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ABSTRACT

One factor of wood loss in the manufacture of plywood is implicit
in the form of excess thickness in plywood due to the choice of veneer
thicknesses and plywood designs used in assembly. The thickness and
designs currently in use appear to have come largely from tradition
and there is no evidence in the literature to show what constitutes the
most economical veneer thicknesses and plywood designs for a mill. The
problem of determining them is very complex since many types of plywood
are assembled in each mill as some integral multiple combination of a
few veneers satisfying the 'balanced design' and other structural
specifications. The consumption of logs is dependent on the excess
thickness in plywood and the economics of the mill further depend on
how efficiently a given set of veneers and designs are used to satisfy
the orderfile requirements. In this dissertation, these aspects of
the Plywood Design and Manufacturing (PDM) problem are addressed using
a mathematical programming approach.

The problem of finding the optimal veneer thicknesses, associated
plywood designs and product mix is formulated as a non-Tinear mixed
integer mathematical programming model. Utilizing the structure of the
constraints and by selecting appropriate variables to branch on, it is
demonstrated that the PDM problem can be solved efficiently through
an implicit enumeration algorithm involving a tree search procedure.
The subproblem to be solved at each feasible node of the tree is a
Linear Multiple Choice Knapsack (LMCK) problem whose solution can be
obtained explicitly following its coefficient structure. A computer

code is written in FORTRAN for the implicit enumeration algorithm.



(ii1)

Data obtained from a plywood mill in B.C. is analysed using the PDM
model and this code. It is demonstrated that theaannual net revenue
of the mill can be substantially increased through the use of the PDM
model.

The PDM model is further extended to mill situations involving
more than one species and varying orderfile requirements. The model
is reformulated in each case and it is demonstrated that essentially
the same tree search procedure can be used to solve all these models.
When the orderfile is independent of species, the subproblem to be
solved at each node of the tree is a Generalized Network problem. It
is shown that this Generalized Network problem can be reduced to a
Generalized Transportation problem utilizing the structure of the
coefficients and solved as an ordinary Transportation problem. When
the orderfile is dependent on species, the subproblem decomposes into
several Linear Multiple Choice Knapsack problems. If more than one
species of veneer can be mixed within a plywood panel, the subproblem
is.a Tinear programming problem.

The PDM model is further shown to be a special case of a disjunctive
programming problem. Following the development of the PDM model,
methods to determine the efficiency of plywood designs and the optimum

number of veneer thicknesses for a plywood mill are developed..
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CHAPTER 1

1.7 Introduction

In the conversion of logs to veneer and plywood, wood losses occur
at several stages due to factors such as the size and shape of logs and
processing limitations. The yield of plywood is generally 45-55 per
cent of the log input by volume, the remaining being conversion losses
in the form of residuals and losses due to shrinkage and compression.
Though much of the residuals is converted into byproducts such as wood
chips and hog fuel and used elsewhere, their economic value is considerably
reduced. In the context of dwindling forest resources, increasing
manufacturing costs and fluctuating and competitive market structure,
the importance of efficient utilization of timber is all the more
greater now than it was ever before.

Though many of the factors of wood loss are either biological or
technological, there are some areas in plywood manufacture where
decision-making or policy factors contribute to the reduction in the
yield of plywood. One such factor is implicit in the form of excess
thickness in plywood due to the choice of veneer thicknesses and plywood
designs used in assembly. While the extent of wood loss in this form
may appear to be small, the savings any improvement in this area may
bring about can prove to be substantial. The importance stems from
the fact that processed wood with an added value from manufacture
is Tost indirectly. The veneer peel thickness and plywood designs
currently in use in most mills have come largely from age old tradition

with intuitive "improvements', if any, over time. There is no evidence



in the published literature to show what constitutes the most economical
peel thicknesses and plywood designs for a mill and how to find them. In
recent years, technological innovations have lead to improved manufacturing
processes in the plywood industry. Adoption of sophisticated quantitative
techniques and computers as aids in decision-making and process control

have brought considerable savings to the industry. Yet, this one aspect

of the wood Toss and plywood design problem has not been given the attention
it deserves.

The problem of determining the optimum veneer thicknesses and
associated plywood designs is very complex due to the following reasons.
Many types of plywood are assembled by each plywood mill using only a
few (three or four) veneer thicknesses. Generally, all the plywood so
assembled should conform to the 'balanced design', a requirement which
regulates thedirection of grain and the order in which veneers of
di fferent species and thicknesses can be assembled into plywood.
Specifically, the assembly of veneers should be such that they are
symmetrical about the central ply(ies). There should be at least one
balanced design for each type of plywood which, in addition, should
satisfy other strucfura] requirements and specifications. The production
of plywood using any design alternative is conditional upon that design
alternative being feasible for the balanced design requirement and other
specifications. When veneer thicknesses are themselves decision variables,
the relation between consumption of logs and the production of veneers
is non-linear. The volumetric wood loss in the form of excess thickness
in plywood, or equivalently, the consumption of logs, also dependsoon
the distribution of the orderfile requirements. The economics of the

mill further depend on how efficiently a set of veneer thicknesses and



plywood designs are utilised to form the best product mix subject
to constraints on resource availability and product demand.

Associated with the veneer thickness and plywood design problem
described above is the problem of determining the optimum number of
veneer thicknesses for a mill. Generally, the higher the number of
veneer thicknesses used by a miil, the Tower is the wood loss and log
costs. However, a higher number of veneer thicknesses is associated
with higher setup costs in peeling, drying, storage, lay-up, handling
and record-keeping. On the other hand, the lower the number of veneer
thicknesses, the higher is the wood loss and log costs, but the setup
costs are reduced considerably. The problem of determining the optimum
number of veneer thicknesses which balances the trade-off between the
two is therefore a direct sequel of the veneer thickness, plywood
design and product mix problem.

In this dissertation, we address the above aspects of these two
problems using a quantitative approach. We formulate the problem of
determining the veneer thickness, associated plywood designs and product
mix as a mathematical programming model in which the objective function
and some of the constraints are non-linear and, in addition, some of the
decision variables are restricted to 0-1 values. The model takes on
different forms depending on the factors considered in the problem and
mill practices. Some of the general problems are considered and, in
each case, solution procedures which exploit the structure in the model
are developed. A computer code is written and dafa obtained from a
plywood mill is analysed to demonstrate the suitability of the model.

To our knowledge, there are no literature references which

directly consider the evaluation of optimum veneer thicknesses, plywood
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designs and product mix. Whatever 1ittle work done in this field relates
to the study of strength or structural properties of known thicknesses
and designs (Colebeck and Northcott (1958), Norris, Werren and McKinnon
(1961)). However, there is considerable work done in the area of optimum
product mix for plywood using, mostly, linear programming techniques. We
consider this and other Operations Research applications in the plywood
industry in section 1.2 of this chapter. In addition, some work is done
in the general area of wood losses in plywood production. We briefly
describe this work as well, analyse the factors of wood loss and optimi-
zation techniques associated with them in section 1.3.

The organisation of the rest of this dissertation is as follows.
In chapter two we present the terminology and factors associated with the
plywood manufacturing process and the design problem. We define the
decision variables and develop the constraints and the objective of the
problem as functions of these variables. We further demonstrate how the
balanced design requirement can be achieved through the development of
a set of design coefficients and associated indicator variables and
we formulate the Plywood Design and Manufacturing (PDM) problem as a
non-Tinear mixed integer mathematical programming model.

We presentvan implicit enumeration algorithm for solving the PDM
problem in chapter three. Utilising the constraint structure in the
PDM problem, we demonstrate how the size of the search tree, employed
by the implicit enumeration algorithm, can be substantially reduced.
We further show that the subproblem to be solved at each node of this
search tree. is a Linear Multiple Choice Knapsack (LMCK) problem whose
solution can be obtained explicitly following its coefficient structure.

We describe a computer code written in FORTRAN for the implicit



enumeration algorithm to solve the PDM problem. Using this code, we
analyse data from a plywood mill in British Columbia and show that for
the particular configuration of the problem parameters, the solution
obtained from our model is far superior than those currently used.

Extension of the PDM model to mill situations involving more than
one species and varying orderfile restrictions are considered in
chapter four. The PDM model is reformulated in each case and it is
demonstrated that essentially the same tree search procedure can be used
to solve all these models. When the orderfile is independent of species,
the Tinear subproblem to be solved at each node of the tree is a Generalized
Network problem. It is shown that this Generalized Network problem can
be reduced to a Generalized Transportation problem following some
properties of the PDM model. When the orderfile is dependent on species,
the subproblem decomposes into several linear multiple choice knapsack
problems whose solution can be given explicitly. If more than one
species of veneer can be mixed within a panel, the subproblem is a linear
program.

In chapter five, we show how the PDM model can be naturally cast
as a special case of a Disjunctive Programming problem. We analyse
the characteristics of this Disjunctive Programming problem and show how
the PDM problem can be viewed as a large scale Tinear programming
probiem.

In chapter six, we consider the problem of determining the optimum
number of veneer thicknesses for a plywood mill. Using computer codes
of the implicit enumeration algorithm and data from the plywood mill
we derive the maximum revenue associated with various number of veneer

thicknesses. Together with hypothetical data on setup costs we demonstrate



how the optimum number of veneer thicknesses can be determined.

1.2 Operations Research In The Plywood Industry

Extensive information on Operations Research (OR) techniques in
forestry and the forest products industry (plywood, Tumber, pulp and
paper mills and other processing industries using wood as the raw
material) are available from the bibliographies of Bare (1971), Martin
and Sendak (1973) and Field (1976, 1977). However, much of the work
reported in these sources refers to application of OR techniques in
forestry operations such as harvesting, logging, forest management
and other similar areas. A general appraisal of possible OR applications
in the forest products industry mentioning the areas where these can
be effectively used is given by Holmes (1976). Diaz (1974) has prepared
a 'bibliography' of OR in lumber production and 'other forestry
industries'. However, his bibliography suffers from the drawback that
it neither exclusively contains literature related to the forest
products industry nor is exhaustive of all OR applications in the
industry. In order to complement these sources with recent literature
and unreported use of OR in the industry, with particular reference
to plywood and sawmilling, a survey was undertaken in British Columbia
(Raghavendra (1979)). OR work related to the plywood industry as
found from published Titerature and 1ndustkia1 practices in British
Columbia are briefly described in this section. The description is
by the technique employed for solution such as Linear Programming,

Dynamic Programming and Simulation.



1.2.1 Linear Programming

As .is the case in many other industries, the most widely used
OR methodology in plywood industry is Linear Programming (LP). From
simple transportation problems to complex operational planning models
involving log allocation, production scheduling and distribution,
this technique is extensively used. Numerous introductory articles
describing how LP can be effectively used in different contexts of
the plywood industry can be found in the literature frefer Bare.(1971),
Diaz (1974), Martin and Sendak (1973) and Field (1976, 1977)].
Application of Linear Programming to plywood manufacture has been
considered by Bethel and Harrel (1957), Koenigsberg (1960), Donnelly
(1966), Ramsing (1965, 1968), Everett (1967) and Lee (1968). An
extensive account of an actual application of LP in plywood production
is described by Kotak (1976). The model, developed for the plywood and
hardboard division of Canadian Forest Proncts, New Westminster, BC and
in use since 1969, basically determines an optimum balance between
the available wood mix and orderfile requirements so as to maximize the
contributfon margin of the division. The model serves as a basis for
an annual operating plan giving details of production schedules, keeping
track of raw-material.inventory, orderfile requirements and targets
on a biweekly basis. The strategies are further revised on a day to
day basis with schedules for log peeling, veneer drying, press production
and shipping based on availability of raw materials and cumulative
performance up to the day. A financial variance analysis is prepared to
analyze the effect of variations due to price and mix of raw-materials

on the operating income. The net contribution margin of the division



is reported to have increased by an average of one million dollars
per year during the period 1969-1975 due to the use of this model.
Wellwood (1971) describes how the orderfile requirements of different
types of plywood can be Tinked to press, drying and lathe schedules using
LP. His article is similar to that of Kotak but gives greater detail
on scheduling material flow at different processing centres and has
the objective of minimizing the penalty associated with unused veneer
and downgrading of veneer. VYaptenco and Wylie (1970) consider a
hypothetical illustration in which a characteristic production scheduling
problem of a plywood mill involving lathes, dryers, edge gluers,
patchers and glue spreaders is brought down to linear programming
formulation through 'algebraic and difference equations'. Dobson
(1971) describes the use of LP for the allocation of logs to plywood,
sawmill and open market sales.
There are several other LP models that are actually in use in
mills but are not reported in the literature (Raghavendra (1979)).
Many of these models are meant for intermediary stages of manufacture
and their results may hot prove to be optimal when the overall prob]em
is considered. Nevertheless, these serve.thezpurpose of analysing
efficiency or productivity factors in a decentralized framework. One
such LP is used to give lathe schedules for peeling different species
and veneer thicknesses for. each one of the lathes with the objective
of minimizing peeling time. Another LP is meant for improving efficiency
in drying since the drying process is a bottleneck in plywood manufacture.
The drying time of veneer depends on the size and type of dryer, the
number of decks, species and thickness of veneer and the objective

of the LP is to minimize total drying time. A third LP model is



designed to give optimum pressing schedules on a weekly basis with
constraints on pressing time, glue-spreader press configurations,
orderfile requirements and setup time between batches. |

There are several other areas in the industry where LP models
have been used or recommended for use. Sitter (1969) describes in
general how LP can be efféctive]y used in an integrated woodworking company'
consisting of pulpmill, sawmill, and veneer mills. Klamecki (1978)
utilises LP to determine the least cost energy mix for a forest products
complex considering alternative sources from mill residues, oil, natural
gas and solar energy. Holecek (1975) and McKillop (1974) describe the
use of LP as a systems model for an integrated forest products firm

in California.

1.2.2. Simulation

Simulation studies in the plywood industry have been made in
the area of veneer peeling and drying only. Resch and Scheurman
(1977) simulated the softwood veneer drying operation so as to determine
the optimum flow of veneer through two jet dryers. Simulated computer
runs demonstrated the effect of veneer thickness, drying temperature.
and pre-sorting of veneer on drying time and costs. Tobin and Bethel
(1969) describe an analytical procedure to evaluate the quality and
quantity of veneers recoverable in the rotary cutting process using

simulation.
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1.2.3 Dynamic Programming

Bailey (1970, 1972, 1973) uses Dynamic Programming for Tog

allocation decisions by analysing hypothetical problems related to

log supply from several areas with non-linear costs. Pnevmaticos .

and Mann (1972) and Briggs (1978) demonstrate that Dynamic Programming
can be used for bucking of tree-length or long logs into small logs.
When the values of small logs are known, the cutting process is viewed
as a sequential decision process in which the optimal values from
bucking at several ‘stages' of the log lTength are determined through

Dynamic Programming recursion.

1.2.4 Non-Linear Programming

Klamecki (1978) has used Non-Linear Programming to determine the
optimum lathe settings for producing the best quality of veneer. Three
basic variables, namely, knife rake angle, roller bar compression and
knife roller lead in the veneer peeling process are restricted by
physical considerations as linear constraints. The objective function
is based on the formation and severity of lathe checks.in the veneer
and is expressed as a non-linear function of the three decision variables.
For various process parameters such as stress, shear and strength
in the cutting process, the optimum lathe settings are derived using

a Non-Linear Programming model.
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1.2.5 Other OR Technigues

Tyre and Screpetis (1978) propose an inventory system based on
weight scaling of roundwood logs and describe a method for control of
veneer, sawntimber and pulpwood volumes. Traditional inventory control
techniques such as EOQ are reported to be used (Raghavendra (1979))
in the area of log boom control, in-process veneer or lumber inventory
and finished products inventory. Ramalingam (1976) is reported (in
Briggs (1978)) to have used a Branch and Bound approach to the tree
bucking problem. Successive reductions of the tree stems or long logs
at the merchandiser is postulated to follow a finite-horizon discrete
state Markov Process by Luken (1978) (as reported in Luken et al.
(1980)). Economic impact of forest based industries is analysed using
Leontief input-output models by Reimer (1969) and Raizada and Nautiyal
(1974).

1.3 Wood Losses In Plywood Manufacture

The.foregoing analysis of Titerature sources and actual practice
of OR in the plywood industry indicate the wide variety of problems
 that can be tackled through some facet of the OR methodology. Examined
closely, the success of many OR techniques Tay in their ability to give
efficient operational strategies which, either directly or indirectly,
reduces wood Toss in the conversion of trees to logs, veneer and plywood.
Even when the objective of an OR model is the maximization of value, it
implicitly results in efficient utilisation of the principal raw-

material namely, wood. This Teads us to the basic questions: why



wood losses occur in the conversion of logs to veneer and plywood
and how can it be prevented or reduced.

Extensive information on the areas of wood loss in plywood
manufacture, factors responsible for .them and the extent of these
losses are available in the 1iterature.[Dobie and Hancock (1972),
Woodfin (1973), Nagaraju, Raghavendra and Venkataraman (1974), Meriluoto
(1965), Heiskanen (1966), Brackley (1968), Baldwin (1975) and Wood
(1962)]1. Many of the factors of wood loss in plywood are interactive.
However, they can be broadly classified into three categories:

i) Biological Factors: Due to the inherent nature and

variability of the raw material. Losses due to rounding of logs,
defects in wood, shrinkage in drying and compression in pressing
can be classified to fall into this category;

jj) Technological Factors: Due to processing lTimitations or

non-availability of better technology. Core losses which occur
due to the Timitation of the spindle in veneer lathe, rounding
losses due to centering errors, loss due to spur trim and handling
losses are some of the technological factors responsible for wood
losses in plywood manufacture and |

jii) Decision-Making/Design Factors: Due to manufacturing designs

or decision-making practices within a given technological setup.
At least part of the bucking losses in the log yard, trimming
Tosses caused by oversize allowance for veneer and loss in the
form of excess thickness in plywood are some of the decision-

making factors responsible for wood loss.

Investigation of the biological or technological factors of wood

12
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losses in plywood manufacture .is beyond the scope of this dissertation.
Among the decision-making or design factors responsible for wood losses,
evaluation of some of these factors with an economic objective has
received some attention in recent years. The problem of log bucking
for maximising value, though not specifically in the context of plywood
manufacture, has been studied by Conway (1978), Pnevamaticos and Mann
(1972), Briggs (1978), Ramalingam (1976), Lefebvre (1978) and Western
Forest Products Laboratory (1978). Evaluation of the trim allowance
in veneer for plywood has been studied to some extent by Hawkins and
Clarke (1970) and Raghavendra and Nagaraju (1975). The concept of
evaluating veneer peel thicknesses and plywood designs for economic
optimality is, to our knowledge, not considered in the literature.

A contribution of this thesis is the development of a quantitative
technique to derive the optimum veneer thicknesses, plywood designs
and product mix. The characteristics of this problem are described

in the next chapter.



14
CHAPTER 2

2.1 The Veneer Thickness Problem

Most plywood mills manufacture a variety of plywood types, each
varying, apart from species and surface quality characteristics, in
the number, thickness and order of veneers or plies and the total
thickness of plywood. In any one mill logs are peeled to one of three,
four or five basic veneer thicknesses and all the plywood types are
assembled as some integral multiple combination of these veneers. The
veneers as well as the plywood assembled from them should meet some
specifications with regard to thickness, strength, stiffness, surface
quality and other factors. Most of the plywood so produced should
also conform to the "Balanced Design", a requirement which regulates
the order in which veneers of different species and thicknesses can
be assembled into plywood.

The use of ‘a Targe number of veneer peel thicknesses tends to
increase the cost of plywood because of the added costs of peeling,
drying, storage, handling, lay-up and record-keeping involved (Colebeck
and Northcott (1958)). Alternatively, inability to manufacture certain
types within plywood thickness specification, the possibility of
most plywood types ending up in higher than required thickness and
requirement. of specific customer orders dictate the use of two or more
peel thicknesses. For example, the two plywood types 5 ply 20.5 mm
having 5 veneers adding up to 20.5 mm thickness and 7 ply 20.5 mm having
7 veneers adding up to the same thickness cannot both be assembled

using a single veneer thickness within a tolerance of 0.5 mm.
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Similarly, a 7 ply 20.5 mm plywood and a 7 ply 23.5 mm plywood cannot
both be assembled to within # 0.5 mm using a single veneer thickness.

The economics of plywood manufacture depend not only on the costs
of labor, raw material, equipment and services but also on the designs
used in the assembly of plywood. Traditional Tinear programming models
which have been hitherto used and are being extensively used fDobson
(1971), Kotak (1976), Lee (1968) and Ramsing (1965, 1968)] mainly
centre around optimal product mix of log grades, species and veneer
lay-up alternatives. However, one basic information which goes into
these LP models as input is the existing set of veneer peel thicknesses,
associated yield factors and design or construction alternatives. There
is no evidence in published literature to claim that the veneer thicknesses
and the associated designs so used are truly the best for any particular
mill. Most of the plywood designs currently used appear to have been
developed "partly from theoretical considerations, partly from tradition
and partly from manufacturing requirements" (Colebeck and Northcott (1958)).

The foregoing analysis naturally raises the following two questions:
(1) what is the optimum number of veneer thicknesses for a mill, and
(2) given the number of veneer thicknesses, what should be these
thicknesses and what plywood designs or construction alternatives are
the best for a mill. The answer to the first question depends on how
best the "best" veneer thicknesses are for each number in the second
problem and how responsive the changes in costs are to the addition
of each veneer thickness. Both these, in turn, are dependent on the
distribution of the mill's orderfile requirements, log availability

and other resource restrictions.
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It is demonstrated in this chapter that the problem of finding
the optimum veneer thicknesses can be formulated as an optimization
model which is a mixed 0-1 non-linear programming problem. Some of
the terminology related to plywood designs and the manufacturing process
are described in section 2.2. The veneer thickness, plywood design
and. product mix prbb]em is described in terms of this terminology"
in section 2.3. The model formulation with details of the decision
variables, the constraints and the objective function are presented
in section 2.4. In section 2.5 a discussion of the characteristics

of the optimization model, its variations and extensions are presented.

