinus carpio) Popper 1973. 
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1-4. Auditory thresholds of three non-ostariophysine species. 
A/ Lemon shark, (Negaprion brevirostris), Banner 1967. 
B/ Pink salmon, (Oncorhynchus gorbuscha), Kol'tsova et  
al 1977. C/ Atlantic salmon, (Salmo salar), Hawkins and 
Johnstone 1978. 
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f a l s e a l b a c o r e tunas and f o r the cod appear in F i g . 1-5. Again, 

the range i s narrow and t h r e s h o l d high f o r these 

n c n - o s t a r i o p h y s a n s . I t i s i n t e r e s t i n g to note that r e l a t i v e l y 

l a r g e , p i s c i v o r o u s f i s h tend to hear l e s s w e l l than s m a l l e r 

h e r b i v o r o u s s p e c i e s , p a r t i c u l a r l y r e e f d w e l l e r s . 

Because sound i s r e l a t i v e l y w e l l t r a n s m i t t e d i n the 

sea, background noise (see s e c t i o n 1.4) i s a constant feature of 

the ocean environment. A f i s h ' s a b i l i t y to p e r c e i v e an 

important sound over or through t h i s background i s t h e r e f o r e 

v i t a l to i t s a b i l i t y to u t i l i z e s o n i c i n f o r m a t i o n i n capture of 

prey, avoidance of p r e d a t o r s e t c . A review of the work on 

a u d i t o r y masking and the c r i t i c a l band concept i n f i s h i s found 

i n Tavolga (1974). F i s h with good h e a r i n g , the o s t a r i o p h y s i and 

o t h e r s with the swim b l a d d e r - i n n e r ear l i n k a g e have good 

frequency d i s c r i m i n a t i o n and thus a narrow c r i t i c a l band. 

Non-o s t a r i o p h y s i a n f i s h g e n e r a l l y d i s p l a y poor frequency 

d i s c r i m i n a t i o n but attempts to measure a c r i t i c a l band have been 

u n s u c c e s s f u l (Tavolga 1974). S u r p r i s i n g l y , f o r the few s p e c i e s 

t e s t e d , s i g n a l to noise r a t i o s appear to be i n the same range 

f o r both o s t a r i o p h y s i a n and n o n - o s t a r i o p h y s i a n s , 20-22dB with 

broadband noise (Buerkle 1969, Chapman and Hawkins 1973, Tavolga 

1974). 

D i r e c t i o n a l hearing i n f i s h i s c u r r e n t l y an area of 

a c t i v e experimentation and much t h e o r e t i c a l debate. A review of 

the o l d e r l i t e r a t u r e i s found i n Moulton and Dixon (1967). 

VJhile many e a r l y experiments, u s u a l l y i n tanks or ponds, f a i l e d 

to demonstrate d i r e c t i o n a l d i s c r i m i n a t i o n i n c o n d i t i o n e d f i s h , 
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FIGURE 1-5. Auditory thresholds of three non-ostariophysine species. 
A/ Yellowfin tuna, (Thunnus albacores), Iverson 1966. 
B/ False albacore, (Euthynrun a f f i n i s ) , Iverson 1967. 
C/ Cod, (Gadus morhua), Buerkle 1967. 
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more recent work under c o n d i t i o n s nearer to an a c o u s t i c f r e e 

f i e l d have shown that some sp e c i e s at l e a s t have t h i s a b i l i t y 

( s e c t i o n 1.2). Newer reviews of the s u b j e c t appear i n Hawkins 

(1973) and S c h u i j f (1975), the l a t t e r i n c l u d i n g t h e o r e t i c a l 

c o n s i d e r a t i o n of phase d i f f e r e n c e and timing a n a l y s i s models of 

the d i s c r i m i n a t i o n mechanism in the inner ear. 

1.4 SOUND IN THE SEA 

Sound may be d e f i n e d as a p e r i o d i c motion of the 

molecules i n an e l a s t i c medium. Adjacent molecules t r a n s m i t 

k i n e t i c energy from an i n i t i a l d i s t u r b a n c e p a r a l l e l to the 

d i r e c t i o n of propagation of the "sound wave". V a r i a t i o n i n 

p r e s s u r e , p a r t i c l e v e l o c i t y , and p a r t i c l e displacement are a l l 

m a n i f e s t a t i o n s of the passage of sound through a m a t e r i a l . The 

i n t e n s i t y of a sound i s u s u a l l y expressed in pressure u n i t s f o r 

p r a c t i c a l reasons of measurement. In underwater a c o u s t i c s , 

sound l e v e l s are commonly given i n terms of d e c i b e l s with 

r e s p e c t to a r e f e r e n c e l e v e l of ldyne/cm = l u b a r , at a 

standard d i s t a n c e from source of lm. Use of the a i r standard of 

0.0002bar was d i s c o n t i n u e d because of the negative values of 

sound pressure expressed i n d e c i b e l s that r e s u l t from underwater 

measurements. Table 1-1 allows comparison of sound pressure 

v a l u e s using some of the r e f e r e n c e standards that appear in the 

l i t e r a t u r e . 

The s i m p l e s t model r e l a t i n g p r e s s u r e , p a r t i c l e 

v e l o c i t y and displacement i n a sound wave assumes great d i s t a n c e 

from the source and small amplitude waves and i s known as the 
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TABLE 1-1 CONVERSION TABLE FOR REFERENCE SOUND LEVELS 

dB re dB re dB re db re Plane 
dyn/cm 0 . 0 0 0 2 lyPa l p b a r Wave 

dyn/cm RMS 
Pressure 
dyn/cm 

4 0 1 1 4 1 4 0 4 0 1 0 2 

2 0 94 1 2 0 20 1 0 

0 74 1 0 0 0 1 

- 2 0 54 80 - 2 0 1 0 " 1 

- 4 0 34 6 0 - 4 0 I O - 2 

- 6 0 14 4 0 - 6 0 I O - 3 

- 8 0 - 6 20 - 8 0 I O " 4 

1 0 0 - 2 6 0 - 1 0 0 I O " 5 
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plane wave equation ( d e r i v e d in f u l l in most a c o u s t i c s textbooks 

e.g. Camp 1970). For a plane wave of sound the pressure (p) 

(rms), i s r e l a t e d to the p a r t i c l e v e l o c i t y (u) by: 

p = pcu 

where: P = d e n s i t y of medium 

c = propagation v e l o c i t y of wave. 

The term Pc i s c a l l e d the " s p e c i f i c a c o u s t i c 

r e s i s t a n c e " or " a c o u s t i c impedance" of the medium. For 

seawater, pc i s about 1.5x10 gm/cm sec as compared to 

42gm/cm sec f o r a i r . T h i s i s because the speed of sound in 

the sea i s about 4.5 t i n e s and the d e n s i t y some 850 times that 

i n a i r . As- a r e s u l t , an underwater speaker must produce about 

60 times the f o r c e and 1/60 the diaphragm displacement of a 

speaker r a d i a t i n g the same energy in a i r . 

The i n t e n s i t y ( I ) of a sound expresses the rate of 

energy flow through a given area and i s the product of the sound 

pressure and p a r t i c l e v e l o c i t y : 
2 2 

I = PU=£ = U PC 
P c 

The d e c i b e l as a u n i t of i n t e n s i t y i s then d e f i n e d by: 

L = 10 log 
I r e f 

where: L = l e v e l i n d e c i b e l s 

I r e £ = the r e f e r e n c e l e v e l of 

i n t e n s i t y h e r e i n 
2 

ldyne/cm or l y b a r . 



S u b s t i t u t i o n leads to the working equation f o r sound p r e s s u r e 

l e v e l (SPL): 

SPL = 20log P r m s db re l y b a r 

where: Py-T,c i s the measured root-mean-square 

p r e s s u r e . 

A l l sound l e v e l s in the t e x t correspond to t h i s d e f i n i t i o n . 

Propagation and T r a n s m i s s i o n Loss: 

Sound emanating from a p o i n t source diminishes from 

the e f f e c t s of spreading, a b s o r p t i o n and s c a t t e r i n g . "Spreading 

l o s s " d e s c r i b e s the weakening i f the s i g n a l due to geometrical 

e f f e c t s . N e g l e c t i n g a b s o r p t i o n and s c a t t e r i n g , propagation from 

an o m n i d i r e c t i o n a l source can be viewed as a s e r i e s of 

c o n c e n t r i c , s p h e r i c a l pressure waves, of equal net energy, 

r a d i a t i n g outward. Thus, in the absence of r e f l e c t i n g or 

r e f r a c t i n g boundaries, sound pressure d i m i n i s h e s according to 

the i n v e r s e square law: 

P = 4 ir i r
2 

where: P = t o t a l a c o u s t i c a l power flowing through 

a sphere of r a d i u s r . 

For spheres of d i f f e r e n t r a d i i : 

P = 4 n r 2 I i = 4 IT r 2 12 

I f ri_ i s the r e f e r e n c e d i s t a n c e of In, then the l o s s due to 

spreading (SL) i s : 
SL = 1 0 1 o g / l _ T l = l O l o g r 2. = 201og r 2 

121 
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Thus, f o r each doubling of the d i s t a n c e from source, a 6dB l o s s 

i n sound pressure i s observed due to s p r e a d i n g . 

A b s o r p t i o n i s d e f i n e d as the t r a n s f o r m a t i o n of 

a c o u s t i c a l energy to heat i n the medium. T h i s r e s u l t s from the 

e f f e c t s of shear v i s c o s i t y , volume v i s c o s i t y , and the " i o n i c 

a b s o r p t i o n " e f f e c t of magnesium sulphate and the boron-borate 

complex (Yeager et a_l 1973 , U r i c k 1975). Changes in p r e s s u r e , 

temperature and s a l i n i t y a f f e c t the a b s o r p t i o n c o e f f i c i e n t 

v a r i o u s l y , ( U r i c k 1975 , S c h u l k i n et _al_ 1962), but f o r 

f r e q u e n c i e s below 50kHz t r a n s m i s s i o n l o s s to t h i s e f f e c t can be 

n e g l e c t e d . S i m i l a r l y , the a t t e n u a t i o n i n sound pressure due to 

s c a t t e r i n g from t h e r m o c l i n e s , h a l o c l i n e s and suspended 

p a r t i c u l a t e m a t e r i a l i s s m a l l . A f i g u r e of about 0.003dB/km, 

independent of frequency, has been estimated f o r the s c a t t e r i n g 

e f f e c t i n the sea by K e l l e n et a_l (1974). For p r a c t i c a l 

purposes, i t i s u s u a l l y assumed in underwater sound c a l c u l a t i o n s 

that i n t e n s i t y d i m i n i s h e s s o l e l y due to spreading. 

The assumption of a monopole sound source i s of 

course an o v e r - s i m p l i f i c a t i o n f o r b i o l o g i c a l sources as well as 

underwater sound p r o j e c t o r s . These w i l l emit sound waves of a 

much more complex nature. The plane wave equation a p p l i e s only 

to sound waves at a d i s t a n c e (as noted above), or those gener

ated by sources l a r g e r e l a t i v e to the wavelength of the 

frequency produced. Sound c l o s e to a small source i s propagated 

i n d i v e r g i n g s p h e r i c a l waves. Here, the p a r t i c l e v e l o c i t y i s 

not i n phase with the sound pressure but f a l l s behind by a phase 

angle that approaches 90° at the source. In t h i s region the 



p a r t i c l e v e l o c i t y i s not r e l a t e d to the sound pressure by the 

simple r e l a t i o n f o r plane waves, but i n c r e a s e s d i s p r o p o r 

t i o n a t e l y towards the source. The r e g i o n of high p a r t i c l e 

displacement has been termed the "near f i e l d " and the region 

beyond i t the " f a r f i e l d " ( H a r r i s and van B e r g e i j k 1962, H a r r i s 

1964, and van B e r g e i j k 1964). VJhile there i s no abrupt 

t r a n s i t i o n between these zones, f a l l o f f of p a r t i c l e 

displacement i s r a p i d and c u r r e n t p r a c t i c e sets the d i v i s i o n at 

about r = A / 2T T . F i g . 1-6 i l l u s t r a t e s the near f i e l d - f a r f i e l d 

e f f e c t . 

R e f l e c t i o n and R e f r a c t i o n at Boundaries: 

Sound propogating through a medium r e f l e c t s from 

boundaries with contiguous mediums to an extent dependent upon 

the d i f f e r e n c e i n a c o u s t i c a l impedances and the wavelength of 

the sound ( U r i c k 1967). A calm sea surface i s an almost p e r f e c t 

r e f l e c t o r to normally i n c i d e n t sound and while h i g h e r 

f r e q u e n c i e s pass to a small extent through a choppy s u r f a c e , low 

frequency sound, having a longer wavelength r e l a t i v e to the 

wavelength of s u r f a c e waves i s n e g l i g i b l y t r a n s m i t t e d . The sea 

bottom r e f l e c t s l e s s w e l l , having a higher a c o u s t i c a l impedance 

than water. Here l o s s e s through the i n t e r f a c e vary with 

s u b s t r a t e , ranging from about 14dB i n sandy s i l t to 5dB in rock 

f o r normally i n c i d e n t 5kHz sound (Mackenzie 1960). 

R e f l e c t i v e or r e f r a c t i v e i n t e r f a c e s i n the water 

column such as therraoclines and h a l o c l i n e s , combined with 

r e f l e c t i o n from the s u r f a c e and bottom, can r e s u l t in extremely 
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FIGURE 1-6. A plot of particle displacement vs. distance from a monopole 
sound source illustrates the near-field, fa r - f i e l d effect 
for several frequencies projected at 1 y bar re 1 meter 
(after Hawkins 1973). 
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complex sound pathways, p a r t i c u l a r l y in shallow water. Simple 

s p h e r i c a l spreading c a l c u l a t i o n s of t r a n s m i s s i o n l o s s may 

pr o v i d e imprecise estimates of sound i n t e n s i t y at a g i v e n 

d i s t a n c e from the sound source. In a d d i t i o n the s i g n a l , i f 

complex may become jumbled as sound waves a r r i v i n g at a p o i n t by 

d i f f e r e n t paths get out of phase. 

Ambient Noise i n the Sea: 

Review papers on the sonic environment in the ocean 

i n c l u d e Loye and Proudfoot (1946), Knudsen et a l (1944, 1948), 

Wenz (1962, 1964) and P i g g o t t (1964). Predominant are sounds 

from p h y s i c a l sources such as wind and r a i n , t i d e s and s e i s m i c 

a c t i v i t y . Sounds of b i o l o g i c a l o r i g i n may t r a n s i e n t l y be 

ascendant (Dobrin 1947; F i s h 1964; York 1972), p a r t i c u l a r l y i n 

shallow water. Probably the most widespread and p e r s i s t e n t 

b i o l o g i c a l sound i s a " c r a c k l i n g " or " f r y i n g " that has o f t e n 

been traced to snapping shrimp (Alpheidae) and a l s o to barnacles 

( C i r r i p e d i a ) , mussels ( M y t i l i d a e ) , sea u r c h i n s (Echinidae) and 

other i n v e r t e b r a t e s . Reviews of sound p r o d u c t i o n in f i s h 

i n c l u d e Tavolga (1960, 1964, 1971), Moulton (1963), F i s h (1964), 

Winn (1964), and F i s h and Mowbray (1970). A composite 

i l l u s t r a t i o n of ambient noise s p e c t r a from Wenz (1962), appears 

i n F i g . 1-7. 

1.5 OBJECTIVES OF THE STUDY 

The study was i n i t i a t e d to s a t i s f y the c u r i o s i t y that 

the author, himself a t r o l l e r , had developed regarding the r o l e 

of sound i n the B.C. t r o l l f i s h e r y . Numerous -dockside s t o r i e s 



26 

120 

- 2 0 

- 1 1 I | I I 111 1 1 I | I l " | 1 1 I | I I I l | 
I N T E R M I T T E N T AND L O C A L E F F E C T S 

CARTHOUAKES 

. a i o L o a c s • 

TTTTTj-

• (SUftFACC AGITATION) 
UURFAGE WAVES-SECOHO-ORDER PRESSURE EFFECTS ! 