2.2 Some Terminology Related to Plywood Design and Manufacture

Before presenting the mathematical formulation of the plywood
design problem some of the terminology associated with the manufacture
of plywood are considered. . Generally, most plywood sheets consist
of an odd number of layers or plies of veneer bonded together by an
adhesive in such a way that the grain direction of adjacent plies is
at right angles to each other. In recent years, however, plywood assembled
from an even number of plies 1is also being made (Parasin (1976), COFI
(1978)).

In a plywood sheet with odd number of plies, counting from the
top or bottdm veneer,

a) The first and the last veneers are called face veneers,

b) A1l even numbered veneers with grain direction perpendicular

to that of the face are called core veneers or cross-band

and
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c) A1l other odd numbefed veneers, if any, with grain direction
parallel to that of the face are called centre veneers.
The number of veneers for face, core and centre in plywood sheets having
odd number of plies and their respective positions would therefore be as
listed in Table 1. 1In an even-ply plywood, the face, core and centre
veneers are similarly defined relative to their position and alignment

of grain direction.

# of plies # of veneers:for
in plywood Face Core Centre
3 2(1,3) 1(2) -
5 2(1,5) 2(2,4) 1(3)
7 2(1,7) 3(2,4,6) 2(3,5)
9 2(1,9) . 4(2,4,6,8) 3(3,5,7)

Table 1: Number of Veneers for Face, Core and Centre

A specification which describes the number, thickness, species of
veneer and the order in which they are assembled into a plywood sheet

is called the design or construction of plywood. Since the number of

veneers for face, core and centre plies can be determined once the number
of plies in plywood is known (Table 1), a design can be specified by
describing the thickness and species for each one of face, core and
centre veneers.

The balanced design/construction requires that within a plywood

panel, the species, thickness and direction of grain of veneers should

be symmetrical about the central ply(ies). This is stipulated from
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considerations related to the strength properties and warping of the
panel. Together with general mill practices, a balanced design implies
that within a plywood panel

a) all face veneers shod1d be of the same thickness and species,

b) all core veneers should be of the same thickness and species,

c) all centre veneers should be of the same thickness and species
and

d) the species and/or thickness in any one group a), b) or c)

above might be the same as those of the other(s).

An unbalanced design or modified construction refers to plywood

panels which vary from the requirements for a balanced design in that
the grain direction, species and/or thickness of inner plies may be
unbalanced about the central ply(ies).

Briefly, the process of plywood manufacture involves the conversion
of logs to veneer, drying the veneer to remove excessive moisture and
gluing, assembling and pressing the veneers to form a plywood panel.

The thickness of veneer before the drying process is called the green

thickness while that after drying is called the dry thickness. Plywood

thicknesses generally refer to the thickness of the finished panel ready
for market, after accounting for sanding losses, if necessary. Throughout
our analysis veneer thicknesses refer to the green thickness and plywood
thicknesses refer to the thickness of unsanded panels.

Finally, since most mills manufacture a variety of plywood, a
plywood type is normally designated by the number of plies it contains
and the thickness of plywood. Thus,a 7 ply 20.5 mm plywood implies

that this plywood has seven veneers in it and that its thickness is
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20.5 millimetres.
Using the notations and terminology introduced above, we can now

describe the plywood design and manufacturing problem.

2.3 Description of the Plywood Design and Manufacturing Problem

Consider an example of four veneer peel thicknesses and a sample
of plywood types and associated designs as presented in Table 2. These

are taken from the actual practices of a plywood mill in British Columbia

Pl1ywood |PTies - Design Veneers for P1ywood Excess(+)
Type |Thickness(mm) [Alternative [Face Core Centre |Thickness(mm) or
1 inches Green Dry Shortage(-)
1 3 ply 7.5 (i) 1/10 1/10 - 8.07 7.60 +1.33%
2 | 3 ply 9.5 (1) 1/10 3/16 - 110.36 9.74 +2.53%
(i) 1/8 1/8 - [10.06 9.46 =0.42%
3 5 ply 12.5 (i) 1/10 1710 1710 [13.46 12.65} +1.20%
4 5 ply 15.5 (i) 1/10 1/8 3/16 [17.06 -16.04| +3.48%
(i) /10 1/7 177 17.27 16.24| +4.77%
(iii) 1/8 1/8 1/8 16.76 15.76| +1.68%
(iv) /8 1/7 1710 [{17.32 16.28 +5.03%
5 7 ply 18.5 (i) 1/10 1/10 1/8 20.16 18.96 | +2.49%
(i) 1/10 1/8 1/10 20.83 19.58 | +5.84%
(iii) 1/8  1/10 1/10 [20.16 18.96 | +2.49%

Table 2: Plywood Designs with Four Veneer Thicknesses; Veneer Thickness
in mm (inches) are: 2.69 (1/10), 3.35 (1/8), 3.96 (1/7) and 4.98
(3/16).
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whose design anc manufacturing problem ‘will be fully considered in
chapter 3. The veneer thicknesses used were 2.69, 3.35, 3.96 and 4.98 mm
corresponding approximately to 1/10, 1/8, 1/7 and 3/16 of an inch
respectively. For some plywood types there is more than one design
alternative, which is described in the form of veneers for face, core
and centre plies. The 'green' thickness of plywood represents the sum
total of the thickness of veneer in them while the 'dry' thickness
refers to the actual final thickness of plywood after accounting for
losses due to shrinkage in drying, compression in pressing and glue-
line additions. The last column, excess or shortage, represents the
percentage deviation from the intended thickness of the plywood type
induced by the choice of design. Within permissible tolerances,
shortages preceeded by a negative sign indicate savings in wood while
excesses preceeded by a positive sign indicate loss of wood. The actual
extent of wood loss or gain can be computed by multiplying the absolute
deviations with the respective quantities of plywood produced.

We emphasise that the volume of wood loss or gain depends not
only on the veneer thickness and plywood design but also on how
efficiently the designs are used to meet the orderfile under constraints
of Tog availability, machine capacities and other mill restrictions.
This leads to two aspects of the problem, namely, (1) the veneer
thickness and design problem and (2) the product mix and manufacturing
problem.

In the veneer thickness and design problem, the 1ist of plywood
types, their specifications and the number of veneer peel thicknesses

are known. The objective is:
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(i) To determine the thickness and

(i1) To specify how these veneers should be assembled so as to
produce all types of plywood within specification.
On the other hand, in the product mix and manufacturing problem the
veneer thicknesses, the plywood designs, the availability of logs, the
demand for end. products and other mill restrictions are known. The
objective is:
(i) To find the optimum qdantity of veneers of each species and
thickness to be produced and
(ii) To find the optimum quantity of plywood to be assembled
under each design alternative.

The two aspects of the problem are interrelated as veneer thickness
and plywood designs are input to the product mix part of the problem.
The objective for both problems combined - would be (i) to minimize
implicit wood loss in the form of excess thickness in plywood which, as
a result, would minimize total Tog consumption, or (ii) to maximize net
revenue. When more than one species with varying log costs are used,
the two objective functions need not necessarily give the same results.
This can happen, for example, when an expensive species has a lower
yield compared to an inexpensive species. Recognizing that the ultimate
trade-off can be measured in terms of value, we use maximizing of
net revenue as the objective.

The product mix part of the problem can be solved using 1inear
programming (Kotak (1976), Dobson (1971), Lee (1968) and Ramsing (1965,
1968)) which is now an accepted mill practice. However, the veneer
thickness and plywood design problem as presented above has not been

considered to date. Whatever lTittle research has been undertaken in
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this regard relates to strength or structural properties of known
thicknesses and designs (Colebeck and Northcott (1958), Norris, Werren
and McKinnon (1961) and Biblis, Hsu and Chiu (1972)).

In this thesis, we consider simultaneously both aspects of this
problem, referred to as the Plywood Design and Manufacturing (PDM)
problem. In the PDM problem we seek the veneer thicknesses, associated
plywood designs and quantities of veneers and plywoods to be produced

which will maximize the net revenue for a mill.

2.4 Formulating the Model

To simplify the presentation, we do not consider explicitly
factors such as species, log grades, surface quality of veneers,
plywood grades and machine capacities in the formulation of the PDM.
model in this chapter. These factors can be easily incorporated in
the model as demonstrated by the existing plywood L.P. models (Lee
(1968), Ramsing (1965, 1968), Kotak (1976)). Further, though we
consider in our formulation plywood designs with an odd number of
veneers having balanced designs, our model can be extended to even-ply
construction and/or unbalanced designs. We discuss the implications
of some of these in section 2.5. Constraint coefficients are illustrated
for plywood types having up to nine plies and three veneer thicknesses
but can be extended to any number of plies and any number of veneer
thicknesses. Sizes of veneer and plywood sheets are éxpressed in

equivalents of the standard size of plywood (8' x 4' or 2.44 m .x 1.22 m).
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Decision Variables

Let K be the number of veneer thicknesses in general and N be
the number of plywood types. Define the decision variables as follows:

X = kth veneer thickness (in mm); X1 is conventionally treated
as the thickness of the face veneers,

Lk = Quantity of logs peeled into veneer thickness Xk (in cubic
metres),

vk = Quantity of veneer sheets produced of thickness Xk (in
number of sheets of size equivalent to 2.44 m x 1.22m size
of plywood),

Pij= Quantity of plywood of type i produced using construction
alternative j (in number of sheets of standard size 2.44 m
x1.22m or equivalent),

§..= An indicator (0-1) variable for plywood type i made using
construction alternative j

k = 1,2...K; j = 1,2...ni and i = 1,2...N.

Generally, the number of veneer thicknesses, K, used in most mills is
three or four and seldom more than four peel thicknesses are used. The

number of design alternatives, nis depends on the number of plies

in plywood.

The Constraints

In this section we will describe the various constraints arising

in the PDM probiem.



a) Veneer Thickness Tolerance and_Constraints

Tolerances for veneer thickness are normally Taid down in company
standards or specifications related to the product. Council of Forest
Industries of British Columbia (COFI (1978)) standards for exterior
plywoods, for example, specify  tolerances for face veneers separately
from those for core or centre veneers. To establish tolerances for
veneer thicknesses, we should first consider the capabilities of the
veneer pee]ing lathe of a mill. Most peeling Tathes can produce only
a discretely finite set of veneer thicknesses. However, some peeling
Tathes might be capable of producing veneer thicknesses in a continuous
range of values. But, wveneer thicknesses beyond a certain degree of
accuracy may not be possible from practica1 considerations. Thus, we
Tet the veneer thickness take only discrete values, if necessary,
by transforming the range of peel thicknesses into a discrete set in
steps of, say,]/]Oth of a millimetre.

Let T =‘{T1, Tys... Ty} be the set containing all possible veneer
thicknesses the peeling lathe(s) of a mill can produce. Of this, let
Tf and TC be the subset representing all thicknesses within tolerances

specified for face and core/centre veneers respectively. Then

where m(k) is the number of elements in T, if k = 1 and that in TC

f

otherwise. Since X, can take on only one value in Tk’ it can |

be expressed as follows:

2.1)

24
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! 7 M (2.1A)
by n — (2.
m=]  Km Kk
=1 — (2.1B)
. . m
1 if X = Tk |
= — (2.1¢)
0 otherwise

Clearly, in all the constraints of the PDM model in which X, appears it

can be replaced by the right hand side of (2.1A) and in that case the

other two constraints (2.1B) and (2.1C) are to be included explicitly.

However, for simplicity in presentation, we retain X, as a variable that

can assume one value from the set Tk as expressed by (2.1).

b)

These are perhaps the most complicated constraints in the PDM

problem due to the following reasons:

i)

ii)

111)

iv)

A11 the N plywood types'are to be assembled using some
permissible combination of one or more of the xk's, with the
number of plies adding to 3, 5, 7 or 9 (or higher, if the
case dictates);

There should be at least one construction alternative
satisfying the balancing requirement and thickness tolerance

for each plywood type; s

.There might be more than one plywood type having the same

number of veneers in it but differing in thickness, and
There might be more than one plywood type having the same

thickness but differing in the number of plies.



Al11 of these problems were overcome in our formulation by a careful
evaluation of the balanced construction requirement. Since all the
plywood types will have face veneers, the convention that X] is the face
veneer Teads to the fact that all construction alternatives will have

at Teast two veneers of Xq- Analysis of the balancing requirement with
the number of veneers required for face, core and centre veneers indicate
that there are only a few permissible combinations of veneers in which

a plywood of a given number of plies can be assembled. If K=3,

a 3 ply plywood can be assembled in one of 3 alternate ways

and there are 9 possible ways for each one of higher ply construction
having odd number of plies (5, 7, 9 or higher odd). These permissible
construction alternatives specifying the veneers for face, core and centre,
using some or all of the three veneer thicknesses are lTisted in Tables

3, 4, 5 and 6 for plywood made of 3, 5, 7 and 9 plies respectively.
Similar permissible construction alternatives can be listed for any
number of veneer thicknesses and/or plywood made with any number of
plies. Using Tables 3-6, the balanced construction and plywood thickness

tolerance can be specified by the following set of constraints:

K
L _ <p Y _ L
bi - M(]-sij) kil aijkxk \‘bi + M(1 Gij) (2.2)
n;
v 8., =1 — (2.3)
=1
1 If plywood type i is assembled using
construction alternative j — (2.4)
iy

0 Otherwise

for all j = 1,2,...ni and i=1, 2, ... N,

26
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where,
aijk = Number of veneers of thickness Xk used in construction
g alternative j for plywood type i; The aijk are taken
from Tables 3 - 6,
biL(biU) = Lower {Upper) tolerance for thickness of plywood type 1,
M = A large positive number,
ny = Number of permissible construction alternatives for the
1th type of plywood.
Construction Veneers for

(a..,): Number of Veneers of
X ijk

Alternative (j) 1 X, X5 Face Core Centre
1 3 0 0 X1 X1 -
2 2 1 0 X Xo -
3 2 0 1 X1 X4 -
Table 3: Permissible Construction Alternatives for Three Ply P1ywood




28

Construction (a...): Number of Veneers of Veneers for
Alternative (j) }%k X X4 Face Core Centre
1 5 0 0 X X1 Xy
2 4 1 0 X1 X1 X5
3 4 0 1 X1 X1 X4
4 .3 2 0 X4 X5 X4
5 3 0 2 X1 X3 X1
6 2 3 0 Xy Xo Xy
7 2 0 3 X1 X3 X2
8 2 2 1 X Xo X3
9 2 1 2 Xy X3 ' Xo
Table 4: Permissible Construction Alternatives for Five Ply Plywood.
Construction (a..,): Number of Veneers of Veneers for
Alternative(J) %k X, X4 Face Core Centre
1 7 0 0 X1 Xy X1
2 5 2 0 X, X4 Xo
3 5 0 2 Xy X X4
4 4 3 0 X4 Xy X4
5 & 0 3 X X3 Xy
6 2 5 0 X X, Xo
7 2 0 5 Xy X4 Xq
8 2 3 2 Xy Xo Xq
9 2 2 3 X1 X4 X

Table 5: Permissible Construction Alternatives for Seven Ply Plywood
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Construcﬁibn _ (a..k): Number of Veneers of Veneers for

Alternative (j) l% X, Xy | Face Core Centre
1 9 0 0 X1 X X1
2 6 3 0 X x] x2
3 6 0 3 X X X3
4 5 4 0 X1 Xo X1
5 5 0 4 X X3 X
6 2 7 0 X4 X9 Xo
7 2 0 7 Xy X3 X3
8 2 4 3 Xy X, X3
9 2 3 4 Xy X3 Xo

Table 6: Permissible Construction Alternatives for Nine Ply Plywood

K
Observe that in constraint (2.2), kE] aijkxk represents the total

thickness of veneér which is treated as the thickness of plywood. 1In
actual practice, this would not be the same as shrinkage in drying,
compression in pressing and spreading of glue between veneer layers
affect the final thickness of plywood. Appropriate correction factors
can be used in the actual application of the model.

From Tables 3 - 6 it can be observed that when there are three
veneer thicknesseg, n, = 3 for three ply plywood and n, = 9 for 5, 7

or 9 ply plywood. In general, since Xy is treated as face veneer by

convention, the number of possible combinations in which K veneer thicknesses

can be used for core and centre veneers would be K x K = K2. As three

ply plywood won't have centre plies in it, the corresponding number of
combinations for them would only be K. Thus, in general, ns = K for

3 ply plywood and ng = K2 for any higher ply (odd) plywood. It should

be noted again here that most plywood mills use 3, 4 or at most 5 veneer




thicknesses and we need not therefore be concerned about large number

of construction alternatives associated with higher values of K.

c) Constraint Linking Log Consumption_to_Veneer Production

To relate the quantity of veneer produced to the consumption of
logs, the following assumption is made (we discuss the implications
of this assumption in section 2.5). The volume of veneer obtdinable
from a log remains the same irrespective of the thickness of veneer into
which it is converted. This is equivalent to saying that the number
of veneer sheets of a fixed size obtainable from a log is invérﬁely

proportional to the veneer thickness into which it is peeled. With

this assumption, these variables satisfy the equation XV = Lk’ or
YX Vg - Lk =0 for all k — (2.5)

where y is a correction factor for yield of veneer from logs and for
units and dimensions of the three variables X Vi and Lk. For example,
if X is in millimetres, v, is the number of veneers of size 2.6 m x

1.4 m, Lk is in cubic metres and the yield of veneers is 60% of log

volume, then y is given by
y = {0.001 x 2.6 x 1.4)/0.6 = 0.006067

d)  Log Availability Constraint
These are typical constraints of resource availability. The
quantity of logs peeled into différent veneer thicknesses should be

Tess than or equal to the quantity of logs available. This is given by
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K
z Lk<w — (2.6)
k=1
where W is the quantity of logs available. Using (2.5) as a definition

for L, (2.6) can be replaced by

e) Feasibility of Plywood Construction Alternative

-A plywood construction alternative can be used for production of
plywood only if that alternative is feasible for plywood assembly
and thickness tolerance. This is equivalent to saying that if Gij =0
for any particular (i,j), then the corresponding Pij must be zero.
With non-negativity constraints on Pij this can be expressed by
Pij < Msi'j, or,

P.. - M

< .. .
i3 Gij 0 for all i, j (2.8)

where M is a large positive number as in (2.2).

f)  Constraints_Linking Veneer_Consumption_to_Plywood Production
The quantity of veneers of each thickness used by various construction
alternatives for different types of plywood should be within the total

quantity of veneers produced of that thickness. This is expressed by

i <
the constraint ? ? aijkpij Vk’ or
N ni
- < -
D) ‘aijkpij Vi 0 for all k (2.9)

i=1 j=1
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The slack in this constraint represents the excess quantity of veneer

produced, but not used, in any of the construction alternatives.

g)  Demand/Orderfile Constraints
The quantity of each type of plywood produced should meet the demand
or orderfile requirements. These are specified by typical constraints

of the form

1 P >d, for all i ' — (2.10)
1

it ™M =

J

where di is the demand for product 1i.
Finally, all the decision variables used in the formulation are

required to be non-negative, i.e.,
> —
Vieo Lk, Pij 0 ‘ (2.11)

for all k =1,2...Ki J = 1,2...n1 and i = 1,2...N.

The Objective Function

The objective is to maximize net revenue for the mill. If we
assume that revenues and costs are linear functions, the objective

function can be expressed as

Max ) sV r.P..-C

N n, K
L
i=1 j=1 'V k=

where
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r.
1

C

Revenue per plywood sheet of type i

Cost of log per unit
Again, utilising (2.5) as a definition for Ly this can be written as
N n, K-

Max % ' p.P..-Cy =

LAY vk X Vi — (2.12)

The Qverall Formulation of the PDM Problem

Using the notation, decision variables and constraints introduced

above, the PDM problem can be written as:

N ni K
Max z % riP..-Cy = x.V
=1 j=1 TR T e kK
Subject to
_ 1 2 m(k)
X €T, = AT, T, 5 T
L K U
- - <b. -
b, M(1 613) kE]aijkxk by~ + M(1 613)
i3 = {0, 1}
n.
£l s, > 1
=1
K
y o ox,v,SHW
k=1 KK
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The above isa:formulation of the PDM problem as a mathematical.programming
problem in which the objective function and some of the constraints
are non-linear and, in addition, some of the decision variables are
restricted to 0-1 values. The size of the problem depends on factors
such as the number of veneer thicknesses, the number of plywood types

and the number of plies in each of them.

2.5 Discussion and Extensions

In the formulation of the PDM model in areas related to the product
mix part, we have deviated from the traditional L.P. models (Kotak
(1976), Ramsing (1965), Lee (1968)). In particular, the quantity
of veneer and plywood are defined in terms of the number of sheets
rather than volume,and yield factors are used as direct percentages
rather than inverse multipliers or recovery ratios. This offers
several advantages in the design problem since the construction alternatives
can be specified in terms of number of veneers, the feasible designs

can be identified through Gij and veneer consumption can be directly
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Tinked to production of plywood through Gij and aijk:

The model assumes that the volume of veneer from a log remains the
same irrespective of the thickness of veneer .into which it is peeled.
This assumption is made in the absence of relevant information and is
valid theoretically, since, the volume of wood peeled from a log remains
the same. However, in practice, thicker veneers may result in lower
volumetric yield due to factors such as splits or lathe checks in veneer.
In such cases, if information is available on the relation between veneer
thickness and yield, it can be included in the model in the form of
Yo @ factor dependent on k, replacing y in constraint (2.5). The
rest of the model formulation or solution procedure will not be
affected by this change. The plywood thickness tolerance b1.L and
biU in constraint (2.2) refer to design tolerances and not the thickness
tolerance of an individual plywood sheet at a random point. If only
individual panel tolerances are available they can be adjusted in design
for chance variations through statistical concepts such as 3 - sigma
1imits. The orderfile requirements specified in constraint (2.10) can
be of the 'less than or equal to' form or, may combine both type of
inequalities.