J — (KISMIC •ACKSROUNO)-

• ' l I I ml A. _L LAJ. -UAAAL O-ua 
10 10* 10 s 

F R E Q U E N C Y - C P S 

I 0 4 10° 

FIGURE 1-7. A composite illustration of oceanic ambient noise showing 
sound spectra from various sources (after Wenz 1962). 
Sound pressure units may be converted to dB re 1 u bar 
by adding 74 dB. 
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of dramatic catch i n c r e a s e s a t t r i b u t e d to changes in a v e s s e l s 

d r i v e t r a i n or s t e e r i n g gear lead to t h i s attempt at systematic 

i n v e s t i g a t i o n of the phenomena. The main p o i n t at issue i s 

whether v e s s e l s with good sound p r o f i l e s a c t i v e l y a t t r a c t f i s h 

or j u s t do not r e p e l f i s h by non-emission of r e p u l s i v e sounds. 
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2.0 THEORY FORMATION AND EXPERIMENTAL DESIGN 

2.1 THEORY FORMATION 

PROPOSITIONS 

Catch r a t e s vary widely between v e s s e l s in the 

B r i t i s h Columbia t r o l l salmon f i s h e r y . Fishermen a t t r i b u t e at 

l e a s t p a r t of the v a r i a n c e to the sound output of the v e s s e l 

(Boyes pe r s . o b s . ) . 

ASSUMPTIONS 

P a c i f i c salmon u t i l i z e sound in a d d i t i o n to t h e i r 

other senses i n the l o c a t i o n of prey and avoidance of 

p r e d a t o r s . 

INFERENCES 

P r o j e c t i o n of c h a r a c t e r i s t i c prey or predator sounds 

at a high l e v e l from w i t h i n the gear array of a salmon t r o l l e r 

w i l l e i t h e r a t t r a c t salmon and s t i m u l a t e f e e d i n g , or r e p e l the 

f i s h and suppress feeding a c t i v i t y . The catch r a t e of the 

v e s s e l , compared to a c o n t r o l c o n d i t i o n , w i l l improve or 

decrease as a r e s u l t of the sound p r o j e c t i o n . 

2.2 EXPERIMENTAL DESIGN 

An obvious s t a r t i n g p o i n t f o r the study was the 

sounds of the boats and the f i s h themselves. A n a l y s i s and 

comparison of these sound s p e c t r a might show s i m i l a r i t i e s 

r e s p o n s i b l e f o r a t t r a c t i o n or s t i m u l a t i o n of feeding in salmon. 

S i m i l a r l y , comparison of boat spectrums with those of salmon 

p r e d a t o r s could r e v e a l the source of a negative e f f e c t on catch 

r a t e . The study was d i r e c t e d towards the a t t r a c t i o n a l t e r n a t i v e 
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based on the success recorded with a number of f i s h s p e c i e s i n 

the l i t e r a t u r e (reviewed i n s e c t i o n 1 . 2 ) . That the author makes 

h i s l i v i n g c a t c h i n g salmon r a t h e r than chasing them away was not 

an i n c o n s i d e r a b l e p a r t of t h i s d e c i s i o n . 

The second stage of the i n v e s t i g a t i o n c o n s i s t e d of 

r e c o r d i n g the sounus made by v a r i o u s salmonids a c t i v e l y taking 

p e l l e t e d feed, then p r o j e c t i n g these sounds back to the f i s h . 

Success in e l i c i t i n g feeding or searching behavior i n a number 

of s p e c i e s has been repo r t e d (see s e c t i o n 1.2) with t h i s 

procedure, although negative r e s u l t s have been common a l s o . A 

p o s i t i v e r e s u l t of some kind would e s t a b l i s h that the sound 

equipment was performing adequately in l e v e l of output and 

f i d e l i t y of r e p r o d u c t i o n . 

At sea playback of salmonid feeding sounds and 

simulated feeding sounds i n an e f f o r t to i n c r e a s e the catch r a t e 

of a commercial t r o l l e r comprised the t h i r d stage of the study. 

The catch r a t e of t r o l l e r s c h a r a c t e r i s t i c a l l y e x h i b i t s wide 

v a r i a t i o n through the day with maxima o f t e n a s s o c i a t e d with 

p e r i o d s of s l a c k t i d e and/or low l i g h t at daybreak and dusk. 

Thus, f o r much of the day gear i s being presented to the f i s h 

with no response. They are, i n the v e r n a c u l a r , " o f f the b i t e " . 

The experiment was s t r u c t u r e d and performed to minimize the 

e f f e c t s of t h i s n a t u r a l v a r i a t i o n on the r e s u l t s . T r i a l s were 

o n l y conducted dur i n g slow p e r i o d s of the day so that t e s t 

sounds were presented to m i n i m a l l y e x c i t e d f i s h . I t was 

expected that i f these sounds had a s t i m u l a t i v e or a t t r a c t i v e 

c h a r a c t e r to the f i s h , the e f f e c t s on catch r a t e would be l a r g e r 
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than with f i s h a l r e a d y b i t i n g w e l l and thus more v i s i b l e . With 

fewer f i s h per l i n e the time r e q u i r e d to p u l l the gear and r e s e t 

i t i s a l s o reduced, g i v i n g a lower p u l l i n g time/soaking time 

r a t i o and d e l i n e a t i n g more c l e a r l y the t e s t and c o n t r o l 

p e r i o d s . In a d d i t i o n , low catch r a t e s mean fewer hooks are 

occupied during a t r i a l l e a v i n g more a v a i l a b l e to new f i s h . 

S a t u r a t i o n of the gear (commonly 7-10 hooks/side) i s thus 

avoided. 
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3.0 METHODS AND MATERIALS 

3.1 RECORDING, PLAYBACK AND ANALYTICAL EQUIPMENT 

Underwater r e c o r d i n g s were Made with a Sparton 

60CX123 hydrophone onto a JVC K13-1636 MKII c a s s e t t e tape 

r e c o r d e r . Playback was from the same r e c o r d e r , through an 

Aquavox UW 60 underwater loudspeaker with a b u i l t - i n lOOvolt 

l i n e t r a n s f o r m e r , d r i v e n by a Sonic B a r r i e r p u b l i c address 

a m p l i f i e r (lOOvolt o u t p u t ) . Sonograms were made on a Kay 7029A 

spectrum a n a l y z e r . S p e c i f i c a t i o n s and c a l i b r a t i o n data f o r 

r e c o r d i n g and playback equipment f o l l o w . 

HYDROPHONE: 

MODEL: Sparton 60CX123 

COMPOSITION: Lead-Zinconate, Piezo E l e c t r i c 
with i n t e g r a l p r e a m p l i f i e r 

RECEIVING RESPONSE 
(dB/volt/ybar) : 49+ 3dB F l a t 0.04-5.0 kHz 

(see F i g . 3-1) 

POWER REQUIREMENTS: 8.7v ± 5% @ 500 A 
Low noise power supply shown i n 
F i g . 3-2. 

TAPE RECORDER: 

MODEL: 

FREQUENCY RESPONSE: . . . . 

SIGNAL/NOISE: 

WOW & FLUTTER: 

CROSSTALK: 

INPUT SENSITIVITY/IMPEDANCE: 

OUTPUT LEVEL/IMPEDANCE: . . 

POWER CONSUMPTION: . . . . 

MODEL JVC K13-1636 MKII 

25-17,000Hz (30-15,000± 3dB 

57dB 

0.08% (WRMS) 

65dB (1kHz) 

0.14mV, 20-10k OHMS 

50mV, 2.5k OHMS 

9watts 
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FIGURE 3-1. A/ Measured sensitivity of a Sparton 60 CX 123 hydrophone 
and preamplifier at a depth of 30m. B/ Manufacturers 
curve of frequency response for the Sparton 60 CX 123 
hydrophone and preamplifier. 



33 

2.7KJI 

-Wv-r 

2 2 0 K J I Output 

H y d r o p h o n e and 
p r e a m p l i f i e r 

FIGURE 3 - 2 . The noise reduction circuit of the hydrophone power supply. 



SOUND PROJECTOR: 

MODEL: Aquavox UW60 

MAXIMUM POWER INPUT: . . . . 50watts RMS 

FREQUENCY RESPONSE: 100Hz - 50kHz (See F i g . 3-3) 

MAGNETIC SYSTEM: Permanent Magnet 

MAXIMUM OPERATING DEPTH: . . 50m 

AMPLIFIER: 

MODEL: 

POWER INPUT: 

INPUT IMPEDANCE: 

INPUT LEVEL (MIC): 

OUTPUT IMPEDANCE (lOOv l i n e ) : 

SOUND GENERATOR: 

MODEL: 

POWER SUPPLY: 

Sonic B a r r i e r 

12V D.C. 

200 OHMS - 50k OHMS 

3mV 

16 OHMS 

Custom, using T . I . SN76477N 
Complex sound g e n e r a t o r I.C. 

9V D.C. 

LOW PASS FILTER: R o l l o f f at 800Hz 
C i r c u i t shown in F i g . 3-4 

3.2 RECORDINGS OF TROLLERS 

Fi s h b o a t s were recorded from the end of a dock with 

the hydrophone suspended two meters below the s u r f a c e . Boats 

ran by about 4meters from the hydrophone and were recorded at 

three speeds; a "slow t r o l l " (a slow salmon t r o l l i n g speed, 

about 1.5m/s), " f a s t t r o l l " (2m/s), and "tuna speed" (approx. 

t r o l l i n g speed f o r tuna, 4-5m/s). Skippers were i n s t r u c t e d to 

s e l e c t these speeds using t h e i r own judgement and experience with 

t h e i r boats. 
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F requency (Hz) 

FIGURE 3-3. A/ Measured output of Aquavox UX60 loudspeaker used i n 
playback driven at 1 amp., RMS at a depth of 40m i n an 
aco u s t i c a l free f i e l d . B/ Measured output of an Aquavox 
UW60 driven at a constant current of 1 amp. i n the AMTE 
acoustic tank, England (manufacturers data). C/ Measured 
impendance of the UW60 at 1 amp i n the AMTE acoustic tank 
(manufacturers data). 
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FIGURE 3-4. Low pass f i l t e r used with complex sound generator to 
produce Test Tape II. 
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3.3 RECORDINGS OF FISH 

H e r r i n g were recorded i n "wi l d " schools and c a p t i v e 

i n net pens. Wild s c h o o l s were l o c a t e d by echo sounder while i n 

shallow water duri n g spawning season on the west coast of 

Vancouver I s l a n d or i n the Gulf o f Georgia (March 1980). The 

hydrophone was lowered to the depth of the school and r e c o r d i n g s 

made. Captive h e r r i n g were recorded at the P a c i f i c B i o l o g i c a l 

S t a t i o n i n Nanaimo. Here the hydrophone was placed w i t h i n the 

net pen. 

Coho and chinook salmon (1-2.5kg), as we l l as l a r g e r 

rainbow t r o u t (2-3kg) were recorded i n net pens at the P a c i f i c 

B i o l o g i c a l S t a t i o n . The hydrophone was placed w i t h i n the 

e n c l o s u r e . P e l l e t e d feed was thrown i n t o the pens to i n i t i a t e 

f e eding motions such as a c c e l e r a t i o n s , f a s t swimming and r a p i d 

t u r n s . 

3.4 PLAYBACK IN PENS 

The sound p r o j e c t o r was placed i n s i d e or j u s t o u t s i d e 

the net en c l o s u r e and t e s t sounds played to h e r r i n g , coho, 

chinook, and rainbow t r o u t . Reactions of the f i s h to t e s t 

sounds were observed from the catwalk around the pens. 

3.5 PLAYBACK AT SEA 

For the sea t r i a l s , the p r o j e c t o r was towed behind 

the t r o l l v e s s e l w i t h i n the gear a r r a y , F i g . 3-5 at a depth of 

7-8meters. The two main l i n e s were p u l l e d every l/2hour, the 
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FIGURE 3 - 5 . The position of the sound projector within the gear array during 
test and control periods. 
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numbers and s p e c i e s of f i s h captured recorded, and the l i n e s 

r e s e t . T h i s g e n e r a l l y took about 4-5mins. The t e s t sounds were 

c y c l e d on and o f f every l/2hour with the switch o c c u r r i n g j u s t 

a f t e r the l i n e s had been r e s e t . Three separate sounds were used 

i n the t r i a l s , denoted t e s t tapes I, II and III, shown i n the 

sonograms of F i g u r e s 3-6, 3-7 and 3-8. The l u r e s f i s h e d 

i n c l u d e d f l a s h e r s and h o o t c h i e s , spoons, plugs and b u t t e r f l i e s , 

arranged i n a p a t t e r n a p p r o p r i a t e to the species s e l e c t i v i t y of 

the i n d i v i d u a l types of l u r e s and to the v e r t i c a l s p e c i e s 

d i s t r i b u t i o n of the salmon in the area. No changes to gear were 

made durin g the t r i a l p e r i o d s save r e p l a c i n g worn or l o s t 

p i e c e s . 
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FIGURE 3-6. Sonogram of Test Tape I; a recording of trickling water. 
Fil t e r bandwidth 22.5 Hz. " ' 
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FIGURE 3-7. Sonogram of Test Tape II; irregular pulsed output of a 
noise generator cycling at 28 Hz. F i l t e r bandwith 22.5 
Hz. 
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4.0 RESULTS AND DISCUSSION 

4.1 RECORDINGS OF TROLLERS 

Recordings were made of ten t r o l l e r s from 9.7-14.5m 

in l e n g t h . E i g h t were of t r a d i t i o n a l c a r v e l plank c o n s t r u c t i o n 

and two were s i n g l e s k i n f i b e r g l a s s . Wide v a r i a t i o n in a c o u s t i c 

output was apparent between boats and at d i f f e r e n t speeds. 

F i g u r e s 4-1, 4-2 and 4-3 are sonograms of a 10m wooden t r o l l e r 

at a slow t r o l l , f a s t t r o l l and at tuna speed. Frequency i s on 

the y a x i s , time on the x, with i n t e n s i t y a f u n c t i o n of the 

darkness of the t r a c e . The two jagged t r a c e s at the top of each 

sonogram are instantaneous s e c t i o n s of the r e c o r d i n g . For these 

the frequency s c a l e i s reversed and i n t e n s i t y i s p r o p o r t i o n a l to 

the height of the t r a c e . 

F i g u r e 4-2 shows the c h a r a c t e r i s t i c broadband (here 

l-6KHz) t r a c e s a s s o c i a t e d with c a v i t a t i o n of the p r o p e l l e r (Ross 

1976). T h i s may be due to one or more bent blades, an 

unbalanced wheel, or a bent t a i l s h a f t ( E r i c k s o n 1979). T r o l l e r s 

guard a g a i n s t c a v i t a t i o n noise which may be heard in the s t e r n 

of the v e s s e l by p u t t i n g one's ear to the h u l l , as i t i s 

b e l i e v e d to a f f e c t c a t c h r a t e . A c o n s i d e r a b l e i n c r e a s e in both 

i n t e n s i t y and the upper frequency l i m i t of the sonogram i s 

e v i d e n t at tuna speed, Figure 4-3. Here the v e s s e l i s 

encountering wave-making r e s i s t a n c e so that i n a d d i t i o n to the 

engine, r e d u c t i o n gear, s h a f t and p r o p e l l e r t u r n i n g c o n s i d e r a b l y 

f a s t e r s u r f a c e water noises are appearing a l s o . The o p e r a t i o n 

of a u x i l i a r y equipment, h y d r a u l i c s , pumps, motors, e t c . was 

o f t e n n o t i c e a b l e when c y c l e d on and o f f . F i g u r e 4-4 shov/s a 



FIGURE 4-1. Sonogram of 10m wooden troller at a slow trolling speed 
(1.5m/s). F i l t e r bandwidth 45 Hz. 
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FIGURE 4-2. Sonogram of a 10m wooden troller at a fast trolling speed 
(2m/s). A/ Indicates traces associated with cavitation 
of the propeller. F i l t e r bandwidth 45 Hz. 
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8KHZ 

4KHz 

80Hz 

FIGURE 4-4. Sonogram of a 14.5m wooden troller at a slow t r o l l with 
hydraulically driven refrigeration compressor operating 
( A ) . F i l t e r bandwith 45 Hz. 