In the formulation of the PDM model we considered only those
plywood types with odd number of plies having balanced designs as they
constitute the majority of the panels currently manufactured. The model
can be easily extended to even ply and/or unbalanced designs of plywood.
For even-ply plywood with balanced designs, design coefficients similar
to the aijk of tables 3 - 6 can be constructed for any number of plies.
For example, with K = 3, for a fdur-p]y plywood, there would be three
design alternatives represented by the vectors (4, 0, 0), (2, 2, 0) and

(2, 0, 2) for (aijl’ aij2’ aij3)f If plywood can be made with unbalanced
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designs, the number of design alternatives n; will increase considerably,
especially for those plywood types having large number of plies. However,
if there are restrictions on the face veneers to be of the same thickness,
the increase in the number of design alternatives will not be substantial
and they can be handled within the framework of our PDM model.

We have treated ¥y as the face veneer by convention since there are
more restrictions on the thickness and surface quality characteristics
of face veneer than any other veneer in a plywood sheet. Additionally,
in the manufacturing process, face veneers must be peeled to the full
length of plywood sheets while core veneers which go across the face
can be peeled in lengths relative to the width of plywood. Having
more than one face veneer thickness would therefore resuit in more
scheéduling, handling, sorting and surface preparation costs. However,
having a second face veneer thickness might result in better designs
for some plywood types. Such a situation, i.e. having more than one
face veneer thickness, can also be included within the framework of
our PDM model. We illustrate this briefly through our plywood mitl
example in chapter six.

Existing algorithms for large scale problems can solve either
integer linear programs or non-linear programs in continuous variables.
The unique features of the PDM model is that it contains both discrete
and continuous variables as well as non-linearities in the constraints
and objective function. Relaxing the integer variables of the PDM
problem to continuous values will produce a non-linear non-convex
optimization problem in which a local optimum is not necessarily a
global one. Thus, to our knowledge, no algorithm or solution procedure

that can produce a global solution to the PDM model is available.
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One of the important contributions of this thesis is the development
of an efficient algorithm for solving the PDM problem. By
utilising the constraint structure in the model and by selecting
appropriate variables to branch on, we develop an efficient implicit
enumeration algorithm to derive a global solution to the PDM prob]em.
This algorithm is described in the next chapter.

When factors such as species, log grades, veneer types and plywood
grades are included, the size of the problem increases manyfold. In
each situation, however, the essence of the problem formulation remains
the same since the design aspect of the problem (constraints (2.1)
through (2.4)) is unaffected. Only the product mix part of the probiem
changes. A set of optimal veneer thicknesses and optimal plywood
designs for a PDM problem with one species need not remain the optimal
solution when more than one species are included in the PDM model. We
consider some of these extensions to the PDM problem, analyse the

corresponding structures and solution procedures in chapter four.
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CHAPTER 3

3.1 Solution to the PDM Model

From chapter 2 we recall that the plywood design and manufacturing
(PDM) problem can be formulated as the following non-linear mixed

0-1 programming problem.

N n. K
L, =Max % f r.P,.-Cy I x.V
0 j=1 g=1 T k=1 KK
s.t.
L K U
by~ - M(1—61J) ki]aaijk K \‘bi + M(1-61J)
n
£V s, =1
=1
K
y I x,v, SHW
k=1 KK
- M5 <
Pij Maij 0
N ni
b z .. P.. 0
g1 go1 13K T T
n.
' op..>d
jo1 13 i
§..€ {0,1}
1 2 m(k)
[ =
Xy Tk {Tk . Tk s ees Tk }
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for all k = 1,2,...K; J = 1,2,...n1 and i = 1,2,...N.

Tk is the set of veneer thicknesses for Xy s k =1,2,...K. Further,
recall that by convention X3 is the face veneer thickness and in most
mills K, the number of veneer thicknesses is generally three or four.

We develop an implicit enumeration algorithm for solving the PDM
problem. The efficiency of our implicit enumeration algorithm stems
from the fact that for a given set of veneer thicknesses the PDM
problem reduces to a special structure Linear Multiple Choice Knapsack
(LMCK) problem [ Zemel (1980), Glover and Klingman (1979)]. Moreover,
each one of these LMCK problems can be solved explicitly. Further,
we show that due to the special structure of the PDM problem, we
can reduce substantially, from the outset, the number of veneer thicknesses
that need to be considered in the implicit enumeration algorithm.

Qur implicit enumeration algorithm was coded in FORTRAN and was
used to solve some real world problems. Data obtained from a plywood
mill in British Columbia was used to evaluate the PDM model and the
algorithm.For the particular configuration of the problem parameters
used in the study our model gave a set of veneer thicknesses and
plywood designs which can increase the annual net revenue by more
than 6.8 per cent.

The plan of this chapter is as follows. In section 3.2 we describe
our implicit enumeration algorithm and anaiyze the LMCK problems. In
section 3.3 we show how we can use the structure of the PDM problem
to accelerate the performance of the implicit enumeration algorithm,

while in section 3.4 we present our computational results.



40
Though much of the contents of this chapter is mathematical,
the implications of the end result are straightforward. What is
shown here is that a seemingly complicated non-Tinear mixed 0-1
mathematical programming problem can be solved efficiently for a
global solution by exploiting the structures in the model. In fact,
the main job of the computer code written for our algorithm to solve
the PDM problem is more of a house-keeping nature than one in which

complicated optimization routines are involved.

© 3.2 An Implicit Enumeration Algorithm to Solve the PDM Problem

Our implicit enumeration algorithm can be, in a very rudimentary
manner, described as follows:
Algorithm A: (Rudimentary algorithm for solving the PDM problem)
: .

*
Step 1: Let Xp = Xp oo Xy € Tt’ t=1,2, ..., K-1 denote a previously

unselected set of values for the thicknesses Xy Xos ono in the

s Xy
PDM problem. If none exists, terminate. Otherwise, denote by PDM
(x] + ... xg_y ) the PDM problem in which x, = xy , t = 1, ..., k-1,
and go to step 2.
Step 2: Attempt to fathom PDM (x;., cees XE_] ). If successful,
go to step 1. Otherwise,
Step 3: Solve PDM (xT‘,..., x;_l.). Store the optimal solution if
better than the incumbent, and go to step 1.

Clearly, algorithm A will terminate after a finite number of
iterations with an optimal solution to the PDM problem. In the

discussion which follows we show how to execute efficiently step 3

of algorithm A. In section 3.3.we develop tests which assist in



fathoming the PDM (x

T s eees xz_]') problem in step 2 of . algorithm

A. Further, we show in that section how we can eliminate, from the
*

t Xt
with an optimal solution of our PDM problem.

outset, values of x t=1,2, ..., K-1 which are not consistent

3.2.1T The Linear Multiple Choice Knapsack Problem

We will consider now the PDM problem in which all thicknesses have
* *

been determined, i.e. Xe = X o xk € Tk for k =1, 2, ... K. For

all 3 =1,2, ..., n, and i =1, 2, ..., N, let

L_ X x_ U
G:j _ 1 if b1 k§1 aijkxk <;bi — a)
0 Otherwise

Note that if _g: 6?j= 0 for any i, then plywood type i cannot be
assembled wit%—the set of thicknesses x; ,k=1,2, ..., K, and
therefore the remaining PDM problem is infeasible. If, on the other
nand, 31 %, =1 for all i =1, 2, ... N, Tet

j=1 1 _ :

I, ='{j[$;j =1} . — (3.2)
Ii represents the index set of feasible design alternatives for
plywood type i with X = x: , k=1,2, ..., K. Now, the constraints
Pij - Maij <0 and Pij >0 ¥'i,j in the PDM problem can equivalently
be replaced by

Pij >0 ¥ je Ii; i=1,2,.,N — (3.3)

a1
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Thus, when the thicknesses X are assigned the values x;”,

k=1,2, ..., K, the PDM problem reduces to

N K &
Max Z L p,P,.-Cy Ix v — (3.4)
i1 jer, ' 1 k=1 K K
s.t.
K &
< -
y kilxk Vi W (3.5)
N
bX P.. -V <0 — (3.6)
i=1 j € Ii ijk 1] k
% >d, — (3.7)
jel. ij i
i
. S L
Pij’ Vi 0 (3.8)
for all k =1, 2, ...K; J€ I and i =1, 2, ... N. Let us
* * *:
denote by PDM (x] s Xo 5 eee Xy ), problem (3.4) - (3.8). Clearly,
* * - *
PDM (x] > Xy s eee Xy ) is a linear program. Notice further that
at an optimal solution to this problem,(3.6) would be satisfied as
an equality. Substituting Vi given by
N
v, = % ¥ ok - (3-9)
k i=] j € Ii ijk ij
in (3.5) produces
N
pX T b..P..<WU _ — (3.70)
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where

K -
* o .
by = ki]yaijkxk — (3:17)

Note that bij >0¥%1i, je I, since y >0, x* >0, a = 0, and there

k jk
exists at least one k for each j such that aijk > 0. Substituting

(3.9) in the objective function (3.4) we get that

N K & N
& r.,P,.-C % x, v, = T I F..P.. — (3.12)
=1 jer, 'V k=1 KK g geq
where
K *
r.. =r., - Cy T a,..X
ij i k=1 ijk"k
=T - Cbij — (3.13)

Thus, the PDM (xf ,_Xg s eees xﬁ ) has been reduced to an optimization

problem of the form:

s.t.
N
i1 j e I, Pigfig S
— (3.14)
E Py > ¢
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The PDM (xrf; x; s vee x; ) problem given by (3.14) is easily recognized
as a linear multiple chéice knapsack (LMCK) problem. (It differs
$lightly from the traditional LMCK [ Zemel (1980), Glover and Klingman
(1979)1, in that, the Tatter problem has (i) equality sign in the
multiple choice constraints, (ii) di =1 for all i, and (iii) minimization
as the objective). Using proposition 3.1 which follows, we show that
due to the special structure of the coefficients in the PDM (x;‘,
x;:, ...,?xz ) problem, (3.14) can be solved explicitly, without

having to go through any of the LMCK algorithms [such as Zemel (1980)].

* . *
3.2.2 An Explicit Solution for the PDM (x; , ..., X, ) Problem

Let

b. = Miﬁ {b..} ¥i — (3.15)

. . ij
i J€ Ii
and observe from (3.13) it follows that

r. =r, - Cb.
1Ji i 1J1

= Max  {r..} Vi — (3.16)
j€ Ii 1

Proposition 3.1: There exists an optimum solution to (3.14) such that

Pij =0 ¥j# Ji and ¥ i =1,2,...N — (3.17)

Proof: Suppose (3.17) does not hold. That is, there exists.a so]utibn

(P%j)'whiéh is optimum for (3.14) with Z = Z' but P', >0 for some

pt
i=p,te Ip \ {Jp}.' Consider the new solution given by



P, + P! i=p, j=J
pt " Tpd P> 7%
* = i = i=
{ Pij Otherwise
*
Observe first that (Pij) is feasible for (3.14). Indeed,(P
for (3.14) implies:
(i) PY. > 0 ¥ i, jel
) .ij/ 1, J i
(ii) =  Ph.= 1z P..>d. ¥i
jer, Wijer, ]
i i
and (iii) =z i b..P,. = £ . % b,.P.. +b_ . P!
( )i=1j€I ijij 1'"='1-jeI ij iJ pJp IDt

1je1, W

. N
< 3 pX b.. P%j

since, b

pd

P
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— (3.18)

jj) feasible

- b P!

pt pt

<b .¥jEI1,
pi ¥I T Ip

from (3.15)

Next, suppose bpt is such that b_, = pr ; i.e. there exists more than

t
P p

one j € Ip minimizing bij for i = p in (3.15). Then it follows from

and therefore 7

(3.16) that r = rpt

pJd

On the other hand, if J_ is unique for i = p; i.e. b <b .
n o q r p; i.e bJ bj

then it follows from (3.16) that r >r and observe that

J t
p P P

X, o*
r =r

t J "pJ J
p Pdy P, PY,

1 1
rptP [PpJp + Ppt]

>r P+ P
Jd ' ptopt
pdy Pd, . pt P

I reLP..
p ijer, WU
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*
r..P.. >3 1 r..Pi., contradicting the optimality of
131 je Ii ij id ng optimality o

Therefore, % %
ije Ii

(P%j) and the proof of proposition 3.1 follows.

Following proposition 3.1, the LMCK reduces to solving
N
Max s r. P.

N
s.t. s b, P. <MW — (3.19)

Where b, =b., and r, =

i, i. riJi =ry - Oy
This is a Linear Knapsack problem in bounded variables. Observe that
N
(3.19) is feasible if and only if = bi di=< W. Let
i=1 :

r r. '
Bp_- = M§X { b_1_} — (3.20)
p. i. .

If ry >0, that is, if there exists at least one plywood type with

positive net profit, the solution of (3.19) is given by

d; i#0p
p* = :
j. j W- 3 b, — (3.21)
L P-



If rp <0, that is, if the net profit of all the plywood types

is non-positive, the solution of (3.19) is given by
P. =d. ¥ i=1,2, ...N ' - === (3.22)

Transforming these results to our LMCK problem, we have that the

* *
solution to the PDM (x] seves xk‘) is given by

d; TP, J=4J;

d i=p,j=J ifr S0

p AR T A

- b, .d
* ,w ip 1% : : . S — (3.23)
Py ) b, i=p, =g ifr, >0 -

p p
L 0 Otherwise

From (2.9) it follows that the quantity of veneers to be produced
is given by

N *
vE = TP ¥ K | — (3.24)

i1 1J%k iJi
*
Thus, when the xk's are assigned values x,., k =1, 2, ... K, we
have shown that the PDM problem can be explicitly solved. The solution

to 85 . and Ve would be as given by (3.1), (3.23) and (3.24)

.» P,
J- 1 _ R
respectively. In order to produce (Pij) as given by (3.23), we need

to find the indicies Ji’ i=1,2, ... Nand the index p. The computational

*
difficulty in generating (Pij) is therefore O(II]I L] o4 |IN| +N).
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3.3 Branching Tests and Bounds

In the first part of this section we develop bounds on the value

of Xy when values of X are fixed for t =1, 2, ... K-1. Using these

bounds, and making use of the results from the previous section, we
demonstrate how an upper bound on the objective function value of
the linear subproblem can be established for all branches emanating

from the node associated with the PDM (x::, - x;_%) problem. In

the second part, we use the structure of the PDM problem to develop
branching tests which, from the outset, can substantially reduce the
number of sets of thicknesses xr s sees x;_] that need to be considered

in step 1 of our algorithm A.

3.3.1 Bounds on x, and an Upperbound on the Objective Function Value
of the PDM (x: s eee x: .) Problem.

* * .
>..Assume that Xe T Xp 5 X € Tys t = 1, 2, ... K-1 and let
K-1 *
t=1
max

Further, let TKm1n and TK denote the minimum and maximum possible

. . min _ Min
thickness for Xys T.e., TK =

For all i, j for which ain >0, let

m., ., max _ Max m
{TK }rand T = {TK }

K

L U
+ by - Tij max bi - Ty min
Di =< — <TK . LIS VRN TK and a..K>O — (3.26)
ijK ik ' 1
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D represents the set'.of all design alternatives with a1 ~>> 0 which

*
st =1,2, ... KT

might be feasible for plywood type i with Xg = X4

and xg € Ty. Define

U
max Max by - T..
Kyt 3 Min [Je pr {115, TaX — (3.27)
iK i) a..g
1)
and B )
min ~Min + b% - T.. min
Xig = Max |§€Di{——Lp, Ty — (3.28)
T %k

If for some i and j, a. 5K = 0 but by=< Tijég bp then plywood

max
type i can be assembled without X g in wh1ch case set XmLP Tm and X1K =
TT<ax. Let

= i U = . —_—
D, = {j]b; Ti; <bjsags =01 (3.29)
and
p. =0 U —— (3.30
i =DV -30)
Now, define
min T ’
_ Max min -
X = g 3 —— (3.31)
and
max
Xg = M"‘ {x"“"‘X } — (3.32)
max

Observe that if ka1n > X , the PDM problem is infeasible for this

K

set of x, , t = 1, 2, ... K-1, and the node associated with the PDM (xT yeue

t ]

XK-l) is fathomed. Further, for'values of Xy such that Xy >XKmax
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min * * . .
or xK‘< XK , PDM (x] s e XK—1) is infeasible.

An upperbound on the value of the objective function of the PDM

*
problem when Xg = X o t=1,2, ... K-1 can now be computed by a relaxation

* *
of the PDM (x] ”"XK-1) problem. Recall from proposition 3.1 that if

the LMCK is feasible, then in an optimal solution to (3.14), for each
K
z
k=1
Thus, since y is a constant and when xK‘is known, Pij would be positive

i, Pij >0 only for that index j for which bij = ywaijkxk is minimum.

only for that j for which (T.. + ainxK) is a minimum, j € Di’ Using

ij
these results, a relaxation of the constraints related to plywood

thickness can be specified as follows.

Determine, for each i, if there exists x% such that

i min ., max

X € (R0 %) 0 Ty — (3.33)
and
L ] {] . )
<T.. .. <b- . i ‘
by < Tjy ¥ a;5kXg S by for at Teast one j € D, = (3.34)

The relaxation is that the value(s) of xy satisfying (3.33) and (3.34)
may differ for each i. If such an xl does not exist for some i, the
PDM (x: ;...XE;1) problem is infeasible and the node associated with
Xp = x: ; t=1,2, ... K-1 is fathomed. Assuming that an x; satisfying

(3.33) and (3.34) exists for each i define

o

_ Min i ' _— .
i e Di {Tij + ainxKl(3.33) and (3.34) are feasible} (3.35)

1
bi represents the minimum possible thickness for plywood type i, given
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- _ v_ . min max,
that Xg =X o b= 1,2, ... K-T and X is an element of (XR. , XK )y N TK.
An upperbound on the objective function value of the PDM (x; seees xK_]D
problem is given then by the optimal value, Z, of the optimization
problem given below
- N
Z=Max I r, p.
i=1 11
s.t.
N .
<
EPiPy S —— (3.36)
zZd,
Pi d1
where ry =ry - Cybi
(3.36) is a Linear Knapsack Problem (LKP) in bounded variables. If
N v
5 bidi >W/y, (3.36) is infeasible. Otherwise, if (rp/bp) =
i=1
Max{ri/bi}, the solution of (3.36) is given by
i
d; i#p |
d j=pifr <O — (3.37
T Wy - 3 b.d,
ifp - |
b i=pifr,>0
| :
and
- N oo
L= .E]riPi — (3.38)

If Z, as given by (3.38), is less than the corresponding value of the

incumbent solution in step 3 of algorithm A, the node associated with
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_*
t %t
incumbent solution then branching on the value of x

X t=1,2, ... K-1 can be fathomed. If 7 is higher than the

c min maxy A
(XK , kRN T

XKm1n’ XKmax) is

K
should be made. If the number of elements in Ty A (

K

large, this interval can further be subdivided and bounds on Z can be
computed in the same way as above for each such subdivision. However,
since the number of elements in TK is generally small and since other

branching tests that follow eliminate a substantial number of these

elements, further divisions of the interval TK N (XKm1n’ X maX) may

K
not be necessary.

3.3.2 Branching Tests from the Structure of the PDM Model

We use the special structure of the PDM problem to substantially
reduce, at the outset, the size of the tree that has to be searched

by algorithm A.

Reduction 1: (Distinct Veneer Thicknesses)

Since the aijk's are constructed in such a way that all feasible
K
values of kE]aijkxk with Xo = Xgo for some s # t, can also be obtained
with Xg # Xp» We can assume that in the PDM problem

N
N
-~

Xg i X¢ 1 s, t — (3.39)

For example, consider Xy = 2.5, Xy = 2.5, Xg = 4.0 and K = 3. Suppose

the design alternative nine, (aig]3 LIRS a193)‘é (2,1, 2), is feasible

for a 5-ply plywood. That is, =

) ]a19kxk = 2x] + Xy + 2x3 = 15,5 mm 1is
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within the permissible Tower and upper tolerances. Then, precisely the
same ordering of the plies for face, core and centre veneers can be
produced by using the3des1gn alternative five in which (a151, Ao a153) =
aig Xy = 3x1 + 2x3 = 15.5 mm.

0

(3, 0, 2). Indeed, I
k=1

Reduction 2: (Symmetry in Core/Centre Veneers)

Due to the symmetry in the construction of the design coefficients
a3 5k for the balancing requirement, identical designs can be produced
using different but symmetric set of thicknesses. Explicitly, suppose

x =T ,x =T  ,2<s,,5s,<K. Then the plywood produced by

Sy Sy 1° 72

the set of thicknesses X, ... X_ s ...X_ 5 ...X, Can be produced as well
1 S So K

by using the set of thicknesses Xps weeX ce Xy s e Xy

s,” " 7s

For example, let Xy = 2.4, Xo = 2.7 ind X4 =13.1 be one set of
veneer thicknesses designated as set I in-Table 7. Let the
second set of thicknesses be given by Xq = 2.4, Xo = 3.1, Xq = 2.7,
designated set II. Table 7 shows that for all possible values of

alternative designs j having three or five plies these two sets produce

plywoods of the same thicknesses.



54

Number of Design PTywood Thickness
Plies Alternative, J Set I Set II
3 1 7.2 7.2
2 7.5 7.9
3 7.9>< 7.5
5 1 12.0 12.0
2 12.3 12.7
3 12.7::::::>~<::::::12.3
4 12.6 13.4
5 13.4:::::::>f:::::::12.6
6 12.9 14,1
7 14.1;:::::>‘<::::::12.9
8 133 13.7
9 13.7:::::::><:::::Z13.3

Table 7: Symmetry in Core/Centre Veneers.