4^ 
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t r a c e at about 2.2KHZ caused by a v a r i a b l e speed h y d r a u l i c pump 

d r i v i n g a r e f r i g e r a t i o n compressor. 

A s l o w - t r o l l sonogram of the author's v e s s e l , used in 

the sea t r i a l s i s shown i n F i g u r e 4-5. P r o p e l l e r noises are 

reduced i n t h i s r e c o r d i n g as the hydrophone was c l o s e to the 

boat (1.5m) and abeam the v e s s e l . Engine noises are 

predominant, showing narrow bandwidth t r a c e s a s s o c i a t e d with 

p a r t i c u l a r engine components at about 600RPM. The output l e v e l 

of the t e s t v e s s e l with main and a u x i l i a r y engines running was 

20dB re l y b a r at lm while s t a t i o n a r y . T h i s i s a p p r e c i a b l y 

h i g h e r than the l e v e l measured by E r i c k s o n (1979) with albacore 

j i g boats (about lOdB r e u l b a r ) . Gear, s h a f t and p r o p e l l e r 

sounds would l i k e l y not add to t h i s a p p r e c i a b l y at t r o l l i n g 

speed as engine n o i s e s tend to predominate. The t h r e s h o l d s 

r e p o r t e d f o r pink and A t l a n t i c salmon, and some other 

n o n - o s t a r i o p h y s i n e s p e c i e s ( F i g u r e s 1-4, 1-5) i n d i c a t e that 

salmon can a c o u s t i c a l l y d e t e c t t r o l l v e s s e l s i n the frequency 

range 20-400hz. In the most s e n s i t i v e r e g i o n the range of 

d e t e c t i o n w i l l approach 30m. I t i s noteworthy that i f 

E r i c k s o n ' s (1979) output l e v e l s are v a l i d , the maximum d e t e c t i o n 

d i s t a n c e i s only lm. 
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2KHz 

1KHz i 

20Hz 
9.6 sec 

FIGURE 4-5. Sonogram of the author's vessel (13.1m), used in the sea 
t r i a l s , at a slow trolling speed (1.0-1.5m/s). F i l t e r 
bandwidth 11.25 Hz. 



50 

4.2 RECORDINGS OF FISH 

O b t a i n i n g q u a l i t y r e c o r d i n g s of h e r r i n g while 

schooled i n shallow, calm water proved d i f f i c u l t due to the 

u b i q u i t o u s h e r r i n g f l e e t and the c o n s i d e r a b l e background noise 

r e s u l t i n g . F i s h were l o c a t e d by echo sounding and the boat 

e i t h e r anchored on the school or allowed to d r i f t with machinery 

shut down. These pre-spawning f i s h proved to be f a i r l y q u i e t 

with the only sound apparent being high p i t c h e d " c r a c k l i n g " or 

" f r y i n g " sounds centered on 4KHz. These may be produced by 

b r a n c h i a t e or s k e l e t a l movements of the h e r r i n g , although t h i s 

type of sound i s a l s o made by c e r t a i n b a r n a c l e s ( C i r r i p e d i a ) , 

mussels ( M y t i l i d a e ) , and u r c h i n s ( E c h i n i d a e ) ( F i s h 1964). 

Recordings of c a p t i v e h e r r i n g ( s e v e r a l thousand) i n 

the net pens at FBS were of b e t t e r q u a l i t y with lower background 

nois e l e v e l s . D i r e c t o b s e r v a t i o n of the f i s h d u r i n g r e c o r d i n g 

a l s o allowed s o u n d - a c t i v i t y c o r r e l a t i o n s . The f i s h tended to 

c i r c l e w i t h i n the net, sometimes p i l i n g up i n one corner which 

occasioned s u r f a c e t h r a s h i n g and r a p i d swimming u n t i l the school 

reversed i t s d i r e c t i o n . The above mentioned f r y i n g sounds found 

i n r e c o r d i n g s of w i l d f i s h were presented at a l l times near the 

s c h o o l . A sonogram showing the p a t t e r n s and bandwidth of these 

sounds i s shown i n Fig.4-6. They range 3.5-5KHz. During 

crowding and accompanying r a p i d swimming, sounds dubbed "knocks" 

were very e v i d e n t . These are shown in Fig.4-7. The f r y i n g 

sounds of Fig.4-6 appear p e r i o d i c a l l y i n t h i s sonogram as w e l l . 

Some of the low frequency (<500Hz) p u l s e s are due to f i s h 

h i t t i n g the hydrophone and cord and causing feedback. 
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» 

80Hz 

FIGURE 4-6. Sonogram of herring "scratches". The recording was of 
captive herring in a net pen at the Pacific Biological 
Station. F i l t e r bandwidth 45 Hz. 
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FIGURE 4-7. Sonogram of herring "knocks", produced by active fish 
in a net pen at the Pacific Biological Station. F i l t e r 
bandwidth 45 Hz. 



53 

A sonogram of j u v e n i l e coho (500gm) feeding a c t i v e l y 

on p e l l e t s i s shown in F i g .4 - 8 . These f i s h v/ere swimming 

q u i c k l y with r a p i d turns and a c c e l e r a t i o n s as they competed f o r 

the food. The f i s h d i d not break the surface during t h i s 

r e c o r d i n g , thus these knocking sounds were p l a i n l y generated 

underwater. S i m i l a r sounds occurred in r e c o r d i n g s of j u v e n i l e 

chinook (500gm), a d u l t coho (1.5-2.5kg) and a d u l t rainbow t r o u t 

(2.5-3kg). F r y i n g sounds v/ere absent from r e c o r d i n g s of c a p t i v e 

salmonids but c o n s i d e r a b l e s h i p p i n g noise i s e v i d e n t in the 

background of F i g .4 - 8 . 

4.3 PLAYBACK IN PENS 

As d e t a i l e d i n s e c t i o n 1.2, p o s i t i v e responses to 

playback of feeding sounds have been obtained with a number of 

s p e c i e s (Moulton 1960, Hashimoto and Maniwa 1966, Kaniwa 1975). 

Attempts to e l i c i t s i m i l a r responses with coho and chinook 

salmon and rainbow t r o u t f a i l e d . The s u b j e c t f i s h were enclosed 

i n net pens a t PBS and l i v e d on a p e l l e t e d d i e t . Playback of 

the sounds of p e l l e t s being thrown i n t o the pens and of the f i s h 

f e e d i n g on them was made to u n s a t i a t e d f i s h at output l e v e l s as 

high as 55dB re l u b a r at lm. Figs.3-8 and 4-8 are sonograms of 

such sounds. The sound p r o j e c t o r was suspended w i t h i n the pen, 

not more than 2m from the f i s h . No response of any kind was 

observed. Attempts to produce a s t a r t l e e f f e c t with pure tone 

and o s c i l l a t i n g tones a l s o f a i l e d . 

I t may be that these f i s h , hand fed and held in an 

area with a very high background noise l e v e l , have become 

c o n d i t i o n e d to v i s u a l cues o n l y . P e l l e t s thrown i n t o the pens 
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FIGURE 4-8. Sonogram of juvenile coho salmon actively feeding on pellets. 
The intense broadband traces are the fish noises (indicated) 
considerable shipping noise is evident in background. 
Fi l t e r bandwidth 45 Hz. 



make a s i g n i f i c a n t d i s t u r b a n c e on the s u r f a c e . The f i s h are 

a l s o s h e l t e r e d from p r e d a t i o n w i t h i n t h e i r nets and thus l a c k 

another powerful stimulus to use of t h e i r a u d i t o r y sense. These 

c o n s i d e r a t i o n s may e x p l a i n the observed l a c k of r e a c t i o n to 

sounds. 

4.4 PLAYBACK AT SEA 

Attempts to a t t r a c t salmon at sea to a sound source 

were c a r r i e d out d u r i n g August and September of 1981 and 1982 

o f f the southern west coast of Vancouver I s l a n d . The number of 

t r i a l s was c o n s t r a i n e d by the f i s h i n g p a t t e r n s of the v e s s e l and 

by weather. T e s t s were p r a c t i c a l o n l y when the number of f i s h 

caught per day was l e s s than about 50 due to the time r e q u i r e d 

to p u l l the gear, remove f i s h , and r e s e t as w e l l as p r o c e s s i n g 

time (the f i s h must be stunned, b l e d , dressed, washed, f r o z e n , 

g l a z e d and stowed). Two people were r e q u i r e d to conduct t r i a l s 

so t hat gear could be checked and r e s e t i n accordance with the 

s chedule. Often only a few c y c l e s were p o s s i b l e before the crew 

was c a l l e d to other d u t i e s . Moderate weather with good 

v i s i b i l i t y was r e q u i r e d to tow the sound p r o j e c t o r without r i s k 

i n the l a r g e f l e e t s of boats that p r e v a i l e d i n the area. Strong 

t i d a l a c t i o n caused a number of tangles between the speaker and 

t r o l l i n g l i n e s r e q u i r i n g a b o r t i o n of the t r i a l in p r o g r e s s . 

The three types of sounds used in the t r i a l s 

( F i g s . 3 - 6 , 3-7, 3-8), were chosen based on sounds reported to be 

s u c c e s s f u l in the l i t e r a t u r e , and f o r resemblance to recorded 

sounds of h e r r i n g and salmonids. 
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Test Tape I was a recording of t r i c k l i n g water 

(Fig.3-6). The broadband pulses evident in a l l the recordings 

of active f i s h were well mimicked by this method, and a very low 

noise tape could be made. The e r r a t i c pulsed timing of the 

sound, roughly 20Hz, accorded well with successful sounds in the 

l i t e r a t u r e (Steinberg _et a_l 1965, Richard 1968). 

Test Tape II is the recorded output of a custom made 

sound generator u t i l i z i n g a Texas Instrument SN76477N complex 

sound generator integrated c i r c u i t (Fig.3-7). The noise 

function of the chip was modified with a low-pass f i l t e r 

(Fig.3-4) to r o l l o f f at about 800Hz, then cycled at about 28Hz. 

This sound v/as then pulsed i r r e g u l a r l y . Again, this sound was 

designed to resemble observed f i s h sounds and those in the 

l i t e r a t u r e . It d i f f e r e d from Tape I in i t ' s greater emphasis on 

low frequency. 

Test Tape III (Fig.3-8) consisted of repeated rainbow 

trout feeding sounds. This tape was used at the end of the sea 

t r i a l s after i t became apparent that the synthesized sounds were 

i n e f f e c t i v e . 

The results of the playback at sea are shown in 

Tables 4-1, 4-2 and 4-3. VJith Tape I, 31 f i s h v/ere caught with 

the sound on, and 31 with i t o f f . Tape II gave a result of 17 

and 24 respectively, VJhile Tape III yielded 7 and 8. A s l i g h t 

negative co r r e l a t i o n is evident with Tape II but a paired t-test 

on the data indicated that the result was not s i g n i f i c a n t at 

a= .05 . 
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TABLE 4-1: Salmon Catch During Cycled Playback of 
Tes t Tape I; Water Noises 

ON 
OFF 
ON 
OFF 

DATE : 
LOCATION: 
DEPTH: 
SPEAKER DEPTH! 
OUTPUT LEVEL: 

P e r i o d 
10:00-10:30 
10:30-11:00 
11:00-11:30 
11:30-12:00 

J u l y 14/81 
S w i f t s u r e bank 
llOmeters 
l l m e t e r s 
55dB re ljuBar at lm 

Coho 
2 
0 
1 
3 

Pink 
1 
0 
0 
1 

Chinook 
C 
1 
0 
0 

ON 
OFF 
ON 
OFF 

DATE: 
LOCATION: 
DEPTH: 
SPEAKER DEPTH! 

P e r i o d 
17:30-18:00 
18:00-18:30 
18:30-19:00 
19 :00-19:30 

August 30/81 
North end of La Perouse bank 
55-75meters 
13meters 

Coho 
2 
2 
1 
1 

Pink 
2 
1 
1 
0 

Chinook 
1 
2 
2 
0 

ON 
OFF 
ON 
OFF 
ON 
OFF 
ON 
OFF 

DATE: 
LOCATION: 
DEPTH: 

Pe r i o d 
10:00-10:30 
10 :3 0 - l l : 0 0 
11:00-11:30 
11:30-12:00 
12:00-12:30 
12:30-13:00 
13:00-13:30 
13:30-14:00 

Sept. 2/81 
West side of La Perouse bank 
82-92meters 

Coho 
2 
0 
0 
0 
2 
1 
0 
0 

Pink 
0 
0 
0 
0 
0 
0 
0 
0 

Chinook 
0 
0 
0 
0 
0 
0 
1 
0 
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DATE: 
LOCATION: 
DEPTH: 

P e r i o d 
ON 14:30-15:00 
OFF 15:00-15:30 
ON 15:30-16:00 
OFF 16:00-16:30 
ON 16:30-17:00 
OFF 17:00-17:30 
ON 17:30-18:00 
OFF 18:00-18:30 
ON 18:30-19:00 
OFF 19:00-19:30 

DATE: 
LOCATION: 
DEPTH: 

P e r i o d 
ON 12:30-13:00 
OFF 13:00-13:30 
ON 13:30-14:00 
OFF 14:00-14:30 

Sept. 3/81 
South-east end of La Perouse bank 
59meters 

Coho Pink Chinook 
2 1 0 
3 0 0 
0 0 0 
1 3 1 
3 1 0 
0 0 0 
0 0 1 
1 1 0 
0 2 2 
2 3 2 

Sept. 6/81 
S w i f t s u r e bank 
55-75meters 

Coho Pink Chinook 
0 0 0 
3 0 0 
0 0 1 
0 0 0 
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TABLE 4-2: Salmon Catch During Cycled Playback of 
Tes t Tape I I ; Pulsed Low Frequency Noise 

ON 
OFF 

DATE: 
LOCATION: 
DEPTH: 
SPEAKER DEPTH: 
OUTPUT LEVEL: 

P e r i o d 
08:00-08:30 
08:30-09:00 

Aug. 25/82 
P o r t l a n d P o i n t 
80meters 
14meters 
55dB re luBar at lmeter 

Coho 
0 
0 

Chinook 
0 
0 

ON 
OFF 
ON 
OFF 
ON 
OFF 

DATE: 
LOCATION: 

P e r i o d 
08:30-09:00 
10:00-10:30 
10:30-11:00 
11:00-11:30 
11:30-12:00 
12:00-12:30 

Aug. 26/82 
As Above 

Coho 
0 
1 
0 
0 
0 
3 

Chinook 
0 
0 
0 
0 
0 
0 

ON 
OFF 
ON 
OFF 
ON 
OFF 

DATE: 

P e r i o d 
16:30-17:00 
17:00-17:30 
17:30-18:00 
18:00-18:30 
18:30-19:00 
19:00-19:30 

Aug. 28/82 

Coho 
0 
0 
0 
0 
0 
0 

Chinook 
0 
0 
0 
0 
0 
0 

ON 
OFF 
ON 
OFF 
ON 
OFF 

DATE: 
LOCATION: 
DEPTH: 

P e r i o d 
09:30-10:00 
10 :00-10:30 
10:30-11:00 
11:00-11:30 
11:30-12:00 
12:00-12:30 