The above observation is valid for any number of plies, for any

K>3 and for all x_ , X
51 S,

can assume that our set of thicknesses Xq s XZ’ ee Xy in the PDM

such that 2 < S1» '52 < K. Therefore, we

problem is such that

for all 2 <s <s, <K — (3.40)

]

Reduction 3: (Upper Bound on Face Veneer Thickness)

Let T1 be the minimum possible veneer fhickneSs,_i.e. T1=< Tkm ¥m, k.
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In any plywood type, at least two veneer's thickness should be X1 s

the face veneer thickness. If Li is the number of plies in plywood

type i, the minimum total thickness the remaining (Li - 2) veneers

U

can have is (L, - 2)T If bi

i is the upperbound on plywood thickness

1°
of type i, the maximum thickness the two face veneers can have is

[b? - (L1—2)T1]. Thus, an upper bound i] on the fdce Veneer thickness

X] for that plywood type is [b? - (Li-2)T]]/2. When all plywood types

are considered this upper bound is given by M}n[(bg - (L1-2)T])/2].
max _ Max

Suppose T] = {T]m} is the maximum possible thickness for face

veneer. Then in our PDM problem we must have that

— (3.47)

Consider, for example, the 12 plywood types Tisted in Table 8
below. These are taken from the actual Tist of plywood types produced
by a mill with T, = 2.4 mm, T,"** = 3.2 mm and b] is + 0.5 mm of the
specified plywood thickness for all i. From Column 3 of the table it

follows that

' |
A oY - (L-2)T
x; <X, = Min "‘}”{ LR ‘}, 3.2 | =2.80

- -

Notice that a 3 ply 7.5 mm plywood cannot be produced within
specification if X] exceeds 2.8 mm. Values of X1 higher than i] would

only make the problem infeasible.
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Plywood Type | Ply - Thickness bg i (Li'z)Tl b% - 2%

i Li mm 2 Li'z
1 3 - 7.5 2.80 1.40
2 3 - 9.5 3.80 3.40
3 5 - 12.5 2.90 2.13
4 5 - 15.5 4.40 3.13
5 7 - 18.5 3.50 2.48
6 7 - 20.5 4.50 2.88
7 7 - 22.5 5.50 3.28
8 9 - 23.5 3.60 2.49
9 9 - 25.5 4.60 2.77
10 9 - 27.5 5.60 3.20
11 9 - 28.5 6.10 3.34
12 9 - 30.5 7.10 3.49

Table 8: Bounds on Xy and Xy

Reduction 4: (Lower Bound on Kth Thickness)

From reduction 3, i] as given by (3.41) is the haximum possible
face veneer thickness and from (3.40) it follows that Xy >xK_t for
all t =1, 2, ... K-2. Since 2&1 is the maximum possible thickness
of the two face veneers, a lower bound &k, on the veneer thickness Xy
for a plywood with Li plies and Tower toierance for thickness b%, is

given by (b% - 2X])/(L1-2). Since this is true for all plywood types

the lower boundonbeis’thained byM?X[(b$j4 ZiT)/(Li-Z)].'fIf

TKm1n ={m1n{TKm} is the minimum possible thickness of Xgs we have

L, -2

K K 1 j

L ~
i b: - 2X .
v }
x =X = Max qu {}l———-—l- R TKmm —_—
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The reduction implied by (3.42) is illustrated using the previous

min _

example in the Tast column of Table 8 with Ty 2.40, X, = 2.80

1
and b% js -0.5 mm of the specified thickness for all i. In that example

, 2.40 = 3.49
Observe that a 9 ply 30.5 mm plywood cannot be assembled within speci-

v
fication if x, is less than 3.49 mm. Values of Xy Tower than X

K
would only make the PDM problem infeasible.

K

To appreciate the importance of the reductions (3.39) - (3.42),
consider a typical problem with 12 fypes of plywood as listed in
table 8 with K =4, m(1) = 9, and m(k) = 27 for k = 2, 3, 4. Then
the number of sets of veneer thicknesses that need to be considered in
the PDM problem reduces from a maximum of 177,147 to 12,400 by the
reductions specified by (3.39) - (3.42).

If plywood can be made with unbalanced designs, some of the
branching tests given above may have to be modified. In particular,
the reduction specified by (3.40) would depend on the design alternatives
considered and the bounds given by (3.41) and (3.42) would not be valid
if the two face veneers in a plywood sheet can be of different thicknesses.

Using the analysis developed in section 3.3.1 and the reductions
specified by (3.39) - (3.42), we can now present, in greater detail,

an efficient algorithm for solving the PDM problem as follows.



Algorithm B: (An algorithm for solving the PDM problem)
Step 0: Initialize (x1, Xps vus xK) and Z0

* *

Step 1: let Xg T Xp o0 Xg € Tt" t=1,2, ... K-1 be a previously

unselected set of values for the thicknesses Xy Xos een Xy g of the

PDM problem which satisfy (3.39) - (3.41). 1If none exists, terminate.

Otherwise, go to step 2.

Step 2:  Evaluate X MmN and XKmax from (3.31) and (3.32). If
Xgnin_>’XKwax’ PDM (er’ . x;;]) is infeasible and go to step 1.
Otherwise, compute Z.from (3.38). If Z is less than Z0 go to step 1.
Otherwise,

Step 3: lethETKﬁ(xwﬁn,Xﬁwx)aMngwﬂh(x;,...x;])

be a previously unselected set of thicknesses satisfying (3.39) -
(3.42). If none exists, go to step 1. Otherwise,

Step 4: Solve the LMCK problem associated with the thicknesses

x:., x;", ces x; using (3.23). Store the solution and update Z0

if better than the incumbent. Go to step 3.

In the implementation of this algorithm for practical problems,
the existing values of X Pij and the corresponding value of Z0
for the mill can be used at the initial node. Otherwise, we can
start with Z0 = -» as the initial value and update it whenever better
solutions are generated. Clearly, algorithm B will terminate in a
finite number of iterations with an optimal solution to the PDM
problem. As is true with any other algorithm, the computational
time required to solve the problem would mainly depend on the size

in terms of the number of variables and constraints in the problem.

A flowchart of Algorithm B is presented in Fig. 1.

58
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START

X1 9Xgses Xy

and ZO

New
xk,k=1,2,..K—1

satisfying (3.39)-

(3.41) exist

Evaluate

min
X' o Xy

STOP

J

_ New
{7 min , max,.
X € (X Xm0
satisfying (3.39)-
'3.42) exist

D

Solve LMCK
Update solution

if better than
Zy

Figure T1:

A Flowchart of the Algorithm to Solve the PDM Problem.
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3.4 Computational Results

Our implicit enumeration a1gorithﬁ to solve the PDM problem was
coded in FORTRAN. As the design coefficients and the number of
design alternatives for each product depended on the number of veneer
thicknesses, separate codes were written for different values of K.
Input data for the code were the availability of logs, log cost,
the yield factor, correction factor for compression and shrinkage,
set of all possible veneer thicknesses of the peeling lathe(s), the
upper tolerance for face veneer thickness, 1ist of plywood types, their
revenues, order file requirements and the respective thickness tolerances.
The codes are capable of giving as output, the optimal veneer thicknesses,
quantity of Togs to be converted to each thickness, maximum net revenue
at the optimal solution, marginal value of wood, all the feasible
design alternatives for each type of plywood and the quantity of plywood
to be produced under each design alternative. Appendix I gives a
listing of the FORTRAN program for the PDM problem with four veneer
thicknesses (K = 4). The purpose of the code is only to demonstrate
that the PDM model can be solved efficiently using our implicit
enumerétion algorithm and no expertise is claimed on the efficiency
in coding.

For testing the suitability of our PDM model and the implicit
enumeration algorithm for real-world situations, representative data
obtained from a plywood mill in British Columbia was used. The mill
was mostly manufacturing exterior plywood adhering to the specifications

laid by the Council of Forest Industries 6f British Columbia (COFI

(1978)). Currently the mill was using four veneer thicknesses (K = 4)
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as listed in Table 2. The number of possible veneer thicknesses that
could be considered within the framework of veneer thickness tolerance
amounted to m(1) = 9 and m{k) = 27 for k = 2, 3 and 4. The mill's
order file consisted of twelve types of plywood. Details of the plywood
types, their existing designs, the avaiTabi]ity of logs, log cost,
yield factor, revenue and order file requirements of plywood, their
thickness specifications are given in appendix‘II.

When the mill's data with the existing set of veneer thicknesses
and designs were used in a linear program, the maximum possible annual
net revenue for the mill was $13,416,694. Starting with this as an
initial solution, our implicit enumeration algorithm codes for the PDM
problem were used 6n the University of British Columbia's AMDAHL 470 V8
computer with a WATFIV compiler. When the number of veneer thicknesses,
K, was four, the code took 29.3 seconds of CPU time and gave an optimal
solution to the PDM problem with a maximum net revenue of $14,337,370.
Details of the corresponding optimum veneer thicknesses, the feasible
design alternatives, quantities of plywood to be produced under each
design alternative and such other information are given in appendix iII.
For the particular configuration of the problem parameters used in the
study, the annual net revenue obtained from our model was 6.86% higher
than that for the existing set of veneer thicknesses and piywood designs
used by the mill. The increase resulted from the fact thét the wood
loss in the form of excess thiékness in plywood reduced from the
current 7944.7 cubic metres fo 1647.4 cubic metres.

In addition to the above, possibilities of manufacturing all the

mill's products from only three veneer thicknesses instead of four
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was tested using our PDM model with K = 3. It was found that all the
products of the mill could be assembled within plywood thickness
specifications using only three veneer thicknesses, a fact which was
not known earlier. Details of the corresponding optimum veneer
thicknesses, plywood designs and such other data are given in appendix
IV. The maximum possible net revenue associated with three veneer
thicknesses was $13,930,670 and the corresponding wood loss in the
form of excess thickness in plywood was 3612.1 cubic metres. This
indicates that in addition to an increase of 3.83% in annual net
revenue, there was substantial savings possible in the form of reduced
set up costs associated with the fourth peel thickness. A more detailed
analysis of the results of the PDM model for different number of thicknesses

and their comparison is given in chapter six.
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CHAPTER 4

4,1 Extensions to the PDM Problem

In the formulation of the Plywood Design and Manufacturing (PDM)
problem, we had earlier considered the case where“0m1y one species is used
in the assembly of the end products. However, most plywood mills might
use more than one species with varying log costs and yield factors.

In addition to this, the orderfile requirements may be independent of
species or specified specieswise. As we will show in this chapter, the
plywood design and mahufacturing problem can be reformulated to incorporate
all these factors and solved efficiently.

The inclusion of more than one species in the model does not affect
the design part of the PDM problem. Changes in green veneer thickness
due to variations in the density or specific gravity of a species are
normally nullified by the corresponding shrinkage and compression during
drying and hot pressing. However, if significant deviations occur in
plywood thickness for any pérticu]ar species, it can be adjusted by
making appropriate corrections in the veneer. In such a case, the
veneer thickness can be expressed relative to the thickness of a
standard species of veneer such as Douglas fir in the Pacific North-
west region.

The inclusion of more than one species in the model, however, affects
the product mix part of the problem. The linear subproblem to be
solved at each feasible node of the implicit enumeration's search
tree assumes different forms depending on the factors included in the

model. However, essentially the same implicit enumeration algorithm
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described in the previous chapter can be used to solve these various
extensions of the PDM problem.

We now consider extensions to the PDM model involving some of these
situations. In the first case, in section 4.2, we show that when the
orderfile is independent of species, the linear subproblem is a Generalized
Network problem. We show that, due to some special structure in the PDM
model, this Generalized Network problem reduces to a Generalized Trans-
portation problem which, in turn, can be reduced to a standard Trans-
portation problem. We solve an example of this subproblem and present
modifications required in the implicit enumeration algorithm. In section
4.3, we consider the situation when the orderfile is dependent on
species. We demonstrate that, in this case, a linear subprob]em»associated
with a node of the search tree decomposes into separable Linear Multiple
Choice Knapsack problems. In section 4.4, we consider the situation

when veneers of different species can be mixed within a plywood panel.

4.2 Orderfile Independent of Species

4.2.1 Formulation

Define new decision variables and coefficients of the model as
follows:
vks = Quantity of veneer sheets of thickness k from species s
(in numbér of sheets of standard size or equivalent).
Pijs = Quantity of Plywood of type i, species s, made using

construction alternative j (in number of sheets of standard

size or equivalent).
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ric = Revenue for Plywood type’i, species s. ($)

ws = Quantity of logs available, species s (cu. mtrs.)
CS = Cost per unit of log, species s ($/cu.mtr.)

ys = Yield factor for veneer from species s.

s=1,2, ...8; i=1,2, ... Ny j=1,2, ... n; and k =1, 2, ...K.

A1l other variables and parameters of the earlier model remain
unchanged. Formulating the problem in the same way as in Chapter 2,

the PDM model in this case would be

N S n_i S K
Z. =Max z 3 7% ... =~ yCVy 5 xV — (4
0 i=1 s=1 j=1 18 15 Zy7s7s 27k ks
s.t.
L K
b-| = M(]-G'IJ) kz]a.ijkxk <b, + M(]'(S J) - (4
"
T .= 1 — (4
=1 Y
P,ijs-M6”<0 — (4
K -
Ys kE]kaks < W — (4
N ni
121 §£1 iikPijs ™ Vks <0 — (4
S ni
> —_
s ga s T .
8 = {0,1} — (4



1 2 m(k)

eT K> T o oo

X K =T

Piss > Vks

Ty } — (4.9)

>0 — (4.70)
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foralls=1,2, ...S; i=1,2, ...N; j=1, 2, ERLP and k =1, 2, ..

Again, the above is a non-linear mixed integer programming problem.

Note that in the above model y x v, represents the quantity of logs
sk ks

peeled to thickness Xk from species s and LY X Vs represents the total

n, k

quantity of logs of species s. Also, 5! Pijs is the quantity of
j=1

plywood type i made with species s and

S n,

Rk P..s is the total quantity of plywood type 1.

s=1 j=1 1J

4.2.2 The Generalized Network Subproblem

R *

The feasibility of a set of thicknesses, Xp o Xg € Tk’ k=1,2, ... K,
to the extended PDM problem given by (4.1)-(4.10) can be verified by
evaluating the indicator variables Gij using (3.1). Let s:jiaﬁd Ii
be as defined in (3.1) and (3.2) respectively, of the previous chapter.
Then, following arguments similar to those used in that chapter, we can
show that (4.5) reduces to

. ( *')P <M

z Iy a.. X S

ije Ii K S ijkk ijs S
or

b z P... <MW

ije Ii ijs ijs S
where

K *
bijs =Y i a5 115k | — (4.17)
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The objective function reduces to

- K *
r ¢ gr. P — 3z :CAy_za.. x )P..
ije Ii s is ijs ije Ii s S Sp= ijk"k "ijs
= X ¥r.. P..
ijel s 1Js 1Js
where
, K %
“i5s T Tis T O 2 %k
= Tig - Csbijs — (4.12)
* * * -
The Tinear subproblem associated with a set of thicknesses X1 5 Xpoeun Xy s
would then be
Z=Max z % ir.. P..
ije Ii s 1Js ijs
s.t.
D .. P, W ¥ s
ije Ii ijs ijs s
Tz P,..o>=d, ¥ i — (4.13)
s jer, 13 i
i
= i j .
Pijs 0 ¥ i, sand je I1

(4.13) is known as a Generalized Network (GN) problem and when

|I.] =1 for all i, (4.13) is specialized to a Generalized Transportation

(GT) problem. b can be interpreted as the amount of wood required

ijs

to produce one unit of plywood type i, species s, using design alternative
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J and rijs is the corresponding unit net revenue. The unique feature
of (4.13) is that each variable iniit appears at most twice in the
constraints. This special structure is further reflected by the fact
that we can associate a graph with a GN problem in which the nodes
represent the constraints and the undirected arcs, the variables.
Since each variable has at most two non-zero coefficients in the
constraints, the basis of a GN problem has isome special structure
which facilitates its solution in much faster time than a linear
program (Kennington and Helgason (1980), Elam, Glover and Klingman
(1979), Phillips and Garcia-Diaz (1981)). However, our GN prbb]em
as given by (4.13) reduces to a GT problem as shown in the following

section.

4.2.3 The Generalized Transportation Subproblem

Recall that the coefficients in our- GN problem (4.13) are related

by rijs = Tig - Csbijs' Suppose
b. = Min {b,,.} — (4.14)
1Jis je Ii iJjs

Then, it follows that

riJis B T Csbidis

Max {r,. } . — (4.15)
je Ii ijs
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Proposition 4.1: For any i =1, 2, ...N, the index Ji (or indicies,

if more than one exists) minimizing bijs in (4.14) is (are) the same

for all s =1, 2, ...S.
Proof: The proof follows from the definition of bijs since

.
b. = Min {zy a... X, }
1Jis je Ii K S ijk7k

*

=y Min {za...x, }
S je Ii K ijkk
* - -
and iaijkxk is independent of s.

Proposition 4.2: There exists an optimal solution to (4.13), in which

P.. = 0 ¥ J #4. .
1Js ! —— (4.16)
and ¥ 1, s
Proof: Suppose (4.16) does not hold for some i and s. That is,
there exists a solution (P%js) which is optimum for (4.13) with
Z=17" but Pﬁtf >0 for some i =p, s =fand te€ Ip\{Jp}. Assume
er £ > 0 and consider the new solution given by
r bgtf
p! + P! T=p,j=3J,s=FfF
ppr pr £ ptf
p
:jjj(4.17)
* = = = = -
iis ﬁ 0 i Ps J t, s =f
P.. Otherwise
. 1JS
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Observe that (4.17) is feasible for our GN subproblem (4.13). Since

(P%js) is a feasible solution, it follows that

*
1 .7 > 3 1 3 =
(i) P1js 0 ¥ i, j, s since bptf prpf >0,

X
jJel.

* {bgtf .
(1) Pigs =z .z Pigs HlBoyr T [Phes
S Jj : S . \p p p
i i
>

V
(72 M|

\Y%
o

* * b
and (1i) b P _+b . PE_=0+b [P' + PEL pe
- tf ptf J f pd f f ‘
ptf p P D pJp pJp ppr prpf ptf

= b b

pprPppr tbotePots

so that

b.. P
ijs ijs

z
e
J I1

< W ¥ s,

Further, observe that if bptf is such that bptf = pr £ i.e. There
exists more than one j € Ip minimizing bpjs in (4.14). Then, it follows

from (4.15) that r

ptf = erpf and therefore
p* p!
I I ir.. Pv. = 3 T  Trr.. P...
ijel s ijs ijs ijel’s ijs ijs
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pif’
then

On the other hand, if (i) J, is unique for i =p, i.e. b ;¢ <b
p

ptf,

. . .. . . <
j# Jp, jE Ii’ or (ii) the index t is such that prpf b

P = pr 4 OBEE pr
fpd f - "pa flpa fTB tf)
PJ, pdf | P, paf P

*
PotfPpte F erp

>r from (4.14)

P! r p!
J f f + f pt
PJ, pJp pJp ptf

> ] 1
erprppr + rptfpptf from (4.15)

*

Therefore = by Zrijspijs

. s e
i] Ii S

>z Ir.. P.. , contradicting the
ije Ii s 1Js ijs

optimality of (P.. ). The fact that this result holds even when

ijs
erpng 0 can be shown by dropping the factor bptf/bpdpf in (4.17)
and using similar arguments as above. The proof of Proposition 4.2
then follows.

Propositions 4.1 and 4.2 would together imply that in an -optimal
solution to the generalized network problem (4.13), if a plywood type
is made with more than one species, the design alternative for them
would be the same.

From propositions 4.1 and 4.2 it follows that the GN problem reduces

to solving



where, b.

i

problem.

.= biJ.S

1

Again, bi-s

and r.
i-s

is the

r.

id,s’
i

— (4.18)

This is a Generalized Transportation

amount of wood required to produce one

unit of plywood type i, species s, using the design alternative Ji’

and

r‘1'-5

is the corresponding unit revenue.

Observe that (4.18) can

be represented in the following tabular form of a GT problem with the

species as 'sources' and plywood types as 'déstinations'.

Plywood Type (1)

Species

(s)

1 2 N Supply
by | TPy [T by | e <
R I 0 I A S Wy
P11 P21 PN-1
s b1.s| M.s|P2-s |T2-s by.s | Tn.s K W
Py.g Pos Ph-s
| > > >
Demand d; d, dy

The solution procedure of a GT prbb]em deviates from that of a

standard Transportation problem in that the basis graph of a GT can

have more than one maximal connected subgraph or component.

The dual
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variables associated with a GT are unique since any non-degenerate
feasible solution will have as many basic variables as the number of
constraints. Algorithms to solve a GT problem have been described in
the literature [Balas and Ivanescu (1964), Eisemann (1964), Lourie
(1964), Balas (1966), Taha (1971), Glover and Klingman (1973)].

The probdem as represented by (4.18) deviates from standard GT
problems (for example, Balas and Ivanescu (1964), Taha (1971), Glover
and Klingman (1973)) in that the standard GT problems will have equality
sign in the demand constraints. (4.18) can be put in the standard
form of a GT problem by the addition of a dummy row and N + 1 columns,
one for each product and a slack. However, we can solve (4.18) in
the present form noting that the dual variable(s) would be zero (i)

for all columns having allocation (sz.S) more than demand (di) and
s

(ii) for all rows having weighed allocation (zb,

P. ) Tess than the
jiesiirs

supply (ws).

4.2.4 Scaling the GT problem to a Transportation Problem

Alternate to solving (4.18) as a GT problem, it is possible to
solve it as a Transportation problem following a scaling procedure
for network problems wfth gains (Truemper (1976)). Observe that the
GT problem can be represented as a network flow problem with the arcs
having gain/loss factors. Specifically, in such networks the amount
of flow entering an arc neéd not be equal to the amount of flow Teaving
the arc. For example, the GT problem (4.18) with two species (S = 2)
and two products (N = 2) can be transformed into a network as shown

in Fig. 2.
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Fig.2: The PDM Subproblem as a Network Flow Problem

In Figure 2, S and S2 are nodes associated with the two species
and P] and P2 are nodes associated with the two products. S; is a
'super source', a consolidation of all the supply (or species) nodes
and T' is a 'super sink', a consolidation of all the demand (or product)
nodes. The three numbers in bracket on top of the arc represent the lower
arc capacity, upper arc capacity and revenue per unit 'flow' respectively.
The number below an arc represents the loss/gain factor associated with
a unit of 'flow'. In a pure network flow problem these loss/gain
factors would all be equal to unity. Our problem (4.18) can be viewed
)s
the quantity of plywood of type i produced per one unit of species s, is

/b

as one of allocating species to products in which b{s = (1/b1..s

the gain factor. r! = (r

i ) is the revenue generated by the

i’ 7i-s

allocation of one unit of species s to plywood type i. The supply
(ws) and demand (di) restrictions of the GT problem can be included as
arc capacities as shown in the figure. If fis is the 'flow' from
species node Ss to product node Pi in the network, it is related to

the variable P, _ of (4.18) by fig = Pi-sbi-s' Our GT problem (4.18)
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would then be equivalent to the following minimal cost (or maximal

revenue) network flow problem with gains.

Max y zr: T,

is 18 1S
s.t.
§fS'J' - ng'S fjs. <F
?fﬁ -g% u%t= 0 t#S', T — (4.19)

ngl\_j - ?bjT"ijl = -F

where, t is the index of all intermediary nodes (i.e., excluding S' and

T') in the network, F is the flow available at the super source

' ( = zws) and F is the minimum flow required at the super sink
s
T (& Zdi)' Truemper (1976) gives a scaling procedure by which a

i
network problem with gains can be reduced to a pure network problem.

Since (4.18) is a Generalized Transportation problem, the pure network
problem obtained by Truemper's scaling procedure yields a standard
Transportation problem. This is illustrated through the following

example of a PDM subprobdem.

Example 4.1: Consider the following example:(hypothetical) of a PDM
subproblem with two species, Fir (F) and Hemlock (H), four products
(N=4) and four veneer thicknesses (K=4) which are set to X = 2.69,

3.35, 3.96 and 4.98 mm for k = 1, 2, 3 and 4 respectively; C. = 35.00,

f
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CH = 30.00, YF = 0.006067, YH = 0.006276, W. = 70,000 and NH = 80,000.

F
Other data for the PDM problem are given in Table 9.

Plywood | Ply - Thick Revenue ($) Demand Design a..
Type, 1} L; (mm) L iy d, h] 15k
1 3 - 7.5 4.3 4.1 171107 1 3 00
2 5 - 12.5 6.1 5.8 502289 1 5 0 0
2 4 1 0
3 5 - 15.5 7.6 7.4 350192 1 272 0
2 2 1 2
4 7 - 18.5 8.9 8.6 423394 1 5 2 0
2 4 3 0

Table 9: Input data for Example 4.1; A PDM subproblem with S=2,

Orderfile Independent of Species.

We will proceed now with solving this PDM subproblem. Computation
of the bijs ¥ i, j, s using (4.11) and evaluation of the minimum from
(4.14) gives J; =1, 1, 2and 1 for i =1, 2, 3 and 4 respectively.

For these design alternatives, bi-s and rj.g are presented in the tabular

form of a GT problem below.
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Products
1 2 .3 4 Supply
‘.. Species
.04896 .08160 .10101 12225
F < 70,000
2.5864 3.2440 4.0645 4.6213
.05065 .08441 .10449 .12646
H < 80,000
2.5806 3.2677 4.2651 4.8062 |
Demand > > > >
eman 171107 502289 350192 423394 -

-

The above problem can be so]véd as a GT problem using known
algorithms (Balas and Ivanescu (1964), Taha (1971), Glover and Klingman
(1973)) or transformed into a standard Transportation problem using
the scaling procedure of Truemper and then solved. We use the Tatter
method for illustration. Observe that the constraints of the GT problem

given above can be written as

- - <
.04896 P, _ + .08160 P, + .10101 Py s + .12225 P, . < 70,000

— (4.20)
.05065 P, + .08441 P, . + 10449 P, + .12646 P, , < 80,000

— (4.21)
Plp Py = 171107 — (4.22)

> -

Pour * Py 502289 (4.23)
Py.p + Py >350192 — (4.24)
Pp + Py > 42339 — (4.25)

There exists a set of multipliers, one each for each of constraints

(4.20) - (4.25), such that the gain factors (coefficients on the LHS



of (4.20) and (
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4.21)) can be transformed to unity (Truemper (1976),

Phillips and Garcia-Diaz (1981)). In particular, starting with (4.20)

as the initial
.08160, .10101

we get

04896 P,

0489 P,

04896 P.
.08160 P,
.10101 P3.
.12225 P4'
Now, setting P'

and P 4s

constraint, if we use the multipliers 1, 0.9667, 0.0489%6,

and .12225 for the constraints (4.20) to (4.25) respectively,

: B < [
p+ -08160 Py o + .10101 Py . + 312225 B, <70,000- /=(4.26)
< —_—
y * 08160 P, .+ 10101 Py, + .12225 Py < 77336.0 (4.27)
04896 Py > 8377.40 — (4.28)
> -
F+.08160 P, 40986.78 (4.29)
> R
p+ 10101 Po 35372.89 (4.30)
> —_—
Pt 12225 Py 51759. 92 (4.31)
1s = 04896 Py o P, = 08160 P, ., P's = .10101 Py

= .12225 Pa.s for s = F, H, all the coefficients on the LHS

of (4.26) to (4.31) are transformed to unity. The resulting transportation

problem, in a tabuTar form, would be as follows

Products
1 2 3 4 Supply
Species
E 52.8268 39.7549 40.2386 37.8020 §§70,000
y - 52.7083 40.0453 42.2245 39.3145 | < 77336.0
> = = =
Demand > = =
8377.4 _40986.8 35372.9 51759.9 -
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The numbers in each cell of this transportation problem are the

revenues associated with the transformed variables P'. , s' = F, H

is
and i =1, ... 4. The above problem is not in the standard form of a
Transportation problem since (i) the constraints have inequality

signs and (ii) total supply and total demand are not balanced. Converting
this problem to the standard form and solving yields the solution:

= 19216.4, P',. = 40986.8, P',, = 35372.9, P',. = 9796.8, P', =

PF 2F 3H 4F aH
41963.1 and P'1H = P'2H = P'3F = 0. Transforming these to the original

variables we get P]'F

R

392492.0, By.p

= 343256.5 and P

= 502289.0, P = 350192.0,

3-H

P4.F = 8'0]37-'53 P4'H 1-H = 2.H = P3'F = 0 as the

solution to the Generalized Transportation problem. The corresponding

P

objective function value is Z = $6,158,270.

4,2.5 Implicit Enumeration for the Overall Problem

To solve the overall PDM problem as given by (4.1) - (4.10),
essentially the same implicit enumeration algorithm described in
chapter 3 can be used. Branching is initially done on the veneer

thicknesses x t=1,2, ... K-1. A1l the reductions in the number

2
of nodes of the search tree specified by (3.39) - (3.42) and the bounds
on xy given by (3.31) and (3.32) are equally applicable here. The upper
bound on Z given by (3.38), however, changes for this problem. Following
the relaxation specified by (3.33) and (3.34), let b;: be as defined

in (3.35). Then, since the linear subproblem in this case reduces

to a Generalized Transportation problem, an upper bound on Z for all

branches from this node can be obtained as a solution of (4.32) below:
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j.g. -1-s
s.t.
! <
?bi P1°s ws/ys
P, >d. — (4.32)

1 .= - !
ri r. CS Y b1

Again, (4.32) is a GT problem and can be solved using methods outlined

_*
t X oo

t =1, 2, ... K-1 can be fathomed if Z obtained in (4.32) is less than

earlier. The node associated with the subproblem in which x

the incumbent ZO.. If, however, branching on the last veneer thickness

min
y_max

X, in the set (XK . Xy )y N TK is found necessary, additional

K

bounds can be calculated for the GT problem using the structure in

our PDM problem. Consider the dual of (4.18) given by

Z0 = Min Zwsns + gditi
S i
s.t.
> -
bi-sns + ti /'ri-s (4.33)
= L <
HS 0, t1 0 ¥ i, s

Recall from duality theory that an upper bound on (4.18) can be
obtained using any feasible solution to (4.33). An efficient upperbound

can be obtained using the structure of the constraints in (4.33).



Observe that in (4.33), the constraints lead to

=
T[s r1's/b1 S ¥ s
and
= - b.

t1 rig b1-sns ¥ i, s
Let

I, = M$x {r.. /bi's}
and

t] = sz {ri's - bi-sns}

Then, 7 = NI+ 2d.t. will give an upper bound on the value of Z
S i '

in (4.18). Intuitively, this bound is sharp since when S =1, Z =

the objective function value at an optimal solution of the correspon
LMCK problem. For the example considered earlier, HF = 52.8286, HH

1" 0, t2 = -1.0330, t3 = -1.0586 and t, = -1.6369. This

gives Z = $6,191,220, which deviates from the actual Z by half a

50.9497, t

percent only.

4.3 Orderfile Dependent on Species

In this section we formulate the PDM problem when the orderfile
is dependent on species and analyze its structure. We demonstrate
that the subproblem obtained in this case decomposes into Linear
Muitiple Choice Knapsack problems which can be solved explicitly usi
results of chapter 3. For sb]ving the overall PDM problem, the same

implicit enumeration algorithm described in the previous chapter can
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be used, with few changes in the computation of the bound on the

objective function.

When the orderfile is dependent on species, constraint (4.7)

changes to

where dis is the quantity of plywood required of type i, species s.

82

— (4.34)

A11 other constraints and the objective function of section 4.2 remain

unchanged.

4,3.1 The Separable LMCK problem

* . *
When veneer thicknesses are assigned values X o Xy € Tk for

k=1,2, ... K, Sij

we can show that the linear subproblem reduces to

Max T % b r.. P..
sije Ii ijs iJs
s.t.
b1. ’sPi ‘s < NS
ijel, 35 1
T . =
jel ijs is

p.. =20 -\fi,jiEI]. and s.

Where bijs and rijs are as defined by (4.11) and (4.12) respectively.

and I, are as given by (3.1) and (3.2) respectively,

'-——— (4.35)
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(4.35) is separable into S distinct Tinear programming problems. For

each s, the problem is of the form:

Max b r.. P..
. ijs ijs
ije Ii
s.t.
b..P.. <W
i; é 1. 13s iJs S
i —— (4.36)
y . =
; éLI ijs is

Observe that, for each s, (4.36) is a Linear Multiple Choice Knapsack
problem. Also, defining bidis and riJis as in (4.14) and (4.15)
respectively we can show that propositions 4.1 and 4.2 are equally
applicable here. From chapter 3, we know that the solution of (4.36)

is given by

diS 1¢p,J=J,-
dps 1=p, J= Jp if er s <0
pr . - W - 3 d..b P
ijs ﬁ Sy D is 1J15 i=p,j=4 ifr =0
b p pd s
pJps
| 0 Otherwise — (4.37)
where r /b = Max {r., ./b.., .} = Max {r.. /b.. 3.
pJps pqps . 1J15 1J15 i,je Ii ijs’ "ijs

The index p max1’m1’s1‘ng'{r'1.J s/biJ S} may differ from species to species.
. i i
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4.3.2 The Implicit Enumeration Algorithm

To solve the overall PDM problem in this case, the same implicit
enumeration algorithm of chapter 3 can be used. Branching is done on

veneer thicknesses x,., t =1, 2, ... K-1. All the branching tests and

t’
bounds specified by (3.31), (3.32) and (3.39)-(3.42) are applicable

here also. The upper bound on Z, given by Z in (3.38) is to be modified
slightly following the inClusion of more species in the PDM model.

In this case, Z is obtained as a solution of

! < ___
bl Py SH /Y, (4.38)

H

. :
where b% and ri.g are as given in (4.32). Following the properties of

LMCK in our PDM problem, the solution of (4.38)7is given, for each s,

by
dis 1#°p
dps i=pif rp,s:< 0
* t
Pi-s = W w§£ys - 1 i*pbidis. : ' — (4.39)
= : i=pifr,.=20
b prs
L p
.0 Otherwise
and
= _ ' * 4
Z= 2 § Pi.s Pios — (4.40)
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The node with x, = x: st =1,2, ... K-1 is fathomed if 7 obtained
from (4.40) is less than the incumbent value of ZO in the implicit

enumeration algorithm.

4.4 Mix of Species Within a Plywood Sheet

In some plywood mills, more than one species might be used within
a plywood sheet. This is normally done when there are tradeoff benefits
associated with the cost and yield factors of different species of veneer.
However, these mixed species panel are assembled in such a way that the
balanced design requirement is not affected by the Tay-up of species.
The veneers for any one of face, core or centre plies would be of the
same species or belong to a group of species having similar physical
properties. In such cases, there might be added restrictions on lay-up
of veneers:such as 'fir only for face veneers' or other restrictions
imposed by specific customer orders. In this section, we illustrate
the formulation of the PDM problem in such a situation and analyze its
structure.

We define a lay-up alternative to be a plan which specifies the species

or group of species for face, core and centre veneers in a plywood panel.
For example, if fir (F), hemlock (H) and other species (0) form three
groups of species and there are restrictions on the face veneer to be

of species fir only, the possible lay-up alternatives (1) for a balanced
design would be as specified in Table 10. As earlier, we let théc
design alternatives (j) specify the number of veneers of each thickness

to be used in the panel.
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Lay-up Species for

Alternative, 1 Face Core Centre
1 F F F
2 F F H
3 F F 0
4 F H F
5 F H H
6 F H 0
7 F 0 F
8 F 0 H
9 F 0 0

Table 10: Species Lay-up alternatives.

4.4.1 Formulation of the PDM Model

Define new decision variables and coefficients of the PDM problem

as follows.

P31

"4

il

Quantity of plywood of type i, construction alternative

j and lay-up alternative 1 (in number of sheets of standard
size or equivalent).

Revenue for product i, lay-up alternative 1 ($); If
revenue is independent of 1, rip < 'y for all 1.

Demand for product i, lay-up a1térnat1ve 1 (in number of

sheets of standard size or equivalent); If demand is

independent of 1, d11 = di for all 1.



%45Kls Number of veneers of species s, thickness k, used in
lay-up alternative 1 and construction alternative j for
product 1.

1 = 1, 2 ... Ly L is the number of lay-up alternatives.

A11 other variables and parameters of the problem remain unchanged.
% 5Kls = é;jk ¥1=1,2, ... L
’ and ¥ 1, j, k

The model would be

Max =
i

;are known numbers similar to a4 5k and are related to them by -

- Ms.. <0 — (4.47)
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§..=1{0, 1}
1J
_ 1 2 m(k)
Xk e Tk - {Tk Y Tk s o Tk }
> - -
Pij]’ Vis 0 ¥ i, j, k, 1 and s

This is again a non-linear mixed integer programming problem.

4.4.2 The Linear Subproblem

) * *
When the veneer thicknesses are assigned values Xp = X X € Tk’

k=1, 2, ... K the resulting problem reduces to solving

i
s.t.
? jé . %bijﬂpijl <WS ¥ s
i
r P...>d.. ¥i, ] — (4.42)
. ijl il ’
je I
=
Pijl 0
* . .
where, bijs] = iys“ijklsxk’ rij1 = ri] - icsbijs1 and Ii is as defined

by (3.2). In the above model we have assumed the orderfile to be
dependent on the lay-up alternative. If it is independent of the lay-up

alternative, the demand constraint in (4.42) is replaced by
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o
Vv

di’ where, di is the demand for product i.

Irrespective of whether the orderfile is dependent on the 1ay-up

alternative or not, the resulting subproblem is a linear program. bijs1

is the quantity of wood of species s required to produce one unit of

plywood type i using design alternative j and lay-up alternative 1

*

*
when the veneer thicknesses are (x], ces xK). and rij1

are dependent on both species and the lay-up alternative, the subproblems

Since bijs]
do not reduce to any other simpler structure. Consequently, in an
optimal solution to the linear subproblem, a plywood type may have

more than one lay-up alternative and/or more than one design alternative.
The optimal design and lay-up alternative for any particular plywood
type would depend on the trade-off associated with the amount of wood
required of each species, their relative cost and yield factors, the
availability of logs of each species and the orderfile. This is

illustrated by the following example.

Example 4.2: Consider a PDM subproblem with one plywood type, 7
Ply 22mm, with two lay-up alternatives (F, F, H) and (F, H, F) for
face, core and centre respectively. The veneer thicknesses are 2.50,

3.10, 3.90 and 4.81 mm and the design alternatives are (5, 0, 0, 2)

and (2, 3, 2, 0). Other coefficients of the model are: CF = 35.00,
CH = 30.00, YF = 0.006067, YH = 00,0072, wF = 87.729, WH = 55,080
and ry = 8.0.

Suppose the orderfile is independent of lay-up alternative and

di = 1000. Then the solution of this subproblem is P1]] = =0,

P122

P = 500.0 and P]Z] = 500.0. Suppose the orderfile is dependent

112
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on the-1ayﬁap.withid{]uﬁi500, d1.2 = 500 and wH is changed from 55.080
to 60.000, all other coefficients remaining unchanged. Then the
solution of the resulting subproblem would be P]]] = 0, P]12 = 255.32,
P12] = 531.14 and P122 = 244.68 indicating that more than one design

and more than one lay-up alternative can be in the final solution.
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CHAPTER 5

| 5.1 Disjunctive Programming

The PDM model formulated in chapter two is a non-1linear mixed
integer (0-1) mathematical programming problem. The feasible region
formed by the constraints of this model is non-convex due to the presence
of integer variables Gij and Xy (through (2.1A) - (2.1C)) and non-
Tinearities in the constraints (2.5). The efficiency of the implicit
enumeration algorithm in seeking a global solution to such a problem
resulted from the fact that by branching on X2 the integer variables
Gij were explicitly evaluated and the non-linearities in the constraints
and objective function were reduced to linearities.

In recent years,much attention has been focussed on treating integer
programming and a host of other non-convex programming problems as
linear programs with logical conditions. An outgrowth of this approach
is disjunctive programming, in which an integer programming problem can
be transformed into an equivalent Tinear program with disjunctive
constraints (Balas (1979)). For example, the 0-1 variab]es 61j
introduced in the formulation of the PDM model for plywood thickness
tolerance and design feasibility can be overcome by replacing constraints

(2.2) - (2.4) by the logical condition

b% < ta. . X <§bp for at least one j, for all i. — (5.1)
i K ijk7k i

As a set of constraints, this can be expressed by



by <V 32y 5y < by ¥ i — (5.2)
Jk

Where the symbol V stands for disjunction implying that the constraint

should be satisfied for at least one j. The non-convexity implied by

these constraints can be illustrated by a simple example of one plywood

type with two veneer thicknesses. Suppose the plywood type has 3

plies and the design alternatives are (3,0) and (2,1) for the two

veneer thicknesses Xy and X - Then, assuming that X and x, are

2
continuous variables, the feasible region in the Xy = X plane

satisfying constraint (5.1) or (5.2) would be star-shaped as illustrated
in figure 3. When more than one plywood type is included, the feasible

region would be the intersection of such star-shaped region of each

plywood type.

/,,/A i

Fig. 3: Feasible Region (Shaded Area) of Plywood Design Constraint

x
2
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The alternate approach of eliminating the integer variables does
not overcome problems associated with non-convexity as it is implied
by disjunction. However, the treatment of some integer programs and
other non-convex programming problems as disjunctive programming or
linear programming problems with logical conditions have lead to some
interesting properties (Balas (1979)). 1In this chapter, we explore
the possibilities of treating the PDM problem as a disjunctive programming
problem. We study the implications of some of its properties on the PDM

model.

5.2 The PDM as a Disjunctive Programming Problem

Expressing the plywood thickness tolerance and design feasibility
constraints by (5.2) instead of (2.2) - (2.4) does not itself lead
the PDM problem to a disjunctive programming problem since identifying
the feasible design constraint (2.8) without 6ij becomes complicated
and the non-linearities in (2.5) continue to exist. However, from an
alternative approach, the overall PDM problem can be cast as a disjunctive
programming problem.

Recall from chapter 3 that when veneer thicknesses are assigned
values the resulting subproblem is a linear program and, in particular,
an LMCK given by (3.14). Since G:j and hence I, are dependent on the
set of veneer thicknesses through (3.1) and (3.2), the constraints of
the LMCK are dependent on the set of veneer thicknesses. Suppose
X* = (x?, x;, e x;) and P* = (P:j) is an optimal solution to the
PDM problem obtained from the implicit enumeration algorithm. Observe

!
then: that  for any other set of veneer thicknesses X = (x], Xps oo xK),



1 * 1 ' * *
X # X , and associated sij and Ii’ P = (Pij) need not be feasible
for the corresponding LMCK given by
]
Max © © , r..P..
ije Ii 131
s.t.
]
hX > 1 e P S
ijel, 1
T « P,.>d
jer1, W1
i
]
. =0 ¥ i, jel,
ij i
B t t t 1
where, bij =y i aijkxk and rij =r. - Cbij' Thus, the (pij) are also

dependent on the set of veneer thicknesses and in an optimum solution
to the PDM problem, what matters is that (P:j) must be feasible for the
LMCK associated with X* = (x:, - x:). From these observations,

the PDM problem can be formulated as a disjunctive programming problem
as follows.