Sept. 6/82 
North si d e of Juan de Fuca Canyon 
130-200meters 

Coho 
2 
4 
1 
4 
2 
3 

Chinook 
0 
0 
1 
1 
0 
1 



60 

DATE: Sept. 7/82 

P e r i o d Coho Chinook 
ON 1 5 : 0 0 - 1 5 : 3 0 1 0 
OFF 1 5 : 3 0 - 1 6 : 0 0 1 0 
ON 1 6 : 0 0 - 1 6 : 3 0 0 1 
OFF 1 6 : 3 0 - 1 7 : 0 0 0 0 
ON 1 7 : 0 0 - 1 7 : 3 0 1 0 
OFF 1 7 : 3 0 - 1 8 : 0 0 0 0 

DATE: Sept. 15/82 
LOCATION: La Perouse bank 
DEPTH: 80meters 

P e r i o d Coho Chinook 
OFF 16:30-17:00 2 0 
ON 17:00-17:30 4 0 
OFF 17:30-18:00 3 1 
ON 18:00-18:30 4 0 
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TABLE 4-3: Salmon Catch During Cycled Playback of 
Test Tape I I I ; Feeding Sounds of Large 
Rainbow Trout 

ON 
OFF 
ON 
OFF 

DATE: Sept. 9/82 
LOCATION: S w i f t s u r e bank 
DEPTH: lOOmeters 
OUTPUT LEVEL: 55dB re LuBar at lm 

P e r i o d Coho Chinook 
14:30-15:00 0 0 
15:00-15:30 1 0 
15:30-16:00 2 0 
16:00-16:30 2 0 

DATE: Sept. 16/82 
LOCATION: La Perouse bank 
DEPTH: SOmeters 

Pe r i o d Coho Chinook 
ON 16:00-16:30 3 0 
OFF 16:30-17:00 0 1 
ON 17:00-17:30 1 0 
OFF 17:30-18:00 2 0 
ON 18:00-18:30 0 1 
OFF 18:30-19:00 2 0 
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As a footnote to the playback t r i a l s , John Ford of 

UBC conducted p r e l i m i n a r y playback experiments of recorded 

k i l l e r whale sounds to the s u b j e c t pods i n Johnstone S t r a i t s 

d u r i n g the summer of 1982 (John Ford p e r s . comm.). He used the 

same sound p r o j e c t o r (the Aquavox UW 60) employed i n these 

experiments. Strong r e a c t i o n to the sounds was e v i d e n t , with 

some i n d i v i d u a l s becoming extremely a g i t a t e d , approaching the 

sound at high speed, and a c t u a l l y bunting h i s v e s s e l . T h i s i s 

at l e a s t an i n d i c a t i o n that the equipment i s capable of 

producing sounds of a b i o l o g i c a l l y meaningful l e v e l and 

c h a r a c t e r i n f i e l d c o n d i t i o n s . 
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4.5 GENERAL DISCUSSION 

The predominant sounds in the f i s h r e c o r d i n g s were 

the p e r i o d i c broadbank pulses e v i d e n t i n the sonograms 

( F i g s . 3 - 8 , 4-7, 4 - 8 ) . These ranged approximately 0.1-8kHz f o r 

h e r r i n g , 1.5-7kHz f o r coho (1-2.5kg) and 0.15-3.5kHg f o r rainbow 

t r o u t . The source of these sounds is u n c e r t a i n but some 

s p e c u l a t i o n s f o l l o w . 

The h e r r i n g were r e l a t i v e l y s i l e n t u n t i l the school 

p i l e d i n t o a corner of the net pen. The "knocking" sounds then 

o c c u r r e d as the f i s h became a c t i v e , t h r a s h i n g and o c c a s i o n a l l y 

s p l a s h i n g as they attempted to reverse d i r e c t i o n . Franz (1959) 

measured the underwater noise a s s o c i a t e d with the impact of 

water d r o p l e t s on the s u r f a c e . He found that two mechanisms 

were r e s p o n s i b l e ; a sharp pulse r e s u l t s from the i n i t i a l impact, 

followed by sounds emitted by p u l s a t i o n and c o l l a p s e of 

e n t r a i n e d a i r bubbles. The a c o u s t i c spectrum he measured was 

wide, 0.5-10kHz with maximum sound pressure l e v e l s at the lower 

end. Fig.3-6, the sonogram of Test Tape I shows the c h a r a c t e r 

of these sounds. Observation during a c o u s t i c monitoring of the 

swimming h e r r i n g r e v e a l e d that surface s p l a s h i n g , while 

undoubtably a c o n t r i b u t o r to the h e r r i n g sounds recorded, d i d 

not always c o r r e l a t e with the occurrence of the "knocks". 

Another e x p l a n a t i o n i s r e q u i r e d , p a r t i c u l a r l y as the same type 

of sounds, although lower in p i t c h were evident in the coho, 

chinook and rainbow t r o u t r e c o r d i n g s where surface s p l a s h i n g was 

not observed during sound p r o d u c t i o n . 



C a v i t a t i o n noise i s a common source of broadband 

n o i s e i n the sea, u s u a l l y a s s o c i a t e d with s h i p ' s p r o p e l l o r s . 

Ross (1976) estimates t h a t 80-85% of the a c o u s t i c energy 

p r o j e c t e d from a v e s s e l at speed r e s u l t s from c a v i t a t i o n . T h i s 

occurs when the l o c a l pressure near a body in motion r e l a t i v e to 

the medium i s lowered to or near the value of the s t a t i c 

p r e s s u r e . Rupture o c c u r s , r e s u l t i n g in a m i c r o s c o p i c bubble 

c o n t a i n i n g water vapor and d i s s o l v e d gases. Most l i q u i d s , and 

p a r t i c u l a r l y sea water in the mixed l a y e r , c o n t a i n many 

m i c r o s c o p i c and sub-microscopic v o i d s which act as c a v i t a t i o n 

n u c l e i . These e f f e c t i v e l y reduce the t e n s i l e s t r e n g t h of the 

l i q u i d , a l l o w i n g c a v i t a t i o n to occur at negative pressures above 

the a c t u a l s t a t i c p r e s s u r e . The c o l l a p s e of c a v i t a t i o n bubbles 

as they r e e n t e r regions of higher pressure r e s u l t s in r a d i a t i o n 

of broadband n o i s e . T h i s can reach 30dB re lubar in the 

r e g i o n l-10kHz (Barker 1973). I f c a v i t a t i o n caused the observed 

broadband p u l s e s , a c t i v e l y swimming or feeding f i s h must be 

capable of t r a n s i e n t l y lowering the pressure to near ambient 

l e v e l s . Examination of f i l m e d f u s i f o r m f i s h movements d u r i n g 

t u r n i n g and r a p i d s t a r t manoeuvres (Vveihs 1972, Webb 1976), 

p o i n t s to movement of the caudal f i n as a p o s s i b l e source. T i p 

speeds of 6m/s were recorded during f a s t s t a r t s of small rainbow 

t r o u t (<500gm) by Webb (1976). A r e l a t i o n used i n marine design 

(and elsewhere) i n c a l c u l a t i o n of c a v i t a t i o n i n c e p t i o n 

c o n d i t i o n s i s the c a v i t a t i o n equation; 



where, 

a = c a v i t a t i o n number 
o" = Po-Pv Po =ambient pr e s s u r e 

1 p u Pv =vapor pressure of sea 
2 water at r e l e v a n t 

temperature 
p =density of seawater 
u =speed 

A v e l o c i t y of about lOm/s near the s u r f a c e a t 30°C g i v e s a sigrna 

of 2, about the upper l i m i t f o r onset of c a v i t a t i o n of a 

h y d r o f o i l at a high angle of a t t a c k (Morgan 1969). The r i s e i n 

P D with i n c r e a s i n g depth r e q u i r e s an increase in u to 

achieve a constant sigma, p r e c l u d i n g c a v i t a t i o n at depth i f an 

animal cannot produce the r e q u i s i t e speed at the s u r f a c e . There 

i s no i n f o r m a t i o n i n the l i t e r a t u r e on the q u i c k - s t a r t and 

manoeuvring a b i l i t i e s of P a c i f i c salmon, hov/ever given that 

s m a l l rainbow t r o u t ( s i m i l a r l y shaped f i s h ) could a t t a i n caudal 

f i n t i p speeds approaching the r e q u i r e d lOm/s, salmon may be 

s i m i l a r l y a b l e . 

C e r t a i n cetaceans are capable of speeds (llm/s) i n 

the r e g i o n of c a v i t a t i o n onset (Lang 1975). T a i l speeds w i l l be 

somewhat higher. Fig.4-9 i s a sonogram of k i l l e r whales 

(Qrcinus orca) a c t i v e l y feeding on salmon (provided by 

John F o r d ) . These are sounds a s s o c i a t e d with r a p i d 

a c c e l e r a t i o n s i n p u r s u i t of the e l u s i v e prey (John Ford p e r s . 

comm.). The broadband c h a r a c t e r of the sounds i n d i c a t e that 

c a v i t a t i o n may be the source. I t should be noted that the 

whales d i d not break the s u r f a c e during the r e c o r d i n g . 

Another p o s s i b l e source of c a v i t a t i o n noise in salmon 

(and other f i s h arid cetaceans) i s s u c t i o n f e e d i n g . Because of 

the r e l a t i v e s i z e d i f f e r e n c e between predator and prey, water 
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FIGURE 4-9. Sonogram of k i l l e r whale (Orcinus orca), t a i l beats during 
rapid acceleration. The whales were actively feeding 
on salmon in the Straight of Juan de Fuca, near Sheringham 
Point(recording courtesy of John Ford). F i l t e r bandwidth 
45 Hz. 
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movement from the p r e a a t o r ' s approach a f f e c t s the p o s i t i o n of 

the prey. S u c t i o n c r e a t e d by r a p i d e x t e n s i o n of the mouth 

c a v i t y i s used by most t e l e o s t f i s h to overcome t h i s e f f e c t and 

draw the prey i n t o the jaws (Lauder 1980). Buccal c a v i t y 

p r e s s u r e s of -650cm H^O have been measured in s u n f i s h e s 

(Lauder 1980). T h i s r e p r e s e n t s about 64% of the negative 

pressure t h e o r e t i c a l l y r e q u i r e d (-1020 cm R^O) to cause 

c a v i t a t i o n at the s u r f a c e . Salmon u t i l i z e a combination of 

s u c t i o n and forward body movement in prey capture and although 

they probably cannot develop negative p r e s s u r e s from mouth 

expansion approaching the slower s u n f i s h e s , the a d d i t i v e e f f e c t 

of body v e l o c i t y and s u c t i o n may be s u f f i c i e n t to induce 

c a v i t a t i o n . 

Whatever the source of the broadband pulses evident 

i n the r e c o r d i n g s of v a r i o u s f i s h , these v/ere c e r t a i n l y the 

l o u d e s t and l i k e l y the most s i g n i f i c a n t sounds observed. They 

may be analogous to the " v e e r i n g " sounds of Moulton(1960) with 

anchovies and the "thumps" Stober (1969) observed i n c u t t h r o a t 

t r o u t . Sonograms of these sounds showed the same broadband 

c h a r a c t e r . The s i m i l a r i t y between t h i s c l a s s of sounds made by 

salmon and the c a v i t a t i o n n oises made by damaged or unbalanced 

p r o p e l l o r s ( F i g . 4 - 2 ) , and k i l l e r whale t a i l beats (Fig.4-9) may 

be the source of the v a r y i n g f i s h i n g performances i n salmon 

t r o l l e r s that has been a s s o c i a t e d with s o n i c output. 
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5.0 CONCLUSIONS 

Towards understanding the r o l e of sound i n the B.C. 

t r o l l salmon f i s h e r y , t h i s study showed t h a t : 

1/ The sound spectrum produced by t r o l l v e s s e l s 

c o i n c i d e s witli the probable hearing range of P a c i f i c salmon 

w i t h i n the approximate l i m i t s of 20-500Hz. 

2/ The sound output l e v e l of t r o l l v e s s e l s i s about 

20dB re l y b a r at lm in the absence of d r i v e t r a i n n o i s e s . 

C a v i t a t i o n noise from a f a u l t y p r o p e l l o r or v e n t i l a t i o n during 

rough weather would i n c r e a s e t h i s l e v e l . 

3/ The maximum d e t e c t i o n d i s t a n c e of a t r o l l v e s s e l 

by a P a c i f i c salmon i s at l e a s t 30m. 

4/ The predominant sounds made by a c t i v e l y feeding 

salmonids are broadband pulse dubbed "knocks". These may r e s u l t 

from c a v i t a t i o n induced by t a i l b e a t s or by s u c t i o n f e e d i n g . 

5/ Playback of v a r i o u s pulsed low-frequency and 

recorded salmonid feeding sounds at a high l e v e l to c a p t i v e 

salmonids i n net pens and to w i l d f i s h from w i t h i n the gear 

a r r a y of a commercial salmon t r o l l e r had no observable e f f e c t on 

the c a p t i v e f i s h nor d i d i t s i g n i f i c a n t l y a f f e c t the catch r a t e 

of the t r o l l v e s s e l . 

Although the study f a i l e d to e s t a b l i s h the cause o f , 

or s u b s t a n t i a t e the p a r t sound p l a y s i n the t r o l l salmon f i s h e r y , 

some i n s i g h t i n t o the problem was gained. I t now seems more 

l i k e l y t h a t the e f f e c t of boat noise i s r e p u l s i v e or i n h i b i t o r y 

to the salmon due to s i m i l a r i t i e s with predator sounds. Some 

recommendations f o r f u t u r e s t u d i e s i n t h i s area are o f f e r e d i n 



the f o l l o w i n g s e c t i o n based on p o i n t s that arose i n these 

i n v e s t i g a t i o n s . 
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6.0 SUGGESTIONS FOR FUTURE WORK 

A number of p o i n t s have emerged from t h i s study t h a t 

are d e s e r v i n g of f u r t h e r work. 

1/ Playback at sea with an underwater video camera 

mounted on the sound p r o j e c t o r . The camera would allow d i r e c t 

o b s e r v a t i o n of f i s h a t t r a c t e d to the sound source. A l u r e might 

be towed from the apparatus w i t h i n the camera's f i e l d to provide 

a v i s u a l focus f o r incoming f i s h . 

2/ Playback t r i a l s at sea as performed in t h i s study 

but using recorded or simulated predator sounds (marine mammals, 

s h a r k s ) . I f r e p u l s i o n or i n h i b i t i o n were o c c u r r i n g catch rates 

d u r i n g t e s t p e r i o d s would be lower than d u r i n g c o n t r o l s . 

3/ An a c o u s t i c p r o f i l e - r e l a t i v e catch l e v e l 

c o r r e l a t i o n a l study with the t r o l l salmon f l e e t such as E r i c k s o n 

(1979) d i d with the US a l b a c o r e j i g f l e e t . 

4/ An attempt to c o r r e l a t e d a i l y "on the b i t e " 

p e r i o d s with environmental c o n d i t i o n s such as s t a t e of the t i d e , 

l i g h t c o n d i t i o n s and water c h a r a c t e r i s t i c s (temperature, 

s a l i n i t y ) . Log book r e p o r t s or d a i l y r a d i o contact with the 

f l e e t c ould be used to d e l i n e a t e these p e r i o d s . 

5/ A more thorough examination of sound pr o d u c t i o n 

i n salmon. E v a l u a t i o n of f a s t s t a r t c a p a b i l i t i e s , peak swimming 

speeds and s u c t i o n feeding i n salmon are needed to explore the 

o r i g i n s of the "knocks". Recording of feeding salmon at depth 

should c o n f i r m i f c a v i t a t i o n i s i n v o l v e d . 

6/ Determination of f r e q u e n c y - t h r e s h o l d curves f o r 

a l l s p e c i e s of P a c i f i c salmon (to confirm and extend the f i n d i n g s 
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o f K o l ' t s o v a et ^1_ 1977) i s needed to a c c u r a t e l y determine 

d e t e c t i o n d i s t a n c e s from sound sources. These data might be 

u s e f u l i n p r e d i c t i n g e f f e c t s from i n d u s t r i a l noise such as 

o f f s h o r e o i l e x p l o r a t i o n . 
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