Suppose X = (x?, ces XE), for various values of h, represent
distinct sets of veneer thicknesses feasible for the design constraints
(2.1) - (2.4). Let Q be the index set of all such h. The PDM model
can equivalently be specified by thefollowing disjunctive programming

problem.
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0
s.t. h
r i hoh <o
-z X r..P. ES
ije 1? o
h
T T b..P.. <W
ije I? 1
v ﬁ f — (5.3)
heq 5 hp:']j /d'i '
je I
1
=0 oy jel.
1j ? i

where,
h . .o.L h § h )
Iy = {jby < iaijkxk=< b, and X" feasible} | — (5.4)
h _ h
byj;™= ¥ E 25K
_ _ ~eh
r1J = ri Cbij

The disjunction V indicates that the constraints in brackets should
hold for at least one h. The number of elements in Q is the number of
distinct feasible sets of veneer thicknesses, feasible for the design
constraints (2.1) - (2.4) and is bound from above by g m(k). The
disjunction results in the constraint set of (5.3) be?gé non-convex.
Our disjunctive program (5.3) deviates from standard problems
(see, for example, Balas (1979)) in that in (5.3) the variables (B?j)
are dependent on h. However, (5.3) can bebrought into the standard
format by defining a variable set consisting of Z and (P?j) for all

h and adjusting the coefficients appropriately. A unique feature of



(5.3) is that the RHS of (5.3) is the same for all h while in standard

“disjunctive programming problems they would be dependent on h.

5.2.1 The Dual of the Disjunctive Program

96

Balas (1979) defines a 'dual' for the disjunctive programming problem

and studies some of the relations between the original problem and the

dual so defined. (This is not to be confused with the classical dual

of LP). Interestingly, though the original problem is non-convex, the

'dual'“of it is a convex linear programming. problem. Following Balas,

the 'dual' of (5.3) is given by

U0 = Min U
s.t.
u - th+ﬁdit?>0
i
h h _h ..
-r..8 + bijn -t,20 ¥i, JE Ii
A
heqQ ﬂ éh > 1
h ,h h

— (5.7)

where the symbol A stands for conjunction implying that the constraints

in brackets should be satisfied for all h € Q.

(5.7) is a convex linear

programming problem. Observe that a solution to (5.7) can be obtained

'by solving, for each h, the problem



o = min wnh - zdit?
i
s.t.
h h .ho h oL
bin -tiérij ¥ 1,\]6‘11.

and it follows that

U, = Max [Uh]
0

(5.8) is precisely the dual of an LMCK subproblem of the PDM problem

with xk = xE, k=1,2, ... K. From the solution of the LMCK derived
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— (5.8)

in chapter 3 and using complementary slackness conditions, the solution

of (5.8) is given by

h.
p. i
h _ ,h _h
ti = bi.n -r
where,
h_ Min _ ., h
bi je Ih {biJ}
and
h Max _ _eRh
ri.% el ryyh = ry - Oby

5.2.2 Relation between the Disjunctive Program and its Dual

Suppose

P, ='{(P?j) | (P?j) satisfies constraints of (5.3)}

and

—— (5.10)

— (5.11)

— (5.12)

— (5.13)
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D, = {(n", t., eh) | constraints of (5.7) are satisfied for h}.

Assume that the following regularity condition holds.

Regularity Condition (Balas): If (5.3) is feasible and (5.7) is infeasible,

then there exists h € Q such that Ph # ¢ and Dh = ¢.
Then, .the relation between the disjunctive program and its dual can be
characterized by the following theorem which we state without proof (for

proof, see Balas (1979)).

Theorem 5.1 (Balas): Assume that the disjunctive program (5.3) and its

dual (5.7) satisfy the regularity condition. Then exactly one of the
following two situations:hold:

a) Both problems are feasible; each has an optimal solution and

b) One of the problems is infeasible; the other one is either
infeasible or has no finite optimum.
We assume in the sequel that both problems are feasible, that an optimum
solution exists and that Z0 = UO‘ Now, since (5.7) is a linear program
its traditional dual is given by



The dual of the 'dual' as given by (5.14) is a Tinear program with a

block-angular structure, with one block of constraints for each h,

Tinked through the common constraint z

h&Q
duality theory of linear programs that when (5.7) and (5.14) are

feasible, U

for (5.3) then the corresponding solution with ”?j

is feasible for (5.14).

In the block-angular structure of the constraints of (5.14), W
and di occur in all the blocks once each for each h. Ah in (5.14)
acts as a scaling factor for different sets of veneer thicknesses Xh.
Since the factors they scale are W and di’ both independent of h, it
follows that (5.14) will have an optimal solution in which Ahﬂ =1 for
some h: é Q and Ah = 0 for all he QK{h:}. Exception to this solution

is the possibility of multiple solution to (5.14) in which case more

It follows from

0 = "o Observe that if P?j’ for some H € Q 1is feasib]e
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— (5.14)
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than one set of veneer thicknesses can yield the same objective function
value. Barring situations of multiple solutions to (5.14), it follows
that an optimal solution of (5.14) will also be an optimal solution
to our original disjunctive programming problem (5.13). (Incidentally,
this situation need not hold good for all disjunctive programs since
the RHS of many disjunctive programs are dependent on h. The dual of
the 'dual' for such disjunctive programs may only be a relaxation of
the original problem).

Though the PDM model can be formulated as a disjunctive program
and transformed to an equivalent 1inear program as in (5.14), it does
not offer easier solutions for practical situations due.to several

reasons. First, the number of possible elements in Q is generally very

large. Secondly, for each such feasible set of thickness, b?j and r?j
should be computed explicitly and P?j for j € I? should be identified.

Third, the number of rows and columns of the LP given by (5.14) would

be substantially large. For example, for the plywood mill data of

chapter 3, with K = 4, there can be a maximum of 177147 blocks of

h, each block having anywhere between 14 to 170 variables and 14 constraints.
The disjunctive program approach does. not therefore offer any computational
advantages over the implicit enumeration algorithm of chapter 3.
Nevertheless, it shows that the PDM problem can be cast as a special

case of a disjunctive programming problem and gives an insight into

its properties.
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CHAPTER 6

6.1 The Optimum Number of Veneer Thicknesses

The PDM model presented in the earlier chapters determines the
veneer thicknesses, associated plywood designs and the corresponding
product mix for a given number of veneer thicknesses. The maximum net
revenue so obtained is dependent on the number of peel thicknesses, K,
and does not include the setup or overhead costs associated with it.
Generally, the Tower the number of veneer thicknesses, the Tower is the
‘operational costs associated with peeling, drying, storage, assembly and
record-keeping but they also result in higher wood losses in the form of
excess thickness in plywood and lTower revenue. The higher the number of
veneer thicknesses, the higher is the operational costs but they also
result in Wigher-revenue. For any particular mill therefore, the overall

benefits are determined by the trade-off between the two.

6.1.1 Setup Costs Associated with More Peel Thicknesses

Everytime a veneer thickness is changed at the peeling lathe, there
would be a setting time required to change the lathe settings such as
the horizontal gap, vertical gap or exit gap and pressure bar compression
to the appropriate thickness. This is followed by changes fn sorting
at the clipper where the veneers are clipped to different sizes and
sorted by the thickness and size of the veneer. The higher the number of

peel thicknesses, the higher would be the setup costs in peeling and
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clipping of veneers.

b) Drying of Veneers

When veneers are dried to reduce the moisture content, the driers
are to be adjusted to proper settings of the temperature and drying speed/
time in conventional dryers. These settings depend on species, thickness
and the initial moisture content of veneers. There would be a time loss
associated with the changes.in dryer setup, each time a change in

veneer thickness is made. Again, more veneer thicknesses imply higher

setup costs in drying.

c) Handling_and Storage of Veneers

This problem is multiplied several times since veneers are classified
on the basis of species, sizes (full, half, strips and fishtails)
and surface quality characteristics (based on knots, surface smoothness,
lathe checks and other factors). The storage and handiing costs double

since veneers are stored both in the green end (after peeling but before

drying) as well as the dry end (after drying but before assembly).

In the gluing and assembly of veneers, higher K implies more space
and material haridling facilities. More veneer thicknesses lead to
more design alternatives. Changes in design alternatives result in

higher scheduling costs and higher setup time between batches.

e) Record-Keeping

Increased number of peel thicknesses result in increased costs of
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record-keeping. Routine scheduling probiems related to conversion of
different species and types of logs to different veneer thicknesses,
assigning veneers of different species, size, grade and thickness to
different dryers and assembly of a combination of these into several
types of plywood become more complicated with the addition of each peel
thickness.

A11 the above factors indicate that the setup costs increase,

perhaps exponentially, with increase in the number of peel thicknesses.

6.1.2 Benefits Associated with More Peel Thicknesses

Generally, more peel thicknesses result in more design alternatives
per plywood type. Consequently, they result in lower wood loss in the
form of excess thickness in plywood and higher revenues. Suppose ZK
is the maximum poséible net revenue obtainable from the PDM model
when the number of veneer thicknesses is K. That is,

K

Z, =Max £ » r.P.. - Cy T x.v
K i3 T k=1 KK

— (6.1)

subject to the usual constraints as described in chapter two. [(6.1)
applies to single species model; If more than one species is-used, the
appropriate objective function value should be used]. Let ZK = —o  jf
the optimization model is infeasible for some K. When the problem

is feasible and ZK is finite, it satisfies the relation

Zy 4 > ZK » for all K — (6.2)
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(6.2) follows from the fact that with K + 1 thicknesses, one will have
at least as many design options as with K plus the added benefit of the

extra peel thickness.

6.1.3 Upper Bound on ZK

Though the maximum net revenue increases with increasein the
number of peel thicknesses, beyond a certain value of K, there would not
be any improvemeﬁt in the value of the objective function. In fact, it
can be postulated that the marginal rate of increase in ZK decreases
as K increases, ultimately vanishing at some value of K. Though it is
difficult to determine such a value of K, the exact value of the upperbound,
36, for the objective function value ZK’ for all K, can be calculated
for the single species model of the PDM problem.

Recall from chapter 3 that when veneer thicknesses are assigned
values x:, x;, ce x;, the resulting subproblem is a LMCK problem.
Further, in an optimal solution to this LMCK problem, for each i, P1.j
would be non-negative only for that j for which bij is minimum. Observe

* *
that when veneer thicknesses are assigned values X = X s X € Tk >

k
k=1, 2, ... K, it must satisfy
L_ K *
by < £ a.. X, Sb; for at least one j and for all i
i k=1 ijkk i
. K * . L
Thus, for each i, I a..kxk is bound from below by b., which is
k=1 1Y 1
independent of K. Then, it follows that, for each i,
_* L L
= : = = - <r, - .
bij =y iaijk*k y bi and rij rs Cbij rs Cyb1. Consequently,
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for any i and j,'{rij/bij}is bound from above by

L L
r_ - Cyb qu ry - Cybi — (6.3)
i yb% -

L

yb

p

From (6.3) and the solution to the LMCK problem as derived in chapter 3,

it follows that the upperbound on Z,, for any K, is given by

K’
_ M- 2 bd\ _
I, = T r.d, + ifp — r — (6.4)
0 i#p i A p
_P
— L L — _ Max  —
where, r. = (ri - Cybi), Ei.— ybs and (rp /ER) 51y /Ei}. If a

correction factor, Cf, is used for shrinkage and compression, then

K * d 1 h L
by ai'kxk and in that case b

the plywood thickness is given by C -
fg=1 1 !

in (6.3) and (6.4) is replaced by (b% / Cf). Intuitively, the upper-
' *
bound being obtained when C_. za,. X, = b% for all i is meaningful
f K ijk7k i
since it implies that all plywood types are assembled to the minimum

pérmissible thickness and there is no loss in the form of excess

thickness in plywood.

6.1.4 Design Efficiency

Suppose ZD represents the maximum net revenue for a set of veneer
thicknesses and plywood designs and'f0 is the upperbound on the value
of ZK for all K. Then the ratio

x 100 — (6.5)

i N
C;chj
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can be termed the design efficiency, a percentage rating for this set

of peel thicknesses and plywood designs. Values of ED cioser to 100%
indicate better peel thicknesses and designs. Since 76 is independent
of K but ZD is dependent on it, ED measures the efficiency ignoring

the setup costs associated with K. Nevertheless, it gives an indication
as to how good a set of veneer thicknesses and plywood designs are and

the extent of further improvements, if any, from higher number of peel

thicknesses.

6.1.5 Determining the Optimum Number of Thicknesses

For any particular mill, let 0K be the total set up cost associated
with all the factors described in section 6.1.1, wheh the number of veneer

thicknesses is K. Let Z, be the corresponding maximum net revenue

K
obtainable from the PDM model. Then RK = ZK - 0K gives the net benefit
associated with K. The optimum number of thicknesses for the mill is

given by“that K for which the net benefit RK is maximum. Observe that

ZK is bound from above by Z0 while OK is unrestricted.
The derivation of the upper bound'fo, the design efficiency and
the optimum number of veneer thicknesses is illustrated through the

following example.

Exampie 6.1: The plywood mill data used in chapter 3 is again considered
in this example. The plywood types (N = 12), the lower tolerance on
plywood thicknesses (b%), the revenue (ri) and the orderfile (di) are

as listed in appendix II. For these plywood types, b, F; and (F;/bi)



required to determine Z, were computed using (6.4) and are presented
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in Table 11,
§1¥Z§°f e R Py (ry/b;)
3 - 7.5 .04518 2.7188 60.1791
3 - 9.5 .05809 2.7670 47.6361
5 -12.5 .07745 3.3893 43.7625
5 - 15.5 .09681 4.2117 43.5043
7 -18.5 11617 4.8340 41.6105
7 - 20.5 .12908 5.2822 40.9219
7 -22.5 .14199 5.5304 38.9499
9. - 23.5 .14844 6.1045 41.1240
9 - 25.5 .16135 6.4528 39.9923
9 -27.5 .17426 7.0010 40.1759
9 - 28.5 .18071 7.2751 40.2579
9 - 30.5 .19362 7.8233 40.4054
Table 11: Computations for the Upperbound 76

~ From table 11,

o _ Max- — _
(ry/by) = 757 {ry/byy = 601791
so that p = 1. Then, from (6.4) we have
\
N o 300000 - b.d.
Z0 = 1;-l\r}.d]. + ifl—
04518
= $14,679,760

we have that

2.7188

Thus, for the plywood mill data of chapter 3 (appendix II), the maximum

net revenue can never exceed $14,679,760, irrespective of the number of

veneer thicknesses used.
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Computer codes of the implicit enumeration algorithm of the PDM
model were used with the mill's data to determine ZK for values of K
from 1 to 5. The maximum net revenue ZK’ and the quantity of wood loss
in the form of excess thickness derived from the PDM model are given
in Table 12. For comparison purposes, the corresponding values for
the existing set of veneer thicknesses and associated designs are also
presented. The design efficiencies for each one of these sets were

computed using the value of 76 = 14,679,760 obtained above and are presented

in column 4 of table 12.

K Maximum Wood Loss_in Des?gq Estimated Net .
Revenue ($), | Excess Thickness | Efficiency | Setup Cost* Benefit
Z, (cu. mtr.) (%), Ep ($),0, | (&) R

Fxisting 13,416,694 7,944.7 91.40 3,714,770 9,701,924
K A I R I N

1 Infeasible - - 1,118,870 -

2 Infeasible - - 1,669,160 -

3 13,930,670 3,612.1 94.90 2,490,090 11,440,580

4 14,337,370 1,647.4 97.67 3,714,770 10,622,600

5 14,562,530 558.3 99.20 5,541,790 9,020,740

* Estimated from 6K = 750,000€XP0"4K

Table 12: Optimum Number of Veneer Thicknesses and Design Efficiency

For K = 1 and 2,’the problem was infeasible implying that the
products of the mill cannot be assembled within specifications using
one or two peel thicknesses. For K = 3, the optimal veneer thicknesses
were 2.6, 3.2 and 4.4mm and the maximum net revenue was $13,930,670

(appendix IV). This is higher thah the corresponding value for the
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existing set of four thicknesses by 3.83%. This indicates that not
only better designs existed for the mill but substantial further savings
in the setup costs associated with the fourth peel thickness were also
possible. When K = 4, the optimum veneer thicknesses were 2.5, 3.1,
3.9 and 4.8 mm and the corresponding net revenue was $14,337,370
(appendix III). Thus, if the mill intends keeping four veneer peel
thicknesses for any reason, a better set of thicknesses and plywood
designs resulting in additional revenue of $920,676 (equal to 6.86%
higher than that for the current set) exists.

When K = 5, the optimal veneer thicknesses were 2.4, 2.7, 3.2, 3.7
and 4.8 mm and the associated net revenue, ZK’ was $14,562,530. Since
there were 34 feasible design alternatives for the 12 plywood types of
the mill, detailed results of the model are not presented. The design
efficiency attained was 99.20% indicating that further benefits from
any higher number of peel thicknesses would not be significant. The
wood loss in the form of excess thickness in plywood was 558.3 cubic
metres. This set of five veneer thicknesses results in additional
revenue of $225,160 over the one for four veneer thicknesses obtained
from the PDM model. However, this increase in revenue should be compared
with the additional setup costs associated with the fifth pee1'thickness.

Data on setup costs associated with different number of peel thicknesses
were not available for the mill. For comparison purposes, some hypothetical
data on setup costs were used along with the existing data on revenues.
It was postulated that the setup costs were exponentially related with
the number of peel thicknesses by BK = 750,000exb0'4K.> The estimated
setup costs obtained under this assumption are given in column 5 of

~

Table 12. The last column of this table gives ﬁK = ZK - OK, the estimated
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net benefits. For this set of data, the maximum net benefit occurs
at K = 3 implying that the optimum number of veneer thicknesses is

three.

6.2 Alternate Face Veneer Thickness

In the formulation of the PDM modé] in chapter two, we had treated
Xy to be the face veneer thickness by convention. This convention follows
from the fact that there are more restrictions on the thickness and surface
quality characteristics of a face veneer than those on the inner plies
in a plywood sheet. The face veneer should normally be a full size
sheet with blemish-free surface whereas small sized veneers from strips
and fishtai]s can bé used as core or centre plies only. From manufacturing
considerations, having thin veneers as face veneer is advantageous since
more full size veneer sheets can be obtained from a given log for a
thin veneer rather than that for a thick veneer. Further, repairs or
rework caused by factors such as knot holes, pitch pockets or splits
are easier with thin veneers than with thick veneers. In addition to
this, for standard construction (COFI (1978)), the face veneers must
have the grain direction along the length of the panel implying that
for face veneers the logs must be peeled to the full Tength of the
panel while that for core veneers they can be in lengths relative to
the width of the panel.

The convention that X1 is the face veneer thickness is not a
serious limitation of the capabilities of the PDM model or the implicit
enumeration algorithm to solve it. If more.than one thickness can be

used for face.veneer, subject to-all of them meeting the relevant
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specifications, such a situation can also be incorporated within the
framework of the PDM model. The implicit enumeration algorithm requires
a few modifications in that case but its effectiveness would virtually
be the same. We illustrate these in the following paragraphs.

Recall that most plywood mills use three or four veneer thicknesses.
Suppose there can be two face veneers, X1 and X5 then it Teads to few
more design alternatives which can be obtained by interchanging the
columns associated with aijl and aijz in tables 3 - 6. However, this
can result in some of the design alternatives already in tables 3 - 6.
being duplicated and such alternatives may be excluded. For example,
for a five-ply plywood with K = 3, when additional design alternatives

are generated by interchanging a and aij2 in table 4, the designs

jl
represented by the vectors (2, 3, 0), (3, 2, 0) and (2, 2, 1) for
(aij1’ 33522 a1j3) would be repeated. Eliminating such duplications,
it can be verified that for K = 3 the resultant number of design
alternatives (ni) would be 6, 15, 15 and 18 for plywood made with
3, 5, 7 and 9 plies respectively.

In solving the PDM model using the implicit enumeration algorithm
of chapter 3, some of the branching tests need modification. Treating

X ‘to be the face veneer thickness for f = 1, 2, the bounds derived

.F
in (3.41) and (3.42) would change, respectively to

- . -
. by - (L;-2)T max _
3 . Min i g 1 T
<X, = n, ’ — (6.
Xg S Ko = Min i { > } f (6.6)
: ~ —
v b - 2X .
X, = X, = Max Max o1 f A — (6.7)
K K i L 2 K
~ Aol ; J
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Where, Tfmax is the maximum permissible face veneer thickness.
Following arguments similar to that in chapter 3, we can show that

the branching test (3.40) would be replaced by the following two tests:

and

Xg=< X for 3 <5, < Sy < K — (6.9)
With the modifications described above, the plywood mill data

of chapter 3 (appendix II) was used to demonstrate the effectiveness

of the PDM model with alternate face veneer thicknesses for K = 3. The

results obtained from this modified model are presented in appendix V.

The optimum veneer thicknesses in this case were 2.5, 3.1 and 3.8 mm

with both 2.5 and 3.1 mm veneers being used as face veneers. It can

be observed from these results that the plywood types 3 ply 9.5 mm,

9 ply 28.5 mm and 9 ply 30.5 mm must be assembled using 3.1 mm only

as the face veneer and that the plywood types 3 ply 7.5 mm and 5 ply

12.5 mm must be assembled using 2.5 mm as the face veneers. For all

other types of plywood, alternate designs having either2.5 mm or 3.1 mm

as face veneers existed. However, all these designs are variables for

the LMCK problem and as shown in chapter 3, the solution of the LMCK

would be such that only one design alternative is used for each plywood

type. The maximum net revenue obtained for this model was $14,387,280.

However, it should be noted that this figure does not include the costs

associated with keeping two veneer thicknesses as face veneers. These

results are presented here only to demonstrate that the PDM model and

the implicit enumeration algorithm to solve it can be used under varying

circumstances.
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CHAPTER 7

7.1 Conclusions

In this dissertation, a real-world problem of practical significance
which was hitherto not considered due to its complexity has been formulated
and solved using a quantitative approach. The importance of the problem
stems from the fact that a processed material with value added from
manufacture is Tost implicitly due to the non-availability of better
methods of evaluation. In the wake of dwindling supply of timber
resources and fluctuating and competitive market structure'the need
for efficient utilization of the raw material is all the more greater
now than it was ever before.

The problem of determining a set of veneer thicknesses, associated
plywood designs and product mix which maximizes the net revenue for
a plywood mill has been formulated as a mathematical programming model.

A method of evaluating all feasible plywood designs for a set of veneer
thicknesses is developed. The non-linear mixed integer (0-1) programming
problem so formulated is solved for a global solution using an implicit
enumeration algorithm. The efficiency of this algorithm arises from

its ability to exploit the structures in the model. A computer code

is written and data from a plywood mill is analyzed to demonstrate the
practicality of the model.

Variations and extensions of the model under different circumstances
have been considered and their solution procedures have been analysed.

It is shown that the PDM problem is a non-convex programming problem

which can be cast as a special case of a disjunctive program. Following
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the development of the mathematical programming model and its solution
procedure, ethods to determine the efficiency of plywood designs and
the optimum number of veneer thicknesses for a mill are developed.

The implication of this dissertation are straight-forward. A
plywood mill can use its data on log availability, cost of logs, yield
factor 1ist of plywood types, orderfile and such other factors in the
PDM model to derive the optimal veneer thicknesses, associated plywood
designs and the produce mix. If inclusion of factors such as log grades,
veneer sizes and plywood grades prove to be computationally expensive,
an abridged version of the PDM model may be used. The veneer thicknesses
and plywood designs obtained as a solution of this abridged PDM model can
be used as input in a detailed linear programming model to verify if
they are indeed better than the existing ones. In this way, the model
provides alternatives which never existed before. In the absence of
mill LP models, the PDM model can be used as a basis. for decisions
on the choice of veneer thicknesses, plywood designs and the product mix.
When all relevant factors are considered, the PDM model can, at worst,
end up with the set of veneers and designs currently used by a mill.

The computational time and money involved in generating a solution to
the PDM model is relatively insignificant when compared with the

potential benefits it can bring about.
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APPENDIX I

Listing of the FORTRAN Program for the Implicit

Enumeration Algorithm; Four Veneer Thickness

IMPLICIT ENUMERATION ALGORITHM FOR THE PLYWOOD
DESIGN AND MANUFACTURING (PDM) MODEL

C

C

C

C

C

C B.G.RAGHAVENDRA

C FACULTY OF COMMERCE AND BUS. ADMN.

C UNIVERSITY OF BRITISH COLUMEIA

C VANCOUVER, BC

@

C NUMBER OF VENEER THICKNESSES (K) = 4

C THIS CODE CAN CURRENTLY HAMNDLE UPTO 25 TYPES
C OF PLYWOOD MADE WITH 3,5,7 OR 9 PLIES. IT CAN
C BE EXTENDED TO ANY NUMBER OF PLIES AND PLYWOOD
C TYPES.

C
$

COMPILE
REAL X(4) ,XSTAR(4).,BL(25),.BU(25),T(50),TPLY(25).THICK(25, 16)
REAL TW(25,16).TP(25),R(25),B(4) DEM(25) ,PLY3(4.4) . P(25,16)
REAL PLY5(16.4),PLY7(16.4) . PLYS(16.4).BSUM(25,16).RSUM(25, 16)
REAL WOOD(25),REV(25),PSTAR(25.16),V(4)

REAL TSTAR(25,16).RSTAR(25,16),TWSTAR(25,16) ,BSTAR(4),LSTAR(4)
REAL XMIN(25),XMAX(25),TH(25,16),8D(25).PD(25),WD(25),TS(25)
INTEGER 1D(25,16),1DENT(25)

INTEGER IDELTA(25.16),1PLY(25),1STAR(25,16) . ITEST(25).JBEST(25)

C
C PLY3(J,K)....PLY9(J,K) ARE THE DESIGN COEFFICIENTS
C
DO 10 uU=1.,4
10 READ.(PLY3(J,K).K=1,4)
DO 11 J=1.16
11 READ,(PLY5(J.K).,K=1,4)
DO 12 JU=1,16
12 READ,(PLY7(J.K).K=1,4)
DO 13 J=1,16
13 READ,(PLY9(J.K) ,K=1,4)
C
C INPUT DATA FOR THE PROBLEM; ’‘NUMBER’ IS THE NUMBER
C OF PLYWODD TYPES FOLLOWED BY DETAILS OF ITS NUMBER
C OF PLIES.THICKNESS,LOWER AND UPPER TOLERANCES,ORDERFILE
C AND REVENUE
C
READ,NUMBER
DO 14 I=1,NUMBER
14 READ,IPLY(I),TPLY(I),BL(I).BU(I),DEM(I),R(I)
C
C ‘N2’ IS THE NUMBER OF VENEER THICKNESSES AVAILABLE
C AND 'TFU’ IS THE UPPER TOLERANCE ON FACE -VENEER
C THICKNESS. ’"XSTAR(K)‘ AND ‘ZSTAR’ ARE THE EXISTING
C THICKNESSES AND THE CORRESPONDING NET REVENUE.
(o}

READ, N2
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READ.(T(1),I=1,N2)
READ.W.C,Y,CF,TFU
READ, (XSTAR(K) ,K=1,4),25TAR

THE FOLLOWING SECTION PRINTS THE INPUT DATA AS READ
BY THE COMPILER FOR VERIFICATION PURPOSES.
PRINT220 _ :
220 FORMAT(1’,5X, INPUT DATA  FOR THE PLYWOOD DESIGN PROBLEM®)
PRINT221
221 FORMAT(’ # . BX, ==========m - emm——-mooooo-————-- )
PRINT222,NUMBER
222 FORMAT(’-’, 10X, 'NUMBER OF PLYWOOD TYPES='. 17X,13)
PRINT223,W
223 FORMAT(’-’, 10X, WOOD AVAILABILITY (CU.MTRS.) =',11X,F10.2)
PRINT224.C
224 FORMAT(’-‘,10X,’LOG COST ($/CU.MTRS.)=",19X,F6.2)
PRINT225,Y
225 FORMAT(’-',10X, CORRECTION FACTOR FOR YIELD=',12X,F10.6)
PRINT226,CF :
226 FORMAT(’-', 10X, 'CORRECTION FACTOR FOR SHRINKAGE=',8X,F6.2)
PRINT227,TFU
227 FORMAT('-',10X, UPPER LIMIT FOR FACE VENEER (MM)=’ 7X,F6.2)
PRINT228 :
228 FORMAT(’-‘,10X, OTHER DETAILS OF PLYWOOD TYPES: ‘)
PRINT229
229 FORMAT(’-’,2X, SL.NO.’,2X. PLY’ 2X, THICKNESS’.2X. UPPER LIMIT‘, 2X
C. LOWER LIMIT’,k2X, REVENUE',2%, ORDER FILE')
PRINT230
230 FORMAT( ' . 18X. (MM)’ 8X, (MM)’ 9X, (MM}’ 7X,’($)")

DO 231 I=1,NUMBER
231 PRINT232, I,IPLY(I),TPLY(1),BL(I),BU(I),R(1),DEM(I)
232 FORMAT(’'-‘.,4X,12.5%X,12.5X.F4.1,8% Fd4.1,9%X,F4.1,7X,F4._1,5X.F8.0)
KSET=0
TKMAX=TFU
NODE =0
IMPR=0
IBND=0

COMPUTATION OF THE BOUNDS IMPLIED BY THE BRANCHING
TESTS (3.41)-(3.42)

DO 180 M=1,N2
IF(T(M).LT.TFU)GO TO 180
MAXIM1=M
GO TO 181
180 CONTINUE
181 MXNODE=MAXIM1*N2**3
PRINT 182
182 FORMAT(’1’.5X. RESULTS OF THE PLYWOOD DESIGN PROUBLEM WITH 4 VENEER
cS’)
PRINT 185
185 FORMAT( ' * ,BX. ==== == mmmmm e mm e oo —oo---
c-")
PRINT 183
183 FORMAT(’-’,10X, 'RESULTS OF THE BRANCHING TESTS')
PRINT 184
184 FORMAT(’ 7, 10X, =====--====-===-----=-- e )
DD 20 I=1,NUMBER
IF(IPLY(I).EQ.5)G0 TO 21

121
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IF(IPLY(I).EQ.7)GO TO 22
IF(IPLY(I).EQ.9)GO TO 23
TMAX=(BU(I)-T(1))/2.
GO TO 20

21 TMAX=(BU(I)-3.*T(1))/2.
GO TO 20

22 TMAX=(BU(I1)-5.*T(1))/2.
GO TO 20

23 TMAX=(BU(I1)-7.*T(1))/2.

20 IF(TMAX.LT.TKMAX)TKMAX=TMAX
PRINT24, TKMAX

24 FORMAT(’-‘ ,5X,’MAXIMUM PERMISSIBLE FACE VENEER THICKNESS FROM (3.4
C1) =’ ,F8.2, MM')
TKMIN=0.

DO 25 I=1,NUMBER
IF(IPLY{(1).EQ.5)G0O TO 26
IF(IPLY(I).EQ.7)GO TO 27
IF(IPLY(1I).EN.9)GO TO 28
TMIN=(BL(I)-2.*TKMAYX)
GO TO 25

26 TMIN=(BL{I)-2.*TKMAX)/3.
GO TO 25

27 TMIN=(BL{I1)-2.*TKMAX)/5.
GO TO 25

28 TMIN=(BL(I)-2.*TKMAX)/7.

25 IF(TMIN.GT.TKMIN)TKMIN=TMIN
PRINT2S,TKMIN

29 FORMAT( - ,5X, MINIMUM PERMISSIBLE THICKNESS FOR x4 FROM (3.42)=",

’ CGX.F8.2." MM")

DO 17 M=1 N2
IF(T(M) . LT.TKMAX)GO TO 17
MAX 1=M
GO 70 18

17 CONTINUE

18 DO 19 M=1 N2
IF(T(M).LT.TKMIN}GD TO 19

MINd =M
GO TO 189
19 CONTINUE
o
C THIS SECTION IS INTENDED TO PRINT AN ITERATIVE SUMMARY
C AS AND WHEN IMPROVED VENEER THICKNESSES ARE FOUND.
c
129 PRINT195
195 FORMAT(’-’,5X, RUN STATISTICS:')
PRINT 194
194 FORMAT(’ *,BX,’=-===-==-=-=--~~ )
PRINT 196
196 FORMAT('-’,5X, IMPROVED VENEER SETS FOUND SO FAR AND CORRESPONDING
C THICKNESS AND OBJECTIVE')
PRINT 1960 :
1960 FORMAT(’ ’,5X, FUNCTION VALUE ARE AS FOLLOWS:’)
PRINT197 :
197 FORMAT( ‘-’ ,5X, 'NUMBER’, 10X, VENEER THICKNESS’,5X, 0OBJ. FN. VALUE (
C$)’)
PRINT74, (XSTAR(K) . .K=1,4),2ZSTAR
74 FORMAT( /-’ ,2X, EXISTING SET'.3X,4F6.2,2X.F15.2)
DO 30 L1=1,MAX1
X(1)=T(L1)

DO 31 L2=1,N2
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IF(L2.GT.N2-2)GO TO 31
IF(L2.EQ.L1)GO TO 31
X(2)=T(L2)

DO 311 L3=1,N2
IF(L3.GT.N2-1)GO TO 311
IF(L3.LE.L2)GD TO 31t
IF(L3.EQ.L1)GO TO 311
X(3)=T(L3)

COMPUTATION OF THE BOUNDS ON X4 FROM (3.31)-(3.32)
AND THE INFEASIBILITY TESTS ASSOCIATED WITH THEM.

402

403

404

401

410

413

414

DO 400 1=1,NUMBER
IDENT(1)=0

XMIN(I)=T(N2)

YMAX(I)=T(MINA)

IF(IPLY(1).EQ.5)G0 TO 410
IF(IPLY(I1).EQ.7)GO TD 420
IF(IPLY(I).EQ.9)GO TO 430

DO 401 J=1.4

ID(I.4)=0

SUM=0.

DO 402 K=1.3

SUM=SUM+X(K)*PLY3(UJ.K)

TH(I,J)=SUM*CF

IF(PLY3(J.4) . EQ.O0YGO TO 403
AMIN=(BL(I)-TH(I J))/(PLY3(J.4)*CF)
AMAX=(BU(T)-TH(I ,J))}/(PLY3(J.4)"CF)
IF(AMIN GT.T(N2).0R.AMAY LT .T(MIN4))GD TO 401
IF(AMIN.LT . T(MING))AMIN=T(MINA)

TF(AMAX . GT.T(N2))AMAX=T(N2)

GO TO 404

IF(TH(I,J).LT.BL(I).OR.TH(1 ,J).GT.BU(I))GO TO 401
AMIN=T(MIN4)

AMAX=T(N2)

ID(1,J)=1

IDENT(I)=IDENT(I)+1
IF(AMIN.LT.XMIN(I))XMIN(I)=AMIN

IF(AMAX .GT . XMAX(I)})XMAX(TI)=AMAX

CONTINUE

IF(IDENT(I1).EQ.0)GO TO 311

GO TO 400

DO 411 J=1, 16

ID(1,4)=0

SUM=0. :

DO 412 K=1,3

SUM=SUM+PLYS(J,K)*X(K)

TH(I.J)=SUM=*CF

1IF(PLYS(J,4).EQ.0)GD TO 413
AMIN=(BL(I)-TH(I,J))}/(CF*PLYS5(J.4}))
AMAX=(BU(I)-TH(I.J))/(CF*PLYS(J,4))
IF(AMIN.GT.T(N2).0R.AMAX LT .T(MIN4))GO TO 411
IF(AMIN.LT.T(MIN4))AMIN=T(MIN4)

IF(AMAX . GT.T(N2))AMAX=T(N2)

GO TO 414
IF(TH(I,J).LT.BL(I).OR.TH(I,J).GT.BU(I))GO TO 411
AMIN=T(MIN4)

AMAX=T (N2)

ID(I.,J)=1

IDENT(I)=IDENT(I)}+1



420

422

423

424

433

434

431

400

440

124

IF(AMIN.LT .XMIN(I))XMIN(I)=AMIN
IF(AMAX .GT . XMAX{I))XMAX(1)=AMAY
CONTINUE )
IF(IDENT(I).EQ.0)GO TO 311

GO TO 400

DO 42t J=1,16

ID(1.J)=0

SUM=0.

DO 422 K=1,3

SUM=SUM+X{(K)*PLY7(J,K)
TH(I,J)=SUM-CF

IF(PLY7(J,4) . EQ.0)GO TO 423
AMIN=(BL(I)-TH(I,.J)})}/(CF*PLY7(J.4))
AMAY =(BU(TI)-TH(I,J))}/(CF*PLYT7(J.3))
IF(AMIN.GT.T(N2).0OR.AMAX LT .T(MIN2))GO TO 421
IF(AMIN.LT.T(MING))AMIN=T(MIN4)
IF{AMAX .GT . T(N2))AMAX=T(N2)}

GO TO 424
IF(TH(I,J).LT.BL(I).OR.TH(I.J).GT.BU(I))GO TO 421
AMIN=T(MIN4)

AMAX=T(N2)

ID(I. . J)=1

IDENT(I)=IDENT(I)+1

IF(AMIN. LT . XMIN(I))IXMIN(I)=AMIN
IF(AMAX GT . XMAX(1))XMAX(I)=AMAYX
CONT INUE

IF(IDENT(I) . EN.O)GO TO 311

GO TO 400

DO 431 J=1.,16

ID(I.J)=0

SUM=0.

DO 432 K=1,3

SUM=SUM+PLYI(J.K)*X(K)
TH(I,J)=SUM“CF

IF(PLYS(J.4).EQ.0)GO TO 433
AMIN=(BL(I)-TH(I.J))/(CF PLYS(J.4})
AMAX=(BU(I)~-TH(1,J))/(CF*PLYS(UJ.))
IF(AMIN.GT.T(N2).0R.AMAX . LT .T(MIN4))GO TO 431
IF(AMIN. LT .T(MIN4))AMIN=T(MIN4)
I1F(AMAY .GT . T(N2))AMAX=T(N2)

GO TO 434

IF(TH(I.J) . LT.BL(I).OR.TH(I ,J).GT.BU(TI))GO TO 431
AMIN=T(MINJ)

AMAX=T(N2)

ID(I,J¥)=1

IDENT(I)=IDENT(I)+1
IF(AMIN.LT.XMIN(I))}XMIN(I)=AMIN
IF(AMAX .GT . XMAX(I))XMAX{1)=AMAX
CONT INUE

IF(IDENT(1).EQ.O)GO TO 311

CONTINUE

X4AMIN=TKMIN

X4MAX=T(N2)

DO 440 1=1,NUMBER
IF(XMIN(I).GT.X4MIN)X4MIN=XMIN(I)
IF(XMAX(I).LT.X4MAX)X4MAX=XMAX (1)
IF(XAMIN.GT.X4MAX)GD TO 311

DO 441 M=MIN4 N2 .
IF(T(M).LT.X4MIN)GO TO 4414

MINX4=M



441
442

443
444
C
C
C

4540
454

451

4550
455

452

4560
456

453

4570
457

GO 70 442

CONTINUE

DO 443 M=MIN4 N2
IF{(T(M).LT.X4MAX)GO TO 443
MAXX4=M

GO TO 444

CONTINUE

IF(MINX4.GT .MAXX4)GO TO 311

"ZBOUND " IS THE UPPER BOUND.
DO 450 I=1,NUMBER
BD(I)=BU(I)

IDENT(I)=0
IF(IPLY(1).EQ.5)GO TO 451
IF(IPLY(I).EQ.7)GO TO 452
IF(IPLY(I).EQ.9)GO TO 453
D0 454 J=1.,4
IF(ID(1,J).EQ.0)GO TO 454

DO 4540 M=MINX4 MAXX4
SUMA=TH(I,J)+T(M)*CF*PLY3(J
IF(SUMA LT .BL(I).0R.SUMA . GT
IDENT(I)=IDENT(I)+1
IF(SUMA. LT .BD(1))BD(I)=SUMA
CONT INUE

CONTINUE
IF(IDENT(I).EQ.Q)GO TO 311
GO TO 450

DO 455 J=1,16
IF(ID(I.J).EQ.O0)GO TO 455
DO 4550 M=MINX4 MAXX4
SUMA=TH(I . J)+T(M)*CF*PLYS5(J
IF(SUMA . LT .BL(I).0R.SUMA.GT
IDENT(I)=IDENT(I)+1

IF{SUMA . LT.BD(I))BD(I)=SUMA
CONTINUE

CONTINUE
IF(IDENT(I).EQ.0)GO TO 311
GO TO 450

DO 456 J=1,16
IF(ID(I.J).EQ.0)GO TO 456
DO 4560 M=MINX4 MAXX4
SUMA=TH(I ,J)+T(M)*CF*PLYT7 (U
IF(SUMA.LT .BL(I).0R.SUMA.GT
IDENT(I)=IDENT(I)+1
IF(SUMA.LT.BD(I))BD(I)=SUMA
CONTINUE

CONTINUE
IF(IDENT(I).EQ.O0)GO TO 311
GO TO 450

DO 457 J=1,16
IF(ID(I.J).EQ.O)GO TO 457
DO 4570 M=MINX4 MAXXd
SUMA=TH(I,J)+T(M)*CF*PLYS(J
IF(SUMA . LT.BL(1).0R.SUMA.GT

"IDENT(I)=IDENT(1)+1

IF(SUMA.LT.BD(1))BD(I)=SuMA
CONTINUE

CONTINUE
IF(IDENT(1).EQ.O0)GO TO 311

125

COMPUTATION OF THE UPPER BOUND ON 2 FROM (3.38):

.4
.BU{1))GO TO 454

.4)
.BU(I))GO TO 455

.4)
.BU(1))GO TO 4%6

.4)
.BU(I))GO TO 457
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450

460

461

462

SOLVING THE LMCK PROBLEM AFTER BRANCHING TESTS
AND BOUNDS: “ZNODE‘ IS THE OBJECTIVE FUNCTION

CONTINUE
TSMAX=0.
DO 460 I=1,NUMBER

TS(1)=(R(I)-(C*Y*BD(I))/CF)/((BD!I)*Y)/CF)

IF(TS(1).LE.TSMAX)GO TO 460

TSMAX=TS(1)
IBEST=1I

CONTINUE

SW00D=0.

DO 461 I=1,NUMBER

IF(I.EQ.IBEST)GO TO 461

PD(I)=DEM(I)

WD(I)=(BD(I)*PD(I)*Y)/CF

SWO0D=SWOOD+WD( 1)
CONTINUE

PD(IBEST)=(W-SWOOD)/((BD(IEEST) ¢ )/CF)
IF(PD(IBEST).LT.DEM(IBEST))GO TO 311

ZBOUND=0.
DO 462 I=1,NUMBER

ZBOUND=ZBOUND+(R(I)-{C*Y*BD(1))/CF)*PD(I)

IF(ZBOUND.GT .ZSTAR)GO
IEND=IBND+ {
GO 70 311

VALUE FROM (3.14).

198

44

41

45

a2

DO 32 L4=MINX4 MAXX4
X(4)=T(L4)
IF{(L4.LE.L3)GO TO 32
IF(X(4) . EQ.X(2))GO TO
IF(X(4).EQ.X(1))GO TO
NODE=NODE+1

DO 40 I=1,NUMBER
ITEST(I)=0
IF(IPLY(I).EQ.B)IGO TO
IF(IPLY(I1).EQ.7)GO TO
IF(IPLY(I)}.EQ.9)GO TO
DO 44 J=1.4
IDELTA(I,J)=0

THICK(I ,J)=TH(I,J)+X(4)*PLY3(J,4)*CF
IF(THICK(I.J).LT.BL(I).0R.THICK(I ,J}.GT.BU(I))GO TO 44

IDELTA(LI.J)=1

ITEST(I)=ITEST(I)+IDELTA(I, J)

CONTINUE

IF(ITEST(I).GE.1)GO 7O 40

GO 7O 32
DO 45 J=1,16
IDELTA(I.J)=0

THICK(I.J)=TH(I,J)+X(4)*PLYS(J,.4)*CF
IF(THICK(I,J).LT.BL(I).OR.THICK(I J).GT.BU(I))GO TO 45

IDELTA(I . J)=1

ITEST(I)=ITEST(I)+IDELTA(I J)

CONTINUE

IF(ITEST(I).GE.1)GO TO 40

GO TO 32
DO 46 J=1,16
IDELTA(I,J)=0

THICK(I,J)=TH(I ,J)+X(4)*PLYT(J,4)*CF

TO

41
42
43

198

126
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46

43

47

40

IF(THICK(I,J).LT.BL(I).OR.THICK(I,J).GT.BU(1)})}GO TO 46
IDELTA(I,J)=1

ITEST(I)=ITEST(I)+IDELTA(I J)

CONTINUE

IF(ITEST(1).GE.1)GO TO 40

GO TO 32

DO 47 J=1,16

IDELTA(I,J)=0

THICK(T J)=TH(I,J)

IF(THICK(I,J).LT.BL(I).0OR.THICK(I, ,J).GT.BU(1))GO TO 47
IDELTA(I . J)=1

ITEST(I)=ITEST(I)+IDELTA(I . J)

CONTINUE

IF(ITEST(I).GE.1)GO TO 40

GO TO 32

CONTINUE

SETTING LIMITS ON COMPUTATIONS; ’'KSET’ IS THE
MAXIMUM NUMBER OF LMCK PROBLEMS TO BE SOLVED.

50

611

55

52

612

KSET=KSET+1
IF(KSET.GT.S000)GD TO 200

DO 50 K=1.,4

B(K)=Y*X(K)

TWMAX=0.

DO St I=1. NUMEBER

TP(1)=0.

IF(IPLY(I).EQ.5)GD TO 52
IF(IPLY(1).EQ.7)GD TO 53
IF(IPLY(I).EQ.9)G0 TO 54

DO 55 J=1.4

TW(1,J)=0.

RSUM(I.,J)=0.

BSUM(1,d)=0.
IF(IDELTA(I.J).EQ.0)GO TO 55
DO 611 K=1.4
BSUM(I,J)=BSUM(I ,J)+B(K)*PLY3(J,K)
RSUM(I,J)=R(I)-BSUM(I,J)~*C
TW(I,J)=RSUM(I, J)/BSUM(I.J)
IF(TW(I . J).LT.TP(1))GD TO 55
TP(I)=TW(I1.J) :
JBEST(1)=J
IF(TP(I).LT.TWMAX)GO TO 55
TWMAX=TP(1)

IBEST=1

CONTINUE

GO TO 51

DO 56 J=1,16

TW(I,J)=0.

RSUM(I,J)=0.

BSUM(TI,J)=0.
IF(IDELTA(I,J).EQ.0)GO TO 56
DO 612 K=1,4
BSUM(T,J)=BSUM(I,J)+B(K)*PLY5(J.K)
RSUM(I,J)=R(I)-C*BSUM(I, J)
TW(I,J)=RSUM(I,J)/BSUM(I, J)
IF(TW(I,J).LT.TP(I))GO TO 56
TP(I)=TW(I,J)

JBEST(1)=J
IF(TP(I).LT.TWMAX)GO TO 56
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56

53

57

54

58
51

61

69
60

TWMAX=TP(1)

1IBEST=1

CONTINUE

GO TO 51

DO 57 J=1,16

TW(I.J)=0.

RSUM(I,J)=0.

BSUM(1,4)=0.
IF(IDELTA(I,J).EQ.O)GO TO 57
DO 613 K=1. 4
BSUM(T,J)=BSUM(I,J)+B(K)*PLY7(J.K)
RSUM(1,J)=R(I)-C*BSUM(I J)
TW(I,J)=RSUM(I,J)/BSUM(I. J)
IF(TW(I.U).LT.TP(1))GO 7O 57
TP(I)=TW(I, J)

UBEST(1)=J
IF(TP(I).LT.TWMAX)GC TO 57
TWMAX=TP(1)

IBEST=1

CONTINUE

GO TO 51

DO 58 J=1,16

TW(1.J)=0.

RSUM(I ,J)=0.

BSUM(1.J)=0.

IF(IDELTA(I J).EQ.CIGQC TO 58
DO 614 K=1,4

BSUM(T . J)=BSUM(I ,J)+B(K)*PLYI(J.K)
RSUM(I,J)=R(1)-C*BSUM(I J)
TW(I,J)=RSUM(I J)/BSUM(I, J)
IF(TW(I.J).LT.TP(I1))GD TO 58
TP(I)=TW(1.J)

JBEST(I)=u

IF(TP(1).LT .TWMAX)GD TO 58
TWMAX=TP(1)

1BEST=1

CONT INUE

CONTINUE

SUMB=0.

DO 60 1=1,NUMBER
IF(I.EQ.IBEST)GOD TO 69

Ni=4

IF(IPLY(1).GT.3)NI=16

DO 61 J=1,NI

P(I.J)=0.
IF(J.NE.JBEST(I))GO TO 61
P(I,J)=DEM(I) )
WOOD(1)=BSUM(I.J)*P(I,J)
REV(I)=RSUM(I J)*P(1,J)
CONTINUE ‘
SUMB=SUMB+WOOD(1)

GO TO 60

1P=1

CONTINUE

NI=4

IF(IPLY(IP).GT.3)NI=16

DO 70 J=1,NI

P(IP.J)=0.
IF(J.NE.UBEST(IP))GO TO 70
P(IP,J)=(W-SUMB)/BSUM(IP,J)
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IF(P(IP.J).LT.DEM(IP))GO TO 32
REV(IP)=RSUM(IP,J)*P(IP, J)
70 CONTINUE
ZNODE=0.
DO 74 I=1,NUMBER
71 ZNODE=ZNODE+REV(I)

UPDATING THE INCUMBENT SOLUTION AND PRINTING
IT FOR ITERATIVE SUMMARY .

o000

IF(ZNODE.LE.ZSTAR)GO TO 32
IMPR=IMPR+1
ZSTAR=ZNODE
wWOODVL=TWMAX
DO 72 K=1.,4
72 XSTAR(K)=X(K)
PRINT75,IMPR, (XSTAR(K) ,K=1,4) ZSTAR
75 FORMAT( 'O’ ,5X,13,9X,4F6.2.2X F15.2)
DO 73 I=1,NUMBER
NI=4
IF(IPLY(I).GT.3)NI=16
DO 73 J=1,NI
PSTAR(1 ,JU}=P(I.J)
RSTAR(I,J)=RSUM(I J)
TSTAR(TI,J)=THICK(I J)
TWSTAR(I  J1=TW(I.J)
73 ISTAR(I,J)=IDELTA(I.J)
32 CONTINUE
311 CONTINUE
31 CONTINUE
30 CONTINUE
IF(KSET.GT.0)GD TO 100
C
C MESSAGE IF THE PROBLEM IS INFEASIELE.
C
PRINT10O1
101 FORMAT( 1 ,5X, THE PROBLEM IS IMFEASIBLE: VENEER THICKNESS SET SAT
CISFYING CONSTRAINTS (2.2)-(2.4) DOES NOT EXIST')
GO TO 993

MESSAGE IF THE NUMBER OF LMCK PROELEMS 7O BE
SOLVED EXCEEDS A PRESET LIMIT.

o000

200 PRINT201

201 FORMAT(’1’,5X, '‘NUMBER OF FEASIBLE VENEER THICKNESS SETS EXCEEDS 50
COO; PROGRAM TERMINATED PREMATURELY. CURRENT RESULTS ARE PRESENTED’
c)

c
C THIS SECTION GIVES A SUMMARY OF THE PERFORMANCE
C OF THE IMPLICIT ENUMERATION ALGORITHM,
c
100 PRINT 193, MXNODE
193 FORMAT(’-’,5X, MAXIMUM POSSIBLE SETS OF VENEER THICKNESS,ORIGINAL
C PROBLEM =’ 5X,16)
PRINT470, IBND
470 FORMAT(‘~-‘,5X. NUMBER OF TIMES UPPER BOUND ON Z (3.38) WAS EFFECTI
CVE =’ .,8X,16)
PRINT182,NODE
192 FORMAT(’~’,5X, 'NUMBER OF VENEER SETS EVALUATED AFTER BRANCHING TES

CTS=',9X,16)
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PRINT191,KSET
191 FORMAT( ‘-’ ,5X, 'NUMBER OF VENEER SETS EVALUATED FOR LMCK PROBLEM=’,
C12X,16)
DO 77 K=1.,4
V(K)=0.
DO 78 I=1,NUMBER
IF(IPLY(I).EQ.5)GD TO 170
IF(IPLY(I).EQ.7)GO TO 171
IF(IPLY(I).EQ.9)GO 70O 172
DO 173 J=1.4
IF(ISTAR(I,J).EQ.0)GD TO 173
V(K)=V(K)+PLY3(U ,K)*PSTAR(1 . 4)
173 CONTINUE
GO TO 78
170 DO 174 J=1,16
IF(ISTAR{(I.J).EQ.0)GO TO 174
V(K)=V(K)+PLYS5(J.K)}*PSTAR(I.J)
174 CONTINUE
GO TO 78
174 DO 175 J=1.16
IF(ISTAR(I . JU).EQ.0)GO TO 175
VIK)=VIK)+PLY7(J,K)*PSTAR(I.J)
175 CONTINUE
GO TO 78
172 DO 176 J=1.16
IF(ISTAR(I.J).EQ.0)GO TO 176
VIK)=VIK)+PLYS(J.K)*PSTAR(I.J)
176 CONTINUE
78 CONTINUE
BSTAR(K)=Y*XSTAR(K)
LSTAR(K)=V(K)*BSTAR(K)
77 CONTINUE
C
C THIS SECTION GIVES THE SOLUTION TO THE PDM PROBLEM.
o

PRINT 102
102 FORMAT( "1’ ,5X, "RESULTS: ")
PRINT 103
103 FORMAT( " ,5X, ' ~==~--- )
PRINT 104, (XSTAR(K) ,K=1,4)
104 FORMAT(’O’.5X, OPTIMAL VENEER THICKNESSES ARE (MM):’ 4F8.2)
PRINT177

177 FORMAT( 0O’ ,5X, QUANTITY OF LOGS FOR CORRESPONDING ‘)
PRINT1770,(LSTAR(K) ,K=1,4)
1770 FORMAT(' ‘. 5X, THICKNESS (CU. MTRS.): ', 15¥% ,4F8.0)
PRINT105,2ZSTAR
105 FORMAT(’0O’,5X, '0BJU.FN. VALUE AT OPTIMAL SOLUTION ($):’,F20.2)
PRINT 190, WOODVL
190 FORMAT('0O’,5X, 'MARGINAL VALUE OF WOOD ($/CU.MTR.):‘,F18.4)
PRINT 106 :
106 FORMAT( 'O’ .5X, ' CORRESPONDING DESIGN ALTERNATIVES AND PRODUCT MIX
CARE AS FOLLOWS:’)

PRINT 107
107 FORMAT( -’ 5X, PLYWOOD TYPE',.8Y, DESIGN ALTERNATIVE’,5X,’THICKNES
CS”.5X,’QUANTITY ' 10X, 'NET REVENUE")
PRINT 108 ’
108 FORMAT( ' ~’,49X, (DRY-MM)’ 8%, ’(#)’, 13X, $/SHEET")

DO 110 I=1,NUMBER
PRINT114,IPLY(1),TPLY(1) )
111 FORMAT( -’ ,5X,12,'PLY’ ,2X,F4 1, 'MM')
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IF(IPLY(I).EQ.5)GD TO 112

IF(IPLY(I).EQ.7)GO TO 113

IF(IPLY(I).EQ.9)GO TO 114

DO 115 J=1,4

IF(ISTAR(I,J).EQ.0)GO TO 115

PRINT 116, (PLY3(JU.K),K=1,4) ,TSTAR(I ,J) ,PSTAR(I,J),RSTAR(I J)

116 FORMAT(‘ ' 22X, 4F5.0,7X.F5.2,5X.F12.1,8%X,F8.4)

11

11
11

11

12
12
11
99

5 CONTINUE
GO 70 110
2 BO 117 J=1,16
IF(ISTAR(I.J).EQ.0)GO TO 117
PRINT 118, (PLY5(J,K),K=1,4)  TSTAR(I,J),PSTAR(I,J),RSTAR(I U}
8 FORMAT(’ ’,22X,4F5.0,7X,F5.2,5X.F12.1,8%X,F8.4)
7 CONTINUE
GO TO0 110
3 DO 119 J=1,16
IF(ISTAR(I,J).EQ.0)GO TO 119
PRINT120,(PLY7(J,K).K=1,4) TSTAR(I,J).PSTAR(I,J),RSTAR(I J)

120 FORMAT(’ ', 22X,4F5.0,7X,F5.2,5X,F12.1,8X.F8.4)

9 CONTINUE
GO TO 110
4 DO 122 J=1,16
IF(ISTAR(I,J).EQ.0)GO TO 122
PRINT 121, (PLY9(U,K).,K=1,4) ,TSTAR(I,J),PSTAR(I,J),RSTAR(I.J)
1 FORMAT(’ ’,22X,4F5.0,7X.F5.2.5X,F12.1,8X.F8.4)
2 CONTINUE
O CONTINUE
g sTOP
END

THIS LAST SECTION IS THE INPUT DATA. THE FIRST
52 STATEMENTS ARE THE DESIGN COEFFICIENTS. THESE
ARE FOLLOWED BY SPECIFIC MILL DATA USED FOR
ILLUSTRATION IN CHAPTER THREE.
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1

2.4 2.5 2.6 2.7 2.82.83.03.
3.6 3.7 3.8 3.9 4.0 4.

4.8 4.9 5.0

300000.0 35.0 0.006067 0.84 3.2

2.64 3.35 3.86 4.88

13416630.
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APPENDIX II

Data from a Plywood Mill in B.C.

Number of veneer thicknesses (K): 4

Veneer thicknesses (xk): 2.69, 3.35, 3.96 and 4.98 mm

Log Cost (C): 35.00 $/cu.mtr.

Log availability (W): 300000 cu.mtr.

Veneer yield factor (y): 0.006067 (corresponds to a 60% yield by
volume)

Shrinkage and compression factor (Cf): 0.94

Upper Timit on face veneer thickness (TfU): 3.20 mm

Number of plywood types (N): 12



134

9. Plywood types and designs:

P1ywood Type Design Number of veneers of
Plies-Thickness (mm) | Alternative D .69 3.35 3.96 4.98
3- 7.5 i) 3 0 0 0
3- 9.5 i) 2 0 0 1
5- 12.5 ) 5 0 0 0

4 ii) 4 1 0 0

5 - 15.5 i) 2 2 0 1
ii) 2 1 2 0

7 - 18.5 i) 5 2 0 0
ii) 4 3 0 0

7 - 20.5 i) 2 5 0 0
ii) 4 0 3 0

7 - 22.5 i) 2 0 5 0
ii) 2 2 3 0

9 - 23.5 i) 6 3 0 0
9 - 25.5 i) 6 0 3 0
ii) 5 4 0 0

9 - 27.5 i) 5 4 0
ii) 2 0 0

9 - 28.5 i) 6 0 0 3
ii) 2 4 3 0

9 - 30.5 i) 2 0 7 0
ii) 5 0 0 4




135

10. Plywood thickness tolerance, revenue and orderfile:

Number of Thickness (mm) Revenue Orderfile

Plies Specified Lower Upper ($/Panel) (# of Panels
Limit Limit 2.84miix 1.22m)

3 7.5 7.0 8.0 4.3 171107
3 9.5 9.0 10.0 4.8 106378
5 12.5 12.0 13.0 6.1 502289
5 15.5 15.0 16.0 7.6 350192
7 18.5 18.0  19.0 8.9 423394
7 20.5 20.0 21.0 9.8 443442
7 22.5 22.0 23.0 10.5 2952
9 23.5 23.0 24.0 11.3 6135
9 25.5 25.0 26.0 12.1 11172
9 27.5 27.0 28.0 13.1 2738
9 28.5 28.0 29.0 13;6 1278
9 30.5 30.0 31.0 14.6 38

11. Maximum possible Net Revenue ($): 13416694

12. Wood Toss in the form of excess

thickness in plywood (cu. mtr.): 7944.7




APPENDIX III

Results from the PDM Model with

Four Veneer Thicknesses

Optimal veneer thicknesses (mm):

Quantity of logs for corresponding
thicknesses (cubic metres):

Objective function value at
optimal solution ($):

Marginal value of wood
($/cubic metre):

Wood less in the form of excess

thickness in plywood (cubic metres):

2.5 3.1 3.9

205848 48886 31799

14337370.00

59,5003

1647 .4

136

4.8

13468
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Plywood design alternatives and product'mix:

Plywood Type | Design Number of Veneers of Quantity.of Plywood,
ply-Thickness | Alternative | 2.5 3.1 3.9 4.8 |# of Panels,?2.44mx
(mm) 1.22 m
3-17.5 i) 3 0 0 0 2371653
ii) 2 1 0 0 -
3 -09.5 i) 2 0 0 1 106378
5-12.5 i) 4 1 0 0 502289
ii) 3 2 0 0 -
5 - 15.5 i) 2 0 3 0 -
ii) 2 2 0 1 350192
7 - 18.5 i) 4 3 0 0 423394
7 - 20.5 i) 5 0 0 2 -
ii) 4 0 3 0 443442
ii1) 2 3 2 0 -
7 -22.5 i) 4 0 0 3 -
ii) 2 3 0 2 2952
9 - 23.5 i) 5 4 0 0 6135
9 - 25.5 i) 6 0 3 0 -
ii) 2 7 0 0 111172
9 - 27.5 i) 2 4 3 0 2738
i) 6 0 0 3 -
9 - 28.5 i) 2 3 4 0 1278
i)

Vel
!
W
o
o
-

2 0 7 0 38




APPENDIX IV

Results from the PDM Model with Three

Veneer Thicknesses

Optimal veneer thicknesses (mm):

Quantity of logs for corresponding
thickness (cubic metres):

Objective function value at
optimal solution ($):

Marginal value of wood
($/cubic metre):

Wood loss in the form of excess

thickness in plywood (cubic metres):

2.6 3.2

231533 32087

13930670

55.8657

3612.1

138

4.4

36380
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6% Plywood design alternatives and product mix:
Plywood Type Des1ign Number of veneers of | Quantity of Plywood,
Ply - Thickness | Alternative | 2.6 3.2 4.4 # of panels, 2.44m x
(mm) 1.22m

3 .- 7.5 i) 3 0 0 2277072
ii) 2 1 0 -

3 - 9.5 i) 2 0 1 106378

5 - 12.5 i) 5 0 0 502289
i) 4 1 0 -

5 - 15.5 i) 3 0 2 -
ii) 2 2 1 350192

7 - 18.5 i) 5 2 0 423394
i) 4 3 0 -

7 - 20.5 i) 5 0 2 443442

7-- 22.5 i) 4 0 3 -
ii) 2 3 2 2952

9 - 23.5 i) 6 3 0 6135

9 - 25.5 i) 2 7 0 11172

9 - 27.5 i) 6 0 3 2738

9 - 28.5 i) 5 0 4 1278

9 - 30.5 i) 2 3 4 38




APPENDIX V

Results from the PDM Model; Alternate Face Veneers

Optimal veneer thicknesses (mm):
Quantity of logs for corresponding
thickness (cubic metres):

Face veneers (mm):

Objective function value at
optimal solution ($):

Marginal value of wood ($):

Wood loss in the form of

excess thickness in plywood

(cubic metres):

2.5 3.1

185670 82869
2.5 3.1

14,387,280
59.5003

1403.0

3.8

31461

140



7.

Plywood design alternatives and product mix:

141

Plywood Type

Design

Number of Veneers of

Quantity of Plywood,

Plies - Thick (mm) | Alternative*| 2.5 3.1 3.8 # of Panels
3 - 7.5 i) 3 0 0 2383259
if) 2 1 0 -
3 - 9.5 i) A 0 2 1 106378
5 - 12.5 i) 4 1 0 502289
i) 4 0 1 -
i1i) 3 2 0 -
5 - "15.5 i) 2 0 3 -
ii) A 0 4 1 350192
iii) A 0 3 2 -
iv) A 1 2 2 -
7 - 18.5 i) 5 0 2 -
ii) 4 3 0 423394
iii) A 3 4 0 -
7 - 20.5 i) 4 0 3 -
i1) 2 3 2 -
iii) A 0 7 0 S .
iv) A 3 2 2 443442
7 - 22.5 i) 2 0 5 -
ii) A 0 4 3 2952
9 - 23.5 i) 5 4 0 6135
ii) A 4 -5 -0 -
9 - 25.5 i) 2 7 0 11172
ii) A 4 2 3 -
9 - 27.5 i) 2 4 3 2738
ii) 2 3 4 -
iii) A 3 2 4 )
9 - 28,5 i) A 0 6 3 1278
ii) A 0 5 4 -
9 - 30.5 i) A 0 2 7 38
"* 'A' indicates alternative face veneer thickness of 3.1 mm



